1
|
Mukherji ST, Brambilla L, Stuart KB, Mayes I, Kutz LC, Chen Y, Barbosa LA, Elmadbouh I, McDermott JP, Haller ST, Romero MF, Soleimani M, Liu J, Shapiro JI, Blanco GV, Xie Z, Pierre SV. Na/K-ATPase signaling tonically inhibits sodium reabsorption in the renal proximal tubule. FASEB J 2023; 37:e22835. [PMID: 36856735 PMCID: PMC10028530 DOI: 10.1096/fj.202200785rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
Through its classic ATP-dependent ion-pumping function, basolateral Na/K-ATPase (NKA) generates the Na+ gradient that drives apical Na+ reabsorption in the renal proximal tubule (RPT), primarily through the Na+ /H+ exchanger (NHE3). Accordingly, activation of NKA-mediated ion transport decreases natriuresis through activation of basolateral (NKA) and apical (NHE3) Na+ reabsorption. In contrast, activation of the more recently discovered NKA signaling function triggers cellular redistribution of RPT NKA and NHE3 and decreases Na+ reabsorption. We used gene targeting to test the respective contributions of NKA signaling and ion pumping to the overall regulation of RPT Na+ reabsorption. Knockdown of RPT NKA in cells and mice increased membrane NHE3 and Na+ /HCO3 - cotransporter (NBCe1A). Urine output and absolute Na+ excretion decreased by 65%, driven by increased RPT Na+ reabsorption (as indicated by decreased lithium clearance and unchanged glomerular filtration rate), and accompanied by elevated blood pressure. This hyper reabsorptive phenotype was rescued upon crossing with RPT NHE3-/- mice, confirming the importance of NKA/NHE3 coupling. Hence, NKA signaling exerts a tonic inhibition on Na+ reabsorption by regulating key apical and basolateral Na+ transporters. This action, lifted upon NKA genetic suppression, tonically counteracts NKA's ATP-driven function of basolateral Na+ reabsorption. Strikingly, NKA signaling is not only physiologically relevant but it also appears to be functionally dominant over NKA ion pumping in the control of RPT reabsorption.
Collapse
Affiliation(s)
- Shreya T. Mukherji
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Luca Brambilla
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Kailey B. Stuart
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Isabella Mayes
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Laura C. Kutz
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Yiliang Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Blood Research Institute, Versiti, WI
| | - Leandro A Barbosa
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Ibrahim Elmadbouh
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Jeff P. McDermott
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Steven T. Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Michael F. Romero
- Physiology & Biomedical Engineering and Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, Rochester, MN
| | - Manoocher Soleimani
- Department of Medicine, The University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Jiang Liu
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Gustavo V. Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| |
Collapse
|
2
|
Interactions between the intrarenal dopaminergic and the renin-angiotensin systems in the control of systemic arterial pressure. Clin Sci (Lond) 2022; 136:1205-1227. [PMID: 35979889 DOI: 10.1042/cs20220338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Systemic arterial hypertension is one of the leading causes of morbidity and mortality in the general population, being a risk factor for many cardiovascular diseases. Although its pathogenesis is complex and still poorly understood, some systems appear to play major roles in its development. This review aims to update the current knowledge on the interaction of the intrarenal renin-angiotensin system (RAS) and dopaminergic system in the development of hypertension, focusing on recent scientific hallmarks in the field. The intrarenal RAS, composed of several peptides and receptors, has a critical role in the regulation of blood pressure (BP) and, consequently, the development of hypertension. The RAS is divided into two main intercommunicating axes: the classical axis, composed of angiotensin-converting enzyme, angiotensin II, and angiotensin type 1 receptor, and the ACE2/angiotensin-(1-7)/Mas axis, which appears to modulate the effects of the classical axis. Dopamine and its receptors are also increasingly showing an important role in the pathogenesis of hypertension, as abnormalities in the intrarenal dopaminergic system impair the regulation of renal sodium transport, regardless of the affected dopamine receptor subtype. There are five dopamine receptors, which are divided into two major subtypes: the D1-like (D1R and D5R) and D2-like (D2R, D3R, and D4R) receptors. Mice deficient in any of the five dopamine receptor subtypes have increased BP. Intrarenal RAS and the dopaminergic system have complex interactions. The balance between both systems is essential to regulate the BP homeostasis, as alterations in the control of both can lead to hypertension.
Collapse
|
3
|
Decreased Brain pH and Pathophysiology in Schizophrenia. Int J Mol Sci 2021; 22:ijms22168358. [PMID: 34445065 PMCID: PMC8395078 DOI: 10.3390/ijms22168358] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Postmortem studies reveal that the brain pH in schizophrenia patients is lower than normal. The exact cause of this low pH is unclear, but increased lactate levels due to abnormal energy metabolism appear to be involved. Schizophrenia patients display distinct changes in mitochondria number, morphology, and function, and such changes promote anaerobic glycolysis, elevating lactate levels. pH can affect neuronal activity as H+ binds to numerous proteins in the nervous system and alters the structure and function of the bound proteins. There is growing evidence of pH change associated with cognition, emotion, and psychotic behaviors. Brain has delicate pH regulatory mechanisms to maintain normal pH in neurons/glia and extracellular fluid, and a change in these mechanisms can affect, or be affected by, neuronal activities associated with schizophrenia. In this review, we discuss the current understanding of the cause and effect of decreased brain pH in schizophrenia based on postmortem human brains, animal models, and cellular studies. The topic includes the factors causing decreased brain pH in schizophrenia, mitochondria dysfunction leading to altered energy metabolism, and pH effects on the pathophysiology of schizophrenia. We also review the acid/base transporters regulating pH in the nervous system and discuss the potential contribution of the major transporters, sodium hydrogen exchangers (NHEs), and sodium-coupled bicarbonate transporters (NCBTs), to schizophrenia.
Collapse
|
4
|
Berg P, Svendsen SL, Sorensen MV, Schreiber R, Kunzelmann K, Leipziger J. The molecular mechanism of CFTR- and secretin-dependent renal bicarbonate excretion. J Physiol 2021; 599:3003-3011. [PMID: 33963548 DOI: 10.1113/jp281285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
This review summarizes the newly discovered molecular mechanism of secretin-stimulated urine HCO3 - excretion and the role of cystic fibrosis transmembrane conductance regulator (CFTR) in renal HCO3 - excretion. The secretin receptor is functionally expressed in the basolateral membrane of the HCO3 - -secreting β-intercalated cells of the collecting duct. Here it activates a fast and efficient secretion of HCO3 - into the urine serving to normalize metabolic alkalosis. The ability to acutely increase renal base excretion is entirely dependent on functional pendrin (SLC26A4) and CFTR, and both proteins localize to the apical membrane of the β-intercalated cells. In cystic fibrosis mice and patients, this function is absent or markedly reduced. We discuss that the alkaline tide, namely the transient urine alkalinity after a meal, has now received a clear physiological explanation.
Collapse
Affiliation(s)
- Peder Berg
- Department of Biomedicine, Physiology, Health, Aarhus University, Aarhus, Denmark
| | - Samuel L Svendsen
- Department of Biomedicine, Physiology, Health, Aarhus University, Aarhus, Denmark
| | - Mads Vaarby Sorensen
- Department of Biomedicine, Physiology, Health, Aarhus University, Aarhus, Denmark
| | - Rainer Schreiber
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases. Life Sci 2021; 270:119153. [PMID: 33539911 DOI: 10.1016/j.lfs.2021.119153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Cardiac tissue ischemia/hypoxia increases glycolysis and lactic acid accumulation in cardiomyocytes, leading to intracellular metabolic acidosis. Sodium bicarbonate cotransporters (NBCs) play a vital role in modulating intracellular pH and maintaining sodium ion concentrations in cardiomyocytes. Cardiomyocytes mainly express electrogenic sodium bicarbonate cotransporter (NBCe1), which has been demonstrated to participate in myocardial ischemia/reperfusion (I/R) injury. This review outlines the structural and functional properties of NBCe1, summarizes the signaling pathways and factors that may regulate the activity of NBCe1, and reviews the roles of NBCe1 in the pathogenesis of I/R-induced cardiac diseases. Further studies revealing the regulatory mechanisms of NBCe1 activity should provide novel therapeutic targets for preventing I/R-induced cardiac diseases.
Collapse
|
6
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|
7
|
Lipid Rafts and Dopamine Receptor Signaling. Int J Mol Sci 2020; 21:ijms21238909. [PMID: 33255376 PMCID: PMC7727868 DOI: 10.3390/ijms21238909] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
The renal dopaminergic system has been identified as a modulator of sodium balance and blood pressure. According to the Centers for Disease Control and Prevention, in 2018 in the United States, almost half a million deaths included hypertension as a primary or contributing cause. Renal dopamine receptors, members of the G protein-coupled receptor family, are divided in two groups: D1-like receptors that act to keep the blood pressure in the normal range, and D2-like receptors with a variable effect on blood pressure, depending on volume status. The renal dopamine receptor function is regulated, in part, by its expression in microdomains in the plasma membrane. Lipid rafts form platforms within the plasma membrane for the organization and dynamic contact of molecules involved in numerous cellular processes such as ligand binding, membrane sorting, effector specificity, and signal transduction. Understanding all the components of lipid rafts, their interaction with renal dopamine receptors, and their signaling process offers an opportunity to unravel potential treatment targets that could halt the progression of hypertension, chronic kidney disease (CKD), and their complications.
