1
|
Dong C, Sun Y, Xu X, Li H, Song X, Wei W, Jiao C, Xu H, Liu Y, Mierzhakenmu Z, Li L, Ma B. c-Myc knockdown restores tamoxifen sensitivity in triple-negative breast cancer by reactivating the expression of ERα: the central role of miR-152 and miR-148a. Breast Cancer 2025; 32:529-542. [PMID: 40029493 DOI: 10.1007/s12282-025-01683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Poor prognosis of triple-negative breast cancer (TNBC) is owing to its intrinsic heterogeneity and lack of targeted therapies. Emerging evidence has characterized that targeting c-Myc might be a promising way to treat TNBC. METHODS c-Myc knocked down TNBC cells were generated and the tamoxifen sensitivity was determined. Methylation-specific PCR analysis was used to detect the methylation status of ERα promoter, and c-Myc-mediated miRNA transcription was examined using chromatin immunoprecipitation and dual-luciferase reporter assays. The in vivo tamoxifen sensitivity was determined by mouse xenograft model. RESULTS c-Myc knockdown in TNBC cells leads to the reactivation of ERα and consequent acquisition its sensitivity to tamoxifen. c-Myc depletion decreased the methylation in the promoter of ERα and DNMT1 was identified as the main executor. c-Myc knockdown-induced tamoxifen sensitivity was reversed by DNMT1 overexpression. The expression of miR-152-3p and miR-148a-3p was largely induced in c-Myc knockdown TNBC cells, and both miR-152-3p and miR-148a-3p could target DNMT1 to regulate its expression. c-Myc binds to the promoter regions of miR-152-3p and miR-148a-3p to exert transcriptional suppression. By suppressing miR-152-3p or miR-148a-3p expression using inhibitors, enhanced sensitivity to tamoxifen induced by c-Myc knockdown was partially reversed. In vivo xenograft tumor model demonstrated that c-Myc knockdown mildly inhibits the growth of tumor, and a dramatic decline was observed when administrated with tamoxifen combined with c-Myc knockdown. CONCLUSION Our study first illustrated that c-Myc knockdown in TNBC cells reactivate ERα expression in a miR-152/miR-148a-DNMT1-dependent manner, and brought new sights into treating TNBC using hormonal therapies.
Collapse
Affiliation(s)
- Chao Dong
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Yonghong Sun
- Department of Central Operating Room, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Xiaoli Xu
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Huiling Li
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Xinyu Song
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Wenxin Wei
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Chong Jiao
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Haoyi Xu
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Yuanjing Liu
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Zuliyaer Mierzhakenmu
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Li Li
- Department of Gynecological Oncology (First Ward), The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| | - Binlin Ma
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, The Affiliated Tumor Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
2
|
Carbone FP, Ancona P, Volinia S, Terrazzan A, Bianchi N. Druggable Molecular Networks in BRCA1/BRCA2-Mutated Breast Cancer. BIOLOGY 2025; 14:253. [PMID: 40136510 PMCID: PMC11940086 DOI: 10.3390/biology14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
Mutations in the tumor suppressor genes BRCA1 and BRCA2 are associated with the triple-negative breast cancer phenotype, particularly aggressive and hard-to-treat tumors lacking estrogen, progesterone, and human epidermal growth factor receptor 2. This research aimed to understand the metabolic and genetic links behind BRCA1 and BRCA2 mutations and investigate their relationship with effective therapies. Using the Cytoscape software, two networks were generated through a bibliographic analysis of articles retrieved from the PubMed-NCBI database. We identified 98 genes deregulated by BRCA mutations, and 24 were modulated by therapies. In particular, BIRC5, SIRT1, MYC, EZH2, and CSN2 are influenced by BRCA1, while BCL2, BAX, and BRIP1 are influenced by BRCA2 mutation. Moreover, the study evaluated the efficacy of several promising therapies, targeting only BRCA1/BRCA2-mutated cells. In this context, CDDO-Imidazolide was shown to increase ROS levels and induce DNA damage. Similarly, resveratrol decreased the expression of the anti-apoptotic gene BIRC5 while it increased SIRT1 both in vitro and in vivo. Other specific drugs were found to induce apoptosis selectively in BRCA-mutated cells or block cell growth when the mutation occurs, i.e., 3-deazaneplanocin A, genistein or daidzein, and PARP inhibitors. Finally, over-representation analysis on the genes highlights ferroptosis and proteoglycan pathways as potential drug targets for more effective treatments.
Collapse
Affiliation(s)
- Francesca Pia Carbone
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| |
Collapse
|
3
|
Avolio E, Bassani B, Campanile M, Mohammed KA, Muti P, Bruno A, Spinetti G, Madeddu P. Shared molecular, cellular, and environmental hallmarks in cardiovascular disease and cancer: Any place for drug repurposing? Pharmacol Rev 2025; 77:100033. [PMID: 40148035 DOI: 10.1016/j.pharmr.2024.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer and cardiovascular disease (CVD) are the 2 biggest killers worldwide. Specific treatments have been developed for the 2 diseases. However, mutual therapeutic targets should be considered because of the overlap of cellular and molecular mechanisms. Cancer research has grown at a fast pace, leading to an increasing number of new mechanistic treatments. Some of these drugs could prove useful for treating CVD, which realizes the concept of cancer drug repurposing. This review provides a comprehensive outline of the shared hallmarks of cancer and CVD, primarily ischemic heart disease and heart failure. We focus on chronic inflammation, altered immune response, stromal and vascular cell activation, and underlying signaling pathways causing pathological tissue remodeling. There is an obvious scope for targeting those shared mechanisms, thereby achieving reciprocal preventive and therapeutic benefits. Major attention is devoted to illustrating the logic, advantages, challenges, and viable examples of drug repurposing and discussing the potential influence of sex, gender, age, and ethnicity in realizing this approach. Artificial intelligence will help to refine the personalized application of drug repurposing for patients with CVD. SIGNIFICANCE STATEMENT: Cancer and cardiovascular disease (CVD), the 2 biggest killers worldwide, share several underlying cellular and molecular mechanisms. So far, specific therapies have been developed to tackle the 2 diseases. However, the development of new cardiovascular drugs has been slow compared with cancer drugs. Understanding the intersection between pathological mechanisms of the 2 diseases provides the basis for repurposing cancer therapeutics for CVD treatment. This approach could allow the rapid development of new drugs for patients with CVDs.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Marzia Campanile
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Khaled Ak Mohammed
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom; Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paola Muti
- IRCCS MultiMedica, Milan, Italy; Department of Biomedical, Surgical and Dental Health Sciences, University of Milan, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy; Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Paolo Madeddu
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| |
Collapse
|
4
|
McDonald ES, Pan TC, Pant DK, Troester MA, Kossenkov AV, Mankoff DA, Mach RH, Chodosh LA. Ternary Complex Components Responsible for Rapid LDL Internalization as Biomarkers for Breast Cancer Associated with Proliferation and Early Recurrence. CANCER RESEARCH COMMUNICATIONS 2025; 5:226-239. [PMID: 39804138 PMCID: PMC11791746 DOI: 10.1158/2767-9764.crc-23-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/16/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
SIGNIFICANCE This first large-scale analysis of the putative ternary complex responsible for rapid low-density lipoprotein internalization in breast cancer reveals a link between component expression and recurrence, with prognostic implications for identifying patients needing supplemental posttreatment surveillance and/or additional therapeutic approaches.
Collapse
Affiliation(s)
- Elizabeth S. McDonald
- Division of Breast Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tien-Chi Pan
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dhruv K. Pant
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melissa A. Troester
- Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Andrew V. Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania
| | - David A. Mankoff
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H. Mach
- Radiochemistry, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lewis A. Chodosh
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Ram M, Fraser MR, Vieira dos Santos J, Tasakis R, Islam A, Abo-Donia JU, Parekh S, Lagana A. The Genetic and Molecular Drivers of Multiple Myeloma: Current Insights, Clinical Implications, and the Path Forward. Pharmgenomics Pers Med 2024; 17:573-609. [PMID: 39723112 PMCID: PMC11669356 DOI: 10.2147/pgpm.s350238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Background Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of malignant plasma cells within the bone marrow. The disease's complexity is underpinned by a variety of genetic and molecular abnormalities that drive its progression. Methods This review was conducted through a state-of-The-art literature search, primarily utilizing PubMed to gather peer-reviewed articles. We focused on the most comprehensive and cited studies to ensure a thorough understanding of the genetic and molecular landscapes of MM. Results We detail primary and secondary alterations such as translocations, hyperdiploidy, single nucleotide variants (SNVs), copy number alterations (CNAs), gene fusions, epigenetic modifications, non-coding RNAs, germline predisposing variants, and the influence of the tumor microenvironment (TME). Our analysis highlights the heterogeneity of MM and the challenges it poses in treatment and prognosis, emphasizing the distinction between driver mutations, which actively contribute to oncogenesis, and passenger mutations, which arise due to genomic instability and do not contribute to disease progression. Conclusion & Future Perspectives We report key controversies and challenges in defining the genetic drivers of MM, and examine their implications for future therapeutic strategies. We discuss the importance of systems biology approaches in understanding the dependencies and interactions among these alterations, particularly highlighting the impact of double and triple-hit scenarios on disease outcomes. By advancing our understanding of the molecular drivers and their interactions, this review sets the stage for novel therapeutic targets and strategies, ultimately aiming to improve clinical outcomes in MM patients.
Collapse
Affiliation(s)
- Meghana Ram
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Junia Vieira dos Santos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafail Tasakis
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariana Islam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jannah Usama Abo-Donia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Lagana
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Wei J, Jiang J, Zhang S, Dong S. Immunoglobulin superfamily member 1 upregulates myc proto-oncogene to accelerate invasion and metastasis of endometrial cancer: Molecular mechanisms and therapeutic prospects. Cytojournal 2024; 21:49. [PMID: 39737117 PMCID: PMC11683393 DOI: 10.25259/cytojournal_81_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/29/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Endometrial cancer (EC) is a common gynecological malignancy, and its metastasis is one of the primary causes of treatment failure. Immunoglobulin superfamily member 1 (IGSF1), a membrane protein, has been associated with the aggressiveness and metastatic capability of various cancers. However, the role and mechanism of this protein in EC remains unclear. Therefore, this study aimed to explore the role of IGSF1 in EC and its possible mechanism. Material and Methods In this study, IGSF1 expression was knocked down through small interfering RNA and short hairpin RNA techniques, and its levels were controlled through overexpression experiments to observe its effects on Ishikawa cells. Wound healing assays, Transwell migration and invasion assays, quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence double labeling were performed to evaluate the ability of cells to migrate, invade, and express markers of the epithelium mesenchymal transition (EMT). In addition, we investigated the regulatory role of IGSF1 in Myc proto-oncogene (c-Myc) expression and its function in lung metastasis through animal models of lung metastasis. Results The results indicate that IGSF1 knockdown inhibited EMT and greatly reduced the invasion ability of Ishikawa cells (P < 0.01). Animal experiments demonstrated that IGSF1 knockdown reduced the number of pulmonary metastatic foci (P < 0.001). On the other hand, IGSF1 overexpression increased Ishikawa cells' ability to migrate and invade (P < 0.01). IGSF1 overexpression also inhibited E-cadherin expression and promoted that of vimentin (P < 0.001). The expression of c-Myc decreased following IGSF1 knockdown and increased after its overexpression. Silencing of c-Myc reversed the oncogenic effects of IGSF1 (P < 0.01). Conclusion IGSF1 promotes EMT and metastasis in EC through the upregulation of the c-Myc expression. IGSF1 may serve as a potential therapeutic target for EC, and its inhibition can offer new strategies for mitigating the aggressiveness and metastatic potential of this malignancy.
Collapse
Affiliation(s)
- Jing Wei
- Department of Gynaecology and Obstetrics, The 960 Hospital of the Joint Logistics Support Force of the People`s Liberation Army of China, Jinan, China
| | - Jinxiang Jiang
- Department of Outpatient Laboratory, Qingdao Municipal Hospital, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shuhong Zhang
- Department of Gynaecology and Obstetrics, The 960 Hospital of the Joint Logistics Support Force of the People`s Liberation Army of China, Jinan, China
| | - Shuai Dong
- Department of Gynaecology and Obstetrics, The 960 Hospital of the Joint Logistics Support Force of the People`s Liberation Army of China, Jinan, China
| |
Collapse
|
7
|
Hassan M, Tutar L, Sari-Ak D, Rasul A, Basheer E, Tutar Y. Non-genetic heterogeneity and immune subtyping in breast cancer: Implications for immunotherapy and targeted therapeutics. Transl Oncol 2024; 47:102055. [PMID: 39002207 PMCID: PMC11299575 DOI: 10.1016/j.tranon.2024.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/25/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Breast cancer (BC) is a complex and multifactorial disease, driven by genetic alterations that promote tumor growth and progression. However, recent research has highlighted the importance of non-genetic factors in shaping cancer evolution and influencing therapeutic outcomes. Non-genetic heterogeneity refers to diverse subpopulations of cancer cells within breast tumors, exhibiting distinct phenotypic and functional properties. These subpopulations can arise through various mechanisms, including clonal evolution, genetic changes, epigenetic changes, and reversible phenotypic transitions. Although genetic and epigenetic changes are important points of the pathology of breast cancer yet, the immune system also plays a crucial role in its progression. In clinical management, histologic and molecular classification of BC are used. Immunological subtyping of BC has gained attention in recent years as compared to traditional techniques. Intratumoral heterogeneity revealed by immunological microenvironment (IME) has opened novel opportunities for immunotherapy research. This systematic review is focused on non-genetic variability to identify and interlink immunological subgroups in breast cancer. This review provides a deep understanding of adaptive methods adopted by tumor cells to withstand changes in the tumor microenvironment and selective pressure imposed by medications. These adaptive methods include alterations in drug targets, immune system evasion, activation of survival pathways, and alterations in metabolism. Understanding non-genetic heterogeneity is essential for the development of targeted therapies.
