1
|
Liang Z, Li S, Wang Z, Zhou J, Huang Z, Li J, Bao H, Yam JWP, Xu Y. Unraveling the Role of the Wnt Pathway in Hepatocellular Carcinoma: From Molecular Mechanisms to Therapeutic Implications. J Clin Transl Hepatol 2025; 13:315-326. [PMID: 40206274 PMCID: PMC11976435 DOI: 10.14218/jcth.2024.00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 04/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest malignant tumors in the world, and its incidence and mortality have increased year by year. HCC research has increasingly focused on understanding its pathogenesis and developing treatments.The Wnt signaling pathway, a complex and evolutionarily conserved signal transduction system, has been extensively studied in the genesis and treatment of several malignant tumors. Recent investigations suggest that the pathogenesis of HCC may be significantly influenced by dysregulated Wnt/β-catenin signaling. This article aimed to examine the pathway that controls Wnt signaling in HCC and its mechanisms. In addition, we highlighted the role of this pathway in HCC etiology and targeted treatment.
Collapse
Affiliation(s)
- Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shanshan Li
- School of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, Anhui, China
| | - Zhiyu Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junting Zhou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jiehan Li
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- School of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, Anhui, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
2
|
Elfiky A, El-Guendy N, Badr AM, Mohammed MA, Wahab AHAA. The role of FOXA1 and miR-212-3p in molecular modulation of doxorubicin resistance in liver cancer. Med Oncol 2025; 42:160. [PMID: 40216647 PMCID: PMC11991990 DOI: 10.1007/s12032-025-02686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
TACE (Transarterial Chemoembolization) is an essential current treatment for liver cancer. Resistance to doxorubicin, the chemotherapeutic component of TACE, poses a serious problem in this treatment, necessitating a deeper understanding of the underlying resistance mechanisms. Upregulation of the Forkhead box A1 transcription regulator in our model of doxorubicin-resistant liver cancer cell line suggested a role in resistance. To better understand the role of FOXA1 in resistance to doxorubicin, we inhibited its expression using siRNA or its miRNA-212-3p inhibitor then studied the effect on the cancer cell lines survival using SRB assay. The expression of several downstream epithelial-mesenchymal transition genes, namely SLUG, TWIST, CDH1 (E-Cadherin), was determined using quantitative real-time PCR. Our results showed a significant upregulation of FOXA1 and downregulation of miRNA-212-3p in doxorubicin-resistant cells. Manipulation of FOXA1 and miRNA-212-3p expressions restored sensitive cell characteristics. In addition, inhibition of FOXA1 increased apoptosis induction in resistant cells. Changes detected in the tested EMT genes point to progression toward more aggressive behavior in the doxorubicin-resistant liver cancer cell line that was reversed with inhibition of FOXA1. Our results suggest a possible role of FOXA1 and miRNA-212-3p in the development of resistance to chemotherapeutic drugs in liver cancer and the possibility of their use as prognostic and/or therapeutic targets.
Collapse
Affiliation(s)
- Ammar Elfiky
- Medical Biochemistry and Molecular Biology at Cancer Biology Department National Cancer Institute, Cairo University, Giza, Egypt
| | - Nadia El-Guendy
- Medical Biochemistry and Molecular Biology at Cancer Biology Department National Cancer Institute, Cairo University, Giza, Egypt
| | - Abeer Mahmoud Badr
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohammed Aly Mohammed
- Medical Biochemistry and Molecular Biology at Cancer Biology Department National Cancer Institute, Cairo University, Giza, Egypt
| | - Abdel Hady A Abdel Wahab
- Medical Biochemistry and Molecular Biology at Cancer Biology Department National Cancer Institute, Cairo University, Giza, Egypt.
| |
Collapse
|
3
|
Montagner A, Arleo A, Suzzi F, D’Assoro AB, Piscaglia F, Gramantieri L, Giovannini C. Notch Signaling and PD-1/PD-L1 Interaction in Hepatocellular Carcinoma: Potentialities of Combined Therapies. Biomolecules 2024; 14:1581. [PMID: 39766289 PMCID: PMC11674819 DOI: 10.3390/biom14121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Immunotherapy has shown significant improvement in the survival of patients with hepatocellular carcinoma (HCC) compared to TKIs as first-line treatment. Unfortunately, approximately 30% of HCC exhibits intrinsic resistance to ICIs, making new therapeutic combinations urgently needed. The dysregulation of the Notch signaling pathway observed in HCC can affect immune cell response, reducing the efficacy of cancer immunotherapy. Here, we provide an overview of how Notch signaling regulates immune responses and present the therapeutic rationale for combining Notch signaling inhibition with ICIs to improve HCC treatment. Moreover, we propose using exosomes as non-invasive tools to assess Notch signaling activation in hepatic cancer cells, enabling accurate stratification of patients who can benefit from combined strategies.
Collapse
Affiliation(s)
- Annapaola Montagner
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA;
| | - Andrea Arleo
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
| | - Fabrizia Suzzi
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
| | - Antonino B. D’Assoro
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA;
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
4
|
Zhang Y, Cao W, Wang S, Zhang L, Li X, Zhang Z, Xie Y, Li M. Epigenetic modification of hepatitis B virus infection and related hepatocellular carcinoma. Virulence 2024; 15:2421231. [PMID: 39460469 PMCID: PMC11583590 DOI: 10.1080/21505594.2024.2421231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatitis B virus (HBV) infection poses a challenge to global public health. Persistent liver infection with HBV is associated with an increased risk of developing severe liver disease. The complex interaction between the virus and the host is the reason for the persistent presence of HBV and the risk of tumor development. Chronic liver inflammation, integration of viral genome with host genome, expression of HBx protein, and viral genotype are all key participants in the pathogenesis of hepatocellular carcinoma (HCC). Epigenetic regulation in HBV-associated HCC involves complex interactions of molecular mechanisms that control gene expression and function without altering the underlying DNA sequence. These epigenetic modifications can significantly affect the onset and progression of HCC. This review summarizes recent research on the epigenetic regulation of HBV persistent infection and HBV-HCC development, including DNA methylation, histone modification, RNA modification, non-coding RNA, etc. Enhanced knowledge of these mechanisms will offer fresh perspectives and potential targets for intervention tactics in HBV-HCC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Weihua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shiyu Wang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinxin Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ziyu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
5
|
Yang Z, Sun B, Xiang J, Wu H, Kan S, Hao M, Chang L, Liu H, Wang D, Liu W. Role of epigenetic modification in interferon treatment of hepatitis B virus infection. Front Immunol 2022; 13:1018053. [PMID: 36325353 PMCID: PMC9618964 DOI: 10.3389/fimmu.2022.1018053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Human hepatitis B virus (HBV) is a small, enveloped DNA virus that causes acute and chronic hepatitis. Chronic hepatitis B (CHB) is associated with hepatocellular carcinoma pathogenesis. Interferons (IFNs) have been used for the treatment of CHB for a long time, with advantages including less treatment duration and sustained virological response. Presently, various evidence suggests that epigenetic modification of the viral covalently closed circular DNA (cccDNA) and the host genome is crucial for the regulation of viral activity. This modification includes histone acetylation, DNA methylation, N6-methyladenosine, and non-coding RNA modification. IFN treatment for CHB can stimulate multiple IFN-stimulated genes for inhibiting virus replication. IFNs can also affect the HBV life cycle through epigenetic modulation. In this review, we summarized the different mechanisms through which IFN-α inhibits HBV replication, including epigenetic regulation. Moreover, the mechanisms underlying IFN activity are discussed, which indicated its potential as a novel treatment for CHB. It is proposed that epigenetic changes such as histone acetylation, DNA methylation, m6A methylation could be the targets of IFN, which may offer a novel approach to HBV treatment.
Collapse
Affiliation(s)
- Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lu Chang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dongxu Wang, ; Weiwei Liu,
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Dongxu Wang, ; Weiwei Liu,
| |
Collapse
|
6
|
Yoon H, Jang KL. Hepatitis B virus X protein and hepatitis C virus core protein cooperate to repress E-cadherin expression via DNA methylation. Heliyon 2022; 8:e09881. [PMID: 35832344 PMCID: PMC9272347 DOI: 10.1016/j.heliyon.2022.e09881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
|
7
|
Huang P, Xu M, Han H, Zhao X, Li MD, Yang Z. Integrative Analysis of Epigenome and Transcriptome Data Reveals Aberrantly Methylated Promoters and Enhancers in Hepatocellular Carcinoma. Front Oncol 2021; 11:769390. [PMID: 34858848 PMCID: PMC8631276 DOI: 10.3389/fonc.2021.769390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is a key transcription regulator, whose aberration was ubiquitous and important in most cancers including hepatocellular carcinoma (HCC). Whole-genome bisulfite sequencing (WGBS) was conducted for comparison of DNA methylation in tumor and adjacent tissues from 33 HCC patients, accompanying RNA-seq to determine differentially methylated region-associated, differentially expressed genes (DMR-DEGs), which were independently replicated in the TCGA-LIHC cohort and experimentally validated via 5-aza-2-deoxycytidine (5-azadC) demethylation. A total of 9,867,700 CpG sites showed significantly differential methylation in HCC. Integrations of mRNA-seq, histone ChIP-seq, and WGBS data identified 611 high-confidence DMR-DEGs. Enrichment analysis demonstrated activation of multiple molecular pathways related to cell cycle and DNA repair, accompanying repression of several critical metabolism pathways such as tyrosine and monocarboxylic acid metabolism. In TCGA-LIHC, we replicated about 53% of identified DMR-DEGs and highlighted the prognostic significance of combinations of methylation and expression of nine DMR-DEGs, which were more efficient prognostic biomarkers than considering either type of data alone. Finally, we validated 22/23 (95.7%) DMR-DEGs in 5-azadC-treated LO2 and/or HepG2 cells. In conclusion, integration of epigenome and transcriptome data depicted activation of multiple pivotal cell cycle-related pathways and repression of several metabolic pathways triggered by aberrant DNA methylation of promoters and enhancers in HCC.
Collapse
Affiliation(s)
- Peng Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengxiang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Sakai H, Yamada Y, Kubota M, Imai K, Shirakami Y, Tomita H, Hara A, Shimizu M. The phosphorylated retinoid X receptor-α promotes diethylnitrosamine-induced hepatocarcinogenesis in mice through the activation of β-catenin signaling pathway. Carcinogenesis 2021; 43:254-263. [PMID: 34668523 PMCID: PMC9036992 DOI: 10.1093/carcin/bgab099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies have shown that phosphorylation of the retinoid X receptor-α (RXRα) is associated with the development of hepatocellular carcinoma (HCC). However, these findings were revealed using HCC cell lines that express phosphorylated-RXRα (p-RXRα) proteins; therefore, it remains unclear whether p-RXRα affects hepatocarcinogenesis in vivo. Therefore, to investigate the biological function of p-RXRα in vivo, we developed a doxycycline-inducible ES cell line and transgenic mouse, both of which overexpress the phosphomimetic mutant form of RXRα, T82D/S260D, in a doxycycline-dependent manner. We found that the development of liver tumors, especially high-grade adenoma and HCC, was enhanced in diethylnitrosamine (DEN)-induced T82D/S260D-inducible mice. Moreover, the increased incidence of liver tumors in the transgenic mice was attributable to the promotion of cell cycle progression. Interestingly, the expression of β-catenin protein and its target gene cyclin D1 was elevated in the liver tumors of DEN-treated T82D/S260D-inducible mice, concurrent with increased cytoplasmic and nuclear β-catenin protein expression, indicating its stabilization and transcriptional activation. These results indicate that p-RXRα promotes DEN-induced hepatocarcinogenesis in mice through the activation of the β-catenin signaling pathway, suggesting that p-RXRα may serve as a possible therapeutic target for HCC.