Collapse
|
8
|
Gildea JJ, Xu P, Kemp BA, Carlson JM, Tran HT, Bigler Wang D, Langouët-Astrié CJ, McGrath HE, Carey RM, Jose PA, Felder RA. Sodium bicarbonate cotransporter NBCe2 gene variants increase sodium and bicarbonate transport in human renal proximal tubule cells. PLoS One 2018; 13:e0189464. [PMID: 29642240 PMCID: PMC5895442 DOI: 10.1371/journal.pone.0189464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/28/2017] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Salt sensitivity of blood pressure affects >30% of the hypertensive and >15% of the normotensive population. Variants of the electrogenic sodium bicarbonate cotransporter NBCe2 gene, SLC4A5, are associated with increased blood pressure in several ethnic groups. SLC4A5 variants are also highly associated with salt sensitivity, independent of hypertension. However, little is known about how NBCe2 contributes to salt sensitivity, although NBCe2 regulates renal tubular sodium bicarbonate transport. We hypothesized that SLC4A5 rs10177833 and rs7571842 increase NBCe2 expression and human renal proximal tubule cell (hRPTC) sodium transport and may be a cause of salt sensitivity of blood pressure. OBJECTIVE To characterize the hRPTC ion transport of wild-type (WT) and homozygous variants (HV) of SLC4A5. METHODS AND RESULTS The expressions of NBCe2 mRNA and protein were not different between hRPTCs carrying WT or HV SLC4A5 before or after dopaminergic or angiotensin (II and III) stimulation. However, luminal to basolateral sodium transport, NHE3 protein, and Cl-/HCO3- exchanger activity in hRPTCs were higher in HV than WT SLC4A5. Increasing intracellular sodium enhanced the apical location of NBCe2 in HV hRPTCs (4.24±0.35% to 11.06±1.72% (P<0.05, N = 3, 2-way ANOVA, Holm-Sidak test)) as determined by Total Internal Reflection Fluorescence Microscopy (TIRFM). In hRPTCs isolated from kidney tissue, increasing intracellular sodium enhanced bicarbonate-dependent pH recovery rate and increased NBCe2 mRNA and protein expressions to a greater extent in HV than WT SLC4A5 (+38.00±6.23% vs HV normal salt (P<0.01, N = 4, 2-way ANOVA, Holm-Sidak test)). In hRPTCs isolated from freshly voided urine, bicarbonate-dependent pH recovery was also faster in those from salt-sensitive and carriers of HV SLC4A5 than from salt-resistant and carriers of WT SLC4A5. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was normalized by SLC4A5- but not SLC4A4-shRNA. The binding of purified hepatocyte nuclear factor type 4A (HNF4A) to DNA was increased in hRPTCs carrying HV SLC4A5 rs7571842 but not rs10177833. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was abolished by HNF4A antagonists. CONCLUSION NBCe2 activity is stimulated by an increase in intracellular sodium and is hyper-responsive in hRPTCs carrying HV SLC4A5 rs7571842 through an aberrant HNF4A-mediated mechanism.
Collapse
Affiliation(s)
- John J. Gildea
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Peng Xu
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Brandon A. Kemp
- The University of Virginia Department of Medicine, Charlottesville, VA, United States of America
| | - Julia M. Carlson
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Hanh T. Tran
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Dora Bigler Wang
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | | | - Helen E. McGrath
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Robert M. Carey
- The University of Virginia Department of Medicine, Charlottesville, VA, United States of America
| | - Pedro A. Jose
- The George Washington University School of Medicine & Health Sciences, Department of Medicine, Division of Renal Disease and Hypertension and Department of Pharmacology and Physiology, Washington, DC, United States of America
| | - Robin A. Felder
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| |
Collapse
|
9
|
Abstract
The H(+) concentration in human blood is kept within very narrow limits, ~40 nmol/L, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: (i) reabsorb HCO3(-) that is filtered through the glomeruli to prevent its excretion in the urine; (ii) generate a sufficient quantity of new HCO3(-) to compensate for the loss of HCO3(-) resulting from dietary metabolic H(+) loads and loss of HCO3(-) in the urea cycle; and (iii) excrete HCO3(-) (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
10
|
Thornell IM, Bevensee MO. Regulators of Slc4 bicarbonate transporter activity. Front Physiol 2015; 6:166. [PMID: 26124722 PMCID: PMC4464172 DOI: 10.3389/fphys.2015.00166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Mark O Bevensee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA ; Nephrology Research and Training Center, University of Alabama at Birmingham Birmingham, AL, USA ; Center of Glial Biology in Medicine, University of Alabama at Birmingham Birmingham, AL, USA ; Civitan International Research Center, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
11
|
Fang YW, Yang SS, Chau T, Nakamura M, Yamazaki O, Seki G, Yamada H, Hsu HM, Cheng CJ, Lin SH. Therapeutic effect of prenatal alkalization and PTC124 in Na(+)/HCO3(-) cotransporter 1 p.W516* knock-in mice. Gene Ther 2015; 22:374-81. [PMID: 25716530 DOI: 10.1038/gt.2015.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/30/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023]
Abstract
We created Na(+)/HCO3(-) cotransporter 1 (NBCe1) p.W516* knock-in mice as a model of isolated proximal renal tubular acidosis showing early lethality associated with severe metabolic acidosis to investigate the therapeutic effects of prenatal alkalization or posttranscriptional control 124 (PTC124). NBCe1(W516*/W516*) mice were treated with non-alkalization (control, n=12), prenatal alkalization postcoitus (prenatal group, n=7) and postnatal alkalization from postnatal day 6 (postnatal group, n=12). Mutation-specific therapy, PTC124 (60 mg kg(-1)) or gentamicin (30 mg kg(-1)), was administered intraperitoneally from postnatal day 6. Blood and urine biochemistry, acid-base analysis, survival rate and renal histology were examined. NBCe1 protein, mRNA abundance and activity ex vivo were assessed after PTC124 and gentamicin treatment. Prenatal group mice had similar initial body weight to wild-type mice and achieved significant weight gain thereafter compared with controls. They had higher serum bicarbonate level (15.5 ± 1.4 vs 5.5 ± 0.1 mmol l(-1), P<0.05) on postnatal day 14 and better renal function, histology and survival rates (60.8 ± 23.5 vs 41.1 ± 15.8 days, P<0.05) than the postnatal group. Compared with the control and gentamicin therapies, PTC124 therapy significantly increased NBCe1 protein abundance despite unchanged mRNA transcription. Only PTC124 therapy significantly increased survival rate and partially rescued NBCe1 activity ex vivo. In NBCe1(W516*/W516*) mice, prenatal alkali therapy achieved higher survival rates and ameliorated organ dysfunction. PTC124 therapy for this nonsense mutation was partially effective in increasing NBCe1 expression and activity.
Collapse
Affiliation(s)
- Y-W Fang
- 1] Division of Nephrology, Department of Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan [2] Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - S-S Yang
- 1] Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan [2] Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - T Chau
- Department of Medicine, Providence St Vincent Medical Center, Portland, OR, USA
| | - M Nakamura
- Department of Internal Medicine, Faculty of Medicine, Tokyo University, Tokyo, Japan
| | - O Yamazaki
- Department of Internal Medicine, Faculty of Medicine, Tokyo University, Tokyo, Japan
| | - G Seki
- Department of Internal Medicine, Faculty of Medicine, Tokyo University, Tokyo, Japan
| | - H Yamada
- Department of Internal Medicine, Faculty of Medicine, Tokyo University, Tokyo, Japan
| | - H-M Hsu
- Division of Nephrology, Department of Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - C-J Cheng
- 1] Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan [2] Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - S-H Lin
- 1] Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan [2] Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Izzi F, Placidi F, Romigi A, Lauretti B, Marfia GA, Mercuri NB, Marciani MG, Rocchi C. Is autonomic nervous system involved in restless legs syndrome during wakefulness? Sleep Med 2014; 15:1392-7. [PMID: 25266501 DOI: 10.1016/j.sleep.2014.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To investigate cardiovascular autonomic function in patients with restless leg syndrome (RLS) by means of cardiovascular reflexes and heart rate variability (HRV) during wakefulness. METHODS Twelve RLS patients and 14 controls underwent cardiovascular function tests including head-up tilt test (HUTT), Valsalva maneuver, deep breathing, hand grip, and cold face. HRV analysis was performed in the frequency domain using both autoregressive (AR) and fast Fourier transform algorithms in rest supine condition and during HUTT. RESULTS There was a significant increase in systolic blood pressure values in supine rest condition and a trend toward a lower Valsalva ratio in RLS patients with respect to controls. The significant and physiological changes of HRV at HUTT detected in healthy subjects were not found in RLS patients. CONCLUSION RLS patients exhibit a tendency toward hypertension, reduced amplitude of both sympathetic and parasympathetic responses at HUTT, as well as blunted parasympathetic drive to blood pressure changes. These findings, if confirmed by more controlled studies, might support the hypothesis of autonomic nervous system involvement during wakefulness and consequently an enhanced cardiovascular risk in RLS.
Collapse
Affiliation(s)
- Francesca Izzi
- Neurophysiopathology Unit, Sleep Medicine Center, Department of Systems Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Fabio Placidi
- Neurophysiopathology Unit, Sleep Medicine Center, Department of Systems Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Andrea Romigi
- Neurophysiopathology Unit, Sleep Medicine Center, Department of Systems Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Benedetta Lauretti
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Girolama A Marfia
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Nicola B Mercuri
- Neurophysiopathology Unit, Sleep Medicine Center, Department of Systems Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Maria G Marciani
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Camilla Rocchi
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy.
| |
Collapse
|
13
|
Kurtz I. NBCe1 as a model carrier for understanding the structure-function properties of Na⁺ -coupled SLC4 transporters in health and disease. Pflugers Arch 2014; 466:1501-16. [PMID: 24515290 DOI: 10.1007/s00424-014-1448-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 01/17/2023]
Abstract
SLC4 transporters are membrane proteins that in general mediate the coupled transport of bicarbonate (carbonate) and share amino acid sequence homology. These proteins differ as to whether they also transport Na(+) and/or Cl(-), in addition to their charge transport stoichiometry, membrane targeting, substrate affinities, developmental expression, regulatory motifs, and protein-protein interactions. These differences account in part for the fact that functionally, SLC4 transporters have various physiological roles in mammals including transepithelial bicarbonate transport, intracellular pH regulation, transport of Na(+) and/or Cl(-), and possibly water. Bicarbonate transport is not unique to the SLC4 family since the structurally unrelated SLC26 family has at least three proteins that mediate anion exchange. The present review focuses on the first of the sodium-dependent SLC4 transporters that was identified whose structure has been most extensively studied: the electrogenic Na(+)-base cotransporter NBCe1. Mutations in NBCe1 cause proximal renal tubular acidosis (pRTA) with neurologic and ophthalmologic extrarenal manifestations. Recent studies have characterized the important structure-function properties of the transporter and how they are perturbed as a result of mutations that cause pRTA. It has become increasingly apparent that the structure of NBCe1 differs in several key features from the SLC4 Cl(-)-HCO3 (-) exchanger AE1 whose structural properties have been well-studied. In this review, the structure-function properties and regulation of NBCe1 will be highlighted, and its role in health and disease will be reviewed in detail.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, and Brain Research Institute, UCLA, Los Angeles, CA, USA,
| |
Collapse
|
14
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
15
|
Du Z, Yan Q, Wan L, Weinbaum S, Weinstein AM, Wang T. Regulation of glomerulotubular balance. I. Impact of dopamine on flow-dependent transport. Am J Physiol Renal Physiol 2012; 303:F386-95. [PMID: 22552936 DOI: 10.1152/ajprenal.00531.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In response to volume expansion, locally generated dopamine decreases proximal tubule reabsorption by reducing both Na/H-exchanger 3 (NHE3) and Na-K-ATPase activity. We have previously demonstrated that mouse proximal tubules in vitro respond to changes in luminal flow with proportional changes in Na(+) and HCO(3)(-) reabsorption and have suggested that this observation underlies glomerulotubular balance. In the present work, we investigate the impact of dopamine on the sensitivity of reabsorptive fluxes to changes in luminal flow. Mouse proximal tubules were microperfused in vitro at low and high flow rates, and volume and HCO(3)(-) reabsorption (J(v) and J(HCO3)) were measured, while Na(+) and Cl(-) reabsorption (J(Na) and J(Cl)) were estimated. Raising luminal flow increased J(v), J(Na), and J(HCO3) but did not change J(Cl). Luminal dopamine did not change J(v), J(Na), and J(HCO3) at low flow rates but completely abolished the increments of Na(+) absorption by flow and partially inhibited the flow-stimulated HCO(3)(-) absorption. The remaining flow-stimulated HCO(3)(-) absorption was completely abolished by bafilomycin. The DA1 receptor blocker SCH23390 and the PKA inhibitor H89 blocked the effect of exogenous dopamine and produced a two to threefold increase in the sensitivity of proximal Na(+) reabsorption to luminal flow rate. Under the variety of perfusion conditions, changes in cell volume were small and did not always parallel changes in Na(+) transport. We conclude that 1) dopamine inhibits flow-stimulated NHE3 activity by activation of the DA1 receptor via a PKA-mediated mechanism; 2) dopamine has no effect on flow-stimulated H-ATPase activity; 3) there is no evidence of flow stimulation of Cl(-) reabsorption; and 4) the impact of dopamine is a coordinated modulation of both luminal and peritubular Na(+) transporters.
