1
|
Dorado RG, Oceguera Nava EI, Chen G, Zhang Q, Wang G, Chen QH. Licochalcone A-Inspired Chalcones: Synthesis and Their Antiproliferative Potential in Prostate Cancer Cells. Molecules 2024; 29:6023. [PMID: 39770110 PMCID: PMC11679503 DOI: 10.3390/molecules29246023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer remains a significant global health concern, prompting ongoing exploration of novel therapeutic agents. Licochalcone A, a natural product in the chalcone family isolated from licorice root, is characterized by its enone structure and demonstrates antiproliferative activity in the micromolar range across various cell lines, including prostate cancer. Building on our prior success in enhancing curcumin's antiproliferative potency by replacing the substituted phenol with a 1-alkyl-1H-imizadol-2-yl moiety, we applied a similar approach to design a new class of licochalcone A-inspired chalcones. The synthesis of these target chalcones involved key [3,3]-sigmatropic rearrangement of aryl prenyl ethers and Claisen-Schmidt condensations, yielding three derivative series. These compounds were evaluated for antiproliferative activity in both androgen receptor (AR)-positive and AR-null prostate cancer cell models using WST-1 cell proliferation assay. Systematic evaluation of licochalcone A across four prostate cancer cell lines indicated a modest advantage over enzalutamide, an FDA-approved AR antagonist, in suppressing 22Rv1 cell proliferation. Interestingly, three ester derivatives by replacing the phenol next to the carbonyl with an alkoxide demonstrated similar antiproliferative potency to licochalcone A in both AR-positive and AR-negative prostate cancer cell lines. This suggests that the phenol moiety on licochalcone A may be a promising site for chemical manipulations to enhance anti-prostate cancer activity. Among the synthesized chalcones, nine derivatives showed improved selectivity for AR-positive LNCaP and 22RV1 cells relative to AR-negative PC-3 and DU145 cells, surpassing licochalcone A in selectivity. Additionally, the antiproliferative potency was highly dependent on the R group attached to the imidazole. Most of the derivatives showed antiproliferative potency against androgen receptor-positive LNCaP and 22Rv1 cells, comparable to that of enzalutamide and licochalcone A. These findings suggest that optimization of licochalcone A-inspired chalcones as potential anti-prostate cancer agents warrants further investigation.
Collapse
Affiliation(s)
- Roxana Gonzalez Dorado
- Department of Chemistry & Biochemistry, California State University, Fresno, CA 93740, USA
| | | | - Guanglin Chen
- Department of Chemistry & Biochemistry, California State University, Fresno, CA 93740, USA
| | - Qiang Zhang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Qiao-Hong Chen
- Department of Chemistry & Biochemistry, California State University, Fresno, CA 93740, USA
| |
Collapse
|
2
|
Zhong S, Huang C, Zhuang M, Liu Q, Tian Z, Yang D. Botanical extract combined with minoxidil improve hidrotic ectodermal dysplasia caused by p.G11R mutations: a case report. J DERMATOL TREAT 2024; 35:2378163. [PMID: 38991555 DOI: 10.1080/09546634.2024.2378163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE We aim to explore a potential treatment strategy for hair loss. MATERIALS AND METHODS A male 6-year-old child was diagnosed with hidrotic ectodermal dysplasia 2 (HED2) caused by GJB6 (p.G11R) mutations. He presented at our clinic with diffuse thinning and fine and brittle hair since birth. Additionally, the child exhibited abnormal development of teeth, fingernails, and toenails. The condition of the child's hair had not improved significantly with age. He was treated with botanical extracts combined with Minoxidil. RESULTS After one and a half months of treatment, the patient showed remarkable hair growth. CONCLUSIONS Our team has previously used botanical extracts in combination for the treatment of autosomal recessive wooly hair in children. In the present case, treatment with botanical extract combined with minoxidil was found to be equally efficacious. This case report provides valuable information for future studies on the use of botanical extracts in treating hair loss, as well as a safe and effective potential treatment strategy for children with congenital alopecia.
Collapse
Affiliation(s)
- Shiyi Zhong
- Beijing University of Chinese Medicine, Beijing, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Chuhan Huang
- Beijing University of Chinese Medicine, Beijing, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Mingyue Zhuang
- Beijing University of Chinese Medicine, Beijing, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Qingwu Liu
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Ziyuan Tian
- Beijing University of Chinese Medicine, Beijing, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Dingquan Yang
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Liu M, Du Y, Gao D. Licochalcone A: a review of its pharmacology activities and molecular mechanisms. Front Pharmacol 2024; 15:1453426. [PMID: 39188947 PMCID: PMC11345200 DOI: 10.3389/fphar.2024.1453426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Licorice, derived from the root of Glycyrrhiza uralensis Fisch, is a key Traditional Chinese Medicine known for its detoxifying, spleen-nourishing, and qi-replenishing properties. Licochalcone A (Lico A), a significant component of licorice, has garnered interest due to its molecular versatility and receptor-binding affinity. This review explores the specific roles of Lico A in various diseases, providing new insights into its characteristics and guiding the rational use of licorice. Comprehensive literature searches using terms such as "licorice application" and "pharmacological activity of Lico A" were conducted across databases including CNKI, PubMed, and Google Scholar to gather relevant studies on Lico A's pharmacological activities and mechanisms. Lico A, a representative chalcone in licorice, targets specific mechanisms in anti-cancer and anti-inflammatory activities. It also plays a role in post-transcriptional regulation. This review delineates the similarities and differences in the anti-cancer and anti-inflammatory mechanisms of Lico A, concluding that its effects on non-coding RNA through post-transcriptional mechanisms deserve further exploration.
Collapse
Affiliation(s)
- Meihua Liu
- Research Center of Emotional Diseases, Shenyang Anning Hospital, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic, Shenyang, China
| | - Yang Du
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dejiang Gao
- Research Center of Emotional Diseases, Shenyang Anning Hospital, Shenyang, China
| |
Collapse
|
4
|
Wang Y, Li Y, Song C, Ke J, Zheng Y, Chen G, Li N. Licochalcone A promotes renewal of intestinal mucosa through modulating uc.173. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117044. [PMID: 37586439 DOI: 10.1016/j.jep.2023.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice can nourish Pi (spleen) and thereby strengthening the digestive system according to the theory of traditional Chinese medicine. Licorice has been generally used in the compound prescription to treat intestinal inflammatory disease. Licochalcone A (Lico A) is one of the characteristic molecules from licorice. T-UCRs, which are transcribed from ultraconserved regions, are a new class of long noncoding RNAs related to the renewal of intestinal epithelial renewal. AIM OF THE STUDY This study aimed to investigate the effect and the uc.173-related mechanism of Lico A on intestinal epithelial renewal. MATERIALS AND METHODS IE-6 and Caco-2 cells were used to evaluate the effect of Lico A on apoptosis, proliferation, and migration of IECs. The intestinal organoid was used to investigate ex vivo effect and mechanism of Lico A promoting intestinal organoid development. C57BL/6J mice (both normal and uc.173-deficient ones) were used to examine the in vivo effect of Lico A on the renewal of intestinal mucosa. RESULTS The expression of three T-UCRs related to the intestinal mucosa renewal was altered in Lico A-treated IECs. Lico A promoted the proliferation and inhibited the apoptosis of IECs through uc.173/miR-195 pathway. The development of intestinal organoids and the renewal of intestinal mucosa of mice subjected to the 48-h FAST were all promoted by the treatment of Lico A. Moreover, the growth arrest of uc.173-deficient intestinal organoids and the atrophy of intestinal mucosa in uc.173-deficient mice could be rescued by the Lico A administration. CONCLUSION Results in this paper suggest that targeting T-UCRs may be the novel therapeutic approach for the promotion of epithelial regeneration, and through stimulating the regeneration of intestinal mucosa, Lico A may become a new therapeutic agent for the maintenance of intestinal epithelial integrity.
Collapse
Affiliation(s)
- Yajun Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Chunhui Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Junyu Ke
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yanqiu Zheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
5
|
Sekaran K, Karthik A, Varghese RP, Sathiyarajeswaran P, Shree Devi MS, Siva R, George Priya Doss C. In silico network pharmacology study on Glycyrrhiza glabra: Analyzing the immune-boosting phytochemical properties of Siddha medicinal plant against COVID-19. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:233-255. [PMID: 38220426 PMCID: PMC10275734 DOI: 10.1016/bs.apcsb.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Immunosenescence is a pertinent factor in the mortality rate caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The changes in the immune system are strongly associated with age and provoke the deterioration of the individual's health. Traditional medical practices in ancient India effectively deal with COVID-19 by boosting natural immunity through medicinal plants. The anti-inflammatory and antiviral properties of Glycyrrhiza glabra are potent in fighting against COVID-19 and promote immunity boost against the severity of the infection. Athimadhura Chooranam, a polyherbal formulation containing Glycyrrhiza glabra as the main ingredient, is recommended as an antiviral Siddha herb by the Ministry of AYUSH. This paper is intended to identify the phytoconstituents of Glycyrrhiza glabra that are actively involved in preventing individuals from COVID-19 transmission. The modulated pathways, enrichment study, and drug-likeness are calculated from the target proteins of the phytoconstituents at the pharmacological activity (Pa) of more than 0.7. Liquiritigenin and Isoliquiritin, the natural compounds in Glycyrrhiza glabra, belong to the flavonoid class and exhibit ameliorative effects against COVID-19. The latter compound displays a higher protein interaction to a maximum of six, out of which HMOX1, PLAU, and PGR are top-hub genes. ADMET screening further confirms the significance of the abovementioned components containing better drug-likeness. The molecular docking and molecular dynamics method identified liquiritigenin as a possible lead molecule capable of inhibiting the activity of the major protease protein of SARS-CoV-2. The findings emphasize the importance of in silico network pharmacological assessments in delivering cost-effective, time-bound clinical drugs.
