1
|
Huang Y, Qiu Z, Jiang C, Fang Q, Wang J, Han M, Liu Y, Li Z. ANXA2 regulates mitochondrial function and cellular senescence of PDLCs via AKT/eNOS signaling pathway under high glucose conditions. Sci Rep 2025; 15:15843. [PMID: 40328825 PMCID: PMC12056103 DOI: 10.1038/s41598-025-00950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 05/02/2025] [Indexed: 05/08/2025] Open
Abstract
Diabetes mellitus is one of the risk factors for periodontitis. Patients with diabetes mellitus possess higher prevalence of periodontitis, more severe periodontal destruction, yet the underlying mechanisms of action are not yet clear. Annexin A2 (ANXA2) is a calcium-dependent phospholipid-binding protein widely involved in membrane repair, cytokinesis, and endocytosis. In this study, we explore whether ANXA2 is one of the associative links between diabetes and periodontitis and find out its underlying mechanisms. Cellular senescence and mitochondrial functions (ROS, mitochondrial morphology, mitochondrial autophagy) were observed. We observed that ANXA2 expression was down-regulated in Periodontal ligament cells (PDLCs) under high glucose conditions. Furthermore, overexpression of ANXA2 delayed high glucose-induced cellular senescence and mitochondrial dysfunction. β-galactosidase activity and the mRNA levels of the senescence-relative genes(p21,p16) were decreased, mitochondrial fracture and ROS release were reduced, and the expression of mitochondrial autophagy-related proteins (LC3,p62,Parkin) was enhanced. expression was enhanced. Mechanistically, we demonstrated that it can regulate the AKT/eNOS signaling pathway by knockdown and overexpression of ANXA2 which was measured using Western blotting (WB) assay to measure the expression of eNOS, p-eNOS Ser1177, Akt and p-Akt Ser473 proteins in PDLCs. After that, we used AKT and eNOS inhibitors to demonstrate the protective effect of ANXA2 on PDLCs under high glucose conditions. The above results suggest that ANXA2 has an anti-aging protective effect, attenuates high glucose-induced cellular senescence in PDLCs, and maintains mitochondrial homeostasis. Therefore, it would be valuable to further explore its role in the link between diabetes and periodontitis in future experiments.
Collapse
Affiliation(s)
- Yanlin Huang
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of stomatology, The People's Hospital of Sanshui District, Foshan, Guangdong, China
| | - Zejing Qiu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Chunhui Jiang
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qian Fang
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jiaye Wang
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mingfang Han
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yizhao Liu
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zehui Li
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Ma R, Qin J, Wang S, Guan S, Jia F, Deng Y, Bai J, Wang S. Exploration of immune-related diagnostic biomarkers in unexplained infertility by bioinformatics analysis and machine learning. Taiwan J Obstet Gynecol 2025; 64:438-449. [PMID: 40368512 DOI: 10.1016/j.tjog.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 05/16/2025] Open
Abstract
OBJECTIVE We aimed to discover the biomarkers associated with UI and their correlation with immune cell infiltration. MATERIALS AND METHODS The GSE165004 data set was extracted from the Gene Expression Omnibus and IRGs were obtained from Immport and InnateDB databases. Differential expression analysis, WGCNA, and three machine learning algorithms (LASSO, SVM, and random forest) were used to determine the immune-related hub biomarkers for UI. The diagnostic performance of these markers was evaluated in GSE165004 and validation set (GSE16532). Furthermore, single-sample GSEA was employed to analyze the infiltration level of immune cells and Spearman analysis was conducted to assess the correlation between biomarker and immune cells. The functional enrichment and potential drugs for each biomarker were explored. The biomarker genes were validated in clinical samples by real time PCR assay. RESULTS Six shared genes (ANXA2, CD300E, IL27RA, SEMA3F, GIPR, and WFDC2) were identified as diagnostic biomarkers by integration analysis. ROC analysis revealed that these markers had diagnostic value for UI both in training and validation sets. Moreover, these biomarkers are closely associated with immune cells, such as natural killer T cells and effector memory CD8 T cells. GSEA analysis showed that these genes were mainly involved in chromosome and mitochondria-related biological functions. Drug prediction indicated that all genes targeted Benzo(a)pyrene. All the biomarker genes, expect for GIPR were differentially expressed in endometrium tissues of UI patients, compared with controls. CONCLUSION This study identified immune-related diagnostic biomarkers in UI, providing new insights into understanding the molecular mechanisms and therapeutic targets of UI.
Collapse
Affiliation(s)
- Ran Ma
- Gynaecology and Obstetrics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Jituan Qin
- Gynaecology and Obstetrics, Nanjing Liuhe District Hospital of Traditional Chinese Medicine, Jiangsu, 211500, China
| | - Sugai Wang
- Gynaecology and Obstetrics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Sufen Guan
- Gynaecology and Obstetrics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Fangjuan Jia
- Gynaecology and Obstetrics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - YingYing Deng
- Gynaecology and Obstetrics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Jing Bai
- Gynaecology and Obstetrics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Saili Wang
- Gynaecology and Obstetrics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China.
| |
Collapse
|
3
|
E T, Xu C, Fan X, Liu J, Zhao J, Bao N, Zhao Y, Farouk MH, Ji Y, Wu Z, Pan L, Qin G. Soybean Agglutinin Induced Apoptotic Effects by Down-Regulating ANXA2 Through FAK Pathway in IPEC-J2 Cells. J Anim Physiol Anim Nutr (Berl) 2025; 109:350-361. [PMID: 39410871 DOI: 10.1111/jpn.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 03/20/2025]
Abstract
Soybean agglutinin (SBA) is an anti-nutritional factor in soybean, possesses toxic effects by binding to intestinal epithelial cells, and finally interferes the digestion and absorption of nutrients in humans and animals. Annexin A2 (ANXA2) is one of the SBA-specific binding proteins in intestinal epithelial cells and participates in multiple cellular biological processes. However, whether SBA affects apoptosis through ANXA2 and its apoptosis-related pathway remains unclear. IPEC-J2 is an ideal model to study human intestinal health. Therefore, this study aims to investigate the effects of ANXA2 on SBA-induced intestinal epithelial cell apoptosis and the related pathway mechanism using IPEC-J2 as a cell model. The results showed that SBA induced the apoptosis through FAK signal pathway and decreased the gene and protein expressions of ANXA2 in IPEC-J2. The expression of ANXA2 protein had a negative correlation with the apoptosis rates, and a positive correlation with the expression of FAK protein and FAK pathway downstream proteins. In conclusion, SBA induced apoptosis of IPEC-J2 cells by downregulating the expression of ANXA2, which activated the FAK pathway. These findings highlight the toxic mechanism of SBA, which will provide basis for studying the toxicity mechanisms of other food-derived anti-nutrients and provide a new perspective for human gastrointestinal health and related cancer treatment.
Collapse
Affiliation(s)
- Tianjiao E
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chengyu Xu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiapu Fan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jiawei Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jinpeng Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mohammed Hamdy Farouk
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Egypt
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Weijie S. Annexin A2: the feasibility of being a therapeutic target associated with cancer metastasis and drug resistance in cancer microenvironment. Discov Oncol 2024; 15:783. [PMID: 39692932 DOI: 10.1007/s12672-024-01693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024] Open
Abstract
At present, there is still a lack of effective treatment strategies for cancer metastasis and drug resistance, so finding effective biomarkers is particularly important. AnnexinA2 (ANXA2), a vital membrane protein, critically influences cancer progression, tumor invasion, and tumor microenvironment modulation. To assess the possible application of ANXA2 as a therapeutic target against cancer cell metastasis and drug resistance to chemotherapeutic drugs in the tumor microenvironment, we elucidated the functionality of ANXA2 in stromal cells, angiogenic vascular cells, and infiltrated immune cells that mediate metastasis and drug resistance, as well as its potential as a therapeutic target. ANXA2 shows a high expression level in many tissues, and its expression level is even higher in several tumors and their microenvironments. ANXA2 is a crucial regulator of many factors and may serve as a target against drug-resistant cancers.
Collapse
Affiliation(s)
- Song Weijie
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
5
|
Luo M, Almeida D, Dallacasagrande V, Hedhli N, Gupta M, D'Amico DJ, Kiss S, Hajjar KA. Annexin A2 promotes proliferative vitreoretinopathy in response to a macrophage inflammatory signal in mice. Nat Commun 2024; 15:8757. [PMID: 39384746 PMCID: PMC11464875 DOI: 10.1038/s41467-024-52675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Proliferative vitreoretinopathy is a vision-threatening response to penetrating ocular injury, for which there is no satisfactory treatment. In this disorder, retinal pigment epithelial cells, abandon their attachment to Bruch's membrane on the scleral side of the retina, transform into motile fibroblast-like cells, and migrate through the retinal wound to the vitreal surface of the retina, where they secrete membrane-forming proteins. Annexin A2 is a calcium-regulated protein that, in complex with S100A10, assembles plasmin-forming proteins at cell surfaces. Here, we show that, in proliferative vitreoretinopathy, recruitment of macrophages and directed migration of retinal pigment epithelial cells are annexin A2-dependent, and stimulated by macrophage inflammatory protein-1α/β. These factors induce translocation of annexin A2 to the cell surface, thus enabling retinal pigment epithelial cell migration following injury; our studies reveal further that treatment of mice with intraocular antibody to either annexin A2 or macrophage inflammatory protein dampens the development of proliferative vitreoretinopathy in mice.
Collapse
Affiliation(s)
- Min Luo
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Dena Almeida
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Nadia Hedhli
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Hudson Community College, Jersey City, NJ, USA
| | - Mrinali Gupta
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY, USA
| | - Donald J D'Amico
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY, USA
| | - Szilárd Kiss
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
6
|
Huang Y, Wang J, Jiang C, Zheng M, Han M, Fang Q, Liu Y, Li R, Zhong L, Li Z. ANXA2 promotes osteogenic differentiation and inhibits cellular senescence of periodontal ligament cells (PDLCs) in high glucose conditions. PeerJ 2024; 12:e18064. [PMID: 39308808 PMCID: PMC11416082 DOI: 10.7717/peerj.18064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background Periodontal ligament cells (PDLCs) are a major component of the periodontal ligament and have an important role in the regeneration of periodontal tissue and maintenance of homeostasis. High glucose can affect the activity and function of PDLCs in a variety of ways; therefore, it is particularly important to find ways to alleviate the effects of high glucose on PDLCs. Annexin A2 (ANXA2) is a calcium- and phospholipid-binding protein involved in a variety of cellular functions and processes, including cellular cytokinesis, cytophagy, migration, and proliferation. Aim The aim of this study was to exploring whether ANXA2 attenuates the deleterious effects of high glucose on PDLCs and promotes osteogenic differentiation capacity. Methods and results Osteogenic differentiation potential, cellular senescence, oxidative stress, and cellular autophagy were detected. Culturing PDLCs with medium containing different glucose concentrations (CTRL, 8 mM, 10 mM, 25 mM, and 40 mM) revealed that high glucose decreased the protein expression of ANXA2 (p < 0.0001). In addition, high glucose decreased the osteogenic differentiation potential of PDLCs as evidenced by decreased calcium deposition (p = 0.0003), lowered ALP activity (p = 0.0010), and a decline in the expression of osteogenesis-related genes (p = 0.0008). Moreover, β-Galactosidase staining and expression of p16, p21 and p53 genes showed that it increased cellular senescence in PDLCs (p < 0.0001). Meanwhile high glucose increased oxidative stress in PDLCs as shown by ROS (p < 0.0001). However, these damages caused by high glucose were inhibited after the addition of 1 µM recombinant ANXA2 (rANXA2), and we found that rANXA2 enhanced autophagy in PDLCs under high glucose conditions. Conclusions and discussion Therefore, our present study demonstrates that alterations in ANXA2 under high glucose conditions may be a factor in the decreased osteogenic differentiation potential of PDLCs. Meanwhile, ANXA2 is associated with autophagy, oxidative stress, and cellular senescence under high glucose conditions.
