1
|
Lialios P, Alimperti S. Role of E-cadherin in epithelial barrier dysfunction: implications for bacterial infection, inflammation, and disease pathogenesis. Front Cell Infect Microbiol 2025; 15:1506636. [PMID: 40007608 PMCID: PMC11850337 DOI: 10.3389/fcimb.2025.1506636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Epithelial barriers serve as critical defense lines against microbial infiltration and maintain tissue homeostasis. E-cadherin, an essential component of adherens junctions, has emerged as a pivotal molecule that secures epithelial homeostasis. Lately, its pleiotropic role beyond barrier function, including its involvement in immune responses, has become more evident. Herein, we delve into the intricate relationship between (dys)regulation of epithelial homeostasis and the versatile functionality of E-cadherin, describing complex mechanisms that underlie barrier integrity and disruption in disease pathogenesis such as bacterial infection and inflammation, among others. Clinical implications of E-cadherin perturbations in host pathophysiology are emphasized; downregulation, proteolytic phenomena, abnormal localization/signaling and aberrant immune reactions are linked with a broad spectrum of pathology beyond infectious diseases. Finally, potential therapeutic interventions that may harness E-cadherin to mitigate barrier-associated tissue damage are explored. Overall, this review highlights the crucial role of E-cadherin in systemic health, offering insights that could pave the way for strategies to reinforce/restore barrier integrity and treat related diseases.
Collapse
Affiliation(s)
- Peter Lialios
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| |
Collapse
|
2
|
Jamal Eddin TM, Nasr SM, Gupta I, Zayed H, Al Moustafa AE. Helicobacter pylori and epithelial mesenchymal transition in human gastric cancers: An update of the literature. Heliyon 2023; 9:e18945. [PMID: 37609398 PMCID: PMC10440535 DOI: 10.1016/j.heliyon.2023.e18945] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Gastric cancer, a multifactorial disease, is considered one of the most common malignancies worldwide. In addition to genetic and environmental risk factors, infectious agents, such as Epstein-Barr virus (EBV) and Helicobacter pylori (H.pylori) contribute to the onset and development of gastric cancer. H. pylori is a type I carcinogen that colonizes the gastric epithelium of approximately 50% of the world's population, thus increasing the risk of gastric cancer development. On the other hand, epithelial mesenchymal transition (EMT) is a fundamental process crucial to embryogenic growth, wound healing, organ fibrosis and cancer progression. Several studies associate gastric pathogen infection of the epithelium with EMT initiation, provoking cancer metastasis in the gastric mucosa through various molecular signaling pathways. Additionally, EMT is implicated in the progression and development of H. pylori-associated gastric cancer. In this review, we recapitulate recent findings elucidating the association between H. pylori infection in EMT promotion leading to gastric cancer progression and metastasis.
Collapse
Affiliation(s)
- Tala M. Jamal Eddin
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Shahd M.O. Nasr
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Hatem Zayed
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
- Oncology Department, Faculty of Medicine, McGill University, Montreal, QC, H3G 2M1, Canada
| |
Collapse
|
3
|
Liu S, Deng Z, Zhu J, Ma Z, Tuo B, Li T, Liu X. Gastric immune homeostasis imbalance: An important factor in the development of gastric mucosal diseases. Biomed Pharmacother 2023; 161:114338. [PMID: 36905807 DOI: 10.1016/j.biopha.2023.114338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 03/11/2023] Open
Abstract
The gastric mucosal immune system is a unique immune organ independent of systemic immunity that not only maintains nutrient absorption but also plays a role in resisting the external environment. Gastric mucosal immune disorder leads to a series of gastric mucosal diseases, including autoimmune gastritis (AIG)-related diseases, Helicobacter pylori (H. pylori)-induced diseases, and various types of gastric cancer (GC). Therefore, understanding the role of gastric mucosal immune homeostasis in gastric mucosal protection and the relationship between mucosal immunity and gastric mucosal diseases is very important. This review focuses on the protective effect of gastric mucosal immune homeostasis on the gastric mucosa, as well as multiple gastric mucosal diseases caused by gastric immune disorders. We hope to offer new prospects for the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Shuhui Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
4
|
Chen X, Chen W, Zhao Y, Wang Q, Wang W, Xiang Y, Yuan H, Xie Y, Zhou J. Interplay of Helicobacter pylori, fibroblasts, and cancer cells induces fibroblast activation and serpin E1 expression by cancer cells to promote gastric tumorigenesis. J Transl Med 2022; 20:322. [PMID: 35864535 PMCID: PMC9306099 DOI: 10.1186/s12967-022-03537-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/13/2022] [Indexed: 01/19/2023] Open
Abstract
Background Helicobacter pylori (H. pylori) can disrupt the tight junctions between gastric epithelial cells and penetrate the intercellular spaces acting on epithelial cells, normal fibroblasts (NFs), and cancer-associated fibroblasts (CAFs), but their interaction in gastric cancer tumorigenesis and progression remains unclear. Methods Primary CAFs and NFs were isolated from paired gastric cancer tissues and adjacent normal tissues and identified by immunofluorescence staining and western blot analysis for FSP-1, α-SMA, FAP, and vimentin expression. RNA-sequencing was used to compare the transcriptomes between CAFs and NFs. The expressions of FAP, lumican, and α-SMA, human cytokine array, and Transwell assay were used to assess the transformation of NFs to CAFs. CCK-8 assay, colony formation, flow cytometry, Transwell assay, and nude mouse xenograft model were used to determine the effects of Serpin E1 on cell proliferation and metastasis in vitro and in vivo. Finally, Serpin E1 and/or FAP expression was measured in H. pylori-infected gerbil gastric mucosa and human gastric cancer tissues. Results Gastric CAFs are inflammatory CAFs with α-SMAlowFAPhighlumicanhigh. The interplay of H. pylori, fibroblasts, and cancer cells promotes the transition of NFs to CAFs by inducing cytokine release, especially Serpin E1. Long-term H. pylori infection and CAFs induce Serpin E1 expression in gerbil gastric tissues and human gastric cancer cells. Serpin E1 overexpression enhances the growth, migration, invasion of gastric cancer cells in vitro, and xenograft tumor growth in nude mice via inducing angiogenesis. Serpin E1 and FAP were highly expressed in cancer cells and CAFs of gastric cancer tissues, respectively, and a good correlation was observed between their expression. Higher Serpin E1 expression is negatively associated with the overall survival of patients with gastric cancer. Conclusions The interplay of H. pylori, fibroblasts, and cancer cells induced Serpin E1 expression to promote the activation of NFs to CAFs and gastric carcinogenesis. Targeting Serpin E1 will provide a promising therapeutic strategy for gastric cancer by disrupting the interaction between H. pylori, CAFs, and gastric cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03537-x.
Collapse
Affiliation(s)
- Xueshu Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.,Department of Laboratory Medicine, Guizhou Cancer Hospital, Guiyang, China
| | - Wei Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.,Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Wenling Wang
- Department of Abdominal Oncology, Guizhou Cancer Hospital, Guiyang, China
| | - Yining Xiang
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hang Yuan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
5
|
He J, Hu W, Ouyang Q, Zhang S, He L, Chen W, Li X, Hu C. Helicobacter pylori infection induces stem cell-like properties in Correa cascade of gastric cancer. Cancer Lett 2022; 542:215764. [PMID: 35654291 DOI: 10.1016/j.canlet.2022.215764] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 02/09/2023]
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer-related death. Its poor prognosis is attributed to unclear pathogenesis. Currently, the most widely accepted model for elucidating the mechanism of GC is the Correa cascade, which covers several histological lesions of the gastric mucosa. GC stem cells (CSCs) are crucial for oncogenesis in the Correa cascade and GC progression. As Helicobacter pylori (H. pylori) is the etiological factor in the Correa cascade, growing evidence suggests that enhancement of gastric stem cell-like properties and increase in CSCs correlate with H. pylori infection. In this paper, we review recent studies that present pathogenic mechanisms by which H. pylori induces gastric stem cell-like properties and CSCs, which may supplement the existing Correa model of GC. First, the dysfunction of developmental signaling pathways associated with H. pylori infection leads to the enhancement of gastric stemness. Second, H. pylori infection promotes alteration of the gastric mucosal microenvironment. In addition, epithelial-mesenchymal transition (EMT) may contribute to H. pylori-induced gastric stemness. Taken together, understanding these pathogeneses will provide potential therapeutic targets for the treatment of CSCs and malignant GC in H. pylori induced-Correa cascade of GC.
Collapse
Affiliation(s)
- JunJian He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - WeiChao Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - ShengWei Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - LiJiao He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - WeiYan Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - XinZhe Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - ChangJiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
6
|
Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in kidney disease. Adv Clin Chem 2021; 105:141-212. [PMID: 34809827 DOI: 10.1016/bs.acc.2021.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc and calcium endopeptidases which cleave extracellular matrix (ECM) proteins. They are also involved in the degradation of cell surface components and regulate multiple cellular processes, cell to cell interactions, cell proliferation, and cell signaling pathways. MMPs function in close interaction with the endogenous tissue inhibitors of matrix metalloproteinases (TIMPs), both of which regulate cell turnover, modulate various growth factors, and participate in the progression of tissue fibrosis and apoptosis. The multiple roles of MMPs and TIMPs are continuously elucidated in kidney development and repair, as well as in a number of kidney diseases. This chapter focuses on the current findings of the significance of MMPs and TIMPs in a wide range of kidney diseases, whether they result from kidney tissue changes, hemodynamic alterations, tubular epithelial cell apoptosis, inflammation, or fibrosis. In addition, the potential use of these endopeptidases as biomarkers of renal dysfunction and as targets for therapeutic interventions to attenuate kidney disease are also explored in this review.
Collapse
|
7
|
Ashraf AA, Gamal SM, Ashour H, Aboulhoda BE, Rashed LA, Harb IA, Abdelfattah GH, El-Seidi EA, Shawky HM. Investigating Helicobacter pylori-related pyloric hypomotility: functional, histological, and molecular alterations. Am J Physiol Gastrointest Liver Physiol 2021; 321:G461-G476. [PMID: 34431405 DOI: 10.1152/ajpgi.00364.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 01/31/2023]
Abstract
Multiple theories have been proposed describing the pathogenic mechanisms of Helicobacter pylori (H. pylori)-associated gastric motility disorders. We assessed ex vivo pyloric activity in H. pylori-infected rats, and tried to explore the associated ghrelin hormone alteration and pyloric fibrogenesis. In addition, miR-1 was assessed in pyloric tissue samples, being recently accused of having a role in smooth muscle dysfunction. Ninety adult male Wistar albino rats were assigned into nine groups: 1) control group, 2) sterile broth (vehicle group), 3) amoxicillin control, 4) omeperazole control, 5) clarithromycin control, 6) triple therapy control, 7) H. pylori- group, 8) H. pylori-clarithromycin group, and 9) H. pylori-triple therapy group. Urease enzyme activity was applied as an indicator of H. pylori infection. Ex vivo pyloric contractility was evaluated. Serum ghrelin was assessed, and histological tissue evaluation was performed. Besides, pyloric muscle miR-1 expression was measured. The immunological epithelial to mesenchymal transition (EMT) markers; transforming growth factor β (TGFβ), α-smooth muscle actin (α-SMA), and E-cadherin-3 were also evaluated. By H. pylori infection, a significant (P < 0.001) reduced pyloric contractility index was recorded. The miR-1 expression was decreased (P < 0.001) in the H. pylori-infected group, associated with reduced serum ghrelin, elevated TGFβ, and α-SMA levels and reduced E-cadherin levels. Decreased miR-1 and disturbed molecular pattern were improved by treatment. In conclusion, H. pylori infection was associated with reduced miR-1, epithelial to mesenchymal transition, and pyloric hypomotility. The miR-1 may be a target for further studies to assess its possible involvement in H. pylori-associated pyloric dysfunction, which might help in the management of human H. pylori manifestations and complications.NEW & NOTEWORTHY This work is investigating functional, histopathological, and molecular changes underlying Helicobacter pylori hypomotility and is correlating these with miR-1, whose disturbance is supposed to be involved in smooth muscle dysfunction and cell proliferation according to literature. Epithelial to mesenchymal transition and reduced ghrelin hormone may contribute to H. pylori infection-associated hypomotility. H. pylori infection was associated with reduced pyloric miR-1 expression. Targeting miR-1 could be valuable in the clinical management of pyloric hypofunction.