Collapse
Affiliation(s)
- Karthik Sekaran
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ashwini Karthik
- Department of Biology, Mount Carmel College Autonomous, Bengaluru, India
| | | | | | | | - R Siva
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
6
|
Aly SH, Elissawy AM, Mahmoud AMA, El-Tokhy FS, Mageed SSA, Almahli H, Al-Rashood ST, Binjubair FA, Hassab MAE, Eldehna WM, Singab AENB. Synergistic Effect of Sophora japonica and Glycyrrhiza glabra Flavonoid-Rich Fractions on Wound Healing: In Vivo and Molecular Docking Studies. Molecules 2023; 28:molecules28072994. [PMID: 37049756 PMCID: PMC10096052 DOI: 10.3390/molecules28072994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Glycyrrhiza glabra and Sophora japonica (Fabaceae) are well-known medicinal plants with valuable secondary metabolites and pharmacological properties. The flavonoid-rich fractions of G. glabra roots and S. japonica leaves were prepared using Diaion column chromatography, and the confirmation of flavonoid richness was confirmed using UPLC-ESI-MS profiling and total phenolics and flavonoids assays. UPLC-ESI-MS profiling of the flavonoid-rich fraction of G. glabra roots and S. japonica leaves resulted in the tentative identification of 32 and 23 compounds, respectively. Additionally, the wound healing potential of topical preparations of each fraction, individually and in combination (1:1) ointment and gel preparations, were investigated in vivo, supported by histopathological examinations and biomarker evaluations, as well as molecular docking studies for the major constituents. The topical application of G. glabra ointment and gel, S. japonica ointment and gel and combination preparations significantly increase the wound healing rate and the reduction of oxidative stress in the wound area via MDA reduction and the elevation of reduced GSH and SOD levels as compared to the wound and Nolaver®-treated groups. The molecular docking study revealed that that major compounds in G. glabra and S. japonica can efficiently bind to the active sites of three proteins related to wound healing: glycogen synthase kinase 3-β (GSK3-β), matrix metalloproteinases-8 (MMP-8) and nitric oxide synthase (iNOS). Consequently, G. glabra roots and S. japonica leaves may be a rich source of bioactive metabolites with antioxidant, anti-inflammatory and wound healing properties.
Collapse
|
7
|
Ahmad R, Alqathama A, Aldholmi M, Riaz M, Mukhtar MH, Aljishi F, Althomali E, Alamer MA, Alsulaiman M, Ayashy A, Alshowaiki M. Biological Screening of Glycyrrhiza glabra L. from Different Origins for Antidiabetic and Anticancer Activity. Pharmaceuticals (Basel) 2022; 16:ph16010007. [PMID: 36678504 PMCID: PMC9860537 DOI: 10.3390/ph16010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Geographical variation may affect the phytochemistry as well as the biological activities of Glycyrrhiza glabra (licorice) root. Herein, a series of biological activities were performed to evaluate the impact of geographical origin on the biological potential of eight different licorice samples. METHODOLOGY Cell culture studies were performed for cytotoxicity (MCF7, HCT116, HepG2, and MRC5), glucose uptake assay (HepG2), and glutathione peroxidase activity (HepG2), whereas α-amylase inhibition activity was tested for antidiabetic potential. RESULTS The Indian sample was observed to be more cytotoxic against MCF7 (22%) and HCT116 (43%) with an IC50 value of 56.10 (±2.38) μg/mL against the MCF7 cell line. The glucose uptake was seen with a mean value of 96 (±2.82) and a range of 92-101%. For glutathione peroxidase activity (GPx), the Syrian (0.31 ± 0.11) and Pakistani samples (0.21 ± 0.08) revealed a significant activity, whereas the Palestinian (70 ± 0.09) and Indian samples (68±0.06) effectively inhibited the α-amylase activity, with the lowest IC50 value (67.11 ± 0.97) μg/mL for the Palestinian sample. The statistical models of PCA (principal component analysis) and K-mean cluster analysis were performed to correlate the geographical origin, extract yield, and biological activities for the eight licorice samples of different origins. CONCLUSION The licorice samples exhibited significant cytotoxic, GPx, and α-amylase inhibitory activity. The samples with higher extract yield showed more potential in these biological activities.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: or
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammed Aldholmi
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18050, Khyber Pakhtunkhwa, Pakistan
| | | | - Fatema Aljishi
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ebtihal Althomali
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | | | - Mohammed Alsulaiman
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Abdulmalik Ayashy
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mohsen Alshowaiki
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| |
Collapse
|
8
|
Ding Y, Brand E, Wang W, Zhao Z. Licorice: Resources, applications in ancient and modern times. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115594. [PMID: 35934191 DOI: 10.1016/j.jep.2022.115594] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice has been widely used as a medicinal herb since ancient times. Licorice is also spelled as "liquorice" and it is known as "Glycyrrhizae Radix et Rhizoma" (Chinese: gan cao) in the Chinese Pharmacopoeia. Licorice root has a wide range of pharmacological effects, including adrenocortical hormone-like effects, as well as multiple pharmacological effects on the digestive system, immune system, and cardiovascular system. AIM OF THE REVIEW This review aims to comprehensively investigate the history of licorice and its medicinal and industrial applications in China and other nations, including research and application prospects related to the aerial parts of licorice. METHOD An extensive review of the literature was carried out, including ancient and modern texts, doctoral and masters' theses, monographs on medicinal plants, pharmacopoeias and electronic databases, including Web of Science, Springer, CNKI, and Google Scholar. RESULTS The ancient and modern applications of licorice were systematically investigated. In ancient times, practitioners in China discovered the medicinal potential of licorice and used it widely. In modern times, licorice is widely used in food, medicines and supplements, tobacco, chemical applications, environmental applications, animal husbandry and other industries. The potential of the aerial portion of the plant is also gradually being researched, developed, and utilized. CONCLUSION Licorice is one of the oldest and most widely used herbal medicines in the world. This article reviews its medicinal potential and application in various fields, and briefly introduces current research into its aerial parts. This review aims to highlight the importance of licorice and provide direction for its future development.
Collapse
Affiliation(s)
- Yiming Ding
- Institute of Ben Cao Gang Mu, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Eric Brand
- Institute of Ben Cao Gang Mu, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Wenquan Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zhongzhen Zhao
- Institute of Ben Cao Gang Mu, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China; School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, 999077, China.
| |
Collapse
|
9
|
Involvement of MicroRNA-27a-3p in the Licorice-Induced Alteration of Cd28 Expression in Mice. Genes (Basel) 2022; 13:genes13071143. [PMID: 35885926 PMCID: PMC9317804 DOI: 10.3390/genes13071143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Licorice has previously been shown to affect gene expression in cells; however, the underlying mechanisms remain to be clarified. We analyzed the microRNA expression profile of serum from mice treated by gavage with licorice decoction, and obtained 11 differentially expressed microRNAs (DEmiRNAs). We also screened differentially expressed genes (DEgenes) based on RNA-Seq data, and 271 common genes were identified by intersection analysis of the predicted target genes of 11 DEmiRNAs and the DEgenes. The miRNA–gene network showed that most of the hub genes were immune-related. KEGG enrichment analysis of the 271 genes identified three significant pathways, and the 21 genes involved in these three pathways, and the 11 DEmiRNAs, were constructed into a miRNA pathway–target gene network, in which mmu-miR-27a-3p stood out. Compared to ImmPort, there were 13 immune genes within the above group of 21 genes, and three intersected with the mmu-miR-27a-3p predicted target genes, Cd28, Grap2 and Cxcl12, of which the expression of Cd28 changed most significantly. We confirmed the regulation of Cd28 by mmu-miR-27a-3p using a dual-luciferase assay, and further confirmed that overexpression of mmu-miR-27a-3p could significantly downregulate the expression of Cd28 in lymphocytes. These results indicate that mmu-miR-27a-3p could be involved in the licorice-mediated regulation of the expression of Cd28 in mice.
Collapse
|
10
|
Minnetti M, De Alcubierre D, Bonaventura I, Pofi R, Hasenmajer V, Tarsitano MG, Gianfrilli D, Poggiogalle E, Isidori AM. Effects of licorice on sex hormones and the reproductive system. Nutrition 2022; 103-104:111727. [DOI: 10.1016/j.nut.2022.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 10/31/2022]
|
11
|
Harikrishnan R, Devi G, Van Doan H, Jawahar S, Balasundaram C, Saravanan K, Arockiaraj J, Soltani M, Jaturasitha S. Study on antioxidant potential, immunological response, and inflammatory cytokines induction of glycyrrhizic acid (GA) in silver carp against vibriosis. FISH & SHELLFISH IMMUNOLOGY 2021; 119:193-208. [PMID: 34601139 DOI: 10.1016/j.fsi.2021.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Effect of dietary with 100, 200, and 300 mg kg-1 glycyrrhizic acid (GA) on growth enhancer, blood physiology, digestive-antioxidant enzyme ability, innate-adaptive defense, and inflammatory cytokines induction was studied in silver carp, Hypophthalmichthys molitrix against vibriosis caused by Vibrio alginolyticus. Significant weight gain (WG), specific growth rate (SGR), and 100% survival rate (SR) was attained non-infected health (NiH) fish fed in control or all GA diets on 30, 45, and 60 days. Both NiH and V. alginolyticus challenged (VaC) fish treated with 200 mg GA diet significantly (P < 0.05) exhibited an enhancement in leucocytes value on 30, 45, and 60 days. Albumin (AB) or total proteins (TP) levels were significantly (P < 0.05) better in both groups fed 200 GA on 45 and 60 days. Malondialdehyde (MDA) and superoxide dismutase (SOD) activities were also substantial (P < 0.05) in both groups fed 200 mg GA on days 30, 45, and 60; whereas glutathione peroxidase (GPx) and catalase (CAT) activities were significantly (P < 0.05) better in both groups received 200 mg GA on days 45 and 60. Phagocytic (PC) and lysozyme (Lyz) activities significantly enhanced in both groups fed 200 or 300 mg GA on 45 and 60 days. Respiratory burst (RB), reactive oxygen species (ROS) and immunoglobulin (Ig) production significantly (P < 0.05) increased in both groups administered 200 or 300 mg GA. Growth hormone (GH) mRNA was up regulated in 200 mg GA trial on 45 days and in 200 or 300 mg GA treatments on 60 days. The IL-8 cytokine mRNA expression was up-regulated in both groups 200 and 300 mg GA on days 45 and 60, whereas TNF-α mRNA expression was increased in 200 mg GA. In addition, IL-10 cytokine mRNA expression was up regulated in 200 mg GA on 45 days whereas it was increased in both 200 mg and 300 mg GA trial on 60 days. The present study revealed that feeding fish 200 mg GA per kg diet demonstrated a better growth, digestive-antioxidant activity, innate-adaptive defense, and inflammatory cytokines induction than lower or higher dosage of GA in H. molitrix against V. alginolyticus.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India.