Collapse
Affiliation(s)
- Hiroyasu Sakai
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Masaya Kubota
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kenji Imai
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yohei Shirakami
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
9
|
Immunotoxins Immunotherapy against Hepatocellular Carcinoma: A Promising Prospect. Toxins (Basel) 2021; 13:toxins13100719. [PMID: 34679012 PMCID: PMC8538445 DOI: 10.3390/toxins13100719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. Therefore, fighting against such cancer is reasonable. Chemotherapy drugs are sometimes inefficient and often accompanied by undesirable side effects for patients. On the other hand, the emergence of chemoresistant HCC emphasizes the need for a new high-efficiency treatment strategy. Immunotoxins are armed and rigorous targeting agents that can purposefully kill cancer cells. Unlike traditional chemotherapeutics, immunotoxins because of targeted toxicity, insignificant cross-resistance, easy production, and other favorable properties can be ideal candidates against HCC. In this review, the characteristics of proper HCC-specific biomarkers for immunotoxin targeting were dissected. After that, the first to last immunotoxins developed for the treatment of liver cancer were discussed. So, by reviewing the strengths and weaknesses of these immunotoxins, we attempted to provide keynotes for designing an optimal immunotoxin against HCC.
Collapse
|
10
|
Zhang D, Guo S, Schrodi SJ. Mechanisms of DNA Methylation in Virus-Host Interaction in Hepatitis B Infection: Pathogenesis and Oncogenetic Properties. Int J Mol Sci 2021; 22:9858. [PMID: 34576022 PMCID: PMC8466338 DOI: 10.3390/ijms22189858] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV), the well-studied oncovirus that contributes to the majority of hepatocellular carcinomas (HCC) worldwide, can cause a severe inflammatory microenvironment leading to genetic and epigenetic changes in hepatocyte clones. HBV replication contributes to the regulation of DNA methyltransferase gene expression, particularly by X protein (HBx), and subsequent methylation changes may lead to abnormal transcription activation of adjacent genes and genomic instability. Undoubtedly, the altered expression of these genes has been known to cause diverse aspects of infected hepatocytes, including apoptosis, proliferation, reactive oxygen species (ROS) accumulation, and immune responses. Additionally, pollutant-induced DNA methylation changes and aberrant methylation of imprinted genes in hepatocytes also complicate the process of tumorigenesis. Meanwhile, hepatocytes also contribute to epigenetic modification of the viral genome to affect HBV replication or viral protein production. Meanwhile, methylation levels of HBV integrants and surrounding host regions also play crucial roles in their ability to produce viral proteins in affected hepatocytes. Both host and viral changes can provide novel insights into tumorigenesis, individualized responses to therapeutic intervention, disease progress, and early diagnosis. As such, DNA methylation-mediated epigenetic silencing of cancer-related genes and viral replication is a compelling therapeutic goal to reduce morbidity and mortality from liver cancer caused by chronic HBV infection. In this review, we summarize the most recent research on aberrant DNA methylation associated with HBV infection, which is involved in HCC development, and provide an outlook on the future direction of the research.
Collapse
Affiliation(s)
- Dake Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Shicheng Guo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Steven J. Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
11
|
Blanc V, Riordan JD, Soleymanjahi S, Nadeau JH, Nalbantoglu ILK, Xie Y, Molitor EA, Madison BB, Brunt EM, Mills JC, Rubin DC, Ng IO, Ha Y, Roberts LR, Davidson NO. Apobec1 complementation factor overexpression promotes hepatic steatosis, fibrosis, and hepatocellular cancer. J Clin Invest 2021; 131:138699. [PMID: 33445170 DOI: 10.1172/jci138699] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
The RNA-binding protein Apobec1 complementation factor (A1CF) regulates posttranscriptional ApoB mRNA editing, but the range of RNA targets and the long-term effect of altered A1CF expression on liver function are unknown. Here we studied hepatocyte-specific A1cf-transgenic (A1cf+/Tg), A1cf+/Tg Apobec1-/-, and A1cf-/- mice fed chow or high-fat/high-fructose diets using RNA-Seq, RNA CLIP-Seq, and tissue microarrays from human hepatocellular cancer (HCC). A1cf+/Tg mice exhibited increased hepatic proliferation and steatosis, with increased lipogenic gene expression (Mogat1, Mogat2, Cidea, Cd36) associated with shifts in polysomal RNA distribution. Aged A1cf+/Tg mice developed spontaneous fibrosis, dysplasia, and HCC, and this development was accelerated on a high-fat/high-fructose diet and was independent of Apobec1. RNA-Seq revealed increased expression of mRNAs involved in oxidative stress (Gstm3, Gpx3, Cbr3), inflammatory response (Il19, Cxcl14, Tnfα, Ly6c), extracellular matrix organization (Mmp2, Col1a1, Col4a1), and proliferation (Kif20a, Mcm2, Mcm4, Mcm6), and a subset of mRNAs (including Sox4, Sox9, Cdh1) were identified in RNA CLIP-Seq. Increased A1CF expression in human HCC correlated with advanced fibrosis and with reduced survival in a subset with nonalcoholic fatty liver disease. In conclusion, we show that hepatic A1CF overexpression selectively alters polysomal distribution and mRNA expression, promoting lipogenic, proliferative, and inflammatory pathways leading to HCC.
Collapse
Affiliation(s)
- Valerie Blanc
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jesse D Riordan
- Pacific Northwest Research Institute, Seattle, Washington, USA
| | - Saeed Soleymanjahi
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph H Nadeau
- Pacific Northwest Research Institute, Seattle, Washington, USA
| | - ILKe Nalbantoglu
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yan Xie
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A Molitor
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth M Brunt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jason C Mills
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Deborah C Rubin
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irene O Ng
- Department of Pathology and State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yeonjung Ha
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Lewis R Roberts
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Pathophysiological Implications of Urinary Peptides in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13153786. [PMID: 34359689 PMCID: PMC8345155 DOI: 10.3390/cancers13153786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary In this study, the application of capillary electrophoresis mass spectrometry enabled identification of 31 urinary peptides significantly associated with hepatocellular carcinoma diagnosis and prognosis. Further assessment of these peptides lead to prediction of cellular proteases involved in their development namely Meprin A subunit α and Kallikrein-6. Subsequent identification of the proteases was verified by immunohistochemistry in normal liver, cirrhosis and hepatocellular carcinoma. Histopathological assessment of the proteases revealed numerical gradient staining signifying their involvement in liver fibrosis and hepatocellular carcinoma formation. The discovered urinary peptides offered a potential noninvasive tool for diagnosis and prognosis of hepatocellular carcinoma. Abstract Hepatocellular carcinoma (HCC) is known to be associated with protein alterations and extracellular fibrous deposition. We investigated the urinary proteomic profiles of HCC patients in this prospective cross sectional multicentre study. 195 patients were recruited from the UK (Coventry) and Germany (Hannover) between 1 January 2013 and 30 June 2019. Out of these, 57 were HCC patients with a background of liver cirrhosis (LC) and 138 were non-HCC controls; 72 patients with LC, 57 with non-cirrhotic liver disease and 9 with normal liver function. Analysis of the urine samples was performed by capillary electrophoresis (CE) coupled to mass spectrometry (MS). Peptide sequences were obtained and 31 specific peptide markers for HCC were identified and further integrated into a multivariate classification model. The peptide model demonstrated 79.5% sensitivity and 85.1% specificity (95% CI: 0.81–0.93, p < 0.0001) for HCC and 4.1-fold increased risk of death (95% CI: 1.7–9.8, p = 0.0005). Proteases potentially involved in HCC progression were mapped to the N- and C-terminal sequence motifs of the CE-MS peptide markers. In silico protease prediction revealed that kallikrein-6 (KLK6) elicits increased activity, whilst Meprin A subunit α (MEP1A) has reduced activity in HCC compared to the controls. Tissue expression of KLK6 and MEP1A was subsequently verified by immunohistochemistry.
Collapse
|
13
|
Lu L, Wei W, Huang C, Li S, Zhong C, Wang J, Yu W, Zhang Y, Chen M, Ling Y, Guo R. A new horizon in risk stratification of hepatocellular carcinoma by integrating vessels that encapsulate tumor clusters and microvascular invasion. Hepatol Int 2021; 15:651-662. [PMID: 33835379 DOI: 10.1007/s12072-021-10183-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Vessels that encapsulate tumor clusters (VETC) is a novel described vascular pattern different from microvascular invasion (MVI) for patients with hepatocellular carcinoma (HCC). The prognostic value of integrating VETC and MVI (VETC-MVI model) in HCC patients after resection remains unclear. METHODS From January 2013 to December 2016, 498 HCC patients who underwent curative resection were enrolled from five academic centers and stratified into different groups according to their VETC and MVI statuses. Overall survival (OS), disease-free survival (DFS), and early and late recurrence rates were evaluated. RESULTS The patients were divided into four subgroups: VETC-/MVI- (n = 277, 55.6%), VETC-/MVI+ (n = 110, 22.1%), VETC+/MVI- (n = 53, 10.6%), and VETC+/MVI+ (n = 58, 11.6%). The patients in the VETC+/MVI- and VETC-/MVI+ groups had similar long-term outcomes (OS: p = 0.402; DFS: p = 0.990), VETC-/MVI- patients showed the best prognosis, and VETC+/MVI+ patients had the worst prognosis. Further analysis revealed that the VETC-MVI model showed a similar stratification ability for early recurrence but not for late recurrence. The area under the curve values for early recurrence was 0.70, 0.63 and 0.64 for the VETC-MVI model, VETC, and MVI, respectively (VETC-MVI model vs VETC: p < 0.001; VETC-MVI model vs MVI: p = 0.004; VETC vs MVI: p = 0.539). Multivariate Cox regression analysis showed that the VETC-MVI model successfully predicted OS, DFS and early recurrence. CONCLUSIONS VETC status provides additional discriminative information for patients with either MVI- or MVI+. A combination of VETC and MVI may help classify subtypes and predict the prognosis of HCC patients.
Collapse
Affiliation(s)
- Lianghe Lu
- Department of Hepatobiliary Oncology of Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China
| | - Wei Wei
- Department of Hepatobiliary Oncology of Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China
| | - Chaoyun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China.,Department of Pathology of Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Shaohua Li
- Department of Hepatobiliary Oncology of Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou, Guangzhou, People's Republic of China
| | - Jiahong Wang
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wushen Yu
- Department of General Surgery, Dongguan People's Hospital, Southern Medical University, Dongguan City, Guangdong Province, People's Republic of China
| | - Yongfa Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Minshan Chen
- Department of Hepatobiliary Oncology of Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China
| | - Yihong Ling
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China. .,Department of Pathology of Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Rongping Guo
- Department of Hepatobiliary Oncology of Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
14
|
Kwee SA, Tiirikainen M. Beta-catenin activation and immunotherapy resistance in hepatocellular carcinoma: mechanisms and biomarkers. ACTA ACUST UNITED AC 2021; 7. [PMID: 33553649 PMCID: PMC7861492 DOI: 10.20517/2394-5079.2020.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations involving CTNNB1, the gene encoding beta-catenin, and other molecular alterations that affect the Wnt/beta-catenin signaling pathway are exceptionally common in hepatocellular carcinoma. Several of these alterations have also been associated with scarcity of immune cells in the tumor microenvironment and poor clinical response to immune checkpoint inhibitor therapy. In light of these associations, tumor biomarkers of beta-catenin status could have the potential to serve as clinical predictors of immunotherapy outcome. This editorial review article summarizes recent pre-clinical and clinical research pertaining to associations between beta-catenin activation and diminished anti-tumor immunity. Potential non-invasive biomarkers that may provide a window into this oncogenic mechanism of immune evasion are also presented and discussed.
