1
|
Emerging Importance of Tyrosine Kinase Inhibitors against Cancer: Quo Vadis to Cure? Int J Mol Sci 2021; 22:ijms222111659. [PMID: 34769090 PMCID: PMC8584061 DOI: 10.3390/ijms222111659] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
GLOBOCAN 2020 estimated more than 19.3 million new cases, and about 10 million patients were deceased from cancer in 2020. Clinical manifestations showed that several growth factor receptors consisting of transmembrane and cytoplasmic tyrosine kinase (TK) domains play a vital role in cancer progression. Receptor tyrosine kinases (RTKs) are crucial intermediaries of the several cellular pathways and carcinogenesis that directly affect the prognosis and survival of higher tumor grade patients. Tyrosine kinase inhibitors (TKIs) are efficacious drugs for targeted therapy of various cancers. Therefore, RTKs have become a promising therapeutic target to cure cancer. A recent report shows that TKIs are vital mediators of signal transduction and cancer cell proliferation, angiogenesis, and apoptosis. In this review, we discuss the structure and function of RTKs to explore their prime role in cancer therapy. Various TKIs have been developed to date that contribute a lot to treating several types of cancer. These TKI based anticancer drug molecules are also discussed in detail, incorporating their therapeutic efficacy, mechanism of action, and side effects. Additionally, this article focuses on TKIs which are running in the clinical trial and pre-clinical studies. Further, to gain insight into the pathophysiological mechanism of TKIs, we also reviewed the impact of RTK resistance on TKI clinical drugs along with their mechanistic acquired resistance in different cancer types.
Collapse
|
2
|
Li JJ, Tsang JY, Tse GM. Tumor Microenvironment in Breast Cancer-Updates on Therapeutic Implications and Pathologic Assessment. Cancers (Basel) 2021; 13:cancers13164233. [PMID: 34439387 PMCID: PMC8394502 DOI: 10.3390/cancers13164233] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment (TME) in breast cancer comprises local factors, cancer cells, immune cells and stromal cells of the local and distant tissues. The interaction between cancer cells and their microenvironment plays important roles in tumor proliferation, propagation and response to therapies. There is increasing research in exploring and manipulating the non-cancerous components of the TME for breast cancer treatment. As the TME is now increasingly recognized as a treatment target, its pathologic assessment has become a critical component of breast cancer management. The latest WHO classification of tumors of the breast listed stromal response pattern/fibrotic focus as a prognostic factor and includes recommendations on the assessment of tumor infiltrating lymphocytes and PD-1/PD-L1 expression, with therapeutic implications. This review dissects the TME of breast cancer, describes pathologic assessment relevant for prognostication and treatment decision, and details therapeutic options that interacts with and/or exploits the TME in breast cancer.
Collapse
Affiliation(s)
| | | | - Gary M. Tse
- Correspondence: ; Tel.: 852-3505-2359; Fax: 852-2637-4858
| |
Collapse
|
3
|
New Insights into YES-Associated Protein Signaling Pathways in Hematological Malignancies: Diagnostic and Therapeutic Challenges. Cancers (Basel) 2021; 13:cancers13081981. [PMID: 33924049 PMCID: PMC8073623 DOI: 10.3390/cancers13081981] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary YES-associated protein (YAP) is a co-transcriptional activator that binds to transcriptional factors to increase the rate of transcription of a set of genes, and it can intervene in the onset and progression of different tumors. Most of the data in the literature refer to the effects of the YAP system in solid neoplasms. In this review, we analyze the possibility that YAP can also intervene in hematological neoplasms such as lymphomas, multiple myeloma, and acute and chronic leukemias, modifying the phenomena of cell proliferation and cell death. The possibilities of pharmacological intervention related to the YAP system in an attempt to use its modulation therapeutically are also discussed. Abstract The Hippo/YES-associated protein (YAP) signaling pathway is a cell survival and proliferation-control system with its main activity that of regulating cell growth and organ volume. YAP operates as a transcriptional coactivator in regulating the onset, progression, and treatment response in numerous human tumors. Moreover, there is evidence suggesting the involvement of YAP in the control of the hematopoietic system, in physiological conditions rather than in hematological diseases. Nevertheless, several reports have proposed that the effects of YAP in tumor cells are cell-dependent and cell-type-determined, even if YAP usually interrelates with extracellular signaling to stimulate the onset and progression of tumors. In the present review, we report the most recent findings in the literature on the relationship between the YAP system and hematological neoplasms. Moreover, we evaluate the possible therapeutic use of the modulation of the YAP system in the treatment of malignancies. Given the effects of the YAP system in immunosurveillance, tumorigenesis, and chemoresistance, further studies on interactions between the YAP system and hematological malignancies will offer very relevant information for the targeting of these diseases employing YAP modifiers alone or in combination with chemotherapy drugs.
Collapse
|
4
|
Pesch AM, Pierce LJ, Speers CW. Modulating the Radiation Response for Improved Outcomes in Breast Cancer. JCO Precis Oncol 2021; 5:PO.20.00297. [PMID: 34250414 DOI: 10.1200/po.20.00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Andrea M Pesch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Department of Pharmacology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Corey W Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
5
|
Zhou X, Chen N, Xu H, Zhou X, Wang J, Fang X, Zhang Y, Li Y, Yang J, Wang X. Regulation of Hippo-YAP signaling by insulin-like growth factor-1 receptor in the tumorigenesis of diffuse large B-cell lymphoma. J Hematol Oncol 2020; 13:77. [PMID: 32546241 PMCID: PMC7298789 DOI: 10.1186/s13045-020-00906-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Hippo-Yes-associated protein (YAP) signaling is a key regulator of organ size and tumorigenesis, yet the underlying molecular mechanism is still poorly understood. At present, the significance of the Hippo-YAP pathway in diffuse large B-cell lymphoma (DLBCL) is ill-defined. Methods The expression of YAP in DLBCL was determined in public database and clinical specimens. The effects of YAP knockdown, CRISPR/Cas9-mediated YAP deletion, and YAP inhibitor treatment on cell proliferation and the cell cycle were evaluated both in vitro and in vivo. RNA sequencing was conducted to detect dysregulated RNAs in YAP-knockout DLBCL cells. The regulatory effects of insulin-like growth factor-1 receptor (IGF-1R) on Hippo-YAP signaling were explored by targeted inhibition and rescue experiments. Results High expression of YAP was significantly correlated with disease progression and poor prognosis. Knockdown of YAP expression suppressed cell proliferation and induced cell cycle arrest in DLBCL cells. Verteporfin (VP), a benzoporphyrin derivative, exerted an anti-tumor effect by regulating the expression of YAP and the downstream target genes, CTGF and CYR61. In vitro and in vivo studies revealed that deletion of YAP expression with a CRISPR/Cas9 genome editing system significantly restrained tumor growth. Moreover, downregulation of IGF-1R expression led to a remarkable decrease in YAP expression. In contrast, exposure to IGF-1 promoted YAP expression and reversed the inhibition of YAP expression induced by IGF-1R inhibitors. Conclusions Our study highlights the critical role of YAP in the pathogenesis of DLBCL and uncovers the regulatory effect of IGF-1R on Hippo-YAP signaling, suggesting a novel therapeutic strategy for DLBCL.
Collapse
Affiliation(s)
- Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Na Chen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Hongzhi Xu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiaoming Zhou
- Department of Science and Education, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Jianhong Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Juan Yang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, 250021, Shandong, China.
| |
Collapse
|
6
|
Baht GS, Bareja A, Lee DE, Rao RR, Huang R, Huebner JL, Bartlett DB, Hart CR, Gibson JR, Lanza IR, Kraus VB, Gregory SG, Spiegelman BM, White JP. Meteorin-like facilitates skeletal muscle repair through a Stat3/IGF-1 mechanism. Nat Metab 2020; 2:278-289. [PMID: 32694780 PMCID: PMC7504545 DOI: 10.1038/s42255-020-0184-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/17/2020] [Indexed: 01/14/2023]
Abstract
The immune system plays a multifunctional role throughout the regenerative process, regulating both pro-/anti-inflammatory phases and progenitor cell function. In the present study, we identify the myokine/cytokine Meteorin-like (Metrnl) as a critical regulator of muscle regeneration. Mice genetically lacking Metrnl have impaired muscle regeneration associated with a reduction in immune cell infiltration and an inability to transition towards an anti-inflammatory phenotype. Isochronic parabiosis, joining wild-type and whole-body Metrnl knock-out (KO) mice, returns Metrnl expression in the injured muscle and improves muscle repair, providing supportive evidence for Metrnl secretion from infiltrating immune cells. Macrophage-specific Metrnl KO mice are also deficient in muscle repair. During muscle regeneration, Metrnl works, in part, through Stat3 activation in macrophages, resulting in differentiation to an anti-inflammatory phenotype. With regard to myogenesis, Metrnl induces macrophage-dependent insulin-like growth factor 1 production, which has a direct effect on primary muscle satellite cell proliferation. Perturbations in this pathway inhibit efficacy of Metrnl in the regenerative process. Together, these studies identify Metrnl as an important regulator of muscle regeneration and a potential therapeutic target to enhance tissue repair.
Collapse
Affiliation(s)
- Gurpreet S Baht
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Akshay Bareja
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - David E Lee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Rajesh R Rao
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Rong Huang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - David B Bartlett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, USA
| | - Corey R Hart
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jason R Gibson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ian R Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Virginia B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - James P White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
7
|
The IGF-II-Insulin Receptor Isoform-A Autocrine Signal in Cancer: Actionable Perspectives. Cancers (Basel) 2020; 12:cancers12020366. [PMID: 32033443 PMCID: PMC7072655 DOI: 10.3390/cancers12020366] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin receptor overexpression is a common event in human cancer. Its overexpression is associated with a relative increase in the expression of its isoform A (IRA), a shorter variant lacking 11 aa in the extracellular domain, conferring high affinity for the binding of IGF-II along with added intracellular signaling specificity for this ligand. Since IGF-II is secreted by the vast majority of malignant solid cancers, where it establishes autocrine stimuli, the co-expression of IGF-II and IRA in cancer provides specific advantages such as apoptosis escape, growth, and proliferation to those cancers bearing such a co-expression pattern. However, little is known about the exact role of this autocrine ligand–receptor system in sustaining cancer malignant features such as angiogenesis, invasion, and metastasis. The recent finding that the overexpression of angiogenic receptor kinase EphB4 along with VEGF-A is tightly dependent on the IGF-II/IRA autocrine system independently of IGFIR provided new perspectives for all malignant IGF2omas (those aggressive solid cancers secreting IGF-II). The present review provides an updated view of the IGF system in cancer, focusing on the biology of the autocrine IGF-II/IRA ligand–receptor axis and supporting its underscored role as a malignant-switch checkpoint target.
