1
|
Liu Z, Zhao S, Jin X, Wen X, Ran X. Host and structure-specific codon usage of G genotype (VP7) among group A rotaviruses. Front Vet Sci 2024; 11:1438243. [PMID: 39582884 PMCID: PMC11582040 DOI: 10.3389/fvets.2024.1438243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Rotavirus A (RVA) infects a relatively wide host range. Studying the evolutionary dynamics of viral genomes and the evolution of host adaptations can inform the development of epidemiological models of disease transmission. Moreover, comprehending the adaptive evolution of viruses in the host could provide insights into how viruses promote evolutionary advantages on a larger scale at host level. This study aims to determine whether host specificity in codon usage existed. We used the Clustal W function within MEGA X software to perform sequence alignment, followed by construction of a phylogenetic tree based on the maximum-likelihood method. Additionally, Codon W software and EMBOSS were utilized for analysis of codon usage bias index. We analyzed codon usage bias (CUB) of host-specific G genotype VP7 to elucidate the molecular-dynamic evolutionary pattern and reveal the adaptive evolution of VP7 at the host level. The CUB of RV VP7 exhibits significant difference between human and other species. This bias can be primarily attributed to natural selection. In addition, the β-barrel structural domain, which plays a crucial role in viral transmembrane entry into cells, demonstrates a stronger CUB. Our results provide novel insights into the evolutionary dynamics of RVs, cross-species transmission, and virus-host adaptation.
Collapse
Affiliation(s)
| | | | | | - Xiaobo Wen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xuhua Ran
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
2
|
Li L, Wang J, Chen L, Ren Q, Akhtar MF, Liu W, Wang C, Cao S, Liu W, Zhao Q, Li Y, Wang T. Diltiazem HCl suppresses porcine reproductive and respiratory syndrome virus infection in susceptible cells and in swine. Vet Microbiol 2024; 292:110054. [PMID: 38507832 DOI: 10.1016/j.vetmic.2024.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen for swine, resulting in substantial economic losses to the swine industry. However, there has been little success in developing effective vaccines or drugs for PRRSV control. In the present study, we discovered that Diltiazem HCl, an inhibitor of L-type Ca2+ channel, effectively suppresses PRRSV replication in MARC-145, PK-15CD163 and PAM cells in dose-dependent manner. Furthermore, it demonstrates a broad-spectrum activity against both PRRSV-1 and PRRSV-2 strains. Additionally, we explored the underlying mechanisms and found that Diltiazem HCl -induced inhibition of PRRSV associated with regulation of calcium ion homeostasis in susceptible cells. Moreover, we evaluated the antiviral effects of Diltiazem HCl in PRRSV-challenged piglets, assessing rectal temperature, viremia, and gross and microscopic lung lesions. Our results indicate that Diltiazem HCl treatment alleviates PRRSV-induced rectal temperature spikes, pulmonary pathological changes, and serum viral load. In conclusion, our data suggest that Diltiazem HCl could serve as a novel therapeutic drug against PRRSV infection.
Collapse
Affiliation(s)
- Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Jiayu Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Li Chen
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Qinghai Ren
- College of Agronomy, Liaocheng University, Liaocheng, China
| | | | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Shengliang Cao
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, China.
| | - Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China.
| |
Collapse
|
3
|
Perry JL, Scribano FJ, Gebert JT, Engevik KA, Ellis JM, Hyser JM. Host IP 3R channels are dispensable for rotavirus Ca 2+ signaling but critical for intercellular Ca 2+ waves that prime uninfected cells for rapid virus spread. mBio 2024; 15:e0214523. [PMID: 38112482 PMCID: PMC10790754 DOI: 10.1128/mbio.02145-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Many viruses exploit host Ca2+ signaling to facilitate their replication; however, little is known about how Ca2+ signals from different host and viral channels contribute to the overall dysregulation of Ca2+ signaling or promote virus replication. Using cells lacking IP3R, a host ER Ca2+ channel, we delineated intracellular Ca2+ signals within virus-infected cells and intercellular Ca2+ waves (ICWs), which increased Ca2+ signaling in neighboring, uninfected cells. In infected cells, IP3R was dispensable for rotavirus-induced Ca2+ signaling and replication, suggesting the rotavirus NSP4 viroporin supplies these signals. However, IP3R-mediated ICWs increase rotavirus replication kinetics and spread, indicating that the Ca2+ signals from the ICWs may prime nearby uninfected cells to better support virus replication upon eventual infection. This "pre-emptive priming" of uninfected cells by exploiting host intercellular pathways in the vicinity of virus-infected cells represents a novel mechanism for viral reprogramming of the host to gain a replication advantage.
Collapse
Affiliation(s)
- Jacob L. Perry
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Francesca J. Scribano
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - John T. Gebert
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kristen A. Engevik
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jenna M. Ellis
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph M. Hyser
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Lu D, Wu Y, Fu M, Wu Y, Wang Z, Lin J, Yang Q. CALB1: Anovel antiviral factor in chicken ileal mucus. Int J Biol Macromol 2023; 253:127007. [PMID: 37734520 DOI: 10.1016/j.ijbiomac.2023.127007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Intestinal mucus is the first line of defense against pathogens and has several active components. Poultry have a short intestine, the mucus of which may contain antiviral components. We hence investigated the antiviral components of mucus and explored their mechanisms of action. Initially, we isolated chicken intestinal mucus proteins that significantly inhibited the replication of avian viruses. The ileum 10-30 kDa protein fraction showed the greatest inhibition of viral replication. Moreover, liquid chromatography-mass spectrometry revealed 12 high-abundance proteins in the ileum 10-30 kDa protein fraction. Among them, we investigated the antiviral activity of calcium binding protein 1 (CALB1). Furthermore, eukaryotically and prokaryotically expressed CALB1 significantly suppressed the replication of avian viruses, possibly by binding calcium ions and/or inducing autophagy. In conclusion, we isolated and identified CALB1 from chicken intestinal mucus, which suppressed replication of avian viruses by regulating cellular calcium-ion homeostasis and autophagy.
Collapse
Affiliation(s)
- Danqing Lu
- College of Life Sciences, SanYa Institute of Nanjing Agricultural University, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China
| | - Yang Wu
- College of Life Sciences, SanYa Institute of Nanjing Agricultural University, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China
| | - Mei Fu
- College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Yaotang Wu
- College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Zhisheng Wang
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Jian Lin
- College of Life Sciences, SanYa Institute of Nanjing Agricultural University, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China; College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China.
| | - Qian Yang
- College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
5
|
Perry JL, Scribano FJ, Gebert JT, Engevik KA, Ellis JM, Hyser JM. The Inositol Trisphosphate Receptor (IP 3 R) is Dispensable for Rotavirus-induced Ca 2+ Signaling and Replication but Critical for Paracrine Ca 2+ Signals that Prime Uninfected Cells for Rapid Virus Spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552719. [PMID: 37609335 PMCID: PMC10441394 DOI: 10.1101/2023.08.09.552719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Rotavirus is a leading cause of viral gastroenteritis. A hallmark of rotavirus infection is an increase in cytosolic Ca 2+ caused by the nonstructural protein 4 (NSP4). NSP4 is a viral ion channel that releases Ca 2+ from the endoplasmic reticulum (ER) and the increase in Ca 2+ signaling is critical for rotavirus replication. In addition to NSP4 itself, host inositol 1,4,5- trisphosphate receptor (IP 3 R) ER Ca 2+ channels may contribute to rotavirus-induced Ca 2+ signaling and by extension, virus replication. Thus, we set out to determine the role of IP 3 R Ca 2+ signaling during rotavirus infection using IP 3 R-knockout MA104-GCaMP6s cells (MA104- GCaMP6s-IP 3 R-KO), generated by CRISPR/Cas9 genome editing. Live Ca 2+ imaging showed that IP 3 R-KO did not reduce Ca 2+ signaling in infected cells but eliminated rotavirus-induced intercellular Ca 2+ waves (ICWs) and therefore the increased Ca 2+ signaling in surrounding, uninfected cells. Further, MA104-GCaMP6s-IP 3 R-TKO cells showed similar rotavirus susceptibility, single-cycle replication, and viral protein expression as parental MA104- GCaMP6s cells. However, MA104-GCaMP6s-IP 3 R-TKO cells exhibited significantly smaller rotavirus plaques, decreased multi-round replication kinetics, and delayed virus spread, suggesting that rotavirus-induced ICW Ca 2+ signaling stimulates virus replication and spread. Inhibition of ICWs by blocking the P2Y1 receptor also resulted in decreased rotavirus plaque size. Conversely, exogenous expression of P2Y1 in LLC-MK2-GCaMP6s cells, which natively lack P2Y1 and rotavirus ICWs, rescued the generation of rotavirus-induced ICWs and enabled plaque formation. In conclusion, this study shows that NSP4 Ca 2+ signals fully support rotavirus replication in individual cells; however, IP 3 R is critical for rotavirus-induced ICWs and virus spread by priming Ca 2+ -dependent pathways in surrounding cells. Importance Many viruses exploit host Ca 2+ signaling to facilitate their replication; however, little is known about how distinct types of Ca 2+ signals contribute to the overall dysregulation of Ca 2+ signaling or promote virus replication. Using cells lacking IP 3 R, a host ER Ca 2+ channel, we could differentiate between intracellular Ca 2+ signals within virus-infected cells and intercellular Ca 2+ waves (ICWs), which increase Ca 2+ signaling in neighboring, uninfected cells. In infected cells, IP 3 R was dispensable for rotavirus-induced Ca 2+ signaling and replication, suggesting the rotavirus NSP4 viroporin supplies these signals. However, IP 3 R-mediated ICWs increase rotavirus replication kinetics and spread, indicating that the Ca 2+ signals from the ICWs may prime nearby uninfected cells to better support virus replication upon eventual infection. This "pre-emptive priming" of uninfected cells by exploiting host intercellular pathways in the vicinity of virus-infected cells represents a novel mechanism for viral reprogramming of the host to gain a replication advantage.
Collapse
|
6
|
Kopper JJ. Equine Rotaviral Diarrhea. Vet Clin North Am Equine Pract 2023; 39:47-54. [PMID: 36737285 DOI: 10.1016/j.cveq.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Equine rotavirus is one of the most common causes of infectious diarrhea in foals. Although the infection itself is self-limiting, the resulting diarrhea is due to multiple mechanisms and can be severe, requiring supportive care including fluid and electrolyte support. Prompt diagnosis is important for treatment and biosecurity decisions and can be achieved by several means. Prevention, while imperfect, currently relies on vaccination of pregnant mares before parturition, ingestion of adequate colostrum from vaccinated mares and biosecurity measures.