Collapse
Affiliation(s)
- Sandi A Kwee
- Cancer Biology Program (SAK) and Population Sciences in the Pacific Program (MT), University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii 96813, USA.,Hamamatsu/Queen's PET Imaging Center, The Queen's Medical Center, Honolulu, Hawaii 96813, USA
| | - Maarit Tiirikainen
- Cancer Biology Program (SAK) and Population Sciences in the Pacific Program (MT), University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii 96813, USA
| |
Collapse
|
15
|
Iron elevates mesenchymal and metastatic biomarkers in HepG2 cells. Sci Rep 2020; 10:21926. [PMID: 33318518 PMCID: PMC7736862 DOI: 10.1038/s41598-020-78348-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/23/2020] [Indexed: 01/20/2023] Open
Abstract
Liver iron excess is observed in several chronic liver diseases and is associated with the development of hepatocellular carcinoma (HCC). However, apart from oxidative stress, other cellular mechanisms by which excess iron may mediate/increase HCC predisposition/progression are not known. HCC pathology involves epithelial to mesenchymal transition (EMT), the basis of cancer phenotype acquisition. Here, the effect of excess iron (holo-transferrin 0–2 g/L for 24 and 48 h) on EMT biomarkers in the liver-derived HepG2 cells was investigated. Holo-transferrin substantially increased intracellular iron. Unexpectedly, mRNA and protein expression of the epithelial marker E-cadherin either remained unaltered or increased. The mRNA and protein levels of metastasis marker N-cadherin and mesenchymal marker vimentin increased significantly. While the mRNA expression of EMT transcription factors SNAI1 and SNAI2 increased and decreased, respectively after 24 h, both factors increased after 48 h. The mRNA expression of TGF-β (EMT-inducer) showed no significant alterations. In conclusion, data showed direct link between iron and EMT. Iron elevated mesenchymal and metastatic biomarkers in HepG2 cells without concomitant decrement in the epithelial marker E-cadherin and altered the expression of the key EMT-mediating transcription factors. Such studies can help identify molecular targets to devise iron-related adjunctive therapies to ameliorate HCC pathophysiology.
Collapse
|
16
|
A Novel Function for KLF4 in Modulating the De-differentiation of EpCAM -/CD133 - nonStem Cells into EpCAM +/CD133 + Liver Cancer Stem Cells in HCC Cell Line HuH7. Cells 2020; 9:cells9051198. [PMID: 32408542 PMCID: PMC7290717 DOI: 10.3390/cells9051198] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The complex and heterogeneous nature of hepatocellular carcinoma (HCC) hampers the identification of effective therapeutic strategies. Cancer stem cells (CSCs) represent a fraction of cells within tumors with the ability to self-renew and differentiate, and thus significantly contribute to the formation and maintenance of heterogeneous tumor mass. Increasing evidence indicates high plasticity in tumor cells, suggesting that non-CSCs could acquire stem cell properties through de-differentiation or reprogramming processes. In this paper, we reveal KLF4 as a transcription factor that can induce a CSC-like phenotype in non-CSCs through upregulating the EpCAM and E-CAD expression. Our studies indicated that KLF4 could directly bind to the promoter of EpCAM and increase the number of EpCAM+/CD133+ liver cancer stem cells (LCSCs) in the HuH7 HCC cell line. When KLF4 was overexpressed in EpCAM−/CD133− non-stem cells, the expressions of hepatic stem/progenitor cell genes such as CK19, EpCAM and LGR5 were significantly increased. KLF4 overexpressing non-stem cells exhibited greater cell viability upon sorafenib treatment, while the cell migration and invasion capabilities of these cells were suppressed. Importantly, we detected an increased membranous expression and colocalization of β-CAT, E-CAD and EpCAM in the KLF4-overexpressing EpCAM−/CD133− non-stem cells, suggesting that this complex might be required for the cancer stem cell phenotype. Moreover, our in vivo xenograft studies demonstrated that with a KLF4 overexpression, EpCAM−/CD133− non-stem cells attained an in vivo tumor forming ability comparable to EpCAM+/CD133+ LCSCs, and the tumor specimens from KLF4-overexpressing xenografts had increased levels of both the KLF4 and EpCAM proteins. Additionally, we identified a correlation between the KLF4 and EpCAM protein expressions in human HCC tissues independent of the tumor stage and differentiation status. Collectively, our data suggest a novel function for KLF4 in modulating the de-differentiation of tumor cells and the induction of EpCAM+/CD133+ LCSCs in HuH7 HCC cells.
Collapse
|
17
|
Dai YF, Lin N, He DQ, Xu M, Zhong LY, He SQ, Guo DH, Li Y, Huang HL, Zheng XQ, Xu LP. LZAP promotes the proliferation and invasiveness of cervical carcinoma cells by targeting AKT and EMT. J Cancer 2020; 11:1625-1633. [PMID: 32047568 PMCID: PMC6995386 DOI: 10.7150/jca.39359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/01/2019] [Indexed: 11/25/2022] Open
Abstract
Objective: To explore the relationship and mechanism of LZAP in the occurrence and development of cervical cancer and to provide a new target and intervention method for the treatment of cervical cancer. Methods: Data mining and analysis of LZAP expression levels were performed using several online databases, including The Cancer Genome Atlas (TCGA). A cervical cancer cell line that stably overexpresses LZAP was established, and the effect of LZAP overexpression on cell proliferation, invasion, migration and tumor formation in vivo as well as its mechanism were explored. Results: Our study shows that the expression of LZAP is upregulated in cervical cancer. The overexpression of LZAP can significantly promote the proliferation, colony formation, and invasion and migration abilities of cervical cancer cells. The tumorigenesis test in nude mice showed that overexpression of LZAP could promote the tumorigenicity of cervical cancer cells in vivo. LZAP could also promote the phosphorylation of AKT at position 473 and the epithelial-mesenchymal transition (EMT). Conclusion: The expression of LAZP is increased in cervical cancer, which can enhance the invasion, metastasis, and EMT in cervical cancer cells by promoting AKT phosphorylation.
Collapse
Affiliation(s)
- Yi-Fang Dai
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Na Lin
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - De-Qin He
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Mu Xu
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Fuzhou 350001, China
| | - Li-Ying Zhong
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Fuzhou 350001, China
| | - Shu-Qiong He
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Dan-Hua Guo
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Ying Li
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Hai-Long Huang
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Xiang-Qing Zheng
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Fuzhou 350001, China
| | - Liang-Pu Xu
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| |
Collapse
|
18
|
El-Bendary M, Nour D, Arafa M, Neamatallah M. Methylation of tumour suppressor genes RUNX3, RASSF1A and E-Cadherin in HCV-related liver cirrhosis and hepatocellular carcinoma. Br J Biomed Sci 2020; 77:35-40. [PMID: 31790342 DOI: 10.1080/09674845.2019.1694123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/02/2019] [Indexed: 12/27/2022]
Abstract
Background: HCV infection is related to aberrant methylation of several genes. RASSF1A, E-Cadherin and RUNX3 are tumour suppressor genes that may be inactivated by hypermethylation in many tumours including hepatocellular carcinoma (HCC). We hypothesized that methylation is a diagnostic biomarker for HCC in patients with HCV-related liver cirrhosis.Methods: We recruited 207 cases of HCV-related liver cirrhosis, 193 HCC patients and 53 healthy controls. Methylation-specific polymerase chain reaction for detection of circulating hypermethylated RASSF1A, E-Cadherinand RUNX3. Alpha fetoprotein (AFP) was measured by commercial immunoassay.Results: Significant hypermethylation of the three genes was found in the HCC group compared to both cirrhosis and healthy groups (P < 0.001), whereas no significant difference in hypermethylation was found between cirrhosis and healthy groups (P = 0.17, 0.50 and 0.14, respectively). No significant links were found between hypermethylated RASSF1A, E-Cadherin and RUNX3 and stages of Barcelona Clinic of Liver Cancer score (P =0.21, 0.63 and 0.98, respectively). No significant associations were found between AFP value and hypermethylated genes in cirrhosis and HCC groups (P = 0.82) except with E-Cadherin in HCC (P = 0.02). In multiple regression analysis, RASSF1A and E-Cadherin were predictors of HCC within cirrhosis cases, but only E-Cadherin was an independent risk factor for prediction of HCC in cases with low AFP (P = 0.01).Conclusions: The presence of hypermethylated serum RASSF1A, E-Cadherin and RUNX3 is linked to HCC in patients with HCV-related cirrhosis. Only E-Cadherin is an independent risk factor for prediction of HCC with low AFP. These findings may be of diagnostic value.
Collapse
Affiliation(s)
- Mahmoud El-Bendary
- Tropical Medicine and Hepatology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dina Nour
- Mansoura Fever Hospital, Ministry of Health, Mansoura, Egypt
| | - Mona Arafa
- Tropical Medicine and Hepatology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mustafa Neamatallah
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
19
|
Fan X, Jin S, Li Y, Khadaroo PA, Dai Y, He L, Zhou D, Lin H. Genetic And Epigenetic Regulation Of E-Cadherin Signaling In Human Hepatocellular Carcinoma. Cancer Manag Res 2019; 11:8947-8963. [PMID: 31802937 PMCID: PMC6801489 DOI: 10.2147/cmar.s225606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
E-cadherin is well known as a growth and invasion suppressor and belongs to the large cadherin family. Loss of E-cadherin is widely known as the hallmark of epithelial-to-mesenchymal transition (EMT) with the involvement of transcription factors such as Snail, Slug, Twist and Zeb1/2. Tumor cells undergoing EMT could migrate to distant sites and become metastases. Recently, numerous studies have revealed how the expression of E-cadherin is regulated by different kinds of genetic and epigenetic alteration, which are implicated in several crucial transcription factors and pathways. E-cadherin signaling plays an important role in hepatocellular carcinoma (HCC) initiation and progression considering the highly mutated frequency of CTNNB1 (27%). Combining the data from The Cancer Genome Atlas (TCGA) database and previous studies, we have summarized the roles of gene mutations, chromosome instability, DNA methylation, histone modifications and non-coding RNA in E-cadherin in HCC. In this review, we discuss the current understanding of the relationship between these modifications and HCC. Perspectives on E-cadherin-related research in HCC are provided.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Parikshit Asutosh Khadaroo
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Yili Dai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
20
|
Zhou T, Kyritsi K, Wu N, Francis H, Yang Z, Chen L, O'Brien A, Kennedy L, Ceci L, Meadows V, Kusumanchi P, Wu C, Baiocchi L, Skill NJ, Saxena R, Sybenga A, Xie L, Liangpunsakul S, Meng F, Alpini G, Glaser S. Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2 -/- mouse model of primary sclerosing cholangitis (PSC). EBioMedicine 2019; 48:130-142. [PMID: 31522982 PMCID: PMC6838376 DOI: 10.1016/j.ebiom.2019.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholangiocytes are the target cells of cholangiopathies including primary sclerosing cholangitis (PSC). Vimentin is an intermediate filament protein that has been found in various types of mesenchymal cells. The aim of this study is to evaluate the role of vimentin in the progression of biliary damage/liver fibrosis and whether there is a mesenchymal phenotype of cholangiocytes in the Mdr2-/- model of PSC. METHODS In vivo studies were performed in 12 wk. Mdr2-/- male mice with or without vimentin Vivo-Morpholino treatment and their corresponding control groups. Liver specimens from human PSC patients, human intrahepatic biliary epithelial cells (HIBEpiC) and human hepatic stellate cell lines (HHSteCs) were used to measure changes in epithelial-to-mesenchymal transition (EMT). FINDINGS There was increased mesenchymal phenotype of cholangiocytes in Mdr2-/- mice, which was reduced by treatment of vimentin Vivo-Morpholino. Concomitant with reduced vimentin expression, there was decreased liver damage, ductular reaction, biliary senescence, liver fibrosis and TGF-β1 secretion in Mdr2-/- mice treated with vimentin Vivo-Morpholino. Human PSC patients and derived cell lines had increased expression of vimentin and other mesenchymal markers compared to healthy controls and HIBEpiC, respectively. In vitro silencing of vimentin in HIBEpiC suppressed TGF-β1-induced EMT and fibrotic reaction. HHSteCs had decreased fibrotic reaction and increased cellular senescence after stimulation with cholangiocyte supernatant with reduced vimentin levels. INTERPRETATION Our study demonstrated that knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes, which leads to decreased biliary senescence and liver fibrosis. Inhibition of vimentin may be a key therapeutic target in the treatment of cholangiopathies including PSC. FUND: National Institutes of Health (NIH) awards, VA Merit awards.
