1
|
Benson TM, Markey GE, Hammer JA, Simerly L, Dzieciatkowska M, Jordan KR, Capocelli KE, Scullion KM, Crowe L, Ryan S, Black JO, Crue T, Andrews R, Burger C, McNamee EN, Furuta GT, Menard-Katcher C, Masterson JC. CSF1-dependent macrophage support matrisome and epithelial stress-induced keratin remodeling in Eosinophilic esophagitis. Mucosal Immunol 2025; 18:105-120. [PMID: 39343055 DOI: 10.1016/j.mucimm.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Atopic diseases such as Eosinophilic Esophagitis (EoE) often progress into fibrosis (FS-EoE), compromising organ function with limited targeted treatment options. Mechanistic understanding of FS-EoE progression is confounded by the lack of preclinical models and the heavy focus of research on eosinophils themselves. We found that macrophage accumulation precedes esophageal fibrosis in FS-EoE patients. We developed a FS-EoE model via chronic administration of oxazalone allergen, in a transgenic mouse over-expressing esophageal epithelial hIL-5 (L2-IL5OXA). These mice display striking histopathologic features congruent with that found in FS-EoE patients. Unbiased proteomic analysis, using a unique extracellular-matrix (ECM) focused technique, identified an inflammation-reactive provisional basal lamina membrane signature and this was validated in two independent EoE patient RNA-sequencing/proteomic cohorts, supporting model significance. A wound healing signature was also observed involving hemostasis-associated molecules previously unnoted in EoE. We further identified the ECM glycoprotein, Tenascin-C (TNC), and the stress-responsive keratin-16 (KRT16) as IL-4 and IL-13 responsive mediators, acting as biomarkers of FS-EoE. To mechanistically address how the immune infiltrate shapes FS-EoE progression, we phenotyped the major immune cell subsets that coalesce with fibrosis in both the L2-IL5OXA mice and in FS-EoE patients. We found that macrophage are required for matrisome and cytoskeletal remodeling. Importantly, we show that macrophage accumulation precedes esophageal fibrosis and provide a novel therapeutic target in FS-EoE as their depletion with anti-CSF1 attenuated reactive matrisome and cytoskeletal changes. Thus, macrophage-based treatments and the exploration of TNC and KRT16 as biomarkers may provide novel therapeutic options for patients with fibrostenosis.
Collapse
Affiliation(s)
- Taylor M Benson
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland; Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Gary E Markey
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Juliet A Hammer
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Luke Simerly
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | | | - Kimberly R Jordan
- School of Medicine, University of Colorado, CO, USA; Department of Immunology and Microbiology, University of Colorado, CO, USA
| | | | - Kathleen M Scullion
- Mucosal Immunology Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Louise Crowe
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Sinéad Ryan
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Jennifer O Black
- Department of Pathology, Children's Hospital Colorado, Aurora, CO, USA
| | - Taylor Crue
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Rachel Andrews
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Cassandra Burger
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Eóin N McNamee
- Mucosal Immunology Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Glenn T Furuta
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Calies Menard-Katcher
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Joanne C Masterson
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland; Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA.
| |
Collapse
|
2
|
Liu H. Effect of Skin Barrier on Atopic Dermatitis. Dermatitis 2025; 36:37-45. [PMID: 38738291 DOI: 10.1089/derm.2024.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The skin acts as the body's primary physical and immune barrier, maintaining the skin microbiome and providing a physical, chemical, and immune barrier. A disrupted skin barrier plays a critical role in the onset and advancement of inflammatory skin conditions such as atopic dermatitis (AD) and contact dermatitis. This narrative review outlines the relationship between AD and skin barrier function in preparation for the search for possible markers for the treatment of AD.
Collapse
Affiliation(s)
- Hanye Liu
- From the Beihua University, Jilin, China
| |
Collapse
|
3
|
Seubert AC, Krafft M, Bopp S, Helal M, Bhandare P, Wolf E, Alemany A, Riedel A, Kretzschmar K. Spatial transcriptomics reveals molecular cues underlying the site specificity of the adult mouse oral mucosa and its stem cell niches. Stem Cell Reports 2024; 19:1706-1719. [PMID: 39547226 PMCID: PMC11751799 DOI: 10.1016/j.stemcr.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
The oral cavity is a multifunctional organ composed of structurally heterogeneous mucosal tissues that remain poorly characterized. Oral mucosal tissues are highly stratified and segmented along an epithelial-lamina propria axis. Here, we performed spatial transcriptomics (tomo-seq) on the tongue, cheeks, and palate of the adult mouse to understand the cues that maintain the oral mucosal sites. We define molecular markers of unique and shared cellular niches and differentiation programs across oral sites. Using a comparative approach, we identify fibroblast growth factor (FGF) pathway components as potential stem cell niche factors for oral epithelial stem cells. Using organoid-forming efficiency assays, we validated three FGF ligands (FGF1, FGF7, and FGF10) as site-specific niche factors in the dorsal and ventral tongue. Our dataset of the spatially resolved genes across major oral sites represents a comprehensive resource for unraveling the molecular mechanisms underlying the adult homeostasis of the oral mucosa and its stem cell niches.
Collapse
Affiliation(s)
- Anna C Seubert
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | - Marion Krafft
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany
| | - Sarah Bopp
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany
| | - Moutaz Helal
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | | | - Elmar Wolf
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Anna Alemany
- Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden, the Netherlands
| | - Angela Riedel
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | - Kai Kretzschmar
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany.
| |
Collapse
|
4
|
Romashin DD, Tolstova TV, Varshaver AM, Kozhin PM, Rusanov AL, Luzgina NG. Keratins 6, 16, and 17 in Health and Disease: A Summary of Recent Findings. Curr Issues Mol Biol 2024; 46:8627-8641. [PMID: 39194725 DOI: 10.3390/cimb46080508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Keratins 6, 16, and 17 occupy unique positions within the keratin family. These proteins are not commonly found in the healthy, intact epidermis, but their expression increases in response to damage, inflammation, and hereditary skin conditions, as well as cancerous cell transformations and tumor growth. As a result, there is an active investigation into the potential use of these proteins as biomarkers for different pathologies. Recent studies have revealed the role of these keratins in regulating keratinocyte migration, proliferation, and growth, and more recently, their nuclear functions, including their role in maintaining nuclear structure and responding to DNA damage, have also been identified. This review aims to summarize the latest research on keratins 6, 16, and 17, their regulation in the epidermis, and their potential use as biomarkers in various skin conditions.
Collapse
Affiliation(s)
| | | | | | - Peter M Kozhin
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | | | |
Collapse
|
5
|
Chitturi P, Leask A. The role of positional information in determining dermal fibroblast diversity. Matrix Biol 2024; 128:31-38. [PMID: 38423396 DOI: 10.1016/j.matbio.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The largest mammalian organ, skin, consisting of a dermal connective tissue layer that underlies and supports the epidermis, acts as a protective barrier that excludes external pathogens and disseminates sensory signals emanating from the local microenvironment. Dermal connective tissue is comprised of a collagen-rich extracellular matrix (ECM) that is produced by connective tissue fibroblasts resident within the dermis. When wounded, a tissue repair program is induced whereby fibroblasts, in response to alterations in the microenvironment, produce new ECM components, resulting in the formation of a scar. Failure to terminate the normal tissue repair program causes fibrotic conditions including: hypertrophic scars, keloids, and the systemic autoimmune connective tissue disease scleroderma (systemic sclerosis, SSc). Histological and single-cell RNA sequencing (scRNAseq) studies have revealed that fibroblasts are heterogeneous and highly plastic. Understanding how this diversity contributes to dermal homeostasis, wounding, fibrosis, and cancer may ultimately result in novel anti-fibrotic therapies and personalized medicine. This review summarizes studies supporting this concept.
Collapse
Affiliation(s)
- Pratyusha Chitturi
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, Canada
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, Canada.
| |
Collapse
|
6
|
Cohen E, Johnson CN, Wasikowski R, Billi AC, Tsoi LC, Kahlenberg JM, Gudjonsson JE, Coulombe PA. Significance of stress keratin expression in normal and diseased epithelia. iScience 2024; 27:108805. [PMID: 38299111 PMCID: PMC10828818 DOI: 10.1016/j.isci.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
A group of keratin intermediate filament genes, the type II KRT6A-C and type I KRT16 and KRT17, are deemed stress responsive as they are induced in keratinocytes of surface epithelia in response to environmental stressors, in skin disorders (e.g., psoriasis) and in carcinomas. Monitoring stress keratins is widely used to identify keratinocytes in an activated state. Here, we analyze single-cell transcriptomic data from healthy and diseased human skin to explore the properties of stress keratins. Relative to keratins occurring in healthy skin, stress-induced keratins are expressed at lower levels and show lesser type I-type II pairwise regulation. Stress keratins do not "replace" the keratins expressed during normal differentiation nor reflect cellular proliferation. Instead, stress keratins are consistently co-regulated with genes with roles in differentiation, inflammation, and/or activation of innate immunity at the single-cell level. These findings provide a roadmap toward explaining the broad diversity and contextual regulation of keratins.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Craig N. Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Allison C. Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - J. Michelle Kahlenberg
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pierre A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
7
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
8
|
Warrick JI, Hu W, Yamashita H, Walter V, Shuman L, Craig JM, Gellert LL, Castro MAA, Robertson AG, Kuo F, Ostrovnaya I, Sarungbam J, Chen YB, Gopalan A, Sirintrapun SJ, Fine SW, Tickoo SK, Kim K, Thomas J, Karan N, Gao SP, Clinton TN, Lenis AT, Chan TA, Chen Z, Rao M, Hollman TJ, Li Y, Socci ND, Chavan S, Viale A, Mohibullah N, Bochner BH, Pietzak EJ, Teo MY, Iyer G, Rosenberg JE, Bajorin DF, Kaag M, Merrill SB, Joshi M, Adam R, Taylor JA, Clark PE, Raman JD, Reuter VE, Chen Y, Funt SA, Solit DB, DeGraff DJ, Al-Ahmadie HA. FOXA1 repression drives lineage plasticity and immune heterogeneity in bladder cancers with squamous differentiation. Nat Commun 2022; 13:6575. [PMID: 36323682 PMCID: PMC9630410 DOI: 10.1038/s41467-022-34251-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Cancers arising from the bladder urothelium often exhibit lineage plasticity with regions of urothelial carcinoma adjacent to or admixed with regions of divergent histomorphology, most commonly squamous differentiation. To define the biologic basis for and clinical significance of this morphologic heterogeneity, here we perform integrated genomic analyses of mixed histology bladder cancers with separable regions of urothelial and squamous differentiation. We find that squamous differentiation is a marker of intratumoral genomic and immunologic heterogeneity in patients with bladder cancer and a biomarker of intrinsic immunotherapy resistance. Phylogenetic analysis confirms that in all cases the urothelial and squamous regions are derived from a common shared precursor. Despite the presence of marked genomic heterogeneity between co-existent urothelial and squamous differentiated regions, no recurrent genomic alteration exclusive to the urothelial or squamous morphologies is identified. Rather, lineage plasticity in bladder cancers with squamous differentiation is associated with loss of expression of FOXA1, GATA3, and PPARG, transcription factors critical for maintenance of urothelial cell identity. Of clinical significance, lineage plasticity and PD-L1 expression is coordinately dysregulated via FOXA1, with patients exhibiting morphologic heterogeneity pre-treatment significantly less likely to respond to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Joshua I Warrick
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hironobu Yamashita
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Vonn Walter
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Lauren Shuman
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jenna M Craig
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Lan L Gellert
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Parana, Curitiba, Paraná, Brazil
| | - A Gordon Robertson
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Fengshen Kuo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Judy Sarungbam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying-Bei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anuradha Gopalan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sahussapont J Sirintrapun
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samson W Fine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Satish K Tickoo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kwanghee Kim
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jasmine Thomas
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nagar Karan