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| | - Sundaram Jawahar
- Department of Biotechnology, Bharath College of Science and Management, Thanjavur, 613-005, Tamil Nadu, India
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | | | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University, Tehran, Iran; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, WA, Australia
| | - Sanchai Jaturasitha
- Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand
| |
Collapse
|
12
|
Abraham J, Florentine S. Licorice ( Glycyrrhiza glabra) Extracts-Suitable Pharmacological Interventions for COVID-19? A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2600. [PMID: 34961070 PMCID: PMC8708549 DOI: 10.3390/plants10122600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 06/06/2023]
Abstract
Even though vaccination has started against COVID-19, people should continue maintaining personal and social caution as it takes months or years to get everyone vaccinated, and we are not sure how long the vaccine remains efficacious. In order to contribute to the mitigation of COVID-19 symptoms, the pharmaceutical industry aims to develop antiviral drugs to inhibit the SARS-CoV-2 replication and produce anti-inflammatory medications that will inhibit the acute respiratory distress syndrome (ARDS), which is the primary cause of mortality among the COVID-19 patients. In reference to these tasks, this article considers the properties of a medicinal plant named licorice (Glycyrrhiza glabra), whose phytochemicals have shown both antiviral and anti-inflammatory tendencies through previous studies. All the literature was selected through extensive search in various databases such as google scholar, Scopus, the Web of Science, and PubMed. In addition to the antiviral and anti-inflammatory properties, one of the licorice components has an autophagy-enhancing mechanism that studies have suggested to be necessary for COVID-19 treatment. Based on reviewing relevant professional and historical literature regarding the medicinal properties of licorice, it is suggested that it may be worthwhile to conduct in vitro and in vivo studies, including clinical trials with glycyrrhizic and glycyrrhetinic acids together with other flavonoids found in licorice, as there is the potentiality to provide natural interventions against COVID-19 symptoms.
Collapse
Affiliation(s)
- Joji Abraham
- School of Engineering, Information Technology, and Physical Sciences, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Singarayer Florentine
- Centre for Environmental Management, School of Science, Psychology, and Sport, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3353, Australia;
| |
Collapse
|
13
|
Schmid C, Mittermeier-Kleßinger V, Tabea Peters VC, Berger F, Kramler M, Heuberger H, Rinder R, Hofmann T, Gutjahr C, Dawid C. Quantitative Mapping of Flavor and Pharmacologically Active Compounds in European Licorice Roots ( Glycyrrhiza glabra L.) in Response to Growth Conditions and Arbuscular Mycorrhiza Symbiosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13173-13189. [PMID: 34723522 DOI: 10.1021/acs.jafc.1c05576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Application of a sensitive UHPLC-MS/MSMRM method enabled the simultaneous quantitation of 23 sweet-, licorice-, and bitter-tasting saponins in Glycyrrhiza glabra L., Glycyrrhiza uralensis Fisch., different licorice plants and root compartments, processed licorice, as well as different Glycyrrhiza spp. The combination of quantitative data with sweet, licorice, and bitter taste thresholds led to the determination of dose-over-threshold factors to elucidate the sweet, licorice, and bitter impact of the individual saponins with and without mycorrhiza symbiosis to evaluate the licorice root quality. Aside from glycyrrhizin (1), which is the predominant sweet- and licorice-tasting saponin in all licorice samples, 20 out of 22 quantitated saponins contributed to the taste profile of licorice roots. Next to sweet-/licorice-tasting glycyrrhizin (1), 24-hydroxy-glycyrrhizin (9), 30-hydroxy-glycyrrhizin (11), and 11-deoxo-24-hydroxy-glycyrrhizin (14) as well as licorice tasting saponins 20α-galacturonic acid glycyrrhizin (17), 24-hydroxy-20α-glycyrrhizin (21), and 11-deoxo-glycyrrhizin (12) were determined as key contributors to licorice root's unique taste profile. A quantitative comparison of 23 saponins as well as 28 polyphenols between licorice roots inoculated with arbuscular mycorrhiza fungi and controls showed that important taste-mediating saponins were increased in mycorrhizal roots, and these alterations depended on the growth substrate and the level of phosphate fertilization.
Collapse
Affiliation(s)
- Christian Schmid
- Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technische Universität München, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Verena Mittermeier-Kleßinger
- Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technische Universität München, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Verena Christina Tabea Peters
- Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technische Universität München, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Florian Berger
- Plant Genetics, TUM School of Life Sciences, Technische Universität München, Emil Ramann Str. 4, 85354 Freising, Germany
| | - Marlene Kramler
- Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technische Universität München, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Heidi Heuberger
- Institute for Crop Science and Plant Breeding, Bayerische Landesanstalt für Landwirtschaft, Vöttinger Str. 38, 85354 Freising, Germany
| | - Rudolf Rinder
- Institute for Crop Science and Plant Breeding, Bayerische Landesanstalt für Landwirtschaft, Vöttinger Str. 38, 85354 Freising, Germany
| | - Thomas Hofmann
- Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technische Universität München, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technische Universität München, Emil Ramann Str. 4, 85354 Freising, Germany
| | - Corinna Dawid
- Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technische Universität München, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| |
Collapse
|
14
|
The influences of Tylosine and licorice dietary supplementation in terms of the productive performance, serum parameters, egg yolk lipid profile, antioxidant and immunity status of laying Japanese quail under heat stress condition. J Therm Biol 2021; 99:103015. [DOI: 10.1016/j.jtherbio.2021.103015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/01/2021] [Accepted: 05/30/2021] [Indexed: 01/28/2023]
|
15
|
Hasan MK, Ara I, Mondal MSA, Kabir Y. Phytochemistry, pharmacological activity, and potential health benefits of Gly cyrrhiza glabra. Heliyon 2021; 7:e07240. [PMID: 34189299 PMCID: PMC8220166 DOI: 10.1016/j.heliyon.2021.e07240] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Nature has always been an excellent source for many therapeutic compounds providing us with many medicinal plants and microorganisms producing beneficial chemicals. Therefore, the demand for medicinal plants, cosmetics, and health products is always on the rise. One such plant from the Leguminosae family is licorice and the scientific name is Glycyrrhiza glabra Linn. It is an herb-type plant with medicinal value. In the following article, we shall elaborately look at the plants' phytochemical constituents and the pharmacological impact of those substances. Several compounds such as glycyrrhizin, glycyrrhizinic acid, isoliquiritin, and glycyrrhizic acid have been found in this plant, which can provide pharmacological benefit to us with its anti-cancer, anti-atherogenic, anti-diabetic, anti-asthmatic, anti-inflammatory, anti-microbial, and antispasmodic activity. Alongside, these products have a different role in hepatoprotective, immunologic, memory-enhancing activity. They can stimulate hair growth, control obesity, and have anti-depressants, sedatives, and anticoagulant activity. This review examines recent studies on the phytochemical and pharmacological data and describes some side effects and toxicity of licorice and its bioactive components.
Collapse
Affiliation(s)
- Md. Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Iffat Ara
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | | | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
16
|
Chen C, Shao R, Li B, Zhai Y, Wang T, Li X, Miao L, Huang J, Liu R, Liu E, Zhu Y, Gao X, Zhang H, Wang Y. Neoisoliquiritin exerts tumor suppressive effects on prostate cancer by repressing androgen receptor activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153514. [PMID: 33676083 DOI: 10.1016/j.phymed.2021.153514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is a major cause of morbidity and mortality in men in both developed and developing countries. Androgens and the androgen receptor (AR) play predominant roles in the progression of PCa. Neoisoliquiritin (NEO) belongs to the class of licorice (Glycyrrhiza) flavonoids, which have a variety of biological activities including anti-depressant, anti-tumor-promoting, and anti-inflammation properties. Licorice root has cancer chemopreventive effects and has been given to PCa patients as an ingredient of PC-SPES, a commercially available combination of eight herbs. Therefore, we determined if NEO can suppress the proliferation of PCa cells. PURPOSE We investigated whether and how NEO exerts its anti-neoplastic activity against PCa. METHODS The Cell Counting Kit 8 and flow cytometry were used to evaluate the effects of NEO on the proliferation and cell cycle progression of AR-dependent (LNCaP) and AR-independent (PC3) PCa cells. RNA sequencing was employed to examine the genome-wide changes in responsiveness to NEO in LNCaP cells. Quantitative PCR, Western blotting, docking, chromatin immunoprecipitation, and dual-luciferase reporter assays were conducted to determine the mechanism of action of NEO and its potential cross-talk with AR. A LNCaP xenograft nude mouse model was used to determine the inhibitory effects of NEO on AR-dependent PCa tumors in vivo. RESULTS NEO inhibited LNCaP cell proliferation in vitro by inducing G0/G1 phase cell cycle arrest. Conversely, NEO treatment had no effect on PC3 cells. Transcriptomic analysis indicated that AR signaling might be the key target of NEO in preventing PCa. NEO regulated AR-mediated cell growth suppression and AR-sensitized cell cycle arrest in LNCaP cells. NEO also blocked several key steps in the AR signaling pathway, including proposed targeting to the ligand binding pocket of AR by computer modeling, modulating AR-androgen response element DNA-binding activity, inhibiting the expression and transcriptional activity of AR, and suppressing downstream AR signaling. CONCLUSIONS NEO negatively regulates AR expression and activity, thus supporting the tumor suppressive role for NEO in AR-dependent PCa.
Collapse
Affiliation(s)
- Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, 406 Jiefang South Road, Tianjin, 300211, China
| | - Rui Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, 300457, Tianjin, China
| | - Bin Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yu Zhai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Taiyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, 300457, Tianjin, China
| | - Xin Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Juyang Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Rui Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, 300457, Tianjin, China
| | - Xiumei Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
17
|
Narkhede RR, Pise AV, Cheke RS, Shinde SD. Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:297-306. [PMID: 32557405 PMCID: PMC7299459 DOI: 10.1007/s13659-020-00253-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 05/06/2023]
Abstract
SARS-CoV-2 (2019-nCoV) emerged in 2019 and proliferated rapidly across the globe. Scientists are attempting to investigate antivirals specific to COVID-19 treatment. The 2019-nCoV and SARS-CoV utilize the same receptor of the host which is COVID-19 of the main protease (Mpro).COVID-19 caused by SARS-CoV-2 is burdensome to overcome by presently acquired antiviral candidates. So the objective and purpose of this work was to investigate the plants with reported potential antiviral activity. With the aid of in silico techniques such as molecular docking and druggability studies, we have proposed several natural active compounds including glycyrrhizin, bicylogermecrene, tryptanthrine, β-sitosterol, indirubin, indican, indigo, hesperetin, crysophanic acid, rhein, berberine and β-caryophyllene which can be encountered as potential herbal candidate exhibiting anti-viral activity against SARS-CoV-2. Promising docking outcomes have been executed which evidenced the worthy of these selected herbal remedies for future drug development to combat coronavirus disease.