Collapse
|
8
|
Crudden C, Song D, Cismas S, Trocmé E, Pasca S, Calin GA, Girnita A, Girnita L. Below the Surface: IGF-1R Therapeutic Targeting and Its Endocytic Journey. Cells 2019; 8:cells8101223. [PMID: 31600876 PMCID: PMC6829878 DOI: 10.3390/cells8101223] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Ligand-activated plasma membrane receptors follow pathways of endocytosis through the endosomal sorting apparatus. Receptors cluster in clathrin-coated pits that bud inwards and enter the cell as clathrin-coated vesicles. These vesicles travel through the acidic endosome whereby receptors and ligands are sorted to be either recycled or degraded. The traditional paradigm postulated that the endocytosis role lay in signal termination through the removal of the receptor from the cell surface. It is now becoming clear that the internalization process governs more than receptor signal cessation and instead reigns over the entire spatial and temporal wiring of receptor signaling. Governing the localization, the post-translational modifications, and the scaffolding of receptors and downstream signal components established the endosomal platform as the master regulator of receptor function. Confinement of components within or between distinct organelles means that the endosome instructs the cell on how to interpret and translate the signal emanating from any given receptor complex into biological effects. This review explores this emerging paradigm with respect to the cancer-relevant insulin-like growth factor type 1 receptor (IGF-1R) and discusses how this perspective could inform future targeting strategies.
Collapse
Affiliation(s)
- Caitrin Crudden
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
- Department of Pathology, Cancer Centre Amsterdam, Amsterdam UMC, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands.
| | - Dawei Song
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| | - Sonia Cismas
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| | - Eric Trocmé
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
- St. Erik Eye Hospital, 11282 Stockholm, Sweden.
| | - Sylvya Pasca
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Ada Girnita
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
- Dermatology Department, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | - Leonard Girnita
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| |
Collapse
|
9
|
Tang Q, Ma J, Sun J, Yang L, Yang F, Zhang W, Li R, Wang L, Wang Y, Wang H. Genistein and AG1024 synergistically increase the radiosensitivity of prostate cancer cells. Oncol Rep 2018; 40:579-588. [PMID: 29901146 PMCID: PMC6072286 DOI: 10.3892/or.2018.6468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/15/2018] [Indexed: 01/02/2023] Open
Abstract
Radiosensitivity of prostate cancer (PCa) cells promotes the curative treatment for PCa. The present study was designed to investigate the synergistic effect of genistein and AG1024 on the radiosensitivity of PCa cells. The optimal X-irradiation dose (4 Gy) and genistein concentration (30 µM) were selected by using the CCK-8 assay. Before X-irradiation (4 Gy), PC3 and DU145 cells were treated with genistein (30 µM), AG1024 (10 µM) and their combination. All treatments significantly reduced cell proliferation and enhanced cell apoptosis. Using flow cytometric analysis, we found that genistein arrested the cell cycle at S phase and AG1024 arrested the cell cycle at G2/M phase. Genistein treatment suppressed the homologous recombination (HRR) and the non-homologous end joining (NHEJ) pathways by inhibiting the expression of Rad51 and Ku70, and AG1024 treatment only inhibited the NHEJ pathway via the inactivation of Ku70 as detected by western blot analysis. Moreover, the combination treatment with genistein and AG1024 more effectively radiosensitized PCa cells than single treatments by suppressing cell proliferation, enhancing cell apoptosis and inactivating the HRR and NHEJ pathways. In vivo experiments demonstrated that animals receiving the combination treatment with genistein and AG1024 displayed obviously decreased tumor volume compared with animals treated with single treatment with either genistein or AG1024. We conclude that the combination of genistein (30 µM) and AG1024 (10 µM) exhibited a synergistic effect on the radiosensitivity of PCa cells by suppressing the HRR and NHEJ pathways.
Collapse
Affiliation(s)
- Qisheng Tang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Jianjun Ma
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Jinbo Sun
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Longfei Yang
- Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Wei Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Ruixiao Li
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Lei Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Yong Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - He Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| |
Collapse
|
10
|
Vishwamitra D, George SK, Shi P, Kaseb AO, Amin HM. Type I insulin-like growth factor receptor signaling in hematological malignancies. Oncotarget 2018; 8:1814-1844. [PMID: 27661006 PMCID: PMC5352101 DOI: 10.18632/oncotarget.12123] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling system plays key roles in the establishment and progression of different types of cancer. In agreement with this idea, substantial evidence has shown that the type I IGF receptor (IGF-IR) and its primary ligand IGF-I are important for maintaining the survival of malignant cells of hematopoietic origin. In this review, we discuss current understanding of the role of IGF-IR signaling in cancer with a focus on the hematological neoplasms. We also address the emergence of IGF-IR as a potential therapeutic target for the treatment of different types of cancer including plasma cell myeloma, leukemia, and lymphoma.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suraj Konnath George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
11
|
Dong J, Ren Y, Zhang T, Wang Z, Ling CC, Li GC, He F, Wang C, Wen B. Inactivation of DNA-PK by knockdown DNA-PKcs or NU7441 impairs non-homologous end-joining of radiation-induced double strand break repair. Oncol Rep 2018; 39:912-920. [PMID: 29344644 PMCID: PMC5802037 DOI: 10.3892/or.2018.6217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in non-homologous end-joining (NHEJ) repair. We investigated the mechanism of NU7441, a highly selective DNA-PK inhibitor, in NHEJ-competent mouse embryonic fibroblast (MEF) cells and NHEJ-deficient cells and explored the feasibility of its application in radiosensitizing nasopharyngeal carcinoma (NPC) cells. We generated wild-type and DNA-PKcs−/− MEF cells. Clonogenic survival assays, flow cytometry, and immunoblotting were performed to study the effect of NU7441 on survival, cell cycle, and DNA repair. NU7441 profoundly radiosensitized wild-type MEF cells and SUNE-1 cells, but not DNA-PKcs−/− MEF cells. NU7441 significantly suppressed radiation-induced DSB repair post-irradiation through unrepaired and lethal DNA damage, the cell cycle arrest. The effect was associated with the activation of cell cycle checkpoints. The present study revealed a mechanism by which inhibition of DNA-PK sensitizes cells to irradiation suggesting that radiotherapy in combination with DNA-PK inhibitor is a promising paradigm for the management of NPC which merits further investigation.
Collapse
Affiliation(s)
- Jun Dong
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yufeng Ren
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tian Zhang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhenyu Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Clifton C Ling
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Gloria C Li
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Fuqiu He
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Chengtao Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bixiu Wen
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
12
|
Christopoulos PF, Corthay A, Koutsilieris M. Aiming for the Insulin-like Growth Factor-1 system in breast cancer therapeutics. Cancer Treat Rev 2017; 63:79-95. [PMID: 29253837 DOI: 10.1016/j.ctrv.2017.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
Despite the major discoveries occurred in oncology the recent years, breast malignancies remain one of the most common causes of cancer-related deaths for women in developed countries. Development of HER2-targeting drugs has been considered a breakthrough in anti-cancer approaches and alluded to the potential of targeting growth factors in breast cancer (BrCa) therapeutics. More than twenty-five years have passed since the Insulin-like Growth Factor-1 (IGF-1) system was initially recognized as a potential target candidate in BrCa therapy. To date, a growing body of studies have implicated the IGF-1 signaling with the BrCa biology. Despite the promising experimental evidence, the impression from clinical trials is rather disappointing. Several reasons may account for this and the last word regarding the efficacy of this system as a target candidate in BrCa therapeutics is probably not written yet. Herein, we provide the theoretical basis, as well as, a comprehensive overview of the current literature, regarding the different strategies targeting the various components of the IGF-1/IGF-1R axis in several pathophysiological aspects of BrCa, including the tumor micro-environment and cancer stemness. In addition, we review the rationale for targeting the IGF-1 system in the different BrCa molecular subtypes and in treatment resistant breast tumors with a focus on both the molecular mechanisms and on the clinical perspectives of such approaches in specific population subgroups. We also discuss the future challenges, as well as, the development of novel molecules and strategies targeting the system and suggest potential improvements in the field.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece; Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway.