Collapse
Affiliation(s)
- Mudassir Hassan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Kırsehir Ahi Evran University, Kırsehir, Turkey
| | - Duygu Sari-Ak
- Department of Medical Biology, Hamidiye International School of Medicine, University of Health Sciences, Istanbul 34668, Turkey
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Ejaz Basheer
- Department of Pharmacognosy, Faculty of Pharmaceutical, Sciences Government College University Faisalabad, Pakistan
| | - Yusuf Tutar
- Faculty of Medicine, Division of Biochemistry, Recep Tayyip Erdogan University, Rize, Turkey.
| |
Collapse
|
8
|
Choi WS, Liu RZ, Mak C, Maadi H, Godbout R. Overcoming retinoic acid resistance in HER2-enriched breast cancers: role of MYC. FEBS J 2024; 291:3521-3538. [PMID: 38708519 DOI: 10.1111/febs.17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/12/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
HER2-enriched (HER2+) breast cancers express high levels of the growth-promoting HER2 protein. Although these cancers are treated with the HER2-targeted drug, trastuzumab, resistance to treatment is common. Retinoic acid (RA) is an anti-cancer agent that has been successfully used for the treatment of leukemia and holds promise for the treatment of solid cancers, including breast cancer. The HER2 gene is frequently co-amplified with RARA, a key determinant of RA sensitivity in breast cancers. It seems surprising, therefore, that HER2+ breast cancers are refractory to RA treatment. Here, we show that MYC mediates RA resistance by suppressing the expression of cellular retinoic acid binding protein 2 (CRABP2), resulting in RARα inactivation. CRABP2 is an intracellular RA transporter that delivers RA to the nuclear receptor RARα for its activation. Our results indicate that response to RA is enhanced by MYC depletion in HER2+ breast cancer cells and that RA treatment enhances trastuzumab responsiveness. Our findings support the use of RA and trastuzumab for the treatment of subsets of patients with breast cancers that are HER2-RARα co-amplified and have low levels of MYC.
Collapse
Affiliation(s)
- Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Rong-Zong Liu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Caitlin Mak
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Hamid Maadi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
9
|
Player A, Cunningham S, Philio D, Roy R, Haynes C, Dixon C, Thirston L, Ibikunle F, Boswell TA, Alnakhalah A, Contreras J, Bell M, McGuffery T, Bryant S, Nganya C, Kanu S. Characterization of MYBL1 Gene in Triple-Negative Breast Cancers and the Genes' Relationship to Alterations Identified at the Chromosome 8q Loci. Int J Mol Sci 2024; 25:2539. [PMID: 38473786 DOI: 10.3390/ijms25052539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The MYBL1 gene is a strong transcriptional activator involved in events associated with cancer progression. Previous data show MYBL1 overexpressed in triple-negative breast cancer (TNBC). There are two parts to this study related to further characterizing the MYBL1 gene. We start by characterizing MYBL1 reference sequence variants and isoforms. The results of this study will help in future experiments in the event there is a need to characterize functional variants and isoforms of the gene. In part two, we identify and validate expression and gene-related alterations of MYBL1, VCIP1, MYC and BOP1 genes in TNBC cell lines and patient samples selected from the Breast Invasive Carcinoma TCGA 2015 dataset available at cBioPortal.org. The four genes are located at chromosomal regions 8q13.1 to 8q.24.3 loci, regions previously identified as demonstrating a high percentage of alterations in breast cancer. We identify alterations, including changes in expression, deletions, amplifications and fusions in MYBL1, VCPIP1, BOP1 and MYC genes in many of the same patients, suggesting the panel of genes is involved in coordinated activity in patients. We propose that MYBL1, VCPIP1, MYC and BOP1 collectively be considered as genes associated with the chromosome 8q loci that potentially play a role in TNBC pathogenesis.
Collapse
Affiliation(s)
- Audrey Player
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Sierra Cunningham
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Deshai Philio
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Renata Roy
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Cydney Haynes
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Christopher Dixon
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Lataja Thirston
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Fawaz Ibikunle
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | | | - Ayah Alnakhalah
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Juan Contreras
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Myra Bell
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Treveon McGuffery
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Sahia Bryant
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Chidinma Nganya
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Samuel Kanu
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| |
Collapse
|
10
|
Lang C, Megyesfalvi Z, Lantos A, Oberndorfer F, Hoda MA, Solta A, Ferencz B, Fillinger J, Solyom-Tisza A, Querner AS, Egger F, Boettiger K, Klikovits T, Timelthaler G, Renyi-Vamos F, Aigner C, Hoetzenecker K, Laszlo V, Schelch K, Dome B. C-Myc protein expression indicates unfavorable clinical outcome in surgically resected small cell lung cancer. World J Surg Oncol 2024; 22:57. [PMID: 38369463 PMCID: PMC10875875 DOI: 10.1186/s12957-024-03315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/14/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND By being highly involved in the tumor evolution and disease progression of small cell lung cancer (SCLC), Myc family members (C-Myc, L-Myc, and N-Myc) might represent promising targetable molecules. Our aim was to investigate the expression pattern and prognostic relevance of these oncogenic proteins in an international cohort of surgically resected SCLC tumors. METHODS Clinicopathological data and surgically resected tissue specimens from 104 SCLC patients were collected from two collaborating European institutes. Tissue sections were stained by immunohistochemistry (IHC) for all three Myc family members and the recently introduced SCLC molecular subtype-markers (ASCL1, NEUROD1, POU2F3, and YAP1). RESULTS IHC analysis showed C-Myc, L-Myc, and N-Myc positivity in 48%, 63%, and 9% of the specimens, respectively. N-Myc positivity significantly correlated with the POU2F3-defined molecular subtype (r = 0.6913, p = 0.0056). SCLC patients with C-Myc positive tumors exhibited significantly worse overall survival (OS) (20 vs. 44 months compared to those with C-Myc negative tumors, p = 0.0176). Ultimately, in a multivariate risk model adjusted for clinicopathological and treatment confounders, positive C-Myc expression was confirmed as an independent prognosticator of impaired OS (HR 1.811, CI 95% 1.054-3.113, p = 0.032). CONCLUSIONS Our study provides insights into the clinical aspects of Myc family members in surgically resected SCLC tumors. Notably, besides showing that positivity of Myc family members varies across the patients, we also reveal that C-Myc protein expression independently correlates with worse survival outcomes. Further studies are warranted to investigate the role of Myc family members as potential prognostic and predictive markers in this hard-to-treat disease.
Collapse
Affiliation(s)
- Christian Lang
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
- Department of Medicine II, Division of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria.
- National Korányi Institute of Pulmonology, Budapest, Hungary.
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Ráth György u. 7-9, Budapest, 1122, Hungary.
| | - Andras Lantos
- National Korányi Institute of Pulmonology, Budapest, Hungary
| | | | - Mir Alireza Hoda
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Anna Solta
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Bence Ferencz
- National Korányi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Ráth György u. 7-9, Budapest, 1122, Hungary
| | - Janos Fillinger
- National Korányi Institute of Pulmonology, Budapest, Hungary
| | | | - Alessandro Saeed Querner
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Felix Egger
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Thomas Klikovits
- Department of Thoracic Surgery, Clinic Floridsdorf, Vienna, Austria
| | - Gerald Timelthaler
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Ferenc Renyi-Vamos
- National Korányi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Ráth György u. 7-9, Budapest, 1122, Hungary
- National Institute of Oncology and National Tumor Biology Laboratory, Budapest, Hungary
| | - Clemens Aigner
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Viktoria Laszlo
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
- National Korányi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Ráth György u. 7-9, Budapest, 1122, Hungary
| | - Karin Schelch
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria.
- National Korányi Institute of Pulmonology, Budapest, Hungary.
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Ráth György u. 7-9, Budapest, 1122, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
11
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Al-Jamal HAN, Johan MF, Islam MA. Dysregulation of Non-Coding RNAs: Roles of miRNAs and lncRNAs in the Pathogenesis of Multiple Myeloma. Noncoding RNA 2023; 9:68. [PMID: 37987364 PMCID: PMC10660696 DOI: 10.3390/ncrna9060068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
The dysregulation of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), leads to the development and advancement of multiple myeloma (MM). miRNAs, in particular, are paramount in post-transcriptional gene regulation, promoting mRNA degradation and translational inhibition. As a result, miRNAs can serve as oncogenes or tumor suppressors depending on the target genes. In MM, miRNA disruption could result in abnormal gene expression responsible for cell growth, apoptosis, and other biological processes pertinent to cancer development. The dysregulated miRNAs inhibit the activity of tumor suppressor genes, contributing to disease progression. Nonetheless, several miRNAs are downregulated in MM and have been identified as gene regulators implicated in extracellular matrix remodeling and cell adhesion. miRNA depletion potentially facilitates the tumor advancement and resistance of therapeutic drugs. Additionally, lncRNAs are key regulators of numerous cellular processes, such as gene expression, chromatin remodeling, protein trafficking, and recently linked MM development. The lncRNAs are uniquely expressed and influence gene expression that supports MM growth, in addition to facilitating cellular proliferation and viability via multiple molecular pathways. miRNA and lncRNA alterations potentially result in anomalous gene expression and interfere with the regular functioning of MM. Thus, this review aims to highlight the dysregulation of these ncRNAs, which engender novel therapeutic modalities for the treatment of MM.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman 11111, Sudan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Md Asiful Islam
- WHO Collaborating Centre for Global Women’s Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Pandkar MR, Sinha S, Samaiya A, Shukla S. Oncometabolite lactate enhances breast cancer progression by orchestrating histone lactylation-dependent c-Myc expression. Transl Oncol 2023; 37:101758. [PMID: 37572497 PMCID: PMC10425713 DOI: 10.1016/j.tranon.2023.101758] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
Due to the enhanced glycolytic rate, cancer cells generate lactate copiously, subsequently promoting the lactylation of histones. While previous studies have explored the impact of histone lactylation in modulating gene expression, the precise role of this epigenetic modification in regulating oncogenes is largely unchartered. In this study, using breast cancer cell lines and their mutants exhibiting lactate-deficient metabolome, we have identified that an enhanced rate of aerobic glycolysis supports c-Myc expression via promoter-level histone lactylation. Interestingly, c-Myc further transcriptionally upregulates serine/arginine splicing factor 10 (SRSF10) to drive alternative splicing of MDM4 and Bcl-x in breast cancer cells. Moreover, our results reveal that restricting the activity of critical glycolytic enzymes affects the c-Myc-SRSF10 axis to subside the proliferation of breast cancer cells. Our findings provide novel insights into the mechanisms by which aerobic glycolysis influences alternative splicing processes that collectively contribute to breast tumorigenesis. Furthermore, we also envisage that chemotherapeutic interventions attenuating glycolytic rate can restrict breast cancer progression by impeding the c-Myc-SRSF10 axis.