Collapse
Affiliation(s)
- Yanlin Huang
- Hangzhou Normal University, Zhejiang, China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Jiaye Wang
- Hangzhou Normal University, Zhejiang, China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Chunhui Jiang
- Hangzhou Normal University, Zhejiang, China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Minghe Zheng
- Department of Stomatology, No.904 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Jiangsu Province, Wuxi, China
| | - Mingfang Han
- Hangzhou Normal University, Zhejiang, China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Qian Fang
- Hangzhou Normal University, Zhejiang, China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Yizhao Liu
- Hangzhou Normal University, Zhejiang, China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Ru Li
- Hangzhou Normal University, Zhejiang, China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Liangjun Zhong
- Hangzhou Normal University, Zhejiang, China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Zehui Li
- Hangzhou Normal University, Zhejiang, China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| |
Collapse
|
7
|
Wada T, Gando S. Phenotypes of Disseminated Intravascular Coagulation. Thromb Haemost 2024; 124:181-191. [PMID: 37657485 PMCID: PMC10890912 DOI: 10.1055/a-2165-1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Two phenotypes of disseminated intravascular coagulation (DIC) are systematically reviewed. DIC is classified into thrombotic and fibrinolytic phenotypes characterized by thrombosis and hemorrhage, respectively. Major pathology of DIC with thrombotic phenotype is the activation of coagulation, insufficient anticoagulation with endothelial injury, and plasminogen activator inhibitor-1-mediated inhibition of fibrinolysis, leading to microvascular fibrin thrombosis and organ dysfunction. DIC with fibrinolytic phenotype is defined as massive thrombin generation commonly observed in any type of DIC, combined with systemic pathologic hyperfibrinogenolysis caused by underlying disorder that results in severe bleeding due to excessive plasmin formation. Three major pathomechanisms of systemic hyperfibrinogenolysis have been considered: (1) acceleration of tissue-type plasminogen activator (t-PA) release from hypoxic endothelial cells and t-PA-rich storage pools, (2) enhancement of the conversion of plasminogen to plasmin due to specific proteins and receptors that are expressed on cancer cells and endothelial cells, and (3) alternative pathways of fibrinolysis. DIC with fibrinolytic phenotype can be diagnosed by DIC diagnosis followed by the recognition of systemic pathologic hyperfibrin(ogen)olysis. Low fibrinogen levels, high fibrinogen and fibrin degradation products (FDPs), and the FDP/D-dimer ratio are important for the diagnosis of systemic pathologic hyperfibrin(ogen)olysis. Currently, evidence-based treatment strategies for DIC with fibrinolytic phenotypes are lacking. Tranexamic acid appears to be one of the few methods to be effective in the treatment of systemic pathologic hyperfibrin(ogen)olysis. International cooperation for the elucidation of pathomechanisms, establishment of diagnostic criteria, and treatment strategies for DIC with fibrinolytic phenotype are urgent issues in the field of thrombosis and hemostasis.
Collapse
Affiliation(s)
- Takeshi Wada
- Department of Anesthesiology and Critical Care Medicine, Division of Acute and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Satoshi Gando
- Department of Anesthesiology and Critical Care Medicine, Division of Acute and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- Department of Acute and Critical Care Medicine, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| |
Collapse
|
8
|
Giloteaux L, Glass KA, Germain A, Franconi CJ, Zhang S, Hanson MR. Dysregulation of extracellular vesicle protein cargo in female myalgic encephalomyelitis/chronic fatigue syndrome cases and sedentary controls in response to maximal exercise. J Extracell Vesicles 2024; 13:e12403. [PMID: 38173127 PMCID: PMC10764978 DOI: 10.1002/jev2.12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
In healthy individuals, physical exercise improves cardiovascular health and muscle strength, alleviates fatigue and reduces the risk of chronic diseases. Although exercise is suggested as a lifestyle intervention to manage various chronic illnesses, it negatively affects people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), who suffer from exercise intolerance. We hypothesized that altered extracellular vesicle (EV) signalling in ME/CFS patients after an exercise challenge may contribute to their prolonged and exacerbated negative response to exertion (post-exertional malaise). EVs were isolated by size exclusion chromatography from the plasma of 18 female ME/CFS patients and 17 age- and BMI-matched female sedentary controls at three time points: before, 15 min, and 24 h after a maximal cardiopulmonary exercise test. EVs were characterized using nanoparticle tracking analysis and their protein cargo was quantified using Tandem Mass Tag-based (TMT) proteomics. The results show that exercise affects the EV proteome in ME/CFS patients differently than in healthy individuals and that changes in EV proteins after exercise are strongly correlated with symptom severity in ME/CFS. Differentially abundant proteins in ME/CFS patients versus controls were involved in many pathways and systems, including coagulation processes, muscle contraction (both smooth and skeletal muscle), cytoskeletal proteins, the immune system and brain signalling.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Katherine A. Glass
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Arnaud Germain
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Carl J. Franconi
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of BiotechnologyCornell UniversityIthacaNew YorkUSA
| | - Maureen R. Hanson
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
9
|
Liu S, Li Z, Lan S, Hao H, Jin X, Liang J, Baz AA, Yan X, Gao P, Chen S, Chu Y. LppA is a novel plasminogen receptor of Mycoplasma bovis that contributes to adhesion by binding the host extracellular matrix and Annexin A2. Vet Res 2023; 54:107. [PMID: 37978536 PMCID: PMC10657132 DOI: 10.1186/s13567-023-01242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
Mycoplasma bovis is responsible for various inflammatory diseases in cattle. The prevention and control of M. bovis are complicated by the absence of effective vaccines and the emergence of multidrug-resistant strains, resulting in substantial economic losses worldwide in the cattle industry. Lipoproteins, vital components of the Mycoplasmas cell membrane, are deemed potent antigens for eliciting immune responses in the host upon infection. However, the functions of lipoproteins in M. bovis remain underexplored due to their low sequence similarity with those of other bacteria and the scarcity of genetic manipulation tools for M. bovis. In this study, the lipoprotein LppA was identified in all examined M. bovis strains. Utilizing immunoelectron microscopy and Western blotting, it was observed that LppA localizes to the surface membrane. Recombinant LppA demonstrated dose-dependent adherence to the membrane of embryonic bovine lung (EBL) cells, and this adhesion was inhibited by anti-LppA serum. In vitro binding assays confirmed LppA's ability to associate with fibronectin, collagen IV, laminin, vitronectin, plasminogen, and tPA, thereby facilitating the conversion of plasminogen to plasmin. Moreover, LppA was found to bind and enhance the accumulation of Annexin A2 (ANXA2) on the cell membrane. Disrupting LppA in M. bovis significantly diminished the bacterium's capacity to adhere to EBL cells, underscoring LppA's function as a bacterial adhesin. In conclusion, LppA emerges as a novel adhesion protein that interacts with multiple host extracellular matrix proteins and ANXA2, playing a crucial role in M. bovis's adherence to host cells and dissemination. These insights substantially deepen our comprehension of the molecular pathogenesis of M. bovis.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Xiangrui Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Jinjia Liang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Ahmed Adel Baz
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Xinmin Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China.
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China.
| |
Collapse
|
10
|
Lei J, Sun P, Sheng J, Wang H, Xie Y, Song J. The intricate role of annexin A2 in kidney: a comprehensive review. Ren Fail 2023; 45:2273427. [PMID: 37955107 PMCID: PMC10653649 DOI: 10.1080/0886022x.2023.2273427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Annexin A2 (Anxa2) is a calcium (Ca2+)-regulated phospholipid binding protein composed of a variable N-terminus and a conserved core domain. This protein has been widely found in many tissues and fluids, including tubule cells, glomerular epithelial cells, renal vessels, and urine. In acute kidney injury, the expression level of this protein is markedly elevated in response to acute stress. Moreover, Anxa2 is a novel biomarker and potential therapeutic target with prognostic value in chronic kidney disease. In addition, Anxa2 is associated not only with clear-cell renal cell carcinoma differentiation but also the formation of calcium-related nephrolithiasis. In this review, we discuss the characteristics and functions of Anxa2 and focus on recent reports on the role of Anxa2 in the kidney, which may be useful for future research.
Collapse
Affiliation(s)
- Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Pingping Sun
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hongri Wang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yifan Xie
- Department of Rheumatism and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
11
|
Lindsay S, Bartolotti L, Li Y. Interactions and conformational changes of annexin A2/p11 heterotetramer models on a membrane: a molecular dynamics study. J Biomol Struct Dyn 2023; 42:10342-10351. [PMID: 37705315 PMCID: PMC11611455 DOI: 10.1080/07391102.2023.2256877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Ca2+-dependent membrane-binding by the Annexin A2/p11 heterotetramer (A2t) plays an important role in various biological processes including fibrinogen activation and exocytosis in neuroendocrine cells. Two models where A2t associates with a single membrane surface were generated and used to perform molecular dynamics simulations. The first model mimics initial A2t-membrane binding through both Annexin A2 (A2) subunits of A2t (TS model) while the second model mimics A2t-binding through a single A2 subunit (OS model). Conformational changes were summarized using principal component analysis (PCA), simulation snapshots, and distance plots from the simulations. The full TS model, including the p11 dimer, fully associates with the membrane adopting a stable structure with little conformational variation as evidence by PCA. The unassociated subunits of the OS model moved toward the membrane. The molecular mechanics/Generalized-Born surface area (MMGBSA) method was applied to investigate the energetics of the models. The MMGBSA results demonstrated that R63 of p11 was the primary contributor to the p11-membrane interaction. The TS model results were both consistent with those found in the literature and provide novel insights about the specific residues driving the A2t-membrane interaction. Additionally, it represents the most complete model of A2t on the membrane surface available.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samuel Lindsay
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, USA
| | - Libero Bartolotti
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, USA
| | - Yumin Li
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, USA
| |
Collapse
|
12
|
Huang WR, Wu YY, Liao TL, Nielsen BL, Liu HJ. Cell Entry of Avian Reovirus Modulated by Cell-Surface Annexin A2 and Adhesion G Protein-Coupled Receptor Latrophilin-2 Triggers Src and p38 MAPK Signaling Enhancing Caveolin-1- and Dynamin 2-Dependent Endocytosis. Microbiol Spectr 2023; 11:e0000923. [PMID: 37097149 PMCID: PMC10269738 DOI: 10.1128/spectrum.00009-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
The specifics of cell receptor-modulated avian reovirus (ARV) entry remain unknown. By using a viral overlay protein-binding assay (VOPBA) and an in-gel digestion coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS), we determined that cell-surface annexin A2 (AnxA2) and adhesion G protein-coupled receptor Latrophilin-2 (ADGRL2) modulate ARV entry. Direct interaction between the ARV σC protein and AnxA2 and ADGRL2 in Vero and DF-1 cells was demonstrated in situ by proximity ligation assays. By using short hairpin RNAs (shRNAs) to silence the endogenous AnxA2 and ADGRL2 genes, ARV entry could be efficiently blocked. A significant decrease in virus yields and the intracellular specific signal for σC protein was observed in Vero cells preincubated with the specific AnxA2 and ADGRL2 monoclonal antibodies, indicating that AnxA2 and ADGRL2 are involved in modulating ARV entry. Furthermore, we found that cells pretreated with the AnxA2/S100A10 heterotetramer (A2t) inhibitor A2ti-1 suppressed ARV-mediated activation of Src and p38 mitogen-activated protein kinase (MAPK), demonstrating that Src and p38 MAPK serve as downstream molecules of cell-surface AnxA2 signaling. Our results reveal that suppression of cell-surface AnxA2 with the A2ti-1 inhibitor increased Csk-Cbp interaction, suggesting that ARV entry suppresses Cbp-mediated relocation of Csk to the membrane, thereby activating Src. Furthermore, reciprocal coimmunoprecipitation assays revealed that σC can interact with signaling molecules, lipid raft, and vimentin. The current study provides novel insights into cell-surface AnxA2- and ADGRL2-modulated cell entry of ARV which triggers Src and p38 MAPK signaling to enhance caveolin-1-, dynamin 2-, and lipid raft-dependent endocytosis. IMPORTANCE By analyzing results from VOPBA and LC-MS/MS, we have determined that cell-surface AnxA2 and ADGRL2 modulate ARV entry. After ARV binding to receptors, Src and p38 MAPK signaling were triggered and, in turn, increased the phosphorylation of caveolin-1 (Tyr14) and upregulated dynamin 2 expression to facilitate caveolin-1-mediated and dynamin 2-dependent endocytosis. In this work, we demonstrated that ARV triggers Src activation by impeding Cbp-mediated relocation of Csk to the membrane in the early stages of the life cycle. This work provides better insight into cell-surface AnxA2 and ADGRL2, which upregulate Src and p38MAPK signaling pathways to enhance ARV entry and productive infection.