Collapse
Affiliation(s)
- Tianhao Zhou
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Konstantina Kyritsi
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Nan Wu
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Lixian Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - April O'Brien
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Lindsey Kennedy
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Ludovica Ceci
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Vik Meadows
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Praveen Kusumanchi
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Chaodong Wu
- Department of Nutrition and Food Science, College of Medicine, Texas A&M University, United States of America
| | | | - Nicholas J Skill
- Department of Surgery, Indiana University, Indianapolis, IN, United States of America
| | - Romil Saxena
- Department of Pathology, Indiana University, Indianapolis, IN, United States of America
| | - Amelia Sybenga
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Science, College of Medicine, Texas A&M University, United States of America
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America.
| | - Shannon Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America.
| |
Collapse
|
21
|
Jiang G, Huang CK, Zhang X, Lv X, Wang Y, Yu T, Cai X. Wnt signaling in liver disease: emerging trends from a bibliometric perspective. PeerJ 2019; 7:e7073. [PMID: 31275745 PMCID: PMC6590390 DOI: 10.7717/peerj.7073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background The Wnt signaling pathway, an evolutionarily conserved molecular transduction cascade, has been identified as playing a pivotal role in various physiological and pathological processes of the liver, including homeostasis, regeneration, cirrhosis, and hepatocellular carcinoma (HCC). In this study, we aimed to use a bibliometric method to evaluate the emerging trends on Wnt signaling in liver diseases. Methods Articles were retrieved from the Web of Science Core Collection. We used a bibliometric software, CiteSpace V 5.3.R4, to analyze the active countries or institutions in the research field, the landmark manuscripts, important subtopics, and evolution of scientific ideas. Results In total, 1,768 manuscripts were published, and each was cited 33.12 times on average. The U.S. published most of the articles, and the most active center was the University of Pittsburgh. The top 5 landmark papers were identified by four bibliometric indexes including citation, burstness, centrality, and usage 2013. The clustering process divided the whole area into nine research subtopics, and the two major important subtopics were "liver zonation" and "HCC." Using the "Part-of-Speech" technique, 1,743 terms representing scientific ideas were identified. After 2008, the bursting phrases were "liver development," "progenitor cells," "hepatic stellate cells," "liver regeneration," "liver fibrosis," "epithelial-mesenchymal transition," and etc. Conclusion Using bibliometric methods, we quantitatively summarized the advancements and emerging trends in Wnt signaling in liver diseases. These bibliometric findings may pioneer the future direction of this field in the next few years, and further studies are needed.
Collapse
Affiliation(s)
- Guangyi Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chiung-Kuei Huang
- Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Xinjie Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingyu Lv
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tunan Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Promotion of growth factor signaling as a critical function of β-catenin during HCC progression. Nat Commun 2019; 10:1909. [PMID: 31015417 PMCID: PMC6478918 DOI: 10.1038/s41467-019-09780-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. β-catenin is widely thought to be a major oncogene in HCC based on the frequency of mutations associated with aberrant Wnt signaling in HCC patients. Challenging this model, our data reveal that β-catenin nuclear accumulation is restricted to the late stage of the disease. Until then, β-catenin is primarily located at the plasma membrane in complex with multiple cadherin family members where it drives tumor cell survival by enhancing the signaling of growth factor receptors such as EGFR. Therefore, our study reveals the evolving nature of β-catenin in HCC to establish it as a compound tumor promoter during the progression of the disease. Aberrant Wnt/b-catenin signaling is thought to be a major driver of hepatocellular carcinoma. Here, the authors show that β-Catenin is predominantly integrated within the AJ complex during the early stages of this cancer and enhance EGFR signaling to promote tumour survival.
Collapse
|
23
|
Nakamura M, Chiba T, Kanayama K, Kanzaki H, Saito T, Kusakabe Y, Kato N. Epigenetic dysregulation in hepatocellular carcinoma: an up-to-date review. Hepatol Res 2019; 49:3-13. [PMID: 30238570 DOI: 10.1111/hepr.13250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022]
Abstract
Due to the advances made in research based on next generation sequencers, it is now possible to detect and analyze epigenetic abnormalities associated with cancer. DNA methylation, various histone modifications, chromatin remodeling, and non-coding RNA-associated gene silencing are considered to be transcriptional regulatory mechanisms associated with gene expression changes. The breakdown of this precise regulatory system is involved in the transition to cancer. The important role of epigenetic regulation can be observed from the high rate of genetic mutations and abnormal gene expression leading to a breakdown in epigenetic gene expression regulation seen in hepatocellular carcinoma (HCC). Based on an understanding of epigenomic abnormalities associated with pathological conditions, these findings will lead the way to diagnosis and treatment. In particular, in addition to the fact that there are few choices in terms of extant drug therapies aimed at HCC, there are limits to their antitumor effects. The clinical application of epigenetic therapeutic agents for HCC has only just begun, and future developments are expected.
Collapse
Affiliation(s)
- Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kengo Kanayama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuko Kusakabe
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
24
|
von Olshausen G, Quasdorff M, Bester R, Arzberger S, Ko C, van de Klundert M, Zhang K, Odenthal M, Ringelhan M, Niessen CM, Protzer U. Hepatitis B virus promotes β-catenin-signalling and disassembly of adherens junctions in a Src kinase dependent fashion. Oncotarget 2018; 9:33947-33960. [PMID: 30338037 PMCID: PMC6188061 DOI: 10.18632/oncotarget.26103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a prominent cause of hepatocellular carcinoma (HCC) but the underlying molecular mechanisms are complex and multiple pathways have been proposed such as the activation of the Wnt-/β-catenin-signalling and dysregulation of E-cadherin/β-catenin adherens junctions. This study aimed to identify mechanisms of how HBV infection and replication as well as HBV X protein (HBx) gene expression in the context of an HBV genome influence Wnt-/β-catenin-signalling and formation of adherens junctions and to which extent HBx contributes to this. Regulation of E-cadherin/β-catenin junctions and β-catenin-signalling as well as the role of HBx were investigated using constructs transiently or stably inducing replication of HBV+/-HBx in hepatoma cell lines. In addition, HCC and adjacent non-tumorous tissue samples from HBV-infected HCC patients and drug interference in HBV-infected cells were studied. Although HBV did not alter overall expression levels of E-cadherin or β-catenin, it diminished their cell surface localization resulting in nuclear translocation of β-catenin and activation of its target genes. In addition, HBV gene expression increased the amount of phosphorylated c-Src kinase. Treatment with Src kinase inhibitor Dasatinib reduced HBV replication, prevented adherens junction disassembly and reduced β-catenin-signalling, while Sorafenib only did so in cells with mutated β-catenin. Interestingly, none of the HBV induced alterations required HBx. Thus, HBV stimulated β-catenin-signalling and induced disassembly of adherens junctions independently of HBx through Src kinase activation. These pathways may contribute to hepatocellular carcinogenesis and seem to be more efficiently inhibited by Dasatinib than by Sorafenib.
Collapse
Affiliation(s)
- Gesa von Olshausen
- Department of Internal Medicine I, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria Quasdorff
- Molecular Infectiology, Institute for Medical Micro biology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,Department of Gastroenterology and Hepatology, University Hospital Cologne, Cologne, Germany
| | - Romina Bester
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Silke Arzberger
- Molecular Infectiology, Institute for Medical Micro biology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Chunkyu Ko
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Maarten van de Klundert
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Ke Zhang
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Margarete Odenthal
- Institute of Pathology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Marc Ringelhan
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany.,Department of Internal Medicine II, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carien M Niessen
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.,Department of Dermatology, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| |
Collapse
|
25
|
Lu M, Wu J, Hao Z, Shang Y, Xu J, Nan G, Li X, Chen Z, Bian H. Basolateral CD147 induces hepatocyte polarity loss by E-cadherin ubiquitination and degradation in hepatocellular carcinoma progress. Hepatology 2018; 68:317-332. [PMID: 29356040 PMCID: PMC6055794 DOI: 10.1002/hep.29798] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/02/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
Hepatocytes are epithelial cells with highly specialized polarity. The disorder and loss of hepatocyte polarity leads to a weakness of cell adhesion and connection, the induction of epithelial-mesenchymal transition, and eventually the occurrence of hepatocellular carcinoma (HCC). Cluster of differentiation 147 (CD147), a tumor-related glycoprotein, promotes epithelial-mesenchymal transition and the invasion of HCC. However, the function of CD147 in hepatocyte depolarization is unknown. Here we identified that CD147 was basolaterally polarized in hepatocyte membrane of liver tissues and HepG2 cells. CD147 not only promoted transforming growth factor-β1-mediated hepatocyte polarity loss but also directly induced endocytosis and down-regulation of E-cadherin which contributed to hepatocyte depolarization. Overexpression of CD147 induced Src activation and subsequently recruited ubiquitin ligase Hakai for E-cadherin ubiquitination and lysosomal degradation, leading to decreases of partitioning defective 3 expression and β-catenin nuclear translocation. This signal transduction was initiated by competitive binding of CD147 with integrin β1 that interrupted the interaction between the Arg-Gly-Asp motif of fibronectin and integrin β1. The specific antibodies targeting integrin α5 and β1 reversed the decrease of E-cadherin and partitioning defective 3 levels induced by CD147 overexpression. In human liver tissues, CD147 polarity rates significantly declined from liver cirrhosis (71.4%) to HCC (10.4%). CD147-polarized localization negatively correlated with Child-Pugh scores in human liver cirrhosis (r = -0.6092, P < 0.0001) and positively correlated with differentiation grades in HCC (r = 0.2060, P = 0.004). HCC patients with CD147-polarized localization had significantly better overall survival than patients with CD147 nonpolarity (P = 0.021). CONCLUSION The ectopic CD147-polarized distribution on basolateral membrane promotes hepatocyte depolarization by activation of the CD147-integrin α5β1-E-cadherin ubiquitination-partitioning defective 3 decrease and β-catenin translocation signaling cascade, replenishing a molecular pathway in hepatic carcinogenesis. (Hepatology 2018;68:317-332).