Collapse
Affiliation(s)
- Rohan R Narkhede
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, 226002, India
| | - Ashwini V Pise
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, 226002, India
| | - Rameshwar S Cheke
- Department of Pharmaceutical Chemistry, Dr. Rajendra Gode College of Pharmacy, Makapur, Maharashtra, 443101, India.
| | - Sachin D Shinde
- Department of Pharmacology, Shri. R.D. Bhakta College of Pharmacy, Jalna, Maharashtra, 431203, India
| |
Collapse
|
18
|
Yuan T, Wang J, Chen L, Shan J, Di L. Lactobacillus murinus Improved the Bioavailability of Orally Administered Glycyrrhizic Acid in Rats. Front Microbiol 2020; 11:597. [PMID: 32390962 PMCID: PMC7193032 DOI: 10.3389/fmicb.2020.00597] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Intestinal microbiota has been extensively studied in the context of host health benefit, and it has recently become clear that the gut microbiota influences drug pharmacokinetics and correspondingly efficacy. Intestinal microbiota dysbiosis is closely related with liver cirrhosis, especially the depletion of Lactobacillus. Therefore, the bioavailability of orally administered glycyrrhizic acid (GL) was speculated to be influenced under a pathological state. In the present study, L. murinus was isolated and screened for GL bioconversion capacity in vitro. Compared with Lactobacillus rhamnosus and Lactobacillus acidophilus, L. murinus was chosen for further investigation because it has the highest biotransformation rate. Our results showed that L. murinus could significantly improve the translocation of GL on Caco-2 cell models. Meanwhile, L. murinus was observed to have the ability to bind with the surface of Caco-2 cells and prominently downregulate the transporter gene expression level of multidrug resistance gene 1 (MDR1) and multidrug resistance protein 2 (MRP2), which were involved in the efflux of drugs. Furthermore, L. murinus was selected to be orally administred into rats in healthy and liver cirrhosis groups by a daily gavage protocol. Our data highlighted that supplements of L. murinus significantly improved the bioavailability of orally administered GL in rats, especially under a pathological condition, which may provide a novel strategy for improving the clinical therapeutic effect of liver protective drugs.
Collapse
Affiliation(s)
- Tianjie Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Engineering Research Centre for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Letian Chen
- Jiangsu Engineering Research Centre for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Engineering Research Centre for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
El-Saber Batiha G, Magdy Beshbishy A, El-Mleeh A, M. Abdel-Daim M, Prasad Devkota H. Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020; 10:E352. [PMID: 32106571 PMCID: PMC7175350 DOI: 10.3390/biom10030352] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Traditional herbal remedies have been attracting attention as prospective alternative resources of therapy for diverse diseases across many nations. In recent decades, medicinal plants have been gaining wider acceptance due to the perception that these plants, as natural products, have fewer side effects and improved efficacy compared to their synthetic counterparts. Glycyrrhiza glabra L. (Licorice) is a small perennial herb that has been traditionally used to treat many diseases, such as respiratory disorders, hyperdipsia, epilepsy, fever, sexual debility, paralysis, stomach ulcers, rheumatism, skin diseases, hemorrhagic diseases, and jaundice. Moreover, chemical analysis of the G. glabra extracts revealed the presence of several organic acids, liquirtin, rhamnoliquirilin, liquiritigenin, prenyllicoflavone A, glucoliquiritin apioside, 1-metho-xyphaseolin, shinpterocarpin, shinflavanone, licopyranocoumarin, glisoflavone, licoarylcoumarin, glycyrrhizin, isoangustone A, semilicoisoflavone B, licoriphenone, and 1-methoxyficifolinol, kanzonol R and several volatile components. Pharmacological activities of G. glabra have been evaluated against various microorganisms and parasites, including pathogenic bacteria, viruses, and Plasmodium falciparum, and completely eradicated P. yoelii parasites. Additionally, it shows antioxidant, antifungal, anticarcinogenic, anti-inflammatory, and cytotoxic activities. The current review examined the phytochemical composition, pharmacological activities, pharmacokinetics, and toxic activities of G. glabra extracts as well as its phytoconstituents.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan;
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan;
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Menofia Governorate 32511, Egypt;
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan;
| |
Collapse
|
20
|
Mechanism and Improved Dissolution of Glycyrrhetinic Acid Solid Dispersion by Alkalizers. Pharmaceutics 2020; 12:pharmaceutics12010082. [PMID: 31968604 PMCID: PMC7022421 DOI: 10.3390/pharmaceutics12010082] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to increase the dissolution of glycyrrhetinic acid (GA) by preparing ternary solid dispersion (TSD) systems containing alkalizers, and to explore the modulating mechanism of alkalizers in solid dispersion systems. GA TSDs were prepared by hot melt extrusion (HME) with Kollidon® VA64 as the carrier and L-arginine/meglumine as the alkalizers. The in vitro release of the TSD was investigated with a dissolution test, and the dissociation constant (pKa) was used to describe the ionization degree of the drug in different pH buffers. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier Transform Infrared Spectroscopy (FTIR), Raman spectra, X-ray photoelectron spectroscopy (XPS), and a molecular model were used for solid-state characterizations and to study the dissolution mechanism of the TSDs. It was evident that the dissolution of GA significantly increased as a result of the TSD compared to the pure drug and binary solid dispersion. SEM, DSC, and XPRD data showed that GA transformed into an amorphous form in TSD. As illustrated by FTIR, Raman, XPS, and molecular docking, high binding energy ion-pair complexes formed between GA and the alkalizers during the process of HME. These can destroy the H-bond between GA molecules. Further, intermolecular H-bonds formed between the alkalizers and Kollidon® VA64, which can increase the wettability of the drug. Our results will significantly improve the solubility and dissolution of GA. In addition, the lower pKa value of TSD indicates that higher ionization is beneficial to the dissolution of the drug. This study should facilitate further developments of TSDs containing alkalizers to improve the dissolution of weakly acidic drugs and gain a richer understanding of the mechanism of dissolution.
Collapse
|
21
|
|
22
|
Yu X, Bao Y, Meng X, Wang S, Li T, Chang X, Xu W, Yang G, Bo T. Multi-pathway integrated adjustment mechanism of licorice flavonoids presenting anti-inflammatory activity. Oncol Lett 2019; 18:4956-4963. [PMID: 31612007 DOI: 10.3892/ol.2019.10793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/08/2017] [Indexed: 12/29/2022] Open
Abstract
Glycyrrhiza, commonly known as licorice, is a herbal medicine that has been used for thousands of years. Licorice contains multiple flavonoids, which possess a variety of biological activities. On the basis of the anti-inflammatory effects of licorice flavonoids, the potential mechanism of action was investigated via a plasma metabolomics approach. A total of 9 differential endogenous metabolites associated with the therapeutic effect of licorice flavonoids were identified, including linoleic acid, sphingosine, tryptophanamide, corticosterone and leukotriene B4. Besides classical arachidonic acid metabolism, metabolism of sphingolipids, tryptophan and fatty acids, phospholipids synthesis, and other pathways were also involved. The multi-pathway integrated adjustment mechanism of licorice flavonoid action may reduce side effects in patients, along with any anti-inflammatory functions, which provides a foundation for identifying and developing novel, high-potential natural drugs with fewer side effects for clinical application.
Collapse
Affiliation(s)
- Xiaomeng Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Yongrui Bao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, Liaoning 116600, P.R. China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, Liaoning 116600, P.R. China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Xiansheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, Liaoning 116600, P.R. China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, Liaoning 116600, P.R. China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Shuai Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, Liaoning 116600, P.R. China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, Liaoning 116600, P.R. China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Tianjiao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, Liaoning 116600, P.R. China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, Liaoning 116600, P.R. China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Xin Chang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Weifeng Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Guanlin Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Tao Bo
- Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| |
Collapse
|
23
|
Mamedov NA, Egamberdieva D. Phytochemical Constituents and Pharmacological Effects of Licorice: A Review. PLANT AND HUMAN HEALTH, VOLUME 3 2019. [PMCID: PMC7123875 DOI: 10.1007/978-3-030-04408-4_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Licorice (or “liquorice”) is one of most widely used in foods, herbal medicine, and extensively researched medicinal plants of the world. In traditional medicine licorice roots have been used against treating many ailments including lung diseases, arthritis, kidney diseases, eczema, heart diseases, gastric ulcer, low blood pressure, allergies, liver toxicity, and certain microbial infections. Licorice extract contains sugars, starch, bitters, resins, essential oils, tannins, inorganic salts, and low levels of nitrogenous constituents such as proteins, individual amino acids, and nucleic acids. A large number of biological active compounds have been isolated from Glycyrrhiza species, where triterpene saponins and flavonoids are the main constitutes which show broad biological activity. This review examines recent studies on the phytochemical and pharmacological data and describes some side effects and toxicity of licorice and its bioactive components.
Collapse
|
24
|
Sabbadin C, Bordin L, Donà G, Manso J, Avruscio G, Armanini D. Licorice: From Pseudohyperaldosteronism to Therapeutic Uses. Front Endocrinol (Lausanne) 2019; 10:484. [PMID: 31379750 PMCID: PMC6657287 DOI: 10.3389/fendo.2019.00484] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023] Open
Abstract
Licorice has been used as a medicinal plant from 2.500 years. It shows a wide range of biological and pharmacological activities, including anti-inflammatory and immune regulatory actions. One of its most known effects is the induction of hypertension, and it can induce what appears to be pseudohyperaldosteronism, due to glycyrrhetinic acid, the main active component of the root. Glycyrrhetinic acid and metabolites block the 11 beta-hydroxysteroid dehydrogenase type 2 and also bind mineralocorticoid receptors directly, acting as agonists. However, other interesting therapeutic uses of licorice are linked to its anti-androgen and estrogen-like activity, especially in the treatment of polycystic ovary syndrome (PCOS) in conjunction with spironolactone therapy. In this brief review, we report the main features and possible therapeutic uses of this ancient plant.