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Guichard A, Jain P, Moayeri M, Schwartz R, Chin S, Zhu L, Cruz-Moreno B, Liu JZ, Aguilar B, Hollands A, Leppla SH, Nizet V, Bier E. Anthrax edema toxin disrupts distinct steps in Rab11-dependent junctional transport. PLoS Pathog 2017; 13:e1006603. [PMID: 28945820 PMCID: PMC5612732 DOI: 10.1371/journal.ppat.1006603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
Various bacterial toxins circumvent host defenses through overproduction of cAMP. In a previous study, we showed that edema factor (EF), an adenylate cyclase from Bacillus anthracis, disrupts endocytic recycling mediated by the small GTPase Rab11. As a result, cargo proteins such as cadherins fail to reach inter-cellular junctions. In the present study, we provide further mechanistic dissection of Rab11 inhibition by EF using a combination of Drosophila and mammalian systems. EF blocks Rab11 trafficking after the GTP-loading step, preventing a constitutively active form of Rab11 from delivering cargo vesicles to the plasma membrane. Both of the primary cAMP effector pathways -PKA and Epac/Rap1- contribute to inhibition of Rab11-mediated trafficking, but act at distinct steps of the delivery process. PKA acts early, preventing Rab11 from associating with its effectors Rip11 and Sec15. In contrast, Epac functions subsequently via the small GTPase Rap1 to block fusion of recycling endosomes with the plasma membrane, and appears to be the primary effector of EF toxicity in this process. Similarly, experiments conducted in mammalian systems reveal that Epac, but not PKA, mediates the activity of EF both in cell culture and in vivo. The small GTPase Arf6, which initiates endocytic retrieval of cell adhesion components, also contributes to junctional homeostasis by counteracting Rab11-dependent delivery of cargo proteins at sites of cell-cell contact. These studies have potentially significant practical implications, since chemical inhibition of either Arf6 or Epac blocks the effect of EF in cell culture and in vivo, opening new potential therapeutic avenues for treating symptoms caused by cAMP-inducing toxins or related barrier-disrupting pathologies. Recent anthrax outbreaks in Zambia and northern Russia and biodefense preparedness highlight the need for new therapies to counteract fatal late-stage pathologies in patients infected with Bacillus anthracis. Indeed, two toxins secreted by this pathogen—edema toxin (ET) and lethal toxin (LT)—can cause death in face of effective antibiotic treatment. ET, a potent adenylate cyclase, severely impacts host cells and tissues through an overproduction of the ubiquitous second messenger cAMP. Previously, we identified Rab11 as a key host factor inhibited by ET. Blockade of Rab11-dependent endocytic recycling resulted in the disruption of intercellular junctions, likely contributing to life threatening vascular effusion observed in anthrax patients. Here we present a multi-system analysis of the mechanism by which EF inhibits Rab11 and exocyst-dependent trafficking. Epistasis experiments in Drosophila reveal that over-activation of the cAMP effectors PKA and Epac/Rap1 interferes with Rab11-mediated trafficking at two distinct steps. We further describe conserved roles of Epac and the small GTPase Arf6 in ET-mediated disruption of vesicular trafficking and show how chemical inhibition of either pathway greatly alleviates ET-induced edema. Thus, our study defines Epac and Arf6 as promising drug targets for the treatment of infectious diseases and other pathologies involving cAMP overload or related barrier disruption.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Prashant Jain
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States of America
| | - Ruth Schwartz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Stephen Chin
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Lin Zhu
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Beatriz Cruz-Moreno
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Janet Z. Liu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
| | - Bernice Aguilar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
- Division of Pediatric Infectious Diseases and the Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Andrew Hollands
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
| | - Stephen H. Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States of America
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
14
|
The role of insulin growth factor-1 on the vascular regenerative effect of MAA coated disks and macrophage-endothelial cell crosstalk. Biomaterials 2017; 144:199-210. [PMID: 28841464 DOI: 10.1016/j.biomaterials.2017.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022]
Abstract
The IGF-1 signaling pathway and IGF-1-dependent macrophage/endothelial cell crosstalk was found to be critical features of the vascular regenerative effect displayed by implanted methacrylic acid -co-isodecyl acrylate (MAA-co-IDA; 40% MAA) coated disks in CD1 mice. Inhibition of IGF-1 signaling using AG1024 an IGF1-R tyrosine kinase inhibitor abrogated vessel formation 14 days after disk implantation in a subcutaneous pocket. Explanted tissue had increased arginase 1 expression and reduced iNOS expression consistent with the greater shift from "M1" ("pro-inflammatory") macrophages to "M2" ("pro-angiogenic") macrophages for MAA coated disks relative to control MM (methyl methacrylate-co-IDA) disks; the latter did not generate a vascular response and the polarization shift was muted with AG1024. In vitro, medium conditioned by macrophages (both human dTHP1 cells and mouse bone marrow derived macrophages) had elevated IGF-1 mRNA and protein levels, while the cells had reduced IGF1-R but elevated IGFBP-3 mRNA levels. These cells also had reduced iNOS and elevated Arg1 expression, consistent with the in vivo polarization results, including the inhibitory effects of AG1024. On the other hand, HUVEC exposed to dTHP1 conditioned medium migrated and proliferated faster suggesting that the primary target of the macrophage released IGF-1 was endothelial cells. Although further investigation is warranted, IGF-1 appears to be a key feature underpinning the observed vascularization. Why MAA based materials have this effect remains to be defined, however.
Collapse
|
15
|
Clinical studies in humans targeting the various components of the IGF system show lack of efficacy in the treatment of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:105-122. [PMID: 28528684 DOI: 10.1016/j.mrrev.2016.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023]
Abstract
The insulin-like growth factors (IGFs) system regulates cell growth, differentiation and energy metabolism and plays crucial role in the regulation of key aspects of tumor biology, such as cancer cell growth, survival, transformation and invasion. The current focus for cancer therapeutic approaches have shifted from the conventional treatments towards the targeted therapies and the IGF system has gained a great interest as anti-cancer therapy. The proliferative, anti-apoptotic and transformation effects of IGFs are mainly triggered by the ligation of the type I IGF receptor (IGF-IR). Thus, aiming at developing novel and effective cancer therapies, different strategies have been employed to target IGF system in human malignancies, including but not limited to ligand or receptor neutralizing antibodies and IGF-IR signaling inhibitors. In this review, we have focused on the clinical studies that have been conducted targeting the various components of the IGF system for the treatment of different types of cancer, providing a description and the challenges of each targeting strategy and the degree of success.
Collapse
|
16
|
The insulin-like growth factor-I receptor (IGF-IR) in breast cancer: biology and treatment strategies. Tumour Biol 2016; 37:11711-11721. [PMID: 27444280 DOI: 10.1007/s13277-016-5176-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/12/2016] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most common cancer and the second leading cause of cancer-related deaths among women worldwide. Although patients are often diagnosed in the early and curable stages, the treatment of metastatic breast cancer remains a major clinical challenge. The combination of chemotherapy with new targeting agents, such as bevacizumab, is helpful in improving patient survival; however, novel treatment strategies are required to improve clinical outcomes. The insulin-like growth factor-I receptor (IGF-IR) is a tyrosine kinase cell surface receptor which is involved in the regulation of cell growth and metabolism. Previous studies have shown that activation of the IGF-IR signaling pathway promotes proliferation, survival, and metastasis of breast cancer cells. Additionally, overexpression of IGF-IR is associated with breast cancer cell resistance to anticancer therapies. Recently, IGF-IR has been introduced as a marker of stemness in breast cancer cells and there is also accumulating evidence that IGF-IR contributes to the establishment and maintenance of breast cancer epithelial-mesenchymal transition (EMT). Therefore, pharmacological or molecular targeting of IGF-IR could be a promising strategy, in the treatment of patients with breast cancer, particularly in order to circumvent the therapeutic resistance and targeting breast cancer stem/progenitors. Currently, many strategies have been developed for targeting IGF-IR, some have entered clinical trials and some are in preclinical stages for breast cancer therapy. In this review, we will first discuss on the biology of IGF-IR in an attempt to find the role of this receptor in breast cancer and then discuss about therapeutic strategies to target this receptor.
Collapse
|
17
|
Yuen KCJ, Heaney AP, Popovic V. Considering GH replacement for GH-deficient adults with a previous history of cancer: a conundrum for the clinician. Endocrine 2016; 52:194-205. [PMID: 26732039 DOI: 10.1007/s12020-015-0840-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/18/2015] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that GH and IGF-I may enhance tumorigenesis, metastasis, and cell proliferation in humans and animals. Evidence supporting this notion is derived from animal model studies, epidemiological studies, experience from patients with acromegaly, molecular therapeutic manipulation of GH and IGF-I actions, and individuals with GH receptor and congenital IGF-I deficiencies. Prior exposure to radiation therapy, aging, family history of cancer, and individual susceptibility may also contribute to increase this risk. Therefore, the use of GH replacement in patients with a history of cancer raises hypothetical safety concerns for patients, caregivers, and providers. Studies of GH therapy in GH-deficient adults with hypopituitarism and childhood cancer survivors have not convincingly demonstrated an increased cancer risk. Conversely, the risk of occurrence of a second neoplasm (SN) in childhood cancer survivors may be increased, with meningiomas being the most common tumor; however, this risk appears to decline over time. In light of these findings, if GH replacement is to be considered in patients with a previous history of cancer, we propose this consideration to be based on each individual circumstance and that such therapy should only be initiated at least 2 years after cancer remission is achieved with the understanding that in some patients (particularly those with childhood cancers), GH may potentially increase the risk of SNs. In addition, close surveillance should be undertaken working closely with the patient's oncologist. More long-term data are thus needed to determine if GH replacement in GH-deficient adults with a history of cancer is associated with the development of de novo tumors and tumor recurrence.
Collapse
Affiliation(s)
- Kevin C J Yuen
- Department of Neurosurgery and Neurology, Swedish Pituitary Center, Swedish Neuroscience Institute, Seattle, WA, 98122, USA.
| | - Anthony P Heaney
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90073, USA
| | - Vera Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disease, University Clinical Center Belgrade, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000, Belgrade, Serbia
| |
Collapse
|
18
|
Tang R, Gao L, Kawatani M, Chen J, Cao X, Osada H, Xiang L, Qi J. Neuritogenic Activity of Tetradecyl 2,3-Dihydroxybenzoate Is Mediated through the Insulin-Like Growth Factor 1 Receptor/Phosphatidylinositol 3 Kinase/Mitogen-Activated Protein Kinase Signaling Pathway. Mol Pharmacol 2015; 88:326-34. [PMID: 26013540 DOI: 10.1124/mol.115.097758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/26/2015] [Indexed: 01/22/2023] Open
Abstract
Tetradecyl 2,3-dihydroxybenzoate (ABG-001) is a lead compound derived from neuritogenic gentisides. In the present study, we investigated the mechanism by which ABG-001 induces neurite outgrowth in a rat adrenal pheochromocytoma cell line (PC12). Inhibitors of insulin-like growth factor 1 (IGF-1) receptor, phosphatidylinositol 3-kinase (PI3K), and extracellular signal-regulated kinase (ERK) 1/2 significantly decreased ABG-001-induced neurite outgrowth. Western blot analysis revealed that ABG-001 significantly induced phosphorylation of IGF-1 receptor, protein kinase B (Akt), ERK, and cAMP responsive element-binding protein (CREB). These effects were markedly reduced by addition of the corresponding inhibitors. We also found that ABG-001-induced neurite outgrowth was reduced by protein kinase C inhibitor as well as small-interfering RNA against the IGF-1 receptor. Furthermore, like ABG-001, IGF-1 also induced neurite outgrowth of PC12 cells, and low-dose nerve growth factor augmented the observed effects of ABG-001 on neurite outgrowth. These results suggest that ABG-001 targets the IGF-1 receptor and activates PI3K, mitogen-activated protein kinase, and their downstream signaling cascades to induce neurite outgrowth.