Collapse
Affiliation(s)
- Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India. https://twitter.com/https://twitter.com/MadhuraPandkar
| | - Sommya Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India. https://twitter.com/https://twitter.com/sinha_sommya
| | - Atul Samaiya
- Department of Surgical Oncology, Bansal Hospital, Bhopal, Madhya Pradesh 462016, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India.
| |
Collapse
|
13
|
Broeker CD, Ortiz MMO, Murillo MS, Andrechek ER. Integrative multi-omic sequencing reveals the MMTV-Myc mouse model mimics human breast cancer heterogeneity. Breast Cancer Res 2023; 25:120. [PMID: 37805590 PMCID: PMC10559619 DOI: 10.1186/s13058-023-01723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Breast cancer is a complex and heterogeneous disease with distinct subtypes and molecular profiles corresponding to different clinical outcomes. Mouse models of breast cancer are widely used, but their relevance in capturing the heterogeneity of human disease is unclear. Previous studies have shown the heterogeneity at the gene expression level for the MMTV-Myc model, but have only speculated on the underlying genetics. METHODS Tumors from the microacinar, squamous, and EMT histological subtypes of the MMTV-Myc mouse model of breast cancer underwent whole genome sequencing. The genomic data obtained were then integrated with previously obtained matched sample gene expression data and extended to additional samples of each histological subtype, totaling 42 gene expression samples. High correlation was observed between genetic copy number events and resulting gene expression by both Spearman's rank correlation coefficient and the Kendall rank correlation coefficient. These same genetic events are conserved in humans and are indicative of poor overall survival by Kaplan-Meier analysis. A supervised machine learning algorithm trained on METABRIC gene expression data was used to predict the analogous human breast cancer intrinsic subtype from mouse gene expression data. RESULTS Herein, we examine three common histological subtypes of the MMTV-Myc model through whole genome sequencing and have integrated these results with gene expression data. Significantly, key genomic alterations driving cell signaling pathways were well conserved within histological subtypes. Genomic changes included frequent, co-occurring mutations in KIT and RARA in the microacinar histological subtype as well as SCRIB mutations in the EMT subtype. EMT tumors additionally displayed strong KRAS activation signatures downstream of genetic activating events primarily ascribed to KRAS activating mutations, but also FGFR2 amplification. Analogous genetic events in human breast cancer showed stark decreases in overall survival. In further analyzing transcriptional heterogeneity of the MMTV-Myc model, we report a supervised machine learning model that classifies MMTV-Myc histological subtypes and other mouse models as being representative of different human intrinsic breast cancer subtypes. CONCLUSIONS We conclude the well-established MMTV-Myc mouse model presents further opportunities for investigation of human breast cancer heterogeneity.
Collapse
Affiliation(s)
- Carson D Broeker
- Department of Biochemistry and Molecular Biology, Michigan State University, 567 Wilson Road, BPS Room 2120, East Lansing, MI, 48824, USA
| | - Mylena M O Ortiz
- Genetics and Genomics Science Program, Michigan State University, 567 Wilson Road, BPS Room 2120, East Lansing, MI, 48824, USA
| | - Michael S Murillo
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, 428 South Shaw Lane, Engineering Building Room 1508C, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 South Shaw Lane, Engineering Building Room 1508C, East Lansing, MI, 48824, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 567 Wilson Road, BPS Room 2194, East Lansing, MI, 48824, USA.
| |
Collapse
|
14
|
Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, Lipkowitz S. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers (Basel) 2023; 15:cancers15071936. [PMID: 37046596 PMCID: PMC10093243 DOI: 10.3390/cancers15071936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer mortality in women. Despite the recent development of new therapeutics including targeted therapies and immunotherapy, triple-negative breast cancer remains an aggressive form of breast cancer, and thus improved treatments are needed. In recent decades, it has become increasingly clear that breast cancers harbor metabolic plasticity that is controlled by mitochondria. A myriad of studies provide evidence that mitochondria are essential to breast cancer progression. Mitochondria in breast cancers are widely reprogrammed to enhance energy production and biosynthesis of macromolecules required for tumor growth. In this review, we will discuss the current understanding of mitochondrial roles in breast cancers and elucidate why mitochondria are a rational therapeutic target. We will then outline the status of the use of mitochondria-targeting drugs in breast cancers, and highlight ClpP agonists as emerging mitochondria-targeting drugs with a unique mechanism of action. We also illustrate possible drug combination strategies and challenges in the future breast cancer clinic.
Collapse
Affiliation(s)
- Rohan Wedam
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshimi Endo Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Wisniewski
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Weltz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjari Kundu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, Zheng Q, Chen C, Sun S. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol 2023; 12:3. [PMID: 36624542 PMCID: PMC9830930 DOI: 10.1186/s40164-022-00363-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Breast cancer heterogeneity determines cancer progression, treatment effects, and prognosis. However, the precise mechanism for this heterogeneity remains unknown owing to its complexity. Here, we summarize the origins of breast cancer heterogeneity and its influence on disease progression, recurrence, and therapeutic resistance. We review the possible mechanisms of heterogeneity and the research methods used to analyze it. We also highlight the importance of cell interactions for the origins of breast cancer heterogeneity, which can be further categorized into cooperative and competitive interactions. Finally, we provide new insights into precise individual treatments based on heterogeneity.
Collapse
Affiliation(s)
- Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Ling Zhan
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Lan Luo
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
16
|
Zhao S, El-Deiry WS. Non-canonical approaches to targeting hypoxic tumors. Am J Cancer Res 2022; 12:5351-5374. [PMID: 36628275 PMCID: PMC9827096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 08/22/2022] [Indexed: 01/12/2023] Open
Abstract
Hypoxia is a common characteristic in solid cancers. Hypoxia-inducible factors (HIFs) are involved in various aspects of cancer, such as angiogenesis, metastasis and therapy resistance. Targeting the HIF pathway has been regarded as a challenging but promising strategy in cancer treatment with recent FDA approval of a HIF2α-inhibitor. During the past several decades, numerous efforts have been made to understand how HIFs participate in cancer development and progression along with how HIF signaling can be modulated to achieve anti-cancer effect. In this chapter, we will provide an overview of the role of hypoxia and HIFs in cancer, summarize the oxygen-dependent and independent mechanisms of HIF-1α regulation, and discuss emerging approaches targeting hypoxia and HIF signaling which possess therapeutic potential in cancer. We will emphasize on two signaling pathways, involving cyclin-dependent kinases (CDKs) and heat shock protein 90 (HSP90), which contribute to HIF-1α (and HIF-2α) stabilization in an oxygen-independent manner. Through reviewing their participation in malignant progression and the potential targeting strategies, we discuss the non-canonical approaches to target HIF signaling in cancer therapy.
Collapse
Affiliation(s)
- Shuai Zhao
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown UniversityProvidence, RI, USA,Pathobiology Graduate Program, Brown UniversityProvidence, RI, USA,Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA,Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA,Legorreta Cancer Center at Brown University, Warren Alpert Medical School, Brown UniversityProvidence, RI, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown UniversityProvidence, RI, USA,Pathobiology Graduate Program, Brown UniversityProvidence, RI, USA,Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA,Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA,Legorreta Cancer Center at Brown University, Warren Alpert Medical School, Brown UniversityProvidence, RI, USA,Hematology/Oncology Division, Lifespan Cancer InstituteProvidence, RI, USA
| |
Collapse
|
17
|
Lin X, Lin X, Guo L, Wang Y, Zhang G. Distinct clinicopathological characteristics, genomic alteration and prognosis in breast cancer with concurrent TP53 mutation and MYC amplification. Thorac Cancer 2022; 13:3441-3450. [PMID: 36305094 PMCID: PMC9750818 DOI: 10.1111/1759-7714.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Both TP53 mutation and MYC amplification indicate poor outcomes in breast cancer (BC), but the clinical values of concurrent TP53 and MYC alterations have not been well-characterized. METHODS A total of 494 BC patients diagnosed at Guangdong Provincial People's Hospital (GDPH) were retrospectively analyzed. Genomic alterations were determined using next-generation sequencing. Survival analysis was applied to assess the effects of genetic alterations on relapse-free survival. The prognosis was verified based on 1405 patients from METABRIC cohort. Additionally, we used logistic regression to identify the factors associated with pathological complete response (pCR) after neoadjuvant chemotherapy. RESULTS In GDPH cohort, patients with TP53/MYC co-alteration exhibited higher grade and stage, more positive HER2 status and higher Ki67 levels, but less luminal A subtypes. They also had more mutations in genes involved in ERBB and TGF-β signaling pathways, as well as exclusive FANCG/CDKN2B/QKI copy number amplifications and SUFU/HIST3H3/ERCC4/JUN/BCR mutations. Concurrent TP53 and MYC alterations independently increased hazards of relapse (HR, 5.425; 95% CI: 2.019-14.579; p < 0.001). They maintained independent significance for relapse-free (HR, 1.310; 95% CI: 1.012-1.697; p = 0.041) and overall survival (HR, 1.373; 95% CI: 1.093-1.725; p = 0.006) in METABRIC cohort. Among the 81 patients receiving chemotherapy, TP53 mutation (OR, 5.750; 95% CI: 1.553-25.776; p = 0.013) and earlier stage (OR, 0.275; 95% CI 0.088-0.788; p = 0.020) were associated with pCR, while the co-alteration did not serve as an independent predictor (p = 0.199). CONCLUSIONS TP53/MYC co-alteration was associated with distinct clinicopathological and genomic features. They also conferred unfavorable prognosis in BC patients, and did not improve pCR after neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Xiaoyi Lin
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
- Shantou University Medical CollegeShantouChina
| | - Xin Lin
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhouChina
| | - Lijuan Guo
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
- School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yulei Wang
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Guochun Zhang
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
18
|
Gluz O, Nitz U, Kolberg-Liedtke C, Prat A, Christgen M, Kuemmel S, Mohammadian MP, Gebauer D, Kates R, Paré L, Grischke EM, Forstbauer H, Braun M, Warm M, Hackmann J, Uleer C, Aktas B, Schumacher C, Wuerstlein R, Graeser M, Pelz E, Jóźwiak K, Zu Eulenburg C, Kreipe HH, Harbeck N. De-escalated Neoadjuvant Chemotherapy in Early Triple-Negative Breast Cancer (TNBC): Impact of Molecular Markers and Final Survival Analysis of the WSG-ADAPT-TN Trial. Clin Cancer Res 2022; 28:4995-5003. [PMID: 35797219 DOI: 10.1158/1078-0432.ccr-22-0482] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/13/2022] [Accepted: 07/05/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Although optimal treatment in early triple-negative breast cancer (TNBC) remains unclear, de-escalated chemotherapy appears to be an option in selected patients within this aggressive subtype. Previous studies have identified several pro-immune factors as prognostic markers in TNBC, but their predictive impact regarding different chemotherapy strategies is still controversial. EXPERIMENTAL DESIGN ADAPT-TN is a randomized neoadjuvant multicenter phase II trial in early patients with TNBC (n = 336) who were randomized to 12 weeks of nab-paclitaxel 125 mg/m2 + gemcitabine or carboplatin d 1,8 q3w. Omission of further (neo-) adjuvant chemotherapy was allowed only in patients with pathological complete response [pCR, primary endpoint (ypT0/is, ypN0)]. Secondary invasive/distant disease-free and overall survival (i/dDFS, OS) and translational research objectives included quantification of a predictive impact of markers regarding selection for chemotherapy de-escalation, measured by gene expression of 119 genes (including PAM50 subtype) by nCounter platform and stromal tumor-infiltrating lymphocytes (sTIL). RESULTS After 60 months of median follow-up, 12-week-pCR was favorably associated (HR, 0.24; P = 0.001) with 5y-iDFS of 90.6% versus 62.8%. No survival advantage of carboplatin use was observed, despite a higher pCR rate [HR, 1.04; 95% confidence interval (CI), 0.68-1.59]. Additional anthracycline-containing chemotherapy was not associated with a significant iDFS advantage in pCR patients (HR, 1.29; 95% CI, 0.41-4.02). Beyond pCR rate, nodal status and high sTILs were independently associated with better iDFS, dDFS, and OS by multivariable analysis. CONCLUSIONS Short de-escalated neoadjuvant taxane/platinum-based combination therapy appears to be a promising strategy in early TNBC for using pCR rate as an early decision point for further therapy (de-) escalation together with node-negative status and high sTILs. See related commentary by Sharma, p. 4840.
Collapse
Affiliation(s)
- Oleg Gluz
- West German Study Group, Moenchengladbach, Germany.,Ev. Hospital Bethesda, Breast Center Niederrhein, Moenchengladbach, Germany.,University Clinics Cologne, Cologne, Germany
| | - Ulrike Nitz
- West German Study Group, Moenchengladbach, Germany.,Ev. Hospital Bethesda, Breast Center Niederrhein, Moenchengladbach, Germany
| | | | - Aleix Prat
- Department of Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | | | - Mohammad Parsa Mohammadian
- Institute of Biostatistics and Registry Research, Brandenburg Medical School "Theodor Finane," Neuruppin, Germany
| | | | - Ronald Kates
- West German Study Group, Moenchengladbach, Germany
| | - Laia Paré
- Department of Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | | | - Michael Braun
- Rotkreuz Clinics Munich, Breast Center, Munich, Germany
| | - Mathias Warm
- City Hospital Holweide, Breast Center, Cologne, Germany
| | | | | | - Bahriye Aktas
- University Clinics Essen, Women's Clinic, Essen, Germany.,University Clinics Leipzig, Women's Clinic, Leipzig, Germany
| | | | - Rachel Wuerstlein
- West German Study Group, Moenchengladbach, Germany.,Department Obstetrics and Gynecology, Breast Center, LMU University Hospital and CCC Munich, Munich, Germany
| | - Monika Graeser
- West German Study Group, Moenchengladbach, Germany.,Ev. Hospital Bethesda, Breast Center Niederrhein, Moenchengladbach, Germany.,University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Enrico Pelz
- Institute of Pathology Viersen, Viersen, Germany
| | - Katarzyna Jóźwiak
- Institute of Biostatistics and Registry Research, Brandenburg Medical School "Theodor Finane," Neuruppin, Germany
| | - Christine Zu Eulenburg
- West German Study Group, Moenchengladbach, Germany.,University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Nadia Harbeck
- West German Study Group, Moenchengladbach, Germany.,Department Obstetrics and Gynecology, Breast Center, LMU University Hospital and CCC Munich, Munich, Germany
| | | |
Collapse
|
19
|
Li Y, Azmi AS, Mohammad RM. Deregulated transcription factors and poor clinical outcomes in cancer patients. Semin Cancer Biol 2022; 86:122-134. [PMID: 35940398 DOI: 10.1016/j.semcancer.2022.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 01/27/2023]
Abstract
Transcription factors are a group of proteins, which possess DNA-binding domains, bind to DNA strands of promoters or enhancers, and initiate transcription of genes with cooperation of RNA polymerase and other co-factors. They play crucial roles in regulating transcription during embryogenesis and development. Their physiological status in different cell types is also important to maintain cellular homeostasis. Therefore, any deregulation of transcription factors will lead to the development of cancer cells and tumor progression. Based on their functions in cancer cells, transcription factors could be either oncogenic or tumor suppressive. Furthermore, transcription factors have been shown to modulate cancer stem cells, epithelial-mesenchymal transition (EMT) and drug response; therefore, measuring deregulated transcription factors is hypothesized to predict treatment outcomes of patients with cancers and targeting deregulated transcription factors could be an encouraging strategy for cancer therapy. Here, we summarize the current knowledge of major deregulated transcription factors and their effects on causing poor clinical outcome of patients with cancer. The information presented here will help to predict the prognosis and drug response and to design novel drugs and therapeutic strategies for the treatment of cancers by targeting deregulated transcription factors.
