1
|
Veerasubramanian PK, Wynn TA, Quan J, Karlsson FJ. Targeting TNF/TNFR superfamilies in immune-mediated inflammatory diseases. J Exp Med 2024; 221:e20240806. [PMID: 39297883 PMCID: PMC11413425 DOI: 10.1084/jem.20240806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulated signaling from TNF and TNFR proteins is implicated in several immune-mediated inflammatory diseases (IMIDs). This review centers around seven IMIDs (rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease, ulcerative colitis, psoriasis, atopic dermatitis, and asthma) with substantial unmet medical needs and sheds light on the signaling mechanisms, disease relevance, and evolving drug development activities for five TNF/TNFR signaling axes that garner substantial drug development interest in these focus conditions. The review also explores the current landscape of therapeutics, emphasizing the limitations of the approved biologics, and the opportunities presented by small-molecule inhibitors and combination antagonists of TNF/TNFR signaling.
Collapse
Affiliation(s)
| | - Thomas A. Wynn
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | - Jie Quan
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | | |
Collapse
|
2
|
Arnett A, Moo KG, Flynn KJ, Sundberg TB, Johannessen L, Shamji AF, Gray NS, Decker T, Zheng Y, Gersuk VH, Rahman ZS, Levy DE, Marié IJ, Linsley PS, Xavier RJ, Khor B. The Cyclin-Dependent Kinase 8 (CDK8) Inhibitor DCA Promotes a Tolerogenic Chemical Immunophenotype in CD4 + T Cells via a Novel CDK8-GATA3-FOXP3 Pathway. Mol Cell Biol 2021; 41:e0008521. [PMID: 34124936 PMCID: PMC8384069 DOI: 10.1128/mcb.00085-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/07/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Immune health requires innate and adaptive immune cells to engage precisely balanced pro- and anti-inflammatory forces. We employ the concept of chemical immunophenotypes to classify small molecules functionally or mechanistically according to their patterns of effects on primary innate and adaptive immune cells. The high-specificity, low-toxicity cyclin-dependent kinase 8 (CDK8) inhibitor 16-didehydro-cortistatin A (DCA) exerts a distinct tolerogenic profile in both innate and adaptive immune cells. DCA promotes regulatory T cells (Treg) and Th2 differentiation while inhibiting Th1 and Th17 differentiation in both murine and human cells. This unique chemical immunophenotype led to mechanistic studies showing that DCA promotes Treg differentiation in part by regulating a previously undescribed CDK8-GATA3-FOXP3 pathway that regulates early pathways of Foxp3 expression. These results highlight previously unappreciated links between Treg and Th2 differentiation and extend our understanding of the transcription factors that regulate Treg differentiation and their temporal sequencing. These findings have significant implications for future mechanistic and translational studies of CDK8 and CDK8 inhibitors.
Collapse
Affiliation(s)
- Azlann Arnett
- Benaroya Research Institute, Seattle, Washington, USA
| | - Keagan G. Moo
- Benaroya Research Institute, Seattle, Washington, USA
| | | | - Thomas B. Sundberg
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts, USA
| | - Liv Johannessen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alykhan F. Shamji
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts, USA
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Decker
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Ye Zheng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California, USA
| | | | - Ziaur S. Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - David E. Levy
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Isabelle J. Marié
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | | | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Bernard Khor
- Benaroya Research Institute, Seattle, Washington, USA
| |
Collapse
|
3
|
Lagrange J, Lacolley P, Wahl D, Peyrin-Biroulet L, Regnault V. Shedding Light on Hemostasis in Patients With Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol 2021; 19:1088-1097.e6. [PMID: 31972287 DOI: 10.1016/j.cgh.2019.12.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/19/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
Patients with inflammatory bowel diseases (IBD) have an increased risk of thrombosis, possibly due to changes in blood cells and molecules involved in hemostasis. They have increased platelet counts and reactivity as well as increased platelet-derived large extracellular vesicles. Coagulation is continuously activated in patients with IBD, based on measured markers of thrombin generation, and the anticoagulant functions of endothelial cells are damaged. Furthermore, fibrinogen is increased and fibrin clots are denser. However, pathogenesis of thrombosis in patients with IBD appears to differ from that of patients without IBD. Patients with IBD also take drugs that might contribute to risk of thrombosis, complicating the picture. We review the features of homeostasis that are altered in patients with IBD and possible mechanisms of this relationship.
Collapse
Affiliation(s)
- Jeremy Lagrange
- INSERM U1116, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| | - Patrick Lacolley
- INSERM U1116, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; Centre Hospitalier Régionale Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | - Denis Wahl
- INSERM U1116, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; Division of Vascular Medicine, Centre Hospitalier Régionale Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | - Laurent Peyrin-Biroulet
- Université de Lorraine, Nancy, France; INSERM U1256, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; Department of Gastroenterology, Centre Hospitalier Régionale Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | - Véronique Regnault
- INSERM U1116, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; Centre Hospitalier Régionale Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| |
Collapse
|
4
|
Tang T, Cheng X, Truong B, Sun L, Yang X, Wang H. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol Ther 2020; 219:107709. [PMID: 33091428 DOI: 10.1016/j.pharmthera.2020.107709] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
The CD40 receptor and its ligand CD40L is one of the most critical molecular pairs of the stimulatory immune checkpoints. Both CD40 and CD40L have a membrane form and a soluble form generated by proteolytic cleavage or alternative splicing. CD40 and CD40L are widely expressed in various types of cells, among which B cells and myeloid cells constitutively express high levels of CD40, and T cells and platelets express high levels of CD40L upon activation. CD40L self-assembles into functional trimers which induce CD40 trimerization and downstream signaling. The canonical CD40/CD40L signaling is mediated by recruitment of TRAFs and NF-κB activation, which is supplemented by signal pathways such as PI3K/AKT, MAPKs and JAK3/STATs. CD40/CD40L immune checkpoint leads to activation of both innate and adaptive immune cells via two-way signaling. CD40/CD40L interaction also participates in regulating thrombosis, tissue inflammation, hematopoiesis and tumor cell fate. Because of its essential role in immune activation, CD40/CD40L interaction has been regarded as an attractive immunotherapy target. In recent years, significant advance has been made in CD40/CD40L-targeted therapy. Various types of agents, including agonistic/antagonistic monoclonal antibodies, cellular vaccines, adenoviral vectors and protein antagonist, have been developed and evaluated in early-stage clinical trials for treating malignancies, autoimmune diseases and allograft rejection. In general, these agents have demonstrated favorable safety and some of them show promising clinical efficacy. The mechanisms of benefits include immune cell activation and tumor cell lysis/apoptosis in malignancies, or immune cell inactivation in autoimmune diseases and allograft rejection. This review provides a comprehensive overview of the structure, processing, cellular expression pattern, signaling and effector function of CD40/CD40L checkpoint molecules. In addition, we summarize the progress, targeted diseases and outcomes of current ongoing and completed clinical trials of CD40/CD40L-targeted therapy.
Collapse
Affiliation(s)
- TingTing Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Billy Truong
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - LiZhe Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Cardiovascular Medicine, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - XiaoFeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.
| |
Collapse
|
5
|
Becker W, Alrafas HR, Wilson K, Miranda K, Culpepper C, Chatzistamou I, Cai G, Nagarkatti M, Nagarkatti PS. Activation of Cannabinoid Receptor 2 Prevents Colitis-Associated Colon Cancer through Myeloid Cell De-activation Upstream of IL-22 Production. iScience 2020; 23:101504. [PMID: 32942172 PMCID: PMC7501437 DOI: 10.1016/j.isci.2020.101504] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intestinal disequilibrium leads to inflammatory bowel disease (IBD), and chronic inflammation predisposes to oncogenesis. Antigen-presenting dendritic cells (DCs) and macrophages can tip the equilibrium toward tolerance or pathology. Here we show that delta-9-tetrahydrocannabinol (THC) attenuates colitis-associated colon cancer and colitis induced by anti-CD40. Working through cannabinoid receptor 2 (CB2), THC increases CD103 expression on DCs and macrophages and upregulates TGF-β1 to increase T regulatory cells (Tregs). THC-induced Tregs are necessary to remedy systemic IFNγ and TNFα caused by anti-CD40, but CB2-mediated suppression of APCs by THC quenches pathogenic release of IL-22 and IL-17A in the colon. By examining tissues from multiple sites, we confirmed that THC affects DCs, especially in mucosal barrier sites in the colon and lungs, to reduce DC CD86. Using models of colitis and systemic inflammation we show that THC, through CB2, is a potent suppressor of aberrant immune responses by provoking coordination between APCs and Tregs.