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sizhi Paul Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy N Clinton
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew T Lenis
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manisha Rao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Travis J Hollman
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanyun Li
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas D Socci
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shweta Chavan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Agnes Viale
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neeman Mohibullah
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernard H Bochner
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eugene J Pietzak
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Min Yuen Teo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gopa Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan E Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dean F Bajorin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew Kaag
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Suzanne B Merrill
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Monika Joshi
- Department of Medicine, Division of Hematology-Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Rosalyn Adam
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, MO, USA
| | - Peter E Clark
- Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Jay D Raman
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Victor E Reuter
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel A Funt
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David J DeGraff
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
- Deparment of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Hikmat A Al-Ahmadie
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Föll MC, Volkmann V, Enderle-Ammour K, Timme S, Wilhelm K, Guo D, Vitek O, Bronsert P, Schilling O. Moving translational mass spectrometry imaging towards transparent and reproducible data analyses: a case study of an urothelial cancer cohort analyzed in the Galaxy framework. Clin Proteomics 2022; 19:8. [PMID: 35439943 PMCID: PMC9016955 DOI: 10.1186/s12014-022-09347-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background Mass spectrometry imaging (MSI) derives spatial molecular distribution maps directly from clinical tissue specimens and thus bears great potential for assisting pathologists with diagnostic decisions or personalized treatments. Unfortunately, progress in translational MSI is often hindered by insufficient quality control and lack of reproducible data analysis. Raw data and analysis scripts are rarely publicly shared. Here, we demonstrate the application of the Galaxy MSI tool set for the reproducible analysis of a urothelial carcinoma dataset. Methods Tryptic peptides were imaged in a cohort of 39 formalin-fixed, paraffin-embedded human urothelial cancer tissue cores with a MALDI-TOF/TOF device. The complete data analysis was performed in a fully transparent and reproducible manner on the European Galaxy Server. Annotations of tumor and stroma were performed by a pathologist and transferred to the MSI data to allow for supervised classifications of tumor vs. stroma tissue areas as well as for muscle-infiltrating and non-muscle infiltrating urothelial carcinomas. For putative peptide identifications, m/z features were matched to the MSiMass list. Results Rigorous quality control in combination with careful pre-processing enabled reduction of m/z shifts and intensity batch effects. High classification accuracy was found for both, tumor vs. stroma and muscle-infiltrating vs. non-muscle infiltrating urothelial tumors. Some of the most discriminative m/z features for each condition could be assigned a putative identity: stromal tissue was characterized by collagen peptides and tumor tissue by histone peptides. Immunohistochemistry confirmed an increased histone H2A abundance in the tumor compared to the stroma tissues. The muscle-infiltration status was distinguished via MSI by peptides from intermediate filaments such as cytokeratin 7 in non-muscle infiltrating carcinomas and vimentin in muscle-infiltrating urothelial carcinomas, which was confirmed by immunohistochemistry. To make the study fully reproducible and to advocate the criteria of FAIR (findability, accessibility, interoperability, and reusability) research data, we share the raw data, spectra annotations as well as all Galaxy histories and workflows. Data are available via ProteomeXchange with identifier PXD026459 and Galaxy results via https://github.com/foellmelanie/Bladder_MSI_Manuscript_Galaxy_links. Conclusion Here, we show that translational MSI data analysis in a fully transparent and reproducible manner is possible and we would like to encourage the community to join our efforts.
Collapse
Affiliation(s)
- Melanie Christine Föll
- Faculty of Medicine, Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115a, 79106, FreiburgFreiburg, Germany. .,Khoury College of Computer Sciences, Northeastern University, Boston, USA.
| | - Veronika Volkmann
- Faculty of Medicine, Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115a, 79106, FreiburgFreiburg, Germany
| | - Kathrin Enderle-Ammour
- Faculty of Medicine, Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115a, 79106, FreiburgFreiburg, Germany
| | - Sylvia Timme
- Faculty of Medicine, Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115a, 79106, FreiburgFreiburg, Germany.,Core Facility for Histopathology and Digital Pathology, Faculty of Medicine, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Konrad Wilhelm
- Department of Urology, Center for Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Dan Guo
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| | - Olga Vitek
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| | - Peter Bronsert
- Faculty of Medicine, Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115a, 79106, FreiburgFreiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany.,Tumorbank Comprehensive Cancer Center Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Faculty of Medicine, Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115a, 79106, FreiburgFreiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| |
Collapse
|
10
|
Zhao J, Shen J, Wang Z, Bai M, Fan Y, Zhu Y, Bai W. CircRNA-0100 positively regulates the differentiation of cashmere goat SHF-SCs into hair follicle lineage via sequestering miR-153-3p to heighten the KLF5 expression. Arch Anim Breed 2022; 65:55-67. [PMID: 35252543 PMCID: PMC8889309 DOI: 10.5194/aab-65-55-2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract. Circular RNAs (circRNAs) have stable structures,
being a covalently closed loop without 5′ and 3′ free ends.
They can function as “miRNA sponges” in regulating the expression of their
target genes. It was thought that circRNAs are involved in the development
of the secondary hair follicle (SHF) in cashmere goats. In our previous
investigation, a new circRNA named circRNA-0100 was identified from the
SHF of cashmere goats, but its function is unknown. In this work, we found
that circRNA-0100 exhibited significantly higher expression at anagen SHF
bulge than its counterpart at telogen in cashmere goats. Based on the use of
both overexpression and siRNA interference assays, our data indicated that
circRNA-0100 promoted the differentiation of cashmere goat SHF stem cells
(SHF-SCs) into hair follicle lineage, which was evaluated by analyzing the
transcriptional level changes of six indicator genes in SHF-SCs of cashmere
goats. Using the RNA pull-down technique, we showed that
circRNA-0100 served as “molecular sponges” of miR-153-3p in SHF-SCs.
Through the use of dual-luciferase reporter assays, our data indicated that
circRNA-0100 positively regulated the transcriptional expression of the KLF5
gene via the miR-153-3p-mediated pathway. Ultimately, we showed that
circRNA-0100 promoted the differentiation of SHF-SCs into hair lineage, which
might be achieved via sequestering miR-153-3p to heighten the KLF5
expression in SHF-SCs of cashmere goats. Our results provide novel
scientific evidence for revealing the potential molecular regulatory
mechanisms on the differentiation of SHF-SCs into hair lineage in cashmere
goats.
Collapse
|
11
|
Gust KA, Indest KJ, Lotufo G, Everman SJ, Jung CM, Ballentine ML, Hoke AV, Sowe B, Gautam A, Hammamieh R, Ji Q, Barker ND. Genomic investigations of acute munitions exposures on the health and skin microbiome composition of leopard frog (Rana pipiens) tadpoles. ENVIRONMENTAL RESEARCH 2021; 192:110245. [PMID: 32987006 DOI: 10.1016/j.envres.2020.110245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Natural communities of microbes inhabiting amphibian skin, the skin microbiome, are critical to supporting amphibian health and disease resistance. To enable the pro-active health assessment and management of amphibians on Army installations and beyond, we investigated the effects of acute (96h) munitions exposures to Rana pipiens (leopard frog) tadpoles and the associated skin microbiome, integrated with RNAseq-based transcriptomic responses in the tadpole host. Tadpoles were exposed to the legacy munition 2,4,6-trinitrotoluene (TNT), the new insensitive munition (IM) formulation, IMX-101, and the IM constituents nitroguinidine (NQ) and 1-methyl-3-nitroguanidine (MeNQ). The 96h LC50 values and 95% confidence intervals were 2.6 (2.4, 2.8) for ΣTNT and 68.2 (62.9, 73.9) for IMX-101, respectively. The NQ and MeNQ exposures caused no significant impacts on survival in 96h exposures even at maximum exposure levels of 3560 and 5285 mg/L, respectively. However, NQ and MeNQ, as well as TNT and IMX-101 exposures, all elicited changes in the tadpole skin microbiome profile, as evidenced by significantly increased relative proportions of the Proteobacteria with increasing exposure concentrations, and significantly decreased alpha-diversity in the NQ exposure. The potential for direct effects of munitions exposure on the skin microbiome were observed including increased abundance of munitions-tolerant phylogenetic groups, in addition to possible indirect effects on microbial flora where transcriptional responses suggestive of changes in skin mucus-layer properties, antimicrobial peptide production, and innate immune factors were observed in the tadpole host. Additional insights into the tadpole host's transcriptional response to munitions exposures indicated that TNT and IMX-101 exposures significantly enriched transcriptional expression within type-I and type-II xenobiotic metabolism pathways, where dose-responsive increases in expression were observed. Significant enrichment and increased transcriptional expression of heme and iron binding functions in the TNT exposures served as likely indicators of known mechanisms of TNT toxicity including hemolytic anemia and methemoglobinemia. The significant enrichment and dose-responsive decrease in transcriptional expression of cell cycle pathways in the IMX-101 exposures was consistent with previous observations in fish, while significant enrichment of immune-related function in response to NQ exposure were consistent with potential immune suppression at the highest NQ exposure concentration. Finally, the MeNQ exposures elicited significantly decreased transcriptional expression of keratin 16, type I, a gene likely involved in keratinization processes in amphibian skin. Overall, munitions showed the potential to alter tadpole skin microbiome composition and affect transcriptional profiles in the amphibian host, some suggestive of potential impacts on host health and immune status relevant to disease susceptibility.
Collapse
Affiliation(s)
- Kurt A Gust
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Karl J Indest
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Guilherme Lotufo
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | | | - Carina M Jung
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Mark L Ballentine
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Allison V Hoke
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA; ORISE fellow, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Bintu Sowe
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA; ORISE fellow, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Aarti Gautam
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Qing Ji
- Bennett Aerospace, Cary, NC, USA.
| | - Natalie D Barker
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| |
Collapse
|
12
|
Zieman AG, Poll BG, Ma J, Coulombe PA. Altered keratinocyte differentiation is an early driver of keratin mutation-based palmoplantar keratoderma. Hum Mol Genet 2020; 28:2255-2270. [PMID: 31220272 DOI: 10.1093/hmg/ddz050] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
The type I intermediate filament keratin 16 (KRT16 gene; K16 protein) is constitutively expressed in ectoderm-derived appendages and in palmar/plantar epidermis and is robustly induced when the epidermis experiences chemical, mechanical or environmental stress. Missense mutations at the KRT16 locus can cause pachyonychia congenita (PC, OMIM:167200) or focal non-epidermolytic palmoplantar keratoderma (FNEPPK, OMIM:613000), which each entail painful calluses on palmar and plantar skin. Krt16-null mice develop footpad lesions that mimic PC-associated PPK, providing an opportunity to decipher its pathophysiology, and develop therapies. We report on insight gained from a genome-wide analysis of gene expression in PPK-like lesions of Krt16-null mice. Comparison of this data set with publicly available microarray data of PPK lesions from individuals with PC revealed significant synergies in gene expression profiles. Keratin 9 (Krt9/K9), the most robustly expressed gene in differentiating volar keratinocytes, is markedly downregulated in Krt16-null paw skin, well-ahead of lesion onset, and is paralleled by pleiotropic defects in terminal differentiation. Effective prevention of PPK-like lesions in Krt16-null paw skin (via topical delivery of the Nrf2 inducer sulforaphane) involves the stimulation of Krt9 expression. These findings highlight a role for defective terminal differentiation and loss of Krt9/K9 expression as additional drivers of PC-associated PPK and highlight restoration of KRT9 expression as a worthy target for therapy. Further, we report on the novel observation that keratin 16 can localize to the nucleus of epithelial cells, implying a potential nuclear function that may be relevant to PC and FNEPPK.
