1
|
Szachniewicz MM, Neustrup MA, van Meijgaarden KE, Jiskoot W, Bouwstra JA, Haks MC, Geluk A, Ottenhoff THM. Intrinsic immunogenicity of liposomes for tuberculosis vaccines: Effect of cationic lipid and cholesterol. Eur J Pharm Sci 2024; 195:106730. [PMID: 38382622 DOI: 10.1016/j.ejps.2024.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024]
Abstract
Tuberculosis (TB) is still among the deadliest infectious diseases, hence there is a pressing need for more effective TB vaccines. Cationic liposome subunit vaccines are excellent vaccine candidates offering effective protection with a better safety profile than live vaccines. In this study, we aim to explore intrinsic adjuvant properties of cationic liposomes to maximize immune activation while minimizing aspecific cytotoxicity. To achieve this, we developed a rational strategy to select liposomal formulation compositions and assessed their physicochemical and immunological properties in vitro models using human monocyte-derived dendritic cells (MDDCs). A broad selection of commercially available cationic compounds was tested to prepare liposomes containing Ag85B-ESAT6-Rv2034 (AER) fusion protein antigen. 1,2-Dioleoyl-sn‑glycero-3-ethylphosphocholine (EPC)-based liposomes exhibited the most advantageous activation profile in MDDCs as assessed by cell surface activation markers, cellular uptake, antigen-specific T-cell activation, cytokine production, and cellular viability. The addition of cholesterol to 20 mol% improved the performance of the tested formulations compared to those without it; however, when its concentration was doubled there was no further benefit, resulting in reduced cell viability. This study provides new insights into the role of cationic lipids and cholesterol in liposomal subunit vaccines.
Collapse
Affiliation(s)
- M M Szachniewicz
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Postzone C5-P, PO Box 9600, Leiden, RC 2300, the Netherlands.
| | - M A Neustrup
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - K E van Meijgaarden
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Postzone C5-P, PO Box 9600, Leiden, RC 2300, the Netherlands
| | - W Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - J A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - M C Haks
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Postzone C5-P, PO Box 9600, Leiden, RC 2300, the Netherlands
| | - A Geluk
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Postzone C5-P, PO Box 9600, Leiden, RC 2300, the Netherlands
| | - T H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Postzone C5-P, PO Box 9600, Leiden, RC 2300, the Netherlands
| |
Collapse
|
2
|
Agallou M, Margaroni M, Tsanaktsidou E, Badounas F, Kammona O, Kiparissides C, Karagouni E. A liposomal vaccine promotes strong adaptive immune responses via dendritic cell activation in draining lymph nodes. J Control Release 2023; 356:386-401. [PMID: 36893900 DOI: 10.1016/j.jconrel.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Subunit proteins provide a safe source of antigens for vaccine development especially for intracellular infections which require the induction of strong cellular immune responses. However, those antigens are often limited by their low immunogenicity. In order to achieve effective immune responses, they should be encapsulated into a stable antigen delivery system combined with an appropriate adjuvant. As such cationic liposomes provide an efficient platform for antigen delivery. In the present study, we describe a liposomal vaccine platform for co-delivery of antigens and adjuvants able to elicit strong antigen-specific adaptive immune responses. Liposomes are composed of the cationic lipid dimethyl dioctadecylammonium bromide (DDAB), cholesterol (CHOL) and oleic acid (OA). Physicochemical characterization of the formulations showed that their size was in the range of ∼250 nm with a positive zeta potential which was affected in some cases by the enviromental pH facilitating endosomal escape of potential vaccine cargo. In vitro, liposomes were effectively taken up by bone marrow dendritic cells (BMDCs) and when encapsulated IMQ they promoted BMDCs maturation and activation. Upon in vivo intramuscular administration, liposomes' active drainage to lymph nodes was mediated by DCs, B cells and macrophages. Thus, mice immunization with liposomes having encapsulated LiChimera, a previously characterized anti-leishmanial antigen, and IMQ elicited infiltration of CD11blow DCs populations in draining LNs followed by increased antigen-specific IgG, IgG2a and IgG1 levels production as well as indcution of antigen-specific CD4+ and CD8+ T cells. Collectively, the present work provides a proof-of-concept that cationic liposomes composed of DDAB, CHOL and OA adjuvanted with IMQ provide an efficient delivery platform for protein antigens able to induce strong adaptive immune responses via DCs targeting and induction of maturation.
Collapse
Affiliation(s)
- Maria Agallou
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, Athens 125 21, Greece
| | - Maritsa Margaroni
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, Athens 125 21, Greece
| | - Evgenia Tsanaktsidou
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, Thessaloniki 57 001, Greece
| | - Fotis Badounas
- Molecular Genetics Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 125 21, Greece
| | - Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, Thessaloniki 57 001, Greece
| | - Costas Kiparissides
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, Thessaloniki 57 001, Greece; Department of Chemical Engineering, Aristotle University of Thessaloniki, P.O. Box 472, Thessaloniki 54 124, Greece
| | - Evdokia Karagouni
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, Athens 125 21, Greece.
| |
Collapse
|
3
|
Ando M, Sasaki Y, Akiyoshi K. Preparation of cationic proteoliposomes using cell-free membrane protein synthesis: the chaperoning effect of cationic liposomes. RSC Adv 2020; 10:28741-28745. [PMID: 35520093 PMCID: PMC9055869 DOI: 10.1039/d0ra05825d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Membrane protein reconstituted cationic liposomes are constructed using cell-free membrane protein synthesis in the presence of cationic liposomes. The chaperon effect of cationic liposomal membrane assists in folding the functional conformation of membrane protein. This preparation method enables the provision of the usage of proteoliposomes for drug delivery. The preparation method of cationic proteoliposomes is established using a cell-free membrane protein synthesis in the presence of cationic liposomes.![]()
Collapse
Affiliation(s)
- Mitsuru Ando
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| |
Collapse
|
4
|
Wu X, Li Y, Chen X, Zhou Z, Pang J, Luo X, Kong M. A surface charge dependent enhanced Th1 antigen-specific immune response in lymph nodes by transfersome-based nanovaccine-loaded dissolving microneedle-assisted transdermal immunization. J Mater Chem B 2019; 7:4854-4866. [DOI: 10.1039/c9tb00448c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The efficient delivery of vaccines to draining lymph nodes and the induction of robust local immune responses are crucial for immunotherapy.
Collapse
Affiliation(s)
- Xuanjin Wu
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Yang Li
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Xiguang Chen
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
- Qingdao National Laboratory for Marine Science and Technology
| | - Zhongzheng Zhou
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Jianhui Pang
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Xin Luo
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Ming Kong
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| |
Collapse
|
5
|
Liu Q, Chen X, Jia J, Lu T, Yang T, Wang L. Potential Hepatitis B Vaccine Formulation Prepared by Uniform-Sized Lipid Hybrid PLA Microparticles with Adsorbed Hepatitis B Surface Antigen. Mol Pharm 2018; 15:5227-5235. [PMID: 30350642 DOI: 10.1021/acs.molpharmaceut.8b00722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
For the purpose of strengthening the immunogenicity of the hepatitis B vaccine, which contains hepatitis B surface antigen (HBsAg), the development of biodegradable poly(lactic acid) (PLA) microparticles (MPs) modified with the cationic surfactant didodecyldimethylammonium bromide (DDAB) was attempted. DDAB-PLA MPs with an uniform size of about 1 μm were prepared in a simple and mild way. DDAB-PLA MPs with increased surface charge enhanced antigen adsorption capacity compared to plain PLA MPs. After immunization, DDAB-PLA MPs induced the gene expression of inflammatory cytokines and chemokines, which facilitated the following immune responses. DDAB-PLA MPs augmented the expression of co-stimulatory molecules along with the activation of bone-marrow-derived dendritic cells (BMDCs). DDAB-PLA MP-based vaccine formulations efficiently induced antibody production more than the aluminum-based vaccine and plain PLA MP-based formulation in vivo. Moreover, DDAB-PLA MPs were more likely to generate the polarization of the Th1 response indicating the cytotoxic ability against infectious pathogens. In conclusion, DDAB-PLA MPs could be a potent vaccine formulation to prime robust cellular and humoral immune responses.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Xiaoming Chen
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Jilei Jia
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Ting Lu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Tingyuan Yang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Lianyan Wang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| |
Collapse
|
6
|
Beljelarskaya S, Orlova O, Drutsa V, Orlov V, Timohova A, Koroleva N, Popenko V, Ivanov A, Spirin P, Prassolov V, Rubtsov P, Kochetkov S. Hepatitis C virus: The role of N-glycosylation sites of viral genotype 1b proteins for formation of viral particles in insect and mammalian cells. Biochem Biophys Rep 2016; 7:98-105. [PMID: 28955895 PMCID: PMC5613296 DOI: 10.1016/j.bbrep.2016.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) is characterized by considerable genetic variability and, as a consequence, it has 6 genotypes and multitude of subtypes. HCV envelope glycoproteins are involved in the virion formation; the correct folding of these proteins plays the key role in virus infectivity. Glycosylation at certain sites of different genotypes HCV glycoproteins shows substantial differences in functions of the individual glycans (Goffard et al., 2005; Helle et al., 2010) [1], [2]. In this study, differential glycosylation sites of HCV genotype 1b envelope proteins in insect and mammalian cells was demonstrated. We showed that part of glycosylation sites was important for folding of the proteins involved in the formation of viral particles. Point mutations were introduced in the protein N-glycosylation sites of HCV (genotype 1b) and the mutant proteins were analyzed using baculovirus expression system in mammalian and insect cells. Our data showed that, in contrast to HCV 1a and 2a, the folding of HCV 1b envelope proteins E2 (sites N1, N2, N10) and E1 (sites N1, N5) was disrupted, however that did not prevent the formation of virus-like particles (VLP) with misfolded glycoproteins having densities typical for HCV particles containing RNA fragments. Experimental data are supported by mathematical modeling of the structure of E1 mutant variants.