Collapse
Affiliation(s)
- Chiara Sabbadin
- Endocrinology Unit, Department of Medicine, University Hospital of Padua, Padua, Italy
| | - Luciana Bordin
- Department of Molecular Medicine—Biological Chemistry, University of Padua, Padua, Italy
| | - Gabriella Donà
- Department of Molecular Medicine—Biological Chemistry, University of Padua, Padua, Italy
| | - Jacopo Manso
- Endocrinology Unit, Department of Medicine, University Hospital of Padua, Padua, Italy
| | - Giampiero Avruscio
- Angiology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University Hospital of Padua, Padua, Italy
| | - Decio Armanini
- Endocrinology Unit, Department of Medicine, University Hospital of Padua, Padua, Italy
- *Correspondence: Decio Armanini
| |
Collapse
|
25
|
Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res 2018; 32:2323-2339. [PMID: 30117204 PMCID: PMC7167772 DOI: 10.1002/ptr.6178] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/01/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023]
Abstract
In the last years, consumers are paying much more attention to natural medicines and principles, mainly due to the general sense that natural compounds are safe. On the other hand, there is a growing demand by industry for plants used in traditional medicine that could be incorporated in foods, nutraceuticals, cosmetics, or even pharmaceuticals. Glycyrrhiza glabra Linn. belongs to the Fabaceae family and has been recognized since ancient times for its ethnopharmacological values. This plant contains different phytocompounds, such as glycyrrhizin, 18β-glycyrrhetinic acid, glabrin A and B, and isoflavones, that have demonstrated various pharmacological activities. Pharmacological experiments have demonstrated that different extracts and pure compounds from this species exhibit a broad range of biological properties, including antibacterial, anti-inflammatory, antiviral, antioxidant, and antidiabetic activities. A few toxicological studies have reported some concerns. This review addresses all those issues and focuses on the pharmacological activities reported for G. glabra. Therefore, an updated, critical, and extensive overview on the current knowledge of G. glabra composition and biological activities is provided here in order to explore its therapeutic potential and future challenges to be utilized for the formulation of new products that will contribute to human well-being.
Collapse
Affiliation(s)
| | - Laura Cornara
- DISTAVUniversity of GenoaGenoaItaly
- Istituto di BiofisicaConsiglio Nazionale delle RicercheGenoaItaly
| | - Sónia Soares
- LAQV/REQUIMTE, Faculty of PharmacyUniversity of PortoPortoPortugal
| | | | | |
Collapse
|
26
|
Quantitative Determination of 18- β-Glycyrrhetinic Acid in HepG2 Cell Line by High Performance Liquid Chromatography Method. Int J Anal Chem 2018; 2018:5673186. [PMID: 30538747 PMCID: PMC6257892 DOI: 10.1155/2018/5673186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/04/2018] [Indexed: 11/18/2022] Open
Abstract
A reverse phase high performance liquid chromatographic (RP-HPLC) method was developed for identification and estimation of 18-β-glycyrrhetinic acid (GA) in HepG2 cell line. The analysis was carried out using a JASCO HPLC system with a C-18 (3 μm) Supelco reversed phase column (150 x 4.7 mm) using a mobile phase of 80% CH3OH and 20% of CH3CN: tetrahydrofuran: water (10:80:10, v/v/v). The method was linear in the concentration range of 1.5–120 μg /mL (n = 5). The LOD and LOQ were determined based on standard deviation of the y-intercept and the slope of the calibration curve. The LOD and LOQ values were found to be 11.46 μg/mL and 34.72 μg/mL, respectively. The mean percentage recovery by standard addition experiments of GA is 92.4 % ± 5.2%. The intracellular GA concentration value, obtained as mean of five different determinations, was 45.8 ± 7.45 μg/mL. We have developed a HPLC-UV method for quantitative determination of GA inside cells, with advantages in the cost reduction and economy of the analytical process.
Collapse
|
27
|
Ramchandran R, Verma S, Dasgupta R, Thomas N. Bitter experience with liquorice sweetening agent resulting in apparent mineralocorticoid excess with periodic paralysis. BMJ Case Rep 2018; 2018:bcr-2018-225686. [DOI: 10.1136/bcr-2018-225686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
Hussain H, Green IR, Shamraiz U, Saleem M, Badshah A, Abbas G, Rehman NU, Irshad M. Therapeutic potential of glycyrrhetinic acids: a patent review (2010-2017). Expert Opin Ther Pat 2018; 28:383-398. [PMID: 29558289 DOI: 10.1080/13543776.2018.1455828] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Glycyrrhetinic acids (GAs) viz., 18β-glycyrrhetinic acid and 18α-glycyrrhetinic acid, are oleanane-type triterpenes having a carboxylic acid group at C-30, and are extracted from the Chines herbal medicine licorice (Glycyrrhiza uralensis). Although the pharmacological properties of GAs have long been known, attention to them has greatly increased in recent times due to their cytotoxic activity. AREAS COVERED This review represents the patents granted about natural and synthetic glycyrrhetinic acid analogs from January 2010 to December 2017, the advances made by research groups in conjunction with pharmaceutical companies in the discovery of new natural or synthetic glycyrrhetinic acid analogs. EXPERT OPINION GAs demonstrate excellent cytotoxic, antimicrobial, enzyme inhibitory, antiinflammatory, antioxidant, analgesic, and antiviral effects. It is interesting to note that the C-3(OH) and C30-CO2H functional groups make GAs very attractive lead structures for medicinal scientists since these functionalities allow the generation of further chemical diversity for improved pharmacological effects. Moreover, various GA analogues have been prepared via modification of the C30-CO2H. It is noteworthy that the C-30 amide of GA demonstrated better cytotoxic effects compared to the parent compounds. In addition, GAs have the capability to conjugate with other anticancer drugs or be converted into their halo or amino analogs which is expected to stimulate medicinal chemist to synthesize new lead compounds in cancer drug discovery.
Collapse
Affiliation(s)
- Hidayat Hussain
- a Department of Bioorganic Chemistry , Leibniz Institute of Plant Biochemistry , Halle (Saale) , Germany.,b UoN Chair of Oman's Medicinal Plants and Marine Natural Products , University of Nizwa , Nizwa , Sultanate of Oman
| | - Ivan R Green
- c Department of Chemistry and Polymer Science , University of Stellenbosch , Stellenbosch , South Africa
| | - Umair Shamraiz
- d Department of Chemistry , Quaid-i-Azam University , Islamabad , Pakistan
| | - Muhammad Saleem
- e Department of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Amin Badshah
- d Department of Chemistry , Quaid-i-Azam University , Islamabad , Pakistan
| | - Ghulam Abbas
- f Department of Biological Sciences and Chemistry, College of Arts and Sciences , University of Nizwa , Nizwa , Sultanate of Oman
| | - Najeeb Ur Rehman
- b UoN Chair of Oman's Medicinal Plants and Marine Natural Products , University of Nizwa , Nizwa , Sultanate of Oman
| | - Muhammad Irshad
- g Department of Chemistry , University of Kotli , Azad Jammu & Kashmir , Pakistan
| |
Collapse
|
29
|
Turan F. The Influence of Licorice Root (Glycyrrhiza glabra) on Sex Reversal in Guppy Poecilia reticulata. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2017. [DOI: 10.21448/ijsm.370360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Markov AV, Sen'kova AV, Warszycki D, Salomatina OV, Salakhutdinov NF, Zenkova MA, Logashenko EB. Soloxolone methyl inhibits influenza virus replication and reduces virus-induced lung inflammation. Sci Rep 2017; 7:13968. [PMID: 29070858 PMCID: PMC5656677 DOI: 10.1038/s41598-017-14029-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Highly pathogenic influenza viruses pose a serious public health threat to humans. Although vaccines are available, new antivirals are needed to efficiently control disease progression and virus transmission due to the emergence of drug-resistant viral strains. In this study, we describe the anti-viral properties of Soloxolone methyl (SM) (methyl 2-cyano-3,12-dioxo-18βH-olean-9(11),1(2)-dien-30-oate, a chemical derivative of glycyrrhetinic acid) against the flu virus. Anti-flu efficacy studies revealed that SM exhibits antiviral activity against the H1N1 influenza A virus in a dose-dependent manner causing a more than 10-fold decrease in virus titer and a reduction in the expression of NP and M2 viral proteins. In a time-of-addition study, SM was found to act at an early stage of infection to exhibit an inhibitory effect on both the attachment step and virus uptake into cells. Also, in infected cells SM downregulates the expression of the inflammatory cytokines IL-6 and TNF-α. In infected mice, SM administered intranasally prior to and after infection significantly decreases virus titers in the lung and prevents post-challenge pneumonia. Together, these results suggest that Soloxolone methyl might serve as an effective therapeutic agent to manage influenza outbreaks and virus-associated complications, and further preclinical and clinical investigation may be warranted.
Collapse
Affiliation(s)
- Andrey V Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 8, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Alexandra V Sen'kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 8, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Dawid Warszycki
- Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna street, Kraków, 31-343, Poland
| | - Oksana V Salomatina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 8, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation
| | - Evgeniya B Logashenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 8, Lavrent'ev ave., Novosibirsk, 630090, Russian Federation.
| |
Collapse
|
31
|
Sadra A, Kweon HS, Huh SO, Cho J. Gastroprotective and gastric motility benefits of AD-lico/Healthy Gut™ Glycyrrhiza inflata extract. Anim Cells Syst (Seoul) 2017; 21:255-262. [PMID: 30460076 PMCID: PMC6138315 DOI: 10.1080/19768354.2017.1357660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/26/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to evaluate in vivo both the anti-Helicobacter and the gastric-relaxing effects of AD-lico/Healthy Gut™ in rat models. AD-lico/Healthy Gut™ is a specially prepared commercial formulation of Glycyrrhiza inflata extract that is under clinical development for indications of gastrointestinal disease and inflammatory bowel disease. In the current study, the oral administration of AD-lico/Healthy Gut™ significantly reduced mucosal damage from Helicobacter pylori in rats and decreased the expression of the inflammatory markers iNOS and COX-2 in the test cells. AD-lico/Healthy Gut™ also reduced mucosal damage caused by water immersion stress in rats. The accelerated gastric emptying in normal rats was also seen with AD-lico/Healthy Gut™, providing relief in gastric relaxation in the test animals. The special formulation of AD-lico/Healthy Gut™ with reduced levels of component glycyrrhizin also has benefits in minimizing the potential side effects attributed to glycyrrhizin seen with similar Glycyrrhiza extracts in terms of induction of hypokalemia and muscle weakness. The preparation has a relatively high phenolic compound content relative to other methods of preparation and is indicative of lower glycyrrhizin levels. These results suggest that AD-lico/Healthy Gut™ may provide the necessary relief from a number of stomach discomfort issues faced by a large population of people.