Collapse
Affiliation(s)
- Abigail G Zieman
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brian G Poll
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jingqun Ma
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Steen K, Chen D, Wang F, Majumdar R, Chen S, Kumar S, Lombard DB, Weigert R, Zieman AG, Parent CA, Coulombe PA. A role for keratins in supporting mitochondrial organization and function in skin keratinocytes. Mol Biol Cell 2020; 31:1103-1111. [PMID: 32213122 PMCID: PMC7353162 DOI: 10.1091/mbc.e19-10-0565] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondria fulfill essential roles in ATP production, metabolic regulation, calcium signaling, generation of reactive oxygen species (ROS), and additional determinants of cellular health. Recent studies have highlighted a role for mitochondria during cell differentiation, including in skin epidermis. The observation of oxidative stress in keratinocytes from Krt16 null mouse skin, a model for pachyonychia congenita (PC)–associated palmoplantar keratoderma, prompted us to examine the role of Keratin (K) 16 protein and its partner K6 in regulating the structure and function of mitochondria. Electron microscopy revealed major anomalies in mitochondrial ultrastructure in late stage, E18.5, Krt6a/Krt6b null embryonic mouse skin. Follow-up studies utilizing biochemical, metabolic, and live imaging readouts showed that, relative to controls, skin keratinocytes null for Krt6a/Krt6b or Krt16 exhibit elevated ROS, reduced mitochondrial respiration, intracellular distribution differences, and altered movement of mitochondria within the cell. These findings highlight a novel role for K6 and K16 in regulating mitochondrial morphology, dynamics, and function and shed new light on the causes of oxidative stress observed in PC and related keratin-based skin disorders.
Collapse
Affiliation(s)
- Kaylee Steen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Desu Chen
- Laboratory for Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Fengrong Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Ritankar Majumdar
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Song Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Surinder Kumar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Roberto Weigert
- Laboratory for Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Abigail G Zieman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Carole A Parent
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
14
|
Kovacs D, Maresca V, Flori E, Mastrofrancesco A, Picardo M, Cardinali G. Bovine colostrum induces the differentiation of human primary keratinocytes. FASEB J 2020; 34:6302-6321. [PMID: 32157742 DOI: 10.1096/fj.201900103rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/13/2020] [Accepted: 02/29/2020] [Indexed: 12/27/2022]
Abstract
Bovine colostrum, the first milk secreted by the mammary glands of cows shortly after they have given birth, provides a natural source of bioactive substances helpful to promote tissue development and repair, and to maintain a healthy immune system. Owing to its properties, the use of colostrum in the treatment of human diseases is under investigation. We evaluated the biological activity of colostrum on human primary keratinocytes, focusing on its effects with regard to a proliferation/differentiation balance. Using cellular and molecular approaches, we showed that colostrum favors a cell cycle withdrawal by increasing the expression of p21/WAF1 and p27/KIP1. It also promotes the transition of keratinocytes from a proliferating to a differentiating state, as assessed by a decrease in keratin 5 and an increase in keratin 16. We demonstrated the ability of colostrum to induce the expression of early and late differentiation markers (keratin 1, involucrin, and filaggrin) and the synthesis of caspase 14 and bleomycin hydrolase, the two main enzymes involved in filaggrin maturation. Moreover, we showed that bovine colostrum is able to promote keratinocyte stratification and terminal differentiation not only in two-dimensional (2D), but also in a more physiological system of three-dimensional (3D) skin equivalents. Finally, we demonstrated that colostrum stimulates cell differentiation through the PI3K/PLC-γ1/PKCα pathways mainly associated to tyrosine kinase receptors. These results suggest the possibility to benefit from colostrum properties for the treatment of skin diseases characterized by altered differentiation and perturbed barrier function.
Collapse
Affiliation(s)
- Daniela Kovacs
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Vittoria Maresca
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enrica Flori
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Arianna Mastrofrancesco
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Cardinali
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
15
|
Zieman AG, Coulombe PA. Pathophysiology of pachyonychia congenita-associated palmoplantar keratoderma: new insights into skin epithelial homeostasis and avenues for treatment. Br J Dermatol 2020; 182:564-573. [PMID: 31021398 PMCID: PMC6814456 DOI: 10.1111/bjd.18033] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pachyonychia congenita (PC), a rare genodermatosis, primarily affects ectoderm-derived epithelial appendages and typically includes oral leukokeratosis, nail dystrophy and very painful palmoplantar keratoderma (PPK). PC dramatically impacts quality of life although it does not affect lifespan. PC can arise from mutations in any of the wound-repair-associated keratin genes KRT6A, KRT6B, KRT6C, KRT16 or KRT17. There is no cure for this condition, and current treatment options for PC symptoms are limited and palliative in nature. OBJECTIVES This review focuses on recent progress made towards understanding the pathophysiology of PPK lesions, the most prevalent and debilitating of all PC symptoms. METHODS We reviewed the relevant literature with a particular focus on the Krt16 null mouse, which spontaneously develops footpad lesions that mimic several aspects of PC-associated PPK. RESULTS There are three main stages of progression of PPK-like lesions in Krt16 null mice. Ahead of lesion onset, keratinocytes in the palmoplantar (footpad) skin exhibit specific defects in terminal differentiation, including loss of Krt9 expression. At the time of PPK onset, there is elevated oxidative stress and hypoactive Keap1-Nrf2 signalling. During active PPK, there is a profound defect in the ability of the epidermis to maintain or return to normal homeostasis. CONCLUSIONS The progress made suggests new avenues to explore for the treatment of PC-based PPK and deepens our understanding of the mechanisms controlling skin tissue homeostasis. What's already known about this topic? Pachyonychia congenita (PC) is a rare genodermatosis caused by mutations in KRT6A, KRT6B, KRT6C, KRT16 and KRT17, which are normally expressed in skin appendages and induced following injury. Individuals with PC present with multiple clinical symptoms that usually include thickened and dystrophic nails, palmoplantar keratoderma (PPK), glandular cysts and oral leukokeratosis. The study of PC pathophysiology is made challenging because of its low incidence and high complexity. There is no cure or effective treatment for PC. What does this study add? This text reviews recent progress made when studying the pathophysiology of PPK associated with PC. This recent progress points to new possibilities for devising effective therapeutics that may complement current palliative strategies.
Collapse
Affiliation(s)
- A. G. Zieman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - P. A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Zouboulis CC, Nogueira da Costa A, Makrantonaki E, Hou XX, Almansouri D, Dudley JT, Edwards H, Readhead B, Balthasar O, Jemec GBE, Bonitsis NG, Nikolakis G, Trebing D, Zouboulis KC, Hossini AM. Alterations in innate immunity and epithelial cell differentiation are the molecular pillars of hidradenitis suppurativa. J Eur Acad Dermatol Venereol 2020; 34:846-861. [PMID: 31838778 DOI: 10.1111/jdv.16147] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The large unmet need of hidradenitis suppurativa/acne inversa (HS) therapy requires the elucidation of disease-driving mechanisms and tissue targeting. OBJECTIVE Robust characterization of the underlying HS mechanisms and detection of the involved skin compartments. METHODS Hidradenitis suppurativa/acne inversa molecular taxonomy and key signalling pathways were studied by whole transcriptome profiling. Dysregulated genes were detected by comparing lesional and non-lesional skin obtained from female HS patients and matched healthy controls using the Agilent array platform. The differential gene expression was confirmed by quantitative real-time PCR and targeted protein characterization via immunohistochemistry in another set of female patients. HS-involved skin compartments were also recognized by immunohistochemistry. RESULTS Alterations to key regulatory pathways involving glucocorticoid receptor, atherosclerosis, HIF1α and IL17A signalling as well as inhibition of matrix metalloproteases were detected. From a functional standpoint, cellular assembly, maintenance and movement, haematological system development and function, immune cell trafficking and antimicrobial response were key processes probably being affected in HS. Sixteen genes were found to characterize HS from a molecular standpoint (DEFB4, MMP1, GJB2, PI3, KRT16, MMP9, SERPINB4, SERPINB3, SPRR3, S100A8, S100A9, S100A12, S100A7A (15), KRT6A, TCN1, TMPRSS11D). Among the proteins strongly expressed in HS, calgranulin-A, calgranulin-B and serpin-B4 were detected in the hair root sheath, koebnerisin and connexin-32 in stratum granulosum, transcobalamin-1 in stratum spinosum/hair root sheath, small prolin-rich protein-3 in apocrine sweat gland ducts/sebaceous glands-ducts and matrix metallopeptidase-9 in resident monocytes. CONCLUSION Our findings highlight a panel of immune-related drivers in HS, which influence innate immunity and cell differentiation in follicular and epidermal keratinocytes as well as skin glands.
Collapse
Affiliation(s)
- C C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany.,European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany
| | | | - E Makrantonaki
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - X X Hou
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - D Almansouri
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - J T Dudley
- Department of Genetics and Genomic Sciences, Institute of Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Edwards
- Translational Medicine, UCB SA, Slough, UK
| | - B Readhead
- Department of Genetics and Genomic Sciences, Institute of Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - O Balthasar
- Institute of Pathology, Dessau Medical Center, Dessau, Germany
| | - G B E Jemec
- European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany.,Department of Dermatology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - N G Bonitsis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - G Nikolakis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany.,European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany
| | - D Trebing
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - K C Zouboulis
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - A M Hossini
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| |
Collapse
|
17
|
Chen JG, Fan HY, Wang T, Lin LY, Cai TG. Silencing KRT16 inhibits keratinocyte proliferation and VEGF secretion in psoriasis via inhibition of ERK signaling pathway. Kaohsiung J Med Sci 2019; 35:284-296. [PMID: 30942529 DOI: 10.1002/kjm2.12034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/13/2019] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a multisystem disease affecting about 2% of the population, while keratin16 (KRT16) has been reported to participate in psoriasis. However, the specific mechanism of KRT16 in psoriasis was inadequately investigated. The objective of the study was to elucidate the mechanism by which siRNA-mediated silencing of KRT16 affects keratinocyte proliferation and vascular endothelial growth factor (VEGF) secretion in psoriasis through the extracellular signal-related kinase (ERK) signaling pathway. Psoriasis-related core gene KRT16 was screened out. Then, the expression of KRT16, VEGF, and ERK signaling pathway-related genes was detected in psoriatic patients. To further investigate the mechanism of KRT16, keratinocytes in psoriatic patients were treated with KRT16 siRNA or/and ERK inhibitor (PD98059) to detect the changes in related gene expression and cell survival. KRT16 was involved in psoriasis development. The expression levels of KRT16, p-ERK1/2, and VEGF in lesion tissues are significantly elevated. Keratinocytes treated with KRT16-siRNA and KRT16-siRNA + PD98059 exhibited reduced KRT16, p-ERK1/2, and VEGF expression. The cell survival rate in cells treated with KRT16-siRNA, PD98059, and KRT16-siRNA + PD98059 reduced significantly. These findings indicate that silencing KRT16 inhibits keratinocyte proliferation and VEGF secretion in psoriasis via inhibition of ERK signaling pathway, which provides a basic theory in the treatment of psoriasis.