Collapse
Affiliation(s)
- Jamie J Kopper
- Iowa State University, College of Veterinary Medicine, 1809 Christensen Drive, Ames Iowa 50010, USA.
| |
Collapse
|
7
|
Abuelizz HA, Bakheit AH, Marzouk M, El-Senousy WM, Abdellatif MM, Mostafa GAE, Al-Salahi R. Evaluation of Some Benzo[g]Quinazoline Derivatives as Antiviral Agents against Human Rotavirus Wa Strain: Biological Screening and Docking Study. Curr Issues Mol Biol 2023; 45:2409-2421. [PMID: 36975526 PMCID: PMC10047800 DOI: 10.3390/cimb45030156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Globally, rotavirus (RV) is the most common cause of acute gastroenteritis in infants and toddlers; however, there are currently no agents available that are tailored to treat rotavirus infection in particular. Improved and widespread immunization programs are being implemented worldwide to reduce rotavirus morbidity and mortality. Despite certain immunizations, there are no licensed antivirals that can attack rotavirus in hosts. Benzoquinazolines, chemical components synthesized in our laboratory, were developed as antiviral agents, and showed good activity against herpes simplex, coxsackievirus B4 and hepatitis A and C. In this research project, an in vitro investigation of the effectiveness of benzoquinazoline derivatives 1–16 against human rotavirus Wa strains was carried out. All compounds exhibited antiviral activity, however compounds 1–3, 9 and 16 showed the greatest activity (reduction percentages ranged from 50 to 66%). In-silico molecular docking of highly active compounds, which were selected after studying the biological activity of all investigated of benzo[g]quinazolines compounds, was implemented into the protein’s putative binding site to establish an optimal orientation for binding. As a result, compounds 1, 3, 9, and 16 are promising anti-rotavirus Wa strains that lead with Outer Capsid protein VP4 inhibition.
Collapse
Affiliation(s)
- Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Marzouk
- Chemistry of Tanning Materials and Leather Technology Department, Organic Chemicals Industries Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Waled M. El-Senousy
- Food Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute and Food-Borne Viruses Group, Centre of Excellence for Advanced Sciences, National Research Centre (NRC), 33 El-Buhouth Street, Dokki, Giza 12622, Egypt
| | - Mohamed M. Abdellatif
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Tokyo 192-0397, Japan
| | - Gamal A. E. Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Yan N, Wang Y, Chen Z, Liu A, Li Y, Yang B, Li K, Qi X, Gao Y, Gao L, Liu C, Zhang Y, Cui H, Pan Q, Wang X. Stromal Interaction Molecule 1 Promotes the Replication of vvIBDV by Mobilizing Ca2+ in the ER. Viruses 2022; 14:v14071524. [PMID: 35891504 PMCID: PMC9320076 DOI: 10.3390/v14071524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is one of the main threats to the poultry industry worldwide. Very virulent IBDV (vvIBDV) is a fatal virus strain that causes heavy mortality in young chicken flocks. Ca2+ is one of the most universal and versatile signalling molecules and is involved in almost every aspect of cellular processes. Clinical examination showed that one of the characteristics of vvIBDV-infected chickens was severe metabolic disorders, and the chemical examination showed that their serum Ca2+ level decreased significantly. However, there are limited studies on how vvIBDV infection modulates the cellular Ca2+ level and the effect of Ca2+ level changes on vvIBDV replication. In our study, we found Ca2+ levels in the endoplasmic reticulum (ER) of vvIBDV-infected B cells were higher than that of mock-infected cells, and the expression level of stromal interaction molecule 1 (STIM1), an ER Ca2+ sensor, was significantly upregulated due to vvIBDV infection. The knock-down expression of STIM1 led to decreased Ca2+ level in the ER and suppressed vvIBDV replication, while the over-expressed STIM1 led to ER Ca2+ upregulation and promoted vvIBDV replication. We also showed that the inhibition of Ca2+-release-activated-Ca2+ (CRAC) channels could reduce vvIBDV infection by blocking Ca2+ from entering the ER. This study suggests a new mechanism that STIM1 promotes the replication of vvIBDV by mobilizing Ca2+ in the ER.
Collapse
Affiliation(s)
- Nana Yan
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
| | - Yongqiang Wang
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
- Correspondence: (Y.W.); (X.W.); Fax: +86-451-5199-7166 (X.W.)
| | - Zehua Chen
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
| | - Aijing Liu
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
| | - Yue Li
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
| | - Bo Yang
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
| | - Kai Li
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
| | - Xiaole Qi
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
| | - Yulong Gao
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
| | - Li Gao
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
| | - Changjun Liu
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
| | - Yanping Zhang
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
| | - Hongyu Cui
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
| | - Qing Pan
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
| | - Xiaomei Wang
- State Key Laboratory of Veterinary Biotechnology, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.Y.); (Z.C.); (A.L.); (Y.L.); (B.Y.); (K.L.); (X.Q.); (Y.G.); (L.G.); (C.L.); (Y.Z.); (H.C.); (Q.P.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.W.); (X.W.); Fax: +86-451-5199-7166 (X.W.)
| |
Collapse
|
9
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
10
|
Chepngeno J, Takanashi S, Diaz A, Michael H, Paim FC, Rahe MC, Hayes JR, Baker C, Marthaler D, Saif LJ, Vlasova AN. Comparative Sequence Analysis of Historic and Current Porcine Rotavirus C Strains and Their Pathogenesis in 3-Day-Old and 3-Week-Old Piglets. Front Microbiol 2020; 11:780. [PMID: 32395116 PMCID: PMC7197332 DOI: 10.3389/fmicb.2020.00780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
The increased prevalence of porcine group C rotavirus (PRVC) in suckling piglets and the emergence of new genetically distinct PRVC strains are concerning due to the associated significant economic losses they cause to the swine industry. We sequenced and analyzed two new PRVC strains, RV0104 (G3), and RV0143 (G6) and compared their pathogenesis with that of the historic strain Cowden (G1) in gnotobiotic (Gn) pigs. Near complete genome sequence analysis confirmed that these two strains were distinct from one another and the Cowden strain. VP1, VP2, VP6, NSP1-NSP3, and NSP5 genes were more similar between Cowden and RV0143, whereas VP3, VP7, and NSP4 shared higher nucleotide identity between Cowden and RV0104. Three-day-old and 3-week-old Gn piglets were inoculated with 105 FFU/piglet of Cowden, RV0104 or RV0143, or mock. All 3-day-old piglets developed severe diarrhea, anorexia, and lethargy, with mean PRVC fecal shedding titers peaking and numerically higher in RV0104 and RV0143 piglets on post infection day (PID) 2. Histopathological examination of the small intestine revealed that the 3-day-old Cowden and RV0104 inoculated piglets were mildly affected, while significant destruction of small intestinal villi was observed in the RV0143 inoculated piglets. Consistent with the highest degree of pathological changes in the small intestines, the RV0143 inoculated piglets had numerically higher levels of serum IL-17 and IFN-α cytokines and numerically lower PRVC IgA geometric mean antibody titers. Milder pathological changes and overall higher titers of PRVC IgA antibodies were observed in 3-week-old vs. 3-day-old piglets. Additionally, diarrhea was only observed in RV0104 and RV0143 (but not Cowden) inoculated 3-week-old piglets, while levels of serum IL-10 and PRVC IgA antibodies were higher in Cowden inoculated pigs, consistent with the lack of diarrhea. Thus, we confirmed that these current, genetically heterogeneous PRVC strains possess distinct pathobiological characteristics that may contribute to the increased prevalence of PRVC diarrhea in neonatal suckling piglets.
Collapse
Affiliation(s)
- Juliet Chepngeno
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Sayaka Takanashi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States.,Department of Developmental Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Annika Diaz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States.,Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Husheem Michael
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Francine C Paim
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Michael C Rahe
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Jeffrey R Hayes
- Animal Disease Diagnostic Laboratory, The Ohio Department of Agriculture, Reynoldsburg, OH, United States
| | - Courtney Baker
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States.,Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Douglas Marthaler
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
11
|
Glingston RS, Deb R, Kumar S, Nagotu S. Organelle dynamics and viral infections: at cross roads. Microbes Infect 2018; 21:20-32. [PMID: 29953921 PMCID: PMC7110583 DOI: 10.1016/j.micinf.2018.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/12/2023]
Abstract
Viruses are obligate intracellular parasites of the host cells. A commonly accepted view is the requirement of internal membranous structures for various aspects of viral life cycle. Organelles enable favourable intracellular environment for several viruses. However, studies reporting organelle dynamics upon viral infections are scant. In this review, we aim to summarize and highlight modulations caused to various organelles upon viral infection or expression of its proteins.
Collapse
Affiliation(s)
- R Sahaya Glingston
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
12
|
Martín-González N, Guérin Darvas SM, Durana A, Marti GA, Guérin DMA, de Pablo PJ. Exploring the role of genome and structural ions in preventing viral capsid collapse during dehydration. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:104001. [PMID: 29350623 PMCID: PMC7104708 DOI: 10.1088/1361-648x/aaa944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
Even though viruses evolve mainly in liquid milieu, their horizontal transmission routes often include episodes of dry environment. Along their life cycle, some insect viruses, such as viruses from the Dicistroviridae family, withstand dehydrated conditions with presently unknown consequences to their structural stability. Here, we use atomic force microscopy to monitor the structural changes of viral particles of Triatoma virus (TrV) after desiccation. Our results demonstrate that TrV capsids preserve their genome inside, conserving their height after exposure to dehydrating conditions, which is in stark contrast with other viruses that expel their genome when desiccated. Moreover, empty capsids (without genome) resulted in collapsed particles after desiccation. We also explored the role of structural ions in the dehydration process of the virions (capsid containing genome) by chelating the accessible cations from the external solvent milieu. We observed that ion suppression helps to keep the virus height upon desiccation. Our results show that under drying conditions, the genome of TrV prevents the capsid from collapsing during dehydration, while the structural ions are responsible for promoting solvent exchange through the virion wall.