Collapse
Affiliation(s)
- Meng Lu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
| | - Jiao Wu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
| | - Zhi‐Wei Hao
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
| | - Yu‐Kui Shang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
- College of Life Sciences and BioengineeringBeijing Jiaotong UniversityBeijingChina
| | - Jing Xu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
| | - Gang Nan
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
| | - Xia Li
- Department of Biochemistry and Molecular BiologyFourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
| |
Collapse
|
26
|
Yang J, Sheng YY, Wei JW, Gao XM, Zhu Y, Jia HL, Dong QZ, Qin LX. MicroRNA-219-5p Promotes Tumor Growth and Metastasis of Hepatocellular Carcinoma by Regulating Cadherin 1. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4793971. [PMID: 29862272 PMCID: PMC5976989 DOI: 10.1155/2018/4793971] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022]
Abstract
MicroRNAs play significant roles in the development of cancer and may serve as promising therapeutic targets. In our previous work, miR-219-5p was identified as one of the important metastasis-related microRNAs in HCC. Here we demonstrated that miR-219-5p expression was elevated in HCC tissues and was associated with vascular invasion and dismal prognosis. In multivariate analysis, miR-219-5p was identified as an independent prognostic indicator for HCC patients. Functional mechanism analyses showed that miR-219-5p promoted HCC cell proliferation and invasion in in vitro, as well as in vivo, tumor growth and metastasis in nude mice models bearing human HCC tumors. In addition, cadherin 1 (CDH1) was revealed to be a downstream target of miR-219-5p in HCC cells. In conclusion, miR-219-5p promotes tumor growth and metastasis of HCC by regulating CDH1 and can serve as a prognostic marker for HCC patients.
Collapse
Affiliation(s)
- Jing Yang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Yuan-Yuan Sheng
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Jin-Wang Wei
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Xiao-Mei Gao
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Ying Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Qiong-Zhu Dong
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| |
Collapse
|
27
|
Yamanaka C, Wada H, Eguchi H, Hatano H, Gotoh K, Noda T, Yamada D, Asaoka T, Kawamoto K, Nagano H, Doki Y, Mori M. Clinical significance of CD13 and epithelial mesenchymal transition (EMT) markers in hepatocellular carcinoma. Jpn J Clin Oncol 2018; 48:52-60. [PMID: 29145632 DOI: 10.1093/jjco/hyx157] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
Background & Aims To improve prognosis in patients with hepatocellular carcinoma (HCC), the molecular mechanisms of tumor thrombus formation and metastasis must be clarified. The epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) play crucial roles in tumor invasion and metastasis. This study aimed to reveal the clinical significance of the expression of the functional CSC marker, CD13, and investigate the correlation between CD13 expression and two EMT markers, E-cadherin and vimentin. Methods We acquired clinical samples from 86 patients with HCC that underwent radical liver resections. We performed immunohistochemistry to evaluate CD13, E-cadherin and vimentin expression. We investigated the relationships among protein expression levels, clinicopathological factors and prognosis. Results Based on CD13 expression, patients were categorized into CD13high (n = 30, 34.9%) and CD13low (n = 56, 65.1%) groups. The mean tumor size was significantly larger in the CD13high group than in the CD13low group (P = 0.049). Compared with the CD13low group, the CD13high group showed significantly earlier recurrences and shorter survival times. In the multivariate analysis, CD13high was an independent prognostic factor for overall survival (hazard ratio, 1.98; P = 0.044). The disease-free survival time was shorter in the vimentin-positive group than that in the vimentin-negative group (P = 0.014). In an analysis of the relationship between CD13 and EMT, there was no significant correlation between CD13 and EMT markers. Conclusions Our findings suggested that CD13 enrichment was correlated with early recurrences, and poor prognosis in patients with HCC and that vimentin was associated with early recurrences. CD13 represents a potential therapeutic target for HCC, because CSC regulation and EMT suppression are essential in cancer therapy.
Collapse
Affiliation(s)
- Chihiro Yamanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hisanori Hatano
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
28
|
Shield KD, Marant Micallef C, de Martel C, Heard I, Megraud F, Plummer M, Vignat J, Bray F, Soerjomataram I. New cancer cases in France in 2015 attributable to infectious agents: a systematic review and meta-analysis. Eur J Epidemiol 2018; 33:263-274. [PMID: 29214413 DOI: 10.1007/s10654-017-0334-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022]
Abstract
To provide an assessment of the burden of cancer in France in 2015 attributable to infectious agents. A systematic literature review in French representative cancer cases series was undertaken of the prevalence of infectious agents with the major associated cancer types. PubMed was searched for original studies published up to September 2016; random-effects meta-analyses were performed. Cancer incidence data were obtained from the French Cancer Registries Network, thereby allowing the calculation of national incidence estimates. The number of new cancer cases attributable to infectious agents was calculated using population-attributable fractions according to published methods. Of the 352,000 new cancer cases in France in 2015, 14,336 (4.1% of all new cancer cases) were attributable to infectious agents. The largest contributors were human papillomavirus (HPV) and Helicobacter pylori, responsible for 6333 and 4406 new cancer cases (1.8 and 1.3% of all new cancer cases) respectively. Infectious agents caused a non-negligible number of new cancer cases in France in 2015. Most of these cancers were preventable. The expansion of vaccination (i.e., for hepatitis B virus and HPV) and screen-and-treat programs (for HPV and hepatitis C virus, and possibly for H. pylori) could greatly reduce this cancer burden.
Collapse
Affiliation(s)
- Kevin David Shield
- Section of Cancer Surveillance, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France.
| | - Claire Marant Micallef
- Section of Cancer Surveillance, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Catherine de Martel
- Infections and Cancer Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Isabelle Heard
- Prevention and Implementation Group, International Agency for Research on Cancer, Lyon, France
- Hospital Tenon, AP-HP, Paris, France
| | - Francis Megraud
- Laboratoire de Bactériologie, Hôpital Pellegrin, Bordeaux, France
| | - Martyn Plummer
- Infections and Cancer Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Jérôme Vignat
- Section of Cancer Surveillance, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Freddie Bray
- Section of Cancer Surveillance, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Isabelle Soerjomataram
- Section of Cancer Surveillance, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France
| |
Collapse
|
29
|
Molecular and proteomic insight into Notch1 characterization in hepatocellular carcinoma. Oncotarget 2018; 7:39609-39626. [PMID: 27167202 PMCID: PMC5129957 DOI: 10.18632/oncotarget.9203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 04/10/2016] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks fifth in frequency worldwide amongst all human cancers causing one million deaths annually. Despite many promising treatment options, long-term prognosis remains dismal for the majority of patients who develop recurrence or present with advanced disease. Notch signaling is an evolutionarily conserved pathway crucial for the development and homeostasis of many organs including liver. Herein we showed that aberrant Notch1 is linked to HCC development, tumor recurrence and invasion, which might be mediated, at least in part, through the Notch1-E-Cadherin pathway. Collectively, these findings suggest that targeting Notch1 has important therapeutic value in hepatocellular carcinoma. In this regard, comparative analysis of the secretome of HepG2 and HepG2 Notch1 depleted cells identified novel secreted proteins related to Notch1 expression. Soluble E-Cadherin (sE-Cad) and Thrombospondin-1 (Thbs1) were further validated in human serum as potential biomarkers to predict response to Notch1 inhibitors for a tailored individualized therapy.
Collapse
|
30
|
Response: "Which is the True Role of Bridging Therapies for HCC Patients Waiting for Liver Transplantation?". Ann Surg 2017; 268:e57-e60. [PMID: 29064906 DOI: 10.1097/sla.0000000000002577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
β-defensin 1 expression in HCV infected liver/liver cancer: an important role in protecting HCV progression and liver cancer development. Sci Rep 2017; 7:13404. [PMID: 29042578 PMCID: PMC5645372 DOI: 10.1038/s41598-017-13332-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022] Open
Abstract
β-defensin family plays a role in host defense against viral infection, however its role in HCV infection is still unknown. In this study, we demonstrated that β-defensin 1 was significantly reduced in HCV-infected liver specimens. Treatment with interferon and ribavirin upregulated β-defensin-1, but not other β-defensin tested, with the extent and duration of upregulation associated with treatment response. We investigated β-defensin family expression in liver cancer in publicly available datasets and found that among all the β-defensins tested, only β-defensin 1 was significantly downregulated, suggesting β-defensin 1 plays a crucial role in liver cancer development. Further analysis identified E-cadherin as the top positive correlated gene, while hepatocyte growth factor-regulated tyrosine kinase substrate as the top negative correlated gene. Expression of two proteoglycans were also positively correlated with that of β-defensin 1. We have also identified small molecules as potential therapeutic agents to reverse β-defensin 1-associated gene signature. Furthermore, the downregulation of β-defensin 1 and E-cadherin, and upregulation of hepatocyte growth factor-regulated tyrosine kinase substrate, were further confirmed in liver cancer and adjacent normal tissue collected from in-house Chinese liver cancer patients. Together, our results suggest β-defensin 1 plays an important role in protecting HCV progression and liver cancer development.
Collapse
|
32
|
Zhu C, Feng X, Ye G, Huang T. Meta-analysis of possible role of cadherin gene methylation in evolution and prognosis of hepatocellular carcinoma with a PRISMA guideline. Medicine (Baltimore) 2017; 96:e6650. [PMID: 28422868 PMCID: PMC5406084 DOI: 10.1097/md.0000000000006650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cadherins (CDHs) have been reported to be associated with cancer. However, the clinical significance of CDH gene methylation in hepatocellular carcinoma (HCC) remains unclear. METHODS Based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement criteria, available studies were identified from online electronic database. The overall odds ratio (OR) and the corresponding 95% confidence interval (95% CI) were calculated and analyzed. RESULTS A total of 29 eligible studies with 2562 HCC samples and 1685 controls were included. E-cadherin (CDH1) hypermethylation was observed to be significantly higher in HCC than in benign, adjacent, or normal samples. Moreover, CDH1 hypermethylation was not associated with gender, tumor grade, clinical stage, hepatitis B virus (HBV), or hepatitis C virus (HCV) infection in HCC patients. H-cadherin (CDH13), protocadherin-10 (PCDH10), P-cadherin (CDH3), and M-cadherin (CDH15) methylation may have an increased risk of HCC in fewer than 4 studies, and methylated cadherin 8, type 2 (CDH8) and OB-cadherin (CDH11) had a similar OR in HCC and adjacent samples. When HCC samples were compared with normal samples, the analysis of sample type revealed a significantly higher OR in normal blood samples than in normal tissues for hypermethylated CDH1 (50.82 vs 4.44). CONCLUSION CDH1 hypermethylation may play a key role in the carcinogenesis of HCC. However, CDH1 hypermethylation was not correlated with clinicopathological features. Methylated CDH13, PCDH10, CDH3, and CDH15, but not methylated CDH8 or CDH11, may lead to an increased risk of HCC. Hypermethylated CDH1 may become a noninvasive blood biomarker. Further studies with more data are necessary.
