1
|
Paniagua-Sancho M, Casanova AG, Rodríguez-Estévez L, Cruz-González I, López-Hernández FJ, Martínez-Salgado C. Pathophysiological characterization of the ApoE -/-;db/db mouse: A model of diabetes and atherosclerosis. Methods 2025; 234:223-232. [PMID: 39761864 DOI: 10.1016/j.ymeth.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
The high prevalence of type 2 diabetes and atherosclerosis makes essential the availability of in vivo experimental models that accurately replicate the pathophysiological mechanisms of these diseases. Apolipoprotein E knockout mice (ApoE-/-) have been used in atherosclerosis studies, and the db/db mice show hyperphagia and obesity. Mice harbouring both alterations (i.e., ApoE-/-;db/db) are expected to develop combined features of type 2 diabetes, obesity and accelerated atherosclerosis. To deepen into their pathophysiological profile and further assess their potential as an experimental model, we studied their mortality and their pancreatic, cardiac, and renal phenotype. We analysed during 6 months the glycemic and lipid profile, pancreatic, cardiac and renal structure and function and atherosclerosis in ApoE-/-;db/db mice. ApoE-/-;db/db mice show increases in plasma glucose (although without statistical significance) and glucagon levels, total cholesterol, triglycerides and HDL-cholesterol and in both insulin-producing β and glucagon producing α cells, and in the tissue expression of both hormones with respect to control (C57BL/6) mice; they show a remarkably high degree of atherosclerosis, higher left ventricular ejection fraction. Although renal function is normal, glucose, sodium and albumin excretion and urinary flow are increased with respect to control mice. Summarizing, ApoE-/-;db/db mice constitute a suitable experimental model for the study of type 2 diabetes associated with atherosclerosis.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/physiopathology
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Mice
- Disease Models, Animal
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/metabolism
- Apolipoproteins E/genetics
- Apolipoproteins E/deficiency
- Mice, Knockout, ApoE
- Blood Glucose/metabolism
- Mice, Inbred C57BL
- Male
- Mice, Knockout
- Obesity/genetics
- Obesity/physiopathology
- Obesity/pathology
- Kidney/pathology
- Kidney/metabolism
- Kidney/physiopathology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
Collapse
Affiliation(s)
- María Paniagua-Sancho
- Translational Research On Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain.
| | - Alfredo G Casanova
- Translational Research On Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain.
| | | | | | - Francisco J López-Hernández
- Translational Research On Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain.
| | - Carlos Martínez-Salgado
- Translational Research On Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain.
| |
Collapse
|
2
|
Keles U, Kalem-Yapar NE, Hultén H, Zhao LN, Kaldis P. Impact of Short-Term Lipid Overload on Whole-Body Physiology. Mol Cell Biol 2024; 45:47-58. [PMID: 39726368 DOI: 10.1080/10985549.2024.2438814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Complex metabolic diseases due to overnutrition such as obesity, type 2 diabetes, and fatty liver disease are a major burden on the healthcare system worldwide. Current research primarily focuses on disease endpoints and trying to understand underlying mechanisms at relatively late stages of the diseases, when irreversible damage is already done. However, complex interactions between physiological systems during disease development create a problem regarding how to build cause-and-effect relationships. Therefore, it is essential to understand the early pathophysiological effects of overnutrition, which can help us understand the origin of the disease and to design better treatment strategies. Here, we focus on early metabolic events in response to high-fat diets (HFD) in rodents. Interestingly, insulin resistance, fatty liver, and obesity-promoting systemic inflammatory responses are evident within a week when mice are given consecutive HFD meals. However, as shown in human studies, these effects are usually not visible after a single meal. Overall, these results suggest that sustained HFD-intake within days can create a hyperlipidemic environment, globally remodeling metabolism in all affected organs and resembling some of the important disease features.
Collapse
Affiliation(s)
- Umur Keles
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Nisan Ece Kalem-Yapar
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Hanna Hultén
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| |
Collapse
|
3
|
Winther JB, Holst JJ. Glucagon agonism in the treatment of metabolic diseases including type 2 diabetes mellitus and obesity. Diabetes Obes Metab 2024; 26:3501-3512. [PMID: 38853300 DOI: 10.1111/dom.15693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with obesity and, therefore, it is important to target both overweight and hyperglycaemia. Glucagon plays important roles in glucose, amino acid and fat metabolism and may also regulate appetite and energy expenditure. These physiological properties are currently being exploited therapeutically in several compounds, most often in combination with glucagon-like peptide-1 (GLP-1) agonism in the form of dual agonists. With this combination, increases in hepatic glucose production and hyperglycaemia, which would be counterproductive, are largely avoided. In multiple randomized trials, the co-agonists have been demonstrated to lead to significant weight loss and, in participants with T2DM, even improved glycated haemoglobin (HbA1c) levels. In addition, significant reductions in hepatic fat content have been observed. Here, we review and discuss the studies so far available. Twenty-six randomized trials of seven different GLP-1 receptor (GLP-1R)/glucagon receptor (GCGR) co-agonists were identified and reviewed. GLP-1R/GCGR co-agonists generally provided significant weight loss, reductions in hepatic fat content, improved lipid profiles, insulin secretion and sensitivity, and in some cases, improved HbA1c levels. A higher incidence of adverse effects was present with GLP-1R/GCGR co-agonist treatment than with GLP-1 agonist monotherapy or placebo. Possible additional risks associated with glucagon agonism are also discussed. A delicate balance between GLP-1 and glucagon agonism seems to be of particular importance. Further studies exploring the optimal ratio of GLP-1 and glucagon receptor activation and dosage and titration regimens are needed to ensure a sufficient safety profile while providing clinical benefits.
Collapse
Affiliation(s)
- Jonathan Brix Winther
- Department of Biomedical Sciences and the NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences and the NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Chang L, Ma X, Yuan M, Ding L, Gu Y, Liu L, Li Y, Shu H, Liu M, He Q. Lowest Glucagon/Highest C-Peptide in Oral Glucose Tolerance Test: Clinical Utility in Monitoring Glucose Control in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:1769-1780. [PMID: 38645659 PMCID: PMC11032662 DOI: 10.2147/dmso.s459392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose Understanding factors that influence blood glucose levels in patients with type 2 diabetes mellitus (T2DM) is crucial for managing hyperglycemia. Currently, there is no standardized interpretation method for glucagon levels in oral glucose tolerance test (OGTT). This study aims to assess the relationship between the lowest glucagon/highest C-peptide ratio (Lglc/Hcp) in OGTT and glucose control levels in T2DM. Patients and Methods Clinical data from 120 patients with T2DM were examined to compare the correlations of Lglc/Hcp and other pancreatic islet function-associated indices with fasting blood glucose (G0), glucose at 120 minutes in OGTT (G120), hemoglobin A1c (HbA1c), and the area under the glucose curve in OGTT (AUCglu). Additionally, the study investigated difference in Lglc/Hcp between patient groups based on the highest blood glucose levels (Hglu) in OGTT (Hglu ≥ 16.7 mmol/L vs Hglu < 16.7 mmol/L). Results The generalized linear model suggested that Lglc/Hcp significantly correlated with G0 (B = 0.85, P < 0.001), G120(B = 1.46, P < 0.001), HbA1c (B = 0.67, P < 0.001), and AUCglu (B = 3.46, P < 0.001). This correlation surpassed C-peptide and glucagon-related parameters, even after adjusting for confounding factors. Furthermore, Lglc/Hcp was notably higher in patients with Hglu ≥ 16.7 mmol/L compared to those with Hglu < 16.7 mmol/L (Z = -3.71, p < 0.001). Conclusion Lglc/Hcp in OGTT closely relates to blood glucose control in patients with T2DM, potentially reflecting the overall pancreatic islet function in regulating glucose levels. Moreover, inhibiting glucagon secretion may be a crucial consideration for patients requiring insulin treatment.