Collapse
Affiliation(s)
- Ruiqi Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| | - Lijuan Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| | - Makoto Kawatani
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| | - Jianzhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| | - Xueli Cao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| | - Hiroyuki Osada
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| |
Collapse
|
19
|
Cheng HY, Ko FH. Studying the enhancement of programmed cell death by combined AG1024 and paclitaxel in a model of chronic myelogenous leukemia. Life Sci 2014; 102:118-26. [PMID: 24657894 DOI: 10.1016/j.lfs.2014.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 11/15/2022]
Abstract
AIMS Chronic myelogenous leukemia is a clonal malignancy of the pluripotent hematopoietic stem cells that is characterized by the uncontrolled proliferation and expansion of myeloid progenitors. Myeloid progenitors express the fusion oncogene BCR-ABL, which has uncontrollable activity in malignant cells and prevents the cell apoptosis caused by some antineoplastic agents, such as paclitaxel. Targeting these abnormalities by blocking the tyrosine kinase enzymes of BCR-ABL is a promising approach for chronic myelogenous leukemia therapy. MAIN METHODS Conventional Liu's staining is an auxiliary technique used in microscopy to enhance the contrast in microscopic images, aiding the observation of cell morphology. The MTT assay, flow cytometry of the sub-G1 analysis and the TUNEL assay were applied to estimate the apoptosis levels. RT-PCR and western blot methods were used to evaluate the key molecules conferring anti-cell-death properties. KEY FINDINGS The effects of the tyrosine kinase inhibitor AG1024 were evaluated with regard to the regulation of BCR-ABL expression, inhibition of cell proliferation, and enhanced paclitaxel-induced apoptosis in BCR-ABL-expressing K562 cell lines. AG1024 downregulated the expression of BCR-ABL and anti-apoptosis factors, such as Bcl-2 and Bcl-xL, which were present in K562 cells. Moreover, the combination of AG1024 with paclitaxel inhibited cell proliferation and enhanced paclitaxel-induced apoptosis within 24h. SIGNIFICANCE In summary, the present study shows that the combination of AG1024 with paclitaxel inhibited model cancer cell proliferation, suggesting a new use of paclitaxel-based chemotherapy for cancer control.
Collapse
Affiliation(s)
- Hao-Yuan Cheng
- Department of Materials Science and Engineering, National Chiao Tung University, Taiwan, ROC.
| | - Fu-Hsiang Ko
- Department of Materials Science and Engineering, National Chiao Tung University, Taiwan, ROC.
| |
Collapse
|
20
|
Zhang MH, Man HT, Zhao XD, Dong N, Ma SL. Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials (Review). Biomed Rep 2013; 2:41-52. [PMID: 24649067 DOI: 10.3892/br.2013.187] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/23/2013] [Indexed: 12/31/2022] Open
Abstract
In this review, the advances in the study of breast cancer molecular classifications and the molecular signatures of the luminal subtypes A and B of breast cancer were summarized. Effective clinical outcomes depend mainly on successful preclinical diagnosis and therapeutic decisions. Over the last few years, the ever-expanding investigations focusing on breast cancer diagnosis and the clinical trials have provided accumulating information on the molecular characteristics of breast cancer. Specifically, among the estrogen receptor (ER)-positive types of breast cancer, the luminal subtype A breast cancer has been shown to exhibit good clinical outcomes with endocrine therapy, whereas the luminal subtype B breast cancer represents the more complicated type, diagnostically as well as therapeutically. Furthermore, even in luminal subtype A breast cancer, the resistance to treatment has become the major limitation for endocrine-based therapy. Accumulating molecular data and further clinical trials may enable more accurate diagnostic and therapeutic decisions. The molecular signatures have emerged as a powerful tool for future diagnosis and therapeutic decisions, although currently available data are limited.
Collapse
Affiliation(s)
- Mei Hong Zhang
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Hong Tao Man
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Xiao Dan Zhao
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Ni Dong
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Shi Liang Ma
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| |
Collapse
|
21
|
Dual targeting of insulin and venus kinase Receptors of Schistosoma mansoni for novel anti-schistosome therapy. PLoS Negl Trop Dis 2013; 7:e2226. [PMID: 23696913 PMCID: PMC3656120 DOI: 10.1371/journal.pntd.0002226] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/09/2013] [Indexed: 11/21/2022] Open
Abstract
Background Chemotherapy of schistosomiasis relies on a single drug, Praziquantel (PZQ) and mass-use of this compound has led to emergence of resistant strains of Schistosoma mansoni, therefore pointing out the necessity to find alternative drugs. Through their essential functions in development and metabolism, receptor tyrosine kinases (RTK) could represent valuable drug targets for novel anti-schistosome chemotherapies. Taking advantage of the similarity between the catalytic domains of S. mansoni insulin receptors (SmIR1 and SmIR2) and Venus Kinase Receptors (SmVKR1 and SmVKR2), we studied the possibility to fight schistosomes by targeting simultaneously the four receptors with a single drug. Methodology/Principal Findings Several commercial RTK inhibitors were tested for their potential to inhibit the kinase activities of SmIR1, SmIR2, SmVKR1 and SmVKR2 intracellular domains (ICD) expressed in Xenopus oocytes. We measured the inhibitory effect of chemicals on meiosis resumption induced by the active ICD of the schistosome kinases in oocytes. The IR inhibitor, tyrphostin AG1024, was the most potent inhibitory compound towards SmIR and SmVKR kinases. In vitro studies then allowed us to show that AG1024 affected the viability of both schistosomula and adult worms of S. mansoni. At micromolar doses, AG1024 induced apoptosis and caused schistosomula death in a dose-dependent manner. In adult worms, AG1024 provoked alterations of reproductive organs, as observed by confocal laser scanner microscopy. With 5 µM AG1024, parasites were no more feeding and laying eggs, and they died within 48 h with 10 µM. Conclusion/Significance IRs and VKRs are essential in S. mansoni for key biological processes including glucose uptake, metabolism and reproduction. Our results demonstrate that inhibiting the kinase potential and function of these receptors by a single chemical compound AG1024 at low concentrations, leads to death of schistosomula and adult worms. Thus, AG1024 represents a valuable hit compound for further design of anti-kinase drugs applicable to anti-schistosome chemotherapy. Schistosomiasis is a chronic, debilitating disease that affects over 200 million people in the world. The pathology of schistosomiasis is caused mainly by host immune responses to parasite eggs and due to the formation of granulomas in liver and other tissues. There is no vaccine for schistosomiasis and treatment relies essentially on a single drug, Praziquantel. However, reduced susceptibility of schistosome isolates to Praziquantel has been reported, raising serious concerns about the need to develop new drugs against schistosomes. Receptor tyrosine kinases (RTKs) control many cellular and developmental processes and they are important targets in cancer therapy. In this paper, we have investigated the possibility to fight schistosomes by targeting with a single drug, insulin receptors (IRs) involved in parasite growth and metabolism and Venus Kinase Receptors (VKRs) which are unusual IR-like RTKs expressed in the parasite reproductive organs of Schistosoma mansoni. Diverse RTK inhibitors have been tested on kinase activities of these RTKs. The well-known IR inhibitor, tyrphostin AG1024, was demonstrated to be a potent inhibitor of both S. mansoni VKRs and IRs, able to induce in vitro death of larvae and adult worms at micromolar doses. AG1024 could represent a good hit compound for the development of novel drugs against schistosomes.
Collapse
|
22
|
Champ CE, Baserga R, Mishra MV, Jin L, Sotgia F, Lisanti MP, Pestell RG, Dicker AP, Simone NL. Nutrient restriction and radiation therapy for cancer treatment: when less is more. Oncologist 2013; 18:97-103. [PMID: 23299773 DOI: 10.1634/theoncologist.2012-0164] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Calorie restriction (CR), or a diet modification aiming to reduce the total intake of calories by 20%-40%, has been shown to increase longevity across multiple species. Recently, there has been growing interest in investigating the potential role of CR as a treatment intervention for age-related diseases, such as cancer, because an increasing body of literature has demonstrated a metabolic component to both carcinogenesis and tumor progression. In fact, many of the molecular pathways that are altered with CR are also known to be altered in cancer. Therefore, manipulation of these pathways using CR can render cancer cells, and most notably breast cancer cells, more susceptible to standard cytotoxic treatment with radiation and chemotherapy. In this review article we demonstrate the laboratory and clinical evidence that exists for CR and show compelling evidence through the molecular pathways CR induces about how it may be used as a treatment in tandem with radiation therapy to improve our rates of disease control.
Collapse
Affiliation(s)
- Colin E Champ
- Department of Radiation Oncology, Thomas Jefferson University, Kimmel Cancer Center, Bodine Center for Cancer Treatment, 111 S. 11th Street, G-301G, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Karamouzis MV, Papavassiliou AG. Targeting insulin-like growth factor in breast cancer therapeutics. Crit Rev Oncol Hematol 2012; 84:8-17. [PMID: 22424863 DOI: 10.1016/j.critrevonc.2012.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/19/2012] [Accepted: 02/23/2012] [Indexed: 12/29/2022] Open
Abstract
The insulin-like growth factor (IGF) pathway holds crucial role in cell growth, differentiation and proliferation. Aberrant regulation of the IGF system has been attributed to the pathogenesis of breast cancer and has been shown to contribute to various stages of breast carcinogenesis. Therefore, targeting the IGF-related axis represents a promising strategy, mainly aiming to bypass the resistance of currently employed treatment options in breast cancer patients. Nevertheless, major limitations have aroused despite the early stage of clinical development of various IGF-system modulators. The present review highlights the current status and considers the future perspectives of IGF-system targeting in breast cancer therapeutics.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, University of Athens Medical School, 11527 Athens, Greece.