Collapse
Affiliation(s)
- Yiwei Li
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asfar S Azmi
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramzi M Mohammad
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
20
|
Kim M, Singh M, Lee BK, Hibbs M, Richardson K, Ellies L, Wintle L, Stuart LM, Wang JY, Voon DC, Blancafort P, Wang J, Kim J, Leedman PJ, Woo AJ. A MYC-ZNF148-ID1/3 regulatory axis modulating cancer stem cell traits in aggressive breast cancer. Oncogenesis 2022; 11:60. [PMID: 36207293 PMCID: PMC9546828 DOI: 10.1038/s41389-022-00435-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The MYC proto-oncogene (MYC) is one of the most frequently overexpressed genes in breast cancer that drives cancer stem cell-like traits, resulting in aggressive disease progression and poor prognosis. In this study, we identified zinc finger transcription factor 148 (ZNF148, also called Zfp148 and ZBP-89) as a direct target of MYC. ZNF148 suppressed cell proliferation and migration and was transcriptionally repressed by MYC in breast cancer. Depletion of ZNF148 by short hairpin RNA (shRNA) and CRISPR/Cas9 increased triple-negative breast cancer (TNBC) cell proliferation and migration. Global transcriptome and chromatin occupancy analyses of ZNF148 revealed a central role in inhibiting cancer cell de-differentiation and migration. Mechanistically, we identified the Inhibitor of DNA binding 1 and 3 (ID1, ID3), drivers of cancer stemness and plasticity, as previously uncharacterized targets of transcriptional repression by ZNF148. Silencing of ZNF148 increased the stemness and tumorigenicity in TNBC cells. These findings uncover a previously unknown tumor suppressor role for ZNF148, and a transcriptional regulatory circuitry encompassing MYC, ZNF148, and ID1/3 in driving cancer stem cell traits in aggressive breast cancer.
Collapse
Affiliation(s)
- Mijeong Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Manjot Singh
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6000, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Moira Hibbs
- RPH Research Centre, Royal Perth Hospital, Perth, WA, 6000, Australia
| | - Kirsty Richardson
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6000, Australia
| | - Lesley Ellies
- Division of Pharmacology and Toxicology, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6000, Australia
| | - Larissa Wintle
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6000, Australia
| | - Lisa M Stuart
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6000, Australia
| | - Jenny Y Wang
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Dominic C Voon
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan
- Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Pilar Blancafort
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6000, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, 6000, Australia
- The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Peter J Leedman
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6000, Australia.
| | - Andrew J Woo
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6000, Australia.
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, 6000, Australia.
| |
Collapse
|
21
|
Cailleux F, Agostinetto E, Lambertini M, Rothé F, Wu HT, Balcioglu M, Kalashnikova E, Vincent D, Viglietti G, Gombos A, Papagiannis A, Veys I, Awada A, Sethi H, Aleshin A, Larsimont D, Sotiriou C, Venet D, Ignatiadis M. Circulating Tumor DNA After Neoadjuvant Chemotherapy in Breast Cancer Is Associated With Disease Relapse. JCO Precis Oncol 2022; 6:e2200148. [PMID: 36170624 DOI: 10.1200/po.22.00148] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Detection of circulating tumor DNA (ctDNA) after neoadjuvant chemotherapy in patients with early-stage breast cancer may allow for early detection of relapse. In this study, we analyzed ctDNA using a personalized, tumor-informed multiplex polymerase chain reaction-based next-generation sequencing assay. METHODS Plasma samples (n = 157) from 44 patients were collected before neoadjuvant therapy (baseline), after neoadjuvant therapy and before surgery (presurgery), and serially postsurgery including a last follow-up sample. The primary end point was event-free survival (EFS) analyzed using Cox regression models. RESULTS Thirty-eight (86%), 41 (93%), and 38 (86%) patients had baseline, presurgical, and last follow-up samples, respectively. Twenty patients had hormone receptor-positive/human epidermal growth factor receptor 2-negative, 13 had triple-negative breast cancer, and 11 had human epidermal growth factor receptor 2-positive disease. Baseline ctDNA detection was observed in 22/38 (58%) patients and was significantly associated with Ki67 > 20% (P = .036) and MYC copy-number gain (P = .0025, false discovery rate = 0.036). ctDNA detection at presurgery and at last follow-up was observed in 2/41 (5%) and 2/38 (5%) patients, respectively. Eight relapses (seven distant and one local) were noted (median follow-up 3.03 years [range, 0.39-5.85 years]). After adjusting for pathologic complete response (pCR), ctDNA detection at presurgery and at last follow-up was associated with shorter EFS (hazard ratio [HR], 53; 95% CI, 4.5 to 624; P < .01, and HR, 31; 95% CI, 2.7 to 352; P < .01, respectively). Association between baseline detection and EFS was not observed (HR, 1.4; 95% CI, 0.3 to 5.9; P = .67). CONCLUSION The presence of ctDNA after neoadjuvant chemotherapy is associated with relapse in early-stage breast cancer, supporting interventional trials for testing the clinical utility of ctDNA monitoring in this setting.
Collapse
Affiliation(s)
- Frédéric Cailleux
- Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium
| | - Elisa Agostinetto
- Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium.,Humanitas University, Milan, Italy
| | | | - Françoise Rothé
- Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | - Delphine Vincent
- Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium
| | - Giulia Viglietti
- Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium
| | - Andrea Gombos
- Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium
| | | | - Isabelle Veys
- Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium
| | - Ahmad Awada
- Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Denis Larsimont
- Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium
| | - Christos Sotiriou
- Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium
| | - David Venet
- Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium
| | - Michail Ignatiadis
- Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
22
|
Cao L, Ren C, Zhang G, Li X, Chen B, Li K, Li C, Mok H, Wang Y, Wen L, Jia M, Wei G, Lin J, Liao N. Characteristics of MYC Amplification and Their Association with Clinicopathological and Molecular Factors in Patients with Breast Cancer. DNA Cell Biol 2022; 41:521-538. [PMID: 35475703 DOI: 10.1089/dna.2020.6487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MYC amplification is detected in ∼15% of breast tumors and is associated with poor prognosis by mediating acquired resistance to anticancer therapies. This study aimed to determine the prevalence of MYC amplifications in Chinese women with breast cancer (BRCA) and investigate the correlation between MYC amplification and clinicopathological and molecular characteristics and its clinical implications. We analyzed MYC alterations in tissue specimens from 410 women diagnosed with BRCA in our hospital from June 1, 2017 to September 27, 2018. We compared our results with publicly available data from The Cancer Genome Atlas (TCGA) BRCA cohort (n = 1079). MYC amplification was identified in 12.4% (51/410) of our cohort, with mean copy number (CN) of 4.42 (range: 2.84-11.27). In TCGA cohort, MYC amplification was identified in 21.2% (229/1079) and was associated with age, estrogen receptor status, progesterone receptor status, human epidermal growth factor receptor 2 (HER2) status, and molecular subtype, whereas in our cohort, MYC amplification was associated with smaller tumor size (T1-2, p = 0.023) and higher Ki-67 levels (≥20%; p = 0.031). Analysis of molecular profiles revealed that MYC-amplified breast tumors had significantly more concurrent CN variations compared with MYC nonamplified BRCA in both Guangdong Provincial People's Hospital (GDPH) and TCGA cohorts (p < 0.001). Pathway mapping analysis demonstrated that MYC-amplified tumors had more mutations involved in 15 different but interrelated pathways critical in DNA repair, cell cycle, and cell proliferation. Patients in TCGA cohort with MYC-amplified hormone receptor (HR)-positive/HER2-positive BRCA (p = 0.038) and MYC nonamplified triple-negative BRCA (p = 0.027) had significantly shorter overall survival. In conclusion, this study contributes to a better understanding that MYC-amplified breast tumors had distinct clinicopathological and molecular features compared with MYC nonamplified breast tumors. Further research with a larger sample size is necessary to further elucidate the clinical and survival implications of MYC amplifications.
Collapse
Affiliation(s)
- Li Cao
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chongyang Ren
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guochun Zhang
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xuerui Li
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kai Li
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cheukfai Li
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hsiaopei Mok
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yulei Wang
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lingzhu Wen
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Minghan Jia
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guangnan Wei
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiali Lin
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ning Liao
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Gomarasca M, Lombardi G, Maroni P. SUMOylation and NEDDylation in Primary and Metastatic Cancers to Bone. Front Cell Dev Biol 2022; 10:889002. [PMID: 35465332 PMCID: PMC9020829 DOI: 10.3389/fcell.2022.889002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications comprise series of enzymatically-driven chemical modifications, virtually involving the entire cell proteome, that affect the fate of a target protein and, in turn, cell activity. Different classes of modifications can be established ranging from phosphorylation, glycosylation, ubiquitination, acetylation, methylation, lipidation and their inverse reactions. Among these, SUMOylation and NEDDylation are ubiquitin-like multi-enzymatic processes that determine the bound of SUMOs and NEDD8 labels, respectively, on defined amino acidic residues of a specific protein and regulate protein function. As fate-determinants of several effectors and mediators, SUMOylation and NEDDylation play relevant roles in many aspects of tumor cell biology. Bone represents a preferential site of metastasis for solid tumors (e.g., breast and prostate cancers) and the primary site of primitive tumors (e.g., osteosarcoma, chondrosarcoma). Deregulation of SUMOylation and NEDDylation affects different aspects of neoplastic transformation and evolution such as epithelial-mesenchymal transition, adaptation to hypoxia, expression and action of tumor suppressors and oncogenic mediators, and drug resistance. Thereby, they represent potential therapeutic targets. This narrative review aims at describing the involvement and regulation of SUMOylation and NEDDylation in tumor biology, with a specific focus on primary and secondary bone tumors, and to summarize and highlight their potentiality in diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Marta Gomarasca
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Polska
- *Correspondence: Giovanni Lombardi,
| | - Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
24
|
Traversa D, Simonetti G, Tolomeo D, Visci G, Macchia G, Ghetti M, Martinelli G, Kristensen LS, Storlazzi CT. Unravelling similarities and differences in the role of circular and linear PVT1 in cancer and human disease. Br J Cancer 2022; 126:835-850. [PMID: 34754096 PMCID: PMC8927338 DOI: 10.1038/s41416-021-01584-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
The plasmacytoma variant translocation 1 (PVT1) is a long non-coding RNA gene involved in human disease, mainly in cancer onset/progression. Although widely analysed, its biological roles need to be further clarified. Notably, functional studies on PVT1 are complicated by the occurrence of multiple transcript variants, linear and circular, which generate technical issues in the experimental procedures used to evaluate its impact on human disease. Among the many PVT1 transcripts, the linear PVT1 (lncPVT1) and the circular hsa_circ_0001821 (circPVT1) are frequently reported to perform similar pathologic and pro-tumorigenic functions when overexpressed. The stimulation of cell proliferation, invasion and drug resistance, cell metabolism regulation, and apoptosis inhibition is controlled through multiple targets, including MYC, p21, STAT3, vimentin, cadherins, the PI3K/AKT, HK2, BCL2, and CASP3. However, some of this evidence may originate from an incorrect evaluation of these transcripts as two separate molecules, as they share the lncPVT1 exon-2 sequence. We here summarise lncPVT1/circPVT1 functions by mainly focusing on shared pathways, pointing out the potential bias that may exist when the biological role of each transcript is analysed. These considerations may improve the knowledge about lncPVT1/circPVT1 and their specific targets, which deserve further studies due to their diagnostic, prognostic, and therapeutic potential.