Collapse
Affiliation(s)
- Lina Chang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Xiaohui Ma
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Menghua Yuan
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yian Gu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Lili Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yan Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Hua Shu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
5
|
Gray SM, Goonatilleke E, Emrick MA, Becker JO, Hoofnagle AN, Stefanovski D, He W, Zhang G, Tong J, Campbell J, D’Alessio DA. High Doses of Exogenous Glucagon Stimulate Insulin Secretion and Reduce Insulin Clearance in Healthy Humans. Diabetes 2024; 73:412-425. [PMID: 38015721 PMCID: PMC10882148 DOI: 10.2337/db23-0201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Glucagon is generally defined as a counterregulatory hormone with a primary role to raise blood glucose concentrations by increasing endogenous glucose production (EGP) in response to hypoglycemia. However, glucagon has long been known to stimulate insulin release, and recent preclinical findings have supported a paracrine action of glucagon directly on islet β-cells that augments their secretion. In mice, the insulinotropic effect of glucagon is glucose dependent and not present during basal euglycemia. To test the hypothesis that the relative effects of glucagon on hepatic and islet function also vary with blood glucose, a group of healthy subjects received glucagon (100 ng/kg) during fasting glycemia or experimental hyperglycemia (∼150 mg/dL) on 2 separate days. During fasting euglycemia, administration of glucagon caused blood glucose to rise due to increased EGP, with a delayed increase of insulin secretion. When given during experimental hyperglycemia, glucagon caused a rapid, threefold increase in insulin secretion, as well as a more gradual increase in EGP. Under both conditions, insulin clearance was decreased in response to glucagon infusion. The insulinotropic action of glucagon, which is proportional to the degree of blood glucose elevation, suggests distinct physiologic roles in the fasting and prandial states. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sarah M. Gray
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Elisha Goonatilleke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Michelle A. Emrick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Jessica O. Becker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| | - Darko Stefanovski
- Department of Clinical Studies–New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square
| | - Wentao He
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Guofang Zhang
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Jenny Tong
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
- Endocrine Section, VA Puget Sound Health Care System, Seattle
| | - Jonathan Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
| | - David A. D’Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
| |
Collapse
|
6
|
Lubaczeuski C, Bozadjieva-Kramer N, Louzada RA, Gittes GK, Leibowitz G, Bernal-Mizrachi E. Time-dependent effects of endogenous hyperglucagonemia on glucose homeostasis and hepatic glucagon action. JCI Insight 2023; 8:e162255. [PMID: 37140984 PMCID: PMC10393226 DOI: 10.1172/jci.insight.162255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 05/03/2023] [Indexed: 05/05/2023] Open
Abstract
Elevation of glucagon levels and increase in α cell proliferation is associated with states of hyperglycemia in diabetes. A better understanding of the molecular mechanisms governing glucagon secretion could have major implications for understanding abnormal responses to hypoglycemia in patients with diabetes and provide novel avenues for diabetes management. Using mice with inducible induction of Rheb1 in α cells (αRhebTg mice), we showed that short-term activation of mTORC1 signaling is sufficient to induce hyperglucagonemia through increased glucagon secretion. Hyperglucagonemia in αRhebTg mice was also associated with an increase in α cell size and mass expansion. This model allowed us to identify the effects of chronic and short-term hyperglucagonemia on glucose homeostasis by regulating glucagon signaling in the liver. Short-term hyperglucagonemia impaired glucose tolerance, which was reversible over time. Liver glucagon resistance in αRhebTg mice was associated with reduced expression of the glucagon receptor and genes involved in gluconeogenesis, amino acid metabolism, and urea production. However, only genes regulating gluconeogenesis returned to baseline upon improvement of glycemia. Overall, these studies demonstrate that hyperglucagonemia exerts a biphasic response on glucose metabolism: Short-term hyperglucagonemia lead to glucose intolerance, whereas chronic exposure to glucagon reduced hepatic glucagon action and improved glucose tolerance.
Collapse
Affiliation(s)
- Camila Lubaczeuski
- Department of Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Nadejda Bozadjieva-Kramer
- Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ruy A. Louzada
- Department of Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - George K. Gittes
- Childrens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ernesto Bernal-Mizrachi
- Department of Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
7
|
Curry KD, Nute MG, Treangen TJ. It takes guts to learn: machine learning techniques for disease detection from the gut microbiome. Emerg Top Life Sci 2021; 5:815-827. [PMID: 34779841 PMCID: PMC8786294 DOI: 10.1042/etls20210213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 02/01/2023]
Abstract
Associations between the human gut microbiome and expression of host illness have been noted in a variety of conditions ranging from gastrointestinal dysfunctions to neurological deficits. Machine learning (ML) methods have generated promising results for disease prediction from gut metagenomic information for diseases including liver cirrhosis and irritable bowel disease, but have lacked efficacy when predicting other illnesses. Here, we review current ML methods designed for disease classification from microbiome data. We highlight the computational challenges these methods have effectively overcome and discuss the biological components that have been overlooked to offer perspectives on future work in this area.
Collapse
Affiliation(s)
- Kristen D. Curry
- Department of Computer Science, Rice University, Houston, TX 77005, USA
| | - Michael G. Nute
- Department of Computer Science, Rice University, Houston, TX 77005, USA
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX 77005, USA
| |
Collapse
|
8
|
Martins-Oliveira M, Tavares I, Goadsby PJ. Was it something I ate? Understanding the bidirectional interaction of migraine and appetite neural circuits. Brain Res 2021; 1770:147629. [PMID: 34428465 DOI: 10.1016/j.brainres.2021.147629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022]
Abstract
Migraine attacks can involve changes of appetite: while fasting or skipping meals are often reported triggers in susceptible individuals, hunger or food craving are reported in the premonitory phase. Over the last decade, there has been a growing interest and recognition of the importance of studying these overlapping fields of neuroscience, which has led to novel findings. The data suggest additional studies are needed to unravel key neurobiological mechanisms underlying the bidirectional interaction between migraine and appetite. Herein, we review information about the metabolic migraine phenotype and explore migraine therapeutic targets that have a strong input on appetite neuronal circuits, including the calcitonin gene-related peptide (CGRP), the pituitary adenylate cyclase-activating polypeptide (PACAP) and the orexins. Furthermore, we focus on potential therapeutic peptide targets that are involved in regulation of feeding and play a role in migraine pathophysiology, such as neuropeptide Y, insulin, glucagon and leptin. We then examine the orexigenic - anorexigenic circuit feedback loop and explore glucose metabolism disturbances. Additionally, it is proposed a different perspective on the most reported feeding-related trigger - skipping meals - as well as a link between contrasting feeding behaviors (skipping meals vs food craving). Our review aims to increase awareness of migraine through the lens of appetite neurobiology in order to improve our understanding of the earlier phase of migraine, encourage better studies and cross-disciplinary collaborations, and provide novel migraine-specific therapeutic opportunities.
Collapse
Affiliation(s)
- Margarida Martins-Oliveira
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Nutrition and Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas de Lisboa, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal.
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Institute of Investigation and Innovation in Health (i3S), University of Porto, Portugal.
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Bethea M, Bozadjieva-Kramer N, Sandoval DA. Preproglucagon Products and Their Respective Roles Regulating Insulin Secretion. Endocrinology 2021; 162:6329397. [PMID: 34318874 PMCID: PMC8375443 DOI: 10.1210/endocr/bqab150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 11/19/2022]
Abstract
Historically, intracellular function and metabolic adaptation within the α-cell has been understudied, with most of the attention being placed on the insulin-producing β-cells due to their role in the pathophysiology of type 2 diabetes mellitus. However, there is a growing interest in understanding the function of other endocrine cell types within the islet and their paracrine role in regulating insulin secretion. For example, there is greater appreciation for α-cell products and their contributions to overall glucose homeostasis. Several recent studies have addressed a paracrine role for α-cell-derived glucagon-like peptide-1 (GLP-1) in regulating glucose homeostasis and responses to metabolic stress. Further, other studies have demonstrated the ability of glucagon to impact insulin secretion by acting through the GLP-1 receptor. These studies challenge the central dogma surrounding α-cell biology describing glucagon's primary role in glucose counterregulation to one where glucagon is critical in regulating both hyper- and hypoglycemic responses. Herein, this review will update the current understanding of the role of glucagon and α-cell-derived GLP-1, placing emphasis on their roles in regulating glucose homeostasis, insulin secretion, and β-cell mass.
Collapse
Affiliation(s)
- Maigen Bethea
- Department of Pediatrics, Nutrition Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Darleen A Sandoval
- Department of Pediatrics, Nutrition Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Correspondence: Darleen A. Sandoval, PhD, University of Colorado Anschut, Division of Endocrinology, Metabolism, and Diabetes,12801 E 17th Ave. Research Complex 1 South 7th Floor, Aurora, CO 80045, USA. E-mail:
| |
Collapse
|
10
|
Reed J, Bain S, Kanamarlapudi V. A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives. Diabetes Metab Syndr Obes 2021; 14:3567-3602. [PMID: 34413662 PMCID: PMC8369920 DOI: 10.2147/dmso.s319895] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D), which has currently become a global pandemic, is a metabolic disease largely characterised by impaired insulin secretion and action. Significant progress has been made in understanding T2D aetiology and pathogenesis, which is discussed in this review. Extrapancreatic pathology is also summarised, which demonstrates the highly multifactorial nature of T2D. Glucagon-like peptide (GLP)-1 is an incretin hormone responsible for augmenting insulin secretion from pancreatic beta-cells during the postprandial period. Given that native GLP-1 has a very short half-life, GLP-1 mimetics with a much longer half-life have been developed, which are currently an effective treatment option for T2D by enhancing insulin secretion in patients. Interestingly, there is continual emerging evidence that these therapies alleviate some of the post-diagnosis complications of T2D. Additionally, these therapies have been shown to induce weight loss in patients, suggesting they could be an alternative to bariatric surgery, a procedure associated with numerous complications. Current GLP-1-based therapies all act as orthosteric agonists for the GLP-1 receptor (GLP-1R). Interestingly, it has emerged that GLP-1R also has allosteric binding sites and agonists have been developed for these sites to test their therapeutic potential. Recent studies have also demonstrated the potential of bi- and tri-agonists, which target multiple hormonal receptors including GLP-1R, to more effectively treat T2D. Improved understanding of T2D aetiology/pathogenesis, coupled with the further elucidation of both GLP-1 activity/targets and GLP-1R mechanisms of activation via different agonists, will likely provide better insight into the therapeutic potential of GLP-1-based therapies to treat T2D.
Collapse
Affiliation(s)
- Josh Reed
- Institute of Life Science 1, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen Bain
- Institute of Life Science 1, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
11
|
Bozadjieva Kramer N, Lubaczeuski C, Blandino-Rosano M, Barker G, Gittes GK, Caicedo A, Bernal-Mizrachi E. Glucagon Resistance and Decreased Susceptibility to Diabetes in a Model of Chronic Hyperglucagonemia. Diabetes 2021; 70:477-491. [PMID: 33239450 PMCID: PMC7881862 DOI: 10.2337/db20-0440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Elevation of glucagon levels and increase in α-cell mass are associated with states of hyperglycemia in diabetes. Our previous studies have highlighted the role of nutrient signaling via mTOR complex 1 (mTORC1) regulation that controls glucagon secretion and α-cell mass. In the current studies we investigated the effects of activation of nutrient signaling by conditional deletion of the mTORC1 inhibitor, TSC2, in α-cells (αTSC2KO). We showed that activation of mTORC1 signaling is sufficient to induce chronic hyperglucagonemia as a result of α-cell proliferation, cell size, and mass expansion. Hyperglucagonemia in αTSC2KO was associated with an increase in glucagon content and enhanced glucagon secretion. This model allowed us to identify the effects of chronic hyperglucagonemia on glucose homeostasis by inducing insulin secretion and resistance to glucagon in the liver. Liver glucagon resistance in αTSC2KO mice was characterized by reduced expression of the glucagon receptor (GCGR), PEPCK, and genes involved in amino acid metabolism and urea production. Glucagon resistance in αTSC2KO mice was associated with improved glucose levels in streptozotocin-induced β-cell destruction and high-fat diet-induced glucose intolerance. These studies demonstrate that chronic hyperglucagonemia can improve glucose homeostasis by inducing glucagon resistance in the liver.