Collapse
Affiliation(s)
- Jin-Guang Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Hua-Yu Fan
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Ting Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lan-Ying Lin
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Tian-Guo Cai
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
18
|
Wang F, Chen S, Liu HB, Parent CA, Coulombe PA. Keratin 6 regulates collective keratinocyte migration by altering cell-cell and cell-matrix adhesion. J Cell Biol 2018; 217:4314-4330. [PMID: 30389720 PMCID: PMC6279382 DOI: 10.1083/jcb.201712130] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 01/21/2023] Open
Abstract
Keratin 6 (K6) isoforms are induced in wound-proximal keratinocytes after injury to skin. Paradoxically, absence of K6 isoforms leads to faster directional cell migration. Wang et al. report that K6 promotes collective keratinocyte migration by interacting with desmoplakin and myosin IIA and stabilizing cell adhesion. The a and b isoforms of keratin 6 (K6), a type II intermediate filament (IF) protein, are robustly induced upon injury to interfollicular epidermis. We previously showed that complete loss of K6a/K6b stimulates keratinocyte migration, correlating with enhanced Src activity. In this study, we demonstrate that this property is cell autonomous, depends on the ECM, and results from elevated speed, enhanced directionality, and an increased rate of focal adhesion disassembly. We show that myosin IIA interacts with K6a/K6b, that its levels are markedly reduced in Krt6a/Krt6b-null keratinocytes, and that inhibiting myosin ATPase activity normalizes the enhanced migration potential of Krt6a/Krt6b-null cells. Desmoplakin, which mediates attachment of IFs to desmosomes, is also expressed at reduced levels and is mislocalized to the nucleus in Krt6a/Krt6b-null cells, correlating with defects in cell adhesion. These findings reveal that K6a/K6b modulate keratinocyte migration by regulating cell–matrix and cell–cell adhesion and highlight a role for keratins in collective cell migration.
Collapse
Affiliation(s)
- Fengrong Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI.,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Song Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Hans B Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Carole A Parent
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI .,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
19
|
Wiener DJ, Basak O, Asra P, Boonekamp KE, Kretzschmar K, Papaspyropoulos A, Clevers H. Establishment and characterization of a canine keratinocyte organoid culture system. Vet Dermatol 2018; 29:375-e126. [PMID: 29963730 DOI: 10.1111/vde.12541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Perturbations of epidermal and follicular homeostasis have been attributed to a variety of skin diseases affecting dogs. The availability of an in vitro system to investigate these diseases is important to understand underlying pathomechanisms. OBJECTIVES To establish an accurate and reliable in vitro 3D system of canine keratinocyte organoids to lay the basis for studying functional defects in interfollicular epidermis (IFE) and hair follicle (HF) morphogenesis, reconstitution and differentiation that lead to alopecic and epidermal diseases. ANIMALS Skin biopsies were obtained from freshly euthanized dogs of different breeds with no skin abnormalities. METHODS Cells derived from microdissected IFE and HFs were seeded in Matrigel and keratinocyte organoids were grown and characterized using immunohistochemistry, RT-qPCR and RNA sequencing. RESULTS Both organoid lines develop into a basal IFE-like cell type. Gene and protein expression analysis revealed high mRNA and protein levels of keratins 5 and 14, IFE differentiation markers and intercellular molecules. Key markers of HF stem cells were lacking. Withdrawal of growth factors resulted in upregulation of markers such as KRT16, Involucrin, KRT17 and SOX9, showing the potential of the organoids to develop towards more differentiated tissue. CONCLUSION AND CLINICAL IMPORTANCE Our 3D in vitro culture system provides the basis to explore epidermal function, to investigate the culture conditions necessary for the development of organoids with a HF signature and to address cutaneous disorders in dogs. However, for induction of HF signatures or hair growth, addition of different growth factors or co-culture with dermal papilla will be required.
Collapse
Affiliation(s)
- Dominique J Wiener
- Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, Inselspital, Bern University Hospital, Freiburgstrasse 14, 3010, Bern, Switzerland.,Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Onur Basak
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Priyanca Asra
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Kim E Boonekamp
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Kai Kretzschmar
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Angelos Papaspyropoulos
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands.,Princess Máxima Centre for Pediatric Oncology, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
20
|
Michel L, Reygagne P, Benech P, Jean-Louis F, Scalvino S, Ly Ka So S, Hamidou Z, Bianovici S, Pouch J, Ducos B, Bonnet M, Bensussan A, Patatian A, Lati E, Wdzieczak-Bakala J, Choulot JC, Loing E, Hocquaux M. Study of gene expression alteration in male androgenetic alopecia: evidence of predominant molecular signalling pathways. Br J Dermatol 2017; 177:1322-1336. [PMID: 28403520 DOI: 10.1111/bjd.15577] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Male androgenetic alopecia (AGA) is the most common form of hair loss in men. It is characterized by a distinct pattern of progressive hair loss starting from the frontal area and the vertex of the scalp. Although several genetic risk loci have been identified, relevant genes for AGA remain to be defined. OBJECTIVES To identify biomarkers associated with AGA. METHODS Molecular biomarkers associated with premature AGA were identified through gene expression analysis using cDNA generated from scalp vertex biopsies of hairless or bald men with premature AGA, and healthy volunteers. RESULTS This monocentric study reveals that genes encoding mast cell granule enzymes, inflammatory mediators and immunoglobulin-associated immune mediators were significantly overexpressed in AGA. In contrast, underexpressed genes appear to be associated with the Wnt/β-catenin and bone morphogenic protein/transforming growth factor-β signalling pathways. Although involvement of these pathways in hair follicle regeneration is well described, functional interpretation of the transcriptomic data highlights different events that account for their inhibition. In particular, one of these events depends on the dysregulated expression of proopiomelanocortin, as confirmed by polymerase chain reaction and immunohistochemistry. In addition, lower expression of CYP27B1 in patients with AGA supports the notion that changes in vitamin D metabolism contributes to hair loss. CONCLUSIONS This study provides compelling evidence for distinct molecular events contributing to alopecia that may pave the way for new therapeutic approaches.
Collapse
Affiliation(s)
- L Michel
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France.,University Paris Diderot, Sorbonne Paris-Cité, Hôpital Saint-Louis, F-75475, Paris, France
| | - P Reygagne
- Centre Sabouraud, F-75475, Paris, France
| | - P Benech
- NICN UMR 7259 CNRS Faculté de Médecine, 13344, Marseille, France.,GENEX, 91160, Longjumeau, France
| | - F Jean-Louis
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France.,University Paris Diderot, Sorbonne Paris-Cité, Hôpital Saint-Louis, F-75475, Paris, France
| | - S Scalvino
- Laboratoire BIO-EC, 91160, Longjumeau, France
| | - S Ly Ka So
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France
| | - Z Hamidou
- Centre Sabouraud, F-75475, Paris, France
| | | | - J Pouch
- Plateforme de qPCR à Haut Débit Genomic Paris Centre, IBENS, 75005, Paris, France
| | - B Ducos
- Plateforme de qPCR à Haut Débit Genomic Paris Centre, IBENS, 75005, Paris, France.,Laboratoire de Physique Statistique, École Normale Supérieure, PSL Research University, University Paris Diderot, Sorbonne Paris-Cité, CNRS, 75005, Paris, France
| | - M Bonnet
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France
| | - A Bensussan
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France.,University Paris Diderot, Sorbonne Paris-Cité, Hôpital Saint-Louis, F-75475, Paris, France
| | | | - E Lati
- GENEX, 91160, Longjumeau, France.,Laboratoire BIO-EC, 91160, Longjumeau, France
| | | | | | - E Loing
- IEB-Lucas Meyer Cosmetics, 31520, Ramonville, France
| | - M Hocquaux
- IEB-Lucas Meyer Cosmetics, 31520, Ramonville, France
| |
Collapse
|
21
|
Huen AC, Marathi A, Nam PK, Wells A. CXCL11 Expression by Keratinocytes Occurs Transiently Between Reaching Confluence and Cellular Compaction. Adv Wound Care (New Rochelle) 2016; 5:517-526. [PMID: 28078185 DOI: 10.1089/wound.2015.0680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/01/2016] [Indexed: 12/31/2022] Open
Abstract
Objective: To investigate whether differentiation or cellular confluence is responsible for CXCL11 expression patterns in re-epithelialization. Approach:In vitro model systems of re-epithelialization using the HaCaT keratinocyte cell line were utilized in monitoring expression of differentiation markers, including desmoplakin and various cytokeratins while evaluating for an association with chemokine CXCL11 expression. Results: CXCL11 expression was elevated in sparse culture with peak expression near the time of confluence. This somewhat followed the accumulation of desmoplakin in detergent-insoluble pool of proteins. However, in postconfluent, despite continued accumulation of desmoplakin within cells, CXCL11 expression decreased to baseline levels. This biphasic pattern was also seen in low calcium culture, an environment that inhibits keratinocyte differentiation and accumulation of desmosomal proteins. Highest CXCL11-expressing areas best correlated with newly confluent areas within culture expressing basal keratin 14, but also activated keratin 6. Innovation: Achievement of a threshold cellular density induces cell signaling cascade through CXCR3 that, in addition to other undiscovered pathways, can progress cutaneous wounds from the proliferative into the remodeling phases of cutaneous wound healing. Conclusion: These results suggest that the achievement of confluence with increased cellular density by migrating keratinocytes at the wound edge triggers expression of CXCL11. Since CXCR3 stimulation in endothelial cells results in apoptosis and causes neovascular pruning, whereas stimulation of CXCR3 in fibroblasts results decreased motility and cellular contraction, we speculate that CXCL11 expression by epidermal cells upon achieving cellular confluence could be the source of CXCR3 stimulation in the dermis ushering a transition from proliferative to remodeling phases of wound healing.
Collapse
Affiliation(s)
- Arthur C. Huen
- Department of Dermatology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Archana Marathi
- Department of Dermatology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter K. Nam
- Department of Dermatology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Yamamoto K, Miki Y, Sato H, Nishito Y, Gelb MH, Taketomi Y, Murakami M. Expression and Function of Group IIE Phospholipase A2 in Mouse Skin. J Biol Chem 2016; 291:15602-13. [PMID: 27226633 DOI: 10.1074/jbc.m116.734657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Indexed: 11/06/2022] Open
Abstract
Recent studies using knock-out mice for various secreted phospholipase A2 (sPLA2) isoforms have revealed their non-redundant roles in diverse biological events. In the skin, group IIF sPLA2 (sPLA2-IIF), an "epidermal sPLA2" expressed in the suprabasal keratinocytes, plays a fundamental role in epidermal-hyperplasic diseases such as psoriasis and skin cancer. In this study, we found that group IIE sPLA2 (sPLA2-IIE) was expressed abundantly in hair follicles and to a lesser extent in basal epidermal keratinocytes in mouse skin. Mice lacking sPLA2-IIE exhibited skin abnormalities distinct from those in mice lacking sPLA2-IIF, with perturbation of hair follicle ultrastructure, modest changes in the steady-state expression of a subset of skin genes, and no changes in the features of psoriasis or contact dermatitis. Lipidomics analysis revealed that sPLA2-IIE and -IIF were coupled with distinct lipid pathways in the skin. Overall, two skin sPLA2s, hair follicular sPLA2-IIE and epidermal sPLA2-IIF, play non-redundant roles in distinct compartments of mouse skin, underscoring the functional diversity of multiple sPLA2s in the coordinated regulation of skin homeostasis and diseases.