Collapse
Affiliation(s)
- William Becker
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Haider Rasheed Alrafas
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Kiesha Wilson
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Courtney Culpepper
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|
6
|
Nicholson SM, Casey KA, Gunsior M, Drabic S, Iverson W, Cook H, Scott S, O'Day T, Karanth S, Dixit R, Ryan PC. The enhanced immunopharmacology of VIB4920, a novel Tn3 fusion protein and CD40L antagonist, and assessment of its safety profile in cynomolgus monkeys. Br J Pharmacol 2020; 177:1061-1076. [PMID: 31648370 DOI: 10.1111/bph.14897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Inhibition of the T- and B-cell interaction through the CD40/CD40 ligand (L) axis is a favourable approach for inflammatory disease treatment. Clinical studies of anti-CD40L molecules in autoimmune diseases have met challenges because of thromboembolic events and adverse haemostasis. VIB4920 (formerly MEDI4920) is a novel CD40L antagonist and Tn3 fusion protein designed to prevent adverse haemostasis and immunopharmacology. We evaluated the pharmacokinetics, activity and toxicity of VIB4920 in monkeys. EXPERIMENTAL APPROACH Cynomolgus monkeys received i.v. or s.c. 5-300 mg·kg-1 VIB4920 or vehicle, once weekly for 1 month (Studies 1 and 2) or 28 weeks (Study 3). VIB4920 exposure and bioavailability were determined using pharmacokinetic analyses, and immune cell population changes via flow cytometry. Pharmacological activity was evaluated by measuring the animals' capacity to elicit an immune response to keyhole limpet haemocyanin (KLH) and tetanus toxoid (TT). KEY RESULTS VIB4920 demonstrated linear pharmacokinetics at multiple doses. Lymphocyte, monocyte, cytotoxic T-cell and NK cell counts were not significantly different between treatment groups. B-cell counts reduced dose-dependently and the T-cell dependent antibody response to KLH was suppressed by VIB4920 dose-dependently. The recall response to TT was similar across treatment groups. No thromboembolic events or symptoms of immune system dysfunctionality were observed. CONCLUSIONS AND IMPLICATIONS VIB4920 demonstrated an acceptable safety profile in monkeys. VIB4920 showed favourable pharmacokinetics, dose-dependent inhibition of a neoantigen-specific immune response and no adverse effects on immune function following long-term use. Our data support the use of VIB4920 in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Halie Cook
- MedImmune/AstraZeneca, Gaithersburg, MD, USA
| | | | - Terry O'Day
- MedImmune/AstraZeneca, Gaithersburg, MD, USA
| | | | | | | |
Collapse
|
7
|
Brasseit J, Althaus-Steiner E, Faderl M, Dickgreber N, Saurer L, Genitsch V, Dolowschiak T, Li H, Finke D, Hardt WD, McCoy KD, Macpherson AJ, Corazza N, Noti M, Mueller C. CD4 T cells are required for both development and maintenance of disease in a new mouse model of reversible colitis. Mucosal Immunol 2016; 9:689-701. [PMID: 26376366 DOI: 10.1038/mi.2015.93] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 08/06/2015] [Indexed: 02/04/2023]
Abstract
Current therapies to treat inflammatory bowel diseases have limited efficacy, significant side effects, and often wane over time. Little is known about the cellular and molecular mechanisms operative in the process of mucosal healing from colitis. To study such events, we developed a new model of reversible colitis in which adoptive transfer of CD4(+)CD45RB(hi) T cells into Helicobacter typhlonius-colonized lymphopenic mice resulted in a rapid onset of colonic inflammation that was reversible through depletion of colitogenic T cells. Remission was associated with an improved clinical and histopathological score, reduced immune cell infiltration to the intestinal mucosa, altered intestinal gene expression profiles, regeneration of the colonic mucus layer, and the restoration of epithelial barrier integrity. Notably, colitogenic T cells were not only critical for induction of colitis but also for maintenance of disease. Depletion of colitogenic T cells resulted in a rapid drop in tumor necrosis factor α (TNFα) levels associated with reduced infiltration of inflammatory immune cells to sites of inflammation. Although neutralization of TNFα prevented the onset of colitis, anti-TNFα treatment of mice with established disease failed to resolve colonic inflammation. Collectively, this new model of reversible colitis provides an important research tool to study the dynamics of mucosal healing in chronic intestinal remitting-relapsing disorders.
Collapse
Affiliation(s)
- J Brasseit
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - E Althaus-Steiner
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - M Faderl
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - N Dickgreber
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - L Saurer
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - V Genitsch
- Division of Clinical Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - T Dolowschiak
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - H Li
- Maurice E. Müller Laboratories, University Clinic for Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - D Finke
- Division of Developmental Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - W-D Hardt
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - K D McCoy
- Maurice E. Müller Laboratories, University Clinic for Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - A J Macpherson
- Maurice E. Müller Laboratories, University Clinic for Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - N Corazza
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - M Noti
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - C Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Bang B, Lichtenberger LM. Methods of Inducing Inflammatory Bowel Disease in Mice. ACTA ACUST UNITED AC 2016; 72:5.58.1-5.58.42. [PMID: 26995548 DOI: 10.1002/0471141755.ph0558s72] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Animal models of experimentally induced inflammatory bowel disease (IBD) are useful for understanding more about the mechanistic basis of the disease, identifying new targets for therapeutic intervention, and testing novel therapeutics. This unit provides detailed protocols for five widely used mouse models of experimentally induced intestinal inflammation: chemical induction of colitis by dextran sodium sulfate (DSS), hapten-induced colitis via 2,4,6-trinitrobenzene sulfonic acid (TNBS), Helicobacter-induced colitis in mdr1a(-/-) mice, the CD4(+) CD45RB(hi) SCID transfer colitis model, and the IL-10(-/-) colitis model. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Byoungwook Bang
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea.,Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas
| | - Lenard M Lichtenberger
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
9
|
Khor B, Gagnon JD, Goel G, Roche MI, Conway KL, Tran K, Aldrich LN, Sundberg TB, Paterson AM, Mordecai S, Dombkowski D, Schirmer M, Tan PH, Bhan AK, Roychoudhuri R, Restifo NP, O'Shea JJ, Medoff BD, Shamji AF, Schreiber SL, Sharpe AH, Shaw SY, Xavier RJ. The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells. eLife 2015; 4:e05920. [PMID: 25998054 PMCID: PMC4441007 DOI: 10.7554/elife.05920] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/27/2015] [Indexed: 12/12/2022] Open
Abstract
The balance between Th17 and T regulatory (Treg) cells critically modulates immune homeostasis, with an inadequate Treg response contributing to inflammatory disease. Using an unbiased chemical biology approach, we identified a novel role for the dual specificity tyrosine-phosphorylation-regulated kinase DYRK1A in regulating this balance. Inhibition of DYRK1A enhances Treg differentiation and impairs Th17 differentiation without affecting known pathways of Treg/Th17 differentiation. Thus, DYRK1A represents a novel mechanistic node at the branch point between commitment to either Treg or Th17 lineages. Importantly, both Treg cells generated using the DYRK1A inhibitor harmine and direct administration of harmine itself potently attenuate inflammation in multiple experimental models of systemic autoimmunity and mucosal inflammation. Our results identify DYRK1A as a physiologically relevant regulator of Treg cell differentiation and suggest a broader role for other DYRK family members in immune homeostasis. These results are discussed in the context of human diseases associated with dysregulated DYRK activity.
Collapse
Affiliation(s)
- Bernard Khor
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Broad Institute of MIT and Harvard, Cambridge, United States
- Pathology Service, Massachusetts General Hospital, Boston, United States
| | - John D Gagnon
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Gautam Goel
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Marly I Roche
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, United States
| | - Kara L Conway
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Khoa Tran
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Leslie N Aldrich
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | | | - Alison M Paterson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, United States
| | - Scott Mordecai
- Pathology Service, Massachusetts General Hospital, Boston, United States
| | - David Dombkowski
- Pathology Service, Massachusetts General Hospital, Boston, United States
| | | | - Pauline H Tan
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Atul K Bhan
- Pathology Service, Massachusetts General Hospital, Boston, United States
| | - Rahul Roychoudhuri
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Benjamin D Medoff
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, United States
| | | | - Stuart L Schreiber
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, United States
| | - Stanley Y Shaw
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
10
|
Classical Th1 cells obtain colitogenicity by co-existence of RORγt-expressing T cells in experimental colitis. Inflamm Bowel Dis 2014; 20:1820-7. [PMID: 25167215 DOI: 10.1097/mib.0000000000000149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Both Th1 and Th17 cell types are involved in the pathogenesis of chronic intestinal inflammation. We recently demonstrated that retinoid-related orphan receptor gamma t (RORγt)-expressing Th17 cells are progenitor cells for alternative Th1 cells, which have the potential to induce colitis. However, the involvement of classical Th1 (cTh1) cells generated directly from naive T cells without RORγt expression in the pathogenesis of colitis remains poorly understood. METHODS We performed a series of in vivo experiments using a murine chronic colitis model induced by adoptive transfer of splenic CD4CD45RB(high) T cells obtained from wild-type, RORγt(gfp/gfp), or RORγt(gfp/gfp) mice into RAG-2(-/-) mice. RESULTS RAG-2(-/-) mice receiving transfer of in vitro-manipulated RORγt(gfp/gfp) Th1 cells developed colitis. RAG-2(-/-) mice co-transferred with splenic CD4CD45RB(high) T cells obtained from wild-type mice and RORγt(gfp/gfp) mice developed colitis with a significant increase in RORγt cTh1 cell numbers when compared with noncolitic mice transferred with splenic CD4CD45RB(high) T cells obtained from RORγt(gfp/gfp) mice. Furthermore, RAG-2(-/-) mice transferred with in vivo-manipulated RORγt(gfp/gfp) cTh1 cells developed colitis with a significant increase in RORγt(gfp/gfp) cTh1 cell numbers. CONCLUSIONS These findings indicate that both alternative Th1 cells and cTh1 cells have the potential to be colitogenic in an adaptive transfer model. The development of cTh1 cells was dependent on the co-existence of RORγt-expressing T cells, suggesting a critical role for the interactions of these cell types in the development of chronic intestinal inflammation.
Collapse
|
11
|
Handa T, Kanai T, Sato T, Mikami Y, Sujino T, Hayashi A, Mizuno S, Matsumoto A, Hisamatsu T, Hibi T. Dendritic cells administered intrarectally penetrate the intestinal barrier to break intestinal tolerance via Th2-medeiated colitis in mice. Immunol Lett 2013; 150:123-9. [PMID: 23333807 DOI: 10.1016/j.imlet.2013.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
Intestinal lamina propria dendritic cells (LPDCs) in mice are known to extend dendrites between the intestinal epithelia and the luminal side when processing luminal antigens. We conducted intrarectal cell transfer experiments of bone marrow-derived dendritic cells (BMDCs) in mice to assess dendritic cell penetration of the intestine. Intrarectally administered GFP(+) BMDCs localized in the colonic LP within 3h and the spleen within 12h after administration. 72h after administration, recipient C57BL/6 mice showed acute diarrhea, and administration of BMDCs (once weekly for 3 weeks) induced intestinal inflammation with increased numbers of recipient macrophages and CD4(+) T cells exhibiting a Th2-mediated immune response. These results demonstrate that DCs actively communicate across the intestinal barrier, and highlight a potential technique for controlling colonic immune tolerance.