Collapse
|
33
|
Li Y, Li H, Spitsbergen JM, Gong Z. Males develop faster and more severe hepatocellular carcinoma than females in kras V12 transgenic zebrafish. Sci Rep 2017; 7:41280. [PMID: 28117409 PMCID: PMC5259773 DOI: 10.1038/srep41280] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is more prevalent in men than women, but the reason for this gender disparity is not well understood. To investigate whether zebrafish could be used to study the gender disparity of HCC, we compared the difference of liver tumorigenesis between female and male fish during early tumorigenesis and long-term tumor progression in our previously established inducible and reversible HCC model - the krasV12 transgenic zebrafish. We found that male fish developed HCC faster than females. The male tumors were more severe from the initiation stage, characteristic of higher proliferation, activation of WNT/β-catenin pathway and loss of cell adhesion. During long-term tumor progression, the male tumors developed into more advanced multi-nodular tumors, whereas the female tumors remain uniform and homogenous. Moreover, regression of male tumors required longer time. We further investigated the role of sex hormones in krasV12 transgenic fish. Estrogen treatment showed tumor suppressing effect during early tumorigenesis through inhibiting cell proliferation, whereas androgen accelerated tumor growth by promoting cell proliferation. Overall, our study presented the zebrafish as a useful animal model for study of gender disparity of HCC.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Hankun Li
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Jan M. Spitsbergen
- Department of Microbiology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| |
Collapse
|
34
|
Giannelli G, Koudelkova P, Dituri F, Mikulits W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol 2016; 65:798-808. [PMID: 27212245 DOI: 10.1016/j.jhep.2016.05.007] [Citation(s) in RCA: 458] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 12/13/2022]
Abstract
The epithelial to mesenchymal transition (EMT) is a multistep biological process whereby epithelial cells change in plasticity by transient de-differentiation into a mesenchymal phenotype. EMT and its reversal, mesenchymal to epithelial transition (MET), essentially occur during embryogenetic morphogenesis and have been increasingly described in fibrosis and cancer during the last decade. In carcinoma progression, EMT plays a crucial role in early steps of metastasis when cells lose cell-cell contacts due to ablation of E-cadherin and acquire increased motility to spread into surrounding or distant tissues. Epithelial plasticity has become a hot issue in hepatocellular carcinoma (HCC), as strong inducers of EMT such as transforming growth factor-β are able to orchestrate both fibrogenesis and carcinogenesis, showing rising cytokine levels in cirrhosis and late stage HCC. In this review, we consider the significance of EMT-MET in malignant hepatocytes as well as changes in the plasticity of hepatic stellate cells for cellular heterogeneity of HCC, and further aim at explaining the current limiting insights into EMT by snapshot analyses of HCC tissues. Recent advances in the identification of clinically relevant mechanisms that impinge on important EMT-transcription factors, as well as on miRNAs causing EMT signatures and HCC progression are highlighted. In addition, we draw particular attention to framing EMT in the context of potential clinical relevance for HCC patients. We conclude that some aspects of EMT are still elusive and further studies are required to better link the clinical management of HCC with biomarkers and targeted therapies related to EMT.
Collapse
Affiliation(s)
- Gianluigi Giannelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
| | - Petra Koudelkova
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Francesco Dituri
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Austria.
| |
Collapse
|
35
|
Li J, Dai X, Zhang H, Zhang W, Sun S, Gao T, Kou Z, Yu H, Guo Y, Du L, Jiang S, Zhang J, Zhou Y. Up-regulation of human cervical cancer proto-oncogene contributes to hepatitis B virus-induced malignant transformation of hepatocyte by down-regulating E-cadherin. Oncotarget 2016; 6:29196-208. [PMID: 26470691 PMCID: PMC4745720 DOI: 10.18632/oncotarget.5039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 08/25/2015] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal human malignancies, Human cervical cancer proto-oncogene (HCCR) aberrantly expressed in a number of malignant tumors, including HCC. HCC is associated with Hepatitis B virus (HBV) infection in a large percentage of cases. To explore the regulation and function of HCCR expression in the development of HCC, we detected HCCR expression in HBV expressing hepatocytes. Results showed that the expression of HCCR was higher in HBV-expressing hepatocytes than that in control cells. Examining different components of HBV revealed that the HBx promotes HCCR expression in hepatocytes via the T-cell factor (TCF)/β-catenin pathway. HCCR expression in HBx transgenic mice increased with as the mice aged and developed tumors. We also found that overexpression of HCCR in hepatocytes promoted cell proliferation, migration, and invasion and reduced cell adhesion. Suppressing HCCR expression abolished the effect of HBx-induced hepatocyte growth. In addition, HCCR represses the expression of E-cadherin by inhibition its promoter activity, which might correlate with the effects of HCCR in hepatocytes. Taken together, these results demonstrate that HBx-HCCR-E-cadherin regulation pathway might play an important role in HBV-induced hepatocarcinogenesis. They also imply that HCCR is a potential risk marker for HCC and/or a potential therapeutic target.
Collapse
Affiliation(s)
- Junfeng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaopeng Dai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hongfei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongtong Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhihua Kou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hong Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lanying Du
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Shibo Jiang
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianying Zhang
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
36
|
Silencing of CtBP1 suppresses the migration in human glioma cells. J Mol Histol 2016; 47:297-304. [PMID: 27160109 DOI: 10.1007/s10735-016-9678-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022]
Abstract
Carboxyl-terminal binding protein 1 (CtBP1), up-regulated in various types of human cancers, has been functionally associated with proliferation, anti-apoptosis, and EMT in vitro studies. However, the functional significance of CtBP1 in the pathophysiology of glioma remains unknown. In the present study, we showed the expression of CtBP1 was markedly higher in glioma tissues compared with normal brain tissues by Western blot analysis. Immunohistochemical analysis revealed that CtBP1 mainly localized in the nucleus of glioma cells. Statistical analysis suggested the upregulation of CtBP1 was considerably correlated with the WHO grade (P < 0.05) and those patients with high CtBP1 levels exhibited shorter survival time (P < 0.01). Silencing CtBP1 by short hairpin RNAi caused an inhibition of cell migration. Moreover, knockdown of CtBP1 increases E-cadherin expression and decreases vimentin expression. These data uncovered that CtBP1 protein is a valuable marker of glioma pathogenic process and that CtBP1 can serve as a novel prognostic marker for glioma therapy.
Collapse
|
37
|
Yuan Y, Zhang J, Zhou Q. Overexpression of Jak1 Activating Mutants in Hepatocytes Is Insufficient to Generate Hepatocellular Carcinoma in Zebrafish. J Genet Genomics 2016; 43:99-102. [DOI: 10.1016/j.jgg.2015.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/28/2015] [Accepted: 11/08/2015] [Indexed: 01/04/2023]
|
38
|
Shin Kim S, Yeom S, Kwak J, Ahn HJ, Lib Jang K. Hepatitis B virus X protein induces epithelial-mesenchymal transition by repressing E-cadherin expression via upregulation of E12/E47. J Gen Virol 2015; 97:134-143. [PMID: 26490105 DOI: 10.1099/jgv.0.000324] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previous reports have demonstrated that hepatitis B virus (HBV) X protein (HBx) represses E-cadherin expression to induce epithelial-mesenchymal transition (EMT), an essential component of cancer progression to more aggressive phenotypes characterized by tumour invasion, migration and metastasis; however, the underlying mechanism for this phenomenon is still unclear. In this study, we found that ectopic expression of HBx in human hepatocytes using overexpression and 1.2-mer WT HBV replicon systems upregulated levels of the transcriptional repressors E12 and E47, resulting in inactivation of the E-cadherin promoter, containing three E-box motifs, and subsequent repression of its expression. E12/E47 knockdown using a specific small interfering RNA almost completely abolished the potential of HBx to repress E-cadherin expression. HBx inhibited the ubiquitin-dependent proteasomal degradation of E12/E47 without affecting their expression at the transcriptional level. Upregulation of E12/E47 by HBx ultimately led to EMT in human hepatocytes, as demonstrated by morphological changes, altered protein levels of EMT markers, including E-cadherin, plakoglobin, fibronectin, vimentin and N-cadherin, and increased capacity for cell detachment and migration.
Collapse
Affiliation(s)
- Soo Shin Kim
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Sujeong Yeom
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Juri Kwak
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Hyung-Jun Ahn
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
39
|
Chen SP, Liu BX, Xu J, Pei XF, Liao YJ, Yuan F, Zheng F. MiR-449a suppresses the epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma by multiple targets. BMC Cancer 2015; 15:706. [PMID: 26471185 PMCID: PMC4608176 DOI: 10.1186/s12885-015-1738-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 10/08/2015] [Indexed: 12/15/2022] Open
Abstract
Background Increasing evidence indicates that Epithelial–mesenchymal transition (EMT) can be regulated by microRNAs (miRNAs). MiR-449a is a liver abundant miRNA. However, the role of miR-449a in the metastasis of hepatocellular carcinoma (HCC) remains largely unknown. Methods The expression levels of miR-449a were first examined in HCC cell lines and tumour tissues by real-time PCR. The in vitro and in vivo functional effect and underlying molecular mechanisms of miR-449a were examined further. Results In the present study, we found that miR-449a was significantly decreased in HCC cells and tissues, especially in those with the portal vein tumor thrombus. In HCC cell lines, stable overexpression of miR-449a was sufficient to inhibit cell motility in vitro, and pulmonary metastasis in vivo. In addition, ectopic overexpression of miR-449a in HCC cells promoted the expression of epithelial markers and reduced the levels of mesenchymal markers. Further studies revealed that the reintroduction of miR-449a attenuated the downstream signaling of Met, and consequently reduced the accumulation of Snail in cell nucleus by targeting the 3’-untranslated regions (3’-UTR) of FOS and Met. Conclusions Our data highlight an important role of miR-449a in the molecular etiology of HCC, and implicate the potential application of miR-449a in cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1738-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shu-Peng Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107, Yanjiang West Road, Guangzhou, 510120, China. .,The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, No. 651, Dongfeng Road East, Guangzhou, China.
| | - Bao-Xin Liu
- Department of orthopedics, Guangzhou hospital of traditional Chinese medicine, No. 16, Zhuji Road, Guangzhou, China.
| | - Jie Xu
- Department of Pathology, Guangdong Provincial People's Hospital, No.107, Zhongshan Er Road, Guangzhou, China.
| | - Xiao-Feng Pei
- Department of Radiation Oncology, the Fifth Affiliated Hospital, Sun Yat-sen University, No. 57, Meihua East Road, Zhuhai, China.
| | - Yi-Ji Liao
- The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, No. 651, Dongfeng Road East, Guangzhou, China.
| | - Feng Yuan
- Department of Breast Surgery, Hubei Provincial Cancer Hospital, No. 116, Zhuodaoquan South Road, Wuhan, China.
| | - Fang Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107, Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
40
|
Han B, Liu SH, Guo WD, Zhang B, Wang JP, Cao YK, Liu J. Notch1 downregulation combined with interleukin-24 inhibits invasion and migration of hepatocellular carcinoma cells. World J Gastroenterol 2015; 21:9727-9735. [PMID: 26361419 PMCID: PMC4562956 DOI: 10.3748/wjg.v21.i33.9727] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/06/2015] [Accepted: 06/26/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To confirm the anti-invasion and anti-migration effects of down-regulation of Notch1 combined with interleukin (IL)-24 in hepatocellular carcinoma (HCC) cells.