Collapse
Affiliation(s)
- Kei Yamamoto
- From the Lipid Metabolism Project and the Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan, PRIME and
| | | | | | - Yasumasa Nishito
- Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Michael H Gelb
- the Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195, and
| | | | - Makoto Murakami
- From the Lipid Metabolism Project and AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
23
|
Kerns ML, Hakim JMC, Lu RG, Guo Y, Berroth A, Kaspar RL, Coulombe PA. Oxidative stress and dysfunctional NRF2 underlie pachyonychia congenita phenotypes. J Clin Invest 2016; 126:2356-66. [PMID: 27183391 DOI: 10.1172/jci84870] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/24/2016] [Indexed: 12/27/2022] Open
Abstract
Palmoplantar keratoderma (PPK) are debilitating lesions that arise in individuals with pachyonychia congenita (PC) and feature upregulation of danger-associated molecular patterns and skin barrier regulators. The defining features of PC-associated PPK are reproduced in mice null for keratin 16 (Krt16), which is commonly mutated in PC patients. Here, we have shown that PPK onset is preceded by oxidative stress in footpad skin of Krt16-/- mice and correlates with an inability of keratinocytes to sustain nuclear factor erythroid-derived 2 related factor 2-dependent (NRF2-dependent) synthesis of the cellular antioxidant glutathione (GSH). Additionally, examination of plantar skin biopsies from individuals with PC confirmed the presence of high levels of hypophosphorylated NRF2 in lesional tissue. In Krt16-/- mice, genetic ablation of Nrf2 worsened spontaneous skin lesions and accelerated PPK development in footpad skin. Hypoactivity of NRF2 in Krt16-/- footpad skin correlated with decreased levels or activity of upstream NRF2 activators, including PKCδ, receptor for activated C kinase 1 (RACK1), and p21. Topical application of the NRF2 activator sulforaphane to the footpad of Krt16-/- mice prevented the development of PPK and normalized redox balance via regeneration of GSH from existing cellular pools. Together, these findings point to oxidative stress and dysfunctional NRF2 as contributors to PPK pathogenesis, identify K16 as a regulator of NRF2 activation, and suggest that pharmacological activation of NRF2 should be further explored for PC treatment.
Collapse
|
24
|
Hsiao HY, Liu JW, Brey EM, Cheng MH. The Effects of Negative Pressure by External Tissue Expansion Device on Epithelial Cell Proliferation, Neo-Vascularization and Hair Growth in a Porcine Model. PLoS One 2016; 11:e0154328. [PMID: 27128731 PMCID: PMC4851423 DOI: 10.1371/journal.pone.0154328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/12/2016] [Indexed: 11/19/2022] Open
Abstract
While pre-treating a fat transplant recipient site with negative pressure has shown promise for increasing the fat survival rate, the underlying mechanisms have not been investigated, partly due to challenges related to immobilization of vacuum domes on large animal subjects. The aim of this study was to examine the effect of negative pressure treatment by External Tissue Expansion Device (ETED) on fat grating recipient sites in a porcine model. The ETED was designed to provide negative pressure on the dorsum of swine. Pressure treatment (-70 mmHg) was applied for 1 or 3 hours every other day for 10 and 20 treatments. The treated areas (3.5 cm in diameter) were harvested and examined for histological changes, vessel density, cell proliferation (Ki67) and growth factor expression (FGF-1, VEGF and PDGB-bb). The application of the ETED increased epidermis thickness even after 1-hour treatments repeated 10 times. The results of Ki67 analysis suggested that the increasing thickness was due to cell proliferation in the epidermis. There was a more than two-fold increase in the vessel density, indicating that the ETED promotes vascularization. Unexpectedly, the treatment also increased the number of hair follicles. Negative pressure provided by the ETED increases the thickness of epidermis section of tissue, cell proliferation and vessel density. The porcine model provides a better representation of the effect of the ETED on skin tissue compared to small animal models and provides an environment for studying the mechanisms underlying the clinical benefits of negative pressure treatment.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-Wei Liu
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Eric M. Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, United States of America
- Research Service, Hines Veterans Administration Hospital, Hines, Illinois, United States of America
| | - Ming-Huei Cheng
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
25
|
Allen EHA, Courtney DG, Atkinson SD, Moore JE, Mairs L, Poulsen ET, Schiroli D, Maurizi E, Cole C, Hickerson RP, James J, Murgatroyd H, Smith FJD, MacEwen C, Enghild JJ, Nesbit MA, Leslie Pedrioli DM, McLean WHI, Moore CBT. Keratin 12 missense mutation induces the unfolded protein response and apoptosis in Meesmann epithelial corneal dystrophy. Hum Mol Genet 2016; 25:1176-91. [PMID: 26758872 PMCID: PMC4764196 DOI: 10.1093/hmg/ddw001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/04/2016] [Indexed: 11/23/2022] Open
Abstract
Meesmann epithelial corneal dystrophy (MECD) is a rare autosomal dominant disorder caused by dominant-negative mutations within the KRT3 or KRT12 genes, which encode the cytoskeletal protein keratins K3 and K12, respectively. To investigate the pathomechanism of this disease, we generated and phenotypically characterized a novel knock-in humanized mouse model carrying the severe, MECD-associated, K12-Leu132Pro mutation. Although no overt changes in corneal opacity were detected by slit-lamp examination, the corneas of homozygous mutant mice exhibited histological and ultrastructural epithelial cell fragility phenotypes. An altered keratin expression profile was observed in the cornea of mutant mice, confirmed by western blot, RNA-seq and quantitative real-time polymerase chain reaction. Mass spectrometry (MS) and immunohistochemistry demonstrated a similarly altered keratin profile in corneal tissue from a K12-Leu132Pro MECD patient. The K12-Leu132Pro mutation results in cytoplasmic keratin aggregates. RNA-seq analysis revealed increased chaperone gene expression, and apoptotic unfolded protein response (UPR) markers, CHOP and Caspase 12, were also increased in the MECD mice. Corneal epithelial cell apoptosis was increased 17-fold in the mutant cornea, compared with the wild-type (P < 0.001). This elevation of UPR marker expression was also observed in the human MECD cornea. This is the first reporting of a mouse model for MECD that recapitulates the human disease and is a valuable resource in understanding the pathomechanism of the disease. Although the most severe phenotype is observed in the homozygous mice, this model will still provide a test-bed for therapies not only for corneal dystrophies but also for other keratinopathies caused by similar mutations.
Collapse
Affiliation(s)
- Edwin H A Allen
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK, Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Scotland DD1 5EH, UK
| | - David G Courtney
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | - Sarah D Atkinson
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | - Johnny E Moore
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK, Cathedral Eye Clinic, Academy Street, Belfast BT15 1ED, UK
| | - Laura Mairs
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | | | - Davide Schiroli
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | - Eleonora Maurizi
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | - Christian Cole
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Scotland DD1 5EH, UK
| | - Robyn P Hickerson
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Scotland DD1 5EH, UK
| | - John James
- Microscopy Facility, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Helen Murgatroyd
- Department of Ophthalmology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Frances J D Smith
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Scotland DD1 5EH, UK
| | - Carrie MacEwen
- Department of Ophthalmology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO) and Center for Insoluble Protein Structures (inSPIN), Science Park, Aarhus University, Aarhus, Denmark and
| | - M Andrew Nesbit
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | - Deena M Leslie Pedrioli
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Scotland DD1 5EH, UK
| | - W H Irwin McLean
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Scotland DD1 5EH, UK,
| | - C B Tara Moore
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK,
| |
Collapse
|
26
|
Abstract
Keratins comprise the type I and type II intermediate filament-forming proteins and occur primarily in epithelial cells. They are encoded by 54 evolutionarily conserved genes (28 type I, 26 type II) and regulated in a pairwise and tissue type-, differentiation-, and context-dependent manner. Keratins serve multiple homeostatic and stress-enhanced mechanical and nonmechanical functions in epithelia, including the maintenance of cellular integrity, regulation of cell growth and migration, and protection from apoptosis. These functions are tightly regulated by posttranslational modifications as well as keratin-associated proteins. Genetically determined alterations in keratin-coding sequences underlie highly penetrant and rare disorders whose pathophysiology reflects cell fragility and/or altered tissue homeostasis. Moreover, keratin mutation or misregulation represents risk factors or genetic modifiers for several acute and chronic diseases. This chapter focuses on keratins that are expressed in skin epithelia, and details a number of basic protocols and assays that have proven useful for analyses being carried out in skin.
Collapse
Affiliation(s)
- Fengrong Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Abigail Zieman
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
27
|
Chan CC, Fan SMY, Wang WH, Mu YF, Lin SJ. A Two-Stepped Culture Method for Efficient Production of Trichogenic Keratinocytes. Tissue Eng Part C Methods 2015; 21:1070-9. [PMID: 25951188 DOI: 10.1089/ten.tec.2015.0033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Successful hair follicle (HF) neogenesis in adult life depends on the existence of both capable dermal cells and competent epidermal keratinocytes that recapitulate embryonic organogenesis through epithelial-mesenchymal interaction. In tissue engineering, the maintenance of trichogenic potential of adult epidermal cells, while expanding them remains a challenging issue. We found that although HF outer root sheath keratinocytes could be expanded for more than 100 passages as clonogenic cells without losing the proliferative potential with a 3T3J2 fibroblast feeder layer, these keratinocytes were unable to form new HFs when combined with inductive HF dermal papilla (DP) cells. However, when these high-passage keratinocytes were cocultured with HF DP cells for 4 days in vitro, they regained the trichogenic ability to form new HFs after transplantation. We found that the short-term coculture with DP cells enhanced both Wnt/β-catenin signaling, a signaling cascade key to HF development, and upregulated the expression of HF-specific genes, including K6, K16, K17, and K75, in keratinocytes, indicating that these cells were poised toward a HF fate. Hence, efficient production of trichogenic keratinocytes can be obtained by a two-stepped procedure with initial cell expansion with a 3T3J2 fibroblast feeder followed by short-term coculture with DP cells.
Collapse
Affiliation(s)
- Chih-Chieh Chan
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan .,2 Department of Dermatology, National Taiwan University Hospital and College of Medicine , Taipei, Taiwan
| | - Sabrina Mai-Yi Fan
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan
| | - Wei-Hung Wang
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan
| | - Yi-Fen Mu
- 2 Department of Dermatology, National Taiwan University Hospital and College of Medicine , Taipei, Taiwan
| | - Sung-Jan Lin
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan .,2 Department of Dermatology, National Taiwan University Hospital and College of Medicine , Taipei, Taiwan
| |
Collapse
|
28
|
Chung BM, Arutyunov A, Ilagan E, Yao N, Wills-Karp M, Coulombe PA. Regulation of C-X-C chemokine gene expression by keratin 17 and hnRNP K in skin tumor keratinocytes. ACTA ACUST UNITED AC 2015; 208:613-27. [PMID: 25713416 PMCID: PMC4347647 DOI: 10.1083/jcb.201408026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Interaction between K17 and hnRNP K regulates CXCR3 signaling in an RSK-dependent fashion to promote epithelial tumor cell growth and invasion. High levels of the intermediate filament keratin 17 (K17) correlate with a poor prognosis for several types of epithelial tumors. However, the causal relationship and underlying mechanisms remain undefined. A recent study suggested that K17 promotes skin tumorigenesis by fostering a specific type of inflammation. We report here that K17 interacts with the RNA-binding protein hnRNP K, which has also been implicated in cancer. K17 is required for the cytoplasmic localization of hnRNP K and for its role in regulating the expression of multiple pro-inflammatory mRNAs. Among these are the CXCR3 ligands CXCL9, CXCL10, and CXCL11, which together form a signaling axis with an established role in tumorigenesis. The K17–hnRNP K partnership is regulated by the ser/thr kinase RSK and required for CXCR3-dependent tumor cell growth and invasion. These findings functionally integrate K17, hnRNP K, and gene expression along with RSK and CXCR3 signaling in a keratinocyte-autonomous axis and provide a potential basis for their implication in tumorigenesis.