Collapse
Affiliation(s)
- S.N. Beljelarskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - O.V. Orlova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - V.L. Drutsa
- Chemistry Department, Moscow State University, Leninskie Gory 1, Moscow 119899, Russia
| | | | - A.V. Timohova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - N.N. Koroleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - V.I. Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - A.V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - P.V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - V.S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - P.M. Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - S.N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Chemistry Department, Moscow State University, Leninskie Gory 1, Moscow 119899, Russia
| |
Collapse
|
7
|
Mehrlatifan S, Mirnurollahi SM, Motevalli F, Rahimi P, Soleymani S, Bolhassani A. The structural HCV genes delivered by MPG cell penetrating peptide are directed to enhance immune responses in mice model. Drug Deliv 2015; 23:2852-2859. [PMID: 26559939 DOI: 10.3109/10717544.2015.1108375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
One of the significant problems in vaccination projects is the lack of an effective vaccine against hepatitis C virus (HCV). The goal of the current study is to evaluate and compare two DNA constructs encoding HCV core and coreE1E2 genes alone or complexed with MPG peptide as a delivery system for stimulation of antibody responses and IFN-γ secretion in Balb/c mice model. Indeed, MPG cell penetrating peptide was used to improve DNA immunization in mice. Our results demonstrated that MPG forms stable non-covalent nanoparticles with pcDNA-core and pcDNA-coreE1E2 at an N/P ratio of 10:1. The in vitro transfection efficiency of core or coreE1E2 DNA using MPG and TurboFect delivery systems was confirmed by western blot analysis. The results indicated the expression of the full-length core (∼21 kDa), and coreE1E2 (∼83 kDa) proteins using an anti-His monoclonal antibody. In addition, the expression of HCV core and coreE1E2 proteins was performed in bacteria and the purified recombinant proteins were injected to mice with Montanide 720 adjuvant. Our data showed that the immunized mice with HCV core and coreE1E2 proteins generated the mixture of sera IgG1 and IgG2a isotypes considerably higher than other groups. Furthermore, DNA constructs encoding core and coreE1E2 complexed with MPG could significantly induce IFN-γ secretion in lower concentrations than the naked core and coreE1E2 DNAs. Taken together, the DNA formulations as well as protein regimens used in this study triggered high-level IFN-γ production in mice, an important feature for the development of Th1 immune responses.
Collapse
Affiliation(s)
- Saloume Mehrlatifan
- a Department of Hepatitis and AIDS , Pasteur Institute of Iran , Tehran , Iran.,b Department of Biotechnology , Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University , Tehran , Iran , and
| | | | - Fatemeh Motevalli
- a Department of Hepatitis and AIDS , Pasteur Institute of Iran , Tehran , Iran
| | - Pooneh Rahimi
- a Department of Hepatitis and AIDS , Pasteur Institute of Iran , Tehran , Iran
| | - Sepehr Soleymani
- a Department of Hepatitis and AIDS , Pasteur Institute of Iran , Tehran , Iran
| | - Azam Bolhassani
- a Department of Hepatitis and AIDS , Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
8
|
Xu Y, Yuen PW, Lam JKW. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives. Pharmaceutics 2014; 6:378-415. [PMID: 25014738 PMCID: PMC4190526 DOI: 10.3390/pharmaceutics6030378] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022] Open
Abstract
Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT). Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV) etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| | - Pak-Wai Yuen
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| | - Jenny Ka-Wing Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
9
|
Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf B Biointerfaces 2014; 114:349-56. [DOI: 10.1016/j.colsurfb.2013.10.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 11/18/2022]
|
10
|
Barnier Quer C, Elsharkawy A, Romeijn S, Kros A, Jiskoot W. Cationic liposomes as adjuvants for influenza hemagglutinin: more than charge alone. Eur J Pharm Biopharm 2012; 81:294-302. [PMID: 22487055 DOI: 10.1016/j.ejpb.2012.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Cationic liposomes are known as potent adjuvants for subunit vaccines. The purpose of this work was to study whether the content and the physicochemical properties of the positively charged compound affect the adjuvanticity of cationic liposomes. Cationic liposomes containing a cationic compound (DDA, DPTAP, DC-Chol, or eDPPC) and a neutral phospholipid (DPPC) were prepared by the film hydration-extrusion method and loaded with influenza hemagglutinin (HA) by adsorption. The liposomes were characterized (hydrodynamic diameter, zeta potential, membrane fluidity, HA loading) and their adjuvanticity was tested in mice. The formulations were administered twice subcutaneously and mouse sera were analyzed for HA-specific antibodies by ELISA and for HA-neutralizing antibodies by hemagglutination inhibition (HI) assay. First, the influence of cationic lipid concentration in the DC-Chol/DPPC liposomes (10 vs. 50 mol%) was investigated. The DC-Chol/DPPC (50:50) liposomes showed a higher zeta potential and HA loading, resulting in stronger immunogenicity of the HA/DC-Chol/DPPC (50:50) liposomes compared to the corresponding (10:90) liposomes. Next, we used liposomes composed of 50 mol% cationic lipids to investigate the influence of the nature of the cationic compound on the adjuvant effect. Liposomes made of the four cationic compounds showed similar hydrodynamic diameters (between 100 and 170 nm), zeta potentials (between +40 and +50 mV), HA loading (between 55% and 76%) and melting temperatures (between 40 and 55 °C), except for the DC-Chol liposomes, which did not show any phase transition. HA adjuvanted with the DC-Chol/DPPC (50:50) liposomes elicited significantly higher total IgG1 and IgG2a titers compared to the other liposomal HA formulations and non-adjuvanted HA. A similar trend was observed for the HI titers. These results show that the adjuvanticity of cationic liposomes depends on both the content and the physicochemical properties of the charged compound.