Collapse
Affiliation(s)
- Natalia Martín-González
- Departamento de Física de la Materia Condensada C-III and Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Sofía M Guérin Darvas
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
| | - Aritz Durana
- Instituto Biofisika (IBF, UPV/EHU, CSIC), Parque Científico de la UPV/EHU, Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
- Fundación Biofísica Bizkaia, Edificio Biblioteca Central UPV/EHU, Bº Sarriena S/N, 48940, Leioa, Vizcaya, Spain
| | - Gerardo A Marti
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61 y 62, 1900 La Plata, Argentina
| | - Diego M A Guérin
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
- Instituto Biofisika (IBF, UPV/EHU, CSIC), Parque Científico de la UPV/EHU, Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada C-III and Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| |
Collapse
|
13
|
Ku JK, Heo YJ, Lee KS, Lee BL. Clinical Findings and Neurologic Outcome in Neonatal Encephalopathy With White Matter Injury Accompanied by Rotavirus. J Child Neurol 2018; 33:297-305. [PMID: 29433417 DOI: 10.1177/0883073817753290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our objective was to elucidate the clinical characteristics and neurodevelopmental outcomes in neonatal encephalopathy with characteristic white matter injury as compared with other injury patterns on magnetic resonance diffusion-weighted imaging. We conducted a retrospective study comparing clinical and laboratory findings, and neurologic outcomes between 17 newborns with diffuse lesions in the periventricular white matter and white matter tract (group I) and 22 newborns with other patterns (group II). Stool samples indicated that 16 neonates (94.1%) in group I were rotavirus-positive, whereas none in group II had rotavirus infection. Significantly lower calcium levels were found in group I than in group II ( P < .001). Moreover, a more favorable neurodevelopmental outcome was observed in group I than in group II. This study suggests that characteristic white matter injury in neonatal encephalopathy may be related to decreased calcium levels induced by rotavirus, and may have a better neurodevelopmental prognosis than other causes.
Collapse
Affiliation(s)
- Jae Kyun Ku
- 1 Department of Pediatrics, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Young Jin Heo
- 2 Department of Radiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Keun Soo Lee
- 3 Department of Neurosurgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Bo Lyun Lee
- 1 Department of Pediatrics, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
14
|
Xue CC, Liang YF, Pan GQ, Li CC. [Benign infantile convulsions associated with mild gastroenteritis: a clinical analysis and follow-up study]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1191-1195. [PMID: 29132468 PMCID: PMC7389322 DOI: 10.7499/j.issn.1008-8830.2017.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To study the clinical features and prognosis of benign infantile convulsions associated with mild gastroenteritis (BICE). METHODS A retrospective analysis was performed for the clinical data of 436 children with BICE, and among these children, 206 were followed up for 1.5 to 7 years. Some parents were invited to complete the Weiss Functional Defect Scale to evaluate the long-term social function. RESULTS The peak age of onset of BICE was 13-24 months, and BICE had a higher prevalence rate in September to February of the following year. Convulsions mainly manifested as generalized tonic-clonic seizures, which often occurred within 24 hours after disease onset and lasted for less than 5 minutes each time. Sometimes they occurred in clusters. During the follow-up of 206 children, only one had epileptiform discharge, and the other children had normal electroencephalographic results. The parents of all the 206 children thought their children had normal intelligence and had no marked changes in character. Based on the Weiss Functional Defect Scale completed by the parents of some BICE children, there was no significant difference in the long-term social function between BICE children and healthy children matched by age and sex. CONCLUSIONS BICE mainly occurs in children aged 1-2 years, with the manifestation of transient generalized seizures in most children and cluster seizures in some children. BICE seldom progresses to epilepsy and has good prognosis.
Collapse
Affiliation(s)
- Chao-Chao Xue
- Department of Pediatrics, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | | | | | | |
Collapse
|
15
|
Human rotavirus strain Wa downregulates NHE1 and NHE6 expressions in rotavirus-infected Caco-2 cells. Virus Genes 2017; 53:367-376. [PMID: 28289928 DOI: 10.1007/s11262-017-1444-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/04/2017] [Indexed: 12/26/2022]
Abstract
Rotavirus (RV) is the most common cause of severe gastroenteritis and fatal dehydration in human infants and neonates of different species. However, the pathogenesis of rotavirus-induced diarrhea is poorly understood. Secretory diarrhea caused by rotavirus may lead to a combination of excessive secretion of fluid and electrolytes into the intestinal lumen. Fluid absorption in the small intestine is driven by Na+-coupled transport mechanisms at the luminal membrane, including Na+/H+ exchanger (NHE). Here, we performed qRT-PCR to detect the transcription of NHEs. Western blotting was employed for protein detection. Furthermore, immunocytochemistry was used to validate the NHE's protein expression. Finally, intracellular Ca2+ concentration was detected by confocal laser scanning microscopy. The results demonstrated that the NHE6 mRNA and protein expressed in the human colon adenocarcinoma cell line (Caco-2). Furthermore, RV-Wa induced decreased expression of the NHE1 and NHE6 in Caco-2 cell in a time-dependent manner. In addition, intracellular Ca2+ concentration in RV-Wa-infected Caco-2 cells was higher than that in the mock-infected cells. Furthermore, RV-Wa also can downregulate the expression of calmodulin (CaM) and calmodulin kinase II (CaMKII) in Caco-2 cells. These findings provides important insights into the mechanisms of rotavirus-induced diarrhea. Further studies on the underlying pathophysiological mechanisms that downregulate NHEs in RV-induced diarrhea are required.
Collapse
|
16
|
|
17
|
Abstract
Eukaryotic cells have evolved a myriad of ion channels, transporters, and pumps to maintain and regulate transmembrane ion gradients. As intracellular parasites, viruses also have evolved ion channel proteins, called viroporins, which disrupt normal ionic homeostasis to promote viral replication and pathogenesis. The first viral ion channel (influenza M2 protein) was confirmed only 23 years ago, and since then studies on M2 and many other viroporins have shown they serve critical functions in virus entry, replication, morphogenesis, and immune evasion. As new candidate viroporins and viroporin-mediated functions are being discovered, we review the experimental criteria for viroporin identification and characterization to facilitate consistency within this field of research. Then we review recent studies on how the few Ca(2+)-conducting viroporins exploit host signaling pathways, including store-operated Ca(2+) entry, autophagy, and inflammasome activation. These viroporin-induced aberrant Ca(2+) signals cause pathophysiological changes resulting in diarrhea, vomiting, and proinflammatory diseases, making both the viroporin and host Ca(2+) signaling pathways potential therapeutic targets for antiviral drugs.
Collapse
Affiliation(s)
- Joseph M Hyser
- Alkek Center for Metagenomic and Microbiome Research.,Department of Molecular Virology and Microbiology, and
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, and.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030-3411;
| |
Collapse
|
18
|
Lobeck I, Donnelly B, Dupree P, Mahe MM, McNeal M, Mohanty SK, Tiao G. Rhesus rotavirus VP6 regulates ERK-dependent calcium influx in cholangiocytes. Virology 2016; 499:185-195. [PMID: 27668997 DOI: 10.1016/j.virol.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/24/2022]
Abstract
The Rhesus rotavirus (RRV) induced murine model of biliary atresia (BA) is a useful tool in studying the pathogenesis of this neonatal biliary obstructive disease. In this model, the mitogen associated protein kinase pathway is involved in RRV infection of biliary epithelial cells (cholangiocytes). We hypothesized that extracellular signal-related kinase (ERK) phosphorylation is integral to calcium influx, allowing for viral replication within the cholangiocyte. Utilizing ERK and calcium inhibitors in immortalized cholangiocytes and BALB/c pups, we determined that ERK inhibition resulted in reduced viral yield and subsequent decreased symptomatology in mice. In vitro, the RRV VP6 protein induced ERK phosphorylation, leading to cellular calcium influx. Pre-treatment with an ERK inhibitor or Verapamil resulted in lower viral yields. We conclude that the pathogenesis of RRV-induced murine BA is dependent on the VP6 protein causing ERK phosphorylation and triggering calcium influx allowing replication in cholangiocytes.
Collapse
Affiliation(s)
- Inna Lobeck
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bryan Donnelly
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Phylicia Dupree
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maxime M Mahe
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Monica McNeal
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sujit K Mohanty
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Greg Tiao
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
19
|
Abstract
Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p < 0.05) less diarrhoea, lower diarrhoea severity score and lower total diarrhoea output as compared to mock-treated mice (n = 9). Similarly, Ondansetron-treated mice had better weight gain than mock-treated animals (p < 0.05). A most surprising finding was that the serotonin receptor antagonist significantly (p < 0.05) also attenuated total viral shedding. In summary, we show that intracellularly expressed NSP4 stimulates release of serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron.
Collapse
|
20
|
The α7-nicotinic receptor is upregulated in immune cells from HIV-seropositive women: consequences to the cholinergic anti-inflammatory response. Clin Transl Immunology 2015; 4:e53. [PMID: 26719799 PMCID: PMC4685439 DOI: 10.1038/cti.2015.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 01/23/2023] Open
Abstract
Antiretroviral therapy partially restores the immune system and markedly increases life expectancy of HIV-infected patients. However, antiretroviral therapy does not restore full health. These patients suffer from poorly understood chronic inflammation that causes a number of AIDS and non-AIDS complications. Here we show that chronic inflammation in HIV+ patients may be due to the disruption of the cholinergic anti-inflammatory pathway by HIV envelope protein gp120IIIB. Our results demonstrate that HIV gp120IIIB induces α7 nicotinic acetylcholine receptor (α7) upregulation and a paradoxical proinflammatory phenotype in macrophages, as activation of the upregulated α7 is no longer capable of inhibiting the release of proinflammatory cytokines. Our results demonstrate that disruption of the cholinergic-mediated anti-inflammatory response can result from an HIV protein. Collectively, these findings suggest that HIV tampering with a natural strategy to control inflammation could contribute to a crucial, unresolved problem of HIV infection: chronic inflammation.
Collapse
|
21
|
Perry JL, Ramachandran NK, Utama B, Hyser JM. Use of genetically-encoded calcium indicators for live cell calcium imaging and localization in virus-infected cells. Methods 2015; 90:28-38. [PMID: 26344758 PMCID: PMC4655165 DOI: 10.1016/j.ymeth.2015.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023] Open
Abstract
Calcium signaling is a ubiquitous and versatile process involved in nearly every cellular process, and exploitation of host calcium signals is a common strategy used by viruses to facilitate replication and cause disease. Small molecule fluorescent calcium dyes have been used by many to examine changes in host cell calcium signaling and calcium channel activation during virus infections, but disadvantages of these dyes, including poor loading and poor long-term retention, complicate analysis of calcium imaging in virus-infected cells due to changes in cell physiology and membrane integrity. The recent expansion of genetically-encoded calcium indicators (GECIs), including blue and red-shifted color variants and variants with calcium affinities appropriate for calcium storage organelles like the endoplasmic reticulum (ER), make the use of GECIs an attractive alternative for calcium imaging in the context of virus infections. Here we describe the development and testing of cell lines stably expressing both green cytoplasmic (GCaMP5G and GCaMP6s) and red ER-targeted (RCEPIAer) GECIs. Using three viruses (rotavirus, poliovirus and respiratory syncytial virus) previously shown to disrupt host calcium homeostasis, we show the GECI cell lines can be used to detect simultaneous cytoplasmic and ER calcium signals. Further, we demonstrate the GECI expression has sufficient stability to enable long-term confocal imaging of both cytoplasmic and ER calcium during the course of virus infections.