Collapse
Affiliation(s)
- Aya Aly Ashraf
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sarah Mahmoud Gamal
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hend Ashour
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
- Department of Medical Physiology, Faculty of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Inas Anas Harb
- Department of Pharmacology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Gaber Hassan Abdelfattah
- Department of Anatomy and Embryology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Eman Ahmed El-Seidi
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Heba Mohamed Shawky
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Zhao Q, Zhao R, Song C, Wang H, Rong J, Wang F, Yan L, Song Y, Xie Y. Increased IGFBP7 Expression Correlates with Poor Prognosis and Immune Infiltration in Gastric Cancer. J Cancer 2021; 12:1343-1355. [PMID: 33531979 PMCID: PMC7847654 DOI: 10.7150/jca.50370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Insulin-like growth factor binding protein-7 (IGFBP7) contributes to multiple biological processes in various tumors. However, the role of IGFBP7 in gastric cancer (GC) is still undetermined. The study aims to explore the role of IGFBP7 in GC via an integrated bioinformatics analysis. Methods: IGFBP7 expression levels in GC and its normal gastric tissues were analyzed using multiple databases, including the Tumor Immune Estimation Resource (TIMER), Oncomine, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, as well as by our clinical gastric specimens. The methylation analysis was conducted with MEXPRESS, UALCAN and Xena online tools. The survival analysis was conducted using the Kaplan-Meier Plotter and Gene Expression Profiling Interactive Analysis (GEPIA) databases. Coexpressed genes of IGFBP7 were selected with the cBioPortal tool and enrichment analysis was conducted with the clusterProfiler package in R software. Gene set enrichment analysis (GSEA) was performed to explore the IGFBP7-related biological processes involved in GC. Correlations between IGFBP7 and immune cell infiltrates were analyzed using the TIMER database. Results: IGFBP7 expression was significantly upregulated in GC and correlated with stage, grade, tumor status and Helicobacter pylori infection. High IGFBP7 expression and low IGFBP7 methylation levels were significantly associated with short survival of patients with GC. Univariate and multivariate analyses revealed that IGFBP7 was an independent risk factor for GC. The coexpressed genes LHFPL6, SEPTIN4, HSPB2, LAYN and GGT5 predicted unfavorable outcomes of GC. Enrichment analysis showed that the coexpressed genes were involved in extracellular matrix (ECM)-related processes. GSEA indicated that IGFBP7 was positively related to ECM and inflammation-related pathways. TIMER analysis indicated that the mRNA level of IGFBP7 was strongly correlated with genes related to various infiltrating immune cells in GC, especially with gene markers of tumor associated macrophages (TAMs). Conclusions: Increased IGFBP7 expression correlates with poor prognosis and immune cell infiltration in GC, which might be a potential biomarker for the diagnosis of GC.
Collapse
Affiliation(s)
- Qiaoyun Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Rulin Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Conghua Song
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Huan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Jianfang Rong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Fangfei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Lili Yan
- Laboratory of Biochemistry and Molecular Biology, Jiangxi Institute of Medical Sciences, Nanchang 330000, Jiangxi Province, China
| | - Yanping Song
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Yong Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| |
Collapse
|
9
|
Lloyd KA, Parsons BN, Burkitt MD, Moore AR, Papoutsopoulou S, Boyce M, Duckworth CA, Exarchou K, Howes N, Rainbow L, Fang Y, Oxvig C, Dodd S, Varro A, Hall N, Pritchard DM. Netazepide Inhibits Expression of Pappalysin 2 in Type 1 Gastric Neuroendocrine Tumors. Cell Mol Gastroenterol Hepatol 2020; 10:113-132. [PMID: 32004755 PMCID: PMC7215182 DOI: 10.1016/j.jcmgh.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS In patients with autoimmune atrophic gastritis and achlorhydria, hypergastrinemia is associated with the development of type 1 gastric neuroendocrine tumors (gNETs). Twelve months of treatment with netazepide (YF476), an antagonist of the cholecystokinin B receptor (CCKBR or CCK2R), eradicated some type 1 gNETs in patients. We investigated the mechanisms by which netazepide induced gNET regression using gene expression profiling. METHODS We obtained serum samples and gastric corpus biopsy specimens from 8 patients with hypergastrinemia and type 1 gNETs enrolled in a phase 2 trial of netazepide. Control samples were obtained from 10 patients without gastric cancer. We used amplified and biotinylated sense-strand DNA targets from total RNA and Affymetrix (Thermofisher Scientific, UK) Human Gene 2.0 ST microarrays to identify differentially expressed genes in stomach tissues from patients with type 1 gNETs before, during, and after netazepide treatment. Findings were validated in a human AGSGR gastric adenocarcinoma cell line that stably expresses human CCK2R, primary mouse gastroids, transgenic hypergastrinemic INS-GAS mice, and patient samples. RESULTS Levels of pappalysin 2 (PAPPA2) messenger RNA were reduced significantly in gNET tissues from patients receiving netazepide therapy compared with tissues collected before therapy. PAPPA2 is a metalloproteinase that increases the bioavailability of insulin-like growth factor (IGF) by cleaving IGF binding proteins (IGFBPs). PAPPA2 expression was increased in the gastric corpus of patients with type 1 gNETs, and immunohistochemistry showed localization in the same vicinity as CCK2R-expressing enterochromaffin-like cells. Up-regulation of PAPPA2 also was found in the stomachs of INS-GAS mice. Gastrin increased PAPPA2 expression with time and in a dose-dependent manner in gastric AGSGR cells and mouse gastroids by activating CCK2R. Knockdown of PAPPA2 in AGSGR cells with small interfering RNAs significantly decreased their migratory response and tissue remodeling in response to gastrin. Gastrin altered the expression and cleavage of IGFBP3 and IGFBP5. CONCLUSIONS In an analysis of human gNETS and mice, we found that gastrin up-regulates the expression of gastric PAPPA2. Increased PAPPA2 alters IGF bioavailability, cell migration, and tissue remodeling, which are involved in type 1 gNET development. These effects are inhibited by netazepide.
Collapse
Affiliation(s)
- Katie A Lloyd
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Bryony N Parsons
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael D Burkitt
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Andrew R Moore
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals, National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Stamatia Papoutsopoulou
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Malcolm Boyce
- Trio Medicines, Ltd, Hammersmith Medicines Research, London, United Kingdom
| | - Carrie A Duckworth
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Klaire Exarchou
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals, National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Nathan Howes
- Liverpool University Hospitals, National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Lucille Rainbow
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Steven Dodd
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Varro
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Neil Hall
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; The Earlham Institute, Norwich, Norfolk, United Kingdom; School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals, National Health Service Foundation Trust, Liverpool, United Kingdom.
| |
Collapse
|
10
|
Zakiyanov O, Kalousová M, Zima T, Tesař V. Matrix Metalloproteinases in Renal Diseases: A Critical Appraisal. Kidney Blood Press Res 2019; 44:298-330. [PMID: 31185475 DOI: 10.1159/000499876] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/10/2019] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases within the metzincin protein family that not only cleave extracellular matrix (ECM) components, but also process the non-ECM molecules, including various growth factors and their binding proteins. MMPs participate in cell to ECM interactions, and MMPs are known to be involved in cell proliferation mechanisms and most probably apoptosis. These proteinases are grouped into six classes: collagenases, gelatinases, stromelysins, matrilysins, membrane type MMPs, and other MMPs. Various mechanisms regulate the activity of MMPs, inhibition by tissue inhibitors of metalloproteinases being the most important. In the kidney, intrinsic glomerular cells and tubular epithelial cells synthesize several MMPs. The measurement of circulating MMPs can provide valuable information in patients with kidney diseases. They play an important role in many renal diseases, both acute and chronic. This review attempts to summarize the current knowledge of MMPs in the kidney and discusses recent data from patient and animal studies with reference to specific diseases. A better understanding of the MMPs' role in renal remodeling may open the way to new interventions favoring deleterious renal changes in a number of kidney diseases.
Collapse
Affiliation(s)
- Oskar Zakiyanov
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia,
| | - Marta Kalousová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vladimír Tesař
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| |
Collapse
|
11
|
Najgebauer H, Jarnuczak AF, Varro A, Sanderson CM. Integrative Omic Profiling Reveals Unique Hypoxia Induced Signatures in Gastric Cancer Associated Myofibroblasts. Cancers (Basel) 2019; 11:cancers11020263. [PMID: 30813438 PMCID: PMC6406696 DOI: 10.3390/cancers11020263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
Although hypoxia is known to contribute to several aspects of tumour progression, relatively little is known about the effects of hypoxia on cancer-associated myofibroblasts (CAMs), or the consequences that conditional changes in CAM function may have on tumour development and metastasis. To investigate this issue in the context of gastric cancer, a comparative multiomic analysis was performed on populations of patient-derived myofibroblasts, cultured under normoxic or hypoxic conditions. Data from this study reveal a novel set of CAM-specific hypoxia-induced changes in gene expression and secreted proteins. Significantly, these signatures are not observed in either patient matched adjacent tissue myofibroblasts (ATMs) or non-cancer associated normal tissue myofibroblasts (NTMs). Functional characterisation of different myofibroblast populations shows that hypoxia-induced changes in gene expression not only enhance the ability of CAMs to induce cancer cell migration, but also confer pro-tumorigenic (CAM-like) properties in NTMs. This study provides the first global mechanistic insight into the molecular changes that contribute to hypoxia-induced pro-tumorigenic changes in gastric stromal myofibroblasts.
Collapse
Affiliation(s)
- Hanna Najgebauer
- Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Andrew F Jarnuczak
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Andrea Varro
- Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | - Christopher M Sanderson
- Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| |
Collapse
|
12
|
Liao QS, Du Q, Lou J, Xu JY, Xie R. Roles of Na +/Ca 2+ exchanger 1 in digestive system physiology and pathophysiology. World J Gastroenterol 2019; 25:287-299. [PMID: 30686898 PMCID: PMC6343099 DOI: 10.3748/wjg.v25.i3.287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023] Open
Abstract
The Na+/Ca2+ exchanger (NCX) protein family is a part of the cation/Ca2+ exchanger superfamily and participates in the regulation of cellular Ca2+ homeostasis. NCX1, the most important subtype in the NCX family, is expressed widely in various organs and tissues in mammals and plays an especially important role in the physiological and pathological processes of nerves and the cardiovascular system. In the past few years, the function of NCX1 in the digestive system has received increasing attention; NCX1 not only participates in the healing process of gastric ulcer and gastric mucosal injury but also mediates the development of digestive cancer, acute pancreatitis, and intestinal absorption. This review aims to explore the roles of NCX1 in digestive system physiology and pathophysiology in order to guide clinical treatments.