Collapse
|
11
|
Gupte GM, Arankalle VA. Evaluation of the immunogenicity of liposome encapsulated HVR1 and NS3 regions of genotype 3 HCV, either singly or in combination. Virol J 2012; 9:74. [PMID: 22452828 PMCID: PMC3349533 DOI: 10.1186/1743-422x-9-74] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/27/2012] [Indexed: 01/15/2023] Open
Abstract
Background Hepatitis C virus displays a high rate of mutation and exists as a quasispecies in infected patients. In the absence of an effective universal vaccine, genotype-specific vaccine development represents an alternative. We have attempted to develop a genotype 3 based, liposome encapsulated HCV vaccine with hypervariable region-1 (HVR1) and non-structural region-3 (NS3) components. Results HCV RNA extracted from serum samples of 49 chronically infected patients was PCR amplified to obtain HVR1 region. These amplified products were cloned to obtain 20 clones per sample in order to identify the quasispecies pattern. The HVR1 consensus sequence, along with three variants was reverse transcribed to obtain peptides. The peptides were checked for immunoreactivity individually, as a pool or as a single peptide tetramer interspersed with four glycine residues. Anti-HCV positivity varied from 42.6% (tetramer) to 92.2% (variant-4) when 115 anti-HCV positive sera representing genotypes 1, 3, 4 and 6 were screened. All the 95 anti-HCV negatives were scored negative by all antigens. Mice were immunized with different liposome encapsulated or Al(OH)3 adjuvanted formulations of HVR1 variants and recombinant NS3 protein, and monitored for anti-HVR1 and anti-NS3 antibody titres, IgG isotypes and antigen specific cytokine levels. A balanced Th1/Th2 isotyping response with high antibody titres was observed in most of the liposome encapsulated antigen groups. The effect of liposomes and aluminium hydroxide on the expression of immune response genes was studied using Taqman Low Density Array. Both Th1 (IFN-gamma, Il18) and Th2 (Il4) genes were up regulated in the liposome encapsulated HVR1 variant pool-NS3 combination group. In-vitro binding of the virus to anti-HVR1 antibodies was demonstrated. Conclusion The optimum immunogen was identified to be combination of peptides of HVR1 consensus sequence and its variants along with pNS3 encapsulated in liposomes, which could generate both cellular and humoral immune responses in mice deserving further evaluation in a suitable cell culture system/non-human primate model.
Collapse
Affiliation(s)
- Gouri M Gupte
- Hepatitis Division, National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune, India 411021
| | | |
Collapse
|
12
|
Yanasarn N, Sloat BR, Cui Z. Negatively charged liposomes show potent adjuvant activity when simply admixed with protein antigens. Mol Pharm 2011; 8:1174-85. [PMID: 21615153 PMCID: PMC3148289 DOI: 10.1021/mp200016d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Liposomes have been investigated extensively as a vaccine delivery system. Herein the adjuvant activities of liposomes with different net surface charges (neutral, positive, or negative) were evaluated when admixed with protein antigens, ovalbumin (OVA, pI = 4.7), Bacillus anthracis protective antigen protein (PA, pI = 5.6), or cationized OVA (cOVA). Mice immunized subcutaneously with OVA admixed with different liposomes generated different antibody responses. Interestingly, OVA admixed with net negatively charged liposomes prepared with DOPA was as immunogenic as OVA admixed with positively charged liposomes prepared with DOTAP. Immunization of mice with the anthrax PA protein admixed with the net negatively charged DOPA liposomes also induced a strong and functional anti-PA antibody response. When the cationized OVA was used as a model antigen, liposomes with net neutral, negative, or positive charges showed comparable adjuvant activities. Immunization of mice with the OVA admixed with DOPA liposomes also induced OVA-specific CD8(+) cytotoxic T lymphocyte responses and significantly delayed the growth of OVA-expressing B16-OVA tumors in mice. However, not all net negatively charged liposomes showed a strong adjuvant activity. The adjuvant activity of the negatively charged liposomes may be related to the liposome's ability (i) to upregulate the expression of molecules related to the activation and maturation of antigen-presenting cells and (ii) to slightly facilitate the uptake of the antigens by antigen-presenting cells. Simply admixing certain negatively charged liposomes with certain protein antigens of interest may represent a novel platform for vaccine development.
Collapse
Affiliation(s)
- Nijaporn Yanasarn
- Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331
| | - Brian R. Sloat
- Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712
| | - Zhengrong Cui
- Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
13
|
van den Berg JH, Nuijen B, Schumacher TN, Haanen JBAG, Storm G, Beijnen JH, Hennink WE. Synthetic vehicles for DNA vaccination. J Drug Target 2010; 18:1-14. [PMID: 19814658 DOI: 10.3109/10611860903278023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNA vaccination is an attractive immunization method able to induce robust cellular immune responses in pre-clinical models. However, clinical DNA vaccination trials performed thus far have resulted in marginal responses. Consequently, strategies are currently under development to improve the efficacy of DNA vaccines. A promising strategy is the use of synthetic particle formulations as carrier systems for DNA vaccines. This review discusses commonly used synthetic carriers for DNA vaccination and provides an overview of in vivo studies that use this strategy. Future recommendations on particle characteristics, target cell types and evaluation models are suggested for the potential improvement of current and novel particle delivery systems. Finally, hurdles which need to be tackled for clinical evaluation of these systems are discussed.
Collapse
Affiliation(s)
- Joost H van den Berg
- Department of Pharmacy & Pharmacology, Slotervaart Hospital, Louwesweg 6, 1066 EC Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
14
|
Didodecyldimethylammonium bromide (DDAB) induces caspase-mediated apoptosis in human leukemia HL-60 cells. J Control Release 2010; 147:246-52. [DOI: 10.1016/j.jconrel.2010.07.114] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/19/2010] [Accepted: 07/21/2010] [Indexed: 11/21/2022]
|
15
|
Masalova OV, Lesnova EI, Grabovetskii VV, Smirnova OA, Ulanova TI, Burkov AN, Ivanov AV, Zaberezhnyi AD, Ataullakhanov RI, Kushch AA. DNA immunization with a plasmid carrying the gene of hepatitis C virus protein 5A (NS5A) induces an effective cellular immune response. Mol Biol 2010; 44:245-253. [DOI: 10.1134/s0026893310020093] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 07/21/2009] [Indexed: 04/17/2025]
|
16
|
Masalova OV, Lesnova EI, Pichugin AV, Melnikova TM, Grabovetsky VV, Petrakova NV, Smirnova OA, Ivanov AV, Zaberezhny AD, Ataullakhanov RI, Isaguliants MG, Kushch AA. The successful immune response against hepatitis C nonstructural protein 5A (NS5A) requires heterologous DNA/protein immunization. Vaccine 2010; 28:1987-1996. [PMID: 20188254 DOI: 10.1016/j.vaccine.2009.10.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of this study was to evaluate the immunogenicity of NS5A protein of human hepatitis C virus (HCV) when delivered as naked DNA (NS5A DNA), or recombinant protein (rNS5A). DBA/2J mice received NS5A DNA, rNS5A, or NS5A DNA/rNS5A in different prime-boost combinations with a peptidoglycan Immunomax((R)). The weakest response was induced after rNS5A prime and NS5A DNA boost; rNS5A alone induced an immune response with a strong Th2-component; and NS5A DNA alone, a relatively weak secretion of IL-2 and IFN-gamma. The most efficient was co-injection of NS5A DNA and rNS5A, which induced a significant increase in CD4(+) and CD8(+) T-cell counts, anti-NS5A antibodies, specific T-cell proliferation, and proinflammatory cytokine production in vitro against a broad spectrum of NS5A epitopes. Administration of the mixture of adjuvanted DNA and protein immunogens can be selected as the best regimen for further preclinical HCV-vaccine trials.