Collapse
Affiliation(s)
- Byung Min Chung
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Artem Arutyunov
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Erika Ilagan
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Nu Yao
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Marsha Wills-Karp
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205 Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205 Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205 Department of Biochemistry and Molecular Biology and Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health; and Department of Biological Chemistry, Department of Dermatology, and Department of Oncology, School of Medicine, Johns Hopkins University, MD 21205
| |
Collapse
|
29
|
|
30
|
Hayward CJ, Fradette J, Morissette Martin P, Guignard R, Germain L, Auger FA. Using human umbilical cord cells for tissue engineering: a comparison with skin cells. Differentiation 2014; 87:172-81. [PMID: 24930038 DOI: 10.1016/j.diff.2014.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/15/2014] [Indexed: 01/04/2023]
Abstract
The epithelial cells and Wharton׳s jelly cells (WJC) from the human umbilical cord have yet to be extensively studied in respect to their capacity to generate tissue-engineered substitutes for clinical applications. Our reconstruction strategy, based on the self-assembly approach of tissue engineering, allows the production of various types of living human tissues such as skin and cornea from a wide range of cell types originating from post-natal tissue sources. Here we placed epithelial cells and WJC from the umbilical cord in the context of a reconstructed skin substitute in combination with skin keratinocytes and fibroblasts. We compared the ability of the epithelial cells from both sources to generate a stratified, differentiated skin-like epithelium upon exposure to air when cultured on the two stromal cell types. Conversely, the ability of the WJC to behave as dermal fibroblasts, producing extracellular matrix and supporting the formation of a differentiated epithelium for both types of epithelial cells, was also investigated. Of the four types of constructs produced, the combination of WJC and keratinocytes was the most similar to skin engineered from dermal fibroblasts and keratinocytes. When cultured on dermal fibroblasts, the cord epithelial cells were able to differentiate in vitro into a stratified multilayered epithelium expressing molecules characteristic of keratinocyte differentiation after exposure to air, and maintaining the expression of keratins K18 and K19, typical of the umbilical cord epithelium. WJC were able to support the growth and differentiation of keratinocytes, especially at the early stages of air-liquid culture. In contrast, cord epithelial cells cultured on WJC did not form a differentiated epidermis when exposed to air. These results support the premise that the tissue from which cells originate can largely affect the properties and homoeostasis of reconstructed substitutes featuring both epithelial and stromal compartments.
Collapse
Affiliation(s)
- Cindy J Hayward
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Aile-R, Hôpital de l'Enfant-Jésus, Centre de recherche du CHU de Québec, 1401, 18e Rue, Québec, QC, Canada G1J 1Z4; Axe Médecine Régénératrice-Centre de recherche FRQS du CHU de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Aile-R, Hôpital de l'Enfant-Jésus, Centre de recherche du CHU de Québec, 1401, 18e Rue, Québec, QC, Canada G1J 1Z4; Axe Médecine Régénératrice-Centre de recherche FRQS du CHU de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| | - Pascal Morissette Martin
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Aile-R, Hôpital de l'Enfant-Jésus, Centre de recherche du CHU de Québec, 1401, 18e Rue, Québec, QC, Canada G1J 1Z4; Axe Médecine Régénératrice-Centre de recherche FRQS du CHU de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| | - Rina Guignard
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Aile-R, Hôpital de l'Enfant-Jésus, Centre de recherche du CHU de Québec, 1401, 18e Rue, Québec, QC, Canada G1J 1Z4; Axe Médecine Régénératrice-Centre de recherche FRQS du CHU de Québec, Québec, QC, Canada.
| | - Lucie Germain
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Aile-R, Hôpital de l'Enfant-Jésus, Centre de recherche du CHU de Québec, 1401, 18e Rue, Québec, QC, Canada G1J 1Z4; Axe Médecine Régénératrice-Centre de recherche FRQS du CHU de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| | - François A Auger
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Aile-R, Hôpital de l'Enfant-Jésus, Centre de recherche du CHU de Québec, 1401, 18e Rue, Québec, QC, Canada G1J 1Z4; Axe Médecine Régénératrice-Centre de recherche FRQS du CHU de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
31
|
Dai L, Wu J, Guo H, Huang Y, Zhang K, Liu D, Fu L, Wu Y, Guan X, Bai Y, Liao Q. Mutation p.Leu128Pro in the 1A domain of K16 causes pachyonychia congenita with focal palmoplantar keratoderma in a Chinese family. Eur J Pediatr 2014; 173:737-41. [PMID: 24357266 DOI: 10.1007/s00431-013-2236-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 12/25/2022]
Abstract
UNLABELLED Pachyonychia congenita (PC), a rare autosomal dominant disorder characterized by hypertrophic nail dystrophy, is classified into two main clinical subtypes: PC-1 and PC-2. PC-1 is associated with mutations in the KRT6A or KRT16 genes, whereas PC-2 is linked to KRT6B or KRT17 mutations. Blood samples were collected from three generations of a new Chinese PC-1 family, including three PC patients and five unaffected family members. A novel missense mutation p.Leu128Pro (c.383T>C) was identified in a highly conserved helix motif in domain 1A of K16. The disease haplotype carried the mutation and cosegregated with the affection status. PolyPhen2 and SIFTS analysis rated the substitution as probably damaging; Swiss-Model analysis indicated that the structure of the mutant protein contained an unnormal α-helix. Overexpression of mutant protein in cultured cells led to abnormal cell morphology. CONCLUSION The wider spectrum of KRT16 mutations suggests that changes in codons 125, 127, and 132 are most commonly responsible for PC-1 and that proline substitution mutations at codons 127 or 128 may produce more severe disease. This study extends the KRT16 mutation spectrum and adds new information on the clinical and genetic diversity of PC.
Collapse
Affiliation(s)
- Limeng Dai
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Alzolibani AA, Rasheed Z, Al Robaee AA. Acquired immunogenicity of DNA after modification with malondialdehyde in patients with alopecia areata. Scandinavian Journal of Clinical and Laboratory Investigation 2014; 74:312-21. [DOI: 10.3109/00365513.2014.889322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Sonnylal S, Xu S, Jones H, Tam A, Sreeram VR, Ponticos M, Norman J, Agrawal P, Abraham D, de Crombrugghe B. Connective tissue growth factor causes EMT-like cell fate changes in vivo and in vitro. J Cell Sci 2013; 126:2164-2175. [PMID: 23525012 PMCID: PMC3672936 DOI: 10.1242/jcs.111302] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2013] [Indexed: 12/11/2022] Open
Abstract
Connective tissue growth factor (CTGF) plays an important role in the pathogenesis of chronic fibrotic diseases. However, the mechanism by which paracrine effects of CTGF control the cell fate of neighboring epithelial cells is not known. In this study, we investigated the paracrine effects of CTGF overexpressed in fibroblasts of Col1a2-CTGF transgenic mice on epithelial cells of skin and lung. The skin and lungs of Col1a2-CTGF transgenic mice were examined for phenotypic markers of epithelial activation and differentiation and stimulation of signal transduction pathways. In addition to an expansion of the dermal compartment in Col1a2-CTGF transgenic mice, the epidermis was characterized by focal hyperplasia, and basal cells stained positive for αSMA, Snail, S100A4 and Sox9, indicating that these cells had undergone a change in their genetic program. Activation of phosphorylated p38 and phosphorylated Erk1/2 was observed in the granular and cornified layers of the skin. Lung fibrosis was associated with a marked increase in cells co-expressing epithelial and mesenchymal markers in the lesional and unaffected lung tissue of Col1a2-CTGF mice. In epithelial cells treated with TGFβ, CTGF-specific siRNA-mediated knockdown suppressed Snail, Sox9, S100A4 protein levels and restored E-cadherin levels. Both adenoviral expression of CTGF in epithelial cells and treatment with recombinant CTGF induced EMT-like morphological changes and expression of α-SMA. Our in vivo and in vitro data supports the notion that CTGF expression in mesenchymal cells in the skin and lungs can cause changes in the differentiation program of adjacent epithelial cells. We speculate that these changes might contribute to fibrogenesis.
Collapse
Affiliation(s)
- Sonali Sonnylal
- University of Texas M. D. Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hayward CJ, Fradette J, Galbraith T, Rémy M, Guignard R, Gauvin R, Germain L, Auger FA. Harvesting the potential of the human umbilical cord: isolation and characterisation of four cell types for tissue engineering applications. Cells Tissues Organs 2012; 197:37-54. [PMID: 22965075 DOI: 10.1159/000341254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2012] [Indexed: 12/27/2022] Open
Abstract
The human umbilical cord (UC) has attracted interest as a source of cells for many research applications. UC solid tissues contain four cell types: epithelial, stromal, smooth muscle and endothelial cells. We have developed a unique protocol for the sequential extraction of all four cell types from a single UC, allowing tissue reconstruction using multiple cell types from the same source. By combining perfusion, immersion and explant techniques, all four cell types have been successfully expanded in monolayer cultures. We have also characterised epithelial and Wharton's jelly cells (WJC) by immunolabelling of specific proteins. Epithelial cell yields averaged at 2.3 × 10(5) cells per centimetre UC, and the cells expressed an unusual combination of keratins typical of simple, mucous and stratified epithelia. Stromal cells in the Wharton's jelly expressed desmin, α-smooth muscle actin, elastin, keratins (K12, K16, K18 and K19), vimentin and collagens. Expression patterns in cultured cells resembled those found in situ except for basement membrane components and type III collagen. These stromal cells featured a sustained proliferation rate up to passage 12 after thawing. The mesenchymal stem cell (MSC) character of the WJC was confirmed by their expression of typical MSC surface markers and by adipogenic and osteogenic differentiation assays. To emphasise and demonstrate their potential for regenerative medicine, UC cell types were successfully used to produce human tissue-engineered constructs. Both bilayered stromal/epithelial and vascular substitutes were produced, establishing the versatility and importance of these cells for research and therapeutic applications.
Collapse
Affiliation(s)
- Cindy J Hayward
- Centre LOEX de l'Université Laval, Université Laval, Québec, Qué., Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ebada S, Helal A, Alkafafy M. Immunohistochemical studies on the poll gland of the dromedary camel (Camelus dromedarius) during the rutting season. Acta Histochem 2012; 114:363-9. [PMID: 21855116 DOI: 10.1016/j.acthis.2011.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 12/24/2022]
Abstract
The poll glands are subcutaneous exocrine glands located on the back of the neck behind the ears in male camels. The function of poll glands is not well known, though they are thought to play a role during the rutting season. The presence, location and degree of immunolocalization of microfilaments and intermediate filament systems: actin and cytokeratins (Cks) and also S100 protein were studied in the poll glands in sexually mature one-humped camels during the rutting season. These proteins were variably expressed between the epithelia, perialveolar, interalveolar tissue and the periductal tissue. Strong α-smooth muscle actin (α-SMA) immunoreactivity (IR) was displayed by the perialveolar myoepithelial cells, periductal and vascular smooth muscle cells (SMCs), but not in the epithelial cells. Cytokeratin (Ck)-IR was strong in the epithelial lining of the secretory alveoli and excretory ducts, however, the apical blebs of the secretory cells were almost negative. Weak to moderate Ck-IR was observed in the perialveolar myoepithelial cells, but not in the interalveolar tissue or endothelial cells. S100 protein was expressed variably in the epithelial lining of the secretory alveoli. S100-IR was more obvious in the supranuclear region and the apical blebs. Variable reaction was observed in the perialveolar myoepithelial cells, periductal and interductal tissue and endothelial cells.