Collapse
Affiliation(s)
- Tango Handa
- Department of Gastroenterology and Hepatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chang SY, Song JH, Guleng B, Cotoner CA, Arihiro S, Zhao Y, Chiang HS, O'Keeffe M, Liao G, Karp CL, Kweon MN, Sharpe AH, Bhan A, Terhorst C, Reinecker HC. Circulatory antigen processing by mucosal dendritic cells controls CD8(+) T cell activation. Immunity 2012; 38:153-65. [PMID: 23246312 DOI: 10.1016/j.immuni.2012.09.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 09/07/2012] [Indexed: 01/08/2023]
Abstract
Circulatory antigens transit through the small intestine via the fenestrated capillaries in the lamina propria prior to entering into the draining lymphatics. But whether or how this process controls mucosal immune responses remains unknown. Here we demonstrate that dendritic cells (DCs) of the lamina propria can sample and process both circulatory and luminal antigens. Surprisingly, antigen cross-presentation by resident CX3CR1(+) DCs induced differentiation of precursor cells into CD8(+) T cells that expressed interleukin-10 (IL-10), IL-13, and IL-9 and could migrate into adjacent compartments. We conclude that lamina propria CX3CR1(+) DCs facilitate the surveillance of circulatory antigens and act as a conduit for the processing of self- and intestinally absorbed antigens, leading to the induction of CD8(+) T cells, that partake in the control of T cell activation during mucosal immune responses.
Collapse
Affiliation(s)
- Sun-Young Chang
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
van Driel B, Liao G, Romero X, O'Keeffe MS, Wang G, Faubion WA, Berger SB, Magelky EM, Manocha M, Azcutia V, Grisham M, Luscinskas FW, Mizoguchi E, de Waal Malefyt R, Reinecker HC, Bhan AK, Wang N, Terhorst C. Signaling lymphocyte activation molecule regulates development of colitis in mice. Gastroenterology 2012; 143:1544-1554.e7. [PMID: 22960654 PMCID: PMC3578298 DOI: 10.1053/j.gastro.2012.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 08/17/2012] [Accepted: 08/19/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Signaling lymphocyte activation molecule (Slamf)1 is a co-stimulatory receptor on T cells and regulates cytokine production by macrophages and dendritic cells. Slamf1 regulates microbicidal mechanisms in macrophages, therefore we investigated whether the receptor affects development of colitis in mice. METHODS We transferred CD45RB(hi) CD4(+) T cells into Rag(-/-) or Slamf1(-/-)Rag(-/-) mice to induce colitis. We also induced colitis by injecting mice with an antibody that activates CD40. We determined the severity of enterocolitis based on disease activity index, histology scores, and levels of cytokine production, and assessed the effects of antibodies against Slamf1 on colitis induction. We quantified migration of monocytes and macrophage to inflamed tissues upon induction of colitis or thioglycollate-induced peritonitis and in response to tumor necrosis factor-α in an air-pouch model of leukocyte migration. RESULTS Colitis was reduced in Slamf1(-/-)Rag(-/-) mice, compared with Rag(-/-) mice, after transfer of CD45RB(hi) CD4(+) T cells or administration of the CD40 agonist. The numbers of monocytes and macrophages were reduced in inflamed tissues of Slamf1(-/-)Rag(-/-) mice, compared with Rag(-/-) mice, after induction of colitis and other inflammatory disorders. An antibody that inhibited Slamf1 reduced the level of enterocolitis in Rag(-/-) mice. CONCLUSIONS Slamf1 contributes to the development of colitis in mice. It appears to indirectly regulate the appearance of monocytes and macrophages in inflamed intestinal tissues. Antibodies that inhibit Slamf1 reduce colitis in mice, so human SLAMF1 might be a therapeutic target for inflammatory bowel disease.
Collapse
Affiliation(s)
- Boaz van Driel
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Piao JH, Yagita H, Okumura K, Nakano H. Aberrant accumulation of interleukin-10-secreting neutrophils in TRAF2-deficient mice. Immunol Cell Biol 2012; 90:881-8. [PMID: 22546736 DOI: 10.1038/icb.2012.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Highly coordinated expression of inflammatory and anti-inflammatory cytokines is crucial for maintaining homeostasis of the gut that is constantly exposed to large amounts of commensal bacteria. We have previously reported that tumor necrosis factor (TNF) receptor-associated factor (Traf)2(-/-) mice spontaneously develop severe colitis and that the development of colitis largely depends on TNFα-dependent apoptosis of colonic epithelial cells. However, the detailed molecular mechanisms underlying the immunological disorders of Traf2(-/-) mice are not fully understood. Here we show that interleukin (IL)-10-secreting neutrophils accumulated in peripheral blood and bone marrow (BM) cells from Traf2(-/-) mice compared with those from wild-type mice. Treatment of Traf2(-/-) mice with neutralizing antibody against TNFα or crossing Traf2(-/-) mice with Tnfr1(-/-) mice reduced the percentages of IL-10-secreting neutrophils, suggesting that the development of IL-10-secreting neutrophils largely depended on TNFα signals. Moreover, stimulation of BM cells from wild-type mice with lipopolysaccharide and Pam3CS(K)4, a ligand for Toll-like receptor 4 and 2, respectively, induced differentiation of BM cells into IL-10-secreting neutrophils. These results suggest that the development of IL-10-secreting neutrophils is not restricted to Traf2(-/-) mice, but could be generalized to wild-type mice under certain conditions such as inflammation. Finally, combined treatment of Traf2(-/-) mice with neutralizing antibodies against TNFα and IL-10, but not each antibody alone, substantially ameliorated colitis and prolonged survival. Together, abrogation of immunosuppressive conditions mediated by IL-10-secreting neutrophils might be an alternative strategy to treat chronic inflammatory diseases at least under certain conditions.
Collapse
Affiliation(s)
- Jiang-Hu Piao
- Department of Immunology, Juntendo University School Graduate School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
15
|
Abstract
Members of the tumour necrosis factor (TNF) superfamily have been implicated in a wide range of biological functions, and their expression by cells of the immune system makes them appealing targets for immunomodulation. One common theme for TNF superfamily members is their coordinated expression at the interface between antigen-specific T cells and antigen-presenting dendritic cells and, by virtue of this expression pattern, TNF superfamily members can shape T cell immune responses. Understanding how to manipulate such functions of the TNF superfamily may allow us to tip the balance between immunity and tolerance in the context of human disease.
Collapse
|
16
|
Maxwell JR, Brown WA, Smith CL, Byrne FR, Viney JL. Methods of inducing inflammatory bowel disease in mice. ACTA ACUST UNITED AC 2012; Chapter 5:Unit5.58. [PMID: 22294404 DOI: 10.1002/0471141755.ph0558s47] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Animal models of experimentally induced inflammatory bowel disease (IBD) are useful for understanding more about the mechanistic basis of disease, identifying new targets for therapeutic intervention, and testing novel therapeutic agents. This unit provides detailed protocols for four of the most commonly used mouse models of experimentally induced intestinal inflammation: chemical induction of colitis by dextran sodium sulfate (DSS), hapten-induced colitis via 2,4,6-trinitrobenzene sulfonic acid (TNBS), Helicobacter-induced colitis in mdr1a(-/-) mice, and the CD4(+) CD45RB(hi) SCID transfer colitis model.
Collapse
|
17
|
Künzli BM, Berberat PO, Dwyer K, Deaglio S, Csizmadia E, Cowan P, d'Apice A, Moore G, Enjyoji K, Friess H, Robson SC. Variable impact of CD39 in experimental murine colitis. Dig Dis Sci 2011; 56:1393-403. [PMID: 20936356 DOI: 10.1007/s10620-010-1425-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 09/09/2010] [Indexed: 02/03/2023]
Abstract
BACKGROUND Dysregulation of immune responses in inflammatory bowel diseases (IBD) results in intestinal inflammation and vascular injury while exacerbating systemic disease. CD39 is an ectonucleotidase, expressed by T regulatory cells and dendritic cells, that hydrolyzes extracellular nucleotides to modify those cellular immune responses implicated in IBD. Genetic polymorphisms of CD39 have been linked to Crohn's disease while gene deletion in mice exacerbates dextran sodium sulphate-induced colitis. AIM The aim of this study was to test how global deletion of CD39 in mice impacts other models of experimental colitis. METHODS Colitis was induced in CD39-null and -wt mice, using trinitrobenzene sulfonic acid (TNBS, 125 mg/kg) administered intrarectally. Oxazolone colitis (1.5% oxazolone in 50% alcohol) was induced in comparable groups. Morphology, clinical and molecular parameters, and FACS analyses of lamina propria mononuclear cells (LPMC) were examined in CD39-null mice. CD39 expression was analyzed in human IBD biopsies. RESULTS Paradoxically, TNBS colitis in CD39-null mice was characterized by improved survival, favorable clinical scores, and decreased MPO activity, when compared to wt mice (P < 0.05). LPMC from TNBS colitis contained significantly increased amounts of T-cells (CD3(+) and CD4(+)) and TNF-α mRNA expression were increased over those in CD39 null mice (P < 0.05). In contrast, oxazolone treated CD39-null and wt mice had comparable outcomes. In both ulcerative colitis and Crohn's disease, CD39 is present at high levels in intestinal tissue biopsies. CONCLUSIONS TNBS colitis was attenuated in CD39-null mice whereas oxazolone-induced colitis was not impacted. Impaired adaptive cellular immune reactivity in the CD39-null environment appears protective in hapten-mediated Th1-type colitis. CD39 is expressed at high levels in clinical IBD tissues.