Collapse
Affiliation(s)
- Debora Traversa
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Giorgia Simonetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Doron Tolomeo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Visci
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Gemma Macchia
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Martina Ghetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | | | | |
Collapse
|
25
|
Lin PH, Wang MY, Lo C, Tsai LW, Yen TC, Huang TY, Huang WC, Yang K, Chen CK, Fan SC, Kuo SH, Huang CS. Circulating Tumor DNA as a Predictive Marker of Recurrence for Patients With Stage II-III Breast Cancer Treated With Neoadjuvant Therapy. Front Oncol 2021; 11:736769. [PMID: 34868925 PMCID: PMC8632818 DOI: 10.3389/fonc.2021.736769] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Patients with stage II to III breast cancer have a high recurrence rate. The early detection of recurrent breast cancer remains a major unmet need. Circulating tumor DNA (ctDNA) has been proven to be a marker of disease progression in metastatic breast cancer. We aimed to evaluate the prognostic value of ctDNA in the setting of neoadjuvant therapy (NAT). METHODS Plasma was sampled at the initial diagnosis (defined as before NAT) and after breast surgery and neoadjuvant therapy(defined as after NAT). We extracted ctDNA from the plasma and performed deep sequencing of a target gene panel. ctDNA positivity was marked by the detection of alterations, such as mutations and copy number variations. RESULTS A total of 95 patients were enrolled in this study; 60 patients exhibited ctDNA positivity before NAT, and 31 patients exhibited ctDNA positivity after NAT. A pathologic complete response (pCR) was observed in 13 patients, including one ER(+)Her2(-) patient, six Her2(+) patients and six triple-negative breast cancer (TNBC) patients. Among the entire cohort, multivariate analysis showed that N3 classification and ctDNA positivity after NAT were independent risk factors that predicted recurrence (N3, hazard ratio (HR) 3.34, 95% confidence interval (CI) 1.26 - 8.87, p = 0.016; ctDNA, HR 4.29, 95% CI 2.06 - 8.92, p < 0.0001). The presence of ctDNA before NAT did not affect the rate of recurrence-free survival. For patients with Her2(+) or TNBC, patients who did not achieve pCR were associated with a trend of higher recurrence (p = 0.105). Advanced nodal status and ctDNA positivity after NAT were significant risk factors for recurrence (N2 - 3, HR 3.753, 95% CI 1.146 - 12.297, p = 0.029; ctDNA, HR 3.123, 95% CI 1.139 - 8.564, p = 0.027). Two patients who achieved pCR had ctDNA positivity after NAT; one TNBC patient had hepatic metastases six months after surgery, and one Her2(+) breast cancer patient had brain metastasis 13 months after surgery. CONCLUSIONS This study suggested that the presence of ctDNA after NAT is a robust marker for predicting relapse in stage II to III breast cancer patients.
Collapse
Affiliation(s)
- Po-Han Lin
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiao Lo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Wei Tsai
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Chun Yen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Thomas Yoyan Huang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chih Huang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Karen Yang
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Chih-Kai Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Chih Fan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Medical Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Prognostic value of glutaminase 1 in breast cancer depends on H3K27me3 expression and menopausal status. Virchows Arch 2021; 480:259-267. [PMID: 34562173 DOI: 10.1007/s00428-021-03210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Glutaminase 1 (GLS) is a therapeutic target for breast cancer; although GLS inhibitors have been developed, only a few subjects responded well to the therapy. Considering that the expression of histone H3 lysine 27 trimethylation (H3K27me3) and menopausal status was closely linked to GLS, we examined the effects of H3K27me3 and menopausal status on GLS to breast cancer prognosis. Data for 962 women diagnosed with primary invasive breast cancer were analyzed. H3K27me3 and GLS expression in tumors were evaluated with tissue microarrays by immunohistochemistry. Hazard ratios (HRs) and their 95% confidence intervals (CIs) for overall survival and progression-free survival were estimated using Cox regression models. Statistical interaction was assessed on multiplicative scale. There was a beneficial prognostic effect of GLS expression on overall survival for those with low H3K27me3 level (HR = 0.50, 95% CI: 0.20-1.28) but an adverse prognostic effect for those with high H3K27me3 level (HR = 3.90, 95% CI: 1.29-11.78) among premenopausal women, and the statistical interaction was significant (Pinteraction = 0.003). Similar pattern was further observed for progression-free survival (HR = 0.44, 95% CI: 0.20-0.95 for low H3K27me3 level, HR = 1.35, 95% CI: 0.74-2.48 for high H3K27me3 level, Pinteraction = 0.024). The statistical interaction did not occur among postmenopausal women. Our study showed that the prognostic effects of GLS on breast cancer correlated to the expression level of H3K27me3 and menopausal status, which would help optimize the medication strategies of GLS inhibitors.
Collapse
|
27
|
Bardia A, Su F, Solovieff N, Im SA, Sohn J, Lee KS, Campos-Gomez S, Jung KH, Colleoni M, Vázquez RV, Franke F, Hurvitz S, Harbeck N, Chow L, Taran T, Rodriguez Lorenc K, Babbar N, Tripathy D, Lu YS. Genomic Profiling of Premenopausal HR+ and HER2- Metastatic Breast Cancer by Circulating Tumor DNA and Association of Genetic Alterations With Therapeutic Response to Endocrine Therapy and Ribociclib. JCO Precis Oncol 2021; 5:PO.20.00445. [PMID: 34504990 PMCID: PMC8423397 DOI: 10.1200/po.20.00445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/14/2021] [Accepted: 07/28/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE This analysis evaluated the genomic landscape of premenopausal patients with hormone receptor–positive and human epidermal growth factor receptor 2–negative advanced breast cancer and the association of genetic alterations with response to ribociclib in the phase III MONALEESA-7 trial. METHODS Premenopausal patients were randomly assigned 1:1 to receive endocrine therapy plus ribociclib or placebo. Plasma collected at baseline was sequenced using targeted next-generation sequencing for approximately 600 relevant cancer genes. The association of circulating tumor DNA alterations with progression-free survival (PFS) was evaluated to identify biomarkers of response and resistance to ribociclib. RESULTS Baseline circulating tumor DNA was sequenced in 565 patients; 489 had evidence of ≥ 1 alteration. The most frequent alterations included PIK3CA (28%), TP53 (19%), CCND1 (10%), MYC (8%), GATA3 (8%), receptor tyrosine kinases (17%), and the Chr8p11.23 locus (12%). A treatment benefit of ribociclib was seen with wild-type (hazard ratio [HR] 0.45 [95% CI, 0.33 to 0.62]) and altered (HR 0.57 [95% CI, 0.36 to 0.9]) PIK3CA. Overall, patients with altered CCND1 had shorter PFS regardless of treatment, suggesting CCND1 as a potential prognostic biomarker. Benefit with ribociclib was seen in patients with altered (HR 0.21 [95% CI, 0.08 to 0.54]) or wild-type (HR 0.52 [95% CI, 0.39 to 0.68]) CCND1, but greater benefit was observed with altered, suggesting predictive potential of CCND1. Alterations in TP53, MYC, Chr8p11.23 locus, and receptor tyrosine kinases were associated with worse PFS, but ribociclib benefit was independent of alteration status. CONCLUSION In this study—to our knowledge, the first large study of premenopausal patients with hormone receptor–positive and human epidermal growth factor receptor 2–negative advanced breast cancer—multiple genomic alterations were associated with poor outcome. A PFS benefit of ribociclib was observed regardless of gene alteration status, although in this exploratory analysis, a magnitude of benefits varied by alteration.
Collapse
Affiliation(s)
- Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Fei Su
- Novartis Pharmaceuticals Corporation, East Hanover, NJ
| | | | - Seock-Ah Im
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Joohyuk Sohn
- Yonsei Cancer Center, Yonsei University Health System, Seoul, South Korea
| | - Keun Seok Lee
- Center for Breast Cancer, National Cancer Center, Goyang, South Korea
| | - Saul Campos-Gomez
- Centro Oncológico Estatal, Instituto de Seguridad Social del Estado de México y Municipios, Toluca, Mexico
| | - Kyung Hae Jung
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Marco Colleoni
- Division of Medical Senology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Fabio Franke
- Hospital de Caridade de Ijuí, CACON, Ijuí, Brazil
| | - Sara Hurvitz
- University of California, Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | - Nadia Harbeck
- Department of Obstetrics and Gynecology, Breast Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Louis Chow
- Organisation for Oncology and Translational Research, Hong Kong, China
| | - Tetiana Taran
- Novartis Pharmaceuticals Corporation, East Hanover, NJ
| | | | | | - Debu Tripathy
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yen-Shen Lu
- National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
28
|
Peng F, Yang C, Kong Y, Huang X, Chen Y, Zhou Y, Xie X, Liu P. CDK12 Promotes Breast Cancer Progression and Maintains Stemness by Activating c-myc/β -catenin Signaling. Curr Cancer Drug Targets 2021; 20:156-165. [PMID: 31744448 DOI: 10.2174/1568009619666191118113220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND CDK12 is a promising therapeutic target in breast cancer with an effective ability of maintaining cancer cell stemness. OBJECTIVE We aim to investigate the mechanism of CDK12 in maintaining breast cancer stemness. METHODS CDK12 expression level was accessed by using RT-qPCR and IHC. CDK12-altered breast cancer cell lines MDA-MB-231-shCDK12 and SkBr-3-CDK12 were then established. CCK8, colony formation assays, and xenograft model were used to value the effect of CDK12 on tumorigenicity. Transwell assay, mammosphere formation, FACS, and lung metastasis model in vivo were determined. Western blot further characterized the mechanism of CDK12 in breast cancer stemness through the c-myc/β-catenin pathway. RESULTS Our results showed a higher level of CDK12 exhibited in breast cancer samples. Tumor formation, cancer cell mobility, spheroid forming, and the epithelial-mesenchymal transition will be enhanced in the CDK12high group. In addition, CDK12 was associated with lung metastasis and maintained breast cancer cell stemness. CDK12high cancer cells presented higher tumorigenicity and a population of CD44+ subset compared with CDK12low cells. Our study demonstrated c-myc positively expressed with CDK12. The c-myc/β-catenin signaling was activated by CDK12, which is a potential mechanism to initiate breast cancer stem cell renewal and may serve as a potential biomarker of breast cancer prognosis. CONCLUSION CDK12 overexpression promotes breast cancer tumorigenesis and maintains the stemness of breast cancer by activating c-myc/β-catenin signaling. Inhibiting CDK12 expression may become a potential therapy for breast cancer.
Collapse
Affiliation(s)
- Fang Peng
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, Guangdong, China
| | - Yanan Kong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiaojia Huang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Yanyu Chen
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Yangfan Zhou
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Peng Liu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Ghozlan H, Showalter A, Lee E, Zhu X, Khaled AR. Chaperonin-Containing TCP1 Complex (CCT) Promotes Breast Cancer Growth Through Correlations With Key Cell Cycle Regulators. Front Oncol 2021; 11:663877. [PMID: 33996588 PMCID: PMC8121004 DOI: 10.3389/fonc.2021.663877] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Uncontrolled proliferation as a result of dysregulated cell cycling is one of the hallmarks of cancer. Therapeutically targeting pathways that control the cell cycle would improve patient outcomes. However, the development of drug resistance and a limited number of inhibitors that target multiple cell cycle modulators are challenges that impede stopping the deregulated growth that leads to malignancy. To advance the discovery of new druggable targets for cell cycle inhibition, we investigated the role of Chaperonin-Containing TCP1 (CCT or TRiC) in breast cancer cells. CCT, a type II chaperonin, is a multi-subunit protein-folding complex that interacts with many oncoproteins and mutant tumor suppressors. CCT subunits are highly expressed in a number of cancers, including breast cancer. We found that expression of one of the CCT subunits, CCT2, inversely correlates with breast cancer patient survival and is subject to copy number alterations through genomic amplification. To investigate a role for CCT2 in the regulation of the cell cycle, we expressed an exogenous CCT2-FLAG construct in T47D and MCF7 luminal A breast cancer cells and examined cell proliferation under conditions of two-dimensional (2D) monolayer and three-dimensional (3D) spheroid cultures. Exogenous CCT2 increased the proliferation of cancer cells, resulting in larger and multiple spheroids as compared to control cells. CCT2-expressing cells were also able to undergo spheroid growth reversal, re-attaching, and resuming growth in 2D cultures. Such cells gained anchorage-independent growth. CCT2 expression in cells correlated with increased expression of MYC, especially in spheroid cultures, and other cell cycle regulators like CCND1 and CDK2, indicative of a novel activity that could contribute to the increase in cell growth. Statistically significant correlations between CCT2, MYC, and CCND1 were shown. Since CCT2 is located on chromosome 12q15, an amplicon frequently found in soft tissue cancers as well as breast cancer, CCT2 may have the basic characteristics of an oncogene. Our findings suggest that CCT2 could be an essential driver of cell division that may be a node through which pathways involving MYC, cyclin D1 and other proliferative factors could converge. Hence the therapeutic inhibition of CCT2 may have the potential to achieve multi-target inhibition, overcoming the limitations associated with single agent inhibitors.