Collapse
|
36
|
Rotty JD, Coulombe PA. A wound-induced keratin inhibits Src activity during keratinocyte migration and tissue repair. ACTA ACUST UNITED AC 2012; 197:381-9. [PMID: 22529101 PMCID: PMC3341159 DOI: 10.1083/jcb.201107078] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Keratin 6 negatively regulates Src kinase activity and the migratory potential of skin keratinocytes during wound repair. Injury to the epidermis triggers an elaborate homeostatic response resulting in tissue repair and recovery of the vital barrier function. The type II keratins 6a and 6b (K6a and K6b) are among the genes induced early on in wound-proximal keratinocytes and maintained during reepithelialization. Paradoxically, genetic ablation of K6a and K6b results in enhanced keratinocyte migration. In this paper, we show that this trait results from activation of Src kinase and key Src substrates that promote cell migration. Endogenous Src physically associated with keratin proteins in keratinocytes in a K6-dependent fashion. Purified Src bound K6-containing filaments via its SH2 domain in a novel phosphorylation-independent manner, resulting in kinase inhibition. K6 protein was enriched in the detergent-resistant membrane (DRM), a key site of Src inhibition, and DRMs from K6-null keratinocytes were depleted of both keratin and Src. We conclude that K6 negatively regulates Src kinase activity and the migratory potential of skin keratinocytes during wound repair. Our findings may also be important in related contexts such as cancer.
Collapse
Affiliation(s)
- Jeremy D Rotty
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21202, USA
| | | |
Collapse
|
37
|
Keratin 16-null mice develop palmoplantar keratoderma, a hallmark feature of pachyonychia congenita and related disorders. J Invest Dermatol 2012; 132:1384-91. [PMID: 22336941 PMCID: PMC3326191 DOI: 10.1038/jid.2012.6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Keratin 16 (KRT16 in human, Krt16 in mouse), a type I intermediate filament protein, is constitutively expressed in epithelial appendages and is induced in the epidermis upon wounding and other stressors. Mutations altering the coding sequence of KRT16 cause Pachyonychia Congenita (PC), a rare autosomal dominant disorder characterized by hypertrophic nail dystrophy, oral leukokeratosis, and palmoplantar keratoderma (PPK). PPK associated with PC are extremely painful and compromise patient mobility, making them the most debilitating PC symptom. In this study, we show that, although inherited in a recessive fashion, the inactivation of Krt16 in mice consistently causes oral lesions as well as PPK-like hyperkeratotic calluses on Krt16−/− front and hind paws, which severely compromise the animals’ ability to walk. Our findings call into question the view that PC-related PPK arise exclusively as a gain-of-function on the account of dominantly acting mutated keratins, and highlight the key role of modifiers in the clinical heterogeneity of PC symptoms.
Collapse
|
38
|
Honma M, Minami-Hori M, Takahashi H, Iizuka H. Podoplanin expression in wound and hyperproliferative psoriatic epidermis: regulation by TGF-β and STAT-3 activating cytokines, IFN-γ, IL-6, and IL-22. J Dermatol Sci 2012; 65:134-40. [PMID: 22189341 DOI: 10.1016/j.jdermsci.2011.11.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/09/2011] [Accepted: 11/15/2011] [Indexed: 01/23/2023]
Abstract
BACKGROUND Podoplanin (PDPN)/T1α/aggrus/PA2.26 antigen, a transmembranous glycoprotein, is a well-known lymphatic endothelial marker. Recent evidence indicates that PDPN is also expressed in keratinocytes especially of sebaceous glands. OBJECTIVE To verify expression-pattern and the regulatory mechanism of PDPN in human epidermal keratinocytes. METHODS PDPN-expression pattern was analyzed in normal and psoriatic epidermis by immunostaining. The regulatory mechanism of PDPN-expression of keratinocytes by cytokines was analyzed using specific inhibitors, siRNA, and adenoviral shRNA of signaling pathways. RESULTS In normal skin, PDPN was expressed on the basal cell layer of sebaceous glands and on the outer root sheath of hair follicles. While no expression was detected in the normal interfollicular epidermis, PDPN was detected in the basal cell layer of wound and hyperproliferative psoriatic epidermis, where the granular layer is lacking. TGF-β1 and IFN-γ independently upregulated PDPN-expression of keratinocytes via TGF-β receptor-Smad pathway and JAK-STAT pathway, respectively. IL-6 and IL-22 also stimulated PDPN-expression of keratinocytes accompanied by STAT-3 phosphorylation. siRNA of STAT-1, inhibitors of STAT-3 signaling, AG490, STAT-3 inhibitor VI, and si/shRNA of STAT-3 inhibited the PDPN-expression of keratinocytes induced by IFN-γ, IL-6 and IL-22 but not by TGF-β1. CONCLUSION These results indicate that TGF-β1, IFN-γ, IL-6, and IL-22 induce PDPN-expression of keratinocytes, which might be significantly involved in the wound healing process as well as in the pathomechanism of hyperproliferative psoriatic epidermis.
Collapse
Affiliation(s)
- Masaru Honma
- Department of Dermatology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Japan.
| | | | | | | |
Collapse
|
39
|
Wagner M, Hintner H, Bauer JW, Onder K. Gene expression analysis of an epidermolysis bullosa simplex Dowling-Meara cell line by subtractive hybridization: recapitulation of cellular differentiation, migration and wound healing. Exp Dermatol 2011; 21:111-7. [DOI: 10.1111/j.1600-0625.2011.01420.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Abstract
Alopecia areata (AA) is a nonscarring, inflammatory skin disease that results in patchy hair loss. AA is unpredictable in its onset, severity, and duration making it potentially very stressful for affected individuals. Currently, the treatment options for AA are limited and the efficacy of these treatments varies from patient to patient. The exact etiology of AA is unknown. This article provides some insights into the etiopathogenesis of AA and why some people develop it. The current knowledge on the pathogenesis of AA is summarized and some of the recent hypotheses and studies on AA are presented to allow for a fuller understanding of the possible biological mechanisms of AA.
Collapse
Affiliation(s)
- Eddy Wang
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
41
|
Keratin 17 promotes epithelial proliferation and tumor growth by polarizing the immune response in skin. Nat Genet 2010; 42:910-4. [PMID: 20871598 PMCID: PMC2947596 DOI: 10.1038/ng.665] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/23/2010] [Indexed: 12/22/2022]
Abstract
Basaloid skin tumors, including basal cell carcinoma (BCC) and basaloid follicular hamartoma (BFH), are associated with aberrant Hedgehog (Hh) signaling1 and, in the case of BCC, an expanding set of genetic variants including keratin 5 (K5)2, an intermediate filament-forming protein. We show that genetic ablation of keratin 17 (K17) protein, which is induced in basaloid skin tumors3,4 and co-polymerizes with K5 in vivo5, delays BFH tumor initiation and growth in mice with constitutive Hh signaling in epidermis6,7. The delay is preceded by reduced inflammation and a polarization of inflammatory cytokines from a Th1/Th17- to a Th2-dominated profile. Absence of K17 also attenuates hyperplasia and inflammation in a model of acute dermatitis. Re-expression of K17 in Gli2tg K17−/− keratinocytes induces select Th1 chemokines with established roles in BCC. Our findings establish a novel immunomodulatory role for K17 in Hh-driven basaloid skin tumors that could impact additional tumor settings, psoriasis, and wound repair.
Collapse
|
42
|
Leung MC, Sutton CW, Fenton DA, Tobin DJ. Trichohyalin is a Potential Major Autoantigen in Human Alopecia Areata. J Proteome Res 2010; 9:5153-63. [PMID: 20722389 DOI: 10.1021/pr100422u] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Man Ching Leung
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom BD7 1DP, Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, United Kingdom, and St. Thomas’s Hospital, St. John’s Institute of Dermatology, London, United Kingdom
| | - Chris W. Sutton
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom BD7 1DP, Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, United Kingdom, and St. Thomas’s Hospital, St. John’s Institute of Dermatology, London, United Kingdom
| | - David A. Fenton
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom BD7 1DP, Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, United Kingdom, and St. Thomas’s Hospital, St. John’s Institute of Dermatology, London, United Kingdom
| | - Desmond J. Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom BD7 1DP, Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, United Kingdom, and St. Thomas’s Hospital, St. John’s Institute of Dermatology, London, United Kingdom
| |
Collapse
|
43
|
Carter RA, Shekk V, de Laat MA, Pollitt CC, Galantino-Homer HL. Novel keratins identified by quantitative proteomic analysis as the major cytoskeletal proteins of equine (Equus caballus) hoof lamellar tissue. J Anim Sci 2010; 88:3843-55. [PMID: 20622188 DOI: 10.2527/jas.2010-2964] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The dermo-epidermal interface that connects the equine distal phalanx to the cornified hoof wall withstands great biomechanical demands, but is also a region where structural failure often ensues as a result of laminitis. The cytoskeleton in this region maintains cell structure and facilitates intercellular adhesion, making it likely to be involved in laminitis pathogenesis, although it is poorly characterized in the equine hoof lamellae. The objective of the present study was to identify and quantify the cytoskeletal proteins present in the epidermal and dermal lamellae of the equine hoof by proteomic techniques. Protein was extracted from the mid-dorsal epidermal and dermal lamellae from the front feet of 5 Standardbred geldings and 1 Thoroughbred stallion. Mass spectrometry-based spectral counting techniques, PAGE, and immunoblotting were used to identify and quantify cytoskeletal proteins, and indirect immunofluorescence was used for cellular localization of K14 and K124 (where K refers to keratin). Proteins identified by spectral counting analysis included 3 actin microfilament proteins; 30 keratin proteins along with vimentin, desmin, peripherin, internexin, and 2 lamin intermediate filament proteins; and 6 tubulin microtubule proteins. Two novel keratins, K42 and K124, were identified as the most abundant cytoskeletal proteins (22.0 ± 3.2% and 23.3 ± 4.2% of cytoskeletal proteins, respectively) in equine hoof lamellae. Immunoreactivity to K14 was localized to the basal cell layer, and that to K124 was localized to basal and suprabasal cells in the secondary epidermal lamellae. Abundant proteins K124, K42, K14, K5, and α(1)-actin were identified on 1- and 2-dimensional polyacrylamide gels and aligned with the results of previous studies. Results of the present study provide the first comprehensive analysis of cytoskeletal proteins present in the equine lamellae by using mass spectrometry-based techniques for protein quantification and identification.