Collapse
Affiliation(s)
- Jacob L Perry
- Department of Molecular Virology and Microbiology and Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, United States
| | - Nina K Ramachandran
- Department of Molecular Virology and Microbiology and Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, United States
| | - Budi Utama
- Shared Equipment Authority, Rice University, Houston, TX 77030, United States
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology and Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
22
|
Thio CLP, Yusof R, Ashrafzadeh A, Bahari S, Abdul-Rahman PS, Karsani SA. Differential Analysis of the Secretome of WRL68 Cells Infected with the Chikungunya Virus. PLoS One 2015; 10:e0129033. [PMID: 26083627 PMCID: PMC4470940 DOI: 10.1371/journal.pone.0129033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/04/2015] [Indexed: 11/24/2022] Open
Abstract
The Chikungunya virus (CHIKV) is an arthropod borne virus. In the last 50 years, it has been the cause of numerous outbreaks in tropical and temperate regions, worldwide. There is limited understanding regarding the underlying molecular mechanisms involved in CHIKV replication and how the virus interacts with its host. In the present study, comparative proteomics was used to identify secreted host proteins that changed in abundance in response to early CHIKV infection. Two-dimensional gel electrophoresis was used to analyse and compare the secretome profiles of WRL-68 cells infected with CHIKV against mock control WRL-68 cells. The analysis identified 25 regulated proteins in CHIKV infected cells. STRING network analysis was then used to predict biological processes that may be affected by these proteins. The processes predicted to be affected include signal transduction, cellular component and extracellular matrix (ECM) organization, regulation of cytokine stimulus and immune response. These results provide an initial view of CHIKV may affect the secretome of infected cells during early infection. The results presented here will compliment earlier results from the study of late host response. However, functional characterization will be necessary to further enhance our understanding of the roles played by these proteins in the early stages of CHIKV infection in humans.
Collapse
Affiliation(s)
- Christina Li-Ping Thio
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Drug Design and Development Research Group (DDDRG), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Drug Design and Development Research Group (DDDRG), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ali Ashrafzadeh
- Medical Biotechnology Laboratory, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Syareena Bahari
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Puteri Shafinaz Abdul-Rahman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Medical Biotechnology Laboratory, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Medical Biotechnology Laboratory, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Drug Design and Development Research Group (DDDRG), University of Malaya, 50603, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
23
|
Yeom JS, Kim YS, Kim RB, Park JS, Seo JH, Park E, Lim JY, Park CH, Woo HO, Youn HS. Impact of rotavirus vaccine introduction on rotavirus-associated seizures and a related possible mechanism. J Child Neurol 2015; 30:729-34. [PMID: 25117417 DOI: 10.1177/0883073814542944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 11/15/2022]
Abstract
To determine whether clinical features of rotavirus-associated seizures have been altered by rotavirus vaccination, we compared clinical and laboratory data of 2 groups of patients with rotavirus-associated seizures: pre- and post-vaccine introduction groups. The seizure characteristics differed significantly between the groups, with a lower incidence of fever at seizure onset, longer interval between the onset of gastroenteritis and seizures, and more frequent seizures in the postintroduction group. These characteristics may suggest that seizure susceptibility was increased in the postintroduction group. Based on the lower serum Cl(-) (102.1 ± 4.1 vs 98.2 ± 3.2 mg/dL; P < .01) and Ca(2+) levels (9.2 ± 0.4 vs 9.0 ± 0.3 mg/dL; P = .12) in the postintroduction group, we propose that a change in the subjects' susceptibility to the rotavirus enterotoxin may have played a role in increasing the seizure susceptibility in this group. Our results suggest that a rotavirus vaccination program may modulate the manifestations of rotavirus-associated seizures.
Collapse
Affiliation(s)
- Jung Sook Yeom
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| | - Young-Soo Kim
- Department of Neurology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Rock Bum Kim
- Department of Preventive Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Ji Sook Park
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| | - Ji-Hyun Seo
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| | - Eunsil Park
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| | - Jae-Young Lim
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| | - Chan-Hoo Park
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| | - Hyang-Ok Woo
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| | - Hee-Shang Youn
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| |
Collapse
|
24
|
Abstract
UNLABELLED Rotavirus (RV) nonstructural protein 4 (NSP4) is a virulence factor that disrupts cellular Ca(2+) homeostasis and plays multiple roles regulating RV replication and the pathophysiology of RV-induced diarrhea. Although its native oligomeric state is unclear, crystallographic studies of the coiled-coil domain (CCD) of NSP4 from two different strains suggest that it functions as a tetramer or a pentamer. While the CCD of simian strain SA11 NSP4 forms a tetramer that binds Ca(2+) at its core, the CCD of human strain ST3 forms a pentamer lacking the bound Ca(2+) despite the residues (E120 and Q123) that coordinate Ca(2+) binding being conserved. In these previous studies, while the tetramer crystallized at neutral pH, the pentamer crystallized at low pH, suggesting that preference for a particular oligomeric state is pH dependent and that pH could influence Ca(2+) binding. Here, we sought to examine if the CCD of NSP4 from a single RV strain can exist in two oligomeric states regulated by Ca(2+) or pH. Biochemical, biophysical, and crystallographic studies show that while the CCD of SA11 NSP4 exhibits high-affinity binding to Ca(2+) at neutral pH and forms a tetramer, it does not bind Ca(2+) at low pH and forms a pentamer, and the transition from tetramer to pentamer is reversible with pH. Mutational analysis shows that Ca(2+) binding is necessary for the tetramer formation, as an E120A mutant forms a pentamer. We propose that the structural plasticity of NSP4 regulated by pH and Ca(2+) may form a basis for its pleiotropic functions during RV replication. IMPORTANCE The nonstructural protein NSP4 of rotavirus is a multifunctional protein that plays an important role in virus replication, morphogenesis, and pathogenesis. Previous crystallography studies of the coiled-coil domain (CCD) of NSP4 from two different rotavirus strains showed two distinct oligomeric states, a Ca(2+)-bound tetrameric state and a Ca(2+)-free pentameric state. Whether NSP4 CCD from the same strain can exist in different oligomeric states and what factors might regulate its oligomeric preferences are not known. This study used a combination of biochemical, biophysical, and crystallography techniques and found that the NSP4 CCD can undergo a reversible transition from a Ca(2+)-bound tetramer to a Ca(2+)-free pentamer in response to changes in pH. From these studies, we hypothesize that this remarkable structural adaptability of the CCD forms a basis for the pleiotropic functional properties of NSP4.
Collapse
|
25
|
Minakshi R, Padhan K, Rehman S, Hassan MI, Ahmad F. The SARS Coronavirus 3a protein binds calcium in its cytoplasmic domain. Virus Res 2014; 191:180-3. [PMID: 25116391 PMCID: PMC7114474 DOI: 10.1016/j.virusres.2014.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/01/2014] [Accepted: 08/01/2014] [Indexed: 01/17/2023]
Abstract
We expressed and purified the cytoplasmic domain of the 3a protein. Cyto3a domain binds calcium. Calcium binding causes a conformational change. 3a protein in vivo to have significant role in viral pathogenesis.
The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a positive stranded RNA virus with ∼30 kb genome. Among all open reading frames (orfs) of this virus, the orf3a is the largest, and encodes a protein of 274 amino acids, named as 3a protein. Sequence analysis suggests that the orf3a aligned to one calcium pump present in Plasmodium falciparum and the enzyme glutamine synthetase found in Leptospira interrogans. This sequence similarity was found to be limited only to amino acid residues 209–264 which form the cytoplasmic domain of the orf3a. Furthermore, this region was predicted to be involved in the calcium binding. Owing to this hypothesis, we were driven to establish its calcium binding property in vitro. Here, we expressed and purified the cytoplasmic domain of the 3a protein, called Cyto3a, as a recombinant His-tagged protein in the E. coli. The calcium binding nature was established by performing various staining methods such as ruthenium red and stains-all. 45Ca overlay method was also done to further support the data. Since the 3a protein forms ion channels, we were interested to see any conformational changes occurring in the Cyot3a upon calcium binding, using fluorescence spectroscopy and circular dichroism. These studies clearly indicate a significant change in the conformation of the Cyto3a protein after binding with calcium. Our results strongly suggest that the cytoplasmic domain of the 3a protein of SARS-CoV binds calcium in vitro, causing a change in protein conformation.
Collapse
Affiliation(s)
- Rinki Minakshi
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Kartika Padhan
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Safikur Rehman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
26
|
Kang B, Kwon YS. Benign convulsion with mild gastroenteritis. KOREAN JOURNAL OF PEDIATRICS 2014; 57:304-9. [PMID: 25114690 PMCID: PMC4127392 DOI: 10.3345/kjp.2014.57.7.304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/03/2014] [Indexed: 12/29/2022]
Abstract
Benign convulsion with mild gastroenteritis (CwG) is a type of afebrile seizure that occurs in children. CwG is defined as a convulsion in a previously healthy child with no known central nervous system infection or encephalopathy, accompanying mild diarrhea without fever, electrolyte imbalance, or moderate to severe dehydration. Convulsions in CwG are characterized by multiple brief episodes of generalized or focal seizures. Although the etiology and pathophysiology have yet to be fully explained, many pathogenic mechanisms have been proposed including the possibility of direct invasion of the central nervous system by a gastrointestinal virus such as rotavirus or the possibility of indirect influence by the production and effects of certain mediators. The electroencephalogram findings are benign and long-term antiepileptic treatment is typically not required. Long-term prognosis has been favorable with normal psychomotor development. This review provides a general overview of CwG with the goal of allowing physicians practicing in the field of pediatrics to better recognize this unique entity and, ultimately, to minimize unnecessary evaluation and treatment.
Collapse
Affiliation(s)
- Ben Kang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Se Kwon
- Department of Pediatrics, Inha University Hospital, Incheon, Korea
| |
Collapse
|
27
|
Ashiru O, Howe JD, Butters TD. Nitazoxanide, an antiviral thiazolide, depletes ATP-sensitive intracellular Ca(2+) stores. Virology 2014; 462-463:135-48. [PMID: 24971706 DOI: 10.1016/j.virol.2014.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/01/2014] [Accepted: 05/14/2014] [Indexed: 12/31/2022]
Abstract
Nitazoxanide (NTZ) inhibits influenza, Japanese encephalitis, hepatitis B and hepatitis C virus replication but effects on the replication of other members of the Flaviviridae family has yet to be defined. The pestivirus bovine viral diarrhoea virus (BVDV) is a surrogate model for HCV infection and NTZ induced PKR and eIF2α phosphorylation in both uninfected and BVDV-infected cells. This led to the observation that NTZ depletes ATP-sensitive intracellular Ca(2+) stores. In addition to PKR and eIF2α phosphorylation, consequences of NTZ-mediated Ca(2+) mobilisation included induction of chronic sub-lethal ER stress as well as perturbation of viral protein N-linked glycosylation and trafficking. To adapt to NTZ-mediated ER stress, NTZ treated cells upregulated translation of Ca(2+)-binding proteins, including the ER chaperone Bip and the cytosolic pro-survival and anti-viral protein TCTP. Depletion of intracellular Ca(2+) stores is the primary consequence of NTZ treatment and is likely to underpin all antiviral mechanisms attributed to the thiazolide.