Collapse
Affiliation(s)
- Qiu-Shi Liao
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Jing-Yu Xu
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
13
|
Chemerin acts via CMKLR1 and GPR1 to stimulate migration and invasion of gastric cancer cells: putative role of decreased TIMP-1 and TIMP-2. Oncotarget 2019; 10:98-112. [PMID: 30719206 PMCID: PMC6349446 DOI: 10.18632/oncotarget.26414] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
The chemokine-like peptide, chemerin, stimulates chemotaxis in several cell types. In this study we examined the expression of putative chemerin receptors in gastric cancer and the action of chemerin on cancer cell migration and invasion. Immunohistochemical studies of gastric tumors identified expression of two putative receptors, chemokine-like receptor-1 (CMKLR1) and G-protein coupled receptor 1(GPR1), in cancer cells; there was also some expression in stromal myofibroblasts although generally at a lower intensity. The expression of both receptors was detected in a gastric cancer cell line, AGS; chemerin itself was expressed in cultured gastric cancer myofibroblasts but not AGS cells. Chemerin stimulated (a) morphological transformation of AGS cells characterized by extension of processes and cell scattering, (b) migration in scratch wound assays and (c) both migration and invasion in Boyden chamber chemotaxis assays. These responses were inhibited by two putative receptor antagonists CCX832 and α-NETA. Inhibition of receptor expression by siRNA selectively reduced CMKLR1 or GPR1 and inhibited the action of chemerin indicating that both receptors contributed to the functional response. Using a proteomic approach employing stable isotope dynamic labeling of secretomes (SIDLS) to selectively label secreted proteins, we identified down regulation of tissue inhibitors of metalloproteinease (TIMP)1 and TIMP2 in media in response to chemerin. When cells were treated with chemerin and TIMP1 or TIMP2 the migration response to chemerin was reduced. The data suggest a role for chemerin in promoting the invasion of gastric cancer cells via CMKLR1 and GPR1at least partly by reducing TIMP1 and TIMP2 expression. Chemerin receptor antagonists have potential in inhibiting gastric cancer progression.
Collapse
|
14
|
Krzysiek‐Maczka G, Targosz A, Szczyrk U, Strzałka M, Sliwowski Z, Brzozowski T, Czyz J, Ptak‐Belowska A. Role of Helicobacter pylori infection in cancer-associated fibroblast-induced epithelial-mesenchymal transition in vitro. Helicobacter 2018; 23:e12538. [PMID: 30246423 PMCID: PMC6282800 DOI: 10.1111/hel.12538] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Major human gastrointestinal pathogen Helicobacter pylori (H. pylori) colonizes the gastric mucosa causing inflammation and severe complications including cancer, but the involvement of fibroblasts in the pathogenesis of these disorders in H. pylori-infected stomach has been little studied. Normal stroma contains few fibroblasts, especially myofibroblasts. Their number rapidly increases in the reactive stroma surrounding inflammatory region and neoplastic tissue; however, the interaction between H. pylori and fibroblasts remains unknown. We determined the effect of coincubation of normal rat gastric fibroblasts with alive H. pylori (cagA+vacA+) and H. pylori (cagA-vacA-) strains on the differentiation of these fibroblasts into cells possessing characteristics of cancer-associated fibroblasts (CAFs) able to induce epithelial-mesenchymal transition (EMT) of normal rat gastric epithelial cells (RGM-1). MATERIALS AND METHODS The panel of CAFs markers mRNA was analyzed in H. pylori (cagA+vacA+)-infected fibroblasts by RT-PCR. After insert coculture of differentiated fibroblasts with RGM-1 cells from 24 up to 48, 72, and 96 hours, the mRNA expression for EMT-associated genes was analyzed by RT-PCR. RESULTS The mRNA expression for CAFs markers was significantly increased after 72 hours of infection with H. pylori (cagA+vacA+) but not H. pylori (cagA-vacA-) strain. Following coculture with CAFs, RGM-1 cells showed significant decrease in E-cadherin mRNA, and the parallel increase in the expression of Twist and Snail transcription factors mRNA was observed along with the overexpression of mRNAs for TGFβR, HGFR, FGFR, N-cadherin, vimentin, α-SMA, VEGF, and integrin-β1. CONCLUSION Helicobacter pylori (cagA+vacA+) strain induces differentiation of normal fibroblasts into CAFs, likely to initiate the EMT process in RGM-1 epithelial cell line.
Collapse
Affiliation(s)
- Gracjana Krzysiek‐Maczka
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Aneta Targosz
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Urszula Szczyrk
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Malgorzata Strzałka
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Zbigniew Sliwowski
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Tomasz Brzozowski
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Jarosław Czyz
- Department of Cell BiologyThe Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityCracowPoland
| | - Agata Ptak‐Belowska
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| |
Collapse
|
15
|
Hammond DE, Kumar JD, Raymond L, Simpson DM, Beynon RJ, Dockray GJ, Varro A. Stable Isotope Dynamic Labeling of Secretomes (SIDLS) Identifies Authentic Secretory Proteins Released by Cancer and Stromal Cells. Mol Cell Proteomics 2018; 17:1837-1849. [PMID: 29915148 PMCID: PMC6126392 DOI: 10.1074/mcp.tir117.000516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/18/2018] [Indexed: 12/31/2022] Open
Abstract
Analysis of secretomes critically underpins the capacity to understand the mechanisms determining interactions between cells and between cells and their environment. In the context of cancer cell micro-environments, the relevant interactions are recognized to be an important determinant of tumor progression. Global proteomic analyses of secretomes are often performed at a single time point and frequently identify both classical secreted proteins (possessing an N-terminal signal sequence), as well as many intracellular proteins, the release of which is of uncertain biological significance. Here, we describe a mass spectrometry-based method for stable isotope dynamic labeling of secretomes (SIDLS) that, by dynamic SILAC, discriminates the secretion kinetics of classical secretory proteins and intracellular proteins released from cancer and stromal cells in culture. SIDLS is a robust classifier of the different cellular origins of proteins within the secretome and should be broadly applicable to nonproliferating cells and cells grown in short term culture.
Collapse
Affiliation(s)
- Dean E Hammond
- From the ‡Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, UK;
| | - J Dinesh Kumar
- From the ‡Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, UK
| | - Lorna Raymond
- From the ‡Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, UK
| | - Deborah M Simpson
- §Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown St, Liverpool, UK
| | - Robert J Beynon
- §Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown St, Liverpool, UK
| | - Graham J Dockray
- From the ‡Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, UK
| | - Andrea Varro
- From the ‡Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, UK
| |
Collapse
|
16
|
Garalla HM, Lertkowit N, Tiszlavicz L, Reisz Z, Holmberg C, Beynon R, Simpson D, Varga A, Kumar JD, Dodd S, Pritchard DM, Moore AR, Rosztóczy AI, Wittman T, Simpson A, Dockray GJ, Varro A. Matrix metalloproteinase (MMP)-7 in Barrett's esophagus and esophageal adenocarcinoma: expression, metabolism, and functional significance. Physiol Rep 2018; 6:e13683. [PMID: 29845775 PMCID: PMC5974721 DOI: 10.14814/phy2.13683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 12/18/2022] Open
Abstract
Matrix metalloproteinase (MMP)-7, unlike many MMPs, is typically expressed in epithelial cells. It has been linked to epithelial responses to infection, injury, and tissue remodeling including the progression of a number of cancers. We have now examined how MMP-7 expression changes in the progression to esophageal adenocarcinoma (EAC), and have studied mechanisms regulating its expression and its functional significance. Immunohistochemistry revealed that MMP-7 was weakly expressed in normal squamous epithelium adjacent to EAC but was abundant in epithelial cells in both preneoplastic lesions of Barrett's esophagus and EAC particularly at the invasive front. In the stroma, putative myofibroblasts expressing MMP-7 were abundant at the invasive front but were scarce or absent in adjacent tissue. Western blot and ELISA revealed high constitutive secretion of proMMP-7 in an EAC cell line (OE33) that was inhibited by the phosphatidylinositol (PI) 3-kinase inhibitor LY294002 but not by inhibitors of protein kinase C, or MAP kinase activation. There was detectable proMMP-7 in cultured esophageal myofibroblasts but it was undetectable in media. Possible metabolism of MMP-7 by myofibroblasts studied by proteomic analysis indicated degradation via extensive endopeptidase, followed by amino- and carboxpeptidase, cleavages. Myofibroblasts exhibited increased migration and invasion in response to conditioned media from OE33 cells that was reduced by MMP-7 knockdown and immunoneutralization. Thus, MMP-7 expression increases at the invasive front in EAC which may be partly attributable to activation of PI 3-kinase. Secreted MMP-7 may modify the tumor microenvironment by stimulating stromal cell migration and invasion.
Collapse
Affiliation(s)
- Hanan M. Garalla
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUnited kingdom
| | - Nantaporn Lertkowit
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUnited kingdom
| | | | - Zita Reisz
- Department of PathologyUniversity of SzegedSzegedHungary
| | - Chris Holmberg
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUnited kingdom
| | - Rob Beynon
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUnited kingdom
| | - Deborah Simpson
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUnited kingdom
| | - Akos Varga
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUnited kingdom
| | - Jothi Dinesh Kumar
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUnited kingdom
| | - Steven Dodd
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUnited kingdom
| | - David Mark Pritchard
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUnited kingdom
| | - Andrew R. Moore
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUnited kingdom
| | | | - Tibor Wittman
- First Department of Internal MedicineUniversity of SzegedSzegedHungary
| | - Alec Simpson
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUnited kingdom
| | - Graham J. Dockray
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUnited kingdom
| | - Andrea Varro
- Institute of Translational MedicineUniversity of LiverpoolLiverpoolUnited kingdom
| |
Collapse
|
17
|
Varga A, Kumar JD, Simpson AWM, Dodd S, Hegyi P, Dockray GJ, Varro A. Cell cycle dependent expression of the CCK2 receptor by gastrointestinal myofibroblasts: putative role in determining cell migration. Physiol Rep 2017; 5:5/19/e13394. [PMID: 29038353 PMCID: PMC5641928 DOI: 10.14814/phy2.13394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 01/11/2023] Open
Abstract
The well‐known action of the gastric hormone gastrin in stimulating gastric acid secretion is mediated by activation of cholecystokinin‐2 receptors (CCK2R). The latter are expressed by a variety of cell types suggesting that gastrin is implicated in multiple functions. During wound healing in the stomach CCK2R may be expressed by myofibroblasts. We have now characterized CCK2R expression in cultured myofibroblasts. Immunocytochemistry showed that a relatively small proportion (1–6%) of myofibroblasts expressed the receptor regardless of the region of the gut from which they were derived, or whether from cancer or control tissue. Activation of CCK2R by human heptadecapeptide gastrin (hG17) increased intracellular calcium concentrations in a small subset of myofibroblasts indicating the presence of a functional receptor. Unexpectedly, we found over 80% of cells expressing CCK2R were also labeled with 5‐ethynyl‐2′‐deoxyuridine (EdU) which is incorporated into DNA during S‐phase of the cell cycle. hG17 did not stimulate EdU incorporation but increased migration of both EdU‐labeled and unlabelled myofibroblasts; the migratory response was inhibited by a CCK2R antagonist and by an inhibitor of IGF receptor tyrosine kinase; hG17 also increased IGF‐2 transcript abundance. The data suggest myofibroblasts express CCK2R in a restricted period of the cell cycle during S‐phase, and that gastrin accelerates migration of these cells; it also stimulates migration of adjacent cells probably through paracrine release of IGF. Together with previous findings, the results raise the prospect that gastrin controls the position of dividing myofibroblasts which may be relevant in wound healing and cancer progression in the gastrointestinal tract.
Collapse
Affiliation(s)
- Akos Varga
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jothi Dinesh Kumar
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Alec W M Simpson
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Steven Dodd
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Peter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Institute of Translational Medicine, University of Pecs, Pecs, Hungary
| | - Graham J Dockray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Varro
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Proteolysis in Helicobacter pylori-Induced Gastric Cancer. Toxins (Basel) 2017; 9:toxins9040134. [PMID: 28398251 PMCID: PMC5408208 DOI: 10.3390/toxins9040134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/15/2022] Open
Abstract
Persistent infections with the human pathogen and class-I carcinogen Helicobacter pylori (H. pylori) are closely associated with the development of acute and chronic gastritis, ulceration, gastric adenocarcinoma and lymphoma of the mucosa-associated lymphoid tissue (MALT) system. Disruption and depolarization of the epithelium is a hallmark of H. pylori-associated disorders and requires extensive modulation of epithelial cell surface structures. Hence, the complex network of controlled proteolysis which facilitates tissue homeostasis in healthy individuals is deregulated and crucially contributes to the induction and progression of gastric cancer through processing of extracellular matrix (ECM) proteins, cell surface receptors, membrane-bound cytokines, and lateral adhesion molecules. Here, we summarize the recent reports on mechanisms how H. pylori utilizes a variety of extracellular proteases, involving the proteases Hp0169 and high temperature requirement A (HtrA) of bacterial origin, and host matrix-metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs) and tissue inhibitors of metalloproteinases (TIMPs). H. pylori-regulated proteases represent predictive biomarkers and attractive targets for therapeutic interventions in gastric cancer.