Collapse
Affiliation(s)
- Nadejda Bozadjieva Kramer
- Department of Medicine, University of Michigan Medical Center, Ann Arbor, MI
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
| | - Camila Lubaczeuski
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - Manuel Blandino-Rosano
- Department of Medicine, University of Michigan Medical Center, Ann Arbor, MI
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - Grant Barker
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - George K Gittes
- UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburg, PA
| | - Alejandro Caicedo
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL
- Veterans Affairs Medical Center, Miami, FL
| |
Collapse
|
12
|
|
13
|
Wang C, Xiao Y, Wang J, Hou N, Cui W, Hu X, Zeng F, Yuan Y, Ma D, Sun X, Zhang Y, Zheng W, Liu Y, Shang H, Chen L, Xiao RP, Zhang X. Dynamic changes in insulin and glucagon during disease progression in rhesus monkeys with obesity-related type 2 diabetes mellitus. Diabetes Obes Metab 2019; 21:1111-1120. [PMID: 30575251 DOI: 10.1111/dom.13624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the progression of obesity-related type 2 diabetes mellitus (T2DM) in rhesus monkeys, especially dynamic changes in insulin and glucagon. MATERIALS AND METHODS We followed a cohort of 52 rhesus monkeys for 7 years throughout the progression of obesity-related T2DM. Intravenous glucose tolerance tests were performed every 6 months to evaluate dynamic changes in glucose, insulin and glucagon levels. RESULTS Obesity in rhesus monkeys increased the overall mortality and T2DM morbidity. During the progression of T2DM, glucagon remained consistently elevated, while insulin initially increased in compensation but then dropped to below normal levels when the monkeys developed overt T2DM. After a glucose challenge, both the first and second phases of insulin secretion increased during the early stage of T2DM; in later stages the first phase was delayed and the second phase was diminished. CONCLUSION Our findings showed that, beside the decreased insulin level, hyperglucagonaemia also plays an important role in the development of T2DM.
Collapse
Affiliation(s)
- Can Wang
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Yao Xiao
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Jue Wang
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Ning Hou
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Weiyi Cui
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Xiaomin Hu
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Fanxin Zeng
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Ye Yuan
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Dongwei Ma
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Xueting Sun
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Yan Zhang
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Wen Zheng
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Yuli Liu
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Haibao Shang
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Liangyi Chen
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiuqin Zhang
- Institute of Molecular Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
14
|
Mandaliya DK, Seshadri S. Short Chain Fatty Acids, pancreatic dysfunction and type 2 diabetes. Pancreatology 2019; 19:280-284. [PMID: 30713129 DOI: 10.1016/j.pan.2019.01.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
The microbiota living in gut influence the immune response, metabolism, mood and behavior. The diet plays a pivotal role in maintaining healthy gut microbiota composition and its fermentation leads to production of Short Chain Fatty Acids (SCFAs) mainly acetate, propionate and butyrate. During pancreatic dysfunction, insulin mediated suppression of glucagon is impaired leading to uncontrolled glucose production by liver and state of hyperglycemia. Insulin and glucagon balance is as important as insulin sensitivity which is reduced during Type 2 Diabetes (T2D). Glucagon like peptide-1 (GLP1) produced by Intestinal epithelial cells regulates insulin and glucagon secretion directly via GLP1 receptor on pancreatic cells or via nervous system. But half-life period of GLP1 is very short i.e. about 2 min, after which it is cleaved and inactivated. SCFAs are well documented to induce GLP1 but its direct effect on pancreatic dysfunction has not been reported. This review opens a new avenue to study the role of SCFAs as treatment to pancreatic dysfunction and T2D.
Collapse
Affiliation(s)
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
15
|
Bozadjieva N, Blandino-Rosano M, Chase J, Dai XQ, Cummings K, Gimeno J, Dean D, Powers AC, Gittes GK, Rüegg MA, Hall MN, MacDonald PE, Bernal-Mizrachi E. Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion. J Clin Invest 2017; 127:4379-4393. [PMID: 29106387 DOI: 10.1172/jci90004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/26/2017] [Indexed: 01/19/2023] Open
Abstract
Glucagon plays a major role in the regulation of glucose homeostasis during fed and fasting states. However, the mechanisms responsible for the regulation of pancreatic α cell mass and function are not completely understood. In the current study, we identified mTOR complex 1 (mTORC1) as a major regulator of α cell mass and glucagon secretion. Using mice with tissue-specific deletion of the mTORC1 regulator Raptor in α cells (αRaptorKO), we showed that mTORC1 signaling is dispensable for α cell development, but essential for α cell maturation during the transition from a milk-based diet to a chow-based diet after weaning. Moreover, inhibition of mTORC1 signaling in αRaptorKO mice and in WT animals exposed to chronic rapamycin administration decreased glucagon content and glucagon secretion. In αRaptorKO mice, impaired glucagon secretion occurred in response to different secretagogues and was mediated by alterations in KATP channel subunit expression and activity. Additionally, our data identify the mTORC1/FoxA2 axis as a link between mTORC1 and transcriptional regulation of key genes responsible for α cell function. Thus, our results reveal a potential function of mTORC1 in nutrient-dependent regulation of glucagon secretion and identify a role for mTORC1 in controlling α cell-mass maintenance.
Collapse
Affiliation(s)
- Nadejda Bozadjieva
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, and.,Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, and.,Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jennifer Chase
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiao-Qing Dai
- Alberta Diabetes Institute and Department of Pharmacology, Edmonton, Alberta, Canada
| | - Kelsey Cummings
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, and
| | - Jennifer Gimeno
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Danielle Dean
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, and
| | - Alvin C Powers
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, and.,Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare, Nashville, Tennessee, USA
| | - George K Gittes
- Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Patrick E MacDonald
- Alberta Diabetes Institute and Department of Pharmacology, Edmonton, Alberta, Canada
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, and.,Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Veterans Affairs Medical Center, Miami, Florida, USA
| |
Collapse
|
16
|
Holst JJ, Wewer Albrechtsen NJ, Pedersen J, Knop FK. Glucagon and Amino Acids Are Linked in a Mutual Feedback Cycle: The Liver-α-Cell Axis. Diabetes 2017; 66:235-240. [PMID: 28108603 DOI: 10.2337/db16-0994] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022]
Abstract
Glucagon is usually viewed as an important counterregulatory hormone in glucose metabolism, with actions opposing those of insulin. Evidence exists that shows glucagon is important for minute-to-minute regulation of postprandial hepatic glucose production, although conditions of glucagon excess or deficiency do not cause changes compatible with this view. In patients with glucagon-producing tumors (glucagonomas), the most conspicuous signs are skin lesions (necrolytic migratory erythema), while in subjects with inactivating mutations of the glucagon receptor, pancreatic swelling may be the first sign; neither condition is necessarily associated with disturbed glucose metabolism. In glucagonoma patients, amino acid turnover and ureagenesis are greatly accelerated, and low plasma amino acid levels are probably at least partly responsible for the necrolytic migratory erythema, which resolves after amino acid administration. In patients with receptor mutations (and in knockout mice), pancreatic swelling is due to α-cell hyperplasia with gross hypersecretion of glucagon, which according to recent groundbreaking research may result from elevated amino acid levels. Additionally, solid evidence indicates that ureagenesis, and thereby amino acid levels, is critically controlled by glucagon. Together, this constitutes a complete endocrine system; feedback regulation involving amino acids regulates α-cell function and secretion, while glucagon, in turn, regulates amino acid turnover.