Collapse
Affiliation(s)
- Beat M Künzli
- Transplant Institute and Gastroenterology Division, Beth Israel Deaconess Medical Centre/Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Piao JH, Hasegawa M, Heissig B, Hattori K, Takeda K, Iwakura Y, Okumura K, Inohara N, Nakano H. Tumor necrosis factor receptor-associated factor (TRAF) 2 controls homeostasis of the colon to prevent spontaneous development of murine inflammatory bowel disease. J Biol Chem 2011; 286:17879-88. [PMID: 21393251 DOI: 10.1074/jbc.m111.221853] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fine-tuning of host cell responses to commensal bacteria plays a crucial role in maintaining homeostasis of the gut. Here, we show that tumor necrosis factor receptor-associated factor (Traf)2(-/-) mice spontaneously developed severe colitis and succumbed within 3 weeks after birth. Histological analysis revealed that apoptosis of colonic epithelial cells was enhanced, and B cells diffusely infiltrated into the submucosal layer of the colon of Traf2(-/-) mice. Expression of proinflammatory cytokines, including Tnfa, Il17a, and Ifng, was up-regulated, whereas expression of antimicrobial peptides was down-regulated in the colon of Traf2(-/-) mice. Moreover, a number of IL-17-producing helper T cells were increased in the colonic lamina propria of Traf2(-/-) mice. These cellular alterations resulted in drastic changes in the colonic microbiota of Traf2(-/-) mice compared with Traf2(+/+) mice. Treatment of Traf2(-/-) mice with antibiotics ameliorated colitis along with down-regulation of proinflammatory cytokines and prolonged survival, suggesting that the altered colonic microbiota might contribute to exacerbation of colitis. Finally, deletion of Tnfr1, but not Il17a, dramatically ameliorated colitis in Traf2(-/-) mice by preventing apoptosis of colonic epithelial cells, down-regulation of proinflammatory cytokines, and restoration of wild-type commensal bacteria. Together, TRAF2 plays a crucial role in controlling homeostasis of the colon.
Collapse
Affiliation(s)
- Jiang-Hu Piao
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Di Sabatino A, Rovedatti L, Vetrano S, Vidali F, Biancheri P, Rescigno M, Danese S, Macdonald TT, Corazza GR. Involvement of CD40-CD40 ligand in uncomplicated and refractory celiac disease. Am J Gastroenterol 2011; 106:519-27. [PMID: 21139574 DOI: 10.1038/ajg.2010.450] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Cognate interaction between CD40 on antigen-presenting cells and CD40 ligand (CD40L) on T cells is a crucial costimulatory signal in T-cell activation. In this study, we investigated CD40-CD40L expression in the duodenum of uncomplicated and refractory celiac disease patients, and explored the ex vivo effects of CD40L blockade on cytokine production and the T-helper cell type 1-specific transcription factor T-bet. METHODS CD40L and colocalization of CD40 with the dendritic cell markers CD11c and CD123 were investigated by confocal microscopy on tissue sections of duodenal biopsy samples obtained from 14 uncomplicated celiac patients before and after 12 months of gluten-free diet, 5 refractory celiac patients, and 12 controls. CD40 was also analyzed by flow cytometry on single cell suspension of mucosal biopsies. Treated celiac biopsies were stimulated with peptic-tryptic digest of gliadin (PT-gliadin) with or without an anti-CD40L-neutralizing antibody. Interferon (IFN)-γ and interleukin (IL)-17 were measured by ELISA (enzyme-linked immunosorbent assay). T-bet, CD40, and CD40L were determined by immunoblotting. RESULTS CD40 and CD40L expression was higher in uncomplicated untreated and refractory celiac patients than in controls; the expression returned to normal after gluten-free diet in uncomplicated patients. Flow cytometric analysis confirmed that most CD40(+) cells were dendritic cells. The addition of the anti-CD40L antibody to treated celiac biopsies significantly inhibited the PT-gliadin-induced production of IFN-γ and IL-17, and mucosal T-bet. CONCLUSIONS Our results indicate that the CD40-CD40L pathway has a key role in celiac disease. Disruption of CD40-CD40L interaction may offer a therapeutic alternative in refractory celiac disease.
Collapse
Affiliation(s)
- Antonio Di Sabatino
- First Department of Medicine, Fondazione IRCCS Policlinico S. Matteo, Centro per lo Studio e Cura della Malattia Celiaca, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Philippe D, Favre L, Foata F, Adolfsson O, Perruisseau-Carrier G, Vidal K, Reuteler G, Dayer-Schneider J, Mueller C, Blum S. Bifidobacterium lactis attenuates onset of inflammation in a murine model of colitis. World J Gastroenterol 2011; 17:459-69. [PMID: 21274375 PMCID: PMC3027012 DOI: 10.3748/wjg.v17.i4.459] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 07/30/2010] [Accepted: 08/07/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the anti-inflammatory effect of the probiotic Bifidobacterium lactis (B. lactis) in an adoptive transfer model of colitis. METHODS Donor and recipient mice received either B. lactis or bacterial culture medium as control (deMan Rogosa Sharpe) in drinking water for one week prior to transfer of a mix of naive and regulatory T cells until sacrifice. RESULTS All recipient mice developed signs of colonic inflammation, but a significant reduction of weight loss was observed in B. lactis-fed recipient mice compared to control mice. Moreover, a trend toward a diminution of mucosal thickness and attenuated epithelial damage was revealed. Colonic expression of pro-inflammatory and T cell markers was significantly reduced in B. lactis-fed recipient mice compared to controls. Concomitantly, forkhead box protein 3, a marker of regulatory T cells, was significantly up-regulated by B. lactis. CONCLUSION Daily oral administration of B. lactis was able to reduce inflammatory and T cells mediators and to promote regulatory T cells specific markers in a mouse model of colitis.
Collapse
|
21
|
E-cadherin marks a subset of inflammatory dendritic cells that promote T cell-mediated colitis. Immunity 2010; 32:557-67. [PMID: 20399121 PMCID: PMC2938478 DOI: 10.1016/j.immuni.2010.03.017] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 12/14/2009] [Accepted: 02/11/2010] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play a pivotal role in controlling the balance between tolerance and immunity in the intestine. Gut conditioned CD103+ DCs promote regulatory T (Treg) cell responses; however, little is known about DCs that drive inflammation in the intestine. Here, we show that monocyte-derived inflammatory DCs that express E-cadherin, the receptor for CD103, promote intestinal inflammation. E-cadherin+ DCs accumulated in the inflamed mesenteric lymph nodes and colon, had high expression of toll-like receptors, and produced colitogenic cytokines, such as IL-6 and IL-23, after activation. Importantly, adoptive transfer of E-cadherin+ DCs into T cell-restored immunodeficient hosts increased Th17 cell responses in the intestine and led to exacerbation of colitis. These results identify a monocyte-derived inflammatory DC subset that is associated with the pathogenesis of intestinal inflammation, providing a therapeutic target for the treatment of inflammatory bowel disease.
Collapse
|
22
|
Peters AL, Stunz LL, Bishop GA. CD40 and autoimmunity: the dark side of a great activator. Semin Immunol 2009; 21:293-300. [PMID: 19595612 DOI: 10.1016/j.smim.2009.05.012] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 02/06/2023]
Abstract
CD40 is a tumor necrosis factor receptor superfamily member expressed by immune and non-immune cells. CD40:CD154 interactions mediate T-dependent B cell responses and efficient T cell priming. Thus, CD40 is a likely candidate to play roles in autoimmune diseases in which activated T and B cells cause pathology. Diseases in which CD40 plays a pathogenic role include autoimmune thyroiditis, type 1 diabetes, inflammatory bowel disease, psoriasis, multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. This review discusses the role of CD40:CD154 interaction in human and mouse autoimmunity, human polymorphisms associated with disease incidence, and disrupting CD40:CD154 interactions as an autoimmune therapy.
Collapse
Affiliation(s)
- Anna L Peters
- Immunology Graduate Program and Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
23
|
Strober W, Fuss IJ. Experimental models of mucosal inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 579:55-97. [PMID: 16620012 DOI: 10.1007/0-387-33778-4_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defense NIAID, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
24
|
Cerovic V, McDonald V, Nassar MA, Paulin SM, Macpherson GG, Milling SWF. New insights into the roles of dendritic cells in intestinal immunity and tolerance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 272:33-105. [PMID: 19121816 DOI: 10.1016/s1937-6448(08)01602-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play a critical key role in the initiation of immune responses to pathogens. Paradoxically, they also prevent potentially damaging immune responses being directed against the multitude of harmless antigens, to which the body is exposed daily. These roles are particularly important in the intestine, where only a single layer of epithelial cells provides a barrier against billions of commensal microorganisms, pathogens, and food antigens, over a huge surface area. In the intestine, therefore, DCs are required to perform their dual roles very efficiently to protect the body from the dual threats of invading pathogens and unwanted inflammatory reactions. In this review, we first describe the biology of DCs and their interactions with other cells types, paying particular attention to intestinal DCs. We, then, examine the ways in which this biology may become misdirected, resulting in inflammatory bowel disease. Finally, we discuss how DCs potentiate immune responses against viral, bacterial, parasitic infections, and their importance in the pathogenesis of prion diseases. We, therefore, provide an overview of the complex cellular interactions that affect intestinal DCs and control the balance between immunity and tolerance.
Collapse
Affiliation(s)
- Vuk Cerovic
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
25
|
Law CL, Grewal IS. Therapeutic interventions targeting CD40L (CD154) and CD40: the opportunities and challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 647:8-36. [PMID: 19760064 DOI: 10.1007/978-0-387-89520-8_2] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD40 was originally identified as a receptor on B-cells that delivers contact-dependent T helper signals to B-cells through interaction with CD40 ligand (CD40L, CD154). The pivotal role played by CD40-CD40L interaction is illustrated by the defects in B-lineage cell development and the altered structures of secondary lymphoid tissues in patients and engineered mice deficient in CD40 or CD40L. CD40 signaling also provides critical functions in stimulating antigen presentation, priming of helper and cytotoxic T-cells and a variety of inflammatory reactions. As such, dysregulations in the CD40-CD40L costimulation pathway are prominently featured in human diseases ranging from inflammatory conditions to systemic autoimmunity and tissue-specific autoimmune diseases. Moreover, studies in CD40-expressing cancers have provided convincing evidence that the CD40-CD40L pathway regulates survival of neoplastic cells as well as presentation of tumor-associated antigens to the immune system. Extensive research has been devoted to explore CD40 and CD40L as drug targets. A number of anti-CD40L and anti-CD40 antibodies with diverse biological effects are in clinical development for treatment of cancer and autoimmune diseases. This chapter reviews the role of CD40-CD40L costimulation in disease pathogenesis, the characteristics of therapeutic agents targeting this pathway and status of their clinical development.