Collapse
Affiliation(s)
- Ali Sadra
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, South Korea.,SynergyBio, Chuncheon, Gangwon-Do, South Korea
| | | | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, South Korea.,SynergyBio, Chuncheon, Gangwon-Do, South Korea
| | | |
Collapse
|
32
|
Zhou YZ, Li X, Gong WX, Tian JS, Gao XX, Gao L, Zhang X, Du GH, Qin XM. Protective effect of isoliquiritin against corticosterone-induced neurotoxicity in PC12 cells. Food Funct 2017; 8:1235-1244. [PMID: 28229156 DOI: 10.1039/c6fo01503d] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isoliquiritin, a flavonoid glycoside compound from licorice, possesses a broad spectrum of pharmacological activities including antioxidant, anti-inflammatory and anti-depression activities. However, the neuroprotective mechanisms of antidepressant effects remain unclear. In this study, the aim was to investigate the cytoprotective efficiency and potential mechanisms of isoliquiritin in corticosterone-damaged PC12 cells. The results of this study showed that pretreatment of PC12 cells with isoliquiritin significantly prevented corticosterone-induced cell apoptosis. In addition, isoliquiritin increased the activity of dismutase (SOD) and catalase (CAT), decreased the contents of reactive oxygen species (ROS) and malondialdehyde (MDA). These findings suggest that isoliquiritin provides protective action against corticosterone-induced cell damage by reducing oxidative stress. Furthermore, pretreatment with isoliquiritin reduced corticosterone-induced mitochondrial dysfunction by preventing mitochondrial membrane potential dissipation. Our findings indicate that isoliquiritin might exert its therapeutic effects via regulating mitochondrial dysfunction. Moreover, isoliquiritin strongly attenuated intracellular calcium ([Ca2+]i) overload and down-regulation of Bax, caspase-3 and cytochrome C (Cyt-C) protein expression, and up-regulation of Bcl protein expression. In conclusion, isoliquiritin has a cytoprotective effect on corticosterone-induced neurotoxicity in PC12 cells, which may be related to its antioxidant action, inhibition of [Ca2+]i overload and inhibition of the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Yu-Zhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, P. R. China.
| | - Xiao Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, P. R. China. and College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan 030006, PR China
| | - Wen-Xia Gong
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, P. R. China.
| | - Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, P. R. China.
| | - Xiao-Xia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, P. R. China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, P. R. China.
| | - Xiang Zhang
- Departments of Chemistry, Pharmacology & Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Guan-Hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
33
|
Wang H, Fang ZZ, Meng R, Cao YF, Tanaka N, Krausz KW, Gonzalez FJ. Glycyrrhizin and glycyrrhetinic acid inhibits alpha-naphthyl isothiocyanate-induced liver injury and bile acid cycle disruption. Toxicology 2017; 386:133-142. [PMID: 28549656 PMCID: PMC5594256 DOI: 10.1016/j.tox.2017.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/12/2017] [Accepted: 05/23/2017] [Indexed: 01/04/2023]
Abstract
Alpha-naphthyl isothiocyanate (ANIT) is a common hepatotoxicant experimentally used to reproduce the pathologies of drug-induced liver injury in humans, but the mechanism of its toxicity remains unclear. To determine the metabolic alterations following ANIT exposure, metabolomic analyses was performed by use of liquid chromatography-mass spectrometry. Partial least squares discriminant analysis (PLS-DA) of liver, serum, bile, ileum, and cecum of vehicle- and ANIT-treated mice revealed significant alterations of individual bile acids, including increased tauroursodeoxycholic acid, taurohydrodeoxycholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid, and decreased ω-, β- and tauro-α/β- murideoxycholic acid, cholic acid, and taurocholic acid in the ANIT-treated groups. In accordance with these changes, ANIT treatment altered the expression of mRNAs encoded by genes responsible for the metabolism and transport of bile acids and cholesterol. Pre-treatment of glycyrrhizin (GL) and glycyrrhetinic acid (GA) prevented ANIT-induced liver damage and reversed the alteration of bile acid metabolites and Cyp7a1, Npc1l1, Mttp, and Acat2 mRNAs encoding bile acid transport and metabolism proteins. These results suggested that GL/GA could prevent drug-induced liver injury and ensuing disruption of bile acid metabolism in humans.
Collapse
Affiliation(s)
- Haina Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China; Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Zhong-Ze Fang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States; Department of Toxicology, School of Public Health, Tianjin Medical University, Heping District, Tianjin, 300070, PR China; Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, PR China
| | - Ran Meng
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Yun-Feng Cao
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, PR China
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States; Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
34
|
Öztürk M, Altay V, Hakeem KR, Akçiçek E. Economic Importance. LIQUORICE 2017. [PMCID: PMC7120331 DOI: 10.1007/978-3-319-74240-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The beneficial effects of liquorice in treating chills, colds, and coughs have been fully discussed in Ayurveda, as well as in the texts of ancient Egyptians, Greeks, and Romans. The plant has been prescribed for dropsy during the period of famous Hippocrates. The reason being that it was quite helpful as thirst-quenching drugs (Biondi et al. in J Nat Prod 68:1099–1102, 2005; Mamedov and Egamberdieva in Herbals and human health-phytochemistry. Springer Nature Publishers, 41 pp, 2017). No doubt, the clinical use of liquorice in modern medicine started around 1930; Pedanios Dioscorides of Anazarba (Adana), first century AD-Father of Pharmacists, mentions that it is highly effective in the treatment of stomach and intestinal ulcers. In Ayurveda, people in ancient Hindu culture have used it for improving sexual vigor.
Collapse
Affiliation(s)
- Münir Öztürk
- Department of Botany and Center for Environmental Studies, Ege University, Izmir, Turkey
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Mustafa Kemal University, Hatay, Turkey
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eren Akçiçek
- Department of Gastroenterology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
35
|
Sun B, Wang X, Cao R, Zhang Q, Liu Q, Xu M, Zhang M, Du X, Dong F, Yan X. NMR-based metabonomics study on the effect of Gancao in the attenuation of toxicity in rats induced by Fuzi. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:617-626. [PMID: 27746335 DOI: 10.1016/j.jep.2016.10.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzi, the processed lateral root of Aconitum carmichaelii Debeaux, is a traditional Chinese medicine used for its analgesic, antipyretic, anti-rheumatoid arthritis and anti-inflammation effects; however, it is also well known for its toxicity. Gancao, the root of Glycyrrhiza uralensis Fisch., is often used concurrently with Fuzi to alleviate its toxicity. However, the mechanism of detoxication is still not well clear. AIM OF THE STUDY In this study, the effect of Gancao on the metabolic changes induced by Fuzi was investigated by NMR-based metabonomic approaches. MATERIALS AND METHODS Fifty male Wistar rats were randomly divided into five groups (group A: control, group B: Fuzi decoction alone, group C: Gancao decoction alone, group D: Fuzi decoction and Gancao decoction simultaneously, group E: Fuzi decoction 5h after Gancao decoction) and urine samples were collected for NMR-based metabolic profiling analysis. Statistical analyses such as unsupervised PCA, t-test, hierarchical cluster, and pathway analysis were used to detect the effects of Gancao on the metabolic changes induced by Fuzi. RESULTS The behavioral and biochemical characteristics showed that Fuzi exhibited toxic effects on treated rats (group B) and statistical analyses showed that their metabolic profiles were in contrast to those in groups A and C. However, when Fuzi was administered with Gancao, the metabolic profiles became similar to controls, whereby Gancao reduced the levels of trimethylamine N-oxide, betaine, dimethylglycine, valine, acetoacetate, citrate, fumarate, 2-ketoglutarate and hippurate, and regulated the concentrations of taurine and 3-hydroxybutyrate, resulting in a decrease in toxicity. Furthermore, important pathways that are known to be involved in the effect of Gancao on Fuzi, including phenylalanine, tyrosine and tryptophan biosynthesis, the synthesis and degradation of ketone bodies, and the TCA cycle, were altered in co-treated rats. CONCLUSIONS Gancao treatment mitigated the metabolic changes altered by Fuzi administration in rats, demonstrating that dosing with Gancao could reduce the toxicity of Fuzi at the metabolic level. Fuzi and Gancao administered simultaneously resulted in improved toxicity reduction than when Gancao was administrated 5h prior to Fuzi. In summary, co-administration of Gancao with Fuzi reduces toxicity at the metabolic level.
Collapse
Affiliation(s)
- Bo Sun
- National Center of Biomedical Analysis, Beijing 100850, PR China.
| | - Xubin Wang
- National Center of Biomedical Analysis, Beijing 100850, PR China.
| | - Ruili Cao
- National Center of Biomedical Analysis, Beijing 100850, PR China.
| | - Qi Zhang
- National Center of Biomedical Analysis, Beijing 100850, PR China.
| | - Qiao Liu
- National Center of Biomedical Analysis, Beijing 100850, PR China; Chenzhou First People's Hospital, Chenzhou 423000, PR China.
| | - Meifeng Xu
- National Center of Biomedical Analysis, Beijing 100850, PR China.
| | - Ming Zhang
- National Center of Biomedical Analysis, Beijing 100850, PR China; School of Pharmacy, Shengyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Xiangbo Du
- National Center of Biomedical Analysis, Beijing 100850, PR China.
| | - Fangting Dong
- National Center of Biomedical Analysis, Beijing 100850, PR China.
| | - Xianzhong Yan
- National Center of Biomedical Analysis, Beijing 100850, PR China.
| |
Collapse
|
36
|
Arick CT. Chiropractic Management of a Patient With Chronic Fatigue: A Case Report. J Chiropr Med 2016; 15:314-320. [PMID: 27857641 PMCID: PMC5106444 DOI: 10.1016/j.jcm.2016.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The purpose of this case report was to describe the examination and management of a patient with chronic fatigue. CLINICAL FEATURES A 34-year-old woman presented to a chiropractic clinic with complaints of fatigue and inability to lose weight for 2 years. When tested, she was found to have high serum thyroglobulin antibodies, low serum vitamin D3, low saliva dehydroepiandrosterone-sulfate, and low saliva total and diurnal cortisol. INTERVENTION AND OUTCOME The patient was placed on an anti-inflammatory ancestral diet and given recommendations to decrease the aerobic intensity of her exercise routine. On the basis of the result of conventional and functional laboratory tests, she was prescribed a treatment plan of targeted supplementation. After 12 weeks of application of dietary, lifestyle, and supplementation recommendations, the patient reported experiencing increased energy and weight loss of 15 pounds. Her thyroglobulin antibodies returned within reference range, salivary cortisol increased and closely followed the proper circadian rhythm, and dehydroepiandrosterone-sulfate increased. CONCLUSIONS This report describes improvement in a patient with chronic fatigue with the use of nonpharmaceutical polytherapy involving dietary changes, lifestyle modification, and supplementation.