| | | |
Collapse
|
24
|
Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG, O'Malley BW. Small molecule inhibition of the steroid receptor coactivators, SRC-3 and SRC-1. Mol Endocrinol 2011; 25:2041-53. [PMID: 22053001 DOI: 10.1210/me.2011-1222] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Overexpression of steroid receptor coactivator (SRC)-1 and SRC-3 is associated with cancer initiation, metastasis, advanced disease, and resistance to chemotherapy. In most of these cases, SRC-1 and SRC-3 have been shown to promote tumor cell growth by activating nuclear receptor and multiple growth factor signaling cascades that lead to uncontrolled tumor cell growth. Up until now, most targeted chemotherapeutic drugs have been designed largely to block a single pathway at a time, but cancers frequently acquire resistance by switching to alternative growth factor pathways. We reason that the development of chemotherapeutic agents against SRC coactivators that sit at the nexus of multiple cell growth signaling networks and transcriptional factors should be particularly effective therapeutics. To substantiate this hypothesis, we report the discovery of 2,2'-bis-(Formyl-1,6,7-trihydroxy-5-isopropyl-3-methylnaphthalene (gossypol) as a small molecule inhibitor of coactivator SRC-1 and SRC-3. Our data indicate that gossypol binds directly to SRC-3 in its receptor interacting domain. In MCF-7 breast cancer cells, gossypol selectively reduces the cellular protein concentrations of SRC-1 and SRC-3 without generally altering overall protein expression patterns, SRC-2, or other coactivators, such as p300 and coactivator-associated arginine methyltransferase 1. Gossypol reduces the concentration of SRC-3 in prostate, lung, and liver cancer cell lines. Gossypol inhibits cell viability in the same cancer cell lines where it promotes SRC-3 down-regulation. Additionally, gossypol sensitizes lung and breast cancer cell lines to the inhibitory effects of other chemotherapeutic agents. Importantly, gossypol is selectively cytotoxic to cancer cells, whereas normal cell viability is not affected. This data establish the proof-of-principle that, as a class, SRC-1 and SRC-3 coactivators are accessible chemotherapeutic targets. Given their function as integrators of multiple cell growth signaling systems, SRC-1/SRC-3 small molecule inhibitors comprise a new class of drugs that have potential as novel chemotherapeutics able to defeat aspects of acquired cancer cell resistance mechanisms.
Collapse
Affiliation(s)
- Ying Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
25
|
Chakravarti B, Siddiqui JA, Dwivedi SKD, Deshpande S, Samanta K, Bhatta RS, Panda G, Prabhakar YS, Konwar R, Sanyal S, Chattopadhyay N. Specific targeting of insulin-like growth factor 1 receptor signaling in human estrogen dependent breast cancer cell by a novel tyrosine-based benzoxazepine derivative. Mol Cell Endocrinol 2011; 338:68-78. [PMID: 21457754 DOI: 10.1016/j.mce.2011.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/01/2011] [Accepted: 03/01/2011] [Indexed: 11/30/2022]
Abstract
The present study sought to investigate the in vitro and in vivo effects of a tyrosine-based benzoxazepine, 4-[4-(toluene-4-sulfonyl)-2,3,4,5-tetrahydro-benzo[f][1,4]oxazepin-3-ylmethyl]-phenol) [THBP] in human breast cancer cells, with a focus on determining its molecular target. THBP had growth inhibitory effect on MCF-7 and MDA-MD-231 cells. At IC(50) value (∼20 μM), THBP resulted in G1 arrest, decrease in cyclin D1 levels and induction of apoptosis of MCF-7 cells. Mechanistically, activation of caspase 8 contributes critically to the induction of apoptotic cell death as copresence of selective inhibition of caspase 8 effectively abrogates the cytotoxic effect of THBP in MCF-7 cells. Further, THBP increased pro-apoptotic protein, Bax; decreased anti-apoptotic protein, Bcl-2; and decreased mitochondrial membrane potential in MCF-7 cells, indicating involvement of an intrinsic pathway of apoptosis following caspase 8 activation. Out of the various growth factors/hormones, THBP selectively abrogated increased viability of MCF-7 cells by insulin-like growth factor 1 (IGF-1). Molecular docking studies revealed that THBP occupied the ATP binding pocket of IGF-1 receptor (IGF-1R). Accordingly THBP was found to inhibit IGF-1-induced phosphorylation of IGF-1R and insulin receptor substrate-1 (IRS-1) without inhibiting insulin signaling in MCF-7 cells. In athymic nude mice, compared with vehicle, THBP treatment significantly reduced the growth of MCF-7 xenograft tumors through inhibition of cancer cell proliferation as well as promotion of cell death that correlated with reduced phospho-IGF-1R levels. We suggest that interfering with the IGF-1R signaling by the benzoxazepine THBP offers a novel and selective therapeutic strategy for estrogen receptor-positive, postmenopausal breast cancer patients.
Collapse
Affiliation(s)
- Bandana Chakravarti
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Eisinger DA, Ammer H. Epidermal growth factor treatment switches δ-opioid receptor-stimulated extracellular signal-regulated kinases 1 and 2 signaling from an epidermal growth factor to an insulin-like growth factor-1 receptor-dependent mechanism. Mol Pharmacol 2011; 79:326-35. [PMID: 21078885 DOI: 10.1124/mol.110.064956] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
δ-Opioid receptor (DOR)-induced activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) is mediated by the transactivation of epidermal growth factor (EGF) receptors. Here we demonstrate that in stably DOR-expressing human embryonic kidney (HEK) 293 (HEK/DOR) cells, down-regulation of EGF receptors by long-term EGF (0.1 μg for 18 h) treatment, but not by small interfering RNA, results in functional desensitization of EGF (10 ng/ml)-stimulated ERK1/2 signaling. In EGF receptor-desensitized (HEK/DOR(-EGFR)) cells, however, [d-Ala²,d-Leu⁵]enkephalin (1 μM) and etorphine (0.1 μM) retained their ability to stimulate ERK1/2 activation. The newly acquired signal transduction mechanism is insensitive to the EGF receptor blockers 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) and N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]-2-butynamide (CL-387,785), does not involve DOR internalization and activation of the focal adhesion kinase pp125FAK, but requires matrix metalloproteinase-dependent release of soluble growth factors. A supernatant transfer assay in which conditioned growth media of opioid-treated HEK/DOR and HEK/DOR(-EGFR) "donor" cells are used to stimulate ERK1/2 activity in DOR-lacking HEK293 wild type and HEK293(-EGFR) "acceptor" cells revealed that long-term EGF treatment produces a switch in the receptor tyrosine kinase (RTK) system transactivated by opioids. Using microfluidic electrophoresis, chemical inhibitors, phosphorylation-specific antibodies, and EGF receptor-deficient Chinese hamster ovary-K1 cells, we identified the release of an insulin-like growth factor-1 (IGF-1)-like peptide and activation of IGF-1 receptors in HEK/DOR(-EGFR) cells after DOR activation. A similar switch from a neurotrophic tyrosine kinase receptor type 1 to an IGF-1 receptor-dependent ERK1/2 signaling was observed for chronically nerve growth factor-treated neuroblastoma × glioma (NG108-15) cells. These results indicate that transactivation of the dominant RTK system in a given cellular setting may represent a general feature of opioids to maintain mitogenic signaling.
Collapse
Affiliation(s)
- Daniela A Eisinger
- Institute of Pharmacology, Toxicology and Pharmacy, University of Munich, Koeniginstrasse 16, 80539 Muenchen, Federal Republic of Germany.
| | | |
Collapse
|
27
|
Prognostic significance of IGF-1R expression in patients treated with breast-conserving surgery and radiation therapy. Radiother Oncol 2010; 96:204-8. [DOI: 10.1016/j.radonc.2010.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 02/23/2010] [Accepted: 03/07/2010] [Indexed: 01/20/2023]
|
28
|
Li R, Pourpak A, Morris SW. Inhibition of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase as a novel cancer therapy approach. J Med Chem 2010; 52:4981-5004. [PMID: 19610618 DOI: 10.1021/jm9002395] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rongshi Li
- Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Oncologic Sciences, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
29
|
Beauchamp MC, Knafo A, Yasmeen A, Carboni JM, Gottardis MM, Pollak MN, Gotlieb WH. BMS-536924 sensitizes human epithelial ovarian cancer cells to the PARP inhibitor, 3-aminobenzamide. Gynecol Oncol 2009; 115:193-8. [PMID: 19699512 DOI: 10.1016/j.ygyno.2009.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/30/2009] [Accepted: 07/06/2009] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To evaluate the anti-neoplastic activity of BMS-536924, an IGF-1R inhibitor, in epithelial ovarian cancer and its capacity to potentiate the effect of a PARP inhibitor, 3-aminobenzamide. METHODS OVCAR-3, OVCAR-4, SKOV-3 and TOV-81D cell lines were investigated in low-serum tissue culture conditions (1%FBS). Cytotoxicity assays were performed in quadruplicates using the Alamar colorimetric assay in the presence of BMS-536924 and/or 3-aminobenzamide. The levels of phospho-AKT, phospho-S6, PARP-1 and phospho-H2AX were evaluated by western blotting in the presence of BMS-536924. RESULTS BMS-536924 induced a time and dose inhibitory effect on cell survival. This effect seemed to be mediated by a reduction of pAKT and pS6 in a dose-dependent manner. The drug also provoked cell death by apoptosis as suggested by the increase in PARP-1 cleavage. It also induces DNA damage as demonstrated by the increased phosphorylation of histone H2AX and the augmentation of the comet tail moment. Finally, BMS-536924 sensitized cells to the effect of the PARP inhibitor, 3-aminobenzamide. CONCLUSION Our study reinforces the concept that IGF-1R is a good therapeutic target in ovarian cancer. Moreover, it suggests that combination therapy using BMS-536924 with a PARP inhibitor might be an effective strategy to circumvent resistance to treatment in clinical settings.