Collapse
Affiliation(s)
- Omodele Ashiru
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QU, UK.
| | - Jonathon D Howe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QU, UK.
| | - Terry D Butters
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QU, UK.
| |
Collapse
|
28
|
Yeom JS, Kim YS, Park JS, Seo JH, Park ES, Lim JY, Park CH, Woo HO, Youn HS. Role of Ca2+ homeostasis disruption in rotavirus-associated seizures. J Child Neurol 2014; 29:331-5. [PMID: 23271755 DOI: 10.1177/0883073812469052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rotavirus infection disturbs cellular Ca(2+) homeostasis by triggering an increase in Ca(2+) permeation. A theoretical link between Ca(2+) dysregulation and seizures in patients with rotavirus gastroenteritis has been suggested, but no prior studies have investigated this relationship. To test our hypothesis that patients with rotavirus-associated seizures have greater Ca(2+) homeostasis disruption than those without seizures, we compared clinical and laboratory data--including corrected total serum Ca(2+) levels--between the 2 groups. Age, gender, maximum body temperature, day of admission, levels of electrolytes except Ca(2+), blood pH, and urine ketone levels were not related to seizure occurrence. Significantly lower Ca(2+) levels were found among the seizure (+) group (9.22 ± 0.50 vs 9.66 ± 0.46 mg/dL, P = .01). Although Ca(2+) levels were within normal ranges and did not directly cause the seizures, our results provide preliminary evidence for a relationship between Ca(2+) homeostasis disruption and seizures in rotavirus patients.
Collapse
Affiliation(s)
- Jung Sook Yeom
- 1Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Anand SK, Tikoo SK. Viruses as modulators of mitochondrial functions. Adv Virol 2013; 2013:738794. [PMID: 24260034 PMCID: PMC3821892 DOI: 10.1155/2013/738794] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/30/2013] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are multifunctional organelles with diverse roles including energy production and distribution, apoptosis, eliciting host immune response, and causing diseases and aging. Mitochondria-mediated immune responses might be an evolutionary adaptation by which mitochondria might have prevented the entry of invading microorganisms thus establishing them as an integral part of the cell. This makes them a target for all the invading pathogens including viruses. Viruses either induce or inhibit various mitochondrial processes in a highly specific manner so that they can replicate and produce progeny. Some viruses encode the Bcl2 homologues to counter the proapoptotic functions of the cellular and mitochondrial proteins. Others modulate the permeability transition pore and either prevent or induce the release of the apoptotic proteins from the mitochondria. Viruses like Herpes simplex virus 1 deplete the host mitochondrial DNA and some, like human immunodeficiency virus, hijack the host mitochondrial proteins to function fully inside the host cell. All these processes involve the participation of cellular proteins, mitochondrial proteins, and virus specific proteins. This review will summarize the strategies employed by viruses to utilize cellular mitochondria for successful multiplication and production of progeny virus.
Collapse
Affiliation(s)
- Sanjeev K. Anand
- Vaccine & Infection Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
| | - Suresh K. Tikoo
- Vaccine & Infection Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- School of Public Health, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
| |
Collapse
|
30
|
Dissecting the Ca²⁺ entry pathways induced by rotavirus infection and NSP4-EGFP expression in Cos-7 cells. Virus Res 2012; 167:285-96. [PMID: 22634036 DOI: 10.1016/j.virusres.2012.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/13/2012] [Accepted: 05/16/2012] [Indexed: 01/09/2023]
Abstract
Rotavirus infection modifies Ca(2+) homeostasis provoking an increase in Ca(2+) permeation, cytoplasmic Ca(2+) concentration ([Ca(2+)](cyto)), total Ca(2+) pools and, a decrease of Ca(2+) response to agonists. These effects are mediated by NSP4. The mechanism by which NSP4 deranges Ca(2+) homeostasis is not yet known. It has been proposed that the increase in [Ca(2+)](cyto) is the result of Ca(2+) release from intracellular stores, thereby activating store-operated Ca(2+) entry (SOCE). We studied the mechanisms involved in the changes of Ca(2+) permeability of the plasma membrane elicited by rotavirus infection and NSP4 expression in Cos-7 cells loaded with fura-2 or fluo-4, using inhibitors and activators of different pathways. Total depletion of ER Ca(2+) stores induced by thapsigargin or ATP was not able to elicit Ca(2+) entry in mock-infected cells to the level attained with infection or NSP4-EGFP expression. The pathway induced by NSP4-EGFP expression or infection shows properties shared by SOCE: it can be inactivated by high [Ca(2+)](cyto), is permeable to Mn(2+) and inhibited by La(3+) and the SOC inhibitor 2-aminoethoxydiphenyl borate (2-APB). Contribution of the agonist-operated channels (AOCs) to Ca(2+) entry is small and not modified by infection. The plasma membrane permeability to Ca(2+) in rotavirus infected or NSP4-EGFP expressing cells is also blocked by KB-R7943, an inhibitor of the plasma membrane Na(+)/Ca(2+) exchanger (NCX), operating in its reverse mode. In conclusion, the expression of NSP4 in infected Cos-7 cells appears to activate the NCX in reverse mode and the SOCE pathway to induce increased Ca(2+) entry.
Collapse
|
31
|
Elucidation of the Rotavirus NSP4-Caveolin-1 and -Cholesterol Interactions Using Synthetic Peptides. JOURNAL OF AMINO ACIDS 2012; 2012:575180. [PMID: 22500212 PMCID: PMC3303745 DOI: 10.1155/2012/575180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/16/2011] [Indexed: 01/19/2023]
Abstract
Rotavirus (RV) NSP4, the first described viral enterotoxin, is a multifunctional glycoprotein that contributes to viral pathogenesis, morphogenesis, and replication. NSP4 binds both termini of caveolin-1 and is isolated from caveolae fractions that are rich in anionic phospholipids and cholesterol. These interactions indicate that cholesterol/caveolin-1 plays a role in NSP4 transport to the cell surface, which is essential to its enterotoxic activity. Synthetic peptides were utilized to identify target(s) of intervention by exploring the NSP4-caveolin-1 and -cholesterol interactions. NSP4112–140 that overlaps the caveolin-1 binding domain and a cholesterol recognition amino acid consensus (CRAC) motif and both termini of caveolin-1 (N-caveolin-12–20, 19–40 and C-caveolin-1161–180) were synthesized. Direct fluorescence-binding assays were employed to determine binding affinities of the NSP4-caveolin-1 peptides and cholesterol. Intracellular cholesterol alteration revealed a redistribution of NSP4 and disintegration of viroplasms. These data further imply interruption of NSP4112–140-N-caveolin-119–40 and cholesterol interactions may block NSP4 intracellular transport, hence enterotoxicity.
Collapse
|
32
|
Genetic divergence of rotavirus nonstructural protein 4 results in distinct serogroup-specific viroporin activity and intracellular punctate structure morphologies. J Virol 2012; 86:4921-34. [PMID: 22357281 DOI: 10.1128/jvi.06759-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nonstructural protein 4 (NSP4) viroporin activity is critical for the replication and assembly of serogroup A rotavirus (RVA); however, the dramatic primary sequence divergence of NSP4s across serogroups raises the possibility that viroporin activity is not a common feature among RVs. We tested for NSP4 viroporin activity from divergent strains, including RVA (EC and Ty-1), RVB (IDIR), and RVC (Cowden). Canonical viroporin motifs were identified in RVA, RVB, and RVC NSP4s, but the arrangement of basic residues and the amphipathic α-helices was substantially different between serogroups. Using Escherichia coli and mammalian cell expression, we showed that each NSP4 tested had viroporin activity, but serogroup-specific viroporin phenotypes were identified. Only mammalian RVA and RVC NSP4s induced BL21-pLysS E. coli cell lysis, a classical viroporin activity assay. In contrast, RVA, RVB, and RVC NSP4 expression was universally cytotoxic to E. coli and disrupted reduction-oxidation activities, as measured by a new redox dye assay. In mammalian cells, RVB and RVC NSP4s were initially localized in the endoplasmic reticulum (ER) and trafficked into punctate structures that were mutually exclusive with RVA NSP4. The punctate structures partially localized to the ER-Golgi intermediate compartment (ERGIC) but primarily colocalized with punctate LC3, a marker for autophagosomes. Similar to RVA NSP4, expression of RVB and RVC NSP4s significantly elevated cytosolic calcium levels, demonstrating that despite strong primary sequence divergence, RV NSP4 has maintained viroporin activity across serogroups A to C. These data suggest that elevated cytosolic calcium is a common critical process for all rotavirus strains.