METHODS: γ-secretase inhibitors (GSIs) were used to down-regulate Notch1. HepG2 and SMMC7721 cells were seeded in 96-well plates and treated with GSI-I or/and IL-24 for 48 h. Cell viability was measured by MTT assay. The cellular and nuclear morphology was observed under a fluorescence microscope. To further verify the apoptotic phenotype, cell cultures were also analyzed by flow cytometry with Annexin V-FITC/propidium iodide staining. The expression of Notch1, SNAIL1, SNAIL2, E-cadherin, IL-24, XIAP and VEGF was detected by Western blot. The invasion and migration capacities of HCC cells were detected by wound healing assays. Notch1 and Snail were down-regulated by RNA interference, and the target proteins were analyzed by Western blot. To investigate the mechanism of apoptosis, we analyzed HepG2 cells treated with siNotch1 or siCON plus IL-24 or not for 48 h by caspase-3/7 activity luminescent assay.
RESULTS: GSI-I at a dose of 2.5 μmol/L for 24 h caused a reduction in cell viability of about 38% in HepG2 cells. The addition of 50 ng/mL IL-24 in combination with 1 or 2.5 μmol/L GSI-I reduced cell viability of about 30% and 15%, respectively. Treatment with IL-24 alone did not induce any cytotoxic effect. In SMMC7721 cells with the addition of IL-24 to GSI-I (2.5 μmol/L), the reduction of cell viability was only about 25%. Following GSI-I/IL-24 combined treatment for 6 h, the apoptotic rate of HepG2 cells was 47.2%, while no significant effect was observed in cells treated with the compounds employed separately. Decreased expression of Notch1 and its associated proteins SNAIL1 and SNAIL2 was detected in HepG2 cells. Increased E-cadherin protein expression was noted in the presence of IL-24 and GSI-I. Furthermore, the increased GSI-I and IL-24 in HepG2 cell was associated with downregulation of MMP-2, XIAP and VEGF. In the absence of treatment, HepG2 cells could migrate into the scratched space in 24 h. With IL-24 or GSI-I treatment, the wound was still open after 24 h. And the distance of the wound closure strongly correlated with the concentrations of IL-24 and GSI-I. Treatment of Notch-1 silenced HepG2 cells with 50 ng/mL IL-24 alone for 48 h induced cytotoxic effects very similar to those observed in non-silenced cells treated with GSI-I/IL-24 combination. Caspase-3/7 activity was increased in the presence of siNotch1 plus IL-24 treatment.
CONCLUSION: Down-regulation of Notch1 by GSI-I or siRNA combined with IL-24 can sensitize apoptosis and decrease the invasion and migration capabilities of HepG2 cells.
Collapse
|
41
|
Chen WT, Ha D, Kanel G, Lee AS. Targeted deletion of ER chaperone GRP94 in the liver results in injury, repopulation of GRP94-positive hepatocytes, and spontaneous hepatocellular carcinoma development in aged mice. Neoplasia 2015; 16:617-26. [PMID: 25220589 PMCID: PMC4235012 DOI: 10.1016/j.neo.2014.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/09/2014] [Accepted: 07/16/2014] [Indexed: 10/29/2022]
Abstract
Hepatocellular carcinoma (HCC) often results from chronic liver injury and severe fibrosis or cirrhosis, but the underlying molecular pathogenesis is unclear. We previously reported that deletion of glucose regulated protein 94 (GRP94), a major endoplasmic reticulum chaperone, in the bone marrow and liver leads to progenitor/stem cell expansion. Since liver progenitor cell (LPC) proliferation can contribute to liver tumor formation, here we examined the effect of GRP94 deficiency on spontaneous liver tumorigenesis. Utilizing liver-specific Grp94 knockout mice driven by Albumin-Cre (cGrp94(f/f)), we discovered that while wild-type livers are tumor free up to 24 months, cGrp94(f/f) livers showed abnormal small nodules at 15 months and developed HCC and ductular reactions (DRs) by 21 months of age, associating with increased liver injury, apoptosis and fibrosis. cGrp94(f/f) livers were progressively repopulated by GRP94-positive hepatocytes. At 15 months, we observed expansion of LPCs and mild DRs, as well as increase in cell proliferation. In examining the underlying mechanisms for HCC development in cGrp94(f/f) livers, we detected increase in TGF-β1, activation of SMAD2/3, ERK, and JNK, and cyclin D1 upregulation at the premalignant stage. While epithelial-mesenchymal transition (EMT) was not evident, E-cadherin expression was elevated. Correlating with the recurrence of GRP94 positive-hepatocytes, the HCC was found to be GRP94-positive, whereas the expanded LPCs and DRs remained GRP94-negative. Collectively, this study uncovers that GRP94 deficiency in the liver led to injury, LPC expansion, increased proliferation, activation of oncogenic signaling, progressive repopulation of GRP94-positive hepatocytes and HCC development in aged mice.
Collapse
Affiliation(s)
- Wan-Ting Chen
- Department of Biochemistry and Molecular Biology, University of Southern California, Keck School of Medicine, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, NOR 5308, Los Angeles, CA, 90089-9176, USA.
| | - Dat Ha
- Department of Biochemistry and Molecular Biology, University of Southern California, Keck School of Medicine, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, NOR 5308, Los Angeles, CA, 90089-9176, USA.
| | - Gary Kanel
- Department of Pathology, University of Southern California, Keck School of Medicine, 2053 Marengo St., GNH 2520, Los Angeles, CA, 90089-9092, USA.
| | - Amy S Lee
- Department of Biochemistry and Molecular Biology, University of Southern California, Keck School of Medicine, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, NOR 5308, Los Angeles, CA, 90089-9176, USA.
| |
Collapse
|
42
|
Hempel M, Schmitz A, Winkler S, Kucukoglu O, Brückner S, Niessen C, Christ B. Pathological implications of cadherin zonation in mouse liver. Cell Mol Life Sci 2015; 72:2599-612. [PMID: 25687506 PMCID: PMC11113307 DOI: 10.1007/s00018-015-1861-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 02/07/2023]
Abstract
Both acute and chronic liver diseases are associated with ample re-modeling of the liver parenchyma leading to functional impairment, which is thus obviously the cause or the consequence of the disruption of the epithelial integrity. It was, therefore, the aim of this study to investigate the distribution of the adherens junction components E- and N-cadherin, which are important determinants of tissue cohesion. E-cadherin was expressed in periportal but not in perivenous hepatocytes. In contrast, N-cadherin was more enriched towards the perivenous hepatocytes. In agreement, β-catenin, which links both cadherins via α-catenin to the actin cytoskeleton, was expressed ubiquitously. This zonal expression of cadherins was preserved in acute liver injury after treatment with acetaminophen or partial hepatectomy, but disrupted in chronic liver damage like in non-alcoholic steatohepatitis (NASH) or α1-antitrypsin deficiency. Hepatocyte proliferation during acetaminophen-induced liver damage was predominant at the boundary between the damaged perivenous and the intact periportal parenchyma indicating a minor contribution of periportal hepatocytes to liver regeneration. In NASH livers, an oval cell reaction was observed pointing to massive tissue damage coinciding with the gross impairment of hepatocyte proliferation. In the liver parenchyma, metabolic functions are distributed heterogeneously. For example, the expression of phosphoenolpyruvate carboxykinase and E-cadherin overlapped in periportal hepatocytes. Thus, during liver regeneration after acute damage, the intact periportal parenchyma might sustain essential metabolic support like glucose supply or ammonia detoxification. However, disruption of epithelial integrity during chronic challenges may increase susceptibility to metabolic liver diseases such as NASH or vice versa. This might suggest the regulatory integration of tissue cohesion and metabolic functions in the liver.
Collapse
Affiliation(s)
- Madlen Hempel
- Applied Molecular Hepatology Lab, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - Annika Schmitz
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sandra Winkler
- Applied Molecular Hepatology Lab, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - Ozlem Kucukoglu
- Applied Molecular Hepatology Lab, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM), Universität Leipzig, Leipzig, Germany
| | - Sandra Brückner
- Applied Molecular Hepatology Lab, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - Carien Niessen
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bruno Christ
- Applied Molecular Hepatology Lab, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM), Universität Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
Yadunandam AK, Yoon JS, Jeong YT, Kim WY, Lee SY, Kim GD. Differential effects of tetrahydropyridinol derivatives on β-catenin signaling and invasion in human hepatocellular and breast carcinoma cells. Int J Mol Med 2015; 36:577-87. [PMID: 26059838 DOI: 10.3892/ijmm.2015.2240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 05/15/2015] [Indexed: 11/06/2022] Open
Abstract
In continuation of previous efforts to investigate the biological potency of tetrahydropyridinol derivatives, the present study synthesized three target compounds: N-(bromoacetyl)-3-carboxyethyl-2,6-diphenyl-4-O-(pentafluorobenzoyl)-Δ3-tetra-hydropyridine (5a), N-(chloroacetyl)-3-carboxyethyl-2,6-diphenyl-4-O-(pentafluorobenzoyl)-Δ3-tetrahydropyridine (5b) and N-(2-bromopropanoyl)-3-carboxyethyl-2,6-diphenyl-4-O-(pentafluorobenzoyl)-Δ3-tetrahydropyridine (5c), and examined their anticancer potency. Experiments were performed using the Sk-Hep1 and Hep3B human hepatocellular carcinoma cell lines and MDA-MB-231 breast adenocarcinoma cell line. Among the three compounds, 5a and 5b were comparably and significantly cytotoxic to the Sk-Hep1, Hep3B and MDA-MB-231 cells. The highest level of cytotoxicity was detected in theSk-Hep1 cells with half maximal inhibitory concentrations for compounds 5a and 5b at 12 and 6 µM, respectively. These two compounds induced cell cycle arrest in the Sk-Hep1 and MDA-MB-231 cells through the downregulation of β-catenin and upregulation of glycogen synthase kinase-3β and E-cadherin. By contrast, 5a and 5b induced G1 arrest in the Hep3B cells by modulating the p21 and p27 cell cycle regulatory molecules and cyclin-dependent kinase 2. In addition, 5a and 5b significantly inhibited the invasion of Sk-Hep1 and MDA-MB-231 cells. These results suggested that the 5a and 5b compounds induce cell cycle arrest by suppressing Wnt/β-catenin signaling in highly invasive Sk-Hep1 and MDA-MB-231 cells, and by inducing p53 independent cell cycle arrest in Hep3B cells.