Collapse
Affiliation(s)
- Marie-Claude Beauchamp
- Division of Gynecologic Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Iwasa T, Okamoto I, Suzuki M, Hatashita E, Yamada Y, Fukuoka M, Ono K, Nakagawa K. Inhibition of insulin-like growth factor 1 receptor by CP-751,871 radiosensitizes non-small cell lung cancer cells. Clin Cancer Res 2009; 15:5117-25. [PMID: 19671857 DOI: 10.1158/1078-0432.ccr-09-0478] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Therapeutic strategies that target the insulin-like growth factor I receptor (IGF-1R) hold promise for a wide variety of cancers. We have now investigated the effect of CP-751,871, a fully human monoclonal antibody specific for IGF-IR, on the sensitivity of human non-small cell lung cancer (NSCLC) cell lines to radiation. EXPERIMENTAL DESIGN The radiosensitizing effect of CP-751,871 was evaluated on the basis of cell death, clonogenic survival, and progression of tumor xenografts. Radiation-induced damage was evaluated by immunofluorescence analysis of the histone gamma-H2AX and Rad51. RESULTS A clonogenic survival assay revealed that CP-751,871 increased the sensitivity of NSCLC cells to radiation in vitro. CP-751,871 inhibited radiation-induced IGF-IR signaling, and potentiated the radiation-induced increases both in the number of apoptotic cells and in the activity of caspase-3. Immunofluorescence analysis of the histone gamma-H2AX and Rad51 also showed that CP-751,871 inhibited the repair of radiation-induced DNA double-strand breaks. Finally, combination therapy with CP-751,871 and radiation delayed the growth of NSCLC tumor xenografts in nude mice to a greater extent than did either treatment modality alone. CONCLUSIONS These results show that CP-751,871 sensitizes NSCLC cells to radiation both in vitro and in vivo, and that this effect of CP-751,871 is likely attributable to the inhibition of DNA repair and enhancement of apoptosis that result from attenuation of IGF-IR signaling. Combined treatment with CP-751,871 and radiation thus warrants further investigation in clinical trials as a potential anticancer strategy.
Collapse
Affiliation(s)
- Tsutomu Iwasa
- Department of Medical Oncology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mangoni M, Yue X, Morin C, Violot D, Frascogna V, Tao Y, Opolon P, Castaing M, Auperin A, Biti G, Barritault D, Vozenin-Brotons MC, Deutsch E, Bourhis J. Differential effect triggered by a heparan mimetic of the RGTA family preventing oral mucositis without tumor protection. Int J Radiat Oncol Biol Phys 2009; 74:1242-50. [PMID: 19545790 DOI: 10.1016/j.ijrobp.2009.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 01/12/2009] [Accepted: 03/11/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Oral mucositis is a common side effect induced by radio/chemotherapy in patients with head and neck cancer. Although it dramatically impairs patient quality of life, no efficient and safe therapeutic solution is available today. Therefore, we investigated the protective efficacy of a new heparan mimetic biopolymer, RGTA-OTR4131, used alone or in combination with amifostine, for oral mucositis and simultaneously evaluated its effect on tumor growth in vitro and in vivo. METHODS AND MATERIALS A single dose of 16.5 Gy was selectively delivered to the snout of mice, and the effects of OTR4131 or amifostine-OTR4131 were analyzed by macroscopic scoring and histology. The effect of OTR4131 administration on tumor growth was then investigated in vitro and in xenograft models using two cell lines (HEP-2 and HT-29). RESULTS Amifostine and OTR4131 significantly decreased the severity and duration of lip mucosal reactions. However, amifostine has to be administered before irradiation, whereas the most impressive protection was obtained when OTR4131 was injected 24 h after irradiation. In addition, OTR4131 was well tolerated, and the combination of amifostine and OTR4131 further enhanced mucosal protection. At the tumor level, OTR4131 did not modify HEP-2 cell line clonogenic survival in vitro or protect xenografted tumor cells from radiotherapy. Of interest, high doses of OTR4131 significantly decreased clonogenic survival of HT-29 cells. CONCLUSIONS RGTAs-OTR4131 is a well-tolerated, natural agent that effectively reduces radio-induced mucositis without affecting tumor sensitivity to irradiation. This suggests a possible transfer into the clinic for patients' benefit.
Collapse
Affiliation(s)
- Monica Mangoni
- Laboratoire UPRES EA 2710, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Meyn RE, Munshi A, Haymach JV, Milas L, Ang KK. Receptor signaling as a regulatory mechanism of DNA repair. Radiother Oncol 2009; 92:316-22. [PMID: 19615770 DOI: 10.1016/j.radonc.2009.06.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 12/29/2022]
Abstract
Radiotherapy plays a crucial role in the treatment of many malignancies; however, locoregional disease progression remains a critical problem. This has stimulated laboratory research into understanding the basis for tumor cell resistance to radiation and the development of strategies for overcoming such resistance. We know that some cell signaling pathways that respond to normal growth factors are abnormally activated in human cancer and that these pathways also invoke cell survival mechanisms that lead to resistance to radiation. For example, abnormal activation of the epidermal growth factor receptor (EGFR) promotes unregulated growth and is believed to contribute to clinical radiation resistance. Molecular blockade of EGFR signaling is an attractive strategy for enhancing the cytotoxic effects of radiotherapy and, as shown in numerous reports, the radiosensitizing effects of EGFR antagonists correlate with a suppression of the ability of the cells to repair radiation-induced DNA double strand breaks (DSBs). The molecular connection between the EGFR and its governance of DNA repair capacity appears to be mediated by one or more signaling pathways downstream of this receptor. The purpose of this review is to highlight what is currently known regarding EGFR signaling and the processes responsible for repairing radiation-induced DNA lesions that would explain the radiosensitizing effects of EGFR antagonists.
Collapse
Affiliation(s)
- Raymond E Meyn
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
33
|
Momose I, Kunimoto S, Osono M, Ikeda D. Inhibitors of insulin-like growth factor-1 receptor tyrosine kinase are preferentially cytotoxic to nutrient-deprived pancreatic cancer cells. Biochem Biophys Res Commun 2009; 380:171-6. [DOI: 10.1016/j.bbrc.2009.01.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
|
34
|
Jin Q, Esteva FJ. Cross-talk between the ErbB/HER family and the type I insulin-like growth factor receptor signaling pathway in breast cancer. J Mammary Gland Biol Neoplasia 2008; 13:485-98. [PMID: 19034632 DOI: 10.1007/s10911-008-9107-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 11/13/2008] [Indexed: 12/15/2022] Open
Abstract
Understanding the molecular mechanisms involved in tumorigenesis and their influence on clinical outcome is providing specific molecular markers for targeted therapy. Activation of tyrosine kinase receptors from the human epidermal growth factor receptor family (EGFR, HER2, HER3, HER4) and the insulin-like growth factor receptor I (IGF-IR) plays a key role in the initiation and progression of breast cancer. HER2 overexpression is a validated therapeutic target, as shown by the clinical efficacy of trastuzumab and lapatinib. However, only 25-30% of patients with HER2-overexpressing tumors respond to single-agent trastuzumab or lapatinib, and resistance develops even in responding patients. Therefore, to optimize therapeutic efficacy, it is urgent to elucidate the complex network of signaling pathways that develop in breast cancer cells. Signaling interactions have been reported between ErbB/HER family members and IGF-IR. As increased IGF-IR signaling has been implicated in trastuzumab resistance, agents targeting HER2, and IGF-IR could be potential therapeutic tools in breast cancers that develop resistance to HER2-directed therapy.
Collapse
Affiliation(s)
- Quanri Jin
- Departments of Breast Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
35
|
Growth factor receptors signaling in glioblastoma cells: therapeutic implications. J Neurooncol 2008; 92:137-47. [PMID: 19043776 DOI: 10.1007/s11060-008-9753-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
In this study, we investigated the protein expression of platelet-derived growth factor receptor (PDGFR), insulin like growth factor-1 receptor (IGF-1R), phosphatidylinositol 3-kinase (PI3-K) and extracellular signal-regulated kinase (ERK1/2) in five primary glioblastoma (GB), with a view to their possible use as therapeutic targets. Our results demonstrated that appreciable levels of these proteins could be detected in the analysed GB cell lines, except for a low level of PDGFR and ERK1/2 expression in one GB cell line. The small molecule inhibitors towards IGF-1R, PDGFR, PI3-K and ERK1/2 respectively, have only modest or no anti-tumour activity on GB cells and therefore their combination with other therapy modalities was analysed. The interaction between small inhibitors and radiation was mostly additive or sub-additive; synergistic interaction was found in five of forty analysed combinations. Our results showed that GB cells are in general resistant to treatment and illustrate the difficulties in predicting the treatment response in malignant gliomas.
Collapse
|
36
|
Almeida MQ, Fragoso MCBV, Lotfi CFP, Santos MG, Nishi MY, Costa MHS, Lerario AM, Maciel CC, Mattos GE, Jorge AAL, Mendonca BB, Latronico AC. Expression of insulin-like growth factor-II and its receptor in pediatric and adult adrenocortical tumors. J Clin Endocrinol Metab 2008; 93:3524-31. [PMID: 18611974 DOI: 10.1210/jc.2008-0065] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Adrenocortical tumors are heterogeneous neoplasms with incompletely understood pathogenesis. IGF-II overexpression has been consistently demonstrated in adult adrenocortical carcinomas. OBJECTIVES The objective of the study was to analyze expression of IGF-II and its receptor (IGF-IR) in pediatric and adult adrenocortical tumors and the effects of a selective IGF-IR kinase inhibitor (NVP-AEW541) on adrenocortical tumor cells. PATIENTS Fifty-seven adrenocortical tumors (37 adenomas and 20 carcinomas) from 23 children and 34 adults were studied. METHODS Gene expression was determined by quantitative real-time PCR. Cell proliferation and apoptosis were analyzed in NCI H295 cells and a new cell line established from a pediatric adrenocortical adenoma. RESULTS IGF-II transcripts were overexpressed in both pediatric adrenocortical carcinomas and adenomas. Otherwise, IGF-II was mainly overexpressed in adult adrenocortical carcinomas (270.5 +/- 130.2 vs. 16.1 +/- 13.3; P = 0.0001). IGF-IR expression was significantly higher in pediatric adrenocortical carcinomas than adenomas (9.1 +/- 3.1 vs. 2.6 +/- 0.3; P = 0.0001), whereas its expression was similar in adult adrenocortical carcinomas and adenomas. IGF-IR expression was a predictor of metastases in pediatric adrenocortical tumors in univariate analysis (hazard ratio 1.84; 95% confidence interval 1.28-2.66; P = 0.01). Furthermore, NVP-AEW541 blocked cell proliferation in a dose- and time-dependent manner in both cell lines through a significant increase of apoptosis. CONCLUSION IGF-IR overexpression was a biomarker of pediatric adrenocortical carcinomas. Additionally, a selective IGF-IR kinase inhibitor had antitumor effects in adult and pediatric adrenocortical tumor cell lines, suggesting that IGF-IR inhibitors represent a promising therapy for human adrenocortical carcinoma.