Collapse
Affiliation(s)
- Olga V Masalova
- D.I. Ivanovsky Institute of Virology, Russian Academy of Medical Sciences, Gamaleya str. 16, 123098 Moscow, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
de la Torre LG, Rosada RS, Trombone APF, Frantz FG, Coelho-Castelo AA, Silva CL, Santana MHA. The synergy between structural stability and DNA-binding controls the antibody production in EPC/DOTAP/DOPE liposomes and DOTAP/DOPE lipoplexes. Colloids Surf B Biointerfaces 2009; 73:175-84. [DOI: 10.1016/j.colsurfb.2009.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 05/09/2009] [Accepted: 05/14/2009] [Indexed: 12/01/2022]
|
18
|
Follicular transport route – Research progress and future perspectives. Eur J Pharm Biopharm 2009; 71:173-80. [DOI: 10.1016/j.ejpb.2008.11.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 10/10/2008] [Accepted: 11/10/2008] [Indexed: 12/17/2022]
|
19
|
Badiee A, Jaafari MR, Khamesipour A, Samiei A, Soroush D, Kheiri MT, Barkhordari F, McMaster WR, Mahboudi F. The role of liposome charge on immune response generated in BALB/c mice immunized with recombinant major surface glycoprotein of Leishmania (rgp63). Exp Parasitol 2009; 121:362-9. [PMID: 19211022 DOI: 10.1016/j.exppara.2008.12.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 11/30/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Liposomes as a lipid-based system have been shown to be an effective adjuvant formulation. In this study, the role of liposome charge in induction of a Th1 type of immune response and protection against leishmaniasis in BALB/c mice was studied. Liposomes containing rgp63 were prepared by Dehydration-Rehydration Vesicle (DRV) method. Neutral liposomes consisted of dipalmitoylphosphatidylcholine and cholesterol. Positively and negatively charged liposomes were prepared by adding dimethyldioctadecylammonium bromide (DDAB) or dicetyl phosphate (DCP) to the neutral liposome formulation, respectively. Female BALB/c mice were immunized subcutaneously with negatively, positively charged or neutral liposomes encapsulated with rgp63, rgp63 in soluble form or PBS, three times in 3week intervals. The extent of protection and type of immune response generated were studied in different groups of mice. The group of mice immunized with rgp63 encapsulated in neutral liposomes showed a significantly (P<0.01) smaller footpad swelling upon challenge with Leishmania major compared with positively or negatively charged liposomes. The mice immunized with neutral liposomes also showed a significantly (P<0.01) the lowest splenic parasite burden, the highest IgG2a/IgG1 ratio and IFN-gamma production and the lowest IL-4 level compared to the other groups. The results indicated that a Th1 type of immune response was induced in mice immunized with neutral liposomes more efficiently than positively charged liposomes and conversely negatively charged liposomes induced a Th2 type of immune response.
Collapse
Affiliation(s)
- Ali Badiee
- School of Pharmacy, Biotechnology Research Center and Pharmaceutical Research Center, Mashhad University of Medical Sciences, Vakil-Abad Blvd, P.O. Box 91775-1365, Mashhad, Khorasan, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Qiu Q, Wang RYH, Jiao X, Jin B, Sugauchi F, Grandinetti T, Alter HJ, Shih JWK. Induction of multispecific Th-1 type immune response against HCV in mice by protein immunization using CpG and Montanide ISA 720 as adjuvants. Vaccine 2008; 26:5527-5534. [PMID: 18675871 PMCID: PMC5593311 DOI: 10.1016/j.vaccine.2008.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 06/18/2008] [Accepted: 07/08/2008] [Indexed: 02/07/2023]
Abstract
Recent studies demonstrate that Th1-type immune responses against a broad spectrum of hepatitis C virus (HCV) gene products are crucial to the resolution of acute HCV infection. We investigated new vaccine approaches to augment the strength of HCV-specific Th1-type immune responses. ELISPOT assay revealed that single or multiple protein immunization using both CpG ODN and Montanide ISA 720 as adjuvants induced much stronger IFN-gamma-producing Th1 responses against core, NS3 and NS5b targets than did the formulation without these adjuvants. Protein vaccination using CpG ODN and Montanide ISA 720 as adjuvants also greatly enhanced humoral responses to HCV core, E1/E2 and NS3. When specific IgG isotypes were assayed, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants produced higher titers of IgG2a dominant antibodies than did protein immunization alone, indicating a more Th1-biased pathway. This increase in IgG2a is consistent with the induction of Th1 cells secreting IFN-gamma demonstrated by ELISPOT assay. In conclusion, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants greatly enhanced cellular (Th1 type) as well as humoral immune responses against HCV in Balb/c mice. The use of adjuvants appears critical to the induction of Th1 immune responses during HCV vaccination with recombinant proteins.
Collapse
Affiliation(s)
- Qi Qiu
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Building 10, Room 1C711, 9000 Rockville Pike, Bethesda, MD 20892-1184, USA
| | - Richard Yuan-Hu Wang
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Building 10, Room 1C711, 9000 Rockville Pike, Bethesda, MD 20892-1184, USA
| | - Xuanmao Jiao
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Building 10, Room 1C711, 9000 Rockville Pike, Bethesda, MD 20892-1184, USA
| | - Bo Jin
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Building 10, Room 1C711, 9000 Rockville Pike, Bethesda, MD 20892-1184, USA
| | - Fuminaka Sugauchi
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Building 10, Room 1C711, 9000 Rockville Pike, Bethesda, MD 20892-1184, USA
| | - Teresa Grandinetti
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Building 10, Room 1C711, 9000 Rockville Pike, Bethesda, MD 20892-1184, USA
| | - Harvey J Alter
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Building 10, Room 1C711, 9000 Rockville Pike, Bethesda, MD 20892-1184, USA
| | - J Wai-Kuo Shih
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Building 10, Room 1C711, 9000 Rockville Pike, Bethesda, MD 20892-1184, USA.
| |
Collapse
|
21
|
Tanaka T, Legat A, Adam E, Steuve J, Gatot JS, Vandenbranden M, Ulianov L, Lonez C, Ruysschaert JM, Muraille E, Tuynder M, Goldman M, Jacquet A. DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through Toll-like receptor 4. Eur J Immunol 2008; 38:1351-7. [PMID: 18389479 DOI: 10.1002/eji.200737998] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
DiC14-amidine cationic liposomes were recently shown to promote Th1 responses when mixed with allergen. To further define the mode of action of diC14-amidine as potential vaccine adjuvant, we characterized its effects on mouse and human myeloid dendritic cells (DC). First, we observed that, as compared with two other cationic liposomes, only diC14-amidine liposomes induced the production of IL-12p40 and TNF-alpha by mouse bone marrow-derived DC. DiC14-amidine liposomes also activated human DC, as shown by synthesis of IL-12p40 and TNF-alpha, accumulation of IL-6, IFN-beta and CXCL10 mRNA, and up-regulation of membrane expression of CD80 and CD86. DC stimulation by diC14-amidine liposomes was associated with activation of NF-kappaB, ERK1/2, JNK and p38 MAP kinases. Finally, we demonstrated in mouse and human cells that diC14-amidine liposomes use Toll-like receptor 4 to elicit both MyD88-dependent and Toll/IL-1R-containing adaptor inducing interferon IFN-beta (TRIF)-dependent responses.
Collapse
Affiliation(s)
- Tetsuya Tanaka
- Laboratoire d'Allergologie Expérimentale, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Charleroi, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Khatri K, Goyal AK, Gupta PN, Mishra N, Mehta A, Vyas SP. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine 2008; 26:2225-33. [PMID: 18396362 DOI: 10.1016/j.vaccine.2008.02.058] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/14/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
The aim of the present work was to investigate the potential utility of glycol chitosan coated liposomes as nasal vaccine delivery vehicle for eliciting viral specific humoral mucosal and cellular immune responses. Plasmid pRc/CMV-HBs(S) encapsulated liposomes were prepared by dehydration-rehydration method and subsequently coated with glycol chitosan by simple incubation method. Liposomes were then characterized for their size, surface charge, entrapment efficiency, and ability to protect encapsulated DNA against nuclease digestion and for their mucoadhesiveness. The liposomes were then administered to mice in order to study their feasibility as nasal vaccine carriers. The developed liposomes possessed +9.8 mV zeta potential and an average vesicle size less than 1 microm and entrapment efficiency of approximately 53%. Following intranasal administration, glycol chitosan coated liposomes elicited humoral mucosal and cellular immune responses that were significant as compared to naked DNA justifying the potential advantage of mucosal vaccination in the production of local antibodies at the sites where pathogens enters the body.