Collapse
Affiliation(s)
- Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| |
Collapse
|
17
|
Affiliation(s)
- Timothy D. O'Brien
- Assistant Professor University of Minnesota College of Veterinary Medicine St. Paul, MN 55108
| |
Collapse
|
18
|
Damond N, Thorel F, Moyers JS, Charron MJ, Vuguin PM, Powers AC, Herrera PL. Blockade of glucagon signaling prevents or reverses diabetes onset only if residual β-cells persist. eLife 2016; 5. [PMID: 27092792 PMCID: PMC4871705 DOI: 10.7554/elife.13828] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/07/2016] [Indexed: 12/15/2022] Open
Abstract
Glucagon secretion dysregulation in diabetes fosters hyperglycemia. Recent studies report that mice lacking glucagon receptor (Gcgr-/-) do not develop diabetes following streptozotocin (STZ)-mediated ablation of insulin-producing β-cells. Here, we show that diabetes prevention in STZ-treated Gcgr-/- animals requires remnant insulin action originating from spared residual β-cells: these mice indeed became hyperglycemic after insulin receptor blockade. Accordingly, Gcgr-/- mice developed hyperglycemia after induction of a more complete, diphtheria toxin (DT)-induced β-cell loss, a situation of near-absolute insulin deficiency similar to type 1 diabetes. In addition, glucagon deficiency did not impair the natural capacity of α-cells to reprogram into insulin production after extreme β-cell loss. α-to-β-cell conversion was improved in Gcgr-/- mice as a consequence of α-cell hyperplasia. Collectively, these results indicate that glucagon antagonism could i) be a useful adjuvant therapy in diabetes only when residual insulin action persists, and ii) help devising future β-cell regeneration therapies relying upon α-cell reprogramming. DOI:http://dx.doi.org/10.7554/eLife.13828.001 After meals, digested food causes sugar to accumulate in the blood. This triggers the release of the hormone insulin from beta cells in the pancreas, which allows liver cells, muscle cells and fat cells to use and store the sugar for energy. Other cells in the pancreas, called alpha cells, release a hormone called glucagon that counteracts the effects of insulin by telling the liver to release sugar into the bloodstream. The balance between the activity of insulin and glucagon keeps blood sugar levels steady. Diabetes results from the body being unable to produce enough insulin or respond to the insulin that is produced, which results in sugar accumulating in the blood. Diabetes also increases the production of glucagon, which further increases blood sugar levels. Recently, some researchers have reported that mice that lack the receptor proteins through which glucagon works do not develop diabetes, even when they are treated with a drug called streptozotocin that wipes out most of their beta cells. This suggests that the high blood sugar levels seen in diabetes result from an excess of glucagon, and not a lack of insulin. Drugs that block the action of glucagon have been found to reduce the symptoms of mild diabetes in mice and are now being tested in humans. However, it is less clear whether this treatment has any benefits in animals with more severe diabetes. Streptozotocin destroys most of a mouse’s beta cells but a significant fraction of them persist, while a different system relying on diphtheria toxin destroys more than 99% of these cells. Damond et al. have now found that treating mice that lack glucagon receptors with diphtheria toxin causes the mice to develop severe diabetes. Mice that lacked glucagon receptors that had been treated with streptozotocin also developed diabetes after they had been treated with an insulin-blocking drug. Further experiments showed that blocking glucagon receptors in typical mice with diabetes reduces blood sugar, but only if there is some insulin left in their bodies. Damond et al. also found that the glucagon receptor-lacking mice have more alpha cells, which have the ability to convert into insulin-producing cells after the widespread destruction of beta cells. Together, the experiments suggest that blocking glucagon could be a useful treatment for diabetes, but only in individuals who still have some insulin-producing cells. Such treatment would help reduce the release of sugar from the liver and increase the production of insulin in converted alpha cells in the pancreas. Damond et al. are now investigating how alpha cells convert into beta cells, with the aim of learning how to make beta cells regenerate more efficiently. DOI:http://dx.doi.org/10.7554/eLife.13828.002
Collapse
Affiliation(s)
- Nicolas Damond
- Department of Genetic Medicine and Development of the Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland.,Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development of the Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland.,Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| | - Julie S Moyers
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, United States
| | - Maureen J Charron
- Departments of Biochemistry, Medicine, and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, United States
| | - Patricia M Vuguin
- Pediatric Endocrinology, Women's and Childrens Health, College of Physicians & Surgeons, Columbia University, New York, United States
| | - Alvin C Powers
- Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Department of Molecular Physiology, Vanderbilt University, Nashville, United States.,VA Tennessee Valley Healthcare System, Nashville, United States
| | - Pedro L Herrera
- Department of Genetic Medicine and Development of the Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland.,Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Dadi PK, Luo B, Vierra NC, Jacobson DA. TASK-1 Potassium Channels Limit Pancreatic α-Cell Calcium Influx and Glucagon Secretion. MOLECULAR ENDOCRINOLOGY (BALTIMORE, MD.) 2015. [PMID: 25849724 DOI: 10.1210/me.2014‐1321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glucose regulation of pancreatic α-cell Ca(2+) entry through voltage-dependent Ca(2+) channels is essential for normal glucagon secretion and becomes defective during the pathogenesis of diabetes mellitus. The 2-pore domain K(+) channel, TWIK-related acid-sensitive K(+) channel 1 (TASK-1), is an important modulator of membrane voltage and Ca(2+) entry. However, its role in α-cells has not been determined. Therefore, we addressed how TASK-1 channels regulate α-cell electrical activity, Ca(2+) entry, and glucagon secretion. We find that TASK-1 channels expressed in human and rodent α-cells are blocked by the TASK-1 channel inhibitor A1899. Alpha-cell 2-pore domain K(+) currents were also significantly reduced after ablation of mouse α-cell TASK-1 channels. Inhibition of TASK-1 channels with A1899 caused plasma membrane potential depolarization in both human and mouse α-cells, which resulted in increased electrical excitability. Moreover, ablation of α-cell TASK-1 channels increased α-cell electrical excitability under elevated glucose (11 mM) conditions compared with control α-cells. This resulted in significantly elevated α-cell Ca(2+) influx when TASK-1 channels were inhibited in the presence of high glucose (14 mM). However, there was an insignificant change in α-cell Ca(2+) influx after TASK-1 inhibition in low glucose (1 mM). Glucagon secretion from mouse and human islets was also elevated specifically in high (11 mM) glucose after acute TASK-1 inhibition. Interestingly, mice deficient for α-cell TASK-1 showed improvements in both glucose inhibition of glucagon secretion and glucose tolerance, which resulted from the chronic loss of α-cell TASK-1 currents. Therefore, these data suggest an important role for TASK-1 channels in limiting α-cell excitability and glucagon secretion during glucose stimulation.
Collapse
Affiliation(s)
- Prasanna K Dadi
- Department of Molecular Physiology and Biophysics (P.K.D., N.C.V., D.A.J.), Vanderbilt University, Nashville, Tennessee 37232-0615; and University of Oklahoma College of Medicine (B.L.), Oklahoma City, Oklahoma 73104-5042
| | | | | | | |
Collapse
|
20
|
Dadi PK, Luo B, Vierra NC, Jacobson DA. TASK-1 Potassium Channels Limit Pancreatic α-Cell Calcium Influx and Glucagon Secretion. Mol Endocrinol 2015; 29:777-87. [PMID: 25849724 DOI: 10.1210/me.2014-1321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glucose regulation of pancreatic α-cell Ca(2+) entry through voltage-dependent Ca(2+) channels is essential for normal glucagon secretion and becomes defective during the pathogenesis of diabetes mellitus. The 2-pore domain K(+) channel, TWIK-related acid-sensitive K(+) channel 1 (TASK-1), is an important modulator of membrane voltage and Ca(2+) entry. However, its role in α-cells has not been determined. Therefore, we addressed how TASK-1 channels regulate α-cell electrical activity, Ca(2+) entry, and glucagon secretion. We find that TASK-1 channels expressed in human and rodent α-cells are blocked by the TASK-1 channel inhibitor A1899. Alpha-cell 2-pore domain K(+) currents were also significantly reduced after ablation of mouse α-cell TASK-1 channels. Inhibition of TASK-1 channels with A1899 caused plasma membrane potential depolarization in both human and mouse α-cells, which resulted in increased electrical excitability. Moreover, ablation of α-cell TASK-1 channels increased α-cell electrical excitability under elevated glucose (11 mM) conditions compared with control α-cells. This resulted in significantly elevated α-cell Ca(2+) influx when TASK-1 channels were inhibited in the presence of high glucose (14 mM). However, there was an insignificant change in α-cell Ca(2+) influx after TASK-1 inhibition in low glucose (1 mM). Glucagon secretion from mouse and human islets was also elevated specifically in high (11 mM) glucose after acute TASK-1 inhibition. Interestingly, mice deficient for α-cell TASK-1 showed improvements in both glucose inhibition of glucagon secretion and glucose tolerance, which resulted from the chronic loss of α-cell TASK-1 currents. Therefore, these data suggest an important role for TASK-1 channels in limiting α-cell excitability and glucagon secretion during glucose stimulation.
Collapse
Affiliation(s)
- Prasanna K Dadi
- Department of Molecular Physiology and Biophysics (P.K.D., N.C.V., D.A.J.), Vanderbilt University, Nashville, Tennessee 37232-0615; and University of Oklahoma College of Medicine (B.L.), Oklahoma City, Oklahoma 73104-5042
| | | | | | | |
Collapse
|
21
|
Abstract
Type 2 diabetes (T2D) has been known as 'bi-hormonal disorder' since decades ago, the role of glucagon from α-cell has languished whereas β-cell taking center stage. Recently, numerous findings indicate that the defects of glucagon secretion get involve with development and exacerbation of hyperglycemia in T2D. Aberrant α-cell responses exhibit both fasting and postprandial states: hyperglucagonemia contributes to fasting hyperglycemia caused by inappropriate hepatic glucose production, and to postprandial hyperglycemia owing to blunted α-cell suppression. During hypoglycemia, insufficient counter-regulation response is also observed in advanced T2D. Though many debates still remained for exact mechanisms behind the dysregulation of α-cell in T2D, it is clear that the blockade of glucagon receptor or suppression of glucagon secretion from α-cell would be novel therapeutic targets for control of hyperglycemia. Whereas there have not been remarkable advances in developing new class of drugs, currently available glucagon-like peptide-1 and dipeptidyl peptidase-IV inhibitors could be options for treatment of hyperglucagonemia. In this review, we focus on α-cell dysfunction and therapeutic potentials of targeting α-cell in T2D.