Collapse
Affiliation(s)
- Heba Ghozlan
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Adrian Showalter
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Eunkyung Lee
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, Orlando, FL, United States
| | - Xiang Zhu
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Annette R Khaled
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
30
|
Tordonato C, Marzi MJ, Giangreco G, Freddi S, Bonetti P, Tosoni D, Di Fiore PP, Nicassio F. miR-146 connects stem cell identity with metabolism and pharmacological resistance in breast cancer. J Cell Biol 2021; 220:211945. [PMID: 33819341 PMCID: PMC8025236 DOI: 10.1083/jcb.202009053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Although ectopic overexpression of miRNAs can influence mammary normal and cancer stem cells (SCs/CSCs), their physiological relevance remains uncertain. Here, we show that miR-146 is relevant for SC/CSC activity. MiR-146a/b expression is high in SCs/CSCs from human/mouse primary mammary tissues, correlates with the basal-like breast cancer subtype, which typically has a high CSC content, and specifically distinguishes cells with SC/CSC identity. Loss of miR-146 reduces SC/CSC self-renewal in vitro and compromises patient-derived xenograft tumor growth in vivo, decreasing the number of tumor-initiating cells, thus supporting its pro-oncogenic function. Transcriptional analysis in mammary SC-like cells revealed that miR-146 has pleiotropic effects, reducing adaptive response mechanisms and activating the exit from quiescent state, through a complex network of finely regulated miRNA targets related to quiescence, transcription, and one-carbon pool metabolism. Consistent with these findings, SCs/CSCs display innate resistance to anti-folate chemotherapies either in vitro or in vivo that can be reversed by miR-146 depletion, unmasking a “hidden vulnerability” exploitable for the development of anti-CSC therapies.
Collapse
Affiliation(s)
- Chiara Tordonato
- European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università Degli Studi di Milano, Milano, Italy
| | - Matteo Jacopo Marzi
- Center for Genomic Science of Istituto Italiano di Tecnologia at European School of Molecular Medicine, Istituto Italiano di Tecnologia, Milan, Italy
| | - Giovanni Giangreco
- European Institute of Oncology IRCCS, Milan, Italy.,Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | | | - Paola Bonetti
- Center for Genomic Science of Istituto Italiano di Tecnologia at European School of Molecular Medicine, Istituto Italiano di Tecnologia, Milan, Italy
| | | | - Pier Paolo Di Fiore
- European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università Degli Studi di Milano, Milano, Italy
| | - Francesco Nicassio
- Center for Genomic Science of Istituto Italiano di Tecnologia at European School of Molecular Medicine, Istituto Italiano di Tecnologia, Milan, Italy
| |
Collapse
|
31
|
O’Leary B, Cutts RJ, Huang X, Hrebien S, Liu Y, André F, Loibl S, Loi S, Garcia-Murillas I, Cristofanilli M, Bartlett CH, Turner NC. Circulating Tumor DNA Markers for Early Progression on Fulvestrant With or Without Palbociclib in ER+ Advanced Breast Cancer. J Natl Cancer Inst 2021; 113:309-317. [PMID: 32940689 PMCID: PMC7936069 DOI: 10.1093/jnci/djaa087] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND There are no established molecular biomarkers for patients with breast cancer receiving combination endocrine and CDK4/6 inhibitor (CDK4/6i). We aimed to determine whether genomic markers in circulating tumor DNA (ctDNA) can identify patients at higher risk of early progression on fulvestrant therapy with or without palbociclib, a CDK4/6i. METHODS PALOMA-3 was a phase III, multicenter, double-blind randomized controlled trial of palbociclib plus fulvestrant (n = 347) vs placebo plus fulvestrant (n = 174) in patients with endocrine-pretreated estrogen receptor-positive (ER+) breast cancer. Pretreatment plasma samples from 459 patients were analyzed for mutations in 17 genes, copy number in 14 genes, and circulating tumor fraction. Progression-free survival (PFS) was compared in patients with circulating tumor fraction above or below a prespecified cutoff of 10% and with or without a specific genomic alteration. All statistical tests were 2-sided. RESULTS Patients with high ctDNA fraction had worse PFS on both palbociclib plus fulvestrant (hazard ratio [HR] = 1.62, 95% confidence interval [CI] = 1.17 to 2.24; P = .004) and placebo plus fulvestrant (HR = 1.77, 95% CI = 1.21 to 2.59; P = .004). In multivariable analysis, high-circulating tumor fraction was associated with worse PFS (HR = 1.20 per 10% increase in tumor fraction, 95% CI = 1.09 to 1.32; P < .001), as was TP53 mutation (HR = 1.84, 95% CI = 1.27 to 2.65; P = .001) and FGFR1 amplification (HR = 2.91, 95% CI = 1.61 to 5.25; P < .001). No interaction with treatment randomization was observed. CONCLUSIONS Pretreatment ctDNA identified a group of high-risk patients with poor clinical outcome despite the addition of CDK4/6 inhibition. These patients might benefit from inclusion in future trials of escalating treatment, with therapies that may be active in these genomic contexts.
Collapse
Affiliation(s)
- Ben O’Leary
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Breast Unit, Royal Marsden Hospital, London, UK
| | - Rosalind J Cutts
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Sarah Hrebien
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Fabrice André
- Department of Medical Oncology, Institut Gustave Roussy, Université Paris Sud, Villejuif, France
| | - Sibylle Loibl
- German Breast Group, Martin Behaim-Strasse 12, Neu-Isenburg, Germany
| | - Sherene Loi
- Division of Research and Cancer Medicine, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Australia
| | - Isaac Garcia-Murillas
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Massimo Cristofanilli
- Robert H Lurie Comprehensive Cancer Centre, Feinberg School of Medicine, Chicago, IL, USA
| | | | - Nicholas C Turner
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Breast Unit, Royal Marsden Hospital, London, UK
| |
Collapse
|
32
|
Campillo-Marcos I, García-González R, Navarro-Carrasco E, Lazo PA. The human VRK1 chromatin kinase in cancer biology. Cancer Lett 2021; 503:117-128. [PMID: 33516791 DOI: 10.1016/j.canlet.2020.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023]
Abstract
VRK1 is a nuclear Ser-Thr chromatin kinase that does not mutate in cancer, and is overexpressed in many types of tumors and associated with a poor prognosis. Chromatin VRK1 phosphorylates several transcription factors, including p53, histones and proteins implicated in DNA damage response pathways. In the context of cell proliferation, VRK1 regulates entry in cell cycle, chromatin condensation in G2/M, Golgi fragmentation, Cajal body dynamics and nuclear envelope assembly in mitosis. This kinase also controls the initial chromatin relaxation associated with histone acetylation, and the non-homologous-end joining (NHEJ) DNA repair pathway, which involves sequential steps such as γH2AX, NBS1 and 53BP1 foci formation, all phosphorylated by VRK1, in response to ionizing radiation or chemotherapy. In addition, VRK1 can be an alternative target for therapies based on synthetic lethality strategies. Therefore, VRK1 roles on proliferation have a pro-tumorigenic effect. Functions regulating chromatin stability and DNA damage responses have a protective anti-tumor role in normal cells, but in tumor cells can also facilitate resistance to genotoxic treatments.
Collapse
Affiliation(s)
- Ignacio Campillo-Marcos
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular Del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| | - Raúl García-González
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular Del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| | - Elena Navarro-Carrasco
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular Del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular Del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
33
|
Bowling EA, Wang JH, Gong F, Wu W, Neill NJ, Kim IS, Tyagi S, Orellana M, Kurley SJ, Dominguez-Vidaña R, Chung HC, Hsu TYT, Dubrulle J, Saltzman AB, Li H, Meena JK, Canlas GM, Chamakuri S, Singh S, Simon LM, Olson CM, Dobrolecki LE, Lewis MT, Zhang B, Golding I, Rosen JM, Young DW, Malovannaya A, Stossi F, Miles G, Ellis MJ, Yu L, Buonamici S, Lin CY, Karlin KL, Zhang XHF, Westbrook TF. Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer. Cell 2021; 184:384-403.e21. [PMID: 33450205 PMCID: PMC8635244 DOI: 10.1016/j.cell.2020.12.031] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/29/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.
Collapse
Affiliation(s)
- Elizabeth A Bowling
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jarey H Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fade Gong
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - William Wu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas J Neill
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ik Sun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Siddhartha Tyagi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mayra Orellana
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah J Kurley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rocio Dominguez-Vidaña
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hsiang-Ching Chung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tiffany Y-T Hsu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julien Dubrulle
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander B Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Heyuan Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jitendra K Meena
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gino M Canlas
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Srinivas Chamakuri
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Swarnima Singh
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Calla M Olson
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ido Golding
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Damian W Young
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - George Miles
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lihua Yu
- H3Biomedicine, Cambridge, MA 02139, USA
| | | | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristen L Karlin
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas F Westbrook
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Liu Y, Zhu C, Tang L, Chen Q, Guan N, Xu K, Guan X. MYC dysfunction modulates stemness and tumorigenesis in breast cancer. Int J Biol Sci 2021; 17:178-187. [PMID: 33390842 PMCID: PMC7757029 DOI: 10.7150/ijbs.51458] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/12/2020] [Indexed: 12/28/2022] Open
Abstract
As a transcription factor and proto-oncogene, MYC is known to be deregulated in a variety of tumors, including breast cancer. However, no consistent conclusion on the role and mechanism of MYC deregulation during breast cancer carcinogenesis has been formed. Here, we used the UALCAN, bc-GenExMiner, TCGA, cBioportal, STRING and Kaplan-Meier Plotter databases to explore the mRNA expression, prognosis, transcriptional profile changes, signal pathway rewiring and interaction with the cancer stem cells of MYC in breast cancer. We found that the expression of MYC varies in different subtypes of breast cancer, with relatively high frequency in TNBC. As a transcription factor, MYC not only participates in the rewiring of cancer signaling pathways, such as estrogen, WNT, NOTCH and other pathways, but also interacts with cancer stem cells. MYC is significantly positively correlated with breast cancer stem cell markers such as CD44, CD24, and ALDH1. Collectively, our results highlight that MYC plays an important regulatory role in the occurrence of breast cancer, and its amplification can be used as a predictor of diagnosis and prognosis. The interaction between MYC and cancer stem cells may play a crucial role in regulating the initiation and metastasis of breast cancer.
Collapse
Affiliation(s)
- Yiqiu Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Lin Tang
- Department of Medical Oncology, Medical School of Nanjing University, Nanjing, 210002, China
| | - Qin Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Nan Guan
- College of Letters and Science, University of California, Los Angeles, 405 Hilgard Avenue, California, 90095, USA
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
35
|
Garrido-Castro AC, Spurr LF, Hughes ME, Li YY, Cherniack AD, Kumari P, Lloyd MR, Bychkovsky B, Barroso-Sousa R, Di Lascio S, Jain E, Files J, Mohammed-Abreu A, Krevalin M, MacKichan C, Barry WT, Guo H, Xia D, Cerami E, Rollins BJ, MacConaill LE, Lindeman NI, Krop IE, Johnson BE, Wagle N, Winer EP, Dillon DA, Lin NU. Genomic Characterization of de novo Metastatic Breast Cancer. Clin Cancer Res 2020; 27:1105-1118. [PMID: 33293374 DOI: 10.1158/1078-0432.ccr-20-1720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/05/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE In contrast to recurrence after initial diagnosis of stage I-III breast cancer [recurrent metastatic breast cancer (rMBC)], de novo metastatic breast cancer (dnMBC) represents a unique setting to elucidate metastatic drivers in the absence of treatment selection. We present the genomic landscape of dnMBC and association with overall survival (OS). EXPERIMENTAL DESIGN Targeted DNA sequencing (OncoPanel) was prospectively performed on either primary or metastatic tumors from 926 patients (212 dnMBC and 714 rMBC). Single-nucleotide variants, copy-number variations, and tumor mutational burden (TMB) in treatment-naïve dnMBC primary tumors were compared with primary tumors in patients who ultimately developed rMBC, and correlated with OS across all dnMBC. RESULTS When comparing primary tumors by subtype, MYB amplification was enriched in triple-negative dnMBC versus rMBC (21.1% vs. 0%, P = 0.0005, q = 0.111). Mutations in KMTD2, SETD2, and PIK3CA were more prevalent, and TP53 and BRCA1 less prevalent, in primary HR+/HER2- tumors of dnMBC versus rMBC, though not significant after multiple comparison adjustment. Alterations associated with shorter OS in dnMBC included TP53 (wild-type: 79.7 months; altered: 44.2 months; P = 0.008, q = 0.107), MYC (79.7 vs. 23.3 months; P = 0.0003, q = 0.011), and cell-cycle (122.7 vs. 54.9 months; P = 0.034, q = 0.245) pathway genes. High TMB correlated with better OS in triple-negative dnMBC (P = 0.041). CONCLUSIONS Genomic differences between treatment-naïve dnMBC and primary tumors of patients who developed rMBC may provide insight into mechanisms underlying metastatic potential and differential therapeutic sensitivity in dnMBC. Alterations associated with poor OS in dnMBC highlight the need for novel approaches to overcome potential intrinsic resistance to current treatments.