Collapse
Affiliation(s)
- Madson Q Almeida
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM-42 da Disciplina de Endocrinologia do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, SP, Brasil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The level of insulin growth factor-1 receptor expression is directly correlated with the tumor uptake of 111In-IGF-1(E3R) in vivo and the clonogenic survival of breast cancer cells exposed in vitro to trastuzumab (Herceptin). Nucl Med Biol 2008; 35:645-53. [DOI: 10.1016/j.nucmedbio.2008.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/24/2008] [Accepted: 05/27/2008] [Indexed: 11/16/2022]
|
38
|
Jacobs C. A Review of the Role of Insulin-like Growth Factor 2 in Malignancy and its Potential as a Modifier of Radiation Sensitivity. Clin Oncol (R Coll Radiol) 2008; 20:345-52. [DOI: 10.1016/j.clon.2008.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 01/31/2008] [Accepted: 02/04/2008] [Indexed: 11/28/2022]
|
39
|
Tao Y, Pinzi V, Bourhis J, Deutsch E. Mechanisms of disease: signaling of the insulin-like growth factor 1 receptor pathway--therapeutic perspectives in cancer. ACTA ACUST UNITED AC 2007; 4:591-602. [PMID: 17898809 DOI: 10.1038/ncponc0934] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 04/30/2007] [Indexed: 12/31/2022]
Abstract
The insulin-like growth factor 1 (IGF1) signaling pathway is implicated in the development of cancer. High levels of circulating IGF1 and certain genetic polymorphisms of IGF1 and IGFBP3 are associated with an increased risk of several common cancers. The IGF1 receptor (IGF1R) has been shown to be expressed in a wide range of tumors, and IGF1R signaling is crucial for tumor transformation and the survival of malignant cells. Several monoclonal antibodies and small-molecule inhibitors have been tested in preclinical studies and early-phase clinical studies. IGF1R signaling interferes with numerous growth factors and receptors such as VEGF and EGFR. In the experimental system, IGF1R signaling has been found to correlate with resistance to therapies based on the inhibition of EGFR and HER2. This Review highlights the most relevant studies in this exciting area of research, focusing in particular on the role of IGF1R in resistance to other receptor-targeted therapies for cancer.
Collapse
Affiliation(s)
- Yungan Tao
- Institute Gustave-Roussy and the Department of Radiation Oncology of Cancer Hospital, Fu Dan University, Shanghai, China
| | | | | | | |
Collapse
|
40
|
Niu J, Li XN, Qian H, Han Z. siRNA mediated the type 1 insulin-like growth factor receptor and epidermal growth factor receptor silencing induces chemosensitization of liver cancer cells. J Cancer Res Clin Oncol 2007; 134:503-13. [PMID: 17901981 DOI: 10.1007/s00432-007-0314-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Accepted: 09/10/2007] [Indexed: 01/21/2023]
Abstract
PURPOSE This study was to investigate if downregulation of IGF1R and EGFR by RNA interference (RNAi) would sensitize human liver cancer cells (HEPG2, Huh7 ) to adriamycin. METHODS HEPG2, Huh7 cell lines were transfected IGF1R siRNAs and EGFR siRNAs and IGF1R or EGFR mRNA level was determined by RT-PCR and Western-blot analysis. We investigated the effects of the adriamycin-induced apoptosis of these cells by TUNEL assay. Also we analyze caspase3, 8 and the phosphorylation levels of Akt and Erk by Western-blot. The p53 effect of adriamycin-induced cell death by inhibitors of EGFR/IGF1R is investigated by cell growth curves. RESULTS Transfection of an IGF1R and EGFR siRNAs resulted in substantial loss of IGF1R and EGFR mRNA of HEPG2, Huh7 cells relative to the control case. EGFR siRNA and IGF1R siRNA treatments increased the adriamycin-induced apoptosis of these cells. IGF1R siRNA and EGFR siRNA enhance a caspase-dependent cell death program. The phosphorylation levels of Akt and Erk were reduced by the combination of the two agents. The facilitation of adriamycin-induced cell death by inhibitors of EGFR/IGF1R is p53-independent. CONCLUSIONS The results indicate that the siRNA for IGF1R has a great potential for cancer therapy when combined with either a chemotherapeutic agent or siRNAs that targets EGFR.
Collapse
Affiliation(s)
- Jian Niu
- General Surgery of the First Hospital Affiliated Xuzhou Medical College, Xuzhou, China.
| | | | | | | |
Collapse
|
41
|
Nordén MM, Larsson F, Tedelind S, Carlsson T, Lundh C, Forssell-Aronsson E, Nilsson M. Down-regulation of the Sodium/Iodide Symporter Explains 131I-Induced Thyroid Stunning. Cancer Res 2007; 67:7512-7. [PMID: 17671222 DOI: 10.1158/0008-5472.can-07-0823] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(131)I radiation therapy of differentiated thyroid cancer may be compromised by thyroid stunning (i.e., a paradoxical inhibition of radioiodine uptake caused by radiation from a pretherapeutic diagnostic examination). The stunning mechanism is yet uncharacterized at the molecular level. We therefore investigated whether the expression of the sodium/iodide symporter (NIS) gene is changed by irradiation using (131)I. Confluent porcine thyroid cells on filter were stimulated with thyroid-stimulating hormone (TSH; 1 milliunit/mL) or insulin-like growth factor-I (IGF-I; 10 ng/mL) and simultaneously exposed to (131)I in the culture medium for 48 h, porcine NIS mRNA was quantified by real-time reverse transcription-PCR using 18S as reference, and transepithelial iodide transport was monitored using (125)I(-) as tracer. TSH increased the NIS expression >100-fold after 48 h and 5- to 20-fold after prolonged stimulation. IGF-I enhanced the NIS transcription at most 15-fold but not until 5 to 7 days. (131)I irradiation (7.5 Gy) decreased both TSH-stimulated and IGF-I-stimulated NIS transcription by 60% to 90% at all investigated time points. TSH and IGF-I stimulated NIS synergistically 15- to 60-fold after 5 days. NIS expression was reduced by (131)I also in costimulated cells, but the transcription level remained higher than in nonirradiated cells stimulated with TSH alone. Changes in NIS mRNA always correlated with altered (125)I(-) transport in cultures with corresponding treatments. It is concluded that down-regulation of NIS is the likely explanation of (131)I-induced thyroid stunning. Enhanced NIS expression by synergistically acting agents (TSH and IGF-I) partly prevents the loss of iodide transport expected from a given absorbed dose, suggesting that thyroid stunning might be pharmacologically treatable.
Collapse
Affiliation(s)
- Madeleine M Nordén
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy at Göteborg University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
42
|
Issad T, Blanquart C, Gonzalez-Yanes C. The use of bioluminescence resonance energy transfer for the study of therapeutic targets: application to tyrosine kinase receptors. Expert Opin Ther Targets 2007; 11:541-56. [PMID: 17373883 DOI: 10.1517/14728222.11.4.541] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During recent years, the bioluminescence resonance energy transfer (BRET) methodology has emerged as a powerful technique for the study of protein-protein interactions. This review focuses on recent work demonstrating the power of BRET for the study of tyrosine kinase receptors, using insulin and IGF-1 receptors as models. The authors show that BRET can be used to monitor ligand-induced conformational changes within homodimeric insulin and IGF-1 receptors, as well as heterodimeric insulin/IGF-1 hybrid receptors. BRET can also be used to study, in real time and in living cells, the interaction of tyrosine kinase receptors with cellular partners negatively or positively involved in the regulation of intracellular signalling (protein tyrosine phosphatases, molecular adaptors). In addition, BRET can be used to develop high-throughput screening assays for the search of molecules with therapeutic interest and could, therefore, constitute a valuable tool for laboratories involved in drug discovery.
Collapse
Affiliation(s)
- Tarik Issad
- Institut Cochin, Department of Cell Biology, Université Paris Descartes, CNRS (UMR 8104), 22 Rue Méchain, 75014 Paris, France.
| | | | | |
Collapse
|
43
|
Allen GW, Saba C, Armstrong EA, Huang SM, Benavente S, Ludwig DL, Hicklin DJ, Harari PM. Insulin-like growth factor-I receptor signaling blockade combined with radiation. Cancer Res 2007; 67:1155-62. [PMID: 17283150 DOI: 10.1158/0008-5472.can-06-2000] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signaling through the insulin-like growth factor-I receptor (IGF-IR) is implicated in cellular proliferation, apoptosis, carcinogenesis, metastasis, and resistance to cytotoxic cancer therapies. Targeted disruption of IGF-IR signaling combined with cytotoxic therapy may therefore yield improved anticancer efficacy over conventional treatments alone. In this study, a fully human anti-IGF-IR monoclonal antibody A12 (ImClone Systems, Inc., New York, NY) is examined as an adjunct to radiation therapy. IGF-IR expression is shown for a diverse cohort of cell lines, whereas targeted IGF-IR blockade by A12 inhibits IGF-IR phosphorylation and activation of the downstream effectors Akt and mitogen-activated protein kinase. Anchorage-dependent proliferation and xenograft growth is inhibited by A12 in a dose-dependent manner, particularly for non-small cell lung cancer lines. Clonogenic radiation survival of H226 and H460 cells grown under anchorage-dependent conditions is impaired by A12, demonstrating a radiation dose-enhancing effect for IGF-IR blockade. Postradiation anchorage-independent colony formation is inhibited by A12 in A549 and H460 cells. In the H460 xenograft model, combining A12 and radiation significantly enhances antitumor efficacy compared with either modality alone. These effects may be mediated by promotion of radiation-induced, double-stranded DNA damage and apoptosis as observed in cell culture. In summary, these results validate IGF-IR signal transduction blockade as a promising strategy to improve radiation therapy efficacy in human tumors, forming a basis for future clinical trials.