Collapse
Affiliation(s)
- Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyu Chang Won
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
22
|
Boerner BP, George NM, Mir SU, Sarvetnick NE. WS6 induces both alpha and beta cell proliferation without affecting differentiation or viability. Endocr J 2015; 62:379-86. [PMID: 25739404 PMCID: PMC4876955 DOI: 10.1507/endocrj.ej14-0449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Agents that stimulate human pancreatic beta cell proliferation are needed to improve diabetes mellitus treatment. Recently, a small molecule, WS6, was observed to stimulate human beta cell proliferation. However, little is known about its other effects on human islets. To better understand the role of WS6 as a possible beta cell regenerative therapy, we carried out in-depth phenotypic analysis of WS6-treated human islets, exploring its effects on non-beta cell proliferation, beta cell differentiation, and islet cell viability. WS6 not only stimulated beta cell proliferation in cultured human islets (in agreement with previous reports), but also human alpha cell proliferation, indicating that WS6 is not a beta cell-specific mitogen. WS6 did not change the proportion of insulin-positive beta cells or the expression of beta cell-specific transcription factors, suggesting that WS6 does not alter beta cell differentiation, and WS6 had no effect on human islet cell apoptosis or viability. In conclusion, WS6 stimulates proliferation of both human beta and alpha cells while maintaining cellular viability and the beta cell differentiated phenotype. These findings expand the literature on WS6 and support the suggestion that WS6 may help increase human islet mass needed for successful treatment of diabetes.
Collapse
Affiliation(s)
- Brian P. Boerner
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nicholas M. George
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shakeel U.R. Mir
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nora E. Sarvetnick
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
23
|
De Toro-Martín J, Fernández-Millán E, Lizárraga-Mollinedo E, López-Oliva E, Serradas P, Escrivá F, Alvarez C. Predominant role of GIP in the development of a metabolic syndrome-like phenotype in female Wistar rats submitted to forced catch-up growth. Endocrinology 2014; 155:3769-80. [PMID: 25032669 DOI: 10.1210/en.2013-2043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Catch-up growth has been associated with the appearance of metabolic dysfunctions such as obesity and type 2 diabetes in adulthood. Because the entero-insular axis is critical to glucose homeostasis control, we explored the relevance of the incretins glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) in the development of these pathologies. Offspring of rat dams fed ad libitum (control [C]) or 65% food-restricted during pregnancy and suckling time (undernourished [U]) were weaned onto a high-fat (HF) diet (CHF and UHF, respectively) to drive catch-up growth. Both male and female UHF rats showed an obese phenotype characterized by hyperphagy, visceral fat accumulation, and adipocyte hypertrophy. High-fat diet induced deterioration of glucose tolerance in a sex-dependent manner. Female UHF rats experienced much more severe glucose intolerance than males, which was not compensated by insulin hypersecretion, suggesting insulin resistance, as shown by homeostatic model assessment of insulin resistance values. Moreover, female, but not male, UHF rats displayed enhanced GIP but not GLP-1 secretion during oral glucose tolerance test. Administration of the GIP receptor antagonist (Pro3)GIP to UHF female rats over 21 days markedly reduced visceral fat mass and adipocyte hypertrophy without variations in food intake or body weight. These changes were accompanied by improvement of glucose tolerance and insulin sensitivity. In conclusion, the exacerbated production and secretion of GIP after the catch-up growth seems to represent the stimulus for insulin hypersecretion and insulin resistance, ultimately resulting in derangement of glucose homeostasis. Overall, these data evidence the role of GIP as a critical link between catch-up growth and the development of metabolic disturbances.
Collapse
Affiliation(s)
- J De Toro-Martín
- Departments of Biochemistry and Molecular Biology II (J.D.T.-M., E.L.-M., F.E., C.A.) and Physiology (E.L.-O.), Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (E.F.-M., E.L.-M., F.E., C.A.), Instituto de Salud Carlos III, 28029 Madrid, Spain; and Inserm Unité Mixte de Recherche S 1138 (P.S.), Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, F-75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Shimodaira M, Muroya Y, Kumagai N, Tsuzawa K, Honda K. Effects of short-term intensive glycemic control on insulin, glucagon, and glucagon-like peptide-1 secretion in patients with Type 2 diabetes. J Endocrinol Invest 2013; 36:734-8. [PMID: 23580083 DOI: 10.3275/8934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Short-term intensive insulin therapy (IIT) in patients with Type 2 diabetes mellitus (T2DM) has beneficial effects on insulin secretion. However, IIT effect on glucagon and glucagon-like peptide-1 (GLP-1) secretion is unknown. AIM We evaluated short-term intensive glycemic control effects on insulin, glucagon, and GLP-1 secretory dynamics in T2DM. MATERIALS AND METHODS Twenty-six patients with T2DM were hospitalized and treated with IIT for 10-14 days. A meal tolerance test was performed before and after IIT and the differences in serum immunoreactive insulin (IRI) and C-peptide immunoreactivity (CPR) as well as plasma glucagon and active GLP-1 levels were evaluated. RESULTS Glycoalbumin levels decreased significantly from 23.0% before to 19.6% after IIT (p<0.001). However, pre- and post-IIT, IRI and CPR levels were not significantly different; post-IIT glucose levels were significantly decreased. The post-IIT glucagon levels at 0 and 60 min were lower than pre-IIT levels. Moreover, post- IIT area under the curve (AUC) of glucagon significantly reduced from 6755 ± 996 pg/dl · 60 min to 5796 ± 1074 pg/dl · 60 min (p<0.001). Furthermore, post-IIT GLP-1 levels and AUC were significantly higher than pre-IIT values. CONCLUSIONS Our results suggest that patients with T2DM who received shortterm IIT demonstrated decreased postprandial glucagon levels and increased GLP-1 levels following a meal tolerance test.
Collapse
Affiliation(s)
- M Shimodaira
- Departments of Internal Medicine, Iida Municipal Hospital, 438 Yawata-machi, Iida, Nagano, 395-8502, Japan.
| | | | | | | | | |
Collapse
|
25
|
Hypothalamic glucagon signaling inhibits hepatic glucose production. Nat Med 2013; 19:766-72. [DOI: 10.1038/nm.3115] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/31/2013] [Indexed: 01/28/2023]
|
26
|
Wang Q, Liang X, Wang S. Intra-islet glucagon secretion and action in the regulation of glucose homeostasis. Front Physiol 2013; 3:485. [PMID: 23316165 PMCID: PMC3539678 DOI: 10.3389/fphys.2012.00485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/12/2012] [Indexed: 11/13/2022] Open
Abstract
Glucagon, a key hormone in the regulation of glucose homeostasis, acts as a counter-regulatory hormone to insulin by promoting hepatic glucose output. Under normal conditions, insulin and glucagon operate in concert to maintain the glucose level within a narrow physiological range. In diabetes, however, while insulin secretion or action is insufficient, the production and secretion of glucagon are excessive, contributing to the development of diabetic hyperglycemia. Within an islet, intra-islet insulin, in cooperation with intra-islet GABA, suppresses glucagon secretion via direct modulation of α-cell intracellular signaling pathways involving Akt activation, GABA receptor phosphorylation and the receptor plasma membrane translocation, while intra-islet glucagon plays an important role in modulating β-cell function and insulin secretion. Defects in the insulin-glucagon fine-tuning machinery may result in β-cell glucose incompetence, leading to unsuppressed glucagon secretion and subsequent hyperglycemia, which often occur under extreme conditions of glucose influx or efflux. Therefore, deciphering the precise molecular mechanisms underlying glucagon secretion and action will facilitate our understanding of glucagon physiology, in particular, its role in regulating islet β-cell function, and hence the mechanisms behind glucose homeostasis.
Collapse
Affiliation(s)
- Qinghua Wang
- Division of Endocrinology and Metabolism, The Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Department of Medicine, University of Toronto Toronto, ON, Canada
| | | | | |
Collapse
|
27
|
Maharaj A, Zhu L, Huang F, Qiu H, Li H, Zhang CY, Jin T, Wang Q. Ectopic expression of glucagon receptor in skeletal muscles improves glucose homeostasis in a mouse model of diabetes. Diabetologia 2012; 55:1458-68. [PMID: 22318544 DOI: 10.1007/s00125-012-2464-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 10/28/2011] [Indexed: 01/20/2023]
Abstract
AIMS/HYPOTHESIS Excessive secretion of glucagon partially contributes to the development of diabetic hyperglycaemia. However, complete blocking of glucagon action will lead to adverse effects, since glucagon exerts certain beneficial effects via its receptor in many organs. We aimed to study the effects of a 'decoy receptor' for circulating glucagon on modulating beta cell function and glucose homeostasis in mice by over-producing the glucagon receptor (GCGR) in skeletal muscles. METHODS We generated transgenic mice in which the expression of Gcgr is driven by the muscle specific creatine kinase (Mck) promoter, and assessed the effects of glucagon on the modulation of glucose homeostasis under conditions of extremes of glucose influx or efflux. RESULTS Mck/Gcgr mice showed increased circulating levels of glucagon and insulin, resulting in an unchanged ratio of glucagon-to-insulin. The levels of hepatic glucose-6-phosphatase (G6PC) and fructose-1,6-bisphosphatase (F1,6P2ase) were significantly decreased, whereas the phosphorylation level of pancreatic cAMP-response-element-binding-protein (CREB) was significantly increased in these transgenic mice. Under basal conditions, the mice displayed normal blood glucose levels and unchanged glucose tolerance and insulin sensitivity when compared with their age-matched wild-type (WT) littermates. However, following multiple low-dose streptozotocin injections, Mck/Gcgr mice exhibited a delay in the onset of hyperglycaemia compared with the WT controls. This was associated with preserved beta cell mass and beta cell secretory capacity in response to glucose challenge. CONCLUSIONS/INTERPRETATION We suggest that mild and chronic hyperglucagonaemia, through a strategy involving neutralising peripheral glucagon action, provides beneficial effects on beta cell function and glucose homeostasis. Mck/Gcgr mice thus represent a novel mouse model for studying the physiological effects of glucagon.