Collapse
Affiliation(s)
- Ana C Garrido-Castro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Harvard Medical School, Boston, Massachusetts
| | - Liam F Spurr
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Melissa E Hughes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yvonne Y Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Priti Kumari
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Maxwell R Lloyd
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Brittany Bychkovsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | - Simona Di Lascio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Esha Jain
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Janet Files
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Max Krevalin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Colin MacKichan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - William T Barry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Hao Guo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Daniel Xia
- Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women' Hospital, Boston, Massachusetts
| | - Ethan Cerami
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Barrett J Rollins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Laura E MacConaill
- Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women' Hospital, Boston, Massachusetts.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Neal I Lindeman
- Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women' Hospital, Boston, Massachusetts.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ian E Krop
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Bruce E Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Nikhil Wagle
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Eric P Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Deborah A Dillon
- Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women' Hospital, Boston, Massachusetts
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Ogrodzinski MP, Teoh ST, Lunt SY. Metabolomic profiling of mouse mammary tumor-derived cell lines reveals targeted therapy options for cancer subtypes. Cell Oncol (Dordr) 2020; 43:1117-1127. [PMID: 32691367 DOI: 10.1007/s13402-020-00545-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Breast cancer is a heterogeneous disease with several subtypes that currently do not have targeted therapeutic options. Metabolomics has the potential to uncover novel targeted treatment strategies by identifying metabolic pathways required for cancer cells to survive and proliferate. METHODS The metabolic profiles of two histologically distinct breast cancer subtypes from a MMTV-Myc mouse model, epithelial-mesenchymal-transition (EMT) and papillary, were investigated using mass spectrometry-based metabolomics methods. Based on metabolic profiles, drugs most likely to be effective against each subtype were selected and tested. RESULTS We found that the EMT and papillary subtypes display different metabolic preferences. Compared to the papillary subtype, the EMT subtype exhibited increased glutathione and TCA cycle metabolism, while the papillary subtype exhibited increased nucleotide biosynthesis compared to the EMT subtype. Targeting these distinct metabolic pathways effectively inhibited cancer cell proliferation in a subtype-specific manner. CONCLUSIONS Our results demonstrate the feasibility of metabolic profiling to develop novel personalized therapy strategies for different subtypes of breast cancer. Schematic overview of the experimental design for drug selection based on breast cancer subtype-specific metabolism. The epithelial mesenchymal transition (EMT) and papillary tumors are histologically distinct mouse mammary tumor subtypes from the MMTV-Myc mouse model. Cell lines derived from tumors can be used to determine metabolic pathways that can be used to select drug candidates for each subtype.
Collapse
Affiliation(s)
- Martin P Ogrodzinski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA. .,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
37
|
Cabarcas-Petroski S, Meneses PI, Schramm L. A meta-analysis of BRF2 as a prognostic biomarker in invasive breast carcinoma. BMC Cancer 2020; 20:1093. [PMID: 33176745 PMCID: PMC7659115 DOI: 10.1186/s12885-020-07569-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Deregulation of the RNA polymerase III specific TFIIIB subunit BRF2 occurs in subtypes of human cancers. However, correlations between BRF2 alterations and clinical outcomes in breast cancer are limited. We conducted this review to analyze BRF2 alterations in genomic data sets housed in Oncomine and cBioPortal to identify potential correlations between BRF2 alterations and clinical outcomes. METHODS The authors queried both Oncomine and cBioPortal for alterations in BRF2 in human cancers and performed meta-analyses identifying significant correlations between BRF2 and clinical outcomes in invasive breast cancer (IBC). RESULTS A meta cancer outlier profile analysis (COPA) of 715 data sets (86,733 samples) in Oncomine identified BRF2 as overexpressed in 60% of breast cancer data sets. COPA scores in IBC data sets (3594 patients) are comparable for HER2 (24.211, median gene rank 60) and BRF2 (29.656, median gene rank 36.5). Overall survival in IBC patients with BRF2 alterations (21%) is significantly decreased (p = 9.332e-3). IBC patients with BRF2 alterations aged 46 to 50 have a significantly poor survival outcome (p = 7.093e-3). Strikingly, in metastatic breast cancer, BRF2 is altered in 33% of women aged 45-50. BRF2 deletions are predominant in this age group. CONCLUSION This study suggests BRF2 may be an prognostic biomarker in invasive breast carcinoma.
Collapse
Affiliation(s)
| | | | - Laura Schramm
- Department of Biological Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
38
|
Utz B, Turpin R, Lampe J, Pouwels J, Klefström J. Assessment of the WAP-Myc mouse mammary tumor model for spontaneous metastasis. Sci Rep 2020; 10:18733. [PMID: 33127915 PMCID: PMC7599250 DOI: 10.1038/s41598-020-75411-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common form of cancer in women. Despite significant therapeutic advances in recent years, breast cancer also still causes the greatest number of cancer-related deaths in women, the vast majority of which (> 90%) are caused by metastases. However, very few mouse mammary cancer models exist that faithfully recapitulate the multistep metastatic process in human patients. Here we assessed the suitability of a syngrafting protocol for a Myc-driven mammary tumor model (WAP-Myc) to study autochthonous metastasis. A moderate but robust spontaneous lung metastasis rate of around 25% was attained. In addition, increased T cell infiltration was observed in metastatic tumors compared to donor and syngrafted primary tumors. Thus, the WAP-Myc syngrafting protocol is a suitable tool to study the mechanisms of metastasis in MYC-driven breast cancer.
Collapse
Affiliation(s)
- Begüm Utz
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rita Turpin
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Lampe
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jeroen Pouwels
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Juha Klefström
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
39
|
Ogrodzinski MP, Teoh ST, Lunt SY. Targeting Subtype-Specific Metabolic Preferences in Nucleotide Biosynthesis Inhibits Tumor Growth in a Breast Cancer Model. Cancer Res 2020; 81:303-314. [PMID: 33115804 DOI: 10.1158/0008-5472.can-20-1666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/16/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
Investigating metabolic rewiring in cancer can lead to the discovery of new treatment strategies for breast cancer subtypes that currently lack targeted therapies. In this study, we used MMTV-Myc-driven tumors to model breast cancer heterogeneity, investigating the metabolic differences between two histologic subtypes, the epithelial-mesenchymal transition (EMT) and the papillary subtypes. A combination of genomic and metabolomic techniques identified differences in nucleotide metabolism between EMT and papillary subtypes. EMT tumors preferentially used the nucleotide salvage pathway, whereas papillary tumors preferred de novo nucleotide biosynthesis. CRISPR/Cas9 gene editing and mass spectrometry-based methods revealed that targeting the preferred pathway in each subtype resulted in greater metabolic impact than targeting the nonpreferred pathway. Knocking out the preferred nucleotide pathway in each subtype has a deleterious effect on in vivo tumor growth, whereas knocking out the nonpreferred pathway has a lesser effect or may even result in increased tumor growth. Collectively, these data suggest that significant differences in metabolic pathway utilization distinguish EMT and papillary subtypes of breast cancer and identify said pathways as a means to enhance subtype-specific diagnoses and treatment strategies. SIGNIFICANCE: These findings uncover differences in nucleotide salvage and de novo biosynthesis using a histologically heterogeneous breast cancer model, highlighting metabolic vulnerabilities in these pathways as promising targets for breast cancer subtypes.
Collapse
Affiliation(s)
- Martin P Ogrodzinski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan.,Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan. .,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| |
Collapse
|
40
|
Guerini-Rocco E, Gray KP, Fumagalli C, Reforgiato MR, Leone I, Rafaniello Raviele P, Munzone E, Kammler R, Neven P, Hitre E, Jerusalem G, Simoncini E, Gombos A, Deleu I, Karlsson P, Aebi S, Chirgwin J, Di Lauro V, Thompson A, Graas MP, Barber M, Fontaine C, Loibl S, Gavilá J, Kuroi K, Müller B, O'Reilly S, Di Leo A, Goldhirsch A, Viale G, Barberis M, Regan MM, Colleoni M. Genomic Aberrations and Late Recurrence in Postmenopausal Women with Hormone Receptor-positive Early Breast Cancer: Results from the SOLE Trial. Clin Cancer Res 2020; 27:504-512. [PMID: 33082214 DOI: 10.1158/1078-0432.ccr-20-0126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/10/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Women with hormone receptor-positive early breast cancers have a persistent risk of relapse and biomarkers for late recurrence are needed. We sought to identify tumor genomic aberrations associated with increased late-recurrence risk. EXPERIMENTAL DESIGN In a secondary analysis of Study of Letrozole Extension trial, a case-cohort-like sampling selected 598 primary breast cancers for targeted next-generation sequencing analysis of gene mutations and copy-number gains (CNGs). Correlations of genomic aberrations with clinicopathologic factors and breast and distant recurrence-free intervals (BCFIs and DRFIs) were analyzed using weighted Cox models. RESULTS Analysis of mutations and CNGs was successfully performed for 403 and 350 samples, including 148 and 134 patients with breast cancer recurrences (median follow-up time, 5.2 years), respectively. The most frequent alterations were PIK3CA mutations (42%) and CNGs of CCND1 (15%), ERBB2 (10%), FGFR1 (8%), and MYC (8%). PIK3CA mutations and MYC CNGs were associated with lower (P = 0.03) and higher (P = 0.004) tumor grade, respectively; a higher Ki-67 was seen in tumor with CCND1, ERBB2, and MYC CNGs (P = 0.01, P < 0.001, and P = 0.03, respectively). FGFR1 CNG was associated with an increased risk of late events in univariate analyses [17/29 patients; BCFI: HR, 3.2; 95% confidence interval (CI), 1.48-6.92; P = 0.003 and DRFI: HR, 3.5; 95% CI, 1.61-7.75; P = 0.002) and in multivariable models adjusted for clinicopathologic factors. CONCLUSIONS Postmenopausal women with hormone receptor-positive early breast cancer harboring FGFR1 CNG had an increased risk of late recurrence despite extended therapy. FGFR1 CNG may represent a useful prognostic biomarker for late recurrence and a therapeutic target.
Collapse
Affiliation(s)
- Elena Guerini-Rocco
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan and University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy.
| | - Kathryn P Gray
- International Breast Cancer Study Group Statistical Center, Frontier Science Foundation, and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Caterina Fumagalli
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marta Rita Reforgiato
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Isabella Leone
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Rafaniello Raviele
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Elisabetta Munzone
- Division of Medical Senology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Patrick Neven
- Multidisciplinary Breast Center, University Hospitals, KU Leuven, Leuven, Belgium
| | - Erika Hitre
- National Institute of Oncology, Budapest, Hungary
| | | | | | | | | | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy/Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Aebi
- Lucerne Cantonal Hospital and University of Bern, Bern, Switzerland
| | - Jacquie Chirgwin
- Box Hill and Maroondah Hospitals, Monash University, Melbourne, Victoria, Australia
| | | | - Alastair Thompson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | - Joaquín Gavilá
- Fundación Instituto Valenciano de Oncologia, Valencia, Spain
| | - Katsumasa Kuroi
- Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo City, Tokyo, Japan
| | - Bettina Müller
- Chilean Cooperative Group for Oncologic Research (GOCCHI), Santiago, Chile
| | | | | | - Aron Goldhirsch
- International Breast Cancer Study Group, Bern, Switzerland and MultiMedica, Milan, Italy
| | - Giuseppe Viale
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, International Breast Cancer Study Group Central Pathology Office and University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Massimo Barberis
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Meredith M Regan
- International Breast Cancer Study Group Statistical Center, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts
| | - Marco Colleoni
- Division of Medical Senology, European Institute of Oncology, and the International Breast Cancer Study Group, Milan, Italy
| |
Collapse
|
41
|
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2020; 15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
42
|
Zhao CC, Zhan MN, Liu WT, Jiao Y, Zhang YY, Lei Y, Zhang TT, Zhang CJ, Du YY, Gu KS, Wei W. Combined LIM kinase 1 and p21-Activated kinase 4 inhibitor treatment exhibits potent preclinical antitumor efficacy in breast cancer. Cancer Lett 2020; 493:120-127. [PMID: 32829006 DOI: 10.1016/j.canlet.2020.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022]
Abstract
LIM kinase 1 (LIMK1) and p21-activated kinase 4 (PAK4) are often over-expressed in breast tumors, which causes aggressive cancer phenotypes and unfavorable clinical outcomes. In addition to the well-defined role in regulating cell division, proliferation and invasion, the two kinases promote activation of the MAPK pathway and cause endocrine resistance through phosphorylating estrogen receptor alpha (ERα). PAK4 specifically phosphorylates LIMK1 and its functional partners, indicating possible value of suppressing both kinases in cancers that over-express PAK4 and/or LIMK1. Here, for the first time, we assessed the impact of combining LIMK1 inhibitor LIMKi 3 and PAK4 inhibitor PF-3758309 in preclinical breast cancer models. LIMK1 and PAK4 pharmacological inhibition synergistically reduced the survival of various cancer cell lines, exhibiting specific efficacy in luminal and HER2-enriched models, and suppressed development and ERα-driven signals in a BT474 xenograft model. In silico analysis demonstrated the cell lines with reliance on LIMK1 were the most prone to be susceptible to PAK4 inhibition. Double LIMK1 and PAK4 targeting therapy can be a successful therapeutic strategy for breast cancer, with a unique efficiency in the subtypes of luminal and HER2-enriched tumors.