Collapse
Affiliation(s)
- Zhaopeng Du
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520-8026, USA
| | | | | | | | | | | |
Collapse
|
16
|
Asghar M, Tayebati SK, Lokhandwala MF, Hussain T. Potential dopamine-1 receptor stimulation in hypertension management. Curr Hypertens Rep 2011; 13:294-302. [PMID: 21633929 DOI: 10.1007/s11906-011-0211-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The role of dopamine receptors in blood pressure regulation is well established. Genetic ablation of both dopamine D1-like receptor subtypes (D1, D5) and D2-like receptor subtypes (D2, D3, D4) results in a hypertensive phenotype in mice. This review focuses on the dopamine D1-like receptor subtypes D1 and D5 (especially D1 receptors), as they play a major role in regulating sodium homeostasis and blood pressure. Studies mostly describing the role of renal dopamine D1-like receptors are included, as the kidneys play a pivotal role in the maintenance of sodium homeostasis and the long-term regulation of blood pressure. We also attempt to describe the interaction between D1-like receptors and other proteins, especially angiotensin II type 1 and type 2 receptors, which are involved in the maintenance of sodium homeostasis and blood pressure. Finally, we discuss a new concept of renal D1 receptor regulation in hypertension that involves oxidative stress mechanisms.
Collapse
Affiliation(s)
- Mohammad Asghar
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
Dopamine is an important regulator of systemic blood pressure via multiple mechanisms. It affects fluid and electrolyte balance by its actions on renal hemodynamics and epithelial ion and water transport and by regulation of hormones and humoral agents. The kidney synthesizes dopamine from circulating or filtered L-DOPA independently from innervation. The major determinants of the renal tubular synthesis/release of dopamine are probably sodium intake and intracellular sodium. Dopamine exerts its actions via two families of cell surface receptors, D1-like receptors comprising D1R and D5R, and D2-like receptors comprising D2R, D3R, and D4R, and by interactions with other G protein-coupled receptors. D1-like receptors are linked to vasodilation, while the effect of D2-like receptors on the vasculature is variable and probably dependent upon the state of nerve activity. Dopamine secreted into the tubular lumen acts mainly via D1-like receptors in an autocrine/paracrine manner to regulate ion transport in the proximal and distal nephron. These effects are mediated mainly by tubular mechanisms and augmented by hemodynamic mechanisms. The natriuretic effect of D1-like receptors is caused by inhibition of ion transport in the apical and basolateral membranes. D2-like receptors participate in the inhibition of ion transport during conditions of euvolemia and moderate volume expansion. Dopamine also controls ion transport and blood pressure by regulating the production of reactive oxygen species and the inflammatory response. Essential hypertension is associated with abnormalities in dopamine production, receptor number, and/or posttranslational modification.
Collapse
Affiliation(s)
- Ines Armando
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Van Anthony M. Villar
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Pedro A. Jose
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| |
Collapse
|
18
|
Good DW, George T, Watts BA. High sodium intake increases HCO(3)- absorption in medullary thick ascending limb through adaptations in basolateral and apical Na+/H+ exchangers. Am J Physiol Renal Physiol 2011; 301:F334-43. [PMID: 21613418 DOI: 10.1152/ajprenal.00106.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A high sodium intake increases the capacity of the medullary thick ascending limb (MTAL) to absorb HCO(3)(-). Here, we examined the role of the apical NHE3 and basolateral NHE1 Na(+)/H(+) exchangers in this adaptation. MTALs from rats drinking H(2)O or 0.28 M NaCl for 5-7 days were perfused in vitro. High sodium intake increased HCO(3)(-) absorption rate by 60%. The increased HCO(3)(-) absorptive capacity was mediated by an increase in apical NHE3 activity. Inhibiting basolateral NHE1 with bath amiloride eliminated 60% of the adaptive increase in HCO(3)(-) absorption. Thus the majority of the increase in NHE3 activity was dependent on NHE1. A high sodium intake increased basolateral Na(+)/H(+) exchange activity by 89% in association with an increase in NHE1 expression. High sodium intake increased apical Na(+)/H(+) exchange activity by 30% under conditions in which basolateral Na(+)/H(+) exchange was inhibited but did not change NHE3 abundance. These results suggest that high sodium intake increases HCO(3)(-) absorptive capacity in the MTAL through 1) an adaptive increase in basolateral NHE1 activity that results secondarily in an increase in apical NHE3 activity; and 2) an adaptive increase in NHE3 activity, independent of NHE1 activity. These studies support a role for NHE1 in the long-term regulation of renal tubule function and suggest that the regulatory interaction whereby NHE1 enhances the activity of NHE3 in the MTAL plays a role in the chronic regulation of HCO(3)(-) absorption. The adaptive increases in Na(+)/H(+) exchange activity and HCO(3)(-) absorption in the MTAL may play a role in enabling the kidneys to regulate acid-base balance during changes in sodium and volume balance.
Collapse
Affiliation(s)
- David W Good
- Departments of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas 77555-0562, USA.
| | | | | |
Collapse
|
19
|
Todorovic J, Nesovic-Ostojic J, Cemerikic D. Peritubular membrane potential in kidney proximal tubular cells of spontaneously hypertensive rats. ACTA PHYSIOLOGICA HUNGARICA 2011; 98:8-16. [PMID: 21388926 DOI: 10.1556/aphysiol.98.2011.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peritubular membrane potential in kidney proximal tubular cells of spontaneously hypertensive rats (SHR-Okamoto strain adult rats) was measured with conventional 3 mol KCl microelectrodes, in vivo. Peritubular cell membrane potential was not different in SHR (-66.5 ± 0.7 mV) as compared with normotensive control Wistar rats (-67.5 ± 1.2 mV). To test the effects of possible altered sodium membrane transport in SHR on proximal tubule peritubular membrane potential, we allowed SHR and control rats to drink 1% NaCl for two weeks. Again, proximal tubule peritubular membrane potential was not different in SHR on 1% NaCl (-67.0 ± 1.0 mV) as compared with control rats on 1% NaCl (-64.7 ± 1.3 mV). From these results we concluded that peritubular membrane potential in kidney proximal tubular cells of SHR was not different from normotensive Wistar control rats, and if some alteration of sodium transport in kidney proximal tubular cells of SHR could exist, that was not possible to evaluate from the measurements of peritubular membrane potential in kidney proximal tubular cells.
Collapse
Affiliation(s)
- J Todorovic
- Medical Faculty, Department of Pathological Physiology, Belgrade, Serbia
| | | | | |
Collapse
|
20
|
Functional characterization of nonsynonymous single nucleotide polymorphisms in the electrogenic Na+-HCO3- cotransporter NBCe1A. Pflugers Arch 2011; 461:249-59. [PMID: 21234596 DOI: 10.1007/s00424-010-0918-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/10/2010] [Accepted: 12/20/2010] [Indexed: 12/22/2022]
Abstract
The electrogenic Na(+)-HCO(3)(-) cotransporter NBCe1 encoded by SLC4A4 plays essential roles in the regulation of intracellular/extracellular pH. Homozygous mutations in NBCe1 cause proximal renal tubular acidosis associated with ocular abnormalities. In the present study, we tried to perform functional characterization of the four nonsynonymous single nucleotide polymorphisms (SNPs), E122G, S356Y, K558R, and N640I in NBCe1A. Functional analysis in Xenopus oocytes revealed that while the K558R variant had a significantly reduced transport activity corresponding to 47% of the wild-type activity, the remaining variants E122G, S356Y, and N640I did not change the NBCe1A activity. Apparent Na(+) affinity of K558R was not different from that of wild-type NBCe1A. Immunohistological analyses in HEK293 cells and MDCK cells indicated that none of these SNPs changed the trafficking behaviors of NBCe1A. Functional analysis in HEK293 cells also revealed that only the K558R variant had a reduced transport activity, corresponding to 41-47% of the wild-type activity. From these results, we conclude that among four SNPs, only the K558R variant, which is predicted to lie in transmembrane segment 5, significantly reduces the NBCe1A activity without changing the trafficking behavior or the apparent extracellular Na(+) affinity.
Collapse
|
21
|
Severe metabolic acidosis causes early lethality in NBC1 W516X knock-in mice as a model of human isolated proximal renal tubular acidosis. Kidney Int 2011; 79:730-41. [PMID: 21228764 DOI: 10.1038/ki.2010.523] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have identified a novel homozygous nonsense mutation (W516X) in the kidney-type electrogenic sodium bicarbonate cotransporter 1 (NBC1) in a patient with isolated proximal renal tubular acidosis (pRTA). To specifically address the pathogenesis of this mutation, we created NBC1 W516X knock-in mice to match the patient's abnormalities. The expression of NBC1 mRNA and protein in the kidneys of NBC1(W516X/W516X) mice were virtually absent, indicating that nonsense-mediated mRNA decay (NMD) is involved in the defective transcription and translation of this mutation. These mice not only recapitulated the phenotypes of this patient with growth retardation, pRTA, and ocular abnormalities, but also showed anemia, volume depletion, prerenal azotemia, and several organ abnormalities, culminating in dehydration and renal failure with early lethality before weaning. In isolated renal proximal tubules, both NBC1 activity and the rate of bicarbonate absorption were markedly reduced. Unexpectedly, there was no compensatory increase in mRNA of distal acid/base transporters. Sodium bicarbonate but not saline administration to these mutant mice markedly prolonged their survival, decreased their protein catabolism and attenuated organ abnormalities. The prolonged survival time uncovered the development of corneal opacities due to corneal edema. Thus, NBC1(W516X/W516X) mice with pRTA represent an animal model for metabolic acidosis and may be useful for testing therapeutic inhibition of NMD in vivo.