Collapse
Affiliation(s)
- Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ying Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Ling Liao
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Brent L. Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
13
|
Arroz-Madeira S, Bekkhus T, Ulvmar MH, Petrova TV. Lessons of Vascular Specialization From Secondary Lymphoid Organ Lymphatic Endothelial Cells. Circ Res 2023; 132:1203-1225. [PMID: 37104555 PMCID: PMC10144364 DOI: 10.1161/circresaha.123.322136] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Secondary lymphoid organs, such as lymph nodes, harbor highly specialized and compartmentalized niches. These niches are optimized to facilitate the encounter of naive lymphocytes with antigens and antigen-presenting cells, enabling optimal generation of adaptive immune responses. Lymphatic vessels of lymphoid organs are uniquely specialized to perform a staggering variety of tasks. These include antigen presentation, directing the trafficking of immune cells but also modulating immune cell activation and providing factors for their survival. Recent studies have provided insights into the molecular basis of such specialization, opening avenues for better understanding the mechanisms of immune-vascular interactions and their applications. Such knowledge is essential for designing better treatments for human diseases given the central role of the immune system in infection, aging, tissue regeneration and repair. In addition, principles established in studies of lymphoid organ lymphatic vessel functions and organization may be applied to guide our understanding of specialization of vascular beds in other organs.
Collapse
Affiliation(s)
- Silvia Arroz-Madeira
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| | - Tove Bekkhus
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Maria H. Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| |
Collapse
|
14
|
Hsing DD, Stock AC, Greenwald BM, Bacha EA, Flynn PA, Carroll SJ, Dayton JD, Prockop SE, Qiu Y, Almeida D, Tamura S, Hajjar KA. Annexin A2 Loss After Cardiopulmonary Bypass and Development of Acute Postoperative Respiratory Dysfunction in Children. Crit Care Explor 2023; 5:e0862. [PMID: 36798534 PMCID: PMC9925105 DOI: 10.1097/cce.0000000000000862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
The primary objective of this study was to determine whether expression of the multifunctional and adherens junction-regulating protein, annexin A2 (A2), is altered following cardiopulmonary bypass (CPB). A secondary objective was to determine whether depletion of A2 is associated with post-CPB organ dysfunction in children. DESIGN In a prospective, observational study conducted over a 1-year period in children undergoing cardiac surgery requiring CPB, we analyzed A2 expression in peripheral blood mononuclear cells at different time points. We then assessed the relationship of A2 expression with organ function at each time point in the early postoperative period. SETTING Twenty-three-bed mixed PICU in a tertiary academic center. PARTICIPANTS Patients 1 month to 18 years old undergoing cardiac surgery requiring CPB. MEAN OUTCOME MEASUREMENTS AND RESULTS We analyzed A2 expression in 22 enrolled subjects (n = 9, 1-23 mo old; n = 13, 2-18 yr old) and found a proteolysis-mediated decline in intact A2 immediately after bypass (p = 0.0009), reaching a median of 4% of baseline at 6 hours after bypass (p < 0.0001), and recovery by postoperative day 1. The degree of A2 depletion immediately after bypass in 1-23-month-olds correlated strongly with the extent of organ dysfunction, as measured by PICU admission Vasoactive-Ventilation-Renal (p = 0.004) and PEdiatric Logistic Organ Dysfunction-2 (p = 0.039) scores on postoperative day 1. A2 depletion immediately after bypass also correlated with more protracted requirement for both respiratory support (p = 0.007) and invasive ventilation (p = 0.013) in the 1-23-month-olds. CONCLUSIONS AND RELEVANCE The degree of depletion of A2 following CPB correlates with more severe organ dysfunction, especially acute respiratory compromise in children under 2 years. These findings suggest that loss of A2 may contribute to pulmonary microvascular leak in young children following CPB.
Collapse
Affiliation(s)
- Deyin D. Hsing
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Arabela C. Stock
- Division of Cardiac Critical Care Medicine, Heart Institute, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Bruce M. Greenwald
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Emile A. Bacha
- Division of Cardiac, Thoracic and Vascular Surgery, Department of Surgery, Columbia University College of Physicians and Surgeons, New York City, NY
| | - Patrick A. Flynn
- Division of Pediatric Cardiology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Sheila J. Carroll
- Division of Pediatric Cardiology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Jeffrey D. Dayton
- Division of Pediatric Cardiology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Susan E. Prockop
- Stem Cell Transplant Program, Division of Hematology-Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Yuqing Qiu
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York City, NY
| | - Dena Almeida
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Shoran Tamura
- Medical School, Class of 2024, Albert Einstein College of Medicine, Bronx, NY
| | - Katherine A. Hajjar
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| |
Collapse
|
15
|
Klabklai P, Phetfong J, Tangporncharoen R, Isarankura-Na-Ayudhya C, Tawonsawatruk T, Supokawej A. Annexin A2 Improves the Osteogenic Differentiation of Mesenchymal Stem Cells Exposed to High-Glucose Conditions through Lessening the Senescence. Int J Mol Sci 2022; 23:ijms232012521. [PMID: 36293376 PMCID: PMC9604334 DOI: 10.3390/ijms232012521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is frequently found in chronic diabetic patients, and it results in an increased risk of bone fractures occurring. The underlying mechanism of osteoporosis in diabetic patients is still largely unknown. Annexin A2 (ANXA2), a family of calcium-binding proteins, has been reported to be involved in many biological process including bone remodeling. This study aimed to investigate the role of ANXA2 in mesenchymal stem cells (MSCs) during in vitro osteoinduction under high-glucose concentrations. Osteogenic gene expression, calcium deposition, and cellular senescence were determined. The high-glucose conditions reduced the osteogenic differentiation potential of the MSCs along with the lower expression of ANXA2. Moreover, the high-glucose conditions increased the cellular senescence of the MSCs as determined by senescence-associated β-galactosidase staining and the expression of p16, p21, and p53 genes. The addition of recombinant ANXA2 could recover the glucose-induced deterioration of the osteogenic differentiation of the MSCs and ameliorate the glucose-induced cellular senescence of the MSCs. A Western blot analysis revealed an increase in p53 and phosphorylated p53 (Ser 15), which was decreased by recombinant ANXA2 in MSC osteoblastic differentiation under high-glucose conditions. Our study suggested that the alteration of ANXA2 in high-glucose conditions may be one of the plausible factors in the deterioration of bones in diabetic patients by triggering cellular senescence.
Collapse
Affiliation(s)
- Parin Klabklai
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhonpathom 73170, Thailand
| | - Jitrada Phetfong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhonpathom 73170, Thailand
| | - Rattanawan Tangporncharoen
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhonpathom 73170, Thailand
| | - Chartchalerm Isarankura-Na-Ayudhya
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhonpathom 73170, Thailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopaedics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhonpathom 73170, Thailand
- Correspondence: ; Fax: +66-2-441-4380
| |
Collapse
|
16
|
Lin L, Hu K. Annexin A2 and Kidney Diseases. Front Cell Dev Biol 2022; 10:974381. [PMID: 36120574 PMCID: PMC9478026 DOI: 10.3389/fcell.2022.974381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Annexin A2 is a Ca2+- and phospholipid-binding protein which is widely expressed in various types of cells and tissues. As a multifunctional molecule, annexin A2 is found to be involved in diverse cell functions and processes, such as cell exocytosis, endocytosis, migration and proliferation. As a receptor of plasminogen and tissue plasminogen activator, annexin A2 promotes plasmin generation and regulates the homeostasis of blood coagulation, fibrinolysis and matrix degradation. As an antigen expressed on cell membranes, annexin A2 initiates local inflammation and damage through binding to auto-antibodies. Annexin A2 also mediates multiple signaling pathways induced by various growth factors and oxidative stress. Aberrant expression of annexin A2 has been found in numerous kidney diseases. Annexin A2 has been shown to act as a co-receptor of integrin CD11b mediating NF-kB-dependent kidney inflammation, which is further amplified through annexin A2/NF-kB-triggered macrophage M2 to M1 phenotypic change. It also modulates podocyte cytoskeleton rearrangement through Cdc42 and Rac1/2/3 Rho pathway causing proteinuria. Thus, annexin A2 is implicated in the pathogenesis and progression of various kidney diseases. In this review, we focus on the current understanding of the role of annexin A2 in kidney diseases.
Collapse
Affiliation(s)
- Ling Lin
- *Correspondence: Ling Lin, ; Kebin Hu,
| | - Kebin Hu
- *Correspondence: Ling Lin, ; Kebin Hu,
| |
Collapse
|
17
|
Chen J, Liu Y, Xia S, Ye X, Chen L. Annexin A2 (ANXA2) regulates the transcription and alternative splicing of inflammatory genes in renal tubular epithelial cells. BMC Genomics 2022; 23:544. [PMID: 35906541 PMCID: PMC9336024 DOI: 10.1186/s12864-022-08748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
Background Renal inflammation plays a crucial role during the progression of Chronic kidney disease (CKD), but there is limited research on hub genes involved in renal inflammation. Here, we aimed to explore the effects of Annexin A2 (ANXA2), a potential inflammatory regulator, on gene expression in human proximal tubular epithelial (HK2) cells. RNA-sequencing and bioinformatics analysis were performed on ANXA2-knockdown versus control HK2 cells to reveal the differentially expressed genes (DEGs) and regulated alternative splicing events (RASEs). Then the DEGs and RASEs were validated by qRT-PCR. Results A total of 220 upregulated and 171 downregulated genes related to ANXA2 knockdown were identified. Genes enriched in inflammatory response pathways, such as interferon-mediated signaling, cytokine-mediated signaling, and nuclear factor κB signaling, were under global transcriptional and alternative splicing regulation by ANXA2 knockdown. qRT-PCR confirmed ANXA2-regulated transcription of chemokine gene CCL5, as well as interferon-regulating genes ISG15, IFI6, IFI44, IFITM1, and IRF7, in addition to alternative splicing of inflammatory genes UBA52, RBCK1, and LITAF. Conclusions The present study indicated that ANXA2 plays a role in inflammatory response in HK2 cells that may be mediated via the regulation of transcription and alternative splicing of inflammation-related genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08748-6.
Collapse
Affiliation(s)
- Jing Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yuwei Liu
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Shang Xia
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xujun Ye
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China.
| | - Ling Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
18
|
Expression Analysis of Genes Involved in Transport Processes in Mice with MPTP-Induced Model of Parkinson’s Disease. Life (Basel) 2022; 12:life12050751. [PMID: 35629417 PMCID: PMC9146539 DOI: 10.3390/life12050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Processes of intracellular and extracellular transport play one of the most important roles in the functioning of cells. Changes to transport mechanisms in a neuron can lead to the disruption of many cellular processes and even to cell death. It was shown that disruption of the processes of vesicular, axonal, and synaptic transport can lead to a number of diseases of the central nervous system, including Parkinson’s disease (PD). Here, we studied changes in the expression of genes whose protein products are involved in the transport processes (Snca, Drd2, Rab5a, Anxa2, and Nsf) in the brain tissues and peripheral blood of mice with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced models of PD. We detected changes in the expressions of Drd2, Anxa2, and Nsf at the earliest modeling stages. Additionally, we have identified conspicuous changes in the expression level of Anxa2 in the striatum and substantia nigra of mice with MPTP-induced models of PD in its early stages. These data clearly suggest the involvement of protein products in these genes in the earliest stages of the pathogenesis of PD.