Collapse
|
19
|
Ke B, Fan C, Yang L, Fang X. Matrix Metalloproteinases-7 and Kidney Fibrosis. Front Physiol 2017; 8:21. [PMID: 28239354 PMCID: PMC5301013 DOI: 10.3389/fphys.2017.00021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022] Open
Abstract
Matrix metalloproteinase-7 (MMP-7) is a secreted zinc- and calcium-dependent endopeptidase that degrades a broad range of extracellular matrix substrates and additional substrates. MMP-7 playsa crucial role in a diverse array of cellular processes and appears to be a key regulator of fibrosis in several diseases, including pulmonary fibrosis, liver fibrosis, and cystic fibrosis. In particular, the relationship between MMP-7 and kidney fibrosis has attracted significant attention in recent years. Growing evidence indicates that MMP-7 plays an important role in the pathogenesis of kidney fibrosis. Here, we summarize the recent progress in the understanding of the role of MMP-7 in kidney fibrosis. In particular, we discuss how MMP-7 contributes to kidney fibrotic lesions via the following three pathways: epithelial-mesenchymal transition (EMT), transforming growth factor-beta (TGF-β) signaling, and extracellular matrix (ECM) deposition. Further dissection of the crosstalk among and regulation of these pathways will help clinicians and researchers develop effective therapeutic approaches for treating chronic kidney disease.
Collapse
Affiliation(s)
- Ben Ke
- The Third Hospital of Nanchang Nanchang, China
| | - Chuqiao Fan
- Nanchang University School of Medicine Nanchang, China
| | - Liping Yang
- Department of Nephrology, The Second Affiliated Hospital to Nanchang University Nanchang, China
| | - Xiangdong Fang
- Department of Breast Surgery, Jiangxi Cancer Hospital Nanchang, China
| |
Collapse
|
20
|
Banerjee S, Ghosh S, Sinha K, Sil PC. Unfolding the Mechanism of Proteases in Pathophysiology of Gastrointestinal Diseases. PATHOPHYSIOLOGICAL ASPECTS OF PROTEASES 2017:583-603. [DOI: 10.1007/978-981-10-6141-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
S Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A. In vitro models of cancer stem cells and clinical applications. BMC Cancer 2016; 16:738. [PMID: 27766946 PMCID: PMC5073996 DOI: 10.1186/s12885-016-2774-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called “cancer stem cells” (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours. The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.
Collapse
Affiliation(s)
- Sara S Franco
- Szent István University, Gödöllö, Hungary.,Biotalentum Ltd., Gödöllö, Hungary
| | | | - Maria S Iliou
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ali Mobasheri
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - András Dinnyés
- Szent István University, Gödöllö, Hungary. .,Biotalentum Ltd., Gödöllö, Hungary. .,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Ma HY, Liu XZ, Liang CM. Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer. World J Gastroenterol 2016; 22:6619-6628. [PMID: 27547005 PMCID: PMC4970470 DOI: 10.3748/wjg.v22.i29.6619] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/12/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common malignancy in the world. The major cause of GC is chronic infection with Helicobacter pylori (H. pylori). Infection with H. pylori leads to an active inflammatory microenvironment that is maintained by immune cells such as T cells, macrophages, natural killer cells, among other cells. Immune cell dysfunction allows the initiation and accumulation of mutations in GC cells, inducing aberrant proliferation and protection from apoptosis. Meanwhile, immune cells can secrete certain signals, including cytokines, and chemokines, to alter intracellular signaling pathways in GC cells. Thus, GC cells obtain the ability to metastasize to lymph nodes by undergoing the epithelial-mesenchymal transition (EMT), whereby epithelial cells lose their epithelial attributes and acquire a mesenchymal cell phenotype. Metastasis is a leading cause of death for GC patients, and the involved mechanisms are still under investigation. In this review, we summarize the current research on how the inflammatory environment affects GC initiation and metastasis via EMT.
Collapse
|
23
|
Bhandari S, Bakke I, Kumar J, Beisvag V, Sandvik AK, Thommesen L, Varro A, Nørsett KG. Connective tissue growth factor is activated by gastrin and involved in gastrin-induced migration and invasion. Biochem Biophys Res Commun 2016; 475:119-24. [PMID: 27179776 DOI: 10.1016/j.bbrc.2016.05.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 01/28/2023]
Abstract
Connective tissue growth factor (CTGF) has been reported in gastric adenocarcinoma and in carcinoid tumors. The aim of this study was to explore a possible link between CTGF and gastrin in gastric epithelial cells and to study the role of CTGF in gastrin induced migration and invasion of AGS-GR cells. The effects of gastrin were studied using RT-qPCR, Western blot and assays for migration and invasion. We report an association between serum gastrin concentrations and CTGF abundancy in the gastric corpus mucosa of hypergastrinemic subjects and mice. We found a higher expression of CTGF in gastric mucosa tissue adjacent to tumor compared to normal control tissue. We showed that gastrin induced expression of CTGF in gastric epithelial AGS-GR cells via MEK, PKC and PKB/AKT pathways. CTGF inhibited gastrin induced migration and invasion of AGS-GR cells. We conclude that CTGF expression is stimulated by gastrin and involved in remodeling of the gastric epithelium.
Collapse
Affiliation(s)
- Sabin Bhandari
- Department of Cancer Research and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingunn Bakke
- Department of Cancer Research and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - J Kumar
- Department of Cell and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Vidar Beisvag
- Department of Cancer Research and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne K Sandvik
- Department of Cancer Research and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway
| | - Liv Thommesen
- Department of Cancer Research and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andrea Varro
- Department of Cell and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kristin G Nørsett
- Department of Cancer Research and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Central Norway Regional Health Authority (RHA), Stjørdal, Norway.
| |
Collapse
|
24
|
Bornschein J, Seidel T, Langner C, Link A, Wex T, Selgrad M, Jechorek D, Meyer F, Bird-Lieberman E, Vieth M, Malfertheiner P. MMP2 and MMP7 at the invasive front of gastric cancer are not associated with mTOR expression. Diagn Pathol 2015; 10:212. [PMID: 26652716 PMCID: PMC4676863 DOI: 10.1186/s13000-015-0449-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 12/05/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Regulation of MMP expression by activation of mTOR signalling has been demonstrated for several tumor types, but has thus far not been confirmed in gastric cancer. FINDINGS The study compromised 128 patients who underwent gastric resection for cancer (66.4 % male; 86 intestinal, 42 diffuse type). Immunohistochemical staining of MMPs was performed to analyse the topographical pattern of MMP expression at the tumor center and the invasive front, respectively. MMP2 showed higher expression at the invasive front compared to the tumor center, whereas MMP7 staining scores were higher in the tumor center, and there was no difference for MMP9. The expression of p-mTOR was higher in the tumor center than at the invasive front, with a similar trend for mTOR. For intestinal type gastric cancer there was a weak correlation of MMP9 with expression of mTOR in the tumor center. Otherwise, there was no correlation of the MMPs with mTOR. By treatment of MKN45 gastric cancer cells with rapamycin, a reduction of p-mTOR in the Western blot was achieved; however, expression of MMPs remained unaffected. CONCLUSIONS Expression of MMP2 and MMP7 in gastric cancer is not associated with mTOR, MMP9 expression might be related to mTOR signalling in a subset of tumors.
Collapse
Affiliation(s)
- Jan Bornschein
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany.
| | - Tina Seidel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Cosima Langner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Thomas Wex
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Molecular Genetics, Medical Laboratory for Clinical Chemistry, Microbiology and Infectious Diseases, Am Neustädter Feld 47, Magdeburg, 39124, Germany
| | - Michael Selgrad
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Doerthe Jechorek
- Institute for Pathology, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Frank Meyer
- Department for General, Visceral and Vascular Surgery, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Elizabeth Bird-Lieberman
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael Vieth
- Institute for Pathology, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| |
Collapse
|
25
|
Mesenchymal Stem Cells Exhibit Regulated Exocytosis in Response to Chemerin and IGF. PLoS One 2015; 10:e0141331. [PMID: 26513261 PMCID: PMC4626093 DOI: 10.1371/journal.pone.0141331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play important roles in tissue repair and cancer progression. Our recent work suggests that some mesenchymal cells, notably myofibroblasts exhibit regulated exocytosis resembling that seen in neuroendocrine cells. We now report that MSCs also exhibit regulated exocytosis. Both a G-protein coupled receptor agonist, chemerin, and a receptor tyrosine kinase stimulant, IGF-II, evoked rapid increases in secretion of a marker protein, TGFβig-h3. The calcium ionophore, ionomycin, also rapidly increased secretion of TGFβig-h3 while inhibitors of translation (cycloheximide) or secretory protein transport (brefeldin A) had no effect, indicating secretion from preformed secretory vesicles. Inhibitors of the chemerin and IGF receptors specifically reduced the secretory response. Confocal microscopy of MSCs loaded with Fluo-4 revealed chemerin and IGF-II triggered intracellular Ca2+ oscillations requiring extracellular calcium. Immunocytochemistry showed co-localisation of TGFβig-h3 and MMP-2 to secretory vesicles, and transmission electron-microscopy showed dense-core secretory vesicles in proximity to the Golgi apparatus. Proteomic studies on the MSC secretome identified 64 proteins including TGFβig-h3 and MMP-2 that exhibited increased secretion in response to IGF-II treatment for 30min and western blot of selected proteins confirmed these data. Gene ontology analysis of proteins exhibiting regulated secretion indicated functions primarily associated with cell adhesion and in bioassays chemerin increased adhesion of MSCs and adhesion, proliferation and migration of myofibroblasts. Thus, MSCs exhibit regulated exocytosis that is compatible with an early role in tissue remodelling.
Collapse
|
26
|
Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit Rev Oncol Hematol 2015; 97:303-11. [PMID: 26467073 DOI: 10.1016/j.critrevonc.2015.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/06/2015] [Accepted: 09/29/2015] [Indexed: 12/14/2022] Open
Abstract
Growth stimuli in cancer growth resemble those exhibited in wound healing. However, the process of nemosis is absent in cancer-associated fibroblasts (CAFs), which remain constitutively active. CAFs are present in almost all solid tumors but are most abundant in breast, prostate and pancreatic cancers. TGF-β1, TGF-β2, PDGF, IL-6, bFGF, reactive oxide species and protein kinase C are considered the key players in tumor-induced transdifferentiation of surrounding fibroblasts. Full-extent transdifferentiation was obtained only when the medium contained TGF-β1 or TGF-β2 (with or without other factors), whereas PDGF, bFGF or IL-6 (each alone) induced only partial transdifferentiation. Recent evidence suggests that the fibroblasts associated with primary cancers differ from those associated with metastases. The metastases-associated fibroblasts are converted by a metastasis-specific spectrum of factors. A large portion of paracrine tumor signaling is mediated by cancer cell-derived vesicles termed exosomes and microvesicles. The cancer cell-derived exosomes contain abundant and diverse proteomes and a number of signaling factors (TGF-ß1, TGF-ß2, IL-6, MMP2 and MMP9), particularly under hypoxic conditions. In contrast to the traditional view, the clonal expansion and selection of neoplastic cells should not be viewed outside the host body context. It is vital for a neoplastic cell to achieve the ability to re-program host body cells into CAFs and by this influence to modulate its microenvironment and receive positive feedback for growth and drug resistance. Neoplastic cells, which fail to develop such capacity, do not pass critical barriers in tumorigenesis and remain dormant and benign.