Collapse
|
33
|
Hagbom M, Istrate C, Engblom D, Karlsson T, Rodriguez-Diaz J, Buesa J, Taylor JA, Loitto VM, Magnusson KE, Ahlman H, Lundgren O, Svensson L. Rotavirus stimulates release of serotonin (5-HT) from human enterochromaffin cells and activates brain structures involved in nausea and vomiting. PLoS Pathog 2011; 7:e1002115. [PMID: 21779163 PMCID: PMC3136449 DOI: 10.1371/journal.ppat.1002115] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/26/2011] [Indexed: 11/18/2022] Open
Abstract
Rotavirus (RV) is the major cause of severe gastroenteritis in young children. A virus-encoded enterotoxin, NSP4 is proposed to play a major role in causing RV diarrhoea but how RV can induce emesis, a hallmark of the illness, remains unresolved. In this study we have addressed the hypothesis that RV-induced secretion of serotonin (5-hydroxytryptamine, 5-HT) by enterochromaffin (EC) cells plays a key role in the emetic reflex during RV infection resulting in activation of vagal afferent nerves connected to nucleus of the solitary tract (NTS) and area postrema in the brain stem, structures associated with nausea and vomiting. Our experiments revealed that RV can infect and replicate in human EC tumor cells ex vivo and in vitro and are localized to both EC cells and infected enterocytes in the close vicinity of EC cells in the jejunum of infected mice. Purified NSP4, but not purified virus particles, evoked release of 5-HT within 60 minutes and increased the intracellular Ca2+ concentration in a human midgut carcinoid EC cell line (GOT1) and ex vivo in human primary carcinoid EC cells concomitant with the release of 5-HT. Furthermore, NSP4 stimulated a modest production of inositol 1,4,5-triphosphate (IP3), but not of cAMP. RV infection in mice induced Fos expression in the NTS, as seen in animals which vomit after administration of chemotherapeutic drugs. The demonstration that RV can stimulate EC cells leads us to propose that RV disease includes participation of 5-HT, EC cells, the enteric nervous system and activation of vagal afferent nerves to brain structures associated with nausea and vomiting. This hypothesis is supported by treating vomiting in children with acute gastroenteritis with 5-HT3 receptor antagonists. Rotavirus (RV) can cause severe dehydration and is a leading cause of childhood deaths worldwide. While most deaths occur due to excessive loss of fluids and electrolytes through vomiting and diarrhoea, the pathophysiological mechanisms that underlie this life-threatening disease remain to be clarified. Our previous studies revealed that drugs that inhibit the function of the enteric nervous system can reduce symptoms of RV disease in mice. In this study we have addressed the hypothesis that RV infection triggers the release of serotonin (5-hydroxytryptamine, 5-HT) from enterochromaffin (EC) cells in the intestine leading to activation of vagal afferent nerves connected to brain stem structures associated with vomiting. RV activated Fos expression in the nucleus of the solitary tract of CNS, the main target for incoming fibers from the vagal nerve. Both secreted and recombinant forms of the viral enterotoxin (NSP4), increased intracellular Ca2+ concentration and released 5-HT from EC cells. 5-HT induced diarrhoea in mice within 60 min, thereby supporting the role of 5-HT in RV disease. Our study provides novel insight into the complex interaction between RV, EC cells, 5-HT and nerves.
Collapse
Affiliation(s)
- Marie Hagbom
- Division of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Claudia Istrate
- Division of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
- Unidade de Biologia Molecular, Centro de Malaria e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - David Engblom
- Division of Cell Biology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Thommie Karlsson
- Division of Medical Microbiology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Jesus Rodriguez-Diaz
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - John A. Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Vesa-Matti Loitto
- Division of Medical Microbiology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Karl-Eric Magnusson
- Division of Medical Microbiology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Håkan Ahlman
- Department of Surgery, University of Gothenburg, Gothenburg, Sweden
| | - Ove Lundgren
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
- * E-mail:
| |
Collapse
|
34
|
Smith E, Breznik J, Lichty BD. Strategies to enhance viral penetration of solid tumors. Hum Gene Ther 2011; 22:1053-60. [PMID: 21443415 DOI: 10.1089/hum.2010.227] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The efficient delivery of viral vectors to tumors is an active area of investigation. A number of barriers exist that must be overcome to achieve good penetration of vectors into tumors and distribution of their effects throughout the tumor mass. Replicating oncolytic viruses have the advantage of being able to amplify the initial dose, but progeny virus are prevented from spreading because of a dense mass of tightly packed cells with a dense extracellular matrix, admixed normal stromal cells, and high interstitial pressure. Although intratumoral injection may ensure initial delivery the distribution achieved by intravenous administration may be superior and come with beneficial bystander damage to the tumor vasculature. Strategies to enhance intravenous delivery and subsequent spread of these vectors within tumors are being developed by a number of groups. Achieving the goal of efficient penetration and spread of viruses within solid tumors is a necessary prerequisite to significant improvements in virus-vectored therapy of solid tumors.
Collapse
Affiliation(s)
- Elspeth Smith
- Centre for Gene Therapeutics, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | | | | |
Collapse
|
35
|
Bozym RA, Morosky SA, Kim KS, Cherry S, Coyne CB. Release of intracellular calcium stores facilitates coxsackievirus entry into polarized endothelial cells. PLoS Pathog 2010; 6:e1001135. [PMID: 20949071 PMCID: PMC2951373 DOI: 10.1371/journal.ppat.1001135] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 09/07/2010] [Indexed: 12/01/2022] Open
Abstract
Group B coxsackieviruses (CVB) are associated with viral-induced heart disease and are among the leading causes of aseptic meningitis worldwide. Here we show that CVB entry into polarized brain microvasculature and aortic endothelial cells triggers a depletion of intracellular calcium stores initiated through viral attachment to the apical attachment factor decay-accelerating factor. Calcium release was dependent upon a signaling cascade that required the activity of the Src family of tyrosine kinases, phospholipase C, and the inositol 1,4,5-trisphosphate receptor isoform 3. CVB-mediated calcium release was required for the activation of calpain-2, a calcium-dependent cysteine protease, which controlled the vesicular trafficking of internalized CVB particles. These data point to a specific role for calcium signaling in CVB entry into polarized endothelial monolayers and highlight the unique signaling mechanisms used by these viruses to cross endothelial barriers. Enteroviruses are associated with a number of diverse syndromes such as myocarditis, febrile illness, and are the main causative agents of aseptic meningitis. No effective therapeutics exist to combat non-poliovirus enterovirus infections. A better understanding of the mechanisms by which these viruses infect host cells could lead to the design of effective therapeutic interventions. In this study, we found that intracellular calcium stores in polarized endothelial monolayers are depleted upon exposure to coxsackievirus B (CVB) and that this release is mediated by viral attachment to its receptor decay-accelerating factor. We also discovered that the calcium release requires the activation of signaling molecules involved in calcium signaling such as Src tyrosine kinases, phospholipase C, and the inositol 1,4,5-trisphosphate receptor isoform 3 on the ER membrane. Furthermore, we found that a calcium-activated cystein protease, calpain-2, was activated and necessary for proper viral trafficking inside the cell. Interestingly, we found that this signaling cascade was critical for CVB internalization into the endothelium, but was not involved in CVB entry into the epithelium. This is an important advance in our understanding of how enteroviruses hijack host endothelial cell signaling mechanisms in order to facilitate their entry and eventual spread.
Collapse
Affiliation(s)
- Rebecca A. Bozym
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stefanie A. Morosky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kwang S. Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sara Cherry
- Department of Microbiology, Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Carolyn B. Coyne
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
36
|
Galloux M, Libersou S, Alves ID, Marquant R, Salgado GF, Rezaei H, Lepault J, Delmas B, Bouaziz S, Morellet N. NMR structure of a viral peptide inserted in artificial membranes: a view on the early steps of the birnavirus entry process. J Biol Chem 2010; 285:19409-21. [PMID: 20385550 PMCID: PMC2885221 DOI: 10.1074/jbc.m109.076083] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 03/08/2010] [Indexed: 11/06/2022] Open
Abstract
Nonenveloped virus must penetrate the cellular membrane to access the cytoplasm without the benefit of membrane fusion. For birnavirus, one of the peptides present in the virus capsid, pep46 for infectious bursal disease virus, is able to induce pores into membranes as an intermediate step of the birnavirus-penetration pathway. Using osmotic protection experiments, we demonstrate here that pep46 and its pore-forming N-terminal moiety (pep22) form pores of different diameters, 5-8 and 2-4 nm, respectively, showing that both pep46 moieties participate to pore formation. The solution structures of pep46, pep22, and pep24 (the pep46 C-terminal moiety) in different hydrophobic environments and micelles determined by (1)H NMR studies provide structural insights of the pep46 domain interaction. In CDCl(3)/CD(3)OH mixture and in dodecylphosphocholine micelles, the N-terminal domain of pep46 is structured in a long kinked helix, although the C terminus is structured in one or two helices depending upon the solvents used. We also show that the folding and the proline isomerization status of pep46 depend on the type of hydrophobic environment. NMR spectroscopy with labeled phospholipid micelles, differential scanning calorimetry, and plasmon waveguide resonance studies show the peptides lie parallel to the lipid-water interface, perturbing the fatty acid chain packing. All these data lead to a model in which the two domains of pep46 interact with the membrane to form pores.
Collapse
Affiliation(s)
- Marie Galloux
- From the Unité de Pharmacologie Chimique et Génétique, CNRS, UMR 8151, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, 4 Avenue de l'Observatoire, Paris, F-75270 Cedex 06
- the Unité de Virologie et Immunologie Moléculaires, UR892, Bâtiment de Biotechnologies, INRA, Domaine de Vilvert, F-78350 Jouy-en-Josas
| | - Sonia Libersou
- the CNRS UMR 2472, INRA 1157, Virologie Moléculaire et Structurale, 1 Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Isabel D. Alves
- the UPMC Paris 06, CNRS, UMR 7203, Laboratoire des BioMolécules, FR 2769, Case Courier 182, 4 Place Jussieu, 75252 Paris Cedex 05, and
| | - Rodrigue Marquant
- From the Unité de Pharmacologie Chimique et Génétique, CNRS, UMR 8151, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, 4 Avenue de l'Observatoire, Paris, F-75270 Cedex 06
| | - Gilmar F. Salgado
- the UPMC Paris 06, CNRS, UMR 7203, Laboratoire des BioMolécules, FR 2769, Case Courier 182, 4 Place Jussieu, 75252 Paris Cedex 05, and
| | - Human Rezaei
- the Unité de Virologie et Immunologie Moléculaires, UR892, Bâtiment de Biotechnologies, INRA, Domaine de Vilvert, F-78350 Jouy-en-Josas
| | - Jean Lepault
- the CNRS UMR 2472, INRA 1157, Virologie Moléculaire et Structurale, 1 Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Bernard Delmas
- the Unité de Virologie et Immunologie Moléculaires, UR892, Bâtiment de Biotechnologies, INRA, Domaine de Vilvert, F-78350 Jouy-en-Josas
| | - Serge Bouaziz
- From the Unité de Pharmacologie Chimique et Génétique, CNRS, UMR 8151, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, 4 Avenue de l'Observatoire, Paris, F-75270 Cedex 06
| | - Nelly Morellet
- From the Unité de Pharmacologie Chimique et Génétique, CNRS, UMR 8151, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, 4 Avenue de l'Observatoire, Paris, F-75270 Cedex 06
| |
Collapse
|
37
|
Gros A, Puig C, Guedan S, Rojas JJ, Alemany R, Cascallo M. Verapamil enhances the antitumoral efficacy of oncolytic adenoviruses. Mol Ther 2010; 18:903-11. [PMID: 20179683 PMCID: PMC2890100 DOI: 10.1038/mt.2010.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/21/2010] [Indexed: 11/08/2022] Open
Abstract
The therapeutic potential of oncolytic adenoviruses is limited by the rate of adenovirus release. Based on the observation that several viruses induce cell death and progeny release by disrupting intracellular calcium homeostasis, we hypothesized that the alteration in intracellular calcium concentration induced by verapamil could improve the rate of virus release and spread, eventually enhancing the antitumoral activity of oncolytic adenoviruses. Our results indicate that verapamil substantially enhanced the release of adenovirus from a variety of cell types resulting in an improved cell-to-cell spread and cytotoxicity. Furthermore, the combination of the systemic administration of an oncolytic adenovirus (ICOVIR-5) with verapamil in vivo greatly improved its antitumoral activity in two different tumor xenograft models without affecting the selectivity of this virus. Overall, our findings indicate that verapamil provides a new, safe, and versatile way to improve the antitumoral potency of oncolytic adenoviruses in the clinical setting.