Collapse
|
19
|
Huang Y, Jia M, Yang X, Han H, Hou G, Bi L, Yang Y, Zhang R, Zhao X, Peng C, Ouyang X. Annexin A2: The Diversity of Pathological Effects in Tumorigenesis and Immune Response. Int J Cancer 2022; 151:497-509. [PMID: 35474212 DOI: 10.1002/ijc.34048] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/11/2022]
Abstract
Annexin A2 (ANXA2) is widely used as a marker in a variety of tumors. By regulating multiple signal pathways, ANXA2 promotes the epithelial-mesenchymal transition, which can cause tumorigenesis and accelerate thymus degeneration. The elevated ANXA2 heterotetramer facilitates the production of plasmin, which participates in pathophysiologic processes such as tumor cell invasion and metastasis, bleeding diseases, angiogenesis, inducing the expression of inflammatory factors. In addition, the ANXA2 on the cell membrane mediates immune response via its interaction with surface proteins of pathogens, C1q, toll-like receptor 2, anti-dsDNA antibodies and immunoglobulins. Nuclear ANXA2 plays a role as part of a primer recognition protein complex that enhances DNA synthesis and cells proliferation by acting on the G1-S phase of the cell. ANXA2 reduction leads to the inhibition of invasion and metastasis in multiple tumor cells, bleeding complications in acute promyelocytic leukemia, retinal angiogenesis, autoimmunity response and tumor drug resistance. In this review, we provide an update on the pathological effects of ANXA2 in both tumorigenesis and the immune response. We highlight ANXA2 as a critical protein in numerous malignancies and the immune host response.
Collapse
Affiliation(s)
- Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Hongyan Han
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Yueli Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Ruoqi Zhang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, Ct, USA
| |
Collapse
|
20
|
Encephalomyocarditis Virus 2A Protein Inhibited Apoptosis by Interaction with Annexin A2 through JNK/c-Jun Pathway. Viruses 2022; 14:v14020359. [PMID: 35215950 PMCID: PMC8880565 DOI: 10.3390/v14020359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Encephalomyocarditis virus can cause myocarditis and encephalitis in pigs and other mammals, thus posing a potential threat to public health safety. The 2A protein is an important virulence factor of EMCV. Previous studies have shown that the 2A protein may be related to the inhibition of apoptosis by virus, but its specific molecular mechanism is not clear. In this study, the 2A protein was expressed in Escherichia coli in order to find interacting cell proteins. A pull down assay, coupled with mass spectrometry, revealed that the 2A protein possibly interacted with annexin A2. Co-immunoprecipitation assays and confocal imaging analysis further demonstrated that the 2A protein interacted with annexin A2 in cells. In reducing the expression of annexin A2 by siRNA, the ability of the 2A protein to inhibit apoptosis was weakened and the proliferation of EMCV was slowed down. These results suggest that annexin A2 is closely related to the inhibition of apoptosis by 2A. Furthermore, both RT-PCR and western blot results showed that the 2A protein requires annexin A2 interaction to inhibit apoptosis via JNK/c-Jun pathway. Taken together, our data indicate that the 2A protein inhibits apoptosis by interacting with annexin A2 via the JNK/c-Jun pathway. These findings provide insight into the molecular pathogenesis underlying EMCV infection.
Collapse
|
21
|
Cordido A, Vizoso-Gonzalez M, Nuñez-Gonzalez L, Molares-Vila A, Chantada-Vazquez MDP, Bravo SB, Garcia-Gonzalez MA. Quantitative Proteomic Study Unmasks Fibrinogen Pathway in Polycystic Liver Disease. Biomedicines 2022; 10:290. [PMID: 35203500 PMCID: PMC8869147 DOI: 10.3390/biomedicines10020290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Polycystic liver disease (PLD) is a heterogeneous group of congenital disorders characterized by bile duct dilatation and cyst development derived from cholangiocytes. Nevertheless, the cystogenesis mechanism is currently unknown and the PLD treatment is limited to liver transplantation. Novel and efficient therapeutic approaches are th6us needed. In this context, the present work has a principal aim to find novel molecular pathways, as well as new therapeutic targets, involved in the hepatic cystogenesis process. (2) Methods: Quantitative proteomics based on SWATH-MS technology were performed comparing hepatic proteomes of Wild Type and mutant/polycystic livers in a polycystic kidney disease (PKD) murine model (Pkd1cond/cond;Tam-Cre-/+). (3) Results: We identified several proteins altered in abundance, with two-fold cut-off up-regulation or down-regulation and an adjusted p-value significantly related to hepatic cystogenesis. Then, we performed enrichment and a protein-protein analysis identifying a cluster focused on hepatic fibrinogens. Finally, we validated a selection of targets by RT-qPCR, Western blotting and immunohistochemistry, finding a high correlation with quantitative proteomics data and validating the fibrinogen complex. (4) Conclusions: This work identified a novel molecular pathway in cystic liver disease, highlighting the fibrinogen complex as a possible new therapeutic target for PLD.
Collapse
Affiliation(s)
- Adrian Cordido
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| | - Marta Vizoso-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| | - Laura Nuñez-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| | - Alberto Molares-Vila
- Biostatistics Platform, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain;
| | - Maria del Pilar Chantada-Vazquez
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain;
| | - Susana B. Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain;
| | - Miguel A. Garcia-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
- Galician Public Foundation of Genomic Medicine, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
22
|
Shavit-Stein E, Berkowitz S, Gofrit SG, Altman K, Weinberg N, Maggio N. Neurocoagulation from a Mechanistic Point of View in the Central Nervous System. Semin Thromb Hemost 2022; 48:277-287. [PMID: 35052009 DOI: 10.1055/s-0041-1741569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coagulation mechanisms are critical for maintaining homeostasis in the central nervous system (CNS). Thrombin, an important player of the coagulation cascade, activates protease activator receptors (PARs), members of the G-protein coupled receptor family. PAR1 is located on neurons and glia. Following thrombin activation, PAR1 signals through the extracellular signal-regulated kinase pathway, causing alterations in neuronal glutamate release and astrocytic morphological changes. Similarly, the anticoagulation factor activated protein C (aPC) can cleave PAR1, following interaction with the endothelial protein C receptor. Both thrombin and aPC are expressed on endothelial cells and pericytes in the blood-brain barrier (BBB). Thrombin-induced PAR1 activation increases cytosolic Ca2+ concentration in brain vessels, resulting in nitric oxide release and increasing F-actin stress fibers, damaging BBB integrity. aPC also induces PAR1 activation and preserves BBB vascular integrity via coupling to sphingosine 1 phosphate receptors. Thrombin-induced PAR1 overactivation and BBB disruption are evident in CNS pathologies. During epileptic seizures, BBB disruption promotes thrombin penetration. Thrombin induces PAR1 activation and potentiates N-methyl-D-aspartate receptors, inducing glutamate-mediated hyperexcitability. Specific PAR1 inhibition decreases status epilepticus severity in vivo. In stroke, the elevation of brain thrombin levels further compromises BBB integrity, with direct parenchymal damage, while systemic factor Xa inhibition improves neurological outcomes. In multiple sclerosis (MS), brain thrombin inhibitory capacity correlates with clinical presentation. Both thrombin inhibition by hirudin and the use of recombinant aPC improve disease severity in an MS animal model. This review presents the mechanisms underlying the effects of coagulation on the physiology and pathophysiology of the CNS.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Keren Altman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nitai Weinberg
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
23
|
Li C, Zhao Z, Zhao S. Annexin A2 promotes development of retinal neovascularization through PI3K/ AKT signaling pathway. Curr Eye Res 2021; 47:579-589. [PMID: 34894941 DOI: 10.1080/02713683.2021.2018467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE Retinal Neovascularization (RNV) is a pathological characteristic of ocular diseases. Annexin A2 (ANXA2) plays important roles in RNV while the mechanism remains unclear. The study aimed to explore relationship between ANXA2 and PI3K/AKT signaling pathway in RNV. METHODS We used human retinal vascular endothelial cells (HRECs) and oxygen-induced retinopathy (OIR) mice model to show ANXA2 can promote the development of RNV through PI3K/AKT signaling pathway. We divided HRECs into six groups by infecting lentivirus containing appropriate plasmid and adding corresponding solution. Assays showing ability of HRECs were performed in vitro. Mice were randomly divided into three groups and treated accordingly. RESULTS Expression of ANXA2 and activity of PI3K/AKT signaling pathway in HRECs were detected. RNV and expression of ANXA2 in mice retinas were detected. Results showed that ANXA2 expression is positively related with RNV-forming ability of HRECs in vitro and development of RNV in vivo while low activity of PI3K/AKT signaling pathway could attenuate the role of ANXA2. CONCLUSIONS We can make ANXA2 and PI3K/ AKT signaling pathway as a promising target for the regulation of pathological neovascularization of the retina, which also provides a novel idea for effective prevention and treatment of diseases related to RNV in future.
Collapse
Affiliation(s)
- Chenyue Li
- Department of Ophthalmology, the First Affiliated Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Zichang Zhao
- Department of Ophthalmology, the First Affiliated Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Shihong Zhao
- Department of Ophthalmology, the First Affiliated Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China.,Nanjing Aier Eye Hospital, Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
24
|
Ma K, Chen X, Liu W, Yang Y, Chen S, Sun J, Ma C, Wang T, Yang J. ANXA2 is correlated with the molecular features and clinical prognosis of glioma, and acts as a potential marker of immunosuppression. Sci Rep 2021; 11:20839. [PMID: 34675316 PMCID: PMC8531374 DOI: 10.1038/s41598-021-00366-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that ANXA2 is important in the development of many cancers, while its role in glioma-related immune response remains unclear. We aimed to comprehensively investigate its biological characteristics and clinical value in glioma. We analyzed 699 glioma samples from The Cancer Genome Atlas as training cohort and 325 samples from the Chinese Glioma Genome Atlas as validation cohort. All the statistical analyses and figures were generated with R. ANXA2 was overexpressed significantly in high-grade glioma, isocitrate dehydrogenase wild-type and mesenchymal-subtype glioma. ANXA2 was a special indicator of mesenchymal subtype. The survival analysis showed that highly-expressed ANXA2 was related to worse survival status as an independent factor of poor prognosis. Further gene ontology analysis showed that ANXA2 was mainly involved in immune response and inflammatory activities of glioma. Subsequent correlation analysis showed that ANXA2 was positively correlated with HCK, LCK, MHC II, STAT1 and interferon but negatively with IgG. Meanwhile, ANXA2 was positively related to the infiltration of tumor-related macrophages, regulatory T cells and myeloid-derived suppressor cells. Our study revealed that ANXA2 is a biomarker closely related to the malignant phenotype and poor prognosis of glioma, and plays an important role in immune response, inflammatory activity and immunosuppression.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Yang Yang
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Jianjun Sun
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Changcheng Ma
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
25
|
Mui L, Martin CM, Tschirhart BJ, Feng Q. Therapeutic Potential of Annexins in Sepsis and COVID-19. Front Pharmacol 2021; 12:735472. [PMID: 34566657 PMCID: PMC8458574 DOI: 10.3389/fphar.2021.735472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a continuing problem in modern healthcare, with a relatively high prevalence, and a significant mortality rate worldwide. Currently, no specific anti-sepsis treatment exists despite decades of research on developing potential therapies. Annexins are molecules that show efficacy in preclinical models of sepsis but have not been investigated as a potential therapy in patients with sepsis. Human annexins play important roles in cell membrane dynamics, as well as mediation of systemic effects. Most notably, annexins are highly involved in anti-inflammatory processes, adaptive immunity, modulation of coagulation and fibrinolysis, as well as protective shielding of cells from phagocytosis. These discoveries led to the development of analogous peptides which mimic their physiological function, and investigation into the potential of using the annexins and their analogous peptides as therapeutic agents in conditions where inflammation and coagulation play a large role in the pathophysiology. In numerous studies, treatment with recombinant human annexins and annexin analogue peptides have consistently found positive outcomes in animal models of sepsis, myocardial infarction, and ischemia reperfusion injury. Annexins A1 and A5 improve organ function and reduce mortality in animal sepsis models, inhibit inflammatory processes, reduce inflammatory mediator release, and protect against ischemic injury. The mechanisms of action and demonstrated efficacy of annexins in animal models support development of annexins and their analogues for the treatment of sepsis. The effects of annexin A5 on inflammation and platelet activation may be particularly beneficial in disease caused by SARS-CoV-2 infection. Safety and efficacy of recombinant human annexin A5 are currently being studied in clinical trials in sepsis and severe COVID-19 patients.