Collapse
Affiliation(s)
- A Maharaj
- Division of Endocrinology and Metabolism, the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Menge BA, Grüber L, Jørgensen SM, Deacon CF, Schmidt WE, Veldhuis JD, Holst JJ, Meier JJ. Loss of inverse relationship between pulsatile insulin and glucagon secretion in patients with type 2 diabetes. Diabetes 2011; 60:2160-8. [PMID: 21677283 PMCID: PMC3142077 DOI: 10.2337/db11-0251] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE In patients with type 2 diabetes, glucagon levels are often increased. Furthermore, pulsatile secretion of insulin is disturbed in such patients. Whether pulsatile glucagon secretion is altered in type 2 diabetes is not known. RESEARCH DESIGN AND METHODS Twelve patients with type 2 diabetes and 13 nondiabetic individuals were examined in the fasting state and after mixed meal ingestion. Deconvolution analyses were performed on insulin and glucagon concentration time series sampled at 1-min intervals. RESULTS Both insulin and glucagon were secreted in distinct pulses, occurring at ∼5-min intervals. In patients with diabetes, postprandial insulin pulse mass was reduced by 74% (P < 0.001). Glucagon concentrations were increased in the patients during fasting and after meal ingestion (P < 0.05), specifically through an increased glucagon pulse mass (P < 0.01). In healthy subjects, the increase in postprandial insulin levels was inversely related to respective glucagon levels (P < 0.05). This relationship was absent in the fasting state and in patients with diabetes. CONCLUSIONS Glucagon and insulin are secreted in a coordinated, pulsatile manner. A plausible model is that the postprandial increase in insulin burst mass represses the corresponding glucagon pulses. Disruption of the insulin-glucagon interaction in patients with type 2 diabetes could potentially contribute to hyperglucagonemia.
Collapse
Affiliation(s)
- Björn A. Menge
- Department of Medicine I, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Lena Grüber
- Department of Medicine I, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Signe M. Jørgensen
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F. Deacon
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Wolfgang E. Schmidt
- Department of Medicine I, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Johannes D. Veldhuis
- Department of Medicine, Endocrine Research Unit, Mayo School of Graduate Medical Education, Mayo Clinic, Rochester, Minnesota
| | - Jens J. Holst
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Juris J. Meier
- Department of Medicine I, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
- Corresponding author: Juris J. Meier,
| |
Collapse
|
29
|
Lin HV, Accili D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab 2011; 14:9-19. [PMID: 21723500 PMCID: PMC3131084 DOI: 10.1016/j.cmet.2011.06.003] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/28/2011] [Accepted: 06/08/2011] [Indexed: 01/06/2023]
Abstract
We review mechanisms that regulate production of glucose by the liver, focusing on areas of budding consensus, and endeavoring to provide a candid assessment of lingering controversies. We also attempt to reconcile data from tracer studies in humans and large animals with the growing compilation of mouse knockouts that display changes in glucose production. A clinical hallmark of diabetes, excessive glucose production remains key to its treatment. Hence, we attempt to integrate emerging pathways into the broader goal to rejuvenate the staid antidiabetic pharmacopeia.
Collapse
Affiliation(s)
- Hua V Lin
- Merck Research Laboratories, Rahway, NJ 07065, USA
| | | |
Collapse
|
30
|
Ali S, Lamont BJ, Charron MJ, Drucker DJ. Dual elimination of the glucagon and GLP-1 receptors in mice reveals plasticity in the incretin axis. J Clin Invest 2011; 121:1917-29. [PMID: 21540554 DOI: 10.1172/jci43615] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 02/09/2011] [Indexed: 02/03/2023] Open
Abstract
Disordered glucagon secretion contributes to the symptoms of diabetes, and reduced glucagon action is known to improve glucose homeostasis. In mice, genetic deletion of the glucagon receptor (Gcgr) results in increased levels of the insulinotropic hormone glucagon-like peptide 1 (GLP-1), which may contribute to the alterations in glucose homeostasis observed in Gcgr-/- mice. Here, we assessed the contribution of GLP-1 receptor (GLP-1R) signaling to the phenotype of Gcgr-/- mice by generating Gcgr-/-Glp1r-/- mice. Although insulin sensitivity was similar in all genotypes, fasting glucose was increased in Gcgr-/-Glp1r-/- mice. Elimination of the Glp1r normalized gastric emptying and impaired intraperitoneal glucose tolerance in Gcgr-/- mice. Unexpectedly, deletion of Glp1r in Gcgr-/- mice did not alter the improved oral glucose tolerance and increased insulin secretion characteristic of that genotype. Although Gcgr-/-Glp1r-/- islets exhibited increased sensitivity to the incretin glucose-dependent insulinotropic polypeptide (GIP), mice lacking both Glp1r and the GIP receptor (Gipr) maintained preservation of the enteroinsular axis following reduction of Gcgr signaling. Moreover, Gcgr-/-Glp1r-/- islets expressed increased levels of the cholecystokinin A receptor (Cckar) and G protein-coupled receptor 119 (Gpr119) mRNA transcripts, and Gcgr-/-Glp1r-/- mice exhibited increased sensitivity to exogenous CCK and the GPR119 agonist AR231453. Our data reveal extensive functional plasticity in the enteroinsular axis via induction of compensatory mechanisms that control nutrient-dependent regulation of insulin secretion.
Collapse
Affiliation(s)
- Safina Ali
- Department of Laboratory Medicine and Pathobiology, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Xiao C, Pavlic M, Szeto L, Patterson BW, Lewis GF. Effects of acute hyperglucagonemia on hepatic and intestinal lipoprotein production and clearance in healthy humans. Diabetes 2011; 60:383-90. [PMID: 20980459 PMCID: PMC3028336 DOI: 10.2337/db10-0763] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The metabolism of hepatic- and intestinally derived lipoproteins is regulated in a complex fashion by nutrients, hormones, and neurologic and other factors. Recent studies in animal models suggest an important role for glucagon acting via the glucagon receptor in regulating hepatic triglyceride (TG) secretion. Here we examined the direct effects of glucagon on regulation of hepatic and intestinal lipoprotein metabolism in humans. RESEARCH DESIGN AND METHODS Eight healthy men underwent two studies each, in random order, 4-6 weeks apart in which de novo lipogenesis, kinetics of larger VLDL1 TG, and kinetics of VLDL1 and smaller VLDL2 apolipoprotein (apo)B100 and B48 were studied using established stable isotope enrichment methods. Subjects were studied in the constant fed state under conditions of a pancreatic clamp (with infusion of somatostatin, insulin, and growth hormone) at either basal glucagon (BG study, 64.5 ± 2.1 pg/mL) or hyperglucagonemia (high glucagon [HG] study, 183.2 ± 5.1 pg/mL). RESULTS There were no significant differences in plasma concentration of VLDL1 or VLDL2 TG, apoB100 or apoB48 between BG and HG studies. There was, however, lower (P < 0.05) VLDL1 apoB100 fractional catabolic rate (-39%) and production rate (-30%) in HG versus BG, but no difference in de novo lipogenesis or TG turnover, and glucagon had no effect on intestinal (B48-containing) lipoprotein metabolism. CONCLUSIONS Glucagon acutely regulates hepatic but not intestinal lipoprotein particle metabolism in humans both by decreasing hepatic lipoprotein particle production as well as by inhibiting particle clearance, with no net effect on particle concentration.
Collapse
Affiliation(s)
- Changting Xiao
- Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
| | - Mirjana Pavlic
- Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
| | - Linda Szeto
- Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
| | - Bruce W. Patterson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Gary F. Lewis
- Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: Gary F. Lewis,
| |
Collapse
|
32
|
Kawamori D, Welters HJ, Kulkarni RN. Molecular Pathways Underlying the Pathogenesis of Pancreatic α-Cell Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:421-45. [DOI: 10.1007/978-90-481-3271-3_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Pańkowska E, Szypowska A, Lipka M, Szpotańska M, Błazik M, Groele L. Application of novel dual wave meal bolus and its impact on glycated hemoglobin A1c level in children with type 1 diabetes. Pediatr Diabetes 2009; 10:298-303. [PMID: 19175902 DOI: 10.1111/j.1399-5448.2008.00471.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND An insulin pump is an advanced technology offering new options of bolus - normal (N), dual wave (D-W) or square wave (S-W) bolus to deliver mealtime insulin. OBJECTIVES To assess the impact of D-W/S-W boluses on metabolic control (glycated haemoglobin A1c, HbA1c) and to estimate the paediatric patients compliance with implementation of this system in daily practice. METHODS The cross-sectional study included 499 records of patients aged 0-18 yr. Data from the insulin pump memory provided information on the number of D-W/S-W boluses during a 2-wk period, the insulin requirement (U/kg/d) and the percentage of basal insulin. The HbA1c value (%) and the patient's weight were determined during medical examinations. Mealtime dose of insulin in D-W/S-W bolus was calculated based on the amount of carbohydrate and fat/protein products. RESULTS The number of applied D-W/S-W boluses was 16.6 +/- 0.77/14 d (ranged 0-95), while 18.8% of patients did not program D-W/S-W boluses. The lowest HbA1c value was found in the group using two and/or more D-W/S-W boluses per day (p = 0.001) compared with the group administrating less than one D-W/S-W bolus/d. Patients with HbA1c level <7.5% had a statistically higher relevant number of D-W/S-W boluses, 19.55 (95% CI: 17.44-21.65) vs. 12.42 (95% CI: 10.22-14.61) (p < 0.001), while there was no correlation between the number of boluses and HbA1c in patients in the remission phase (<0.5 IU/kg/d) (r = 0.012, p = 0.930). CONCLUSIONS Patients using at least one D-W/S-W bolus per day achieved a recommended level of HbA1c. Paediatric patients with type 1 diabetes mellitus were found to be able to apply D-W/S-W boluses in daily self-treatment process based on food counting.