Collapse
Affiliation(s)
- Alena Gros
- Translational Research Laboratory, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Zhou Y, Tzeng WP, Wong HC, Ye Y, Jiang J, Chen Y, Huang Y, Suppiah S, Frey TK, Yang JJ. Calcium-dependent association of calmodulin with the rubella virus nonstructural protease domain. J Biol Chem 2010; 285:8855-68. [PMID: 20086014 DOI: 10.1074/jbc.m109.097063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rubella virus (RUBV) nonstructural (NS) protease domain, a Ca(2+)- and Zn(2+)-binding papain-like cysteine protease domain within the nonstructural replicase polyprotein precursor, is responsible for the self-cleavage of the precursor into two mature products, P150 and P90, that compose the replication complex that mediates viral RNA replication; the NS protease resides at the C terminus of P150. Here we report the Ca(2+)-dependent, stoichiometric association of calmodulin (CaM) with the RUBV NS protease. Co-immunoprecipitation and pulldown assays coupled with site-directed mutagenesis demonstrated that both the P150 protein and a 110-residue minidomain within NS protease interacted directly with Ca(2+)/CaM. The specific interaction was mapped to a putative CaM-binding domain. A 32-mer peptide (residues 1152-1183, denoted as RUBpep) containing the putative CaM-binding domain was used to investigate the association of RUBV NS protease with CaM or its N- and C-terminal subdomains. We found that RUBpep bound to Ca(2+)/CaM with a dissociation constant of 100-300 nm. The C-terminal subdomain of CaM preferentially bound to RUBpep with an affinity 12.5-fold stronger than the N-terminal subdomain. Fluorescence, circular dichroism and NMR spectroscopic studies revealed a "wrapping around" mode of interaction between RUBpep and Ca(2+)/CaM with substantially more helical structure in RUBpep and a global structural change in CaM upon complex formation. Using a site-directed mutagenesis approach, we further demonstrated that association of CaM with the CaM-binding domain in the RUBV NS protease was necessary for NS protease activity and infectivity.
Collapse
Affiliation(s)
- Yubin Zhou
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rotavirus strategies to evade host antiviral innate immunity. Immunol Lett 2009; 127:13-8. [DOI: 10.1016/j.imlet.2009.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 08/14/2009] [Accepted: 08/18/2009] [Indexed: 01/18/2023]
|
40
|
Silberstein E, Konduru K, Kaplan GG. The interaction of hepatitis A virus (HAV) with soluble forms of its cellular receptor 1 (HAVCR1) share the physiological requirements of infectivity in cell culture. Virol J 2009; 6:175. [PMID: 19860892 PMCID: PMC2775739 DOI: 10.1186/1743-422x-6-175] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/27/2009] [Indexed: 12/27/2022] Open
Abstract
Background Hepatitis A virus (HAV), an atypical Picornaviridae that causes acute hepatitis in humans, usurps the HAV cellular receptor 1 (HAVCR1) to infect cells. HAVCR1 is a class 1 integral membrane glycoprotein that contains two extracellular domains: a virus-binding immunoglobulin-like (IgV) domain and a mucin-like domain that extends the IgV from the cell membrane. Soluble forms of HAVCR1 bind, alter, and neutralize cell culture-adapted HAV, which is attenuated for humans. However, the requirements of the HAV-HAVCR1 interaction have not been fully characterized, and it has not been determined whether HAVCR1 also serves as a receptor for wild-type (wt) HAV. Here, we used HAV soluble receptor neutralization and alteration assays to study the requirements of the HAV-HAVCR1 interaction and to determine whether HAVCR1 is also a receptor for wt HAV. Results Treatment of HAV with a soluble form of HAVCR1 that contained the IgV and two-thirds of the mucin domain fused to the Fc fragment of human IgG1 (D1 muc-Fc), altered particles at 37°C but left a residual level of unaltered particles at 4°C. The kinetics of neutralization of HAV by D1 muc-Fc was faster at 37°C than at 4°C. Alteration of HAV particles by D1 muc-Fc required Ca, which could not be replaced by Li, Na, Mg, Mn, or Zn. Neutralization of HAV by D1 muc-Fc occurred at pH 5 to 8 but was more efficient at pH 6 to 7. D1 muc-Fc neutralized wt HAV as determined by a cell culture system that allows the growth of wt HAV. Conclusion The interaction of HAV with soluble forms of HAVCR1 shares the temperature, Ca, and pH requirements for infectivity in cell culture and therefore mimics the cell entry process of HAV. Since soluble forms of HAVCR1 also neutralized wt HAV, this receptor may play a significant role in pathogenesis of HAV.
Collapse
Affiliation(s)
- Erica Silberstein
- Laboratory of Hepatitis and Related Emerging Agents, Center for Biologics Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
41
|
Zhou Y, Frey TK, Yang JJ. Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 2009; 46:1-17. [PMID: 19535138 PMCID: PMC3449087 DOI: 10.1016/j.ceca.2009.05.005] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 12/23/2022]
Abstract
Ca2+ is one of the most universal and versatile signaling molecules and is involved in almost every aspect of cellular processes. Viruses are adept at utilizing the universal Ca2+ signal to create a tailored cellular environment that meets their own demands. This review summarizes most of the known mechanisms by which viruses perturb Ca2+ homeostasis and utilize Ca2+ and cellular Ca2+-binding proteins to their benefit in their replication cycles. Ca2+ plays important roles in virion structure formation, virus entry, viral gene expression, posttranslational processing of viral proteins and virion maturation and release. As part of the review, we introduce an algorithm to identify linear “EF-hand” Ca2+-binding motifs which resulted in the prediction of a total of 93 previously unrecognized Ca2+-binding motifs in virus proteins. Many of these proteins are nonstructural proteins, a class of proteins among which Ca2+ interactions had not been formerly appreciated. The presence of linear Ca2+-binding motifs in viral proteins enlarges the spectrum of Ca2+–virus interplay and expands the total scenario of viral calciomics.
Collapse
Affiliation(s)
- Yubin Zhou
- Department of Chemistry, Georgia State University, 50 Decatur St., Atlanta, GA 30303 USA
| | | | | |
Collapse
|
42
|
Greenberg HB, Estes MK. Rotaviruses: from pathogenesis to vaccination. Gastroenterology 2009; 136:1939-51. [PMID: 19457420 PMCID: PMC3690811 DOI: 10.1053/j.gastro.2009.02.076] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/17/2009] [Indexed: 01/14/2023]
Abstract
Rotaviruses cause life-threatening gastroenteritis in children worldwide; the enormous disease burden has focused efforts to develop vaccines and led to the discovery of novel mechanisms of gastrointestinal virus pathogenesis and host responses to infection. Two live-attenuated vaccines for gastroenteritis (Rotateq [Merck] and Rotarix) have been licensed in many countries. This review summarizes the latest data on these vaccines, their effectiveness, and challenges to global vaccination. Recent insights into rotavirus pathogenesis also are discussed, including information on extraintestinal infection, viral antagonists of the interferon response, and the first described viral enterotoxin. Rotavirus-induced diarrhea now is considered to be a disease that can be prevented through vaccination, although there are many challenges to achieving global effectiveness. Molecular biology studies of rotavirus replication and pathogenesis have identified unique viral targets that might be useful in developing therapies for immunocompromised children with chronic infections.
Collapse
Affiliation(s)
- Harry B. Greenberg
- Senior Associate Dean for Research, Joseph D. Grant Professor of Medicine and Microbiology & Immunology, Stanford University School of Medicine, Alway Bldg, Rm M-121
- 300 Pasteur Dr, Stanford, CA 94305-5119, phone: 650-725-9722, fax: 650-725-7368
| | - Mary K. Estes
- Cullen Endowed Chair of Molecular and Human Virology, Departments of Molecular Virology and Microbiology and Medicine -GI, Baylor College of Medicine, One Baylor Plaza BCM-385, Houston, TX 77030-3498, 713-798-3585, 713-798-3586 fax
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Rotaviruses cause life-threatening gastroenteritis in children throughout the world. The burden of disease has resulted in the development of two live, attenuated vaccines that are now licensed in many countries. This review summarizes new data on these vaccines, their effectiveness, and remaining challenges including new data on the rotavirus enterotoxin, a potential antiviral target. RECENT FINDINGS Live attenuated rotavirus vaccines are used to protect infants against severe rotavirus-induced gastroenteritis and, RotaTeq, a pentavalent bovine-based vaccine, and, Rotarix, a monovalent human rotavirus, are now currently licensed in many countries. Initial results of the licensed RotaTeq vaccine have been promising in the USA and results of immunogenicity and efficacy in developing countries are expected soon. However, universal vaccine implementation is challenging due to age limitations on administration of these vaccines. Chronic rotavirus infections in immunocompromised children may remain a problem and require the development of new treatments including antiviral drugs. Increasing data on the mechanisms of action of the rotavirus enterotoxin highlight this pleiotropic protein as a good target as well as a unique calcium agonist. SUMMARY Rotavirus is now a commonly occurring vaccine-preventable disease among children in developed countries and hopefully this also will soon be true for developing countries. Future studies will determine whether other methods of prevention, such as nonreplicating vaccines and antiviral drugs, will be needed to treat disease in immunocompromised children.