Collapse
Affiliation(s)
- Louise Mui
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Claudio M Martin
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada.,Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Brent J Tschirhart
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Qingping Feng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| |
Collapse
|
26
|
Evlakhov VI, Poiasov IZ. [Spontaneous fibrinolysis and possibilities of its acceleration in pulmonary embolism]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2021; 27:25-31. [PMID: 34166341 DOI: 10.33529/angio2021207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review contains the data concerning the mechanisms of spontaneous fibrinolysis in pulmonary vessels and possibilities of its acceleration in pulmonary embolism. The spontaneous fibrinolysis system is known to be sequential and multifactorial, with the interaction of accelerators (t-PA and u-PA) and inhibitors (alpha-2-antiplasmin, PAI-1, TAFI). The fibrinolytic processes take place in case of prevailing reactions of accelerating factors over inhibiting ones. The endothelium of pulmonary vessels possesses pronounced antithrombogenic and profibrinolytic properties, therefore, the processes of fibrinolysis in the pulmonary vascular bed normally occur more intensively than in the vessels of the systemic circulation. The membrane proteins of the endothelium annexins A2 activate plasminogen, whereas thrombomodulin inhibits the activity of PAI-1. The main approaches to increase the fibrinolysis intensity in conditions of pulmonary embolism may be aimed at elevating the activity of fibrinolytic enzymes (enhancing the synthesis of annexins A2, the use of NMDA-receptor antagonists) and suppressing its inhibitors (the use of monoclonal antibodies to alpha-2-antiplasmin, as well as plasminogen activator inhibitor-1 (PAI-1) and thrombin-activatable fibrinolysis inhibitor (TAFI). Promising directions for future research can be the synthesis of a new generation of tissue-type plasminogen activators, and investigations of the possibility of clinical application of antithrombin and thrombomodulin, angiotensin converting enzyme inhibitors and cortisol antagonists. To meet these challenges, it is necessary to develop new models of venous thrombosis and acute pulmonary embolism in different animal species, with the assessment of the changes in the venous haemodynamics and pulmonary microcirculation on the background of administration of a new class of fibrinolytic agents.
Collapse
Affiliation(s)
- V I Evlakhov
- Laboratory of Physiology of Visceral Systems named after Academician K.M. Bykov, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - I Z Poiasov
- Laboratory of Physiology of Visceral Systems named after Academician K.M. Bykov, Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
27
|
Lim HI, Hajjar KA. Annexin A2 in Fibrinolysis, Inflammation and Fibrosis. Int J Mol Sci 2021; 22:6836. [PMID: 34202091 PMCID: PMC8268605 DOI: 10.3390/ijms22136836] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
As a cell surface tissue plasminogen activator (tPA)-plasminogen receptor, the annexin A2 (A2) complex facilitates plasmin generation on the endothelial cell surface, and is an established regulator of hemostasis. Whereas A2 is overexpressed in hemorrhagic disease such as acute promyelocytic leukemia, its underexpression or impairment may result in thrombosis, as in antiphospholipid syndrome, venous thromboembolism, or atherosclerosis. Within immune response cells, A2 orchestrates membrane repair, vesicle fusion, and cytoskeletal organization, thus playing a critical role in inflammatory response and tissue injury. Dysregulation of A2 is evident in multiple human disorders, and may contribute to the pathogenesis of various inflammatory disorders. The fibrinolytic system, moreover, is central to wound healing through its ability to remodel the provisional matrix and promote angiogenesis. A2 dysfunction may also promote tissue fibrogenesis and end-organ fibrosis.
Collapse
Affiliation(s)
- Hana I. Lim
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Katherine A. Hajjar
- Division of Hematology and Oncology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
28
|
A novel "vascular" thrombophilia. Blood 2021; 137:2133-2134. [PMID: 33885713 DOI: 10.1182/blood.2020010321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Salibe-Filho W, Araujo TLS, G. Melo E, B. C. T. Coimbra L, Lapa MS, Acencio MMP, Freitas-Filho O, Capelozzi VL, Teixeira LR, Fernandes CJCS, Jatene FB, Laurindo FRM, Terra-Filho M. Shear stress-exposed pulmonary artery endothelial cells fail to upregulate HSP70 in chronic thromboembolic pulmonary hypertension. PLoS One 2020; 15:e0242960. [PMID: 33270690 PMCID: PMC7714249 DOI: 10.1371/journal.pone.0242960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
The pathophysiological mechanisms underlying chronic thromboembolic pulmonary hypertension (CTEPH) are still unclear. Endothelial cell (EC) remodeling is believed to contribute to this pulmonary disease triggered by thrombus and hemodynamic forces disbalance. Recently, we showed that HSP70 levels decrease by proatherogenic shear stress. Molecular chaperones play a major role in proteostasis in neurological, cancer and inflammatory/ infectious diseases. To shed light on microvascular responses in CTEPH, we characterized the expression of molecular chaperones and annexin A2, a component of the fibrinolytic system. There is no animal model that reproduces microvascular changes in CTEPH, and this fact led us to isolated endothelial cells from patients with CTEPH undergoing pulmonary endarterectomy (PEA). We exposed CTEPH-EC and control human pulmonary endothelial cells (HPAEC) to high- (15 dynes/cm2) or low- (5 dynes/cm2) shear stress. After high-magnitude shear stress HPAEC upregulated heat shock protein 70kDa (HSP70) and the HSP ER paralogs 78 and 94kDa glucose-regulated protein (GRP78 and 94), whereas CTEPH-ECs failed to exhibit this response. At static conditions, both HSP70 and HSP90 families in CTEPH-EC are decreased. Importantly, immunohistochemistry analysis showed that HSP70 expression was downregulated in vivo, and annexin A2 was upregulated. Interestingly, wound healing and angiogenesis assays revealed that HSP70 inhibition with VER-155008 further impaired CTEPH-EC migratory responses. These results implicate HSP70 as a novel master regulator of endothelial dysfunction in type 4 PH. Overall, we first show that global failure of HSP upregulation is a hallmark of CTEPH pathogenesis and propose HSP70 as a potential biomarker of this condition.
Collapse
Affiliation(s)
- William Salibe-Filho
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Thaís L. S. Araujo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Everton G. Melo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Luiza B. C. T. Coimbra
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Monica S. Lapa
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Milena M. P. Acencio
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Orival Freitas-Filho
- Cardiovascular Surgery Division, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Lisete Ribeiro Teixeira
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Caio J. C. S. Fernandes
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Fabio Biscegli Jatene
- Cardiovascular Surgery Division, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Mario Terra-Filho
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| |
Collapse
|
30
|
Pérez-Boza J, Boeckx A, Lion M, Dequiedt F, Struman I. hnRNPA2B1 inhibits the exosomal export of miR-503 in endothelial cells. Cell Mol Life Sci 2020; 77:4413-4428. [PMID: 31894362 PMCID: PMC11104873 DOI: 10.1007/s00018-019-03425-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
The chemotherapeutic drug epirubicin increases the exosomal export of miR-503 in endothelial cells. To understand the mechanisms behind this process, we transfected endothelial cells with miR-503 carrying a biotin tag. Then, we pulled-down the proteins interacting with miR-503 and studied their role in microRNA exosomal export. A total of four different binding partners were identified by mass spectrometry and validated by western blotting and negative controls, among them ANXA2 and hnRNPA2B1. Using knock-down systems combined with pull-down analysis, we determined that epirubicin mediates the export of miR-503 by disrupting the interaction between hnRNPA2B1 and miR-503. Then, both ANXA2 and miR-503 are sorted into exosomes while hnRNPA2B1 is relocated into the nucleus. The combination of these processes culminates in the increased export of miR-503. These results suggest, for the first time, that RNA-binding proteins can negatively regulate the exosomal sorting of microRNAs.
Collapse
Affiliation(s)
- Jennifer Pérez-Boza
- Molecular Angiogenesis Laboratory, GIGA Research, ULiege, B34, Avenue de l'Hôpital, 1, 4000, Liège, Belgium
- Exosome Research Group and Medical Oncology, VUmc Cancer Center Amsterdam, 1118 De Boelelaan, 1182 DB, Amsterdam, The Netherlands
| | - Amandine Boeckx
- Molecular Angiogenesis Laboratory, GIGA Research, ULiege, B34, Avenue de l'Hôpital, 1, 4000, Liège, Belgium
| | - Michele Lion
- Molecular Angiogenesis Laboratory, GIGA Research, ULiege, B34, Avenue de l'Hôpital, 1, 4000, Liège, Belgium
| | - Franck Dequiedt
- Laboratoire de Signalisation et Interactions des Protéines, GIGA-Research, ULiege, B34, Avenue de l'Hôpital, 1, 4000, Liège, Belgium
| | - Ingrid Struman
- Molecular Angiogenesis Laboratory, GIGA Research, ULiege, B34, Avenue de l'Hôpital, 1, 4000, Liège, Belgium.
| |
Collapse
|
31
|
Gabel M, Royer C, Thahouly T, Calco V, Gasman S, Bader MF, Vitale N, Chasserot-Golaz S. Annexin A2 Egress during Calcium-Regulated Exocytosis in Neuroendocrine Cells. Cells 2020; 9:cells9092059. [PMID: 32917016 PMCID: PMC7564067 DOI: 10.3390/cells9092059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023] Open
Abstract
Annexin A2 (AnxA2) is a calcium- and lipid-binding protein involved in neuroendocrine secretion where it participates in the formation and/or stabilization of lipid micro-domains required for structural and spatial organization of the exocytotic machinery. We have recently described that phosphorylation of AnxA2 on Tyr23 is critical for exocytosis. Considering that Tyr23 phosphorylation is known to promote AnxA2 externalization to the outer face of the plasma membrane in different cell types, we examined whether this phenomenon occurred in neurosecretory chromaffin cells. Using immunolabeling and biochemical approaches, we observed that nicotine stimulation triggered the egress of AnxA2 to the external leaflets of the plasma membrane in the vicinity of exocytotic sites. AnxA2 was found co-localized with tissue plasminogen activator, previously described on the surface of chromaffin cells following secretory granule release. We propose that AnxA2 might be a cell surface tissue plasminogen activator receptor for chromaffin cells, thus playing a role in autocrine or paracrine regulation of exocytosis.
Collapse
Affiliation(s)
- Marion Gabel
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; (M.G.); (T.T.); (V.C.); (S.G.); (M.-F.B.); (N.V.)
| | - Cathy Royer
- Plateforme Imagerie In Vitro, Neuropôle, Université de Strasbourg, F-67000 Strasbourg, France;
| | - Tamou Thahouly
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; (M.G.); (T.T.); (V.C.); (S.G.); (M.-F.B.); (N.V.)
| | - Valérie Calco
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; (M.G.); (T.T.); (V.C.); (S.G.); (M.-F.B.); (N.V.)