Collapse
|
22
|
Effects of acute dopamine-agonist treatment in restless legs syndrome on heart rate variability during sleep. Sleep Med 2011; 12:47-55. [DOI: 10.1016/j.sleep.2010.03.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/15/2010] [Accepted: 03/23/2010] [Indexed: 11/20/2022]
|
23
|
Jose PA, Soares-da-Silva P, Eisner GM, Felder RA. Dopamine and G protein-coupled receptor kinase 4 in the kidney: role in blood pressure regulation. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:1259-67. [PMID: 20153824 PMCID: PMC2892632 DOI: 10.1016/j.bbadis.2010.02.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/05/2010] [Accepted: 02/07/2010] [Indexed: 12/11/2022]
Abstract
Complex interactions between genes and environment result in a sodium-induced elevation in blood pressure (salt sensitivity) and/or hypertension that lead to significant morbidity and mortality affecting up to 25% of the middle-aged adult population worldwide. Determining the etiology of genetic and/or environmentally-induced high blood pressure has been difficult because of the many interacting systems involved. Two main pathways have been implicated as principal determinants of blood pressure since they are located in the kidney (the key organ responsible for blood pressure regulation), and have profound effects on sodium balance: the dopaminergic and renin-angiotensin systems. These systems counteract or modulate each other, in concert with a host of intracellular second messenger pathways to regulate sodium and water balance. In particular, the G protein-coupled receptor kinase type 4 (GRK4) appears to play a key role in regulating dopaminergic-mediated natriuresis. Constitutively activated GRK4 gene variants (R65L, A142V, and A486V), by themselves or by their interaction with other genes involved in blood pressure regulation, are associated with essential hypertension and/or salt-sensitive hypertension in several ethnic groups. GRK4γ 142Vtransgenic mice are hypertensive on normal salt intake while GRK4γ 486V transgenic mice develop hypertension only with an increase in salt intake. GRK4 gene variants have been shown to hyperphosphorylate, desensitize, and internalize two members of the dopamine receptor family, the D(1) (D(1)R) and D(3) (D(3)R) dopamine receptors, but also increase the expression of a key receptor of the renin-angiotensin system, the angiotensin type 1 receptor (AT(1)R). Knowledge of the numerous blood pressure regulatory pathways involving angiotensin and dopamine may provide new therapeutic approaches to the pharmacological regulation of sodium excretion and ultimately blood pressure control.
Collapse
MESH Headings
- Adult
- Amino Acid Substitution
- Animals
- Blood Pressure
- Dopamine/genetics
- Dopamine/metabolism
- Female
- G-Protein-Coupled Receptor Kinase 4/genetics
- G-Protein-Coupled Receptor Kinase 4/metabolism
- Humans
- Hypertension/drug therapy
- Hypertension/genetics
- Hypertension/metabolism
- Kidney/metabolism
- Male
- Mice
- Mice, Transgenic
- Middle Aged
- Mutation, Missense
- Phosphorylation
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/metabolism
- Renin-Angiotensin System/genetics
Collapse
Affiliation(s)
- Pedro A Jose
- Children's National Medical Center, George Washington University for the Health Sciences, Washington, DC, USA.
| | | | | | | |
Collapse
|
24
|
Gildea JJ, Israel JA, Johnson AK, Zhang J, Jose PA, Felder RA. Caveolin-1 and dopamine-mediated internalization of NaKATPase in human renal proximal tubule cells. Hypertension 2009; 54:1070-6. [PMID: 19752292 DOI: 10.1161/hypertensionaha.109.134338] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In moderate sodium-replete states, dopamine 1-like receptors (D1R/D5R) are responsible for regulating >50% of renal sodium excretion. This is partly mediated by internalization and inactivation of NaKATPase, when associated with adapter protein 2. We used dopaminergic stimulation via fenoldopam (D1-like receptor agonist) to study the interaction among D1-like receptors, caveolin-1 (CAV1), and the G protein-coupled receptor kinase type 4 in cultured human renal proximal tubule cells (RPTCs). We compared 2 groups of RPTCs, 1 of cell lines that were isolated from normal subjects (nRPTCs) and a second group of cell lines that have D1-like receptors that are uncoupled (uncoupled RPTCs) from adenylyl cyclase second messengers. In nRPTCs, fenoldopam increased the plasma membrane expression of D1R (10.0-fold) and CAV1 (1.3-fold) and markedly decreased G protein-coupled receptor kinase type 4 by 94+/-8%; no effects were seen in uncoupled RPTCs. Fenoldopam also increased the association of adapter protein 2 and NaKATPase by 53+/-9% in nRPTCs but not in uncoupled RPTCs. When CAV1 expression was reduced by 86.0+/-8.5% using small interfering RNA, restimulation of the D1-like receptors with fenoldopam in nRPTCs resulted in only a 7+/-9% increase in association between adapter protein 2 and NaKATPase. Basal CAV1 expression and association with G protein-coupled receptor kinase type 4 was decreased in uncoupled RPTCs (58+/-5% decrease in association) relative to nRPTCs. We conclude that the scaffolding protein CAV1 is necessary for the association of D1-like receptors with G protein-coupled receptor kinase type 4 and the adapter protein 2-associated reduction in plasma membrane NaKATPase.
Collapse
Affiliation(s)
- John J Gildea
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wang X, Armando I, Upadhyay K, Pascua A, Jose PA. The regulation of proximal tubular salt transport in hypertension: an update. Curr Opin Nephrol Hypertens 2009; 18:412-420. [PMID: 19654544 PMCID: PMC3722593 DOI: 10.1097/mnh.0b013e32832f5775] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Renal proximal tubular sodium reabsorption is regulated by sodium transporters, including the sodium glucose transporter, sodium amino acid transporter, sodium hydrogen exchanger isoform 3 and sodium phosphate cotransporter type 2 located at the luminal/apical membrane, and sodium bicarbonate cotransporter and Na+/K+ATPase located at the basolateral membrane. This review summarizes recent studies on sodium transporters that play a major role in the increase in blood pressure in essential/polygenic hypertension. RECENT FINDINGS Sodium transporters and Na+/K+ATPase are segregated in membrane lipid and nonlipid raft microdomains that regulate their activities and trafficking via cytoskeletal proteins. The increase in renal proximal tubule ion transport in polygenic hypertension is primarily due to increased activity of NHE3 and Cl/HCO3 exchanger at the luminal/apical membrane and a primary or secondary increase in Na+/K+ATPase activity. SUMMARY The increase in renal proximal tubule ion transport in hypertension is due to increased actions by prohypertensive factors that are unopposed by antihypertensive factors.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Center for Molecular Physiology Research, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia, USA
| | | | | | | | | |
Collapse
|
26
|
Zeng C, Villar VAM, Yu P, Zhou L, Jose PA. Reactive oxygen species and dopamine receptor function in essential hypertension. Clin Exp Hypertens 2009; 31:156-78. [PMID: 19330604 DOI: 10.1080/10641960802621283] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Essential hypertension is a major risk factor for stroke, myocardial infarction, and heart and kidney failure. Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones and humoral factors. However, the mechanisms leading to impaired dopamine receptor function in hypertension states are not clear. Compelling experimental evidence indicates a role of reactive oxygen species (ROS) in hypertension, and there are increasing pieces of evidence showing that in conditions associated with oxidative stress, which is present in hypertensive states, dopamine receptor effects, such as natriuresis, diuresis, and vasodilation, are impaired. The goal of this review is to present experimental evidence that has led to the conclusion that decreased dopamine receptor function increases ROS activity and vice versa. Decreased dopamine receptor function and increased ROS production, working in concert or independent of each other, contribute to the pathogenesis of essential hypertension.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China.
| | | | | | | | | |
Collapse
|
27
|
Li Y, Yamada H, Kita Y, Suzuki M, Endo Y, Horita S, Yamazaki O, Shimizu T, Seki G, Fujita T. Arachidonic acid metabolites inhibit the stimulatory effect of angiotensin II in renal proximal tubules. Hypertens Res 2009; 31:2155-64. [PMID: 19139605 DOI: 10.1291/hypres.31.2155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Angiotensin II (Ang II) regulates renal proximal transport in a biphasic way via Ang II type 1 receptor (AT1). Whereas extracellular signal-regulated kinase (ERK) activation mediates the stimulatory effect, cytosolic phospholipase A2 (cPLA2) mediates the inhibitory effect independently of ERK. In this study, we tested the hypothesis that the cPLA2/P450 epoxygenase pathway might work to suppress the Ang II-mediated ERK activation. In the presence of arachidonic acid or 5,6-epoxyeicosatrienoic acid (EET), Ang II failed to stimulate the Na-HCO3 cotransporter activity in renal proximal tubules isolated from wild-type, AT1A-deficient, and cPLA2-alpha-deficient mice. In addition, Ang II failed to induce a significant ERK phosphorylation in the presence of arachidonic acid or 5,6-EET. Arachidonic acid or 5,6-EET also suppressed the stimulatory effect of Ang II on net proximal tubule bicarbonate absorption without changing cell Ca2+ concentrations. These results indicate that the cPLA2-alpha/P450/EET pathway blocks the stimulatory effect of Ang II by suppressing the ERK activation. Thus, the cPLA2-alpha/P450/EET pathway may operate as a unique negative feedback mechanism to attenuate excessive Ang II activity in the renal proximal tubules, where extremely high concentrations of Ang II are found.