Collapse
Affiliation(s)
- Christopher T. Arick
- Clinical Sciences Department, National University of Health Sciences, Pinellas Park, FL
| |
Collapse
|
37
|
Egamberdieva D, Wirth S, Li L, Abd-Allah EF, Lindström K. Microbial cooperation in the rhizosphere improves liquorice growth under salt stress. Bioengineered 2016; 8:433-438. [PMID: 27780398 DOI: 10.1080/21655979.2016.1250983] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Liquorice (Glycyrrhiza uralensis Fisch.) is one of the most widely used plants in food production, and it can also be used as an herbal medicine or for reclamation of salt-affected soils. Under salt stress, inhibition of plant growth, nutrient acquisition and symbiotic interactions between the medicinal legume liquorice and rhizobia have been observed. We recently evaluated the interactions between rhizobia and root-colonizing Pseudomonas in liquorice grown in potting soil and observed increased plant biomass, nodule numbers and nitrogen content after combined inoculation compared to plants inoculated with Mesorhizobium alone. Several beneficial effects of microbes on plants have been reported; studies examining the interactions between symbiotic bacteria and root-colonizing Pseudomonas strains under natural saline soil conditions are important, especially in areas where a hindrance of nutrients and niches in the rhizosphere are high. Here, we summarize our recent observations regarding the combined application of rhizobia and Pseudomonas on the growth and nutrient uptake of liquorice as well as the salt stress tolerance mechanisms of liquorice by a mutualistic interaction with microbes. Our observations indicate that microbes living in the rhizosphere of liquorice can form a mutualistic association and coordinate their involvement in plant adaptations to stress tolerance. These results support the development of combined inoculants for improving plant growth and the symbiotic performance of legumes under hostile conditions.
Collapse
Affiliation(s)
- Dilfuza Egamberdieva
- a Institute of Landscape Biogeochemistry , Leibniz Center for Agricultural Landscape Research (ZALF) , Müncheberg , Germany
| | - Stephan Wirth
- a Institute of Landscape Biogeochemistry , Leibniz Center for Agricultural Landscape Research (ZALF) , Müncheberg , Germany
| | - Li Li
- b Key Laboratory of Biogeography and Bioresource in Arid Land, Chinese Academy of Science , Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences , Urumqi , P. R China
| | - Elsayed Fathi Abd-Allah
- c Plant Production Department, College of Food and Agricultural Sciences , King Saud University , Riyadh , Saudi Arabia
| | - Kristina Lindström
- d Department of Environmental Sciences , University of Helsinki , Helsinki , Finland
| |
Collapse
|
38
|
Sulzberger M, Worthmann AC, Holtzmann U, Buck B, Jung K, Schoelermann A, Rippke F, Stäb F, Wenck H, Neufang G, Grönniger E. Effective treatment for sensitive skin: 4-t-butylcyclohexanol and licochalcone A. J Eur Acad Dermatol Venereol 2016; 30 Suppl 1:9-17. [DOI: 10.1111/jdv.13529] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2015] [Indexed: 11/29/2022]
Affiliation(s)
- M. Sulzberger
- Research & Development; Beiersdorf AG; Hamburg Germany
| | | | - U. Holtzmann
- Research & Development; Beiersdorf AG; Hamburg Germany
| | - B. Buck
- Research & Development; Beiersdorf AG; Hamburg Germany
| | - K.A. Jung
- Research & Development; Beiersdorf AG; Hamburg Germany
| | | | - F. Rippke
- Research & Development; Beiersdorf AG; Hamburg Germany
| | - F. Stäb
- Research & Development; Beiersdorf AG; Hamburg Germany
| | - H. Wenck
- Research & Development; Beiersdorf AG; Hamburg Germany
| | - G. Neufang
- Research & Development; Beiersdorf AG; Hamburg Germany
| | - E. Grönniger
- Research & Development; Beiersdorf AG; Hamburg Germany
| |
Collapse
|
39
|
Abstract
Liquorice foliage
Collapse
|
40
|
Complementary Therapies for Idiopathic Hirsutism: Topical Licorice as Promising Option. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:659041. [PMID: 26273313 PMCID: PMC4530245 DOI: 10.1155/2015/659041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/09/2015] [Accepted: 07/02/2015] [Indexed: 11/29/2022]
Abstract
Hirsutism is one of the most prevalent health problems in women. The aim of the study was to compare the effect of 755 nm alexandrite hair removal laser with that of alexandrite laser plus topical licorice on the improvement of idiopathic hirsutism. A double-blind, randomized placebo-controlled study was performed on 90 female subjects. The patients were divided into two groups: alexandrite laser plus 15% licorice gel (group A) and placebo (group B). Each subject received one of both products over one side of the face, twice daily for 24 weeks on the hirsute locations. Each group underwent five sessions of alexandrite laser at 6-week intervals. To minimize the effects of confounding variables, the test was performed on two separate zones of patients' skin. The mean ± SD numbers of terminal hairs in group A were 7.05 ± 4.55 for zone 1 and 6.06 ± 3.70 for zone 2. In group B, they were 3.18 ± 1.75 for zone 1 and 2.49 ± 1.63 for zone 2. The difference in the mean number of terminal hairs was statistically significant between the two groups (p < 0.001), and there were no serious adverse reactions. The treatment of idiopathic hirsutism with 755 nm alexandrite laser plus topical licorice is more effective than alexandrite laser only.
Collapse
|
41
|
Kim JH, Gwak HC. Adrenal Insufficiency in Patients with Rotator Cuff Tear: Prevalence, Risk Factors and Influence on Outcome. Clin Shoulder Elb 2015. [DOI: 10.5397/cise.2015.18.2.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
42
|
Moghbel N, Borujeni MK, Bernard F. Colchicine effect on the DNA content and stomata size of Glycyrrhiza glabra var.glandulifera and Carthamus tinctorius L. cultured in vitro. J Genet Eng Biotechnol 2015; 13:1-6. [PMID: 30647560 PMCID: PMC6299812 DOI: 10.1016/j.jgeb.2015.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 11/20/2022]
Abstract
In vitro induction of polyploids using colchicine causes an increase in DNA content in plants. This is of high importance especially for plants that have medicinal and commercial values. Seeds of two medicinal plants, licorice Glycyrrhiza glabra L. var.glandulifera and safflower Carthamus tinctorius were treated with different concentrations of colchicine, 0%, 0.03%, 0.05%, 0.08%, 0.1% (W/V) in vitro for 24 and 48 h. Treated seeds then were cultured on solid Murashige and Skoog (MS) media under controlled conditions. After a month, the length of the stomata was measured to study the effect of colchicine on stomata size. Cellular DNA content of the regenerated plants was measured by spectrophotometry. Flow cytometry was used for confirming the results obtained from stomata size measurement and spectrophotometry. Results suggested that treated plants have a fair amount of larger stomata, significantly in licorice plantlets that were treated with 0.1% colchicine for 24 h and safflower plantlets that were treated with 0.03%, 0.05% and 0.1% colchicine. Safflower DNA content in all treatments enhanced significantly, but in licorice only DNA content of plantlets that were treated with 0.05% colchicine for 24 h and 0.1%, 0.03% colchicine for 48 h found to be increased significantly. The morphological features of treated plantlets such as shoot and leaf thickness were found to be increased. Flow cytometry confirmed the previously mentioned results and suggested tetraploids in all treated safflower plantlets and licorice plantlets obtained from treatment with 0.08% of colchicine and mixoploids in licorice plantlets obtained from treatment with 0.1% of colchicine.
Collapse
Affiliation(s)
- Nahid Moghbel
- Faculty of Biological Sciences, Shahid Beheshti University G.C., Tehran, Iran
| | | | | |
Collapse
|
43
|
Wang R, Zhang CY, Bai LP, Pan HD, Shu LM, Kong ANT, Leung ELH, Liu L, Li T. Flavonoids derived from liquorice suppress murine macrophage activation by up-regulating heme oxygenase-1 independent of Nrf2 activation. Int Immunopharmacol 2015; 28:917-24. [PMID: 25871879 DOI: 10.1016/j.intimp.2015.03.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 03/28/2015] [Indexed: 01/21/2023]
Abstract
Liquiritigenin (LQG), isoliquiritin (ILQ) and isoliquiritigenin (ILG) are flavonoids derived from liquorice and all possess a similar chemical structural backbone. In the current study, we found that ILQ and ILG had suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophage by suppressing the iNOS and COX-2 proteins and mRNA expression. A mechanistic study indicated that the effect was associated with an induction of antioxidant and detoxification enzymes, including UGT1A1, NQO1, and heme oxygenase-1 (HO-1) mRNA expression. The regulator of these enzymes, nuclear factor-erythroid 2-related factor 2 (Nrf2), which plays a critical role in LPS-induced inflammatory responses, could be activated by ILQ and ILG. Additionally, ILQ and ILG promoted Nrf2 signaling activation by inhibiting the Kelch-like ECH-associated protein 1 (Keap1) and increasing Nrf2 translocation, inducing the expression of these antioxidant enzymes. We further found that ILQ and ILG induced HO-1 expression independent of Nrf2 expression. With respect to the effect of these compounds on NF-κB signaling, ILG was found to markedly inhibit IκBα degradation and phosphorylation, while LQG and ILQ had no significant effects. These results indicate that there are correlations between the anti-inflammatory responses and the chemical structural properties of these flavonoids.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Cheng Yue Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Li Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Hu Dan Pan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Li Min Shu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
44
|
Muller B, Aparin PG, Stoclet JC, Kleschyov AL. Glycyrrhetinic acid reverses the lipopolysaccharide-induced hypocontractility to noradrenaline in rat aorta: implications to septic shock. J Pharmacol Sci 2015; 125:422-5. [PMID: 25141925 DOI: 10.1254/jphs.14126sc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Septic shock and associated vascular hyporeactivity to vasoconstrictor agonists remain a major problem of critical care medicine. Here we report that glycyrrhetinic acid (GA), the active component of licorice, effectively restores vascular contractility in the model of lipopolysaccharide (LPS)-treated rat aorta. GA was as effective as the NO synthase inhibitor N(G)-nitroarginine methylester. GA did not affect the vascular NO levels (measured by EPR spin trapping) and relaxations to L-arginine in LPS-treated rings as well as relaxation to S-nitroso-N-acetylpenicillamine in control rings. Thus, GA may represent an interesting alternative to NO synthase inhibitors in sepsis-associated vascular dysfunction.