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; (M.G.); (T.T.); (V.C.); (S.G.); (M.-F.B.); (N.V.)
| | - Marie-France Bader
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; (M.G.); (T.T.); (V.C.); (S.G.); (M.-F.B.); (N.V.)
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; (M.G.); (T.T.); (V.C.); (S.G.); (M.-F.B.); (N.V.)
| | - Sylvette Chasserot-Golaz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; (M.G.); (T.T.); (V.C.); (S.G.); (M.-F.B.); (N.V.)
- Plateforme Imagerie In Vitro, Neuropôle, Université de Strasbourg, F-67000 Strasbourg, France;
- Correspondence: ; Tel.: +333-88-45-67-39
| |
Collapse
|
32
|
Su Z, Chang Q, Drelich A, Shelite T, Judy B, Liu Y, Xiao J, Zhou C, He X, Jin Y, Saito T, Tang S, Soong L, Wakamiya M, Fang X, Bukreyev A, Ksiazek T, Russell WK, Gong B. Annexin A2 depletion exacerbates the intracerebral microhemorrhage induced by acute rickettsia and Ebola virus infections. PLoS Negl Trop Dis 2020; 14:e0007960. [PMID: 32687500 PMCID: PMC7392349 DOI: 10.1371/journal.pntd.0007960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/30/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Intracerebral microhemorrhages (CMHs) are small foci of hemorrhages in the cerebrum. Acute infections induced by some intracellular pathogens, including rickettsia, can result in CMHs. Annexin a2 (ANXA2) has been documented to play a functional role during intracellular bacterial adhesion. Here we report that ANXA2-knockout (KO) mice are more susceptible to CMHs in response to rickettsia and Ebola virus infections, suggesting an essential role of ANXA2 in protecting vascular integrity during these intracellular pathogen infections. Proteomic analysis via mass spectrometry of whole brain lysates and brain-derived endosomes from ANXA2-KO and wild-type (WT) mice post-infection with R. australis revealed that a variety of significant proteins were differentially expressed, and the follow-up function enrichment analysis had identified several relevant cell-cell junction functions. Immunohistology study confirmed that both infected WT and infected ANXA2-KO mice were subjected to adherens junctional protein (VE-cadherin) damages. However, key blood-brain barrier (BBB) components, tight junctional proteins ZO-1 and occludin, were disorganized in the brains from R. australis-infected ANXA2-KO mice, but not those of infected WT mice. Similar ANXA2-KO dependent CMHs and fragments of ZO-1 and occludin were also observed in Ebola virus-infected ANXA2-KO mice, but not found in infected WT mice. Overall, our study revealed a novel role of ANXA2 in the formation of CMHs during R. australis and Ebola virus infections; and the underlying mechanism is relevant to the role of ANXA2-regulated tight junctions and its role in stabilizing the BBB in these deadly infections.
Collapse
Affiliation(s)
- Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Aleksandra Drelich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Shelite
- Department of Internal Medicine, Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Barbara Judy
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yakun Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jie Xiao
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Changchen Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xi He
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts, United States of America
| | - Tais Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Shaojun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Qiu LW, Liu YF, Cao XQ, Wang Y, Cui XH, Ye X, Huang SW, Xie HJ, Zhang HJ. Annexin A2 promotion of hepatocellular carcinoma tumorigenesis via the immune microenvironment. World J Gastroenterol 2020; 26:2126-2137. [PMID: 32476780 PMCID: PMC7235202 DOI: 10.3748/wjg.v26.i18.2126] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with a dismal prognosis, especially when diagnosed at advanced stages. Annexin A2 (ANXA2), is found to promote cancer progression and therapeutic resistance. However, the underlining mechanisms of ANXA2 in immune escape of HCC remain poorly understood up to now. Herein, we summarized the molecular function of ANXA2 in HCC and its relationship with prognosis. Furthermore, we tentatively elucidated the underlying mechanism of ANXA2 immune escape of HCC by upregulating the proportion of regulatory T cells and the expression of several inhibitory molecules, and by downregulating the proportion of natural killer cells and dendritic cells and the expression of several inhibitory molecules or effector molecules. We expect a lot of in-depth studies to further reveal the underlying mechanism of ANXA2 in immune escape of HCC in the future.
Collapse
Affiliation(s)
- Li-Wei Qiu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yi-Fei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiao-Qing Cao
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), Beijing 101149, China
| | - Yan Wang
- Emergency Department, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiao-Hong Cui
- Department of General Surgery, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Xian Ye
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Shuo-Wen Huang
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hong-Jun Xie
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hai-Jian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
34
|
Garrido-Gomez T, Quiñonero A, Dominguez F, Rubert L, Perales A, Hajjar KA, Simon C. Preeclampsia: a defect in decidualization is associated with deficiency of Annexin A2. Am J Obstet Gynecol 2020; 222:376.e1-376.e17. [PMID: 31738896 DOI: 10.1016/j.ajog.2019.11.1250] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Decidualization defects in the endometrium have been demonstrated at the time of delivery in women with severe preeclampsia and to linger for years, which suggests a maternal contribution to the pathogenesis of this condition. Global transcriptional profiling reveals alterations in gene expression, which includes down-regulation of Annexin A2 in severe preeclampsia patients with decidualization resistance. OBJECTIVE We investigated the functional role of Annexin A2 deficiency during endometrial decidualization and its potential contribution to shallow trophoblast invasion during implantation and subsequent placentation using in vitro and in vivo modeling. STUDY DESIGN Annexin A2 gene and protein levels were assessed during in vitro decidualization of human endometrial stromal cells isolated from biopsy specimens that were collected from women with previous severe preeclampsia (n=5) or normal obstetric outcomes (n=5). Next, Annexin A2 was inhibited with small interference RNA in control human endometrial stromal cells that were isolated from endometrial biopsy specimens (n=15) as an in vitro model to analyze decidualization defects at the morphologic level and the secretion of prolactin and insulin-like growth binding protein-1. Annexin A2-inhibited cells were used to evaluate motility and promotion of embryo invasion. Decidualization and placentation defects of Annexin A2 deficiency were confirmed with the use of an Annexin A2-null mouse model. RESULTS Annexin A2 gene and protein levels were down-regulated during in vitro decidualization of human endometrial stromal cells from women with previous severe preeclampsia compared with control individuals. To assess its role in the endometrial stroma, we inhibited Annexin A2 expression and detected decidualization failure as evidenced by impaired morphologic transformation, which was associated with altered actin polymerization and low prolactin and insulin-like growth binding protein-1 secretions. Functionally, in vitro models demonstrated that Annexin A2 inhibition failed to support embryo invasion. This finding was corroborated by reduced trophoblast spreading through human endometrial stromal cells, lack of motility of these cells, and reduced trophoblast invasion in the presence of conditioned media from Annexin A2-inhibited cells. Extending our discovery to an animal model, we detected that Annexin A2-null mice have a functional deficiency in decidualization and placentation that impairs fetal growth as a feature that is associated with severe preeclampsia. CONCLUSION Together, in vitro and in vivo results suggest that endometrial defects in Annexin A2 expression impair decidualization of endometrial stromal cells as well as the uterine microenvironment that promotes embryo implantation and placentation. Our findings highlight the maternal contribution to the pathogenesis of severe preeclampsia and suggest that evaluation of Annexin A2 may provide a novel strategy to assess a woman's risk of experiencing this disease and perhaps discover therapeutic interventions to improve decidualization.
Collapse
|
35
|
A new role for host annexin A2 in establishing bacterial adhesion to vascular endothelial cells: lines of evidence from atomic force microscopy and an in vivo study. J Transl Med 2019; 99:1650-1660. [PMID: 31253864 PMCID: PMC6913097 DOI: 10.1038/s41374-019-0284-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 01/27/2023] Open
Abstract
Understanding bacterial adhesion is challenging and critical to our understanding of the initial stages of the pathogenesis of endovascular bacterial infections. The vascular endothelial cell (EC) is the main target of Rickettsia, an obligately intracellular bacterium that causes serious systemic disease in humans and animals. But the mechanism(s) underlying bacterial adherence to ECs under shear stress from flowing blood prior to activation are unknown for any bacteria. Although host surface annexin a2 (ANXA2) has been identified to participate in efficient bacterial invasion of epithelial cells, direct evidence is lacking in the field of bacterial infections of ECs. In the present study, we employ a novel, anatomically based, in vivo quantitative bacterial-adhesion-to-vascular-EC system, combined with atomic force microscopy (AFM), to examine the role of endothelial luminal surface ANXA2 during rickettsial adherence to ECs. We also examined whether ANXA2 antibody affected binding of Staphylococcus aureus to ECs. We found that deletion of ANXA2 impeded rickettsial attachment to the ECs in vitro and blocked rickettsial adherence to the blood vessel luminal surface in vivo. The AFM studies established that EC surface ANXA2 acts as an adherence receptor for rickettsiae, and that rickettsial adhesin OmpB is the associated bacterial ligand. Furthermore, pretreatment of ECs with anti-ANXA2 antibody reduced EC surface-associated S. aureus. We conclude that the endothelial surface ANXA2 plays an important role in initiating pathogen-host interactions, ultimately leading to bacterial anchoring on the vascular luminal surface.
Collapse
|
36
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
37
|
Saiki Y, Horii A. Multiple functions of S100A10, an important cancer promoter. Pathol Int 2019; 69:629-636. [PMID: 31612598 DOI: 10.1111/pin.12861] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The S100 group of calcium binding proteins is composed of 21 members that exhibit tissue/cell specific expressions. These S100 proteins bind a diverse range of targets and regulate multiple cellular processes, including proliferation, migration and differentiation. S100A10, also known as p11, binds mainly to annexin A2 and mediates the conversion of plasminogen to an active protease, plasmin. Higher S100A10 expression has been reported to link to worse outcome and/or chemoresistance in a number of cancer types in lung, breast, ovary, pancreas, gall bladder and colorectum and leukemia although some discrepancy was reported. In this review, we focused on the roles of the S100A10 in cancer. We summarized its biological functions, role in cancer progression, prognostic value and targeting of S100A10 for cancer therapy.
Collapse
Affiliation(s)
- Yuriko Saiki
- Department of Molecular Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Akira Horii
- Department of Molecular Pathology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
38
|
Li W, Chen Z, Yuan J, Yu Z, Cheng C, Zhao Q, Huang L, Hajjar KA, Chen Z, Lo EH, Dai H, Wang X. Annexin A2 is a Robo4 ligand that modulates ARF6 activation-associated cerebral trans-endothelial permeability. J Cereb Blood Flow Metab 2019; 39:2048-2060. [PMID: 29786451 PMCID: PMC6775579 DOI: 10.1177/0271678x18777916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/03/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
Blood-brain barrier (BBB) disruption in neurological disorders remains an intractable problem with limited therapeutic options. Here, we investigate whether the endothelial cell membrane protein annexin A2 (ANXA2) may play a role in reducing trans-endothelial permeability and maintaining cerebrovascular integrity after injury. Compared with wild-type mice, the expression of cerebral endothelial junctional proteins was reduced in E15.5 and adult ANXA2 knockout mice, along with increased leakage of small molecule tracers. In human brain endothelial cells that were damaged by hypoxia plus IL-1β, treatment with recombinant ANXA2 (rA2) rescued the expression of junctional proteins and decreased trans-endothelial permeability. These protective effects were mediated in part by interactions with F-actin and VE-cadherin, and the ability of rA2 to modulate signaling via the roundabout guidance receptor 4 (Robo4)-paxillin-ADP-ribosylation factor 6 (ARF6) pathway. Taken together, these observations suggest that ANXA2 may be associated with the maintenance of endothelial tightness after cerebrovascular injury. ANXA2-mediated pathways should be further explored as potential therapeutic targets for protecting the BBB in neurological disorders.