Collapse
Affiliation(s)
- Kapil Khatri
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar 470003, M.P., India
| | | | | | | | | | | |
Collapse
|
23
|
gp63 in stable cationic liposomes confers sustained vaccine immunity to susceptible BALB/c mice infected with Leishmania donovani. Infect Immun 2008; 76:1003-15. [PMID: 18195029 DOI: 10.1128/iai.00611-07] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Visceral leishmaniasis is deadly if not treated, and development of a vaccine with long-term immunity remains a challenge. In this study, we showed that cationic distearoyl phosphatidylcholine (DSPC) liposomes, when used as vaccine adjuvant with the immunodominant 63-kDa glycoprotein (gp63) of Leishmania donovani promastigotes, induced significant protection against progressive visceral leishmaniasis in susceptible BALB/c mice. gp63 used without adjuvant elicited partial protection but in association with liposomes exhibited marked resistance in both the livers and spleens of the mice challenged 10 days after the last vaccination. The protective efficacy of liposomal gp63 vaccination was dose dependent, with 2.5 mug of protein showing optimal protection. The immunity conferred by this vaccine formulation was durable, as mice challenged 12 weeks after immunization were still protected, and the infection was controlled for at least 3 months postchallenge. Production of gamma interferon (IFN-gamma) and interleukin-4 (IL-4) by splenic T cells, and of serum immunoglobulin G1 (IgG1) and IgG2a following immunization, suggested that a mixed Th1/Th2 response had been induced following immunization. However, control of disease progression and parasitic burden in mice vaccinated with gp63 in cationic DSPC liposomes was associated with enhancement of antigen-specific IFN-gamma and downregulation of IL-4, demonstrating a Th1 bias. Long-term immunity elicited by this vaccine corresponded to, in addition to the presence of antigen-specific Th1, CD8+ T-cell responses. Our results demonstrated that stable cationic liposomes containing gp63 acted as a potent adjuvant for protein antigen to induce long-term protection against L. donovani that represents an alternative to DNA vaccination.
Collapse
|
24
|
Jin B, Wang RY, Qiu Q, Sugauchi F, Grandinetti T, Alter HJ, Shih JWK. Induction of potent cellular immune response in mice by hepatitis C virus NS3 protein with double-stranded RNA. Immunology 2007; 122:15-27. [PMID: 17451465 PMCID: PMC2265985 DOI: 10.1111/j.1365-2567.2007.02607.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 02/15/2007] [Accepted: 02/16/2007] [Indexed: 02/05/2023] Open
Abstract
Double-stranded RNA is produced during virus replication and, together with the viral antigen, is responsible for inducing host antivirus immunity. The hepatitis C virus (HCV) non-structural protein-3 (NS3) has been implicated in the immune evasion of HCV, and is one of the prime targets for inducing immunity against HCV infection. Mice were immunized with recombinant NS3 protein (rNS3) and poly (I:C) emulsified in Montanide ISA 720 (M720). Cytokine production was assayed by enzyme-linked immunospot assay, and CD4(+) IFN-gamma(+) T helper (Th) cells or CD8(+) IFN-gamma(+) cytotoxic T lymphocytes were detected by flow cytometry. Anti-NS3 titre and immunoglobulin G2a (IgG2a) and IgG1 levels were monitored by enzyme-linked immunosorbent assay. Administration of rNS3 formulated in poly (I:C) and M720 induced anti-NS3 titres with a predominantly IgG2a isotype comparable to those induced by rNS3 in CpG-ODN and M720. The cytokine profiles showed that this formulation induced a Th1-biased immune response with several-fold more interferon-gamma (IFN-gamma)-producing cells than interleukin-4-producing cells. In contrast, rNS3 in M720 induced a Th2-biased immune response. The frequency of IFN-gamma-producing CD4(+) and CD8(+) cells induced by rNS3 in poly (I:C) and M720 was significantly higher than that induced by rNS3, rNS3 in M720, or rNS3 in poly (I:C), and was comparable to that induced by rNS3 in CpG-ODN with M720. The antigen-specific CD8(+) T-cell immune response persisted for up to 7 months after immunization. In conclusion, poly (I:C) with rNS3 in M720 can elicit a strong and persistent Th1-biased immune response and a cytotoxic T-lymphocyte response through cross-priming in mice. This study highlighted a promising formulation for inducing an efficient cellular immune response against HCV that has potential for HCV vaccine development.
Collapse
Affiliation(s)
- Bo Jin
- Infectious Disease Section, Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Fournillier A, Gerossier E, Evlashev A, Schmitt D, Simon B, Chatel L, Martin P, Silvestre N, Balloul JM, Barry R, Inchauspé G. An accelerated vaccine schedule with a poly-antigenic hepatitis C virus MVA-based candidate vaccine induces potent, long lasting and in vivo cross-reactive T cell responses. Vaccine 2007; 25:7339-53. [PMID: 17875349 DOI: 10.1016/j.vaccine.2007.08.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 07/31/2007] [Accepted: 08/09/2007] [Indexed: 02/07/2023]
Abstract
We designed and evaluated in HLA-class I transgenic mouse models a hepatitis C virus (HCV) T cell-based MVA vectored vaccine expressing three viral antigens known to be targets of potent CD8+- and CD4+-mediated responses. An accelerated (3 week-based) vaccination induced specific CD8+ T cells harboring two effector functions (cytolytic activity - both in vitro and in vivo- and production of IFNgamma) as well as specific CD4+ T cells recognizing all three vaccine antigens. Responses were long lasting (6 months), boostable by a fourth MVA vaccination and in vivo cross-reactive as demonstrated in a surrogate Listeria-based challenge assay. This candidate vaccine has now moved into clinical trials.
Collapse
Affiliation(s)
- A Fournillier
- Transgene S.A., Site AFSSA, 31 avenue Tony Garnier, 69364 Lyon Cédex 07, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jaafari MR, Badiee A, Khamesipour A, Samiei A, Soroush D, Kheiri MT, Barkhordari F, McMaster WR, Mahboudi F. The role of CpG ODN in enhancement of immune response and protection in BALB/c mice immunized with recombinant major surface glycoprotein of Leishmania (rgp63) encapsulated in cationic liposome. Vaccine 2007; 25:6107-17. [PMID: 17629372 DOI: 10.1016/j.vaccine.2007.05.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 05/07/2007] [Accepted: 05/12/2007] [Indexed: 11/20/2022]
Abstract
CpG oligodeoxynucleotides (CpG ODN) are known to be a potent immunoadjuvant for a wide range of antigens. The aim of this study was to evaluate the role of CpG ODN co-encapsulated with rgp63 antigen in cationic liposomes (Lip-rgp63-CpG ODN) in immune response enhancement and protection in BALB/c mice against leishmaniasis. Lip-rgp63-CpG ODN prepared by using dehydration-rehydration vesicle (DRV) method significantly inhibited (P<0.001) Leishmania major infection in mice measured by footpad swelling compared to Lip-rgp63, rgp63 alone, rgp63 plus CpG ODN, PBS or control liposomes. The mice immunized with Lip-rgp63-CpG ODN also showed the lowest spleen parasite burden, highest IgG2a/IgG1 ratio and IFN-gamma production and the lowest IL-4 production compared to the other groups. The results indicate that co-encapsulation of CpG ODN in liposomes improves the immunogenicity of Leishmania antigen.
Collapse
Affiliation(s)
- Mahmoud R Jaafari
- School of Pharmacy, Biotechnology Research Center and Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yu H, Babiuk LA, van Drunen Littel-van den Hurk S. Immunity and protection by adoptive transfer of dendritic cells transfected with hepatitis C NS3/4A mRNA. Vaccine 2007; 25:1701-11. [PMID: 17240490 DOI: 10.1016/j.vaccine.2006.11.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 11/13/2006] [Indexed: 11/17/2022]
Abstract
In this study, we tested the hypothesis that adoptive transfer of dendritic cells (DCs) transfected ex vivo with mRNA encoding hepatitis C virus (HCV) NS3/4A would initiate potent HCV-specific protective immune responses in vivo. Murine DCs were transfected with NS3/4A mRNA or eGFP mRNA using either electroporation or Transmessenger Transfection Reagent and then used for adoptive transfer. Electroporation resulted in higher transfection efficiency but lower levels of eGFP and NS3/4A expression when compared to transfection with Transmessenger. The murine NS3/4A mRNA-transfected DCs were functional in T cell activation in vitro. Adoptive transfer of NS3/4A mRNA-transfected DCs resulted in migration to regional lymph nodes, strong cellular immune responses and protection from challenge with vaccinia virus expressing NS3/NS4/NS5 in mice. Furthermore, although Transmessenger mediated transfection was less efficient than electroporation in terms of number of transfected cells, the DCs transfected with NS3/4A mRNA and Transmessenger expressed higher levels of protein and induced stronger immune responses and protection than DCs transfected with NS3/4A mRNA by electroporation. Since no study has explored the in vivo efficacy of mRNA-transfected DC-mediated vaccination against viral diseases, including hepatitis C, our study provided a novel vaccination strategy against hepatitis C as well as other pathogens.