Collapse
Affiliation(s)
- R A Carter
- The Laminitis Institute, Department of Clinical Studies/New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348, USA
| | | | | | | | | |
Collapse
|
44
|
Mardaryev AN, Ahmed MI, Vlahov NV, Fessing MY, Gill JH, Sharov AA, Botchkareva NV. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. FASEB J 2010; 24:3869-81. [PMID: 20522784 DOI: 10.1096/fj.10-160663] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The hair follicle is a cyclic biological system that progresses through stages of growth, regression, and quiescence, which involves dynamic changes in a program of gene regulation. Micro-RNAs (miRNAs) are critically important for the control of gene expression and silencing. Here, we show that global miRNA expression in the skin markedly changes during distinct stages of the hair cycle in mice. Furthermore, we show that expression of miR-31 markedly increases during anagen and decreases during catagen and telogen. Administration of antisense miR-31 inhibitor into mouse skin during the early- and midanagen phases of the hair cycle results in accelerated anagen development, and altered differentiation of hair matrix keratinocytes and hair shaft formation. Microarray, qRT-PCR and Western blot analyses revealed that miR-31 negatively regulates expression of Fgf10, the components of Wnt and BMP signaling pathways Sclerostin and BAMBI, and Dlx3 transcription factor, as well as selected keratin genes, both in vitro and in vivo. Using luciferase reporter assay, we show that Krt16, Krt17, Dlx3, and Fgf10 serve as direct miR-31 targets. Thus, by targeting a number of growth regulatory molecules and cytoskeletal proteins, miR-31 is involved in establishing an optimal balance of gene expression in the hair follicle required for its proper growth and hair fiber formation.
Collapse
Affiliation(s)
- Andrei N Mardaryev
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Rd., Bradford, West Yorkshire BD7 1DP, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Trost A, Desch P, Wally V, Haim M, Maier RH, Reitsamer HA, Hintner H, Bauer JW, Onder K. Aberrant heterodimerization of keratin 16 with keratin 6A in HaCaT keratinocytes results in diminished cellular migration. Mech Ageing Dev 2010; 131:346-53. [PMID: 20403371 DOI: 10.1016/j.mad.2010.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 03/15/2010] [Accepted: 04/09/2010] [Indexed: 11/28/2022]
Abstract
Keratin filaments form obligatory heterodimers consisting of one type I and one type II keratin that build the intermediate filaments. In keratinocytes, type II keratin 6 (K6) interacts with type I keratin 16 (K16). We previously showed that the intermediate filament protein K16 is up-regulated in aged human skin. Here, we report that there is an obvious imbalance of K16 to K6 mRNA in in vivo and in vitro aging, which possibly leads to cellular effects. To unveil a possible biological function of K16 overexpression we investigated the migration potential of keratinocytes having up-regulated K16 expression in vitro. Two cell lines were established by transfection of human keratinocytes (HaCaT cells) with K16 or control vectors and subsequent fluorescence-activated cell sorting. By performing migration assays we were able to show a 90% reduction in the migration ability of the K16-overexpressing keratinocytes. In addition, a delay in wound closure associated with K16-overexpressing cells was shown by scratch assays. Transient overexpression of K6A in K16-overexpressing keratinocytes partially corrected the cell-migration defect. By real-time PCR we excluded co-regulation of the annotated interaction partner, K6, in the K16 cell line. Finally, we observed a decreased level of tyrosine phosphorylation in K16-overexpressing cells. Taken together, these data highlight the possibility of a physiological role for K6/K16 heterodimers in keratinocyte cell migration, in addition to the heterodimer's known functions in cell differentiation and mechanical resilience.
Collapse
Affiliation(s)
- A Trost
- Division of Molecular Dermatology, Department of Dermatology, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, A-5020 Salzburg, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 2010; 214:516-59. [PMID: 19422428 DOI: 10.1111/j.1469-7580.2009.01066.x] [Citation(s) in RCA: 441] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Historically, the term 'keratin' stood for all of the proteins extracted from skin modifications, such as horns, claws and hooves. Subsequently, it was realized that this keratin is actually a mixture of keratins, keratin filament-associated proteins and other proteins, such as enzymes. Keratins were then defined as certain filament-forming proteins with specific physicochemical properties and extracted from the cornified layer of the epidermis, whereas those filament-forming proteins that were extracted from the living layers of the epidermis were grouped as 'prekeratins' or 'cytokeratins'. Currently, the term 'keratin' covers all intermediate filament-forming proteins with specific physicochemical properties and produced in any vertebrate epithelia. Similarly, the nomenclature of epithelia as cornified, keratinized or non-keratinized is based historically on the notion that only the epidermis of skin modifications such as horns, claws and hooves is cornified, that the non-modified epidermis is a keratinized stratified epithelium, and that all other stratified and non-stratified epithelia are non-keratinized epithelia. At this point in time, the concepts of keratins and of keratinized or cornified epithelia need clarification and revision concerning the structure and function of keratin and keratin filaments in various epithelia of different species, as well as of keratin genes and their modifications, in view of recent research, such as the sequencing of keratin proteins and their genes, cell culture, transfection of epithelial cells, immunohistochemistry and immunoblotting. Recently, new functions of keratins and keratin filaments in cell signaling and intracellular vesicle transport have been discovered. It is currently understood that all stratified epithelia are keratinized and that some of these keratinized stratified epithelia cornify by forming a Stratum corneum. The processes of keratinization and cornification in skin modifications are different especially with respect to the keratins that are produced. Future research in keratins will provide a better understanding of the processes of keratinization and cornification of stratified epithelia, including those of skin modifications, of the adaptability of epithelia in general, of skin diseases, and of the changes in structure and function of epithelia in the course of evolution. This review focuses on keratins and keratin filaments in mammalian tissue but keratins in the tissues of some other vertebrates are also considered.
Collapse
Affiliation(s)
- Hermann H Bragulla
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, 70803, USA.
| | | |
Collapse
|
47
|
Troester MA, Lee MH, Carter M, Fan C, Cowan DW, Perez ER, Pirone JR, Perou CM, Jerry DJ, Schneider SS. Activation of host wound responses in breast cancer microenvironment. Clin Cancer Res 2009; 15:7020-8. [PMID: 19887484 DOI: 10.1158/1078-0432.ccr-09-1126] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE Cancer progression is mediated by processes that are also important in wound repair. As a result, cancers have been conceptualized as overhealing wounds or "wounds that do not heal," and gene expression signatures reflective of wound repair have shown value as predictors of breast cancer survival. Despite the widespread acknowledgment of commonalities between host responses to wounds and host responses to cancer, the gene expression responses of normal tissue adjacent to cancers have not been well characterized. EXPERIMENTAL DESIGN Using RNA extracted from histologically normal breast tissue from 107 patients, including 60 reduction mammoplasty patients and 47 cancer patients, we measured whole genome expression profiles and identified a gene expression signature that is induced in response to breast cancer. RESULTS This signature represents an in vivo "wound response" signature that is differentially expressed in the normal tissue of breast cancer patients compared with those without disease and is highly accurate (at least 92% sensitivity and 98% specificity) in distinguishing diseased and nondiseased. The in vivo wound response signature is highly prognostic of breast cancer survival, and there is a strong association between the groups identified by this signature and those identified using serum-treated fibroblasts and other microenvironment-derived or microenvironment-related signatures. CONCLUSIONS The prevalence of the wound response signature in histologically normal tissue adjacent to breast cancer suggests that microenvironment response is an important variable in breast cancer progression and may be an important target for clinical interventions.
Collapse
Affiliation(s)
- Melissa A Troester
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Coolen NA, Schouten KCWM, Middelkoop E, Ulrich MMW. Comparison between human fetal and adult skin. Arch Dermatol Res 2009; 302:47-55. [PMID: 19701759 PMCID: PMC2799629 DOI: 10.1007/s00403-009-0989-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 01/01/2023]
Abstract
Healing of early-gestation fetal wounds results in scarless healing. Since the capacity for regeneration is probably inherent to the fetal skin itself, knowledge of the fetal skin composition may contribute to the understanding of fetal wound healing. The aim of this study was to analyze the expression profiles of different epidermal and dermal components in the human fetal and adult skin. In the human fetal skin (ranging from 13 to 22 weeks' gestation) and adult skin biopsies, the expression patterns of several epidermal proteins (K10, K14, K16, K17, SKALP, involucrin), basement membrane proteins, Ki-67, blood vessels and extracellular matrix proteins (fibronectin, chondroitin sulfate, elastin) were determined using immunohistochemistry. The expression profiles of K17, involucrin, dermal Ki-67, fibronectin and chondroitin sulfate were higher in the fetal skin than in adult skin. In the fetal skin, elastin was not present in the dermis, but it was found in the adult skin. The expression patterns of basement membrane proteins, blood vessels, K10, K14, K16 and epidermal Ki-67 were similar in human fetal skin and adult skin. In this systematic overview, most of the differences between fetal and adult skin were found at the level of dermal extracellular matrix molecules expression. This study suggests that, especially, dermal components are important in fetal scarless healing.
Collapse
Affiliation(s)
- Neeltje A Coolen
- Association of Dutch Burn Centres, P.O. Box 1015, 1940 EA, Beverwijk, The Netherlands
| | | | | | | |
Collapse
|
49
|
From telogen to exogen: mechanisms underlying formation and subsequent loss of the hair club fiber. J Invest Dermatol 2009; 129:2100-8. [PMID: 19340011 DOI: 10.1038/jid.2009.66] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hair follicle has the unique capacity to undergo periods of growth, regression, and rest before regenerating itself to restart the cycle. This dynamic cycling capacity enables mammals to change their coats, and for hair length to be controlled on different body sites. More recently, the process of club fiber shedding has been described as a distinct cycle phase known as exogen, and proposed to be an active phase of the hair cycle. This review focuses on the importance of the shedding phase of the hair cycle and, in the context of current literature, analyzes the processes of club fiber formation, retention, and release, which may influence progression through exogen, particularly in relation to human hair.
Collapse
|
50
|
Sohn KC, Shi G, Jang S, Choi DK, Lee Y, Yoon TJ, Park H, Hwang C, Kim HJ, Seo YJ, Lee JH, Park JK, Kim CD. Pitx2, a beta-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro. J Dermatol Sci 2009; 54:6-11. [PMID: 19251162 DOI: 10.1016/j.jdermsci.2008.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 10/30/2008] [Accepted: 11/18/2008] [Indexed: 01/03/2023]
Abstract
BACKGROUND Beta-catenin exerts its crucial role in hair follicle development and hair growth cycle. Although the importance of Wnt/beta-catenin is well recognized, the downstream effectors of beta-catenin have not been clearly elucidated yet. OBJECTIVE The aim of this study is to identify the beta-catenin-regulated genes in cultured human hair outer root sheath (ORS) cells. METHODS We transduced ORS cells with adenovirus harboring the expression cassette for constitutive active form of beta-catenin, then performed cDNA microarray. RESULTS Overexpression of beta-catenin led to the upregulation of hair cell differentiation markers such as keratin 16 and 17. In addition, the expression of Pitx2, a bicoid-type homeodomain transcription factor, was also increased by overexpression of beta-catenin in ORS cells cultured in vitro. To investigate the potential role of Pitx2, we made the recombinant adenovirus expressing Pitx2, then transduced into the cultured ORS cells. Interestingly, Pitx2 induced the expression of keratin 16 and 17, indicating that Pitx2 activates ORS cells towards the follicular differentiation pathway preferentially. CONCLUSION Our results implicate the potential importance of Pitx2 as a beta-catenin downstream modulator in hair growth control.
Collapse
Affiliation(s)
- Kyung-Cheol Sohn
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, 55 Munhwa-ro, Daejeon 301-747, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|