Collapse
Affiliation(s)
- Wenlu Li
- The Second Affiliated Hospital, Zhejiang
University School of Medicine, Hangzhou, China
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou, China
- Neuroprotection Research Laboratory,
Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhigang Chen
- The Second Affiliated Hospital, Zhejiang
University School of Medicine, Hangzhou, China
| | - Jing Yuan
- Neuroprotection Research Laboratory,
Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhanyang Yu
- Neuroprotection Research Laboratory,
Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chongjie Cheng
- Neuroprotection Research Laboratory,
Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Qiuchen Zhao
- Neuroprotection Research Laboratory,
Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Lena Huang
- Neuroprotection Research Laboratory,
Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Katherine A Hajjar
- Department of Cell and Developmental
Biology, Weill Cornell Medical College, New York, NY, USA
| | - Zhong Chen
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou, China
| | - Eng H Lo
- Neuroprotection Research Laboratory,
Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Haibin Dai
- The Second Affiliated Hospital, Zhejiang
University School of Medicine, Hangzhou, China
| | - Xiaoying Wang
- Neuroprotection Research Laboratory,
Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
39
|
Dintzis SM, Hansen S, Harrington KM, Tan LC, Miller DM, Ishak L, Parrish-Novak J, Kittle D, Perry J, Gombotz C, Fortney T, Porenta S, Hales L, Calhoun KE, Anderson BO, Javid SH, Byrd DR. Real-time Visualization of Breast Carcinoma in Pathology Specimens From Patients Receiving Fluorescent Tumor-Marking Agent Tozuleristide. Arch Pathol Lab Med 2019; 143:1076-1083. [PMID: 30550350 PMCID: PMC11781288 DOI: 10.5858/arpa.2018-0197-oa] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
CONTEXT.— Resection of breast carcinoma with adequate margins reduces the risk of local recurrence and reoperation. Tozuleristide (BLZ-100) is an investigational peptide-fluorophore agent that may aid in intraoperative tumor detection and margin assessment. In this study, fluorescence imaging was conducted ex vivo on gross breast pathology specimens. OBJECTIVES.— To determine the potential of tozuleristide to detect breast carcinoma in fresh pathology specimens and the feasibility of fluorescence-guided intraoperative pathology assessment of surgical margins. DESIGN.— Twenty-three patients received an intravenous bolus dose of 6 or 12 mg of tozuleristide at least 1 hour before surgery. Fifteen lumpectomy and 12 mastectomy specimens were evaluated for fluorescence by the site's clinical pathology staff using the SIRIS, an investigational near-infrared imaging device. The breast tissue was then processed per usual procedures. Fluorescent patterns were correlated with the corresponding hematoxylin-eosin-stained sections. Clinical pathology reports were used to correlate fluorescent signal to grade, histotype, prognostic marker status, and margin measurements. RESULTS.— Tozuleristide fluorescence was readily observed in invasive and in situ breast carcinoma specimens. Most invasive carcinomas were bright and focal, whereas in situ lesions demonstrated a less intense, more diffuse pattern. Tozuleristide was detected in ductal and lobular carcinomas with a similar fluorescent pattern. Fluorescence was detected in high- and low-grade lesions, and molecular marker/hormone receptor status did not affect signal. Fluorescence could be used to identify the relationship of carcinoma to margins intraoperatively. CONCLUSIONS.— Tumor targeting with tozuleristide allowed visual real-time distinction between pathologically confirmed breast carcinoma and normal tissue.
Collapse
MESH Headings
- Breast Carcinoma In Situ/diagnostic imaging
- Breast Carcinoma In Situ/pathology
- Breast Carcinoma In Situ/surgery
- Breast Neoplasms/diagnostic imaging
- Breast Neoplasms/surgery
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/surgery
- Carcinoma, Lobular/diagnostic imaging
- Carcinoma, Lobular/pathology
- Carcinoma, Lobular/surgery
- Female
- Fluorescent Dyes
- Humans
- Indocyanine Green/analogs & derivatives
- Intraoperative Care/methods
- Margins of Excision
- Mastectomy
- Mastectomy, Segmental
- Neoplasm Invasiveness/diagnostic imaging
- Neoplasm Invasiveness/pathology
- Prognosis
- Scorpion Venoms
Collapse
Affiliation(s)
- Suzanne M Dintzis
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - Stacey Hansen
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - Kristi M Harrington
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - Lennart C Tan
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - Dennis M Miller
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - Laura Ishak
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - Julia Parrish-Novak
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - David Kittle
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - Jeff Perry
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - Carolyn Gombotz
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - Tina Fortney
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - Stephanie Porenta
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - Lisa Hales
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - Kristine E Calhoun
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - Benjamin O Anderson
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - Sara H Javid
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| | - David R Byrd
- From the Departments of Pathology (Dr Dintzis) and Surgery (Ms Hales and Drs Calhoun, Javid, and Byrd), University of Washington Medical Center, Seattle; Breast Surgery Clinic (Dr Harrington), Department of Pathology (Dr Tan), and Clinical Trials (Mses Fortney and Porenta), Overlake Hospital Medical Center, Bellevue, Washington; Development (Dr Miller), Clinical Operations (Mses Ishak and Gombotz), Research (Ms Hansen and Dr Parrish-Novak), and Device Development (Dr Kittle and Mr Perry), Blaze Bioscience, Inc., Seattle, Washington; and the Department of Surgery, University of Washington, Seattle (Dr Anderson)
| |
Collapse
|
40
|
Jiang S, Xu Y. Annexin A2 upregulation protects human retinal endothelial cells from oxygen-glucose deprivation injury by activating autophagy. Exp Ther Med 2019; 18:2901-2908. [PMID: 31572534 PMCID: PMC6755473 DOI: 10.3892/etm.2019.7909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Retinal neovascularization is a common pathological change in multiple diseases of the eyes and the upregulation of annexin A2 (A2) under a hypoxic and ischemic microenvironment has been demonstrated to be a key factor in the pathological process. However, the underlying mechanism by which A2 regulates retinal neovascularization remains unclear. In the present study, oxygen-glucose deprivation (OGD) was used to mimic the hypoxic and ischemic microenvironment, to observe the role of A2 in retinal neovascularization regulation by focusing on autophagy. The results showed that OGD treatment significantly increased the mRNA and protein levels of A2 in human retinal endothelial cells (HRECs), which was dependent on activation of hypoxia inducible factor (HIF)-1α signaling. The OGD-induced activation of autophagy was attenuated when A2 was silenced, but increased when A2 was overexpressed, suggesting that A2 upregulation contributed to OGD-induced cell autophagy activation. Furthermore, knockdown of A2 decreased cell viability and promoted cell apoptosis under OGD conditions. Overexpression of A2 increased cell viability and reduced cell apoptosis under OGD conditions, and inhibiting autophagy using an inhibitor, reversed these changes, suggesting that upregulation of A2 by OGD serves a cytoprotective role by inducing cell autophagy in HRECs. Taken together, the results of the present study suggested that promoting retinal endothelial cell survival by autophagy activation via the HIF-1α signaling pathway in a hypoxic and ischemic microenvironment may underlie the mechanism by which A2 regulates retinal neovascularization. The present study is the first study to demonstrate the novel role of A2 during retinal neovascularization under pathological conditions, to the best of our knowledge. Therefore, A2 may serve as a potential therapeutic target for treating neovascularization-associated conditions of the eye.
Collapse
Affiliation(s)
- Shule Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yile Xu
- Department of Ophthalmology, The Hangzhou First People's Hospital, Hangzhou, Zhejiang 310001, P.R. China
| |
Collapse
|
41
|
Grewal T, Enrich C, Rentero C, Buechler C. Annexins in Adipose Tissue: Novel Players in Obesity. Int J Mol Sci 2019; 20:ijms20143449. [PMID: 31337068 PMCID: PMC6678658 DOI: 10.3390/ijms20143449] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity and the associated comorbidities are a growing health threat worldwide. Adipose tissue dysfunction, impaired adipokine activity, and inflammation are central to metabolic diseases related to obesity. In particular, the excess storage of lipids in adipose tissues disturbs cellular homeostasis. Amongst others, organelle function and cell signaling, often related to the altered composition of specialized membrane microdomains (lipid rafts), are affected. Within this context, the conserved family of annexins are well known to associate with membranes in a calcium (Ca2+)- and phospholipid-dependent manner in order to regulate membrane-related events, such as trafficking in endo- and exocytosis and membrane microdomain organization. These multiple activities of annexins are facilitated through their diverse interactions with a plethora of lipids and proteins, often in different cellular locations and with consequences for the activity of receptors, transporters, metabolic enzymes, and signaling complexes. While increasing evidence points at the function of annexins in lipid homeostasis and cell metabolism in various cells and organs, their role in adipose tissue, obesity and related metabolic diseases is still not well understood. Annexin A1 (AnxA1) is a potent pro-resolving mediator affecting the regulation of body weight and metabolic health. Relevant for glucose metabolism and fatty acid uptake in adipose tissue, several studies suggest AnxA2 to contribute to coordinate glucose transporter type 4 (GLUT4) translocation and to associate with the fatty acid transporter CD36. On the other hand, AnxA6 has been linked to the control of adipocyte lipolysis and adiponectin release. In addition, several other annexins are expressed in fat tissues, yet their roles in adipocytes are less well examined. The current review article summarizes studies on the expression of annexins in adipocytes and in obesity. Research efforts investigating the potential role of annexins in fat tissue relevant to health and metabolic disease are discussed.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Carlos Enrich
- Department of Biomedicine, Unit of Cell Biology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carles Rentero
- Department of Biomedicine, Unit of Cell Biology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany.
| |
Collapse
|
42
|
|
43
|
Aareskjold E, Grindheim AK, Hollås H, Goris M, Lillehaug JR, Vedeler A. Two tales of Annexin A2 knock-down: One of compensatory effects by antisense RNA and another of a highly active hairpin ribozyme. Biochem Pharmacol 2019; 166:253-263. [PMID: 31158338 DOI: 10.1016/j.bcp.2019.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/29/2019] [Indexed: 11/26/2022]
Abstract
Besides altering its own expression during cell transformation, Annexin A2 is upregulated during the progression of many cancer types and also plays key roles during viral infection and multiplication. Consequently, there has been great interest in Annexin A2 as a potential drug target. The successful design of efficient in vivo delivery systems constitutes an obstacle in full exploitation of antisense and RNA-cleaving technologies for the knock-down of specific targets. Efficiency is dependent on the method of delivery and accessibility of the target. Here, hairpin ribozymes and an antisense RNA against rat annexin A2 mRNA were tested for their efficiencies in a T7-driven coupled transcription/translation system. The most efficient ribozyme and antisense RNA were subsequently inserted into a retroviral vector under the control of a tRNA promoter, in a cassette inserted between retroviral Long Terminal Repeats for stable insertion into host DNA. The Phoenix package system based on defective retroviruses was used for virus-mediated gene transfer into PC12 cells. Cells infected with the ribozyme-containing particles died shortly after infection. However, the same ribozyme showed a very high catalytic effect in vitro in cell lysates, explained by its loose hinge helix 2 region. This principle can be transferred to other ribozymes, such as those designed to cleave the guide RNA in the CRISPR/Cas9 technology, as well as to target specific viral RNAs. Interestingly, efficient down-regulation of the expression of Annexin A2 by the antisense RNA resulted in up-regulation of Annexin A7 as a compensatory effect after several cell passages. Indeed, compensatory effects have previously been observed during gene knock-out, but not during knock-down of protein expression. This highlights the problems in interpreting the phenotypic effects of knocking down the expression of a protein. In addition, these data are highly relevant when considering the effects of the CRISPR/Cas9 approach.