Collapse
Affiliation(s)
- Hong Yu
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Sask. S7N 5E3, Canada
| | | | | |
Collapse
|
28
|
de Paula L, Silva CL, Carlos D, Matias-Peres C, Sorgi CA, Soares EG, Souza PRM, Bladés CRZ, Galleti FCS, Bonato VLD, Gonçalves EDC, Silva ÉVG, Faccioli LH. Comparison of different delivery systems of DNA vaccination for the induction of protection against tuberculosis in mice and guinea pigs. GENETIC VACCINES AND THERAPY 2007; 5:2. [PMID: 17250766 PMCID: PMC1800893 DOI: 10.1186/1479-0556-5-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 01/24/2007] [Indexed: 11/10/2022]
Abstract
The great challenges for researchers working in the field of vaccinology are optimizing DNA vaccines for use in humans or large animals and creating effective single-dose vaccines using appropriated controlled delivery systems. Plasmid DNA encoding the heat-shock protein 65 (hsp65) (DNAhsp65) has been shown to induce protective and therapeutic immune responses in a murine model of tuberculosis (TB). Despite the success of naked DNAhsp65-based vaccine to protect mice against TB, it requires multiple doses of high amounts of DNA for effective immunization. In order to optimize this DNA vaccine and simplify the vaccination schedule, we coencapsulated DNAhsp65 and the adjuvant trehalose dimycolate (TDM) into biodegradable poly (DL-lactide-co-glycolide) (PLGA) microspheres for a single dose administration. Moreover, a single-shot prime-boost vaccine formulation based on a mixture of two different PLGA microspheres, presenting faster and slower release of, respectively, DNAhsp65 and the recombinant hsp65 protein was also developed. These formulations were tested in mice as well as in guinea pigs by comparison with the efficacy and toxicity induced by the naked DNA preparation or BCG. The single-shot prime-boost formulation clearly presented good efficacy and diminished lung pathology in both mice and guinea pigs.
Collapse
Affiliation(s)
- Lúcia de Paula
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brasil
| | - Célio L Silva
- NPT – Núcleo de Pesquisas em Tuberculose – Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brasil
| | - Daniela Carlos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brasil
| | - Camila Matias-Peres
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brasil
| | - Carlos A Sorgi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brasil
| | - Edson G Soares
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brasil
| | - Patrícia RM Souza
- NPT – Núcleo de Pesquisas em Tuberculose – Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brasil
| | - Carlos RZ Bladés
- NPT – Núcleo de Pesquisas em Tuberculose – Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brasil
| | - Fábio CS Galleti
- Farmacore Biotecnologia Ltda, Rua dos Técnicos s/n, Campus da USP – Ribeirão Preto, SP, Brasil
| | - Vânia LD Bonato
- NPT – Núcleo de Pesquisas em Tuberculose – Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brasil
| | - Eduardo DC Gonçalves
- Farmacore Biotecnologia Ltda, Rua dos Técnicos s/n, Campus da USP – Ribeirão Preto, SP, Brasil
| | - Érika VG Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brasil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brasil
| |
Collapse
|
29
|
Jung S, Otberg N, Thiede G, Richter H, Sterry W, Panzner S, Lademann J. Innovative Liposomes as a Transfollicular Drug Delivery System: Penetration into Porcine Hair Follicles. J Invest Dermatol 2006; 126:1728-32. [PMID: 16645589 DOI: 10.1038/sj.jid.5700323] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liposomes had been widely used for drug delivery in the past. In this study, five different liposomes were used as a follicular delivery system in pig ear skin. The liposomes mainly differed in their sphere diameter, lipid composition, and surface charge. A novel class of liposomes being amphoteric in their charge behavior are compared to established anionic and cationic liposomes. Two different fluorescent dyes, hydrophilic carboxyfluoresceine or lipophilic curcumin, were enclosed in the liposomes and used as model drugs. The fluorescent dyes were also applied in a standard formulation for reference. The penetration depth of the dyes was measured by laser scanning microscopy in histological sections. One hour, 3, 5, and 7 days after application, biopsies were taken and the penetration depth into the hair follicle was measured in longitudinal sections. The liposomes showed a higher penetration depth compared to the standard formulation. The relative penetration depth of the dyes, applied in the standard formulation, averaged 30% of the full follicle length during the whole observation period, whereas the liposomal formulations penetrated considerably deeper into the hair follicles. Amphoteric and cationic liposomes reached an average relative penetration depth of approximately 70% of the full hair follicle length.
Collapse
Affiliation(s)
- Sascha Jung
- Department of Dermatology, Centre of Experimental and Applied Cutaneous Physiology, University Clinic Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Yu H, Huang H, Xiang J, Babiuk LA, van Drunen Littel-van den Hurk S. Dendritic cells pulsed with hepatitis C virus NS3 protein induce immune responses and protection from infection with recombinant vaccinia virus expressing NS3. J Gen Virol 2006; 87:1-10. [PMID: 16361412 DOI: 10.1099/vir.0.81423-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infections with Hepatitis C virus (HCV) pose a serious health problem worldwide. In this study, the hypothesis that adoptive transfer of dendritic cells (DCs) pulsed with HCV NS3 protein and matured with an oligodeoxynucleotide (ODN) containing CpG motifs (CpG) ex vivo would initiate potent HCV-specific protective immune responses in vivo was tested. NS3 protein was efficiently transduced into DCs and treatment of DCs with CpG ODN induced phenotypic maturation and specifically increased the expression of CD40. DCs matured with CpG ODN produced higher interleukin 12 levels and a stronger allogeneic T-cell response compared with untreated DCs. Notably, there were no differences between NS3-pulsed DCs and DCs pulsed with a control protein with respect to phenotype, cytokine production or mixed lymphocyte reaction, indicating that transduction with NS3 protein did not impair DC functions. Compared with the untreated NS3-pulsed DCs, the NS3-pulsed DCs matured with CpG ODN induced stronger cellular immune responses including enhanced cytotoxicity, higher interferon-gamma production and stronger lymphocyte proliferation. Upon challenge with a recombinant vaccinia virus expressing NS3, all mice immunized with NS3-pulsed DCs showed a significant reduction in vaccinia virus titres when compared with mock-immunized mice. However, the NS3-pulsed DCs matured with CpG ODN induced higher levels of protection compared with the untreated NS3-pulsed DCs. These data are the first to show that NS3-pulsed DCs induce specific immune responses and provide protection from viral challenge, and also demonstrate that CpG ODNs, which have a proven safety profile, would be useful in the development of DC vaccines.
Collapse
Affiliation(s)
- Hong Yu
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| | - Hui Huang
- Department of Oncology, Research Unit, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, SK, Canada S7N 0W0
| | - Jim Xiang
- Department of Oncology, Research Unit, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, SK, Canada S7N 0W0
| | - Lorne A Babiuk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| | | |
Collapse
|
31
|
Jacquet A, Vanderschrick JF, Vandenbranden M, Elouahabi A, Magi M, Garcia L, Ruysschaert JM. Vaccination with the recombinant allergen ProDer p 1 complexed with the cationic lipid DiC14-amidine prevents allergic responses to house dust mite. Mol Ther 2005; 11:960-8. [PMID: 15922967 DOI: 10.1016/j.ymthe.2004.12.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/11/2004] [Accepted: 12/18/2004] [Indexed: 10/25/2022] Open
Abstract
The present study evaluated the prophylactic potential of ProDer p 1, the recombinant precursor form of the major mite allergen Der p 1, combined with the cationic lipid diC14-amidine in a murine model of house dust mite allergy. Naive mice vaccinated with the amidine/allergen complex developed a Th1-biased immune response characterized by the absence of specific IgE, the production of specific IgG2a, and the presence of IFN-gamma in splenocyte cultures. In contrast, ProDer p 1 adjuvanted with alum induced typical strictly Th2-biased allergic responses with strong IgG1 and IgE titers and IL-5 secretion. Removal of negatively charged sialic acids in ProDer p 1 or increasing the ionic strength reduced the binding of ProDer p 1 to the cationic liposomes and resulted in a decrease of the allergen immunogenicity, suggesting that complexation is required for triggering an optimal immune response. Finally, prophylactic vaccination with ProDer p 1-diC14-amidine reduced drastically the production of specific IgE and airway eosinophilia following subsequent immunization with Der p 1-alum and challenge with aerosolized house dust mite extracts. In conclusion, recombinant ProDer p 1 complexed with diC14-amidine could represent an efficient prophylactic vaccine against house dust mite allergy.