Collapse
Affiliation(s)
- Ewa Pańkowska
- Second Department of Paediatrics, Medical University of Warsaw, 01-184 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
34
|
Schrader H, Menge BA, Breuer TGK, Ritter PR, Uhl W, Schmidt WE, Holst JJ, Meier JJ. Impaired glucose-induced glucagon suppression after partial pancreatectomy. J Clin Endocrinol Metab 2009; 94:2857-63. [PMID: 19491219 DOI: 10.1210/jc.2009-0826] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The glucose-induced decline in glucagon levels is often lost in patients with type 2 diabetes. It is unclear whether this is due to an independent defect in alpha-cell function or secondary to the impairment in insulin secretion. We examined whether a partial pancreatectomy in humans would also impair postchallenge glucagon concentrations and, if so, whether this could be attributed to the reduction in insulin levels. PATIENTS AND METHODS Thirty-six patients with pancreatic tumours or chronic pancreatitis were studied before and after approximately 50% pancreatectomy with a 240-min oral glucose challenge, and the plasma concentrations of glucose, insulin, C-peptide, and glucagon were determined. RESULTS Fasting and postchallenge insulin and C-peptide levels were significantly lower after partial pancreatectomy (P < 0.0001). Likewise, fasting glucagon concentrations tended to be lower after the intervention (P = 0.11). Oral glucose ingestion elicited a decline in glucagon concentrations before surgery (P < 0.0001), but this was lost after partial pancreatectomy (P < 0.01 vs. preoperative values). The loss of glucose-induced glucagon suppression was found after both pancreatic head (P < 0.001) and tail (P < 0.05) resection. The glucose-induced changes in glucagon levels were closely correlated to the respective increments in insulin and C-peptide concentrations (P < 0.01). CONCLUSIONS The glucose-induced suppression in glucagon levels is lost after a 50% partial pancreatectomy in humans. This suggests that impaired alpha-cell function in patients with type 2 diabetes may also be secondary to reduced beta-cell mass. Alterations in glucagon regulation should be considered as a potential side effect of partial pancreatectomies.
Collapse
Affiliation(s)
- Henning Schrader
- Department of Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Glucose homeostasis is regulated primarily by the opposing actions of insulin and glucagon, hormones that are secreted by pancreatic islets from beta-cells and alpha-cells, respectively. Insulin secretion is increased in response to elevated blood glucose to maintain normoglycemia by stimulating glucose transport in muscle and adipocytes and reducing glucose production by inhibiting gluconeogenesis in the liver. Whereas glucagon secretion is suppressed by hyperglycemia, it is stimulated during hypoglycemia, promoting hepatic glucose production and ultimately raising blood glucose levels. Diabetic hyperglycemia occurs as the result of insufficient insulin secretion from the beta-cells and/or lack of insulin action due to peripheral insulin resistance. Remarkably, excessive secretion of glucagon from the alpha-cells is also a major contributor to the development of diabetic hyperglycemia. Insulin is a physiological suppressor of glucagon secretion; however, at the cellular and molecular levels, how intraislet insulin exerts its suppressive effect on the alpha-cells is not very clear. Although the inhibitory effect of insulin on glucagon gene expression is an important means to regulate glucagon secretion, recent studies suggest that the underlying mechanisms of the intraislet insulin on suppression of glucagon secretion involve the modulation of K(ATP) channel activity and the activation of the GABA-GABA(A) receptor system. Nevertheless, regulation of glucagon secretion is multifactorial and yet to be fully understood.
Collapse
Affiliation(s)
- Pritpal Bansal
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
36
|
Steiner DF. Insulin-induced liver hyperplasia: evidence for a negative liver-size-correcting process. CIBA FOUNDATION SYMPOSIUM 2008:229-36. [PMID: 248002 DOI: 10.1002/9780470720363.ch12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fate of the increased liver DNA induced by insulin treatment of rats with chronic steptozotocin-induced diabetes was studied. The DNA content of the organ was restored to normal by an active process having a half-time of 32 days. The half-time of disappearance of thymidine-labelled DNA in the same livers was 81 days. The results indicate the existence of a mechnanism which acts to restore normal liver cellularity when an over-production of cells has occurred.
Collapse
|
37
|
Dunning BE, Gerich JE. The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev 2007; 28:253-83. [PMID: 17409288 DOI: 10.1210/er.2006-0026] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hyperglycemic activity of pancreatic extracts was encountered some 80 yr ago during efforts to optimize methods for the purification of insulin. The hyperglycemic substance was named "glucagon," and it was subsequently determined that glucagon is a 29-amino acid peptide synthesized and released from pancreatic alpha-cells. This article begins with a brief overview of the discovery of glucagon and the contributions that somatostatin and a sensitive and selective assay for pancreatic (vs. gut) glucagon made to understanding the physiological and pathophysiological roles of glucagon. Studies utilizing these tools to establish the function of glucagon in normal nutrient homeostasis and to document a relative glucagon excess in type 2 diabetes mellitus (T2DM) and precursors thereof are then discussed. The evidence that glucagon excess contributes to the development and maintenance of fasting hyperglycemia and that failure to suppress glucagon secretion contributes to postprandial hyperglycemia is then reviewed. Although key human studies are emphasized, salient animal studies highlighting the importance of glucagon in normal and defective glucoregulation are also described. The past eight decades of research in this area have led to development of new therapeutic approaches to treating T2DM that have been shown to, or are expected to, improve glycemic control in patients with T2DM in part by improving alpha-cell function or by blocking glucagon action. Accordingly, this review ends with a discussion of the status and therapeutic potential of glucagon receptor antagonists, alpha-cell selective somatostatin agonists, glucagon-like peptide-1 agonists, and dipeptidyl peptidase-IV inhibitors. Our overall conclusions are that there is considerable evidence that relative hyperglucagonemia contributes to fasting and postprandial hyperglycemia in patients with T2DM, and there are several new and emerging pharmacotherapies that may improve glycemic control in part by ameliorating the hyperglycemic effects of this relative glucagon excess.
Collapse
|
38
|
Meier JJ, Kjems LL, Veldhuis JD, Lefèbvre P, Butler PC. Postprandial suppression of glucagon secretion depends on intact pulsatile insulin secretion: further evidence for the intraislet insulin hypothesis. Diabetes 2006; 55:1051-6. [PMID: 16567528 DOI: 10.2337/diabetes.55.04.06.db05-1449] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes is characterized by an approximately 60% loss of beta-cell mass, a marked defect in postprandial insulin secretion, and a failure to suppress postprandial glucagon concentrations. It is possible that postprandial hyperglucagonemia in type 2 diabetes is due to impaired postprandial insulin secretion. To address this, we studied eight adult Goettingen minipigs before and after an approximately 60% reduction in beta-cell mass induced by alloxan. Pigs were studied fasting and after ingestion of a mixed meal. Insulin and glucagon secretion were determined by deconvolution of blood hormone concentrations measured at 1-min intervals. The relationship between insulin and glucagon release was analyzed using cross-correlation and forward versus reverse cross-approximate entropy. We report that glucagon and insulin were secreted in approximately 4-min pulses. Prealloxan, postprandial insulin secretion drove an approximately 20% suppression of glucagon concentrations (P < 0.01), through inhibition of glucagon pulse mass. The alloxan-induced approximately 60% deficit in beta-cell mass lead to an approximately 70% deficit in postprandial insulin secretion and loss of the postprandial insulin-driven suppression of glucagon secretion. We conclude that postprandial hyperglucagonemia in type 2 diabetes is likely due to loss of intraislet postprandial suppression of glucagon secretion by insulin.
Collapse
Affiliation(s)
- Juris J Meier
- Larry Hillblom Islet Research Center, UCLA David Geffen School of Medicine, 24-130 Warren Hall, 900 Veteran Ave., Los Angeles, CA 90095-7073, USA
| | | | | | | | | |
Collapse
|
39
|
Meier JJ, Nauck MA, Pott A, Heinze K, Goetze O, Bulut K, Schmidt WE, Gallwitz B, Holst JJ. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology 2006; 130:44-54. [PMID: 16401467 DOI: 10.1053/j.gastro.2005.10.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 09/21/2005] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The gut-derived peptide glucagon-like peptide 2 (GLP-2) has been suggested as a potential drug candidate for the treatment of various intestinal diseases. However, the acute effects of GLP-2 on gastric functions as well as on glucose and lipid homeostasis in humans are less well characterized. METHODS Fifteen healthy male volunteers were studied with the intravenous infusion of GLP-2 or placebo over 120 minutes in the fasting state, and pentagastrin-stimulated gastric acid output was assessed. Another 15 healthy male volunteers were studied with a 390 minutes infusion of GLP-2 or placebo during the ingestion of a solid test meal. Gastric emptying was determined using a 13C-sodium-octanote breath test. Plasma concentrations of glucose, insulin, C-peptide, glucagon, GLP-2, free fatty acids, free glycerol, and triglycerides were determined. RESULTS GLP-2 administration led to a marked increase in glucagon concentrations both in the fasting state and during the meal study (P < .001). Postprandial plasma concentrations of triglycerides and free fatty acids were significantly higher during GLP-2 infusion compared with placebo (P < .01), while glycerol concentrations were similar (P = .07). GLP-2 administration caused an approximately 15% reduction in pentagastrin-stimulated gastric acid and chloride secretion (P < .01), whereas gastric emptying was not affected (P = .99). CONCLUSIONS GLP-2 reduces gastric acid secretion but does not seem to have an influence on gastric emptying. The stimulation of glucagon secretion by GLP-2 may counteract the glucagonostatic effect of GLP-1. Changes in postprandial lipid excursions seem to reflect enhanced intestinal nutrient absorption during GLP-2 administration.