Collapse
Affiliation(s)
- Yuehong Li
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang X, Villar VAM, Armando I, Eisner GM, Felder RA, Jose PA. Dopamine, kidney, and hypertension: studies in dopamine receptor knockout mice. Pediatr Nephrol 2008; 23:2131-46. [PMID: 18615257 PMCID: PMC3724362 DOI: 10.1007/s00467-008-0901-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/18/2008] [Accepted: 05/07/2008] [Indexed: 02/06/2023]
Abstract
Dopamine is important in the pathogenesis of hypertension because of abnormalities in receptor-mediated regulation of renal sodium transport. Dopamine receptors are classified into D(1)-like (D(1), D(5)) and D(2)-like (D(2), D(3), D(4)) subtypes, all of which are expressed in the kidney. Mice deficient in specific dopamine receptors have been generated to provide holistic assessment on the varying physiological roles of each receptor subtype. This review examines recent studies on these mutant mouse models and evaluates the impact of individual dopamine receptor subtypes on blood pressure regulation.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | | | - Ines Armando
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Gilbert M. Eisner
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Pedro A. Jose
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
29
|
Zeng C, Armando I, Luo Y, Eisner GM, Felder RA, Jose PA. Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice. Am J Physiol Heart Circ Physiol 2008; 294:H551-69. [PMID: 18083900 PMCID: PMC4029502 DOI: 10.1152/ajpheart.01036.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones/humoral factors, such as aldosterone, angiotensin, catecholamines, endothelin, oxytocin, prolactin pro-opiomelancortin, reactive oxygen species, renin, and vasopressin. Dopamine receptors are classified into D(1)-like (D(1) and D(5)) and D(2)-like (D(2), D(3), and D(4)) subtypes based on their structure and pharmacology. In recent years, mice deficient in one or more of the five dopamine receptor subtypes have been generated, leading to a better understanding of the physiological role of each of the dopamine receptor subtypes. This review summarizes the results from studies of various dopamine receptor mutant mice on the role of individual dopamine receptor subtypes and their interactions with other G protein-coupled receptors in the regulation of blood pressure.
Collapse
MESH Headings
- Animals
- Blood Pressure/genetics
- Blood Pressure/physiology
- Dopamine/physiology
- Hypertension/genetics
- Hypertension/physiopathology
- Mice
- Mice, Knockout
- Receptors, Dopamine/genetics
- Receptors, Dopamine/physiology
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/physiology
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/physiology
- Receptors, Dopamine D5/genetics
- Receptors, Dopamine D5/physiology
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing City 400042, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
30
|
Li Y, Yamada H, Kita Y, Kunimi M, Horita S, Suzuki M, Endo Y, Shimizu T, Seki G, Fujita T. Roles of ERK and cPLA2 in the angiotensin II-mediated biphasic regulation of Na+-HCO3(-) transport. J Am Soc Nephrol 2007; 19:252-9. [PMID: 18094367 DOI: 10.1681/asn.2007030289] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Regulation of renal proximal transport by angiotensin II (Ang II) is biphasic: low concentrations (picomolar to nanomolar) stimulate reabsorption, but higher concentrations (nanomolar to micromolar) inhibit reabsorption. Traditionally, the stimulatory effect has been attributed to activation of protein kinase C and/or a decrease in intracellular cAMP, whereas the inhibitory action has been attributed to the activation of phospholipase A2 (PLA2) and the subsequent release of arachidonic acid. The Ang II receptor subtype responsible for these effects and the intracellular signaling pathways involved are not completely understood. We isolated proximal tubules from wild-type, Ang II type 1A receptor (AT1A)-deficient, and group IVA cytosolic phospholipase A2 (cPLA2alpha)-deficient mice, and compared their responses to Ang II. In wild-type mice, we found that the stimulatory and inhibitory effects of Ang II on Na+-HCO3(-) cotransporter activity are both AT1-mediated but that ERK activation only plays a role in the former. The stimulatory effect of Ang II was also observed in AT1A-deficient mice, suggesting that this occurs through AT1B. In contrast, the inhibitory effects of Ang II appeared to be mediated by cPLA2alpha activation because high-concentration Ang II stimulated Na+-HCO3(-) cotransporter activity when cPLA2alpha activity was abrogated by pharmacological means or genetic knockout. Consistent with this observation, we found that activation of the cPLA2alpha/P450 pathway suppressed ERK activation. We conclude that Ang II activates ERK and cPLA2alpha in a concentration-dependent manner via AT1, and that the balance between ERK and cPLA2alpha activities determines the ultimate response to Ang II in intact proximal tubules.
Collapse
Affiliation(s)
- Yuehong Li
- Department of Internal Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Terada N, Ohno N, Saitoh S, Seki G, Komada M, Suzuki T, Yamakawa H, Soleimani M, Ohno S. Interaction of Membrane Skeletal Protein, Protein 4.1B and p55, and Sodium Bicarbonate Cotransporter1 in Mouse Renal S1-S2 Proximal Tubules. J Histochem Cytochem 2007; 55:1199-206. [PMID: 17712176 DOI: 10.1369/jhc.7a7266.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our recent studies demonstrated the localization of protein 4.1B, a member of the 4.1 skeletal membrane proteins, to the basolateral membranes of the S1-S2 renal proximal tubules. In the present studies, we investigated the presence of binding partners that could form a molecular complex with the 4.1B protein. Immunohistochemistry revealed the localization of p55, a membrane-associated guanylate kinase, and the sodium bicarbonate cotransporter1 (NBC1), to the basolateral membrane domain of S1-S2 in mouse renal proximal tubules. Using immunoprecipitation of kidney lysates with anti-p55 antibody, a positive band was blotted with anti-4.1B antibody. GST fusion proteins including the NBC1 and 4.1B regions were confirmed to bind with each other by electrophoresis after mixing. Both NBC1- and 4.1B-specific bands were detected in renal protein mixtures immunoprecipated by either anti-4.1B- or NBC1-specific antibodies. It is likely that NBC1, 4.1B, and p55 form a molecular complex in the basolateral membrane of the kidney S1-S2 proximal tubules. We propose that the 4.1B-containing membrane skeleton may play a role in regulating the Na+ and HCO3- reabsorption in S1-S2 proximal tubules.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo City, Yamanashi 409-3898, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport, vascular smooth muscle contractility and production of reactive oxygen species and by interacting with the renin–angiotensin and sympathetic nervous systems. Dopamine receptors are classified into D1-like (D1 and D5) and D2-like (D2, D3 and D4) subtypes based on their structure and pharmacology. Each of the dopamine receptor subtypes participates in the regulation of blood pressure by mechanisms specific for the subtype. Some receptors regulate blood pressure by influencing the central and/or peripheral nervous system; others influence epithelial transport and regulate the secretion and receptors of several humoral agents. This review summarizes the physiology of the different dopamine receptors in the regulation of blood pressure, and the relationship between dopamine receptor subtypes and hypertension.
Collapse
MESH Headings
- Blood Pressure/physiology
- Dopamine/metabolism
- Gastrointestinal Tract/metabolism
- Gastrointestinal Tract/physiopathology
- Humans
- Hypertension/metabolism
- Hypertension/physiopathology
- Kidney/metabolism
- Kidney/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Receptors, Dopamine/metabolism
- Receptors, Dopamine/physiology
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3/metabolism
- Receptors, Dopamine D3/physiology
- Receptors, Dopamine D4/metabolism
- Receptors, Dopamine D4/physiology
- Receptors, Dopamine D5/metabolism
- Receptors, Dopamine D5/physiology
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing City, People's Republic of China.
| | | | | | | | | |
Collapse
|
33
|
Pedrosa R, Gonçalves N, Hopfer U, Jose PA, Soares-da-Silva P. Activity and regulation of Na+-HCO3- cotransporter in immortalized spontaneously hypertensive rat and Wistar-Kyoto rat proximal tubular epithelial cells. Hypertension 2007; 49:1186-93. [PMID: 17325238 DOI: 10.1161/hypertensionaha.106.083444] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study evaluates the presence and functional proprieties of the Na(+)-HCO(3)(-) cotransporter (NBC) in immortalized renal proximal tubular epithelial cells from spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. The expected size and nucleotide sequence of a 1031-bp fragment corresponding to type 1 NBC (NBC1) was identified in both cell lines. The expression of the NBC1 transcript was lower (P<0.05) in SHR than in WKY cells. After intracellular acidification and in the presence of amiloride (1 mmol/L), the addition of sodium (115 mmol/L) in the absence of chloride resulted in rapid intracellular pH recovery that was higher in WKY than in SHR cells. This was an Na(+)- and HCO(3)(-)-dependent process in both cell lines. 4,4'-Diisothiocyanatodihydrostilbene-2,2'-disulphonic acid inhibited NBC activity in both WKY and SHR cells; the inhibitory effect was, however, more pronounced in WKY than in SHR cells. Forskolin (10 micromol/L) and dibutyryl cAMP (0.5 mmol/L) did not alter NBC activity. Acidosis induced by a 24-hour treatment with NH4(+) (20 mmol/L) increased NBC activity to a greater extent in SHR than in WKY cells, without changes in intracellular pH and cell viability. Treatment with acetazolamide (300 micromol/L) for 24 hours did not change NBC activity in both cell lines. In contrast to NBC, Na(+)-K(+) ATPase activity and expression were higher in SHR than in WKY cells. It is concluded that SHR cells are endowed with lower NBC activity than WKY cells, but the former is more resistant to 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulphonic acid and responds better to acidosis.
Collapse
Affiliation(s)
- Rui Pedrosa
- Institute of Pharmacology and Therapeutics Faculty of Medicine, Porto, Portugal
| | | | | | | | | |
Collapse
|
34
|
Bernardo AA, Bernardo CM, Espiritu DJ, Arruda JAL. The sodium bicarbonate cotransporter: structure, function, and regulation. Semin Nephrol 2007; 26:352-60. [PMID: 17071329 DOI: 10.1016/j.semnephrol.2006.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of the Na(+)-coupled HCO(3)(-) transporter (NBC) family is indispensable in acid-base homeostasis. Almost all tissues express a member of the NBC family. NBC has been studied extensively in the kidney and plays a role in proximal tubule HCO(3)(-) reabsorption. Although the exact function of this transporter family on other tissues is not very clear, the ubiquitous expression of NBC family suggests a role in cell pH regulation. Altered NBC activity caused by mutations of the gene responsible for NBC protein expression results in pathophysiologic conditions. Mutations of NBC resulting in important clinical disorders have been reported extensively on one member of the NBC family, the kidney NBC (NBC1). These mutations have led to several structural studies to understand the mechanism of the abnormal NBC1 activity.