Collapse
Affiliation(s)
- Chen-Chen Zhao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Meng-Na Zhan
- Department of Pathology, Zhong-Shan Hospital Affiliated to Fudan University, Shanghai, 200023, China
| | - Wan-Ting Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yang Jiao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yi-Yin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yu Lei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Teng-Teng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Cong-Jun Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Ying-Ying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Kang-Sheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Wei Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
43
|
Parker TM, Henriques V, Beltran A, Nakshatri H, Gogna R. Cell competition and tumor heterogeneity. Semin Cancer Biol 2020; 63:1-10. [DOI: 10.1016/j.semcancer.2019.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022]
|
44
|
Xia Y, Zhang X. The Spectrum of MYC Alterations in Diffuse Large B-Cell Lymphoma. Acta Haematol 2020; 143:520-528. [PMID: 32074595 DOI: 10.1159/000505892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022]
Abstract
MYC, as a powerful transcription factor, plays a vital role in various cancers. The clinical significance of MYC alterations in diffuse large B-cell lymphoma (DLBCL) has been investigated for a long time. In this study, we comprehensively summarize the different alterations of MYC in DLBCL, including MYC overexpression, MYC translocations, MYC mutations, and increased gene copy number of MYC. Noteworthy, lone MYC overexpression or MYC translocation is not significantly associated with poor clinical outcomes, and their detrimental effects depend on the genetic alterations of BCL2 or BCL6. Both double-expressor DLBCL (DE-DLBCL), defined as overexpression of MYC and BCL2 proteins, and double-hit lymphoma (DHL), defined as a dual translocation of MYC together with BCL2 or BCL6, represent the distinct subgroups of DLBCL with inferior clinical outcomes. The mechanism may be that MYC activation induces cell proliferation, without the threat of the apoptotic brake in the presence of BCL2 overexpression. In addition, most of MYC mutations are present with favorable prognosis, and the nonsignificant effect of MYC copy number amplification has been observed. It has been proved that cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab show limited effects for DHL or DE-DLBCL, and the rituximab plus dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin seem to be efficacious for DHL. The novel therapy is urgently needed for clinical improvement in DHL and DE-DLBCL.
Collapse
Affiliation(s)
- Yang Xia
- Department of Oncology, First People's Hospital of Lanzhou City, Lanzhou, China,
| | - Xinlian Zhang
- Department of Oncology, First People's Hospital of Lanzhou City, Lanzhou, China
| |
Collapse
|
45
|
Casciano JC, Perry C, Cohen-Nowak AJ, Miller KD, Vande Voorde J, Zhang Q, Chalmers S, Sandison ME, Liu Q, Hedley A, McBryan T, Tang HY, Gorman N, Beer T, Speicher DW, Adams PD, Liu X, Schlegel R, McCarron JG, Wakelam MJO, Gottlieb E, Kossenkov AV, Schug ZT. MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer. Br J Cancer 2020; 122:868-884. [PMID: 31942031 PMCID: PMC7078291 DOI: 10.1038/s41416-019-0711-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/22/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Background Recent studies have suggested that fatty acid oxidation (FAO) is a key metabolic pathway for the growth of triple negative breast cancers (TNBCs), particularly those that have high expression of MYC. However, the underlying mechanism by which MYC promotes FAO remains poorly understood. Methods We used a combination of metabolomics, transcriptomics, bioinformatics, and microscopy to elucidate a potential mechanism by which MYC regulates FAO in TNBC. Results We propose that MYC induces a multigenic program that involves changes in intracellular calcium signalling and fatty acid metabolism. We determined key roles for fatty acid transporters (CD36), lipases (LPL), and kinases (PDGFRB, CAMKK2, and AMPK) that each contribute to promoting FAO in human mammary epithelial cells that express oncogenic levels of MYC. Bioinformatic analysis further showed that this multigenic program is highly expressed and predicts poor survival in the claudin-low molecular subtype of TNBC, but not other subtypes of TNBCs, suggesting that efforts to target FAO in the clinic may best serve claudin-low TNBC patients. Conclusion We identified critical pieces of the FAO machinery that have the potential to be targeted for improved treatment of patients with TNBC, especially the claudin-low molecular subtype.
Collapse
Affiliation(s)
- Jessica C Casciano
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Caroline Perry
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam J Cohen-Nowak
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Katelyn D Miller
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Johan Vande Voorde
- The Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Qifeng Zhang
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Mairi E Sandison
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK.,Department of Biomedical Engineering, University of Strathclyde, Wolfson Centre, 106 Rottenrow, Glasgow, G4 0NW, UK
| | - Qin Liu
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Ann Hedley
- The Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Tony McBryan
- The Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Hsin-Yao Tang
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Nicole Gorman
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Thomas Beer
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - David W Speicher
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Xuefeng Liu
- Center for Cell Reprogramming, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3900 Reservoir Road, Washington D.C., 20057, USA
| | - Richard Schlegel
- Center for Cell Reprogramming, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3900 Reservoir Road, Washington D.C., 20057, USA
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | | | - Eyal Gottlieb
- The Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron St. Bat Galim, 3525433, Haifa, Israel
| | - Andrew V Kossenkov
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Zachary T Schug
- The Wistar Institute, Molecular and Cellular Oncogenesis, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
46
|
Itou J, Takahashi R, Sasanuma H, Tsuda M, Morimoto S, Matsumoto Y, Ishii T, Sato F, Takeda S, Toi M. Estrogen Induces Mammary Ductal Dysplasia via the Upregulation of Myc Expression in a DNA-Repair-Deficient Condition. iScience 2020; 23:100821. [PMID: 31978754 PMCID: PMC6976935 DOI: 10.1016/j.isci.2020.100821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/13/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Mammary ductal dysplasia is a phenotype observed in precancerous lesions and early-stage breast cancer. However, the mechanism of dysplasia formation remains elusive. Here we show, by establishing a novel dysplasia model system, that estrogen, a female hormone, has the potential to cause mammary ductal dysplasia. We injected estradiol (E2), the most active form of estrogen, daily into scid mice with a defect in non-homologous end joining repair and observed dysplasia formation with cell proliferation at day 30. The protooncogene Myc is a downstream target of estrogen signaling, and we found that its expression is augmented in mammary epithelial cells in this dysplasia model. Treatment with a Myc inhibitor reduced E2-induced dysplasia formation. Moreover, we found that isoflavones inhibited E2-induced dysplasia formation. Our dysplasia model system provides insights into the mechanistic understanding of breast tumorigenesis and the development of breast cancer prevention. Excess amount of estrogen administration in scid mice induces mammary ductal dysplasia E2-induced Myc expression is one of the causes of dysplasia formation Progesterone and isoflavones have a potential to prevent E2-induced dysplasia
Collapse
Affiliation(s)
- Junji Itou
- Laboratory of Molecular Life Science, Institute for Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Rei Takahashi
- Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, 97-1 Kodo, Kyotanabe 610-0395, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto 606-8501, Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto 606-8501, Japan; Program of Mathematical and Life Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Suguru Morimoto
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto 606-8501, Japan
| | - Yoshiaki Matsumoto
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoko Ishii
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Fumiaki Sato
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Breast Surgery, Kansai Electric Power Hospital & Kansai Electric Power Medical Research Institute, 2-1-7 Fukushima, Fukushima-ku, Osaka 553-0003, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto 606-8501, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
47
|
Prediction in Cancer Genomics Using Topological Signatures and Machine Learning. TOPOLOGICAL DATA ANALYSIS 2020. [DOI: 10.1007/978-3-030-43408-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
High MYC mRNA Expression Is More Clinically Relevant than MYC DNA Amplification in Triple-Negative Breast Cancer. Int J Mol Sci 2019; 21:ijms21010217. [PMID: 31905596 PMCID: PMC6981812 DOI: 10.3390/ijms21010217] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 12/13/2022] Open
Abstract
DNA abnormalities are used in inclusion criteria of clinical trials for treatments with specific targeted molecules. MYC is one of the most powerful oncogenes and is known to be associated with triple-negative breast cancer (TNBC). Its DNA amplification is often part of the targeted DNA-sequencing panels under the assumption of reflecting upregulated signaling. However, it remains unclear if MYC DNA amplification is a surrogate of its upregulated signaling. Thus, we investigated the difference between MYC DNA amplification and mRNA high expression in TNBCs utilizing publicly available cohorts. MYC DNA amplified tumors were found to have various mRNA expression levels, suggesting that MYC DNA amplification does not always result in elevated MYC mRNA expression. Compared to other subtypes, both MYC DNA amplification and mRNA high expression were more frequent in the TNBCs. MYC mRNA high expression, but not DNA amplification, was significantly associated with worse overall survival in the TNBCs. The TNBCs with MYC mRNA high expression enriched MYC target genes, cell cycle related genes, and WNT/β-catenin gene sets, whereas none of them were enriched in MYC DNA amplified TNBCs. In conclusion, MYC mRNA high expression, but not DNA amplification, reflects not only its upregulated signaling pathway, but also clinical significance in TNBCs.
Collapse
|
49
|
Lao-On U, Rojvirat P, Chansongkrow P, Phannasil P, Siritutsoontorn S, Charoensawan V, Jitrapakdee S. c-Myc directly targets an over-expression of pyruvate carboxylase in highly invasive breast cancer. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165656. [PMID: 31874204 DOI: 10.1016/j.bbadis.2019.165656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/17/2023]
Abstract
Here we showed that the c-Myc oncogene is responsible for overexpression of pyruvate carboxylase (PC) in highly invasive MDA-MB-231 cells. Pharmacological inhibition of c-Myc activity with 10074-G5 compound, resulted in a marked reduction of PC mRNA and protein, concomitant with reduced cell growth, migration and invasion. This growth inhibition but not migration and invasion can be partly restored by overexpression of PC, indicating that PC is a c-Myc-regulated pro-proliferating enzyme. Analysis of chromatin immunoprecipitation sequencing of c-Myc bound promoters revealed that c-Myc binds to two canonical c-Myc binding sites, locating at nucleotides -417 to -407 and -301 to -291 in the P2 promoter of human PC gene. Mutation of either c-Myc binding site in the P2 promoter-luciferase construct resulted in 50-60% decrease in luciferase activity while double mutation of c-Myc binding sites further decreased the luciferase activity in MDA-MB-231 cells. Overexpression of c-Myc in HEK293T cells that have no endogenous c-Myc resulted in 250-fold increase in luciferase activity. Mutation of either E-boxes lowered luciferase activity by 50% and 25%, respectively while double mutation of both sites abolished the c-Myc transactivation response. An electrophoretic mobility shift assay using nuclear proteins from MDA-MB-231 confirmed binding of c-Myc to both c-Myc binding sites in the P2 promoter. Bioinformatic analysis of publicly available transcriptomes from the cancer genome atlas (TCGA) dataset revealed an association between expression of c-Myc and PC in primary breast, as well as in lung and colon cancer tissues, suggesting that overexpression of PC is deregulated by c-Myc in these cancers.
Collapse
Affiliation(s)
- Udom Lao-On
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pinnara Rojvirat
- Division of Interdisciplinary, Mahidol University at Kanjanaburi campus, Thailand
| | - Pakkanan Chansongkrow
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phatchariya Phannasil
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
50
|
Yoshioka KI, Matsuno Y, Hyodo M, Fujimori H. Genomic-Destabilization-Associated Mutagenesis and Clonal Evolution of Cells with Mutations in Tumor-Suppressor Genes. Cancers (Basel) 2019; 11:cancers11111643. [PMID: 31653100 PMCID: PMC6895985 DOI: 10.3390/cancers11111643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
The development of cancer is driven by genomic instability and mutations. In general, cancer develops via multiple steps. Each step involves the clonal evolution of cells with abrogated defense systems, such as cells with mutations in cancer-suppressor genes. However, it remains unclear how cellular defense systems are abrogated and the associated clonal evolution is triggered and propagated. In this manuscript, we review current knowledge regarding mutagenesis associated with genomic destabilization and its relationship with the clonal evolution of cells over the course of cancer development, focusing especially on mechanistic aspects.
Collapse
Affiliation(s)
- Ken-Ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yusuke Matsuno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Mai Hyodo
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Haruka Fujimori
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|