Collapse
|
27
|
Kumar JD, Steele I, Moore AR, Murugesan SV, Rakonczay Z, Venglovecz V, Pritchard DM, Dimaline R, Tiszlavicz L, Varro A, Dockray GJ. Gastrin stimulates MMP-1 expression in gastric epithelial cells: putative role in gastric epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 2015; 309:G78-86. [PMID: 25977510 PMCID: PMC4504956 DOI: 10.1152/ajpgi.00084.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/06/2015] [Indexed: 01/31/2023]
Abstract
The pyloric antral hormone gastrin plays a role in remodeling of the gastric epithelium, but the specific targets of gastrin that mediate these effects are poorly understood. Glandular epithelial cells of the gastric corpus express matrix metalloproteinase (MMP)-1, which is a potential determinant of tissue remodeling; some of these cells express the CCK-2 receptor at which gastrin acts. We have now examined the hypothesis that gastrin stimulates expression of MMP-1 in the stomach. We determined MMP-1 transcript abundance in gastric mucosal biopsies from Helicobacter pylori negative human subjects with normal gastric mucosal histology, who had a range of serum gastrin concentrations due in part to treatment with proton pump inhibitors (PPI). The effects of gastrin were studied on gastric epithelial AGS-GR cells using Western blot and migration assays. In human subjects with increased serum gastrin due to PPI usage, MMP-1 transcript abundance was increased 2-fold; there was also increased MMP-7 transcript abundance but not MMP-3. In Western blots, gastrin increased proMMP-1 abundance, as well that of a minor band corresponding to active MMP-1, in the media of AGS-GR cells, and the response was mediated by protein kinase C and p42/44 MAP kinase. There was also increased MMP-1 enzyme activity. Gastrin-stimulated AGS-GR cell migration in both scratch wound and Boyden chamber assays was inhibited by MMP-1 immunoneutralization. We conclude that MMP-1 expression is a target of gastrin implicated in mucosal remodeling.
Collapse
Affiliation(s)
- J. Dinesh Kumar
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Islay Steele
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Andrew R. Moore
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Senthil V. Murugesan
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Zoltan Rakonczay
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Viktoria Venglovecz
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - D. Mark Pritchard
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Rodney Dimaline
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | | | - Andrea Varro
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Graham J. Dockray
- 1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| |
Collapse
|
28
|
Cerda MB, Batalla M, Anton M, Cafferata E, Podhajcer O, Plank C, Mykhaylyk O, Policastro L. Enhancement of nucleic acid delivery to hard-to-transfect human colorectal cancer cells by magnetofection at laminin coated substrates and promotion of the endosomal/lysosomal escape. RSC Adv 2015. [DOI: 10.1039/c5ra06562c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Optimization of nucleic acid delivery in hard-to-transfect colorectal cancer cells by magnetofection at coated laminin substrates and by the endosomal escape enhancement of magnetic complexes using INF-7 peptide.
Collapse
Affiliation(s)
- María Belén Cerda
- Laboratory of Nanomedicine
- National Atomic Energy Commission
- Buenos Aires
- Argentina
- Consejo Nacional Investigación Científicas y Técnicas (CONICET)
| | - Milena Batalla
- Laboratory of Nanomedicine
- National Atomic Energy Commission
- Buenos Aires
- Argentina
- Institute of Nanoscience and Nanotechnology
| | - Martina Anton
- Institute of Experimental Oncology and Therapy Research
- Technische Universität München
- Munich
- Germany
| | - Eduardo Cafferata
- Consejo Nacional Investigación Científicas y Técnicas (CONICET)
- Argentina
- Laboratory of Molecular and Cellular Therapy
- Leloir Institute Foundation
- Ciudad Autónoma de Buenos Aires
| | - Osvaldo Podhajcer
- Consejo Nacional Investigación Científicas y Técnicas (CONICET)
- Argentina
- Laboratory of Molecular and Cellular Therapy
- Leloir Institute Foundation
- Ciudad Autónoma de Buenos Aires
| | - Christian Plank
- Institute of Experimental Oncology and Therapy Research
- Technische Universität München
- Munich
- Germany
| | - Olga Mykhaylyk
- Institute of Experimental Oncology and Therapy Research
- Technische Universität München
- Munich
- Germany
| | - Lucia Policastro
- Laboratory of Nanomedicine
- National Atomic Energy Commission
- Buenos Aires
- Argentina
- Consejo Nacional Investigación Científicas y Técnicas (CONICET)
| |
Collapse
|
29
|
Mykhaylyk O, Sanchez-Antequera Y, Vlaskou D, Cerda MB, Bokharaei M, Hammerschmid E, Anton M, Plank C. Magnetic nanoparticle and magnetic field assisted siRNA delivery in vitro. Methods Mol Biol 2015; 1218:53-106. [PMID: 25319646 DOI: 10.1007/978-1-4939-1538-5_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This chapter describes how to design and conduct experiments to deliver siRNA to adherent cell cultures in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles (MNPs). These magnetic complexes are targeted to the cell surface by the application of a gradient magnetic field. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery. For this purpose, selected MNPs, phospholipids, and siRNAs are assembled in the presence of perfluorocarbon gas into flexible formulations of magnetic lipospheres (microbubbles). Methods are described how to accomplish the synthesis of magnetic nanoparticles for magnetofection and how to test the association of siRNA with the magnetic components of the transfection vector. A simple method is described to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Procedures are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA as well as magnetic microbubbles for magnetofection and downregulation of the target gene expression analysis with account for the toxicity determined using an MTT-based respiration activity test. A modification of the magnetic transfection triplexes with INF-7, fusogenic peptide, is described resulting in reporter gene silencing improvement in HeLa, Caco-2, and ARPE-19 cells. The methods described can also be useful for screening vector compositions and novel magnetic nanoparticle preparations for optimized siRNA transfection by magnetofection in any cell type.
Collapse
Affiliation(s)
- Olga Mykhaylyk
- Institute of Experimental Oncology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Strasse 22, Munich, 81675, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang L, Xu AM, Liu S, Liu W, Li TJ. Cancer-associated fibroblasts in digestive tumors. World J Gastroenterol 2014; 20:17804-17818. [PMID: 25548479 PMCID: PMC4273131 DOI: 10.3748/wjg.v20.i47.17804] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/22/2014] [Accepted: 07/11/2014] [Indexed: 02/07/2023] Open
Abstract
The significant influence of tumor stroma on malignant cells has been extensively investigated in this era of targeted therapy. The tumor microenvironment, as a dynamic system, is orchestrated by various cells including tumor vascular composing cells, inflammatory cells and fibroblasts. As a major and important component in tumor stroma, increasing evidence has shown that spindle-shaped cancer-associated fibroblasts (CAFs) are a significant modifier of cancer evolution, and promote tumorigenesis, tumor invasion and metastasis by stimulating angiogenesis, malignant cell survival, epithelial-mesenchymal transition (EMT) and proliferation via direct cell-to-cell contact or secretion of soluble factors in most digestive solid tumors. CAFs are thought to be activated, characterized by the expression of α-smooth muscle actin, fibroblast activated protein, fibroblast specific protein, vimentin, fibronectin, etc. They are hypothesized to originate from normal or aged fibroblasts, bone marrow-derived mesenchymal cells, or vascular endothelial cells. EMT may also be an important process generating CAFs, and most probably, CAFs may originate from multiple cells. A close link exists between EMT, tumor stem cells, and chemo-resistance of tumor cells, which is largely orchestrated by CAFs. CAFs significantly induce immunosuppression, and may be a prognostic marker in various malignancies. Targeted therapy toward CAFs has displayed promising anticancer efficacy, which further reinforces the necessity to explore the relationship between CAFs and their hosts.
Collapse
|
31
|
Kumar JD, Holmberg C, Kandola S, Steele I, Hegyi P, Tiszlavicz L, Jenkins R, Beynon RJ, Peeney D, Giger OT, Alqahtani A, Wang TC, Charvat TT, Penfold M, Dockray GJ, Varro A. Increased expression of chemerin in squamous esophageal cancer myofibroblasts and role in recruitment of mesenchymal stromal cells. PLoS One 2014; 9:e104877. [PMID: 25127029 PMCID: PMC4134237 DOI: 10.1371/journal.pone.0104877] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/15/2014] [Indexed: 12/20/2022] Open
Abstract
Stromal cells such as myofibroblasts influence tumor progression. The mechanisms are unclear but may involve effects on both tumor cells and recruitment of bone marrow-derived mesenchymal stromal cells (MSCs) which then colonize tumors. Using iTRAQ and LC-MS/MS we identified the adipokine, chemerin, as overexpressed in esophageal squamous cancer associated myofibroblasts (CAMs) compared with adjacent tissue myofibroblasts (ATMs). The chemerin receptor, ChemR23, is expressed by MSCs. Conditioned media (CM) from CAMs significantly increased MSC cell migration compared to ATM-CM; the action of CAM-CM was significantly reduced by chemerin-neutralising antibody, pretreatment of CAMs with chemerin siRNA, pretreatment of MSCs with ChemR23 siRNA, and by a ChemR23 receptor antagonist, CCX832. Stimulation of MSCs by chemerin increased phosphorylation of p42/44, p38 and JNK-II kinases and inhibitors of these kinases and PKC reversed chemerin-stimulated MSC migration. Chemerin stimulation of MSCs also induced expression and secretion of macrophage inhibitory factor (MIF) that tended to restrict migratory responses to low concentrations of chemerin but not higher concentrations. In a xenograft model consisting of OE21 esophageal cancer cells and CAMs, homing of MSCs administered i.v. was inhibited by CCX832. Thus, chemerin secreted from esophageal cancer myofibroblasts is a potential chemoattractant for MSCs and its inhibition may delay tumor progression.
Collapse
Affiliation(s)
- J. Dinesh Kumar
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Chris Holmberg
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Sandhir Kandola
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Islay Steele
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Peter Hegyi
- Department of Medicine and Surgery, University of Szeged, Szeged, Hungary
| | | | - Rosalind Jenkins
- Department of Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Robert J. Beynon
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - David Peeney
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Olivier T. Giger
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Ahlam Alqahtani
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Timothy C. Wang
- Department of Medicine, Columbia University Medical Center, New York, United States of America
| | | | - Mark Penfold
- ChemoCentryx, California, United States of America
| | - Graham J. Dockray
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Varro
- Department of Cell and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
32
|
Balabanova S, Holmberg C, Steele I, Ebrahimi B, Rainbow L, Burdyga T, McCaig C, Tiszlavicz L, Lertkowit N, Giger OT, Oliver S, Prior I, Dimaline R, Simpson D, Beynon R, Hegyi P, Wang TC, Dockray GJ, Varro A. The neuroendocrine phenotype of gastric myofibroblasts and its loss with cancer progression. Carcinogenesis 2014; 35:1798-1806. [PMID: 24710625 PMCID: PMC4123646 DOI: 10.1093/carcin/bgu086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/20/2014] [Accepted: 03/22/2014] [Indexed: 11/13/2022] Open
Abstract
Stromal cells influence cancer progression. Myofibroblasts are an important stromal cell type, which influence the tumour microenvironment by release of extracellular matrix (ECM) proteins, proteases, cytokines and chemokines. The mechanisms of secretion are poorly understood. Here, we describe the secretion of marker proteins in gastric cancer and control myofibroblasts in response to insulin-like growth factor (IGF) stimulation and, using functional genomic approaches, we identify proteins influencing the secretory response. IGF rapidly increased myofibroblast secretion of an ECM protein, TGFβig-h3. The secretory response was not blocked by inhibition of protein synthesis and was partially mediated by increased intracellular calcium (Ca(2+)). The capacity for evoked secretion was associated with the presence of dense-core secretory vesicles and was lost in cells from patients with advanced gastric cancer. In cells responding to IGF-II, the expression of neuroendocrine marker proteins, including secretogranin-II and proenkephalin, was identified by gene array and LC-MS/MS respectively, and verified experimentally. The expression of proenkephalin was decreased in cancers from patients with advanced disease. Inhibition of secretogranin-II expression decreased the secretory response to IGF, and its over-expression recovered the secretory response consistent with a role in secretory vesicle biogenesis. We conclude that normal and some gastric cancer myofibroblasts have a neuroendocrine-like phenotype characterized by Ca(2+)-dependent regulated secretion, dense-core secretory vesicles and expression of neuroendocrine marker proteins; loss of the phenotype is associated with advanced cancer. A failure to regulate myofibroblast protein secretion may contribute to cancer progression.