Collapse
Affiliation(s)
- Angelito A Bernardo
- Department of Medicine, Section of Nephrology, University of Illinois at Chicago, 820 S. Wood Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
35
|
Banday AA, Fazili FR, Marwaha A, Lokhandwala MF. Mitogen-activated protein kinase upregulation reduces renal D1 receptor affinity and G-protein coupling in obese rats. Kidney Int 2006; 71:397-406. [PMID: 17191082 DOI: 10.1038/sj.ki.5002055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Reactive oxygen species play a key role in pathophysiology of cardiovascular diseases by modulating G-protein-coupled receptor signaling. We have shown that treatment of animal models of diabetes and aging with tempol decreases oxidative stress and restores renal dopamine D1 receptor (D1R) function. In present study, we determined whether oxidation of D1R and upregulation of mitogen-activated protein kinases (MAPK) were responsible for decreased D1R signaling in obese animals. Male lean and obese Zucker rats were supplemented with antioxidants tempol or lipoic acid for 2 weeks. Compared to lean, obese animals were hyperglycemic and hyperinsulinemic with increased oxidative stress, D1R oxidation and decreased glutathione levels. These animals had decreased renal D1R affinity and basal coupling to G-proteins. SKF-38393, a D1R agonist failed to stimulate G-proteins and adenylyl cyclase. Obese animals showed marked increase in renal MAPK activities. Treatment of obese rats with tempol or lipoic acid decreased blood glucose, reduced oxidative stress, and restored the basal D1R G-protein coupling. Antioxidants also normalized MAPK activities and restored D1R affinity and SKF-38393 induced D1R G-protein coupling and adenylyl cyclase stimulation. These studies show that D1R oxidation and MAPK upregulation contribute to D1R dysfunction in obese animals. Consequently, antioxidants while reducing the oxidative stress normalize the MAPK activities and restore D1R signaling.
Collapse
Affiliation(s)
- A A Banday
- Department of Phamacological and Pharmaceutical Sciences, College of Pharmacy, Heart and Kidney Institute, University of Houston, Houston, Texas 77204, USA
| | | | | | | |
Collapse
|
36
|
Felder RA, Jose PA. Mechanisms of disease: the role of GRK4 in the etiology of essential hypertension and salt sensitivity. ACTA ACUST UNITED AC 2006; 2:637-50. [PMID: 17066056 DOI: 10.1038/ncpneph0301] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 07/03/2006] [Indexed: 12/15/2022]
Abstract
Hypertension and salt sensitivity of blood pressure are two conditions the etiologies of which are still elusive because of the complex influences of genes, environment, and behavior. Recent understanding of the molecular mechanisms that govern sodium homeostasis is shedding new light on how genes, their protein products, and interacting metabolic pathways contribute to disease. Sodium transport is increased in the proximal tubule and thick ascending limb of Henle of the kidney in human essential hypertension. This Review focuses on the counter-regulation between the dopaminergic and renin-angiotensin systems in the renal proximal tubule, which is the site of about 70% of total renal sodium reabsorption. The inhibitory effect of dopamine is most evident under conditions of moderate sodium excess, whereas the stimulatory effect of angiotensin II is most evident under conditions of sodium deficit. Dopamine and angiotensin II exert their actions via G protein-coupled receptors, which are in turn regulated by G protein-coupled receptor kinases (GRKs). Polymorphisms that lead to aberrant action of GRKs cause a number of conditions, including hypertension and salt sensitivity. Polymorphisms in one particular member of this family-GRK4-have been shown to cause hyperphosphorylation, desensitization and internalization of a member of the dopamine receptor family, the dopamine 1 receptor, while increasing the expression of a key receptor of the renin-angiotensin system, the angiotensin II type 1 receptor. Novel diagnostic and therapeutic approaches for identifying at-risk subjects, followed by selective treatment of hypertension and salt sensitivity, might center on restoring normal receptor function through blocking the effects of GRK4 polymorphisms.
Collapse
Affiliation(s)
- Robin A Felder
- Department of Pathology, Post Office Box 800403, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
37
|
Yu P, Asico LD, Luo Y, Andrews P, Eisner GM, Hopfer U, Felder RA, Jose PA. D1 dopamine receptor hyperphosphorylation in renal proximal tubules in hypertension. Kidney Int 2006; 70:1072-9. [PMID: 16850019 DOI: 10.1038/sj.ki.5001708] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A defect in the coupling of the D(1) receptor (D(1)R) to its G protein/effector complex in renal proximal tubules plays a role in the pathogenesis of spontaneous hypertension. As there is no mutation of the D(1)R gene in the spontaneously hypertensive rat (SHR), we tested the hypothesis that the coupling defect is associated with constitutive desensitization/phosphorylation of the D(1)R. The following experiments were performed: (1) Cell culture and membrane preparations from rat kidneys and immortalized rat renal proximal tubule cells (RPTCs); (2) immunoprecipitation and immunoblotting; (3) cyclic adenosine 3',5' monophosphate and adenylyl cyclase assays; (4) immunofluorescence and confocal microscopy; (5) biotinylation of cell surface proteins; and (6) in vitro enzyme dephosphorylation. Basal serine-phosphorylated D(1)Rs in renal proximal tubules, brush border membranes, and membranes from immortalized RPTCs were greater in SHRs (21.0+/-1.5 density units, DU) than in normotensive rats (7.4+/-2.9 DU). The increased basal serine phosphorylation of D(1)Rs in SHRs was accompanied by decreased expression of D(1)R at the cell surface, and decreased ability of a D(1)-like receptor agonist (fenoldopam) to stimulate cyclic adenosine 3',5' monophosphate (cAMP) production. Increasing protein phosphatase 2A activity with protamine enhanced the ability of fenoldopam to stimulate cAMP accumulation (17+/-4%) and alter D(1)R cell surface expression in intact cells from SHRs. Alkaline phosphatase treatment of RPTC membranes decreased D(1)R phosphorylation and enhanced fenoldopam stimulation of adenylyl cyclase activity (26+/-6%) in SHRs. Uncoupling of the D(1)R from its G protein/effector complex in renal proximal tubules in SHRs is caused, in part, by increased D(1)R serine phosphorylation.
Collapse
Affiliation(s)
- P Yu
- Georgetown University Medical Center, Washington, Distr. Columbia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Koo NY, Li J, Hwang SM, Choi SY, Lee SJ, Oh SB, Kim JS, Lee JH, Park K. Molecular cloning and functional expression of a sodium bicarbonate cotransporter from guinea-pig parotid glands. Biochem Biophys Res Commun 2006; 342:1114-22. [PMID: 16513089 DOI: 10.1016/j.bbrc.2006.02.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 02/13/2006] [Indexed: 11/22/2022]
Abstract
We recently found that the concentration of HCO3- in guinea-pig saliva is very similar to that of human saliva; however, the entity that regulates HCO3- transport has not yet been fully characterized. In order to investigate the mechanism of HCO3- transport, we identified, cloned, and characterized a sodium bicarbonate (Na(+)/HCO3- cotransporter found in guinea-pig parotid glands (gpNBC1). The gpNBC1 gene encodes a 1079-amino acid protein that has 95% and 96% homology with human and mouse parotid NBC1, respectively. Oocytes expressing gpNBC1 were exposed to HCO3- or Na(+)-free solutions, which resulted in a marked change in membrane potentials (V(m)), suggesting that gpNBC1 is electrogenic. Likewise, a gpNBC1-mediated pH recovery was observed in gpNBC1 transfected human hepatoma cells; however, in the presence of 4, 4-diisothiocyanostilbene-2,2-disulfonic acid, a specific NBC1 inhibitor, such changes in V(m) and pH(i) were not observed. Together, the data show that the cloned guinea-pig gene is a functional, as well as sequence homologue of human NBC1.
Collapse
Affiliation(s)
- Na-Youn Koo
- Department of Physiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Marwaha A, Lokhandwala MF. Tempol reduces oxidative stress and restores renal dopamine D1-like receptor- G protein coupling and function in hyperglycemic rats. Am J Physiol Renal Physiol 2006; 291:F58-66. [PMID: 16478977 DOI: 10.1152/ajprenal.00362.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine via activation of renal D1-like receptors inhibits the activities of Na-K-ATPase and Na/H exchanger and subsequently increases sodium excretion. Decreased renal dopamine production and sodium excretion are associated with hyperglycemic conditions. We have earlier reported D1-like receptor-G protein uncoupling and reduced response to D1-like receptor activation in streptozotocin (STZ)-treated hyperglycemic rats (Marwaha A, Banday AA, and Lokhandwala MF. Am J Physiol Renal Physiol 286: F451-F457, 2004). The present study was designed to test the hypothesis that oxidative stress associated with hyperglycemia increases basal D1-like receptor serine phosphorylation via activation of the PKC-G protein receptor kinase (GRK) pathway, resulting in loss of D1-like receptor-G protein coupling and function. We observed that STZ-treated rats exhibited oxidative stress as evidenced by increased lipid peroxidation. Furthermore, PKC activity and expression of PKC-betaI- and -delta-isoforms were increased in STZ-treated rats. In addition, in STZ-treated rats there was increased GRK2 translocation to proximal tubular membrane and increased basal serine D1-like receptor phosphorylation. Supplementation with the antioxidant tempol lowered oxidative stress in STZ-treated rats, led to normalization of PKC activity, and prevented GRK2 translocation. Furthermore, tempol supplementation in STZ-treated rats restored D1-like receptor-G protein coupling and inhibition of Na-K-ATPase activity on D1-like receptor agonist stimulation. The functional consequence was the restoration of the natriuretic response to D1-like receptor activation. We conclude that oxidative stress associated with hyperglycemia causes an increase in activity and expression of PKC. This leads to translocation of GRK2, subsequent phosphorylation of the D1-like receptor, its uncoupling from G proteins and loss of responsiveness to agonist stimulation.