Collapse
Affiliation(s)
- Elin Aareskjold
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Ann Kari Grindheim
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Hanne Hollås
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Marianne Goris
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Johan R Lillehaug
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| |
Collapse
|
44
|
Annexin A2 interacting with ELMO1 regulates HCC chemotaxis and metastasis. Life Sci 2019; 222:168-174. [PMID: 30853625 DOI: 10.1016/j.lfs.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/20/2019] [Accepted: 03/03/2019] [Indexed: 12/16/2022]
Abstract
AIMS SDF-1α induced chemotaxis plays an important role in hepatocellular carcinoma metastasis. CXCR4 stimulated by SDF-1α/CXCL12 triggers heterotrimeric G proteins activation, which regulate migration and chemotaxis of hepatocellular carcinoma cells. The pathways linking the chemokine GPCR/Gi signaling to actin polymerization for migration of cancer cells are not known. MATERIALS AND METHODS Through would healing assay, chemotaxis assay, F-actin polymerization assay, confocal assay, immunohistochemical assay, protein identification and coimmunoprecipitation assay, we detected the role and mechanisms of Annexin A2 in hepatocellular carcinoma. KEY FINDINGS In the present study, we firstly investigated the role of Annexin A2 in HepG2 cell chemotaxis and metastasis. Immunohistochemical analysis showed that Annexin A2 was highly expressed in hepatocellular carcinoma tissues. Its expression was closely associated with lymph node and distant metastasis. Knockdown Annexin A2 impaired cancer cell chemotaxis. Co-immunoprecipitation results showed an interaction between Annexin A2 and ELMO1. CXCL12 triggers an ELMO1-dependent membrane translocation of Annexin A2. SIGNIFICANCE Taken together, our results indicated an important role of Annexin A2 in hepatocellular carcinoma tissues metastasis and revealed a novel molecular mechanism of its activation.
Collapse
|
45
|
He X, Drelich A, Yu S, Chang Q, Gong D, Zhou Y, Qu Y, Yuan Y, Su Z, Qiu Y, Tang SJ, Gaitas A, Ksiazek T, Xu Z, Zhou J, Feng Z, Wakamiya M, Lu F, Gong B. Exchange protein directly activated by cAMP plays a critical role in regulation of vascular fibrinolysis. Life Sci 2019; 221:1-12. [PMID: 30738042 DOI: 10.1016/j.lfs.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023]
Abstract
Plasmin-mediated fibrinolysis at the surface of vascular endothelial cells (SVEC) plays a key role in maintaining vascular hemostasis, in which the cAMP pathway participates. After externalization to the SVEC, annexin A2 (ANXA2) serves as a platform for conversion of plasminogen to plasmin. Here we describe a regulatory role of the exchange protein directly activated by cAMP (EPAC) in ANXA2 externalization and vascular fibrinolysis. Knockout of EPAC1 in mice results in a decreased ANXA2 expression on the SVEC associated with increased fibrin deposition and fibrinolytic dysfunction. Reduced levels of EPAC1 are also found in endocardial tissues beneath atrial mural thrombi in patients. Notably, administration of recombinant ANXA2 ameliorates fibrinolytic dysfunction in the EPAC1-null mice. Mechanistically, EPAC1 regulates the SVEC plasminogen conversion depended on ANXA2. EPAC1 promotes tyrosine-23 phosphorylation of ANXA2, a prerequisite for its recruitment to the SVEC. Our data thus reveal a novel regulatory role for EPAC1 in vascular fibrinolysis.
Collapse
Affiliation(s)
- Xi He
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Aleksandra Drelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shangyi Yu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dejun Gong
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Yixuan Zhou
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Yue Qu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yang Yuan
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yuan Qiu
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Angelo Gaitas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Fanglin Lu
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China.
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
46
|
Assadsangabi A, Evans CA, Corfe BM, Lobo A. Application of Proteomics to Inflammatory Bowel Disease Research: Current Status and Future Perspectives. Gastroenterol Res Pract 2019; 2019:1426954. [PMID: 30774653 PMCID: PMC6350533 DOI: 10.1155/2019/1426954] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing/remitting inflammatory illness of the gastrointestinal tract of unknown aetiology. Despite recent advances in decoding the pathophysiology of IBD, many questions regarding disease pathogenesis remain. Genome-wide association studies (GWAS) and knockout mouse models have significantly advanced our understanding of genetic susceptibility loci and inflammatory pathways involved in IBD pathogenesis. Despite their important contribution to a better delineation of the disease process in IBD, these genetic findings have had little clinical impact to date. This is because the presence of a given gene mutation does not automatically correspond to changes in its expression or final metabolic or structural effect(s). Furthermore, the existence of these gene susceptibility loci in the normal population suggests other driving prerequisites for the disease manifestation. Proteins can be considered the main functional units as almost all intracellular physiological functions as well as intercellular interactions are dependent on them. Proteomics provides methods for the large-scale study of the proteins encoded by the genome of an organism or a cell, to directly investigate the proteins and pathways involved. Understanding the proteome composition and alterations yields insights into IBD pathogenesis as well as identifying potential biomarkers of disease activity, mucosal healing, and cancer progression. This review describes the state of the art in the field with respect to the study of IBD and the potential for translation from biomarker discovery to clinical application.
Collapse
Affiliation(s)
- Arash Assadsangabi
- Gastroenterology Unit, Salford Royal Hospital, Salford, UK
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology and Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Caroline A. Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Bernard M. Corfe
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology and Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Alan Lobo
- Gastroenterology Unit, Salford Royal Hospital, Salford, UK
| |
Collapse
|
47
|
Tantyo NA, Karyadi AS, Rasman SZ, Salim MRG, Devina A, Sumarpo A. The prognostic value of S100A10 expression in cancer. Oncol Lett 2018; 17:1417-1424. [PMID: 30675195 PMCID: PMC6341771 DOI: 10.3892/ol.2018.9751] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 11/15/2018] [Indexed: 12/30/2022] Open
Abstract
S100A10, a member of the S100 protein family, commonly forms a heterotetrameric complex with Annexin A2. This is essential for the generation of cellular plasmin from plasminogen, which leads to a cascade of molecular events crucial for tumor progression. S100A10 upregulation has been reported in a number of cancers, suggesting that it may have potential as a prognostic biomarker, as well as predicting sensitivity to anticancer drugs. This review evaluates the direct and indirect relationships between S100A10 and cancer progression by investigating its role in cancer. Research papers published on PubMed and Google Scholar between 2007–2017 were collated and reviewed. We concluded that S100A10 affects the development of the hallmarks of cancer as explained by Hanahan and Weinberg in 2011, most notably by activating the invasion and metastasis of cancer cells. However, further studies are required to explore the underlying biological mechanisms of S100A10.
Collapse
Affiliation(s)
- Normastuti Adhini Tantyo
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta Timur 13210, Indonesia
| | - Azrina Saraswati Karyadi
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta Timur 13210, Indonesia
| | - Siti Zulimas Rasman
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta Timur 13210, Indonesia
| | | | - Astrella Devina
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta Timur 13210, Indonesia
| | - Anton Sumarpo
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta Utara 14440, Indonesia
| |
Collapse
|
48
|
Nakamura M, Dominguez ANM, Decker JR, Hull AJ, Verboon JM, Parkhurst SM. Into the breach: how cells cope with wounds. Open Biol 2018; 8:rsob.180135. [PMID: 30282661 PMCID: PMC6223217 DOI: 10.1098/rsob.180135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
Repair of wounds to individual cells is crucial for organisms to survive daily physiological or environmental stresses, as well as pathogen assaults, which disrupt the plasma membrane. Sensing wounds, resealing membranes, closing wounds and remodelling plasma membrane/cortical cytoskeleton are four major steps that are essential to return cells to their pre-wounded states. This process relies on dynamic changes of the membrane/cytoskeleton that are indispensable for carrying out the repairs within tens of minutes. Studies from different cell wound repair models over the last two decades have revealed that the molecular mechanisms of single cell wound repair are very diverse and dependent on wound type, size, and/or species. Interestingly, different repair models have been shown to use similar proteins to achieve the same end result, albeit sometimes by distinctive mechanisms. Recent studies using cutting edge microscopy and molecular techniques are shedding new light on the molecular mechanisms during cellular wound repair. Here, we describe what is currently known about the mechanisms underlying this repair process. In addition, we discuss how the study of cellular wound repair—a powerful and inducible model—can contribute to our understanding of other fundamental biological processes such as cytokinesis, cell migration, cancer metastasis and human diseases.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew N M Dominguez
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob R Decker
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexander J Hull
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey M Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
49
|
Abd El-Aleem SA, Dekker LV. Assessment of the cellular localisation of the annexin A2/S100A10 complex in human placenta. J Mol Histol 2018; 49:531-543. [PMID: 30143909 PMCID: PMC6182581 DOI: 10.1007/s10735-018-9791-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/30/2018] [Indexed: 01/07/2023]
Abstract
The AnxA2/S100A10 complex has been implicated in various placental functions but although the localisation of these proteins individually has been studied, there is no information about the localisation of their complex in situ at the cellular level. Using the proximity ligation technique, we have investigated the in situ localisation of AnxA2/S100A10 complex in the placenta and have compared this with the location patterns of the individual proteins. High levels of expression of AnxA2/S100A10 complexes were observed in the amniotic membrane and in blood vessel endothelial cells. Lower levels were detected in the brush border area of the syncytium and in the trophoblasts. Immunohistochemical analysis of AnxA2 and S100A10 individually revealed broadly similar patterns of localisation. The brush border staining pattern suggests that in this location at least some of the AnxA2 is not in complex with S100A10. The formal location of the AnxA2/S100A10 complex is compatible with a role in cell-cell interaction, intracellular transport and secretory processes and regulation of cell surface proteases, implying contributions to membrane integrity, nutrient exchange, placentation and vascular remodelling in different parts of the placenta. Future applications will allow specific assessment of the association of the complex with pathophysiological disorders.
Collapse
Affiliation(s)
- Seham A Abd El-Aleem
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.,Department of Histology, Minia Faculty of Medicine, Minia, Egypt
| | - Lodewijk V Dekker
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
50
|
Wang P, Zhang Y, Yang H, Hou W, Jin B, Hou J, Li H, Zhao H, Zhou J. Characteristics of fibrinolytic disorders in acute promyelocytic leukemia. ACTA ACUST UNITED AC 2018; 23:756-764. [PMID: 29724147 DOI: 10.1080/10245332.2018.1470069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Catastrophic hemorrhage remains the main cause of acute promyelocytic leukemia (APL) treatment failure. This study was aimed to study the pathogenesis of coagulopathy in patients with APL. METHODS Multiple procoagulant and profibrinolytic parameters in plasma and peripheral leukocytes from 24 patients with newly diagnosed APL accompanied by coagulopathy before and after arsenic trioxide (ATO) treatment were evaluated. RESULTS Prior to the treatment, the patients had elevated D-dimer and decreased fibrinogen levels. Plasma urokinase-type plasminogen activator receptor (uPAR) and plasmin-ɑ2 antiplasmin complexes (PAP) levels, plasmin (Pn) activity, and cell surface levels of urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) were significantly higher; plasma plasminogen activator inhibitor-1 (PAI-1) levels and plasminogen (Pg) activity were significantly decreased; plasma plasminogen activator (PA) activity, uPA and tPA levels; and cell surface levels of uPAR and annexin II were not significantly different from levels in the control group. During ATO treatment, both patients' plasma PA activity and uPAR on leukocytes gradually increased, annexin II on leukocytes increased initially and decreased afterwards, and tPA and uPA on leukocytes remained consistently higher in the patients than in the controls. Other parameters gradually tended toward normal values. CONCLUSIONS In APL, activated coagulation system activated fibrinolytic system, and increased uPAR levels could contribute to the hyperfibrinolysis. Annexin II might not be involved in the coagulopathy.
Collapse
Affiliation(s)
- Ping Wang
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China.,b Department of Neonatology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Yingmei Zhang
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Huiyuan Yang
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Wenyi Hou
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Bo Jin
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Jinxiao Hou
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Haitao Li
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Hongli Zhao
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China.,c Department of Hematology, The Fourth Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Jin Zhou
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| |
Collapse
|