Collapse
Affiliation(s)
- Che-Leung Law
- Department of Preclinical Therapeutics, Seattle Genetics Inc., 21823 30th Drive SE, Bothell, Washington, 98021, USA.
| | | |
Collapse
|
26
|
Lee J, Kim MS, Kim EY, Park HJ, Chang CY, Park KS, Jung DY, Kwon CH, Joh JW, Kim SJ. Mycophenolate mofetil promotes down-regulation of expanded B cells and production of TNF-α in an experimental murine model of colitis. Cytokine 2008; 44:49-56. [DOI: 10.1016/j.cyto.2008.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 07/18/2007] [Accepted: 06/12/2008] [Indexed: 01/05/2023]
|
27
|
Kim G, Levin M, Schoenberger SP, Sharpe A, Kronenberg M. Paradoxical effect of reduced costimulation in T cell-mediated colitis. THE JOURNAL OF IMMUNOLOGY 2007; 178:5563-70. [PMID: 17442938 DOI: 10.4049/jimmunol.178.9.5563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B7-1 and B7-2 play different roles in the pathogenesis of autoimmunity, but this is controversial. We analyzed colitis induced by transfer of CD45RB(high)CD4(+) T cells to RAG(-/-) recipients lacking B7-1 and/or B7-2. Surprisingly, disease was greatly accelerated in RAG(-/-) recipients deficient for either B7-1 or B7-2, especially in the B7-2(-/-) recipients. This accelerated colitis induction correlated with increased T cell division in vivo and production of Th1 cytokines. Although colitis pathogenesis following T cell transfer was inhibited in the absence of CD40L expression, CD40-CD40L interactions were not required in the B7-2(-/-) RAG(-/-) recipients. In vitro priming by APCs lacking either B7-1 or B7-2 caused decreased IL-2 production, which led to decreased CTLA-4 expression, although T cells primed in this way could respond vigorously upon restimulation by producing increased IL-2 and proinflammatory cytokines. Consistent with this mechanism, we demonstrate that blocking IL-2 early after T cell transfer accelerated colitis. Our data therefore outline a mechanism whereby synergistic costimulation by B7-1 and B7-2 molecules during priming is required for optimal IL-2 production. The consequent inhibitory effect of full CTLA-4 expression, induced by IL-2, may slow colitis, even in the absence of regulatory T cells.
Collapse
Affiliation(s)
- Gisen Kim
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
28
|
Vowinkel T, Anthoni C, Wood KC, Stokes KY, Russell J, Gray L, Bharwani S, Senninger N, Alexander JS, Krieglstein CF, Grisham MB, Granger DN. CD40-CD40 ligand mediates the recruitment of leukocytes and platelets in the inflamed murine colon. Gastroenterology 2007; 132:955-65. [PMID: 17324402 DOI: 10.1053/j.gastro.2006.12.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 11/27/2006] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Although the CD40-CD40 ligand (CD40L) signaling pathway has been implicated in the pathogenesis of a variety of diseases, including inflammatory bowel disease, the nature of its contribution to intestinal inflammation remains poorly understood. The aim of this study was to determine whether CD40-CD40L contributes to the intestinal inflammatory response, tissue injury, and disease activity elicited by dextran sodium sulphate (DSS) through the modulation of leukocyte and platelet recruitment in the colonic microvasculature. METHODS Wild-type (WT), CD40(-/-), and CD40L(-/-) mice were fed DSS drinking water. On day 6, intravital videomicroscopy was performed to monitor leukocyte and platelet recruitment in colonic venules, with measurements obtained for tissue myeloperoxidase and histology. CD40 expression on colonic endothelium was measured using the dual-radiolabeled antibody technique. RESULTS A comparison of the responses to DSS-induced colitis in CD40(-/-) and CD40L(-/-) mice to WT mice revealed a significant attenuation of disease activity and histologic damage, as well as profound reductions in the recruitment of adherent leukocytes and platelets in the mutant mice. Similar down-regulation of the blood cell recruitment responses to DSS was noted in WT mice treated with the CD40-CD40L pathway inhibitor Trapidil. CD40 expression in the colonic vasculature was greatly elevated during DSS-induced inflammation in WT mice, but not in CD40(-/-) mice. CONCLUSIONS These findings implicate CD40-CD40L in the pathogenesis of DSS-induced intestinal inflammation, and suggest that modulation of leukocyte and platelet recruitment by activated, CD40-positive endothelial cells in colonic venules may represent a major action of this signaling pathway.
Collapse
Affiliation(s)
- Thorsten Vowinkel
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Abrogation of mucosal T cell homeostasis by exaggerated not only T helper 1, but also T helper 2 cells is a major problem that leads to intestinal inflammation. In this regard, it is important to understand these different aspects of mucosal inflammation. RECENT FINDINGS Both T helper 1 and 2 cells play central roles in the induction of mucosal immune responses including secretory IgA antibody production, which would be the most beneficial aspect for the host defense mechanism. T helper 1- and 2-type responses, however, exhibit other roles in the abrogation of intestinal homeostasis. Although it has been shown that T helper 1-type immune responses are key players in the induction of intestinal inflammation in mice colitis models and also in inflammatory bowel diseases in humans, studies in murine colitis models clearly show that T helper 2-type responses are also involved in the pathophysiology of the intestinal inflammation. Both regulatory type T cells and T helper 17 cells are involved to down- or upregulate aberrant T helper 1 and 2 cell responses. SUMMARY Understanding the cellular and molecular mechanisms of crosstalk among T helper 1, 2, 17 and T regulatory 1 cells is central for the prevention or treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Taeko Dohi
- Department of Gastroenterology, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | | |
Collapse
|
30
|
Carlsen HS, Yamanaka T, Scott H, Rugtveit J, Brandtzaeg P. The proportion of CD40+ mucosal macrophages is increased in inflammatory bowel disease whereas CD40 ligand (CD154)+ T cells are relatively decreased, suggesting differential modulation of these costimulatory molecules in human gut lamina propria. Inflamm Bowel Dis 2006; 12:1013-24. [PMID: 17075342 DOI: 10.1097/01.mib.0000234135.43336.72] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Signal transduction through binding of CD40 on antigen-presenting cells and CD40 ligand (CD154) on T cells appears to be crucial for mutual cellular activation. Antibodies aimed at blocking the CD40-CD154 costimulatory pathway dampen the severity of experimental colitis. To elucidate the microanatomical basis for signaling through this costimulatory pathway in human inflammatory bowel disease, we studied in situ the cellular distribution of these 2 molecules on lamina propria macrophages and T cells, respectively. METHODS Colonic specimens from 8 patients with ulcerative colitis and 8 with Crohn's disease, 8 small bowel specimens of Crohn's disease, and histologically normal control samples (6 from colon and 6 from small bowel) were included. Multicolor immunofluorescence in situ staining was performed to determine the percentage of subepithelial macrophages expressing CD40 and that of lamina propria T cells expressing CD154 while avoiding cells in lymphoid aggregates. RESULTS The proportion of subepithelial CD40CD68 macrophages was significantly increased in normal colon compared with normal small bowel and showed further elevation in both colon and small bowel afflicted with inflammatory bowel disease. In addition, on a per-CD68-cell basis, CD40 expression was significantly increased in severely inflamed compared with moderately inflamed colonic specimens. Conversely, the proportion of CD154 T cells was similar in colon and small bowel, and interestingly, it was significantly reduced in colonic inflammatory bowel disease. CONCLUSIONS Our findings suggested that modulation of CD40 expression by subepithelial macrophages and CD154 by lamina propria T cells is inversely modulated in the human gut.
Collapse
Affiliation(s)
- Hege S Carlsen
- Laboratory for Immunohistochemistry and Immunopathology, Department of Pathology, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway.
| | | | | | | | | |
Collapse
|
31
|
Izcue A, Coombes JL, Powrie F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev 2006; 212:256-71. [PMID: 16903919 DOI: 10.1111/j.0105-2896.2006.00423.x] [Citation(s) in RCA: 357] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) tract is the main interface where the body encounters exogenous antigens. It is crucial that the local response here is tightly regulated to avoid an immune reaction against dietary antigens and commensal flora while still mounting an efficient defense against pathogens. Faults in establishing intestinal tolerance can lead to disease, inducing local and often also systemic inflammation. Studies in human as well as in animal models suggest a role for regulatory T cells (Tregs) in maintaining intestinal homeostasis. Transfer of Tregs can not only prevent the development of colitis in animal models but also cure established disease, acting both systemically and at the site of inflammation. In this review, we discuss the major regulatory pathways, including transforming growth factor-beta (TGF-beta), interleukin-10 (IL-10), and cytotoxic T-lymphocyte antigen-4 (CTLA-4), and their role in Treg-mediated control of systemic and mucosal responses. In addition, we give an overview of the known mechanisms of lymphocyte migration to the intestine and discuss how CD103 expression can influence the balance between regulatory and effector T cells. Further understanding of the factors that control the activity of Tregs in different immune compartments may facilitate the design of strategies to target regulation in a tissue-specific way.
Collapse
Affiliation(s)
- Ana Izcue
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
32
|
Uhlig HH, McKenzie BS, Hue S, Thompson C, Joyce-Shaikh B, Stepankova R, Robinson N, Buonocore S, Tlaskalova-Hogenova H, Cua DJ, Powrie F. Differential Activity of IL-12 and IL-23 in Mucosal and Systemic Innate Immune Pathology. Immunity 2006; 25:309-18. [PMID: 16919486 DOI: 10.1016/j.immuni.2006.05.017] [Citation(s) in RCA: 532] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 04/19/2006] [Accepted: 05/25/2006] [Indexed: 02/08/2023]
Abstract
The CD40-CD154 pathway is important in the pathogenesis of inflammatory bowel disease. Here we show that injection of an agonistic CD40 mAb to T and B cell-deficient mice was sufficient to induce a pathogenic systemic and intestinal innate inflammatory response that was functionally dependent on tumor necrosis factor-alpha and interferon-gamma as well as interleukin-12 p40 and interleukin-23 p40 secretion. CD40-induced colitis, but not wasting disease or serum proinflammatory cytokine production, depended on interleukin-23 p19 secretion, whereas interleukin-12 p35 secretion controlled wasting disease and serum cytokine production but not mucosal immunopathology. Intestinal inflammation was associated with IL-23 (p19) mRNA-producing intestinal dendritic cells and IL-17A mRNA within the intestine. Our experiments identified IL-23 as an effector cytokine within the innate intestinal immune system. The differential role of IL-23 in local but not systemic inflammation suggests that it may make a more specific target for the treatment of IBD.