Collapse
Affiliation(s)
- Alain Jacquet
- Service de Génétique Appliquée, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet, 12, B-6041 Gosselies, Belgium.
| | | | | | | | | | | | | |
Collapse
|
32
|
Jin B, Wang RYH, Cheng LF, Qiu Q, Shih JWK. Effects of Distinct Adjuvant on HCV DNA Vaccine at Different Dosages. Shijie Huaren Xiaohua Zazhi 2005; 13:1429-1433. [DOI: 10.11569/wcjd.v13.i12.1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effects of different adjuvants on different dosages of hepatitis C virus (HCV) DNA vaccine.
METHODS: Female Balb/c mice were primed by HCV DNA vaccine composed of HCV structure gene DNA, HCV nonstructure gene 3 (NS3) and NS5b at the dosages of either 100 mg/each or 50mg/each with liposome DDAB/EPC or aluminum hydroxide and boosted twice accordingly. The cytokine profiles induced by various HCV antigens on splenocytes from the immunized mice were assessed by ELISPOT assay using in vitro splenocyte culture stimulated with recombinant HCV core, E2, E1/E2, NS3 or NS5b protein.
RESULTS: The frequency of IFN-g or IL-4 secreting cells found in splenocytes stimulated with HCV core, E2, or E1/E2 from the mice vaccinated with HCV recombinant DNA in DDAB/EPC adjuvant was significantly higher (P<0.05) than that from mice immunized with either naked DNA or DNA formulated in aluminum hydroxide. The frequency of IL-4 secreting cells from mice immunized with HCV DNA at a dosage of 100 mg/each mixed with aluminum hydroxide was significantly higher than that from naked DNA when the splenocytes were stimulated with all the antigens tested except E2 (P<0.05). At many cases, lymphocytes from mice received 100 mg/each DNA have more IFN-g or IL-4 productions compared with those from mice with 50 mg/each (P<0.05). The lymphocytes from mice primed and boosted with HCV DNA plus aluminum hydroxide can produce more IL-4 than IFN-g in contrast with the cytokine profile of mice immunized with naked DNA or DDAB/EPC adjuvant.
CONCLUSION: Liposome DDAB/EPC has strong adjuvant effects on HCV DNA vaccine. Aluminum hydroxide is a Th2 adjuvant and can convert the Th1 nature of DNA vaccine to Th2-biased immunity. It seems that the dosage of 50 mg of HCV DNA vaccine is not adequate to elicit efficient immunity in mice.
Collapse
|
33
|
Díaz-Mochón JJ, Bialy L, Watson J, Sánchez-Martín RM, Bradley M. Synthesis and cellular uptake of cell delivering PNA-peptide conjugates. Chem Commun (Camb) 2005:3316-8. [PMID: 15983659 DOI: 10.1039/b503777h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and cellular uptake of fluorescently labelled PNA-peptide conjugates is described; Dde/Mmt protected PNA monomers, fully orthogonal to Fmoc chemistry, were used to develop a flexible strategy to give Peptide Nucleic Acids conjugated to tri- and hepta-arginine and the short basic Tat(48-57) peptide as examples of cellular penetrating peptides, thereby allowing efficient cellular delivery of PNA into cells.
Collapse
Affiliation(s)
- Juan J Díaz-Mochón
- School of Chemistry, Edinburgh University, Joseph Black Buildings, Edinburgh, UK EH9 3JJ
| | | | | | | | | |
Collapse
|
34
|
Liu XW, Lu FG, Wu XP, Ouyang CH, Yang DY, You Y, Lian GH. Modulation of the molecular conformation of a hepatocyte-targeting gene drug in order to improve its expression efficiency in vitro. ACTA ACUST UNITED AC 2005; 6:37-42. [PMID: 15667557 DOI: 10.1111/j.1443-9573.2005.00186.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To construct different conformations of a plasmid DNA/vector complex (pcDNA3.1/IFN-gamma-ASOR-PLL) and transfect cells of the hepatoma cell line BEL7402 to investigate the optimal conformation of the complex for improved expression efficiency in the target cell. METHODS Double-distilled water and adjuvant were added to the naked pcDNA3.1/IFN-gamma, target vector ASOR-PLL and the ASOR-PLL-pcDNA3.1/IFN-gamma complex to create different conformations; molecules that were transfected into BEL7402 cells and the expression efficiency was determined by measuring the IFN-g concentration in the culture supernatant by ELISA. RESULTS Naked pcDNA3.1/IFN-gamma DNA distributed linearly in double-distilled water and condensed into a mica configuration in adjuvant; ASOR-PLL had a net-like distribution without adjuvant and a spider-like form in the adjuvant-treated group; the ASOR-PLL-pcDNA3.1/IFN-g complex had a divaricate form without adjuvant, but a bead-like or granular conformation in 0.1 and 0.2 mol/L of adjuvant, a homogeneous bacilliform or chromatoid-shaped conformation in 0.3 mol/L adjuvant, and varied shapes in 0.4 and 0.5 mol/L adjuvant. The supernatant IFN-gamma expression in the bacilliform/chromatoid conformation complex group was the highest among the different conformation groups and controls. When chloroquine was added the supernatant IFN-gamma concentration increased in the liposome group and decreased in the bacilliform/chromatoid conformation group . CONCLUSIONS The two structural molecules and their complex, ASOR-PLL-pcDNA3.1/IFN-gamma, were adjustable in the liquid mode. The specific bacilliform/chromatoid conformation of complex was lysosome enzyme-resistant and could play an active role in improving the efficiency of gene expression. The hypothesis that a chromosome-like conformation of the target gene molecule is involved in enhancing exogenous gene expression is proposed.
Collapse
Affiliation(s)
- Xiao Wei Liu
- Department of Gastroenterology, the Second XiangYa Hospital, Central South University and Sheng Life Gene Drug Development Company, Changsha, Hunan Province, China
| | | | | | | | | | | | | |
Collapse
|
35
|
DNA Vaccines for Mucosal Immunity to Infectious Diseases. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Manthorpe M, Hobart P, Hermanson G, Ferrari M, Geall A, Goff B, Rolland A. Plasmid vaccines and therapeutics: from design to applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 99:41-92. [PMID: 16568888 DOI: 10.1007/10_003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the late 1980s, Vical and collaborators discovered that the injection into tissues of unformulated plasmid encoding various proteins resulted in the uptake of the plasmid by cells and expression of the encoded proteins. After this discovery, a period of technological improvements in plasmid delivery and expression and in pharmaceutical and manufacturing development was quickly followed by a plethora of human clinical trials testing the ability of injected plasmid to provide therapeutic benefits. In this chapter, we summarize in detail the technologies used in the most recent company-sponsored clinical trials and discuss the potential for future improvements in plasmid design, manufacturing, delivery, formulation and administration. A generic path for the clinical development of plasmid-based products is outlined and then exemplified using a case study on the development of a plasmid vaccine from concept to clinical trial.
Collapse
|
37
|
Boguszewska-Chachulska AM, Krawczyk M, Stankiewicz A, Gozdek A, Haenni AL, Strokovskaya L. Direct fluorometric measurement of hepatitis C virus helicase activity. FEBS Lett 2004; 567:253-8. [PMID: 15178332 DOI: 10.1016/j.febslet.2004.04.072] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 04/01/2004] [Accepted: 04/26/2004] [Indexed: 11/19/2022]
Abstract
The non-structural protein 3 (NS3) of hepatitis C virus (HCV) is a highly promising target for anti-HCV therapy because of its multiple enzymatic activities, such as RNA-stimulated nucleoside triphosphatase, RNA helicase and serine protease. The helicase domain of NS3 as well as domain 2 of the helicase were expressed in a baculovirus system to obtain in high yield active proteins for prospective studies of complexes of the helicase with its inhibitors. A novel direct fluorometric test of helicase activity with a quenched DNA substrate, 3' labeled with a Cy3 dye and 5' labeled with a Black Hole Quencher, was developed and optimal reaction conditions established. This test based on fluorescence resonance energy transfer is simple and fast. It allows for direct measurements of enzyme activity, circumventing laborious and complicated radioactive techniques that are poorly reproducible. The results obtained encourage us to propose this new fluorescent assay as a method enabling high throughput screening of anti-helicase compounds.