Collapse
Affiliation(s)
- Joseph M. Hyser
- Department of Molecular Virology and Microbiology and Medicine —Gastroenterology Baylor College of Medicine Houston, Texas 77030 -3498
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology and Medicine —Gastroenterology Baylor College of Medicine Houston, Texas 77030 -3498
| |
Collapse
|
44
|
Díaz Y, Chemello ME, Peña F, Aristimuño OC, Zambrano JL, Rojas H, Bartoli F, Salazar L, Chwetzoff S, Sapin C, Trugnan G, Michelangeli F, Ruiz MC. Expression of nonstructural rotavirus protein NSP4 mimics Ca2+ homeostasis changes induced by rotavirus infection in cultured cells. J Virol 2008; 82:11331-43. [PMID: 18787006 PMCID: PMC2573286 DOI: 10.1128/jvi.00577-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 07/28/2008] [Indexed: 12/22/2022] Open
Abstract
Rotavirus infection modifies Ca(2+) homeostasis, provoking an increase in Ca(2+) permeation, the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyto)), and total Ca(2+) pools and a decrease in Ca(2+) response to agonists. A glycosylated viral protein(s), NSP4 and/or VP7, may be responsible for these effects. HT29 or Cos-7 cells were infected by the SA11 clone 28 strain, in which VP7 is not glycosylated, or transiently transfected with plasmids coding for NSP4-enhanced green fluorescent protein (EGFP) or NSP4. The permeability of the plasma membrane to Ca(2+) and the amount of Ca(2+) sequestered in the endoplasmic reticulum released by carbachol or ATP were measured in fura-2-loaded cells at the single-cell level under a fluorescence microscope or in cell suspensions in a fluorimeter. Total cell Ca(2+) pools were evaluated as (45)Ca(2+) uptake. Infection with SA11 clone 28 induced an increase in Ca(2+) permeability and (45)Ca(2+) uptake similar to that found with the normally glycosylated SA11 strain. These effects were inhibited by tunicamycin, indicating that inhibition of glycosylation of a viral protein other than VP7 affects the changes of Ca(2+) homeostasis induced by infection. Expression of NSP4-EGFP or NSP4 in transfected cells induced the same changes observed with rotavirus infection, whereas the expression of EGFP or EGFP-VP4 showed the behavior of uninfected and untransfected cells. Increased (45)Ca(2+) uptake was also observed in cells expressing NSP4-EGFP or NSP4, as evidenced in rotavirus infection. These results indicate that glycosylated NSP4 is primarily responsible for altering the Ca(2+) homeostasis of infected cells through an initial increase of cell membrane permeability to Ca(2+).
Collapse
Affiliation(s)
- Yuleima Díaz
- Laboratorio de Fisiología Gastrointestinal, IVIC, Caracas 1020A, Venezuela
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wu YM, Hsu CH, Wang CH, Liu W, Chang WH, Lin CS. Role of the DxxDxD motif in the assembly and stability of betanodavirus particles. Arch Virol 2008; 153:1633-42. [PMID: 18626568 DOI: 10.1007/s00705-008-0150-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Accepted: 05/26/2008] [Indexed: 11/29/2022]
Abstract
Piscine betanodavirus possesses a bipartite genome of single-stranded (+)RNAs. RNA2 cDNA of dragon grouper nervous necrosis virus (DGNNV) has been expressed previously to form virus-like particles (VLPs), which are highly similar to the native virion. Experiments with calcium-chelating or reducing/oxidizing reagents showed that the DGNNV VLPs required only calcium for particle assembly. With the recombinant VLPs, site-directed mutagenesis can be employed to investigate the roles of calcium-binding ligands in particle formation. The results of mutational analysis of DxxDxD, which is putatively involved in the coordination of calcium ions, showed that the D133N mutation significantly disrupted the assembly of VLPs, while D130N and D135N mutants produced heterogeneous VLPs with broken shapes. The thermal stability of the VLP-forming fractions demonstrated that VLPs of the D135N mutant were stable at a temperature of 85 degrees C, which is slightly higher than that for wild-type, whereas VLPs of the D130N mutant could not tolerate the thermal effects at a temperature higher than 60 degrees C. It was deduced that the three aspartate residues of the motif DxxDxD are all important for the efficient formation of DGNNV VLPs and that, among them, the DxxD provides a more stable coordinate of calcium ligand than DxD.
Collapse
Affiliation(s)
- Yi-Min Wu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
46
|
Hulst M, Kerstens H, de Wit A, Smits M, van der Meulen J, Niewold T. Early transcriptional response in the jejunum of germ-free piglets after oral infection with virulent rotavirus. Arch Virol 2008; 153:1311-22. [PMID: 18523839 PMCID: PMC2441536 DOI: 10.1007/s00705-008-0118-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 05/16/2008] [Indexed: 11/25/2022]
Abstract
Germ-free piglets were orally infected with virulent rotavirus to collect jejunal mucosal scrapings at 12 and 18 hours post infection (two piglets per time point). IFN-gamma mRNA expression was stimulated in the mucosa of all four infected piglets, indicating that they all responded to the rotavirus infection. RNA pools prepared from two infected piglets were used to compare whole mucosal gene expression at 12 and 18 hpi to expression in uninfected germ-free piglets (n = 3) using a porcine intestinal cDNA microarray. Microarray analysis identified 13 down-regulated and 17 up-regulated genes. Northern blot analysis of a selected group of genes confirmed the data of the microarray. Genes were functionally clustered in interferon-regulated genes, proliferation/differentiation genes, apoptosis genes, cytoskeleton genes, signal transduction genes, and enterocyte digestive, absorptive, and transport genes. Down-regulation of the transport gene cluster reflected in part the loss of rotavirus-infected enterocytes from the villous tips. Data mining suggested that several genes were regulated in lower- or mid-villus immature enterocytes and goblet cells, probably to support repair of the damaged epithelial cell layer at the villous tips. Furthermore, up-regulation was observed for IFN-γ induced guanylate binding protein 2, a protein that effectively inhibited VSV and EMCV replication in vitro (Arch Virol 150:1213–1220, 2005). This protein may play a role in the small intestine’s innate defense against enteric viruses like rotavirus.
Collapse
Affiliation(s)
- Marcel Hulst
- Animal Sciences Group of Wageningen University and Research Center, P. O. Box 65, 8200 AB, Lelystad, The Netherlands.
| | | | | | | | | | | |
Collapse
|
47
|
Silencing of rotavirus NSP4 or VP7 expression reduces alterations in Ca2+ homeostasis induced by infection of cultured cells. J Virol 2008; 82:5815-24. [PMID: 18400845 DOI: 10.1128/jvi.02719-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rotavirus infection of cells in culture induces major changes in Ca(2+) homeostasis. These changes include increases in plasma membrane Ca(2+) permeability, cytosolic Ca(2+) concentration, and total cell Ca(2+) content and a reduction in the amount of Ca(2+) released from intracellular pools sensitive to agonists. Various lines of evidence suggest that the nonstructural glycoprotein NSP4 and possibly the major outer capsid glycoprotein VP7 are responsible for these effects. In order to evaluate the functional roles of NSP4 and other rotavirus proteins in the changes in Ca(2+) homeostasis observed in infected cells, the expressions of NSP4, VP7, and VP4 were silenced using the short interfering RNA (siRNA) technique. The transfection of specific siRNAs resulted in a strong and specific reduction of the expression of NSP4, VP7, and VP4 and decreased the yield of new viral progeny by more than 90%. Using fura-2 loaded cells, we observed that knocking down the expression of NSP4 totally prevented the increase in Ca(2+) permeability of the plasma membrane and cytosolic Ca(2+) concentration measured in infected cells. A reduction in the levels of VP7 expression partially reduced the effect of infection on plasma membrane Ca(2+) permeability and Ca(2+) pools released by agonist (ATP). In addition, the increase of total Ca(2+) content (as measured by (45)Ca(2+) uptake) observed in infected cells was reduced to the levels in mock-infected cells when NSP4 and VP7 were silenced. Finally, when the expression of VP4 was silenced, none of the disturbances of Ca(2+) homeostasis caused by rotaviruses in infected cells were affected. These data altogether indicate that NSP4 is the main protein responsible for the changes in Ca(2+) homeostasis observed in rotavirus-infected cultured cells. Nevertheless, VP7 may contribute to these effects.
Collapse
|
48
|
Catto-Smith AG, Emselle S, Bishop RF. Changes in macromolecular transport appear early in Caco-2 cells infected with a human rotavirus. Scand J Gastroenterol 2008; 43:314-22. [PMID: 18266175 DOI: 10.1080/00365520701711786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Rotavirus is a major cause of viral gastroenteritis, but its interaction with intestinal mucosa is poorly understood. The aim of this study was to examine the effect of Wa rotavirus (VP7 serotype 1) on barrier function in confluent Caco-2 cell monolayers. Wa is the most common serotype causing severe diarrhoea in humans. MATERIAL AND METHODS. We examined light and electron microscopic morphology, macromolecular transport, paracellular permeability, electrical parameters, disaccharidases and cytoskeletal structure in Wa- and in control sham-infected cells using a homologous human virus-cell system resembling human infection. RESULTS During the first 48 h following Wa infection, there was no evidence of loss of integrity or of cytopathic effect in the monolayer. A significant cytopathic effect was noticed after 48 h. Further studies examined the initial 24-h period during which there was no evidence of significant injury. Apical-to-basolateral transcytosis of the macromolecule horseradish peroxidase (HRP) was selectively inhibited at 4 and 24 h post-infection with Wa. There were no significant changes in basolateral-to-apical transcytosis, endocytosis or in apical-to-apical recycling of HRP after Wa infection. G- and F-actin levels were significantly reduced within an area corresponding to the viroplasm in Wa-infected cells but not elsewhere in the monolayer. CONCLUSIONS The early stages of rotavirus infection, before gross epithelial injury, are associated with a selective reduction in the apical uptake and transcytosis of macromolecules. We speculate that this is an epithelial defence mechanism.
Collapse
Affiliation(s)
- Anthony G Catto-Smith
- Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Melbourne, Australia.
| | | | | |
Collapse
|
49
|
Abstract
The rotavirus is the major cause of infantile gastroenteritis. The virus infects the mature enterocytes of the villus tip of the small intestine and induces a watery diarrhea. Diarrhea can occur in the absence of histological changes in the intestine, and, conversely, the histological changes can be asymptomatic. Rotavirus decreases the activities of digestive enzymes at the apical brush border membrane and inhibits Na+ -solute cotransport systems. Accumulation of carbohydrates in the intestinal lumen as well as malabsorption of nutrients and a concomitant inhibition of water absorption can lead to a malabsorptive component of diarrhea. Since the discovery of the NSP4 enterotoxin, several hypotheses have been proposed in favour of an additional secretion component in the pathogenesis of diarrhea. Rotavirus induces a moderate net chloride secretion at the onset of the diarrhea. The mechanisms appear to different from those used by bacterial enterotoxin that cause pure secretory diarrhea. Rotavirus stimulated C1- reabsorption in villi, and failed to stimulate C1- secretion in crypt. Intestinal villi could secrete chloride as a result of rotavirus infection. The chloride secretory response is regulated by a dependant calcium signalling pathway induced by NSP4. The overall response is weak, suggesting that NSP4 may exert both secretory and subsequent antisecretory actions, hence limiting C1- secretion.
Collapse
Affiliation(s)
- M Lorrot
- Service de Pédiatrie Générale, Hôpital Robert Debré 82, Boulevard Sérurier 75019 Paris, France.
| | | |
Collapse
|
50
|
Affiliation(s)
- Adam J Moeser
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | |
Collapse
|