Collapse
Affiliation(s)
- Holm H Uhlig
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The pathogenic roles of B cells in autoimmune diseases occur through several mechanistic pathways that include autoantibodies, immune complexes, dendritic and T cell activation, cytokine synthesis, chemokine-mediated functions, and ectopic neolymphogenesis. Each of these pathways participate to different degrees in autoimmune diseases. The use of B cell-targeted and B cell subset-targeted therapies in humans is illuminating the mechanisms at work in a variety of human autoimmune diseases. In this review, we highlight some of these recent findings that provide insights into both murine models of autoimmunity and human autoimmune diseases.
Collapse
Affiliation(s)
- Flavius Martin
- Department of Immunology, Genentech, Inc., South San Francisco, California 94080, USA.
| | | |
Collapse
|
34
|
Danese S, Sans M, Scaldaferri F, Sgambato A, Rutella S, Cittadini A, Piqué JM, Panes J, Katz JA, Gasbarrini A, Fiocchi C. TNF-alpha blockade down-regulates the CD40/CD40L pathway in the mucosal microcirculation: a novel anti-inflammatory mechanism of infliximab in Crohn's disease. THE JOURNAL OF IMMUNOLOGY 2006; 176:2617-24. [PMID: 16456024 DOI: 10.4049/jimmunol.176.4.2617] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The CD40/CD40 ligand (CD40L) pathway is involved in Crohn's disease (CD) pathogenesis. In the patients' circulation, soluble CD40L (sCD40L) levels are elevated and surface CD40L is increased in platelets and T cells, whereas in the intestine CD40 is overexpressed in the microvasculature and CD40L in platelets and T cells. The therapeutic effects of infliximab in CD are attributed to its systemic anti-TNF-alpha action, but because TNF-alpha modulates both CD40 and CD40L, we investigated whether infliximab affects the CD40/CD40L pathway in the intestine. Eighteen CD patients were evaluated before and after infliximab therapy. Plasma sCD40L was measured by ELISA and platelet and peripheral blood T cell (PBT) CD40L expression by flow cytometry. Microvascular CD40 and VCAM-1 expression were assessed in mucosal biopsies by immunohistochemistry and by flow cytometry in human intestinal microvascular endothelial cells (HIMEC). Cell cultures were performed in the presence and absence of infliximab. Infliximab treatment significantly reduced plasma sCD40L levels and eliminated CD40 and VCAM-1 from mucosal microvessels. In vitro infliximab prevented TNF-alpha-induced CD40 and VCAM-1 expression by HIMEC, and reduced PBT, but not platelet, surface CD40L expression and sCD40L release. In addition, infliximab decreased T cell-induced VCAM-1 expression in HIMEC by down-regulating CD40L in T cells and promoting T cells apoptosis. These findings point to a novel mechanism of action of infliximab, i.e., the disruption of CD40/CD40L-dependent cognate interactions between intestinal microvessels and T cells. Thus, in addition to neutralizing TNF-alpha and inducing T cell death, the therapeutic effects of infliximab in CD appear to be also mediated by inhibition of vascular inflammation in the gut.
Collapse
Affiliation(s)
- Silvio Danese
- Department of Internal Medicine, Catholic University, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abadía-Molina AC, Ji H, Faubion WA, Julien A, Latchman Y, Yagita H, Sharpe A, Bhan AK, Terhorst C. CD48 controls T-cell and antigen-presenting cell functions in experimental colitis. Gastroenterology 2006; 130:424-34. [PMID: 16472597 DOI: 10.1053/j.gastro.2005.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 11/02/2005] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The cell-surface receptor CD48 is a lipid-anchored protein expressed on all antigen-presenting cells and T cells. CD2 and 2B4 are known ligands for CD48, which themselves are expressed on the surface of hematopoietic cells. Here we examine the effect of CD48 in the development of chronic experimental colitis and how CD48 affects adaptive and innate immune functions. METHODS The role of CD48 in experimental colitis was first assessed by transferring CD4(+)CD45RB(hi) cells isolated from either wild-type or CD48(-/-) mice into either Rag-2(-/-) or CD48(-/-) x Rag-2(-/-) mice. Development of chronic colitis in these adoptively transferred mice was assessed by disease activity index, histology, and production of interferon-gamma in mesenteric lymph nodes. Relevant functions of CD48(-/-)CD4(+) T cells and CD48(-/-) macrophages were examined using in vitro assays. In a second set of experiments, the efficacy of anti-CD48 in prevention or treatment of chronic colitis was determined. RESULTS CD48(-/-)CD4(+) cells induced colitis when transferred into Rag-2(-/-) mice, but not when introduced into CD48(-/-) x Rag-2(-/-) recipients. However, both recipient mouse strains developed colitis upon adoptive transfer of wild-type CD4(+) cells. Consistent with a CD4(+) T-cell defect was the observation that in vitro proliferation of CD48(-/-)CD4(+) T cells was impaired upon stimulation with CD48(-/-) macrophages. In vitro evidence for a modest macrophage functional defect was apparent because CD48(-/-) macrophages produced less tumor necrosis factor alpha and interleukin 12 than wild-type cells upon stimulation with lipopolysaccharide. Peritoneal macrophages also showed a defect in clearance of gram-negative bacteria in vitro. Treatment of the CD4(+)CD45RB(hi)-->Rag-2(-/-) mice or the wild-type BM-->tg26 mice with anti-CD48 (HM48-1) ameliorated development of colitis, even after its induction. CONCLUSIONS Both CD48-dependent activation of macrophages and CD48-controlled activation of T cells contribute to maintaining the inflammatory response. Consequently, T cell-induced experimental colitis is ameliorated only when CD48 is absent from both T cells and antigen-presenting cells. Because anti-CD48 interferes with these processes, anti-human CD48 antibody treatment may represent a novel therapy for inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Ana C Abadía-Molina
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fiocchi C, Ina K, Danese S, Leite AZA, Vogel JD. Alterations of Mesenchymal and Endothelial Cells in Inflammatory Bowel Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 579:168-76. [PMID: 16620018 DOI: 10.1007/0-387-33778-4_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathogenesis of complex chronic diseases like inflammatory bowel disease (IBD) can no longer be viewed as a one-way street in which classical immune cells have exclusive control over the initiation, duration and outcome of the disease. There is enough experimental evidence to demonstrate that nonimmune cells, among which are mucosal mesenchymal and endothelial cells, also play a decisive role by interacting with immune cells and establishing a two-way reciprocal exchange of signals and responses that dictate the ultimate outcome of inflammation. Smooth muscle cells and fibroblasts/myofibroblasts display a variety of immune functions and modulate the activity and survival of T-cells. Mucosal microvascular cells, through the expression of adhesion molecules and secretion of chemokines, regulate the quantity and quality of leukocytes transmigrating into the interstitial space. A number of receptor-ligand pairs are expressed by immune and nonimmune cells that control their functional interplay, but the CD40/CD40 ligand system may be the most effective because CD40 is expressed by activated muscle and endothelial cells, while the CD40 ligand is expressed by activated T-cells and platelets. The activation of this system in IBD can lead to the establishment of a continuous cycle of nonimmune cell-dependent, antigen-independent interactions that perpetuates gut inflammation.
Collapse
Affiliation(s)
- Claudio Fiocchi
- Division of Gastroenterology, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, OH, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Tumor necrosis factor (TNF) is one of the most potent effector cytokines in the pathogenesis of inflammatory bowel disease (IBD). Previous studies strongly implicate the critical involvement of several TNF family members in human IBD. This review focuses on the recent studies of TNF family members in IBD development. In particular, we discuss the findings about LIGHT (homologous to lymphotoxins, inducible expression, competes with herpes simplex virus glycoprotein D for herpes viral entry mediator, a receptor expressed on T lymphocytes) in the pathogenesis of IBD, and the potential mechanisms by which LIGHT induces IBD. Such mechanisms may also apply to other TNF family members.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
38
|
Abstract
Murine models of inflammatory bowel disease (IBD) are useful tools for the study of the pathogenesis and regulation of intestinal inflammation. Colitis can be induced in immune-deficient mice following transfer of populations of T cells or following infection with Helicobacter hepaticus and other intestinal pathogens. In these situations, colitis occurs as a result of the absence of a specialized population of regulatory cells, as transfer of CD4(+)CD25(+) T cells prevents disease. Importantly, from a clinical perspective, CD4(+)CD25(+) T cells can also reverse an established colitis. CD4(+)CD25(+) T cells proliferate both in the secondary lymphoid organs and at the site of inflammation, suggesting that regulation occurs both locally and systemically. CD4(+)CD25(+) T cells are not only capable of regulating other T cells but are also capable of suppressing components of the innate immune system. Control of colitis is dependent on the presence of the immunosuppressive cytokines interleukin-10 and transforming growth factor-beta, although their roles are divergent and complex. Regulatory T cells represent one of the host's mechanisms to prevent immune pathology during chronic immune stimulation. Enhancement of regulatory T-cell activity may be useful to control autoreactive T-cell responses and inhibit harmful inflammatory diseases such as asthma and IBD.