Collapse
Affiliation(s)
- Bernard Muller
- UMR CNRS 7213, Laboratory of Biophotonics and Pharmacology, University of Strasbourg, France
| | | | | | | |
Collapse
|
45
|
Grancara S, Zonta F, Ohkubo S, Brunati AM, Agostinelli E, Toninello A. Pathophysiological implications of mitochondrial oxidative stress mediated by mitochondriotropic agents and polyamines: the role of tyrosine phosphorylation. Amino Acids 2015; 47:869-83. [PMID: 25792113 DOI: 10.1007/s00726-015-1964-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 12/23/2022]
Abstract
Mitochondria, once merely considered as the "powerhouse" of cells, as they generate more than 90 % of cellular ATP, are now known to play a central role in many metabolic processes, including oxidative stress and apoptosis. More than 40 known human diseases are the result of excessive production of reactive oxygen species (ROS), bioenergetic collapse and dysregulated apoptosis. Mitochondria are the main source of ROS in cells, due to the activity of the respiratory chain. In normal physiological conditions, ROS generation is limited by the anti-oxidant enzymatic systems in mitochondria. However, disregulation of the activity of these enzymes or interaction of respiratory complexes with mitochondriotropic agents may lead to a rise in ROS concentrations, resulting in oxidative stress, mitochondrial permeability transition (MPT) induction and triggering of the apoptotic pathway. ROS concentration is also increased by the activity of amine oxidases located inside and outside mitochondria, with oxidation of biogenic amines and polyamines. However, it should also be recalled that, depending on its concentration, the polyamine spermine can also protect against stress caused by ROS scavenging. In higher organisms, cell signaling pathways are the main regulators in energy production, since they act at the level of mitochondrial oxidative phosphorylation and participate in the induction of the MPT. Thus, respiratory complexes, ATP synthase and transition pore components are the targets of tyrosine kinases and phosphatases. Increased ROS may also regulate the tyrosine phosphorylation of target proteins by activating Src kinases or phosphatases, preventing or inducing a number of pathological states.
Collapse
Affiliation(s)
- Silvia Grancara
- Department of Biomedical Sciences, University of Padova, Viale U. Bassi 58B, 35131, Padua, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Szweda M, Szarek J, Dublan K, Męcik-Kronenberg T, Kiełbowicz Z, Bigoszewski M. Effect of mucoprotective plant-derived therapies on damage to colonic mucosa caused by carprofen and robenacoxib administered to healthy dogs for 21 days. Vet Q 2014; 34:185-93. [DOI: 10.1080/01652176.2014.968939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
47
|
Sun B, Zhang M, Zhang Q, Ma K, Li H, Li F, Dong F, Yan X. Metabonomics study of the effects of pretreatment with glycyrrhetinic acid on mesaconitine-induced toxicity in rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:839-46. [PMID: 24846827 DOI: 10.1016/j.jep.2014.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/19/2014] [Accepted: 05/11/2014] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum carmichaelii Debx. (Fuzi), a commonly use traditional Chinese medicine (TCM), has often been used in combination with Rhizoma Glycyrrhizae (Gancao) to reduce its toxicity due to diester diterpenoid alkaloids aconitine, mesaconitine, and hypaconitine. However, the mechanism of detoxication is still unclear. Glycyrrhetinic acid (GA) is the metabolite of glycyrrhizinic acid (GL), the major component of Gancao. In present study, the effect of GA on the changes of metabolic profiles induced by mesaconitine was investigated using NMR-based metabolomic approaches. MATERIALS AND METHODS Fifteen male Wistar rats were divided into a control group, a group administered mesaconitine alone, and a group administered mesaconitine with one pretreatment with GA. Their urine samples were used for NMR spectroscopic metabolic profiling. Statistical analyses such as orthogonal projections to latent structures-discriminant analysis (OPLS-DA), t-test, hierarchical cluster, and pathway analysis were used to detect the effects of pretreatment with GA on mesaconitine-induced toxicity. RESULTS The OPLS-DA score plots showed the metabolic profiles of GA-pretreated rats apparently approach to those of normal rats compared to mesaconitine-induced rats. From the t-test and boxplot results, the concentrations of leucine/isoleucine, lactate, acetate, succinate, trimethylamine (TMA), dimethylglycine (DMG), 2-oxo-glutarate, creatinine/creatine, glycine, hippurate, tyrosine and benzoate were significantly changed in metabolic profiles of mesaconitine-induced rats. The disturbed metabolic pathways include amino acid biosynthesis and metabolism. CONCLUSIONS GA-pretreatment can mitigate the metabolic changes caused by mesaconitine-treatment on rats, indicating that prophylaxis with GA could reduce the toxicity of mesaconitine at the metabolic level.
Collapse
Affiliation(s)
- Bo Sun
- National Center of Biomedical Analysis, 27 Taiping Road, Beijing 100850, PR China
| | - Ming Zhang
- National Center of Biomedical Analysis, 27 Taiping Road, Beijing 100850, PR China; Department of Analytical Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qi Zhang
- National Center of Biomedical Analysis, 27 Taiping Road, Beijing 100850, PR China
| | - Kunpeng Ma
- National Center of Biomedical Analysis, 27 Taiping Road, Beijing 100850, PR China
| | - Haijing Li
- National Center of Biomedical Analysis, 27 Taiping Road, Beijing 100850, PR China
| | - Famei Li
- Department of Analytical Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Fangting Dong
- National Center of Biomedical Analysis, 27 Taiping Road, Beijing 100850, PR China
| | - Xianzhong Yan
- National Center of Biomedical Analysis, 27 Taiping Road, Beijing 100850, PR China.
| |
Collapse
|
48
|
Azarashvili T, Baburina Y, Grachev D, Krestinina O, Papadopoulos V, Lemasters JJ, Odinokova I, Reiser G. Carbenoxolone induces permeability transition pore opening in rat mitochondria via the translocator protein TSPO and connexin43. Arch Biochem Biophys 2014; 558:87-94. [PMID: 24995971 DOI: 10.1016/j.abb.2014.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 01/09/2023]
Abstract
Ca(2+)-induced permeability transition pore (mPTP) opening in isolated rat brain mitochondria is promoted through targeting of connexin43. After a threshold Ca(2+) load, mitochondrial membrane potential drops and efflux of accumulated Ca(2+) from the mitochondrial matrix occurs, indicating the mPTP opening. Specific antibodies were used to assess the role of the translocator protein (18kDa; TSPO) and connexin43 in swelling of isolated rat liver and brain mitochondria induced by carbenoxolone and the endogenous TSPO ligand protoporphyrin IX. Mitochondrial membrane potential, Ca(2+) transport and oxygen consumption were determined using selective electrodes. All the parameters were detected simultaneously in a chamber with the selective electrodes. The phosphorylation state of mitochondrial protein targets was assessed. We report that Ca(2+)-induced mitochondrial swelling was strengthened in the presence of both carbenoxolone and protoporphyrin IX. The carbenoxolone- and protoporphyrin IX-accelerated mPTP induction in brain mitochondria was completely prevented by antibodies specific for the mitochondrial translocator protein (TSPO). The anti-TSPO antibodies were more effective than anti-сonnexin43 antibodies. Moreover, carbenoxolone-stimulated phosphorylation of mitochondrial proteins was inhibited by anti-TSPO antibodies. Taken together, the data suggests that, in addition to acting via connexion43, carbenoxolone may exert its effect on mPTP via mitochondrial outer membrane TSPO.
Collapse
Affiliation(s)
- Tamara Azarashvili
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., Pushchino, Moscow Region 142290, Russia; Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., Pushchino, Moscow Region 142290, Russia.
| | - Dmitry Grachev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., Pushchino, Moscow Region 142290, Russia.
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., Pushchino, Moscow Region 142290, Russia.
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Center, 2155 Guy Street, Suite 500, Montreal, Quebec H3H 2R9, Canada.
| | - John J Lemasters
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., Pushchino, Moscow Region 142290, Russia; Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, DD504 Drug Discovery Bldg., 70 President St., MSC 140, Charleston, SC 29425, USA; Department of Biochemistry & Molecular Biology, Medical University of South Carolina, DD504 Drug Discovery Bldg., 70 President St., MSC 140, Charleston, SC 29425, USA.
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str., Pushchino, Moscow Region 142290, Russia.
| | - Georg Reiser
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
49
|
Kao TC, Wu CH, Yen GC. Bioactivity and potential health benefits of licorice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:542-53. [PMID: 24377378 DOI: 10.1021/jf404939f] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Licorice is an herbal plant named for its unique sweet flavor. It is widely used in the food and tobacco industries as a sweetener. Licorice is also used in traditional Chinese medicine (TCM) and complementary medicine. Because the use of licorice has long been a part of TCM, the details of its therapeutic applications have been thoroughly established. In modern science, licorice is of interest because of its broad range of applications. Extracts of and compounds isolated from licorice have been well studied and biologically characterized. In this review, we discuss the nutraceutical and functional activities of licorice as well as those of the extracts of and the isolated compounds from licorice, including agents with anti-inflammatory activity, cell-protective abilities, and chemopreventive effects. The side effects of licorice are also enumerated. A comparison of the activities of licorice described by modern science and TCM is also presented, revealing the correspondence of certain characteristics.
Collapse
Affiliation(s)
- Tzu-Chien Kao
- Department of Food Science and Biotechnology, National Chung Hsing University , 250 Kuokuang Road, Taichung 402, Taiwan
| | | | | |
Collapse
|
50
|
Inhibitory effects of glycyrrhetinic Acid on the delayed rectifier potassium current in Guinea pig ventricular myocytes and HERG channel. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:481830. [PMID: 24069049 PMCID: PMC3773442 DOI: 10.1155/2013/481830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/07/2013] [Accepted: 07/11/2013] [Indexed: 12/24/2022]
Abstract
Background. Licorice has long been used to treat many ailments including cardiovascular disorders in China. Recent studies have shown that the cardiac actions of licorice can be attributed to its active component, glycyrrhetinic acid (GA). However, the mechanism of action remains poorly understood. Aim. The effects of GA on the delayed rectifier potassium current (IK), the rapidly activating (IKr) and slowly activating (IKs) components of IK, and the HERG K+ channel expressed in HEK-293 cells were investigated. Materials and Methods. Single ventricular myocytes were isolated from guinea pig myocardium using enzymolysis. The wild type HERG gene was stably expressed in HEK293 cells. Whole-cell patch clamping was used to record IK (IKr, IKs) and the HERG K+ current. Results. GA (1, 5, and 10 μM) inhibited IK (IKr, IKs) and the HERG K+ current in a concentration-dependent manner. Conclusion. GA significantly inhibited the potassium currents in a dose- and voltage-dependent manner, suggesting that it exerts its antiarrhythmic action through the prolongation of APD and ERP owing to the inhibition of IK (IKr, IKs) and HERG K+ channel.
Collapse
|