Collapse
Affiliation(s)
- Silvia Balabanova
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Chris Holmberg
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Islay Steele
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Bahram Ebrahimi
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX UK
| | - Lucille Rainbow
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX UK
| | - Ted Burdyga
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Cathy McCaig
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | | | - Nantaporn Lertkowit
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Olivier T Giger
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Simon Oliver
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Ian Prior
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Rod Dimaline
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Deborah Simpson
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX UK
| | - Rob Beynon
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX UK
| | - Peter Hegyi
- Department of Medicine, University of Szeged, Szeged, H-6701 Hungary
| | - Timothy C Wang
- Department of Medicine, Columbia University, New York, NY 10032-3802, USA and
| | - Graham J Dockray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Andrea Varro
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK, Department of Molecular and Clinical Cancer, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| |
Collapse
|
33
|
Chung HW, Lim JB. Role of the tumor microenvironment in the pathogenesis of gastric carcinoma. World J Gastroenterol 2014; 20:1667-1680. [PMID: 24587646 PMCID: PMC3930967 DOI: 10.3748/wjg.v20.i7.1667] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/22/2013] [Accepted: 12/06/2013] [Indexed: 02/06/2023] Open
Abstract
Gastric carcinoma (GC) is the 4th most prevalent cancer and has the 2nd highest cancer-related mortality rate worldwide. Despite the incidence of GC has decreased over the past few decades, it is still a serious health problem. Chronic inflammatory status of the stomach, caused by the infection of Helicobacter pylori (H. pylori) and through the production of inflammatory mediators within the parenchyma is suspected to play an important role in the initiation and progression of GC. In this review, the correlation between chronic inflammation and H. pylori infection as an important factor for the development of GC will be discussed. Major components, including tumor-associated macrophages, lymphocytes, cancer-associated fibroblasts, angiogenic factors, cytokines, and chemokines of GC microenvironment and their mechanism of action on signaling pathways will also be discussed. Increasing our understanding of how the components of the tumor microenviroment interact with GC cells and the signaling pathways involved could help identify new therapeutic and chemopreventive targets.
Collapse
|
34
|
De Wever O, Van Bockstal M, Mareel M, Hendrix A, Bracke M. Carcinoma-associated fibroblasts provide operational flexibility in metastasis. Semin Cancer Biol 2014; 25:33-46. [PMID: 24406210 DOI: 10.1016/j.semcancer.2013.12.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 01/11/2023]
Abstract
Malignant cancer cells do not act as lone wolves to achieve metastasis, as they exist within a complex ecosystem consisting of an extracellular matrix scaffold populated by carcinoma-associated fibroblasts (CAFs), endothelial cells and immune cells. We recognize local (primary tumor) and distant ecosystems (metastasis). CAFs, also termed myofibroblasts, may have other functions in the primary tumor versus the metastasis. Cellular origin and tumor heterogeneity lead to the expression of specific markers. The molecular characteristics of a CAF remain in evolution since CAFs show operational flexibility. CAFs respond dynamically to a cancer cell's fluctuating demands by shifting profitable signals necessary in metastasis. Local, tissue-resident fibroblasts and mesenchymal stem cells (MSCs) coming from reservoir sites such as bone marrow and adipose tissue are the main progenitor cells of CAFs. CAFs may induce awakening from metastatic dormancy, a major cause of cancer-specific death. Cancer management protocols influence CAF precursor recruitment and CAF activation. Since CAF signatures represent early changes in metastasis, including formation of pre-metastatic niches, we discuss whether liquid biopsies, including exosomes, may detect and monitor CAF reactions allowing optimized prognosis of cancer patients.
Collapse
Affiliation(s)
- Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium.
| | | | - Marc Mareel
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
35
|
Kemény LV, Schnúr A, Czepán M, Rakonczay Z, Gál E, Lonovics J, Lázár G, Simonka Z, Venglovecz V, Maléth J, Judák L, Németh IB, Szabó K, Almássy J, Virág L, Geisz A, Tiszlavicz L, Yule DI, Wittmann T, Varró A, Hegyi P. Na+/Ca2+ exchangers regulate the migration and proliferation of human gastric myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2013; 305:G552-G563. [PMID: 23907822 DOI: 10.1152/ajpgi.00394.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrointestinal myofibroblasts are contractile, electrically nonexcitable, transitional cells that play a role in extracellular matrix production, in ulcer healing, and in pathophysiological conditions they contribute to chronic inflammation and tumor development. Na+/Ca2+ exchangers (NCX) are known to have a crucial role in Ca2+ homeostasis of contractile cells, however, no information is available concerning the role of NCX in the proliferation and migration of gastrointestinal myofibroblasts. In this study, our aim was to investigate the role of NCX in the Ca2+ homeostasis, migration, and proliferation of human gastrointestinal myofibroblasts, focusing on human gastric myofibroblasts (HGMs). We used microfluorometric measurements to investigate the intracellular Ca2+ and Na+ concentrations, PCR analysis and immunostaining to show the presence of the NCX, patch clamp for measuring NCX activity, and proliferation and migration assays to investigate the functional role of the exchanger. We showed that 53.0±8.1% of the HGMs present Ca2+ oscillations, which depend on extracellular Ca2+ and Na+, and can be inhibited by NCX inhibitors. NCX1, NCX2, and NCX3 were expressed at both mRNA and protein levels in HGMs, and they contribute to the intracellular Ca2+ and Na+ homeostasis as well, regardless of the oscillatory activity. NCX inhibitors significantly blocked the basal and insulin-like growth factor II-stimulated migration and proliferation rates of HGMs. In conclusion, we showed that NCX plays a pivotal role in regulating the Ca2+ homeostasis, migration, and proliferation of HGMs. The inhibition of NCX activity may be a potential therapeutic target in hyperproliferative gastric diseases.
Collapse
Affiliation(s)
- Lajos V Kemény
- First Dept. of Medicine, Univ. of Szeged, H-6720, Korányi fasor 8-10, Szeged, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Crabtree JE, Jeremy AH, Duval C, Dixon MF, Danjo K, Carr IM, Pritchard DM, Robinson PA. Effects of EGFR Inhibitor on Helicobacter pylori Induced Gastric Epithelial Pathology in Vivo. Pathogens 2013; 2:571-90. [PMID: 25437333 PMCID: PMC4235704 DOI: 10.3390/pathogens2040571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/16/2013] [Accepted: 09/26/2013] [Indexed: 12/23/2022] Open
Abstract
Helicobacter pylori transactivates the Epidermal Growth Factor Receptor (EGFR) and predisposes to gastric cancer development in humans and animal models. To examine the importance of EGFR signalling to gastric pathology, this study investigated whether treatment of Mongolian gerbils with a selective EGFR tyrosine kinase inhibitor, EKB-569, altered gastric pathology in chronic H. pylori infection. Gerbils were infected with H. pylori and six weeks later received either EKB-569-supplemented, or control diet, for 32 weeks prior to sacrifice. EKB-569-treated H. pylori-infected gerbils had no difference in H. pylori colonisation or inflammation scores compared to infected animals on control diet, but showed significantly less corpus atrophy, mucous metaplasia and submucosal glandular herniations along with markedly reduced antral and corpus epithelial proliferation to apoptosis ratios. EKB-569-treated infected gerbils had significantly decreased abundance of Cox-2, Adam17 and Egfr gastric transcripts relative to infected animals on control diet. EGFR inhibition by EKB-569 therefore reduced the severity of pre-neoplastic gastric pathology in chronically H. pylori-infected gerbils. EKB-569 increased gastric epithelial apoptosis in H. pylori-infected gerbils which counteracted some of the consequences of increased gastric epithelial cell proliferation. Similar chemopreventative strategies may be useful in humans who are at high risk of developing H. pylori- induced gastric adenocarcinoma.
Collapse
Affiliation(s)
- Jean E. Crabtree
- Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds LS9 7TF, UK; E-Mails: (A.H.T.J.); (C.D.); (K.D.); (I.M.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-113-383-4615; Fax: +44-113-343-8703
| | - Anthony H.T. Jeremy
- Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds LS9 7TF, UK; E-Mails: (A.H.T.J.); (C.D.); (K.D.); (I.M.C.)
| | - Cedric Duval
- Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds LS9 7TF, UK; E-Mails: (A.H.T.J.); (C.D.); (K.D.); (I.M.C.)
| | - Michael F. Dixon
- Department of Pathology, University of Leeds, Leeds LS2 9JT, UK; E-Mail:
| | - Kazuma Danjo
- Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds LS9 7TF, UK; E-Mails: (A.H.T.J.); (C.D.); (K.D.); (I.M.C.)
| | - Ian M. Carr
- Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds LS9 7TF, UK; E-Mails: (A.H.T.J.); (C.D.); (K.D.); (I.M.C.)
| | - D. Mark Pritchard
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GA, UK; E-Mail:
| | - Philip A. Robinson
- Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds LS9 7TF, UK; E-Mails: (A.H.T.J.); (C.D.); (K.D.); (I.M.C.)
| |
Collapse
|
37
|
Helicobacter pylori and gastritis: the role of extracellular matrix metalloproteases, their inhibitors, and the disintegrins and metalloproteases--a systematic literature review. Dig Dis Sci 2013; 58:2777-83. [PMID: 23817928 DOI: 10.1007/s10620-013-2767-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/14/2013] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori (H. pylori) is the etiologic agent of gastritis; it has been estimated that 50 % of the world's population could be infected by this bacteria. Gastritis may progress to chronic atrophic gastritis, a condition associated with the development of gastric cancer (GC). Several matrix metalloproteases (MMP) and tissue inhibitors of MMPs (TIMP) as well as disintegrins and metalloproteases (ADAM) have been reported as being involved in gastritis. Among other processes, these protein families participate in remodeling the extracellular matrix, cell signaling, immune response, angiogenesis, inflammation and epithelial mesenchymal transition. This systematic review analyzes the scientific evidence surrounding the relationship between members of the MMP, TIMP and ADAM families and infection by H. pylori in gastritis, considering both in vitro and in vivo studies. Given the potential clinical value of certain members of the MMP, TIMP and ADAM families as molecular markers in gastritis and the association of gastritis with GC, the need for further study is highlighted.