Collapse
|
38
|
Jiao X, Wang RYH, Qiu Q, Alter HJ, Shih JWK. Enhanced hepatitis C virus NS3 specific Th1 immune responses induced by co-delivery of protein antigen and CpG with cationic liposomes. J Gen Virol 2004; 85:1545-1553. [PMID: 15166438 DOI: 10.1099/vir.0.79896-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mice were immunized intramuscularly with free recombinant hepatitis C virus (HCV) NS3 (non-structural protein 3) protein, liposomes encapsulating rNS3 or rNS3 and CpG mixture, liposomes co-encapsulating rNS3 and CpG or liposomes co-encapsulating rNS3 and GpC. Liposomes co-encapsulating rNS3 and CpG induced a much higher titre of anti-HCV NS3 IgG and the dominant IgG subtype was IgG2a. Liposomes co-encapsulating rNS3 and GpC also induced high levels of anti-HCV NS3 IgG antibody, but the dominant IgG subtype was still IgG1, the same as in free HCV/NS3 immunized mice. Liposomes encapsulating rHCV NS3 and the mixture of rHCV NS3 and CpG did not increase the antibody response but switched the IgG subtype. A cytokine profile analysis revealed that the levels of Th1 cytokines in the mice immunized with liposomes co-encapsulating rHCV NS3 and CpG were significantly higher than in other mice while the levels of Th2 cytokine were significantly lower than in the mice immunized with naked rNS3. IL-12 in the mice immunized with liposome-NS3-CpG was significantly higher than in other mice. In conclusion, liposomes co-encapsulating HCV NS3 and CpG are a good candidate vaccine to induce strong Th1 immune responses against hepatitis C viruses.
Collapse
Affiliation(s)
- Xuanmao Jiao
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, Building 10, Room 1C711, National Institutes of Health, Bethesda, MD 20892-1184, USA
| | - Richard Yan-Hui Wang
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, Building 10, Room 1C711, National Institutes of Health, Bethesda, MD 20892-1184, USA
| | - Qi Qiu
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, Building 10, Room 1C711, National Institutes of Health, Bethesda, MD 20892-1184, USA
| | - Harvey J Alter
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, Building 10, Room 1C711, National Institutes of Health, Bethesda, MD 20892-1184, USA
| | - J Wai-Kuo Shih
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, Building 10, Room 1C711, National Institutes of Health, Bethesda, MD 20892-1184, USA
| |
Collapse
|
39
|
Yu H, Babiuk LA, van Drunen Littel-van den Hurk S. Priming with CpG-enriched plasmid and boosting with protein formulated with CpG oligodeoxynucleotides and Quil A induces strong cellular and humoral immune responses to hepatitis C virus NS3. J Gen Virol 2004; 85:1533-1543. [PMID: 15166437 DOI: 10.1099/vir.0.79821-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell-mediated immune responses to hepatitis C virus (HCV) proteins play a key role in recovery from infection. The NS3 protein of HCV is of special interest, since it is one of the most conserved proteins and NS3-specific immune responses are stronger and more frequently observed in patients resolving the infection than in chronically infected patients. Since these characteristics make NS3 an attractive vaccine candidate, the objective of this study was to optimize NS3-specific immune responses. Results from this group first demonstrated that a plasmid enriched with 24 CpG motifs (pBISIA24-NS3) tends to induce the strongest and most consistent Th1-biased immune response. Subsequently, it was shown that NS3 formulated with CpG oligodeoxynucleotide and Quil A (rNS3+CpG+Quil A) adjuvants induces a balanced immune response in mice, whereas rNS3 combined with either CpG or Quil A elicits a Th2-biased response. To further enhance NS3-specific cell-mediated immune responses, a vaccination regime consisting of priming with pBISIA24-NS3, followed by boosting with rNS3+CpG+Quil A, was explored in mice and pigs. When compared to immunization with rNS3+CpG+Quil A, this regime shifted the immune response to a Th1-type response and, accordingly, enhanced MHC I-restricted killing by cytotoxic T lymphocytes in mice. Although immunization with pBISIA24-NS3 also induced a Th1-biased response, including cytotoxicity in the mice, the humoral response was significantly lower than that induced by the DNA prime-protein boost regime. These results demonstrate the advantage of a DNA prime-protein boost approach in inducing a strong NS3-specific cell-mediated, as well as humoral, immune response, in both inbred laboratory and outbred large animal species.
Collapse
Affiliation(s)
- Hong Yu
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| | - Lorne A Babiuk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| | | |
Collapse
|
40
|
Frelin L, Ahlén G, Alheim M, Weiland O, Barnfield C, Liljeström P, Sällberg M. Codon optimization and mRNA amplification effectively enhances the immunogenicity of the hepatitis C virus nonstructural 3/4A gene. Gene Ther 2004; 11:522-33. [PMID: 14999224 DOI: 10.1038/sj.gt.3302184] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have recently shown that the NS3-based genetic immunogens should contain also hepatitis C virus (HCV) nonstructural (NS) 4A to utilize fully the immunogenicity of NS3. The next step was to try to enhance immunogenicity by modifying translation or mRNA synthesis. To enhance translation efficiency, a synthetic NS3/4A-based DNA (coNS3/4A-DNA) vaccine was generated in which the codon usage was optimized (co) for human cells. In a second approach, expression of the wild-type (wt) NS3/4A gene was enhanced by mRNA amplification using the Semliki forest virus (SFV) replicon (wtNS3/4A-SFV). Transient tranfections of human HepG2 cells showed that the coNS3/4A gene gave 11-fold higher levels of NS3 as compared to the wtNS3/4A gene when using the CMV promoter. We have previously shown that the presence of NS4A enhances the expression by SFV. Both codon optimization and mRNA amplification resulted in an improved immunogenicity as evidenced by higher levels of NS3-specific antibodies. This improved immunogenicity also resulted in a more rapid priming of cytotoxic T lymphocytes (CTLs). Since HCV is a noncytolytic virus, the functionality of the primed CTL responses was evaluated by an in vivo challenge with NS3/4A-expressing syngeneic tumor cells. The priming of a tumor protective immunity required an endogenous production of the immunogen and CD8+ CTLs, but was independent of B and CD4+ T cells. This model confirmed the more rapid in vivo activation of an NS3/4A-specific tumor-inhibiting immunity by codon optimization and mRNA amplification. Finally, therapeutic vaccination with the coNS3/4A gene using gene gun 6-12 days after injection of tumors significantly reduced the tumor growth in vivo. Codon optimization and mRNA amplification effectively enhances the overall immunogenicity of NS3/4A. Thus, either, or both, of these approaches should be utilized in an NS3/4A-based HCV genetic vaccine.
Collapse
Affiliation(s)
- L Frelin
- Division of Clinical Virology, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Jiao X, Wang RYH, Feng Z, Hu G, Alter HJ, W -K Shih J. DNA immunization encoding the secreted nonstructural protein 3 (NS3) of hepatitis C virus and enhancing the Th1 type immune response. J Viral Hepat 2004; 11:18-26. [PMID: 14738554 DOI: 10.1046/j.1352-0504.2003.00464.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
To induce a sustained and specific cellular immune response to hepatitis C virus (HCV), DNA immunization of mice was performed using plasmids containing the HCV nonstructural gene 3 (HCV/NS3). Plasmids were constructed such that the NS3 gene was expressed in a secreted form, a nonsecreted form or as a membrane-bound antigen. The plasmid encoding the secreted antigen induced the strongest humoral and cellular immunity and favoured the T-helper type 1 (Th1) pathway as shown by cytokine profiles and switching of antibody subclasses. Our study indicates that DNA immunization with a secreted form of HCV/NS3 is an effective means of inducing primary Th1 immune responses in the murine model.
Collapse
Affiliation(s)
- X Jiao
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20982, USA
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Peter Karayiannis
- Department of Medicine A, Faculty of Medicine, Division of Medicine, St Mary's Campus, Imperial College, London W2 1NY, UK.
| | | | | |
Collapse
|