Collapse
Affiliation(s)
- Aditi Marwaha
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204-5041, USA
| | | |
Collapse
|
40
|
Zeng C, Sanada H, Watanabe H, Eisner GM, Felder RA, Jose PA. Functional genomics of the dopaminergic system in hypertension. Physiol Genomics 2005; 19:233-46. [PMID: 15548830 DOI: 10.1152/physiolgenomics.00127.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abnormalities in dopamine production and receptor function have been described in human essential hypertension and rodent models of genetic hypertension. Under normal conditions, D(1)-like receptors (D(1) and D(5)) inhibit sodium transport in the kidney and intestine. However, in the Dahl salt-sensitive and spontaneously hypertensive rats (SHRs) and in humans with essential hypertension, the D(1)-like receptor-mediated inhibition of epithelial sodium transport is impaired because of an uncoupling of the D(1)-like receptor from its G protein/effector complex. The uncoupling is receptor specific, organ selective, nephron-segment specific, precedes the onset of hypertension, and cosegregates with the hypertensive phenotype. The defective transduction of the renal dopaminergic signal is caused by activating variants of G protein-coupled receptor kinase type 4 (GRK4: R65L, A142V, A486V). The GRK4 locus is linked to and GRK4 gene variants are associated with human essential hypertension, especially in salt-sensitive hypertensive subjects. Indeed, the presence of three or more GRK4 variants impairs the natriuretic response to dopaminergic stimulation in humans. In genetically hypertensive rats, renal inhibition of GRK4 expression ameliorates the hypertension. In mice, overexpression of GRK4 variants causes hypertension either with or without salt sensitivity according to the variant. GRK4 gene variants, by preventing the natriuretic function of the dopaminergic system and by allowing the antinatriuretic factors (e.g., angiotensin II type 1 receptor) to predominate, may be responsible for salt sensitivity. Subclasses of hypertension may occur because of additional perturbations caused by variants of other genes, the quantitative interaction of which may vary depending upon the genetic background.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Zheng Y, Yamada H, Sakamoto K, Horita S, Kunimi M, Endo Y, Li Y, Tobe K, Terauchi Y, Kadowaki T, Seki G, Fujita T. Roles of insulin receptor substrates in insulin-induced stimulation of renal proximal bicarbonate absorption. J Am Soc Nephrol 2005; 16:2288-95. [PMID: 15975995 DOI: 10.1681/asn.2005020193] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Insulin resistance is frequently associated with hypertension, but the mechanism underlying this association remains speculative. Although insulin is known to modify renal tubular functions, little is known about roles of insulin receptor substrates (IRS) in the renal insulin actions. For clarifying these issues, the effects of insulin on the rate of bicarbonate absorption (JHCO3-) were compared in isolated renal proximal tubules from wild-type, IRS1-deficient (IRS1-/-), and IRS2-deficient (IRS2-/-) mice. In wild-type mice, physiologic concentrations of insulin significantly increased JHCO3-. This stimulation was completely inhibited by wortmannin and LY-294002, indicating that the phosphatidylinositol 3-kinase pathway mediates the insulin action. The stimulatory effect of insulin on JHCO3- was completely preserved in IRS1-/- mice but was significantly attenuated in IRS2-/- mice. Similarly, insulin-induced Akt phosphorylation was preserved in IRS1-/- mice but was markedly attenuated in IRS2-/- mice. Furthermore, insulin-induced tyrosine phosphorylation of IRS2 was more prominent than that of IRS1. These results indicate that IRS2 plays a major role in the stimulation of renal proximal absorption by insulin. Because defects at the level of IRS1 may underlie at least some forms of insulin resistance, sodium retention, facilitated by hyperinsulinemia through the IRS1-independent pathway, could be an important factor in pathogenesis of hypertension in insulin resistance.
Collapse
Affiliation(s)
- Yanan Zheng
- Department of Internal Medicine, Faculty of Medicine, Tokyo University, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Horita S, Yamada H, Inatomi J, Moriyama N, Sekine T, Igarashi T, Endo Y, Dasouki M, Ekim M, Al-Gazali L, Shimadzu M, Seki G, Fujita T. Functional analysis of NBC1 mutants associated with proximal renal tubular acidosis and ocular abnormalities. J Am Soc Nephrol 2005; 16:2270-8. [PMID: 15930088 DOI: 10.1681/asn.2004080667] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mutations in the Na+-HCO3- co-transporter (NBC1) cause permanent proximal renal tubular acidosis (pRTA) with ocular abnormalities. However, little has been known about the relationship between the degree of NBC1 inactivation and the severity of pRTA. This study identified three new homozygous mutations (T485S, A799V, and R881C) in the common coding regions of NBC1. Functional analysis of these new as well as the known mutants (R298S and R510H) in Xenopus oocytes revealed a considerable variation in their electrogenic activities. Whereas the activities of R298S, A799V, and R881C were 15 to 40% of the wild-type (WT) activity, T485S and R510H, as a result of poor surface expression, showed almost no activities. However, T485S, like R510H, had the transport activity corresponding to approximately 50% of the WT activity in ECV304 cells, indicating that surface expression of T485S and R510H varies between the different in vitro cell systems. Electrophysiologic analysis showed that WT, R298S, and R881C all function with 2HCO3- to 1Na+ stoichiometry and have similar extracellular Na+ affinity, indicating that reduction in Na+ affinity cannot explain the inactivation of R298S and R881C. These results, together with the presence of nonfunctional mutants (Q29X and DeltaA) in other patients, suggest that at least approximately 50% reduction of NBC1 activity would be required to cause severe pRTA.
Collapse
MESH Headings
- Acidosis, Renal Tubular/genetics
- Acidosis, Renal Tubular/pathology
- Adolescent
- Animals
- Blotting, Western
- Cell Line
- Cell Membrane/metabolism
- Child, Preschool
- DNA, Complementary/metabolism
- Electrophysiology
- Eye Abnormalities/genetics
- Eye Abnormalities/pathology
- Female
- Gene Expression Regulation
- Genetic Techniques
- Homozygote
- Humans
- Hydrogen-Ion Concentration
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Male
- Membrane Potentials
- Microscopy, Fluorescence
- Models, Statistical
- Mutagenesis
- Mutation
- Mutation, Missense
- Oocytes/cytology
- Oocytes/metabolism
- Sodium/metabolism
- Sodium-Bicarbonate Symporters/genetics
- Xenopus laevis
Collapse
Affiliation(s)
- Shoko Horita
- Department of Internal Medicine, Faculty of Medicine, Tokyo University, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yang Z, Sibley DR, Jose PA. D5 dopamine receptor knockout mice and hypertension. J Recept Signal Transduct Res 2005; 24:149-64. [PMID: 15521360 DOI: 10.1081/rrs-200029971] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abnormalities in dopamine production and receptor function have been described in human essential hypertension and rodent models of genetic hypertension. All of the five dopamine receptor genes (D1, D2, D3, D4, and D5) expressed in mammals and some of their regulators are in loci linked to hypertension in humans and in rodents. Under normal conditions, D1-like receptors (D1 and D5) inhibit sodium transport in the kidney and the intestine. However, in the Dahl salt-sensitive and spontaneously hypertensive rats, and humans with essential hypertension, the D1-like receptor-mediated inhibition of sodium transport is impaired because of an uncoupling of the D1-like receptor from its G protein/effector complex. The uncoupling is genetic, and receptor-, organ-, and nephron segment-specific. In human essential hypertension, the uncoupling of the D1 receptor from its G protein/effector complex is caused by an agonist-independent serine phosphorylation/desensitization by constitutively active variants of the G protein-coupled receptor kinase type 4. The D5 receptor is also important in blood pressure regulation. Disruption of the D5 or the D1 receptor gene in mice increases blood pressure. However, unlike the D1 receptor, the hypertension in D5 receptor null mice is caused by increased activity of the sympathetic nervous system, apparently due to activation of oxytocin, V1 vasopressin, and non-N-methyl D-aspartate receptors in the central nervous system. The cause of the activation of these receptors remains to be determined.
Collapse
Affiliation(s)
- Zhiwei Yang
- Georgetown University Medical Center, Washington, District of Columbia, USA.
| | | | | |
Collapse
|
44
|
Kobayashi K, Monkawa T, Hayashi M, Saruta T. Expression of the Na+/H+ exchanger regulatory protein family in genetically hypertensive rats. J Hypertens 2005; 22:1723-30. [PMID: 15311100 DOI: 10.1097/00004872-200409000-00016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine a possible involvement of a regulatory protein of Na+/H+ exchanger (NHE) in the increased renal NHE activity in spontaneously hypertensive rats (SHR), we investigated mRNA expression of inhibitory members of the NHE regulatory protein family, NHERF1 and NHERF2, in the kidney. DESIGN Prehypertensive 4-week-old and hypertensive 11-week-old SHR and age-matched Wistar-Kyoto (WKY) rats were used to determine the changes in NHE activity and NHERF family expression in the kidney. Dahl salt sensitive (DS) and resistant rats were also used to examine whether these changes are specific for SHR. METHODS mRNA expression in the kidney was quantified by RNase protection assay. The NHE activity in primary cultured proximal tubular cells was measured as Na-dependent pHi recovery rate by the NH4Cl prepulse technique with 2'7'-bis-(2-carboxyethyl)-5.6-carboxyfluorescein (BCECF). RESULTS NHERF1 mRNA expression was significantly decreased in both prehypertensive and hypertensive SHR in comparison with age-matched WKY rats, whereas NHERF2 mRNA expression was significantly increased in SHR only in the hypertensive period. Antihypertensive treatment did not abolish these changes seen in control SHR. On the other hand, hypertensive DS rats fed a high-salt diet showed significant decreases in NHE activity and NHE3 mRNA expression compared with normotensive DS rats fed a low-salt diet, without significant changes in NHERF1 and NHERF2 mRNA expression. CONCLUSION These results suggest that decreased expression of NHERF1 may be related to the enhanced NHE activity in SHR and that these changes are likely to be genetically determined, whereas the increased NHERF2 expression may be induced as a compensatory mechanism.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | |
Collapse
|
45
|
Luippold G, Piesch C, Osswald H, Mühlbauer B. Dopamine D3 receptor mRNA and renal response to D3 receptor activation in spontaneously hypertensive rats. Hypertens Res 2004; 26:855-61. [PMID: 14621190 DOI: 10.1291/hypres.26.855] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Defective dopamine receptors may be involved in the development of hypertension. Recently, it has been shown that gene expression and function of the renal dopamine D3 receptor is impaired in salt-sensitive Dahl rats, a model of salt-dependent hypertension. Here, the functional response to D3 receptor activation was investigated in spontaneously hypertensive rats (SHR) and their normotensive Wistar-Kyoto rats (WKY). In addition, expression of the D3 receptor gene was studied in both rat strains. In clearance experiments, Ringer solution was infused at baseline in thiopental-anesthetized SHR and WKY (each n = 8), followed by an infusion of R(+)-7-hydroxy-dipropylaminotetralin (DPAT), a specific D3 receptor agonist. DPAT was infused in two consecutive doses of 0.01 and 0.1 microg/min per kg body weight. During the entire experiment mean arterial blood pressure was significantly higher (1.5-fold) in adult SHR when compared to age-matched WKY. In both groups DPAT infusion induced a similar dose-dependent increase in urinary flow rate and sodium excretion by a maximum of 2.3-fold and 3.5-fold, respectively. DPAT also increased the glomerular filtration rate in both SHR and WKY. Reverse transcription-polymerase chain reaction studies of whole kidney samples showed no significant differences between young prehypertensive and adult hypertensive SHR when compared to age-matched normotensive WKY. In summary, pharmacological dopamine D3 receptor activation induces a uniform renal response in SHR and WKY. Together with the similar D3 receptor gene expression in both rat strains, which is independent of age or blood pressure levels, the results do not support the notion that the dopamine D3 receptor system is involved in the pathogenesis of hypertension in the SHR model.