Collapse
|
38
|
Selection of potential therapeutic human single-chain Fv antibodies against cholecystokinin-B/gastrin receptor by phage display technology. BioDrugs 2013; 27:55-67. [PMID: 23344946 DOI: 10.1007/s40259-012-0007-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Gastric/gastrointestinal cancers are associated with high mortality worldwide. G-protein coupled receptor (GPCR) superfamily members such as gastrin/cholecystokinin-B receptor (CCK-BR) are involved in progression of gastric tumors, thus CCK-BR is considered as a potential target for immunotherapy. However, production of functional monoclonal antibodies (mAbs) against GPCR seems to be very challenging, in part due to its integration in cell membranes and inaccessibility for selection. To tackle this problem, we implemented phage display technology and a solution-phase biopanning (SPB) scheme for production of mAbs specific to the native conformation of CCK-BR. METHODS To perform the SPB process, we utilized a synthetic biotinylated peptide corresponding to the second extracellular loop (ECL2) of CCK-BR and a semi-synthetic phage antibody library. After enzyme-linked immunosorbent assay (ELISA) screening, the CCK-BR specificity of the selected single-chain variable fragments (scFvs) were further examined using immunoblotting, whole-cell ELISA, and flow cytometry assays. RESULTS After performing four rounds of selection, we identified nine antibody clones which showed positive reactivity with the CCK-BR peptide in an ELISA assay. Of these, eight clones were unique scFv antibodies and one was a V(L) single domain antibody. Specificity analysis of the selected scFvs revealed that five of the selected scFvs recognized a denatured form of CCK-BR, while the majority of the selected scFvs were able to recognize the native conformation of CCK-BR on the surface of human gastric adenocarcinoma cells and cervical carcinoma HeLa cells. CONCLUSION For the first time, we report on the establishment of a diverse panel of scFv antibody fragments that are specific to the native conformation of CCK-BR. Based on these results, we suggest the selected scFv antibody fragments as potential agents for diagnosis, imaging, targeting, and/or immunotherapy of cancers that overexpress CCK-BR.
Collapse
|
39
|
Holmberg C, Ghesquière B, Impens F, Gevaert K, Kumar JD, Cash N, Kandola S, Hegyi P, Wang TC, Dockray GJ, Varro A. Mapping proteolytic processing in the secretome of gastric cancer-associated myofibroblasts reveals activation of MMP-1, MMP-2, and MMP-3. J Proteome Res 2013; 12:3413-3422. [PMID: 23705892 PMCID: PMC3709265 DOI: 10.1021/pr400270q] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Indexed: 01/06/2023]
Abstract
Cancer progression involves changes in extracellular proteolysis, but the contribution of stromal cell secretomes to the cancer degradome remains uncertain. We have now defined the secretome of a specific stromal cell type, the myofibroblast, in gastric cancer and its modification by proteolysis. SILAC labeling and COFRADIC isolation of methionine containing peptides allowed us to quantify differences in gastric cancer-derived myofibroblasts compared with myofibroblasts from adjacent tissue, revealing increased abundance of several proteases in cancer myofibroblasts including matrix metalloproteinases (MMP)-1 and -3. Moreover, N-terminal COFRADIC analysis identified cancer-restricted proteolytic cleavages, including liberation of the active forms of MMP-1, -2, and -3 from their inactive precursors. In vivo imaging confirmed increased MMP activity when gastric cancer cells were xenografted in mice together with gastric cancer myofibroblasts. Western blot and enzyme activity assays confirmed increased MMP-1, -2, and -3 activity in cancer myofibroblasts, and cancer cell migration assays indicated stimulation by MMP-1, -2, and -3 in cancer-associated myofibroblast media. Thus, cancer-derived myofibroblasts differ from their normal counterparts by increased production and activation of MMP-1, -2, and -3, and this may contribute to the remodelling of the cancer cell microenvironment.
Collapse
Affiliation(s)
| | - Bart Ghesquière
- Department
of Medical Protein
Research, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Francis Impens
- Department
of Medical Protein
Research, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- Department
of Medical Protein
Research, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - J. Dinesh Kumar
- Institute
of Translational Medicine, University of Liverpool, Liverpool, U.K
| | - Nicole Cash
- Institute
of Translational Medicine, University of Liverpool, Liverpool, U.K
| | - Sandhir Kandola
- Institute
of Translational Medicine, University of Liverpool, Liverpool, U.K
| | - Peter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Timothy C. Wang
- Department of Medicine, Columbia University
Medical Center, New York, United
States
| | - Graham J. Dockray
- Institute
of Translational Medicine, University of Liverpool, Liverpool, U.K
| | - Andrea Varro
- Institute
of Translational Medicine, University of Liverpool, Liverpool, U.K
| |
Collapse
|
40
|
DUCKWORTH CARRIEA, CLYDE DANIEL, WORTHLEY DANIELL, WANG TIMOTHYC, VARRO ANDREA, PRITCHARD DMARK. Progastrin-induced secretion of insulin-like growth factor 2 from colonic myofibroblasts stimulates colonic epithelial proliferation in mice. Gastroenterology 2013; 145:197-208.e3. [PMID: 23523669 PMCID: PMC4087195 DOI: 10.1053/j.gastro.2013.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 02/15/2013] [Accepted: 03/10/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Many colon cancers produce the hormone progastrin, which signals via autocrine and paracrine pathways to promote tumor growth. Transgenic mice that produce high circulating levels of progastrin (hGAS) have increased proliferation of colonic epithelial cells and are more susceptible to colon carcinogenesis than control mice. We investigated whether progastrin affects signaling between colonic epithelial and myofibroblast compartments to regulate tissue homeostasis and cancer susceptibility. METHODS Colonic myofibroblast numbers were assessed in hGAS and C57BL/6 mice by immunohistochemistry. Human CCD18Co myofibroblasts were incubated with recombinant human progastrin (rhPG)(1-80) for 18 hours, and proliferation was assessed in the presence of pharmacologic inhibitors. The proliferation of human HT29 colonic epithelial cells was assessed after addition of conditioned media from CCD18Co cells incubated with progastrin. The effects of the insulin-like growth factor (IGF)-I receptor antagonist AG1024 were investigated in cultured HT29 cells and on the colonic epithelium of hGAS mice compared with mice that did not express transgenic progastrin (controls). RESULTS The colonic mucosa of hGAS mice contained greater numbers of myofibroblasts that expressed α-smooth muscle actin and vimentin than controls. Incubation of CCD18Co myofibroblasts with 0.1 nmol/L rhPG(1-80) increased their proliferation, which required activation of protein kinase C and phosphatidylinositol-3 kinase. CCD18Co cells secreted IGF-II in response to rhPG(1-80), and conditioned media from CCD18Co cells that had been incubated with rhPG(1-80) increased the proliferation of HT29 cells. The colonic epithelial phenotype of hGAS mice (crypt hyperplasia, increased proliferation, and altered proportions of goblet and enteroendocrine cells) was inhibited by AG1024. CONCLUSIONS Progastrin stimulates colonic myofibroblasts to release IGF-II, which increases proliferation of colonic epithelial cells. Progastrin might therefore alter colonic epithelial cells via indirect mechanisms to promote neoplasia.
Collapse
Affiliation(s)
- CARRIE A. DUCKWORTH
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, England
| | - DANIEL CLYDE
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, England
| | - DANIEL L. WORTHLEY
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York
| | - TIMOTHY C. WANG
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York
| | - ANDREA VARRO
- Department of Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, England
| | - D. MARK PRITCHARD
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, England
| |
Collapse
|
41
|
Holmberg C, Quante M, Steele I, Kumar JD, Balabanova S, Duval C, Czepan M, Rakonczay Z, Tiszlavicz L, Nemeth I, Lazar G, Simonka Z, Jenkins R, Hegyi P, Wang TC, Dockray GJ, Varro A. Release of TGFβig-h3 by gastric myofibroblasts slows tumor growth and is decreased with cancer progression. Carcinogenesis 2012; 33:1553-1562. [PMID: 22610072 PMCID: PMC3499060 DOI: 10.1093/carcin/bgs180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/26/2012] [Accepted: 05/10/2012] [Indexed: 01/21/2023] Open
Abstract
Tumor progression has been linked to changes in the stromal environment. Myofibroblasts are stromal cells that are often increased in tumors but their contribution to cancer progression is not well understood. Here, we show that the secretomes of myofibroblasts derived from gastric cancers [cancer-associated myofibroblasts (CAMs)] differ in a functionally significant manner from those derived from adjacent tissue [adjacent tissue myofibroblasts (ATMs)]. CAMs showed increased rates of migration and proliferation compared with ATMs or normal tissue myofibroblasts (NTMs). Moreover, conditioned medium (CM) from CAMs significantly stimulated migration, invasion and proliferation of gastric cancer cells compared with CM from ATMs or NTMs. Proteomic analysis of myofibroblast secretomes revealed decreased abundance of the extracellular matrix (ECM) adaptor protein like transforming growth factor-β-induced gene-h3 (TGFβig-h3) in CAMs, which was correlated with lymph node involvement and shorter survival. TGFβig-h3 inhibited IGF-II-stimulated migration and proliferation of both cancer cells and myofibroblasts, and suppressed IGF-II activation of p42/44 MAPkinase; TGFβig-h3 knockdown increased IGF-II- and CM-stimulated migration. Furthermore, administration of TGFβig-h3 inhibited myofibroblast-stimulated growth of gastric cancer xenografts. We conclude that stromal cells exert inhibitory as well as stimulatory effects on tumor cells; TGFβig-h3 is a stromal inhibitory factor that is decreased with progression of gastric cancers.
Collapse
Affiliation(s)
- Chris Holmberg
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool,
Liverpool, UK
| | - Michael Quante
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München,
München, Germany
| | - Islay Steele
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool,
Liverpool, UK
| | - Jothi Dinesh Kumar
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool,
Liverpool, UK
| | - Silviya Balabanova
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool,
Liverpool, UK
| | - Cedric Duval
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool,
Liverpool, UK
| | | | | | | | | | - Gyorgy Lazar
- First Department of Surgery, University of Szeged,
Szeged, Hungary
| | - Zsolt Simonka
- First Department of Surgery, University of Szeged,
Szeged, Hungary
| | - Rosalind Jenkins
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool,
Liverpool, UK
| | | | - Timothy C. Wang
- Department of Medicine, Columbia University,
New York, NY, USAand
| | - Graham J. Dockray
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool,
Liverpool, UK
| | - Andrea Varro
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool,
Liverpool, UK
- Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool,
Liverpool, UK
| |
Collapse
|
42
|
|
43
|
Cheng HC, Yang HB, Chang WL, Chen WY, Yeh YC, Sheu BS. Expressions of MMPs and TIMP-1 in gastric ulcers may differentiate H. pylori-infected from NSAID-related ulcers. ScientificWorldJournal 2012; 2012:539316. [PMID: 22645431 PMCID: PMC3353510 DOI: 10.1100/2012/539316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/03/2012] [Indexed: 01/12/2023] Open
Abstract
Background. Two major causes of gastric ulcers are Helicobacter pylori (H. pylori) infection and nonsteroidal anti-inflammatory drug (NSAID) use. Aims. This study aimed to determine if there were different expressions of matrix metalloproteinases (MMPs) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) between H. pylori-infected and NSAID-related ulcers. Methods. The 126 gastric ulcer patients (H. pylori infected n = 46; NSAID related n = 30; combined with two factors n = 50) provided ulcer and nonulcer tissues for assessment of MMP-3, -7, and -9 and TIMP-1 expression by immunohistochemical staining. Results. Gastric ulcer tissues had significantly higher MMP-3, -7, and -9 and TIMP-1 expressions than nonulcer tissues (P < 0.05). H. pylori-infected gastric ulcers had even higher MMP-7, MMP-9, and TIMP-1 expressions in epithelial cells than NSAID-related gastric ulcers (P < 0.05). In patients with the two combined factors, gastric ulcers expressed similar proportions of antral ulcers and MMP-7 and MMP-9 intensities to NSAID-related gastric ulcers, but lower MMP-9 and TIMP-1 than H. pylori-infected gastric ulcers (P < 0.05). Conclusions. H. pylori-infected gastric ulcers express higher MMP-7, MMP-9, and TIMP-1 than NSAID-related ulcers. In patients with the two combined factors, ulcer location and MMP-7 and MMP-9 intensities are similar to NSAID use.