Collapse
Affiliation(s)
- Anandam Kasin Yadunandam
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 608-737, Republic of Korea
| | - Jin-Soo Yoon
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Yeon Tae Jeong
- Department of Image Science and Engineering, College of Engineering, Pukyong National University, Busan 608-737, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sang-Yeol Lee
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 608-737, Republic of Korea
| |
Collapse
|
44
|
Niu ZS, Niu XJ, Wang M. Management of hepatocellular carcinoma: Predictive value of immunohistochemical markers for postoperative survival. World J Hepatol 2015; 7:7-27. [PMID: 25624992 PMCID: PMC4295195 DOI: 10.4254/wjh.v7.i1.7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/02/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for over 90% of all primary liver cancers. With an ever increasing incidence trend year by year, it has become the third most common cause of death from cancer worldwide. Hepatic resection is generally considered to be one of the most effective therapies for HCC patients, however, there is a high risk of recurrence in postoperative HCC. In clinical practice, there exists an urgent need for valid prognostic markers to identify patients with prognosis, hence the importance of studies on prognostic markers in improving the prediction of HCC prognosis. This review focuses on the most promising immunohistochemical prognostic markers in predicting the postoperative survival of HCC patients.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Zhao-Shan Niu, Lab of Micromorphology, Medical College of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Zhao-Shan Niu, Lab of Micromorphology, Medical College of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Mei Wang
- Zhao-Shan Niu, Lab of Micromorphology, Medical College of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
45
|
Liu M, Jiang L, Guan XY. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein Cell 2014; 5:673-91. [PMID: 24916440 PMCID: PMC4145080 DOI: 10.1007/s13238-014-0065-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/13/2014] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of multiple genetic and epigenetic alterations, which further lead to the activation of critical oncogenes or inactivation of tumor suppressor genes. HCC is characterized with multiple cancer hallmarks including their ability to proliferate, anti-apoptosis, invade, metastasis, as well as the emerging features such as stem cell properties and energy metabolic switch. The irreversible alterations at genetic level could be detected as early as in the pre-neoplastic stages and accumulate during cancer progression. Thus, they might account for the cancer initiating steps and further malignant transformation. In addition to genetic alterations, epigenetic alterations can affect the cancer transcriptome more extensively. Alterations in DNA methylation, histone modification, miRNAs, RNA editing, and lncRNAs might result in disrupted gene regulation networks and substantially contribute to HCC progression. In this review, the genetic and epigenetic alterations which significantly contribute to the malignant capabilities of HCC will be updated and summarized in detail. Further characterization of those critical molecular events might better elucidate the pathogenesis of HCC and provide novel therapeutic targets for treatment of this deadly disease.
Collapse
Affiliation(s)
- Ming Liu
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - Lingxi Jiang
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
46
|
Chen J, Zhao J, Ma R, Lin H, Liang X, Cai X. Prognostic significance of E-cadherin expression in hepatocellular carcinoma: a meta-analysis. PLoS One 2014; 9:e103952. [PMID: 25093414 PMCID: PMC4122395 DOI: 10.1371/journal.pone.0103952] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/04/2014] [Indexed: 02/06/2023] Open
Abstract
Backgrounds Hepatocellular Carcinoma (HCC) is one of the most common malignancy of liver and HCC-related morbidity and mortality remains at high level. Researchers had investigated whether and how reduced E-cadherin expression impacted the prognosis of patients with HCC but the results reported by different teams remain inconclusive. Methods A systematic literature search was performed in all available databases to retrieve eligible studies and identify all relevant data, which could be used to evaluate the correlation between reduced E-cadherin expression and clinicopathological features and prognosis for HCC patients. A fixed or random effects model was used in this meta-analysis to calculate the pooled odds ratios (OR) and weighted mean differences (WMD) with 95% confidence intervals (CI). Results Total 2439 patients in thirty studies matched the selection criteria. Aggregation of the data suggested that reduced E-cadherin expression in HCC patients correlated with poor 1-, 3- and 5-year overall survival. The combined ORs were 0.50 (n = 13 studies, 95% CI: 0.37–0.67, Z = 4.49, P<0.00001), 0.39 (n = 13 studies, 95% CI: 0.28–0.56, Z = 5.12, P<0.00001), 0.40 (n = 11 studies, 95% CI: 0.25–0.64, Z = 3.82, P = 0.0001), respectively. Additionally, the pooled analysis denoted that reduced E-cadherin expression negatively impacts recurrence-free survival (RSF) with no significant heterogeneity. The pooled ORs for 1-, 3- and 5- year RSF affected by down-regulated E-cadherin were 0.73 (n = 6 studies, 95% CI: 0.54–1.00, Z = 1.95, P = 0.05), 0.70 (n = 6 studies, 95% CI: 0.52–0.95, Z = 2.32, P = 0.02), 0.66 (n = 5 studies, 95% CI: 0.48–0.90, Z = 2.64, P = 0.008). And what’s more, reduced E-cadherin expression tended to be significantly associated with metastasis (OR = 0.31, 95% CI: 0.16–0.60, Z = 3.50, P = 0.0005), vascular invasion (OR = 0.76, 95% CI: 0.59–0.98, Z = 2.14, P = 0.03), advanced differentiation grade (OR = 0.31, 95% CI: 0.21–0.45, Z = 6.04, P<0.00001) and advanced TMN stage (T3/T4 versus T1/T2) (OR = 0.61,95% CI:0.38–0.98, Z = 2.05, P = 0.04). Conclusions Reduced E-cadherin expression indicates a poor prognosis for patients with HCC, and it may have predictive potential for prognosis of HCC patients.
Collapse
Affiliation(s)
- Jiang Chen
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Zhao
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rui Ma
- Department of Surgery, Zhejiang University Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Lin
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Liang
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujun Cai
- Department of General Surgery, Institute of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
47
|
Varelas X, Bouchie MP, Kukuruzinska MA. Protein N-glycosylation in oral cancer: dysregulated cellular networks among DPAGT1, E-cadherin adhesion and canonical Wnt signaling. Glycobiology 2014; 24:579-91. [PMID: 24742667 PMCID: PMC4038253 DOI: 10.1093/glycob/cwu031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 03/17/2014] [Accepted: 04/11/2014] [Indexed: 12/17/2022] Open
Abstract
N-Linked glycosylation (N-glycosylation) of proteins has long been associated with oncogenesis, but not until recently have the molecular mechanisms underlying this relationship begun to be unraveled. Here, we review studies describing how dysregulation of the N-glycosylation-regulating gene, DPAGT1, drives oral cancer. DPAGT1 encodes the first and rate-limiting enzyme in the assembly of the lipid-linked oligosaccharide precursor in the endoplasmic reticulum and thus mediates N-glycosylation of many cancer-related proteins. DPAGT1 controls N-glycosylation of E-cadherin, the major epithelial cell-cell adhesion receptor and a tumor suppressor, thereby affecting intercellular adhesion and cytoskeletal dynamics. DPAGT1 also regulates and is regulated by Wnt/β-catenin signaling, impacting the balance between proliferation and adhesion in homeostatic tissues. Thus, aberrant induction of DPAGT1 promotes a positive feedback network with Wnt/β-catenin that represses E-cadherin-based adhesion and drives tumorigenic phenotypes. Further, modification of receptor tyrosine kinases (RTKs) with N-glycans is known to control their surface presentation via the galectin lattice, and thus increased DPAGT1 expression likely contributes to abnormal activation of RTKs in oral cancer. Collectively, these studies suggest that dysregulation of the DPAGT1/Wnt/E-cadherin network underlies the etiology and pathogenesis of oral cancer.
Collapse
Affiliation(s)
- Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Meghan P Bouchie
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| | - Maria A Kukuruzinska
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
48
|
Takai A, Dang HT, Wang XW. Identification of drivers from cancer genome diversity in hepatocellular carcinoma. Int J Mol Sci 2014; 15:11142-60. [PMID: 24955791 PMCID: PMC4100204 DOI: 10.3390/ijms150611142] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with a dismal outcome. The complicated molecular pathogenesis of HCC caused by tumor heterogeneity makes it difficult to identify druggable targets useful for treating HCC patients. One approach that has a potential for the improvement of patient prognosis is the identification of cancer driver genes that play a critical role in the development of HCC. Recent technological advances of high-throughput methods, such as gene expression profiles, DNA copy number alterations and somatic mutations, have expanded our understanding of the comprehensive genetic profiles of HCC. Integrative analysis of these omics profiles enables us to classify the molecular subgroups of HCC patients. As each subgroup classified according to genetic profiles has different clinical features, such as recurrence rate and prognosis, the tumor subclassification tools are useful in clinical practice. Furthermore, a global genetic analysis, including genome-wide RNAi functional screening, makes it possible to identify cancer vulnerable genes. Identification of common cancer driver genes in HCC leads to the development of an effective molecular target therapy.
Collapse
Affiliation(s)
- Atsushi Takai
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Hien T Dang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Xin W Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Liu M, Jiang L, Guan XY. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein Cell 2014. [PMID: 24916440 DOI: 10.1007/s13238- 014-0065-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of multiple genetic and epigenetic alterations, which further lead to the activation of critical oncogenes or inactivation of tumor suppressor genes. HCC is characterized with multiple cancer hallmarks including their ability to proliferate, anti-apoptosis, invade, metastasis, as well as the emerging features such as stem cell properties and energy metabolic switch. The irreversible alterations at genetic level could be detected as early as in the pre-neoplastic stages and accumulate during cancer progression. Thus, they might account for the cancer initiating steps and further malignant transformation. In addition to genetic alterations, epigenetic alterations can affect the cancer transcriptome more extensively. Alterations in DNA methylation, histone modification, miRNAs, RNA editing, and lncRNAs might result in disrupted gene regulation networks and substantially contribute to HCC progression. In this review, the genetic and epigenetic alterations which significantly contribute to the malignant capabilities of HCC will be updated and summarized in detail. Further characterization of those critical molecular events might better elucidate the pathogenesis of HCC and provide novel therapeutic targets for treatment of this deadly disease.
Collapse
Affiliation(s)
- Ming Liu
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
50
|
Huang XY, Zhang C, Cai JB, Shi GM, Ke AW, Dong ZR, Zhang PF, Fan J, Peng BG, Zhou J. Comprehensive multiple molecular profile of epithelial mesenchymal transition in intrahepatic cholangiocarcinoma patients. PLoS One 2014; 9:e96860. [PMID: 24816558 PMCID: PMC4016113 DOI: 10.1371/journal.pone.0096860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/13/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The aim of this study is to investigate the expression profile of multiple epithelial mesenchymal transition (EMT)-related molecules in intrahepatic cholangiocarcinoma (ICC) and the related prognostic significance. METHODS Immunohistochemistry was performed to determine the expression of E-cadherin, Vimentin, Snail, slug and β-catenin in a tissue microarray consisting of tumor tissues of 140 ICC patients undergoing curative resection. The correlation between the expression of these molecules and the clinicopathological characteristics of ICC patients was analyzed, and their prognostic implication was evaluated. RESULTS Reduced E-cadherin and increased Vimentin expression, the characteristic changes of EMT, identified in 55.0% and 55.7% of primary ICCs, respectively, were correlated with lymphatic metastasis and poorer overall survival (OS) and disease-free survival (DFS) of ICCs. The overexpression of snail and nonmembranous β-catenin, which are the major regulators of the EMT, were identified in 49.2% and 45.7% of primary ICCs, while little slug expression was detected in ICCs. Cytoplasmic/nuclear β-catenin did not significantly predict worse DFS and was not related with E-cadherin loss. The overexpression of snail predicted worse OS and DFS. Snail overexpression correlated with the down-regulation of E-cadherin and the up-regulation of Vimentin. Inhibition of snail in an ICC cell line decreased the expression of E-cadherin, enhanced the expression of Vimentin and impaired the invasion and migration ability of ICC cells. CONCLUSIONS These data support the hypothesis that EMT plays vital roles in ICC progression and suggest that snail but not slug and β-catenin plays a crucial role in the EMT induction of ICC.
Collapse
Affiliation(s)
- Xiao-Yong Huang
- The Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Chi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Jia-Bin Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Zhao-Ru Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Peng-Fei Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Bao-Gang Peng
- The Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, PR China
| |
Collapse
|