Collapse
Affiliation(s)
- Gerd Luippold
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Tübingen, Tübingen, Germany.
| | | | | | | |
Collapse
|
46
|
Ungar A, Fumagalli S, Marini M, Di Serio C, Tarantini F, Boncinelli L, Baldereschi G, Valoti P, La Cava G, Olianti C, Masotti G, Marchionni N. Renal, but not systemic, hemodynamic effects of dopamine are influenced by the severity of congestive heart failure. Crit Care Med 2004; 32:1125-9. [PMID: 15190961 DOI: 10.1097/01.ccm.0000124871.58281.d1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To determine whether the short-term systemic and renal hemodynamic response to dopamine is influenced by clinical severity of congestive heart failure. DESIGN Effects of increasing doses of dopamine were assessed in patients consecutively admitted for acutely decompensated congestive heart failure. SETTING Intensive care unit. PATIENTS We enrolled 16 congestive heart failure patients stratified by clinical severity (New York Heart Association [NYHA] class III, n = 8; NYHA class IV, n = 8) and two additional NYHA class III patients as controls. INTERVENTIONS Measurements were carried out throughout five 20-min experimental periods: baseline, dopamine infusion at 2, 4, and 6 microg x kg(-1) x min(-1), and recovery. Controls received a similar amount of saline. MEASUREMENTS AND MAIN RESULTS Systemic and renal hemodynamics were determined respectively by right cardiac catheterization and radioisotopes (iodine 131-labeled hippuran and iodine 125-labeled iothalamate clearance). The peak increase in heart rate and cardiac index occurred at a dopamine dose of 4-6 microg x kg(-1) x min(-1). The dose-response relation was similar in NYHA classes III and IV. Improvement in effective renal plasma flow and glomerular filtration rate, peaking at 4 microg x kg(-1) x min(-1), was more rapid and marked in NYHA class III than class IV patients, in whom the renal fraction of cardiac output failed to increase. The systemic and renal effects of dopamine were independent of age. No change occurred in controls. CONCLUSIONS The dose of dopamine producing an optimal improvement of systemic and renal hemodynamics in congestive heart failure is higher than usually reported. A greater clinical severity of congestive heart failure impairs the renal effects of dopamine, probably through a selective loss in renal vasodilating capacity.
Collapse
Affiliation(s)
- Andrea Ungar
- Department of Critical Care Medicine and Surgery, Unit of Gerontology and Geriatric Medicine, University of Florence and Azienda Ospedaliera Careggi, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The evolution of the vertebrate kidney records three occasions, each separated by about 50 million years, when fish have abandoned glomeruli to produce urine by tubular mechanisms. The recurring dismissal of glomeruli suggests a mechanism of aglomerular urine formation intrinsic to renal tubules. Indeed, the transepithelial secretion of organic solutes and of inorganic solutes such as sulfate, phosphate, and magnesium can all drive secretory water flow in renal proximal tubules of fish. However, the secretion of NaCl via secondary active transport of Cl is the primary mover of secretory water flow in, surprisingly, proximal tubules of both glomerular and aglomerular fish. In filtering kidneys, the tubular secretion of solute and water is overshadowed by reabsorptive transport activities, but secretion progressively comes to light as glomerular filtration decreases. Thus the difference between glomerular and aglomerular urine formation is more a difference of degree than of kind. At low rates of glomerular filtration in seawater fish, NaCl-coupled water secretion serves to increase the renal excretory capacity by increasing the luminal volume into which waste, excess, and toxic solutes can be secreted. The reabsorption of NaCl and water in the distal nephron and urinary bladder concentrates unwanted solutes for excretion while minimizing renal water loss. In aglomerular fish, NaCl-coupled water secretion across proximal tubules replaces glomerular filtration to increase renal excretory capacity. A review of the literature suggests that tubular secretion of NaCl and water is an early function of the vertebrate proximal tubule that has been retained throughout evolution. Active transepithelial Cl secretion takes place in gall bladders studied as models of the mammalian proximal tubule and in proximal tubules of amphibians and apparently also of mammals. The tubular secretion of Cl is also observed in mammalian distal tubules. The evidence consistent with and for Cl secretion in, respectively, proximal and distal tubules of the mammalian kidney calls for a reexamination of basic assumptions in renal physiology that may lead to new opportunities for managing some forms of renal disease.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Biomedical Sciences, VRT 8004, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
48
|
Pedrosa R, Jose PA, Soares-da-Silva P. Defective D1-like receptor-mediated inhibition of the Cl-/HCO3- exchanger in immortalized SHR proximal tubular epithelial cells. Am J Physiol Renal Physiol 2004; 286:F1120-6. [PMID: 14970001 DOI: 10.1152/ajprenal.00433.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sensitivity of the Cl(-)/HCO(3)(-) exchanger to dopamine D(1)- and D(2)-like receptor stimulation in immortalized renal proximal tubular epithelial cells from the spontaneous hypertensive rat (SHR) and Wistar-Kyoto rat (WKY) was examined. The activity of the Cl(-)/HCO(3)(-) exchanger (in pH U/s) in SHR cells (0.00191) was greater than in WKY cells (0.00126). The activity of Cl(-)/HCO(3)(-) exchanger was exclusively observed at the apical cell side and probably occurs through the SLC26A6 anion transporter that is expressed in both WKY and SHR cells. Stimulation of D(1)-like receptors with SKF-38393 markedly attenuated the HCO(3)(-)-dependent intracellular pH recovery in WKY cells but not in SHR cells. Stimulation of D(2)-like receptors with quinerolane did not alter Cl(-)/HCO(3)(-) exchanger activity in both WKY and SHR cells. The selective D(1)-like receptor antagonist SKF-83566 prevented the effect of SKF-38393. Both WKY and SHR cells responded to dibutyryl-cAMP (DBcAMP) with inhibition of the Cl(-)/HCO(3)(-) exchanger, and downregulation of PKA (overnight exposure to DBcAMP) abolished the inhibitory effect of both DBcAMP and SKF-38393 in WKY cells. Both SHR and WKY cells responded to forskolin with increases in the formation of cAMP. However, only WKY responded to SKF-38393 with increases in the formation of cAMP that was prevented by SKF-83566. It is concluded that WKY cells respond to D(1)-like dopamine receptor stimulation with inhibition of the apical Cl(-)/HCO(3)(-) (SLC26A6) exchanger and SHR cells have a defective D(1)-like dopamine response.
Collapse
Affiliation(s)
- Rui Pedrosa
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
49
|
Loiselle FB, Morgan PE, Alvarez BV, Casey JR. Regulation of the human NBC3 Na+/HCO3- cotransporter by carbonic anhydrase II and PKA. Am J Physiol Cell Physiol 2004; 286:C1423-33. [PMID: 14736710 DOI: 10.1152/ajpcell.00382.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human NBC3 is an electroneutral Na(+)/HCO(3)(-) cotransporter expressed in heart, skeletal muscle, and kidney in which it plays an important role in HCO(3)(-) metabolism. Cytosolic enzyme carbonic anhydrase II (CAII) catalyzes the reaction CO(2) + H(2)O left arrow over right arrow HCO(3)(-) + H(+) in many tissues. We investigated whether NBC3, like some Cl(-)/HCO(3)(-) exchange proteins, could bind CAII and whether PKA could regulate NBC3 activity through modulation of CAII binding. CAII bound the COOH-terminal domain of NBC3 (NBC3Ct) with K(d) = 101 nM; the interaction was stronger at acid pH. Cotransfection of HEK-293 cells with NBC3 and CAII recruited CAII to the plasma membrane. Mutagenesis of consensus CAII binding sites revealed that the D1135-D1136 region of NBC3 is essential for CAII/NBC3 interaction and for optimal function, because the NBC3 D1135N/D1136N retained only 29 +/- 22% of wild-type activity. Coexpression of the functionally dominant-negative CAII mutant V143Y with NBC3 or addition of 100 microM 8-bromoadenosine to NBC3 transfected cells reduced intracellular pH (pH(i)) recovery rate by 31 +/- 3, or 38 +/- 7%, respectively, relative to untreated NBC3 transfected cells. The effects were additive, together decreasing the pH(i) recovery rate by 69 +/- 12%, suggesting that PKA reduces transport activity by a mechanism independently of CAII. Measurements of PKA-dependent phosphorylation by mass spectroscopy and labeling with [gamma-(32)P]ATP showed that NBC3Ct was not a PKA substrate. These results demonstrate that NBC3 and CAII interact to maximize the HCO(3)(-) transport rate. Although PKA decreased NBC3 transport activity, it did so independently of the NBC3/CAII interaction and did not involve phosphorylation of NBC3Ct.
Collapse
Affiliation(s)
- Frederick B Loiselle
- Canadian Institute of Health Research Membrane Protein Research Group, Department of Physiology, University of Alberta, Edmonton, Canada T6G 2H7
| | | | | | | |
Collapse
|
50
|
Zeng C, Luo Y, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA. Perturbation of D1 dopamine and AT1 receptor interaction in spontaneously hypertensive rats. Hypertension 2003; 42:787-92. [PMID: 12900438 DOI: 10.1161/01.hyp.0000085334.34963.4e] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Because this interaction may be perturbed in genetic hypertension, we studied D1 dopamine and AT1 angiotensin receptors in immortalized renal proximal tubule (RPT) and A10 aortic vascular smooth muscle cells. In normotensive Wistar-Kyoto (WKY) rats, the D1-like agonist fenoldopam increased D1 receptors but decreased AT1 receptors. These effects were blocked by the D1-like antagonist SCH 23390 (10(-7) mol/L per 24 hours). In spontaneously hypertensive rat (SHR) RPT cells, fenoldopam also decreased AT1 receptors but no longer stimulated D1 receptor expression. Basal levels of AT1/D1 receptor coimmunoprecipitation were greater in WKY RPT cells (29+/-2 density units, DU) than in SHR RPT cells (21+/-2 DU, n=7 per group, P<0.05). The coimmunoprecipitation of D1 and AT1 receptors was increased by fenoldopam (10(-7) mol/L per 24 hours) in WKY RPT cells but decreased in SHR RPT cells. The effects of fenoldopam in RPT cells from WKY rats were similar in aortic vascular smooth muscle cells from normotensive BD IX rats, that is, fenoldopam decreased AT1 receptors and increased D1 receptors. Our studies show differential regulation of the expression of D1 and AT1 receptors in RPT cells from WKY and SHR. This regulation and D1/AT1 receptor interaction are different in RPT cells of WKY and SHR. An altered interaction of D1 and AT1 receptors may play a role in the impaired sodium excretion and enhanced vasoconstriction in hypertension.
Collapse
MESH Headings
- Animals
- Cell Line
- Cells, Cultured
- Dopamine Agonists/pharmacology
- Fenoldopam/pharmacology
- Hypertension/metabolism
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Precipitin Tests
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1
- Receptors, Angiotensin/metabolism
- Receptors, Dopamine D1/metabolism
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Pediatrics, Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA.
| | | | | | | | | | | | | |
Collapse
|