Collapse
Affiliation(s)
- Hsiu-Chi Cheng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng Li Road, Tainan 70403, Taiwan
| | | | | | | | | | | |
Collapse
|
44
|
Czepán M, Rakonczay Z, Varró A, Steele I, Dimaline R, Lertkowit N, Lonovics J, Schnúr A, Biczó G, Geisz A, Lázár G, Simonka Z, Venglovecz V, Wittmann T, Hegyi P. NHE1 activity contributes to migration and is necessary for proliferation of human gastric myofibroblasts. Pflugers Arch 2012; 463:459-475. [PMID: 22138972 DOI: 10.1007/s00424-011-1059-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 11/25/2022]
Abstract
Myofibroblasts play central roles in wound healing, deposition of the extracellular matrix and epithelial function. Their functions depend on migration and proliferation within the subepithelial matrix, which results in accelerated cellular metabolism. Upregulated metabolic pathways generate protons which need to be excreted to maintain intracellular pH (pH(i)). We isolated human gastric myofibroblasts (HGMs) from surgical specimens of five patients. Then we characterized, for the first time, the expression and functional activities of the Na(+)/H(+) exchanger (NHE) isoforms 1, 2 and 3, and the functional activities of the Na(+)/HCO(3)(-) cotransporter (NBC) and the anion exchanger (AE) in cultured HGMs using microfluorimetry, immunocytochemistry, reverse transcription polymerase chain reaction and immunoblot analysis. We showed that NHE1-3, NBC and AE activities are present in HGMs and that NHE1 is the most active of the NHEs. In scratch wound assays we also demonstrated (using the selective NHE inhibitor HOE-642) that carbachol and insulin like growth factor II (IGF-II) partly stimulate migration of HGMs in a NHE1-dependent manner. EdU incorporation assays revealed that IGF-II induces proliferation of HGMs which is inhibited by HOE-642. The results indicate that NHE1 is necessary for IGF-II-induced proliferation response of HGMs. Overall, we have characterized the pH(i) regulatory mechanisms of HGMs. In addition, we demonstrated that NHE1 activity contributes to both IGF-II- and carbachol-stimulated migration and that it is obligatory for IGF-II-induced proliferation of HGMs.
Collapse
Affiliation(s)
- Mátyás Czepán
- First Department of Medicine, University of Szeged, 6720, Korányi fasor 8-10, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
McGuire JK, Harju-Baker S, Rims C, Sheen JH, Liapis H. Matrilysin (MMP-7) inhibition of BMP-7 induced renal tubular branching morphogenesis suggests a role in the pathogenesis of human renal dysplasia. J Histochem Cytochem 2012; 60:243-53. [PMID: 22215634 DOI: 10.1369/0022155411435152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Congenital renal dysplasia (RD) is a severe form of congenital renal malformation characterized by disruption of normal renal development with cyst formation, reduced or absent nephrons, and impaired renal growth. The authors previously identified that matrilysin (matrix metalloproteinase-7) was overexpressed in a microarray gene expression analysis of human RD compared to normal control kidneys. They now find that active matrilysin gene transcription and protein synthesis occur within dysplastic tubules and epithelial cells lining cysts in human RD by RT-PCR and immunohistochemistry. Similar staining patterns were seen in obstructed kidneys of pouch opossums that show histological features similar to that of human RD. In vitro, matrilysin inhibits formation of branching structures in mIMCD-3 cells stimulated by bone morphogenetic protein-7 (BMP-7) but does not inhibit hepatocyte growth factor-stimulated branching. BMP-7 signaling is essential for normal kidney development, and overexpression of catalytically active matrilysin in human embryonic kidney 293 cells reduces endogenous BMP-7 protein levels and inhibits phosphorylation of BMP-7 SMAD signaling intermediates. These findings suggest that matrilysin expression in RD may be an injury response that disrupts normal nephrogenesis by impairing BMP-7 signaling.
Collapse
Affiliation(s)
- John K McGuire
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | | | | | | | | |
Collapse
|
46
|
Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv Drug Deliv Rev 2011; 63:1300-31. [PMID: 21893135 PMCID: PMC7103316 DOI: 10.1016/j.addr.2011.08.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 12/28/2022]
Abstract
Nucleic acids carry the building plans of living systems. As such, they can be exploited to make cells produce a desired protein, or to shut down the expression of endogenous genes or even to repair defective genes. Hence, nucleic acids are unique substances for research and therapy. To exploit their potential, they need to be delivered into cells which can be a challenging task in many respects. During the last decade, nanomagnetic methods for delivering and targeting nucleic acids have been developed, methods which are often referred to as magnetofection. In this review we summarize the progress and achievements in this field of research. We discuss magnetic formulations of vectors for nucleic acid delivery and their characterization, mechanisms of magnetofection, and the application of magnetofection in viral and nonviral nucleic acid delivery in cell culture and in animal models. We summarize results that have been obtained with using magnetofection in basic research and in preclinical animal models. Finally, we describe some of our recent work and end with some conclusions and perspectives.
Collapse
|
47
|
Nørsett KG, Steele I, Duval C, Sammut SJ, Murugesan SVM, Kenny S, Rainbow L, Dimaline R, Dockray GJ, Pritchard DM, Varro A. Gastrin stimulates expression of plasminogen activator inhibitor-1 in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011; 301:G446-53. [PMID: 21193525 PMCID: PMC3174540 DOI: 10.1152/ajpgi.00527.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Plasminogen activator inhibitor (PAI)-1 is associated with cancer progression, fibrosis and thrombosis. It is expressed in the stomach but the mechanisms controlling its expression there, and its biological role, are uncertain. We sought to define the role of gastrin in regulating PAI-1 expression and to determine the relevance for gastrin-stimulated cell migration and invasion. In gastric biopsies from subjects with elevated plasma gastrin, the abundances of PAI-1, urokinase plasminogen activator (uPA), and uPA receptor (uPAR) mRNAs measured by quantitative PCR were increased compared with subjects with plasma concentrations in the reference range. In patients with hypergastrinemia due to autoimmune chronic atrophic gastritis, there was increased abundance of PAI-1, uPA, and uPAR mRNAs that was reduced by octreotide or antrectomy. Immunohistochemistry revealed localization of PAI-1 to parietal cells and enterochromaffin-like cells in micronodular neuroendocrine tumors in hypergastrinemic subjects. Transcriptional mechanisms were studied by using a PAI-1-luciferase promoter-reporter construct transfected into AGS-G(R) cells. There was time- and concentration-dependent increase of PAI-1-luciferase expression in response to gastrin that was reversed by inhibitors of the PKC and MAPK pathways. In Boyden chamber assays, recombinant PAI-1 inhibited gastrin-stimulated AGS-G(R) cell migration and invasion, and small interfering RNA treatment increased responses to gastrin. We conclude that elevated plasma gastrin concentrations are associated with increased expression of gastric PAI-1, which may act to restrain gastrin-stimulated cell migration and invasion.
Collapse
Affiliation(s)
| | | | | | | | - Senthil V. M. Murugesan
- 1Physiological Laboratory and ,2Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | - D. Mark Pritchard
- 2Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
48
|
Helicobacter pylori activates calpain via toll-like receptor 2 to disrupt adherens junctions in human gastric epithelial cells. Infect Immun 2011; 79:3887-94. [PMID: 21825064 DOI: 10.1128/iai.05109-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori is a risk factor for the development of gastritis, gastroduodenal ulcers, and gastric adenocarcinoma. H. pylori-induced disruption of epithelial adherens junctions (AJs) is thought to promote the development of severe disease; however, the mechanisms whereby H. pylori alters AJ structure remain incompletely understood. The present study demonstrates that H. pylori infection in human patients is associated with elevated serum levels of an 80-kDa E-cadherin ectodomain, whose presence is independent of the presence of serum antibodies against CagA. In vitro, a heat-labile H. pylori surface component activates the host protease calpain in human gastric MKN45 cells independently of the virulence factors CagA and VacA. H. pylori-induced calpain activation results in cleavage of E-cadherin to produce a 100-kDa truncated form and induce relocalization of E-cadherin and β-catenin. Stimulation of MKN45 cells with the toll-like receptor 2 (TLR2) ligand P3C activated calpain and disrupted E-cadherin and β-catenin in a pattern similar to that induced by H. pylori. Inhibition of TLR2 prevented H. pylori-induced calpain activation and AJ disassembly. Together, these findings identify a novel pathway whereby H. pylori activates calpain via TLR2 to disrupt gastric epithelial AJ structure.
Collapse
|
49
|
Nagy TA, Wroblewski LE, Wang D, Piazuelo MB, Delgado A, Romero-Gallo J, Noto J, Israel DA, Ogden SR, Correa P, Cover TL, Peek RM. β-Catenin and p120 mediate PPARδ-dependent proliferation induced by Helicobacter pylori in human and rodent epithelia. Gastroenterology 2011; 141:553-64. [PMID: 21704622 PMCID: PMC3152603 DOI: 10.1053/j.gastro.2011.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 04/28/2011] [Accepted: 05/05/2011] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Colonization of gastric mucosa by Helicobacter pylori leads to epithelial hyperproliferation, which increases the risk for gastric adenocarcinoma. One H pylori virulence locus associated with cancer risk, cag, encodes a secretion system that transports effectors into host cells and leads to aberrant activation of β-catenin and p120-catenin (p120). Peroxisome proliferator-activated receptor (PPAR)δ is a ligand-activated transcription factor that affects oncogenesis in conjunction with β-catenin. We used a carcinogenic H pylori strain to define the role of microbial virulence constituents and PPARδ in regulating epithelial responses that mediate development of adenocarcinoma. METHODS Gastric epithelial cells or colonies were co-cultured with the H pylori cag(+) strain 7.13 or cagE(-), cagA(-), soluble lytic transglycosylase(-), or cagA(-)/soluble lytic transglycosylase(-) mutants. Levels of PPARδ and cyclin E1 were determined by real-time, reverse-transcription polymerase chain reaction, immunoblot analysis, or immunofluorescence microscopy; proliferation was measured in 3-dimensional culture. PPARδ and Ki67 expression were determined by immunohistochemical analysis of human biopsies and rodent gastric mucosa. RESULTS H pylori induced β-catenin- and p120-dependent expression and activation of PPARδ in gastric epithelial cells, which were mediated by the cag secretion system substrates CagA and peptidoglycan. H pylori stimulated proliferation in vitro, which required PPARδ-mediated activation of cyclin E1; H pylori did not induce expression of cyclin E1 in a genetic model of PPARδ deficiency. PPARδ expression and proliferation in rodent and human gastric tissue was selectively induced by cag(+) strains and PPARδ levels normalized after eradication of H pylori. CONCLUSIONS The H pylori cag secretion system activates β-catenin, p120, and PPARδ, which promote gastric epithelial cell proliferation via activation of cyclin E1. PPARδ might contribute to gastric adenocarcinoma development in humans.
Collapse
Affiliation(s)
- Toni A. Nagy
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Lydia E. Wroblewski
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Dingzhi Wang
- Department of Cancer Biology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA 77030
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Alberto Delgado
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Judith Romero-Gallo
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Jennifer Noto
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Dawn A. Israel
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Seth R. Ogden
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Pelayo Correa
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232
| | - Timothy L. Cover
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University, Nashville, TN 37232, Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA 37212
| | - Richard M. Peek
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, TN, USA 37232, Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA 37212
| |
Collapse
|
50
|
Nucleic acid delivery using magnetic nanoparticles: the Magnetofection™ technology. Ther Deliv 2011; 2:471-82. [DOI: 10.4155/tde.11.12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In recent years, gene therapy has received considerable interest as a potential method for the treatment of numerous inherited and acquired diseases. However, successes have so far been hampered by several limitations, including safety issues of viral-based nucleic acid vectors and poor in vivo efficiency of nonviral vectors. Magnetofection™ has been introduced as a novel and powerful tool to deliver genetic material into cells. This technology is defined as the delivery of nucleic acids, either ‘naked’ or packaged (as complexes with lipids or polymers, and viruses) using magnetic nanoparticles under the guidance of an external magnetic field. This article first discusses the principles of the Magnetofection technology and its benefits as compared with standard transfection methods. A number of relevant examples of its use, both in vitro and in vivo, will then be highlighted. Future trends in the development of new magnetic nanoparticle formulations will also be outlined.
Collapse
|