Collapse
Affiliation(s)
- Gregory W Allen
- Department of Human Oncology, School of Medicine and Comprehensive Cancer Center, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cosaceanu D, Carapancea M, Alexandru O, Budiu R, Martinsson HS, Starborg M, Vrabete M, Kanter L, Lewensohn R, Dricu A. Comparison of three approaches for inhibiting insulin-like growth factor I receptor and their effects on NSCLC cell lines in vitro. Growth Factors 2007; 25:1-8. [PMID: 17454144 DOI: 10.1080/08977190600702865] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The insulin-like growth factor-1 receptor (IGF-1R) mitogenic signaling mediates malignant cell survival by many complex and redundant pathways. This study compared the effects of IGF-1R inhibition on viability and apoptosis of two NSCLC cell lines, using three different methods for the impairment of IGF-1R function: (IR3, an anti-IGF-1R antibody; tyrphostin AG1024, a tyrosine kinase inhibitor (TKI) and IGF-1R-small interfering RNA (siRNA). IGF-1R inhibition led to a decrease of cell survival and induced apoptosis in a manner depending on the approach used for the receptor inhibition. To find an explanation, we analyzed the effects of these treatments on three major antiapoptotic pathways evoked by IGF-1R signaling: IRS-1, Shc and 14.3.3-dependent mitochondrial translocation of Raf-1 kinase (mitRaf). (IR3 downregulated IRS-1 phosphorylation in A549 cells and Shc phosphorylation in U1810 cells. While in A549 cells AG1024 treatment decreased both IRS-1 and Shc phosphorylation, in U1810 cells the IRS-1 phosphorylation was only slightly affected and the Shc phosphorylation drastically downregulated. Neither (IR3 nor AG1024 had any effect on Raf-1 kinase translocation. Irrespective of the cell line, IGF-1R-siRNA treatment induced downregulation of both IRS-1 and Shc phosphorylation coupled with the abrogation of mitRaf. In addition, the IGF-1R-siRNA proved to be the most potent inducer of apoptosis suggesting that more than one antiapoptotic pathway in IGF-1R signaling should be inhibited to effectively induce apoptosis in lung cancer cells.
Collapse
Affiliation(s)
- Daria Cosaceanu
- Department of Oncology-Pathology, Cancer Center Karolinska and Radiumhemmet Karolinska Institute/Hospital. R8:00, Stockholm, S-171 76. Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 2007; 28:20-47. [PMID: 16931767 DOI: 10.1210/er.2006-0001] [Citation(s) in RCA: 730] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IGF-I receptor (IGF-IR) signaling and functions are mediated through the activities of a complex molecular network of positive (e.g., type I IGF) and negative (e.g., the type II IGF receptor, IGF-IIR) effectors. Under normal physiological conditions, the balance between the expression and activities of these molecules is tightly controlled. Changes in this delicate balance (e.g., overexpression of one effector) may trigger a cascade of molecular events that can ultimately lead to malignancy. In recent years, evidence has been mounting that the IGF axis may be involved in human cancer progression and can be targeted for therapeutic intervention. Here we review old and more recent evidence on the role the IGF system in malignancy and highlight experimental and clinical studies that provide novel insights into the complex mechanisms that contribute to its oncogenic potential. Controversies arising from conflicting evidence on the relevance of IGF-IR and its ligands to human cancer are discussed. Our review highlights the importance of viewing the IGF axis as a complex multifactorial system and shows that changes in the expression levels of any one component of the axis, in a given malignancy, should be interpreted with caution and viewed in a wider context that takes into account the expression levels, state of activation, accessibility, and functionality of other interacting components. Because IGF targeting for anticancer therapy is rapidly becoming a clinical reality, an understanding of this complexity is timely because it is likely to have an impact on the design, mode of action, and clinical outcomes of newly developed drugs.
Collapse
Affiliation(s)
- Amir Abbas Samani
- Department of Medicine, McGill University Health Center, Royal Victoria Hospital, Room H6.25687, Pine Avenue West, Montreal, Québec, Canada H3A 1A1
| | | | | | | |
Collapse
|
46
|
Iwamoto KS, Barber CL. Radiation-induced posttranscriptional control of M6P/IGF2r expression in breast cancer cell lines. Mol Carcinog 2007; 46:497-502. [PMID: 17295243 DOI: 10.1002/mc.20303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2r), a member of the IGF axis of growth factors, is a negative regulator of cell growth and a putative tumor suppressor gene. Regulation of M6P/IGF2r levels is critical in breast physiology; low expression is associated with various aspects of breast cancer. We have found that ionizing radiation induces the rapid expression of M6P/IGF2r in a dose-dependent manner in MCF7 human breast cancer cells. We show that this increase is mediated, at least in part, by a stabilization of M6P/IGF2r transcripts by radiation in both ER positive (MCF7 and T47D) and ER negative (MDA-MB-231) breast cancer cell lines. It is probable, therefore, that posttranscriptional dysregulation of M6P/IGF2r is a contributing mechanism in breast cancer development and breast cancer response to therapy. This is a novel find that underscores the importance of posttranscriptional control of radiation-induced gene expression-a phenomenon that has often been paradigmatically attributed to transcriptional control.
Collapse
MESH Headings
- Blotting, Northern
- Breast Neoplasms/radiotherapy
- Dose-Response Relationship, Radiation
- Flow Cytometry
- Gene Expression Regulation/radiation effects
- Humans
- Mannosephosphates/genetics
- Mannosephosphates/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- Radiation, Ionizing
- Receptor, IGF Type 2/genetics
- Receptor, IGF Type 2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic/radiation effects
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/radiation effects
Collapse
Affiliation(s)
- Keisuke S Iwamoto
- Roy E. Coats Research Laboratories, Department of Radiation Oncology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | |
Collapse
|
47
|
Insulin-like growth factors and breast cancer therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 608:101-12. [PMID: 17993235 DOI: 10.1007/978-0-387-74039-3_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite improvements in breast cancer therapy in recent years, additional therapies need to be developed. New therapies may have activity by themselves or may have utility in combination with other agents. Population, preclinical, and basic data suggest the insulin-like growth factor (IGF) system functions to maintain the malignant phenotype in breast cancer. Since the IGFs act via transmembrane tyrosine kinase receptors, targeting of the key receptors could provide a new pathway in breast cancer. In addition, IGF action enhances cell survival, so combination of anti-IGF therapy with conventional cytotoxic drugs could lead to synergistic effects. In this review, we will discuss the rationale for targeting the IGF system, potential methods to disrupt IGF signaling, and identify potential interactions between IGF inhibitors and other anti-tumor strategies. We will also identify important issues to consider when designing clinical trials.
Collapse
|
48
|
Cosaceanu D, Budiu RA, Carapancea M, Castro J, Lewensohn R, Dricu A. Ionizing radiation activates IGF-1R triggering a cytoprotective signaling by interfering with Ku-DNA binding and by modulating Ku86 expression via a p38 kinase-dependent mechanism. Oncogene 2006; 26:2423-34. [PMID: 17043647 DOI: 10.1038/sj.onc.1210037] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ionizing radiation exposure results in the activation of several tyrosine kinase receptors that participate in radiation-induced DNA damage response and radioresistance. We previously showed that insulin-like growth factor 1 receptor (IGF-1R) inhibition enhanced radiosensitivity of non-small-cell lung cancer (NSCLC) cells. In this paper, we demonstrate that in U1810 NSCLC cells gamma-radiation activates IGF-1R within 10 min, with a maximal activation effect 2 h post-irradiation. Impairment of IGF-1R tyrosine kinase activity enhances human lung cancer cells radiosensitivity by a mechanism that involves phosphatidylinositol 3-kinase (PI3-K) and p38 kinase. In an active form, IGF-1R binds and activates p38 kinase, promoting receptor signaling. Conversely, inhibition of IGF-1R phosphorylation results in IGF-1R/p38 complex disruption and p38 kinase inactivation. We have also demonstrated that in insulin-like growth factor-1-stimulated cells, Ku-DNA-binding activation is induced by ionizing radiation within 4 h, reaches a maximum level at 12 h and remains active up to 72 h. Blockade of IGF-1R activity or its downstream signaling through p38 kinase induces a decrease in radiation-mediated Ku-DNA-binding activation and downregulates the level of Ku86, without affecting Ku70 expression in the nucleus of U1810 cells. The IGF-1R signaling via PI3-K does not interfere with the p38 signaling, the Ku-DNA-binding activity or the level of Ku86. Our present study demonstrates for the first time that ionizing radiation activates IGF-1R. Inhibition of IGF-1R signaling via p38 kinase induces radiosensitivity by a novel mechanism involving nuclear Ku86.
Collapse
Affiliation(s)
- D Cosaceanu
- Department of Oncology-Pathology, Cancer Center Karolinska and Radiumhemmet Karolinska Institute/Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The ability of GH, via its mediator peptide IGF-1, to influence regulation of cellular growth has been the focus of much interest in recent years. In this review, we will explore the association between GH and cancer. Available experimental data support the suggestion that GH/IGF-1 status may influence neoplastic tissue growth. Extensive epidemiological data exist that also support a link between GH/IGF-1 status and cancer risk. Epidemiological studies of patients with acromegaly indicate an increased risk of colorectal cancer, although risk of other cancers is unproven, and a long-term follow-up study of children deficient in GH treated with pituitary-derived GH has indicated an increased risk of colorectal cancer. Conversely, extensive studies of the outcome of GH replacement in childhood cancer survivors show no evidence of an excess of de novo cancers, and more recent surveillance of children and adults treated with GH has revealed no increase in observed cancer risk. However, given the experimental evidence that indicates GH/IGF-1 provides an anti-apoptotic environment that may favour survival of genetically damaged cells, longer-term surveillance is necessary; over many years, even a subtle alteration in the environmental milieu in this direction, although not inducing cancer, could result in acceleration of carcinogenesis. Finally, even if GH/IGF-1 therapy does result in a small increase in cancer risk compared to untreated patients with GH deficiency, it is likely that the eventual risk will be the same as the general population. Such a restoration to normality will need to be balanced against the known morbidity of untreated GH deficiency.
Collapse
Affiliation(s)
- P J Jenkins
- Departments of Endocrinology, St Bartholomew's Hospital, London, UK.
| | | | | |
Collapse
|
50
|
Sachdev D, Yee D. Inhibitors of insulin-like growth factor signaling: a therapeutic approach for breast cancer. J Mammary Gland Biol Neoplasia 2006; 11:27-39. [PMID: 16947084 DOI: 10.1007/s10911-006-9010-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The peptide growth factors IGF-I and IGF-II not only play a role in the development of the mammary gland but are also implicated in breast cancer. Several reagents disrupting IGF signaling have been developed and clinical trials validating IGF signaling as a target in cancer therapy are underway. This review highlights the approaches to inhibiting IGF signaling in breast cancer.
Collapse
Affiliation(s)
- Deepali Sachdev
- Department of Medicine and Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware St, SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|