Collapse
Affiliation(s)
- Janine L Coombes
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
39
|
Lorenz RG, McCracken VJ, Elson CO. Animal models of intestinal inflammation: ineffective communication between coalition members. ACTA ACUST UNITED AC 2005; 27:233-47. [PMID: 16028027 DOI: 10.1007/s00281-005-0208-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Accepted: 04/20/2005] [Indexed: 01/14/2023]
Abstract
The microbiota, epithelial cells, and mucosal immune cells in the intestine comprise an important gastrointestinal coalition. The intestinal microbiota can exert both beneficial as well as deleterious effects on their animal hosts. They interact with the innate defenses provided by epithelial cells through microbial recognition receptors. This communication, under normal conditions, results in a state of controlled inflammation. This article will focus on several animal models of intestinal inflammation, in which spontaneous or induced mutations or other genetic manipulations result in severe alterations in one of the members of the gastrointestinal coalition. These animal models of colitis have shown that alterations in communication between members of this coalition ultimately lead to gastrointestinal disease.
Collapse
Affiliation(s)
- Robin G Lorenz
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
40
|
Kasran A, Boon L, Wortel CH, Hogezand RA, Schreiber S, Goldin E, Boer M, Geboes K, Rutgeerts P, Ceuppens JL. Safety and tolerability of antagonist anti-human CD40 Mab ch5D12 in patients with moderate to severe Crohn's disease. Aliment Pharmacol Ther 2005; 22:111-22. [PMID: 16011669 DOI: 10.1111/j.1365-2036.2005.02526.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The ligation of CD40 by CD154 is a critical step in the interaction between APC and T cells. In animals, antagonizing CD40L-CD40 has been shown to reduce the severity of several autoimmune and inflammatory disorders, including experimental colitis. AIM To investigate tolerability and safety of an antagonist chimeric monoclonal anti-human CD40 antibody (ch5D12) for treatment of Crohn's disease. METHOD ch5D12 was administrated to 18 patients with moderate to severe Crohn's disease in a single dose, open-label dose-escalation phase I/IIa study. RESULTS ch5D12 plasma concentrations increased dose-dependently after infusion. Two patients developed an anti-ch5D12 antibody response. Overall response and remission rates were 72 and 22%, respectively with no evidence for a dose-response effect. Treatment with ch5D12 reduced microscopic disease activity and intensity of the lamina propria cell infiltrate, but did not alter percentages of circulating T and B cells. ch5D12 was well tolerated, although some patients experienced headache, muscle aches, or joint pains, which may have been related to the study drug. CONCLUSIONS Antagonizing CD154-CD40 interactions with ch5D12 is a promising therapeutic approach for remission induction in Crohn's disease.
Collapse
Affiliation(s)
- A Kasran
- Laboratory of Experimental Immunology, Catholic University of Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang J, Anders RA, Wang Y, Turner JR, Abraham C, Pfeffer K, Fu YX. The Critical Role of LIGHT in Promoting Intestinal Inflammation and Crohn’s Disease. THE JOURNAL OF IMMUNOLOGY 2005; 174:8173-82. [PMID: 15944326 DOI: 10.4049/jimmunol.174.12.8173] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Crohn's disease (CD) is a type of inflammatory bowel disease associated with increased Th1 cytokines and unique pathological features. However, its pathogenesis has not been fully understood. Previous studies showed that homologous to lymphotoxin, exhibits inducible expression, competes with herpesvirus glycoprotein D for HVEM on T cells (LIGHT) transgenic (Tg) mice develop autoimmunity including intestinal inflammation with a variable time course. In this study, we establish an experimental model for CD by adoptive transfer of Tg mesenteric lymph node cells into RAG(-/-) mice. The recipients of Tg lymphocytes rapidly develop a disease strikingly similar to the key pathologic features and cytokine characterization observed in CD. We demonstrate that, as a costimulatory molecule, LIGHT preferentially drives Th1 responses. LIGHT-mediated intestinal disease is dependent on both of its identified signaling receptors, lymphotoxin beta receptor and herpes virus entry mediator, because LIGHT Tg mesenteric lymph node cells do not cause intestinal inflammation when transferred into the lymphotoxin beta receptor-deficient mice, and herpes virus entry mediator on donor T cells is required for the full development of disease. Furthermore, we demonstrated that up-regulation of LIGHT is associated with active CD. These data establish a new mouse model resembling CD and suggest that up-regulation of LIGHT may be an important mediator of CD pathogenesis.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Crohn Disease/genetics
- Crohn Disease/immunology
- Crohn Disease/pathology
- Cytokines/biosynthesis
- Humans
- Immunophenotyping
- Inflammation/genetics
- Inflammation/immunology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Lymph Nodes/cytology
- Lymph Nodes/transplantation
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lymphotoxin beta Receptor
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Member 14
- Receptors, Virus/deficiency
- Receptors, Virus/genetics
- Receptors, Virus/physiology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/pathology
- Tumor Necrosis Factor Ligand Superfamily Member 14
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/physiology
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abadía-Molina AC, Mizoguchi A, Faubion WA, De Jong YP, Rietdijk ST, Comiskey M, Clarke K, Bhan AK, Terhorst C. In vivo generation of oligoclonal colitic CD4+ T-cell lines expressing a distinct T-cell receptor Vbeta. Gastroenterology 2005; 128:1268-77. [PMID: 15887110 DOI: 10.1053/j.gastro.2005.01.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Transplantation of wild-type (H-2k) bone marrow into tg epsilon26 mice (BM-->tg epsilon26) induces colitis, characterized by T-helper cell type 1 activation in the lamina propria. Here we determined whether pathogenic T-cell clones could be derived by serial adoptive transfers into healthy tg epsilon26 recipients, starting with the population of CD4+ cells in the mesenteric lymph nodes of BM-->tg epsilon26 mice. METHODS CD4+ cells purified from the mesenteric lymph nodes of colitic BM-->tg epsilon26 mice were adoptively transferred into a second group of healthy tg epsilon26 recipients. Mesenteric lymph node CD4+ cells from the second group of mice were then used for consecutive transfers. Lamina propria CD4+ cells isolated from each mouse with colitis were analyzed for their cytokine profile and for their T-cell receptor Vbeta repertoire. RESULTS CD4+ T cells maintained a dominant T-helper 1 phenotype after multiple transfers (< or = 8) into recipient tg epsilon26 mice. A single T-cell receptor Vbeta was enriched (as much as 90%) in 8 CD4+ T-cell lines: Vbeta8S3, Vbeta8S1/2, Vbeta10S1, or Vbeta14. Sequence analyses of the T-cell receptor Vbetas showed clonality or the presence of a very restricted number of clones within each line. Adoptive transfers of the oligoclonal lines into either C3H x Rag-/- or severe combined immunodeficiency disease mice (H-2k) also induced colitis, whereas transfers into BALB/c x Rag-/- or severe combined immunodeficiency disease mice (H-2d) did not. CONCLUSIONS Colitis-inducing CD4+ T-helper 1 cell clones can be obtained by enrichment through sequential adoptive transfers of CD4+ cells from mesenteric lymph nodes. Distinct dominant T-cell receptor Vbetas in each cell line responded to antigens presented by class II major histocompatibility complex.
Collapse
Affiliation(s)
- Ana C Abadía-Molina
- Division of Immunology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Powrie F. Immune regulation in the intestine: a balancing act between effector and regulatory T cell responses. Ann N Y Acad Sci 2005; 1029:132-41. [PMID: 15681752 DOI: 10.1196/annals.1309.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The immune system in the intestine must respond rapidly to invading pathogens without mounting sustained effector cell responses to the indigenous commensal bacteria. Results from this laboratory using the T cell transfer model of colitis suggest that specialized populations of regulatory T cells control the immune response in the intestine. Regulatory T (Tr) cell activity is enriched within the naturally arising CD4(+) CD25(+) Tr subset that has been shown to prevent a number of inflammatory diseases. CD4(+) CD25(+) Tr cells control intestinal inflammation induced by both innate and adaptive immune responses via IL-10- and TGF-beta-dependent mechanisms. Recent results have shown that CD4(+) CD25(+) Tr cells can cure established colitis, suggesting their utility for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Fiona Powrie
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
44
|
Papadakis KA, Zhu D, Prehn JL, Landers C, Avanesyan A, Lafkas G, Targan SR. Dominant Role for TL1A/DR3 Pathway in IL-12 plus IL-18-Induced IFN-γ Production by Peripheral Blood and Mucosal CCR9+ T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2005; 174:4985-90. [PMID: 15814728 DOI: 10.4049/jimmunol.174.8.4985] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TNF-like cytokine TL1A augments IFN-gamma production by anti-CD3 plus anti-CD28 and IL-12/IL-18-stimulated peripheral blood (PB) T cells. However, only a small subset of PB T cells respond to TL1A stimulation with IFN-gamma production. PB CCR9+ T cells represent a small subset of circulating T cells with mucosal T cell characteristics and a Th1/Tr1 cytokine profile. In the current study, we show that TL1A enhanced IFN-gamma production by TCR- or CD2/CD28-stimulated CCR9(+)CD4+ PB T cells. However, TL1A had the most pronounced effect on augmenting IFN-gamma production by IL-12/IL-18-primed CCR9(+)CD4+ PB T cells. TL1A enhanced both the percentage and the mean fluorescence intensity of IFN-gamma in CCR9(+)CD4+ T cells as assessed by intracellular cytokine staining. IL-12 plus IL-18 up-regulated DR3 expression in CCR9(+)CD4+ T cells but had negligible effect on CCR9(-)CD4+ T cells. CCR9(+)CD4+ T cells isolated from the small intestine showed a 37- to 105-fold enhancement of IFN-gamma production when TL1A was added to the IL-12/IL18 cytokine combination. Cell membrane-expressed TL1A was preferentially expressed in CCR9(+)CD4+ PB T cells, and a blocking anti-TL1A mAb inhibited IFN-gamma production by cytokine-primed CCR9(+)CD4+ T cells by approximately 50%. Our data show that the TL1A/DR3 pathway plays a dominant role in the ultimate level of cytokine-induced IFN-gamma production by CCR9+ mucosal and gut-homing PB T cells and could play an important role in Th1-mediated intestinal diseases, such as Crohn's disease, where increased expression of IL-12, IL-18, TL1A, and DR3 converge in the inflamed intestinal mucosa.
Collapse
Affiliation(s)
- Konstantinos A Papadakis
- Burns and Allen Research Institute, Inflammatory Bowel Disease Center, Cedars-Sinai Medical Center, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Okada E, Yamazaki M, Tanabe M, Takeuchi T, Nanno M, Oshima S, Okamoto R, Tsuchiya K, Nakamura T, Kanai T, Hibi T, Watanabe M. IL-7 exacerbates chronic colitis with expansion of memory IL-7Rhigh CD4+ mucosal T cells in mice. Am J Physiol Gastrointest Liver Physiol 2005; 288:G745-54. [PMID: 15550560 DOI: 10.1152/ajpgi.00276.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously demonstrated that mucosal CD4(+) T cells expressing high levels of IL-7 receptor (IL-7R(high)) are pathogenic cells responsible for chronic colitis. Here we investigate whether IL-7 is directly involved in the expansion of IL-7R(high) memory CD4(+) mucosal T cells and the exacerbation of colitis. We first showed that CD4(+) lamina propria lymphocytes (LPLs) from wild-type, T cell receptor-alpha-deficient (TCR-alpha(-/-)), and recombinase-activating gene (RAG)-2(-/-)-transferred mice with or without colitis showed phenotypes of memory cells, but only CD4(+) LPLs from colitic mice showed IL-7R(high). In vitro stimulation by IL-7, but not by IL-15 and thymic stromal lymphopoietin, enhanced significant proliferative responses and survival of colitic CD4(+), but not normal CD4(+) LPLs. Importantly, in vivo administration of IL-7 mice accelerated the expansion of IL-7R(high) memory CD4(+) LPLs and thereby exacerbated chronic colitis in RAG-2(-/-) mice transferred with CD4(+) LPLs from colitic TCR-alpha(-/-) mice. Conversely, the administration of anti-IL-7R monoclonal antibody significantly inhibited the development of TCR-alpha(-/-) colitis with decreased expansion of CD4(+) LPLs. Collectively, the present data indicate that IL-7 is essential for the expansion of pathogenic memory CD4(+) T cells under pathological conditions. Therefore, therapeutic approaches targeting the IL-7R pathway may be feasible in the treatment of human inflammatory bowel disease.
Collapse
Affiliation(s)
- Eriko Okada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
de Jong YP, Terhorst C, Weaver CT, Elson CO. Disease Induction and Prevention in Experimental Models of Inflammatory Bowel Disease. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Nolan A, Weiden MD, Hoshino Y, Gold JA. CD40 BUT NOT CD154 KNOCKOUT MICE HAVE REDUCED INFLAMMATORY RESPONSE IN POLYMICROBIAL SEPSIS: A POTENTIAL ROLE FOR ESCHERICHIA COLI HEAT SHOCK PROTEIN 70 IN CD40-MEDIATED INFLAMMATION IN VIVO. Shock 2004; 22:538-42. [PMID: 15545825 PMCID: PMC3404132 DOI: 10.1097/01.shk.0000143416.20649.30] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The CD40-CD154 system controls various aspects of the host inflammatory response in models of cellular and humoral immunity. Recently, we described a role for CD40 in the innate immune response in polymicrobial sepsis. However, recent data suggests that CD40 maybe activated by CD154 or directly via bacterial heat shock protein (HSP) 70. Therefore, we decided to test the mechanism of CD40 activation in murine polymicrobial sepsis. Wild-type (WT), CD40, and CD154 underwent cecal ligation and puncture (CLP). Compared with WT mice, CD40 had improved survival in association with attenuated production of IL-12, TNF-alpha, and IL-6. In contrast, CD154 mice behaved similar to WT mice with regard to mortality and cytokine production. The differential response of CD40 and CD154 mice to CLP was not due to a general attenuated response to inflammatory stimuli, as all three strains had similar survival after LPS administration, and CD40 macrophages had normal production of IL-12 in response to lipopolysaccharide. In contrast, CD40 macrophages had attenuated IL-12 production in response to Escherichia coli HSP70 (DnaK). Furthermore, intraperitoneal administration of DnaK resulted in a 4-fold increase in IL-12 in WT mice, which was absent in CD40 mice. This data demonstrates CD154-independent CD40 activation in polymicrobial sepsis and suggests that bacterial HSP70 is capable of stimulating CD40 in vitro and in vivo.
Collapse
Affiliation(s)
- Anna Nolan
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
48
|
Dohi T, Fujihashi K, Koga T, Etani Y, Yoshino N, Kawamura YI, McGhee JR. CD4+CD45RBHi interleukin-4 defective T cells elicit antral gastritis and duodenitis. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1257-68. [PMID: 15466391 PMCID: PMC1618629 DOI: 10.1016/s0002-9440(10)63385-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have analyzed the gastrointestinal inflammation which develops following adoptive transfer of IL-4 gene knockout (IL-4(-/-)) CD4(+)CD45RB(Hi) (RB(Hi)) T cells to severe combined immunodeficient (SCID) or to T cell-deficient, T cell receptor beta and delta double knockout (TCR(-/-)) mice. Transfer of IL-4(-/-) RB(Hi) T cells induced a similar type of colitis to that seen in SCID or TCR(-/-) recipients of wild-type (wt) RB(Hi) T cells as reported previously. Interestingly, transfer of both wt and IL-4(-/-) RB(Hi) T cells to TCR(-/-) but not to SCID mice induced inflammation in the gastric mucosa. Notably, TCR(-/-) recipients of IL-4(-/-) RB(Hi) T cells developed a more severe gastritis with erosion, apoptosis of the antral epithelium, and massive infiltration of macrophages. This gastritis was partially dependent on the indigenous microflora. Recipients of both wt and IL-4(-/-) RB(Hi) T cells developed duodenitis with multinuclear giant cells, expansion of mucosal macrophages, and dendritic cells. Full B cell responses were reconstituted in TCR(-/-) recipients of RB(Hi) T cells; however, anti-gastric autoantibodies were not detected. We have now developed and characterized a novel model of chronic gastroduodenitis in mice, which will help in our understanding of the mechanisms involved in chronic inflammation in the upper gastrointestinal tract of humans.
Collapse
Affiliation(s)
- Taeko Dohi
- Department of Gastroenterology, Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Koutroubakis IE, Theodoropoulou A, Xidakis C, Sfiridaki A, Notas G, Kolios G, Kouroumalis EA. Association between enhanced soluble CD40 ligand and prothrombotic state in inflammatory bowel disease. Eur J Gastroenterol Hepatol 2004; 16:1147-52. [PMID: 15489574 DOI: 10.1097/00042737-200411000-00011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammatory bowel disease is associated with an increased incidence of thromboembolic complications. The aim of this study was to investigate the role of the soluble CD40 ligand (sCD40L), which displays prothrombotic properties, in patients with ulcerative colitis (UC) and Crohn's disease (CD) in comparison with inflammatory and healthy controls. METHODS Plasma levels of sCD40L, prothrombin fragment 1+2 (F1+2), thrombin-antithrombin (TAT) complex and soluble P-selectin were measured in 104 inflammatory bowel disease patients (54 ulcerative colitis and 50 Crohn's disease), in 18 cases with other causes of intestinal inflammation and in 80 healthy controls using commercially available enzyme-linked immunosorbent assays. Plasma levels of sCD40L were correlated with disease activity, type, localization and treatment as well as with the measured thrombophilic parameters. RESULTS CD patients had significantly higher sCD40L levels than both groups of controls (CD vs HC P < 0.001; CD vs non-IBD P < 0.05). UC patients had higher but not significantly different sCD40L levels compared with the controls. Both UC and CD patients with active disease had significantly higher sCD40L levels in comparison with patients with inactive disease. Plasma levels of sCD40L were correlated with platelet count (r = 0.27, P = 0.001). They also showed a correlation with prothrombin F1+2 (r = 0.16, r = 0.03) and TAT (r = 0.15, r = 0.04) as well as with P-selectin (r = 0.19, P = 0.01). CONCLUSIONS The increased sCD40L plasma levels may represent, at least in some degree, a molecular link between inflammatory bowel disease and the procoagualant state.
Collapse
Affiliation(s)
- Ioannis E Koutroubakis
- Department of Gastroenterology University Hospital Heraklion; and Regional Blood Bank Center Venizelion Hospital Heraklion, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|
50
|
Kawamura T, Kanai T, Dohi T, Uraushihara K, Totsuka T, Iiyama R, Taneda C, Yamazaki M, Nakamura T, Higuchi T, Aiba Y, Tsubata T, Watanabe M. Ectopic CD40 ligand expression on B cells triggers intestinal inflammation. THE JOURNAL OF IMMUNOLOGY 2004; 172:6388-97. [PMID: 15128830 DOI: 10.4049/jimmunol.172.10.6388] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several studies indicate that CD4(+) T cells, macrophages, and dendritic cells initially mediate intestinal inflammation in murine models of human inflammatory bowel disease. However, the initial role of B cells in the development of intestinal inflammation remains unclear. In this study we present evidence that B cells can trigger intestinal inflammation using transgenic (Tg) mice expressing CD40 ligand (CD40L) ectopically on B cells (CD40L/B Tg). We demonstrated that CD40L/B Tg mice spontaneously developed severe transmural intestinal inflammation in both colon and ileum at 8-15 wk of age. In contrast, CD40L/B TgxCD40(-/-) double-mutant mice did not develop colitis, indicating the direct involvement of CD40-CD40L interaction in the development of intestinal inflammation. The inflammatory infiltrates consisted predominantly of massive aggregated, IgM-positive B cells. These mice were also characterized by the presence of anti-colon autoantibodies and elevated IFN-gamma production. Furthermore, although mice transferred with CD4(+) T cells alone or with both CD4(+) T and B220(+) B cells, but not B220(+) cells alone, from diseased CD40L/B Tg mice, develop colitis, mice transferred with B220(+) B cells from diseased CD40L/B Tg mice and CD4(+) T cells from wild-type mice also develop colitis, indicating that the Tg B cells should be a trigger for this colitis model, whereas T cells are involved as effectors. As it has been demonstrated that CD40L is ectopically expressed on B cells in some autoimmune diseases, the present study suggests the possible contribution of B cells in triggering intestinal inflammation in human inflammatory bowel disease.
Collapse
Affiliation(s)
- Takahiro Kawamura
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|