Collapse
Affiliation(s)
- Juris J Meier
- Department of Medicine I, St. Josef-Hospital, Ruhr-University, Bochum, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Petersen KF, Price TB, Bergeron R. Regulation of net hepatic glycogenolysis and gluconeogenesis during exercise: impact of type 1 diabetes. J Clin Endocrinol Metab 2004; 89:4656-64. [PMID: 15356077 PMCID: PMC2995531 DOI: 10.1210/jc.2004-0408] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effects of type 1 diabetes on the contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production (GP) at rest and during moderate (MOD) and high (HI) intensity running were examined in healthy control (n = 6) and type 1 diabetic (n = 5) subjects matched for age, weight, and maximum aerobic capacity by combined noninvasive measurements of hepatic glycogen content using (13)C nuclear magnetic resonance spectroscopy and determination of GP using [6,6-(2)H(2)]glucose. In the control subjects, GP increased in proportion to the intensity of the exercise [at rest (REST), 14.3 +/- 0.5; MOD, 18.1 +/- 0.9; HI, 28.8 +/- 1.3 micromol/(kg-min); P = 0.001, three-way comparison], and this was accounted for by an increase in the percent contribution of net hepatic glycogenolysis to GP (REST, 32 +/- 1%; MOD, 49 +/- 5%; HI, 57 +/- 5%; P = 0.006). In the diabetic subjects, resting rates of GP were 60% higher than those in the control subjects (P < 0.0001) and increased in proportion to the workload. In contrast, the contributions of net hepatic glycogenolysis to GP were consistently lower than those in the control subjects (REST, 20 +/- 6%; MOD, 32 +/- 13%; HI, 32 +/- 3%; P = 0.006 vs. control), and the exaggerated rates of GP could be entirely accounted for by increased rates of gluconeogenesis. In conclusion, 1) increases in GP in healthy control subjects with exercise intensity can be entirely attributed to increases in net hepatic glycogenolysis. 2) In contrast, moderately controlled type 1 diabetic subjects exhibit increased rates of GP both at rest and during exercise, which can be entirely accounted for by increased gluconeogenesis.
Collapse
Affiliation(s)
- Kitt Falk Petersen
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, S263, P.O. Box 208020, New Haven, Connecticut 06520-8020, USA
| | | | | |
Collapse
|
41
|
Abstract
As a counterregulatory hormone for insulin, glucagon plays a critical role in maintaining glucose homeostasis in vivo in both animals and humans. To increase blood glucose, glucagon promotes hepatic glucose output by increasing glycogenolysis and gluconeogenesis and by decreasing glycogenesis and glycolysis in a concerted fashion via multiple mechanisms. Compared with healthy subjects, diabetic patients and animals have abnormal secretion of not only insulin but also glucagon. Hyperglucagonemia and altered insulin-to-glucagon ratios play important roles in initiating and maintaining pathological hyperglycemic states. Not surprisingly, glucagon and glucagon receptor have been pursued extensively in recent years as potential targets for the therapeutic treatment of diabetes.
Collapse
Affiliation(s)
- Guoqiang Jiang
- Department of Metabolic Disorders and Molecular Endocrinology, Merck Research Laboratory, Rahway, New Jersey 07065, USA
| | | |
Collapse
|
42
|
Kjems LL, Kirby BM, Welsh EM, Veldhuis JD, Straume M, McIntyre SS, Yang D, Lefèbvre P, Butler PC. Decrease in beta-cell mass leads to impaired pulsatile insulin secretion, reduced postprandial hepatic insulin clearance, and relative hyperglucagonemia in the minipig. Diabetes 2001; 50:2001-12. [PMID: 11522665 DOI: 10.2337/diabetes.50.9.2001] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most insulin is secreted in discrete pulses at an interval of approximately 6 min. Increased insulin secretion after meal ingestion is achieved through the mechanism of amplification of the burst mass. Conversely, in type 2 diabetes, insulin secretion is impaired as a consequence of decreased insulin pulse mass. beta-cell mass is reported to be deficient in type 2 diabetes. We tested the hypothesis that decreased beta-cell mass leads to decreased insulin pulse mass. Insulin secretion was examined before and after an approximately 60% decrease in beta-cell mass achieved by a single injection of alloxan in a porcine model. Alloxan injection resulted in stable diabetes (fasting plasma glucose 7.4 +/- 1.1 vs. 4.4 +/- 0.1 mmol/l; P < 0.01) with impaired insulin secretion in the fasting and fed states and during a hyperglycemic clamp (decreased by 54, 80, and 90%, respectively). Deconvolution analysis revealed a selective decrease in insulin pulse mass (by 54, 60, and 90%) with no change in pulse frequency. Rhythm analysis revealed no change in the periodicity of regular oscillations after alloxan administration in the fasting state but was unable to detect stable rhythms reliably after enteric or intravenous glucose stimulation. After alloxan administration, insulin secretion and insulin pulse mass (but not insulin pulse interval) decreased in relation to beta-cell mass. However, the decreased pulse mass (and pulse amplitude delivered to the liver) was associated with a decrease in hepatic insulin clearance, which partially offset the decreased insulin secretion. Despite hyperglycemia, postprandial glucagon concentrations were increased after alloxan administration (103.4 +/- 6.3 vs. 92.2 +/- 2.5 pg/ml; P < 0.01). We conclude that an alloxan-induced selective decrease in beta-cell mass leads to deficient insulin secretion by attenuating insulin pulse mass, and that the latter is associated with decreased hepatic insulin clearance and relative hyperglucagonemia, thereby emulating the pattern of islet dysfunction observed in type 2 diabetes.
Collapse
Affiliation(s)
- L L Kjems
- Diabetes Research Unit and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nyholm B, Brock B, Ørskov L, Schmitz O. Amylin receptor agonists: a novel pharmacological approach in the management of insulin-treated diabetes mellitus. Expert Opin Investig Drugs 2001; 10:1641-52. [PMID: 11772274 DOI: 10.1517/13543784.10.9.1641] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amylin is a peptide hormone which is co-secreted with insulin from the pancreatic beta-cell. Type 1 diabetic individuals and some Type 2 diabetic individuals are characterised by amylin deficiency. Animal experiments have revealed several actions of amylin on intermediary metabolism, of these some have been demonstrated to be of potential physiological relevance in humans. In particular amylin appears to have important actions in controlling prandial glucose homeostasis. The peptide hormone inhibits postprandial glucagon secretion and delays gastric emptying thereby modifying postprandial hyperglycaemia in diabetic individuals which presumably adds to overall glycaemic control without a concomitant increase in the number of severe hypoglycaemic episodes. Moreover, amylin acts as a satiety agent. Amylin replacement may therefore improve glycaemic control in diabetes mellitus. However, human amylin exhibits physicochemical properties predisposing the peptide hormone to aggregate and form amyloid fibres, which makes it unsuitable for pharmacological use. A stable analogue, pramlintide, with actions and pharmacokinetic and pharmacodynamic properties similar to the native peptide has therefore been developed. The efficacy and safety of pramlintide administration to diabetic individuals have been tested in a large number of clinical trials. It is the aim of this review to describe possible (patho)physiological actions of amylin as demonstrated in animal and human models, to discuss the background for potential amylin (analogue) replacement in diabetes mellitus and to review results from clinical trials with the amylin receptor analogue pramlintide.
Collapse
Affiliation(s)
- B Nyholm
- Department of Medicine (Endocrinology and Diabetes), Aarhus Kommunehospital, University Hospital of Aarhus, Aarhus, Denmark
| | | | | | | |
Collapse
|
44
|
Brunicardi FC, Dyen Y, Brostrom L, Kleinman R, Colonna J, Gelabert H, Gingerich R. The circulating hormonal milieu of the endocrine pancreas in healthy individuals, organ donors, and the isolated perfused human pancreas. Pancreas 2000; 21:203-11. [PMID: 10975715 DOI: 10.1097/00006676-200008000-00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Although basal circulating levels of individual islet cell hormones have been measured, few studies compared the molar ratios of the major hormones secreted by the endocrine pancreas. This study examined the basal levels of four major islet hormones: insulin, C-peptide (C-P), glucagon (G), and pancreatic polypeptide (PP) in normal subjects, in organ donors with brain death, and in the isolated perfused human pancreas. Basal blood samples were taken from normal, fasted control subjects (NCs). Pancreata were obtained from 17 organ donors (ODs) with donor portal vein (DPV) and radial arterial (DRA) blood samples taken before organ procurement. Single-pass perfusion was performed on the procured pancreata, and after rewarming and equilibration, basal samples were collected from the splenic vein (SV) for 30 min. Radioimmunoassays of insulin, C-P, G, and PP were performed on all samples, and basal levels of all hormones were expressed as a common unit, femtomoles per milliliter. The data suggest that in the basal state, these four major islet hormones circulate in a relatively constant molar ratio. The ratio of the hormones is altered in brain death and with in vitro perfusion of the pancreas. The isolated perfused human pancreas secretes a relatively constant molar ratio of these hormones; however, this ratio is markedly different from the circulating ratio seen in either the NC group or the OD group. We conclude that a relatively constant hormonal milieu is secreted from the normal endocrine pancreas, and this hormonal milieu is altered after brain death and with isolation and perfusion of the human pancreas.
Collapse
Affiliation(s)
- F C Brunicardi
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Shah P, Basu A, Basu R, Rizza R. Impact of lack of suppression of glucagon on glucose tolerance in humans. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E283-90. [PMID: 10444424 DOI: 10.1152/ajpendo.1999.277.2.e283] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
People with type 2 diabetes have defects in both alpha- and beta-cell function. To determine whether lack of suppression of glucagon causes hyperglycemia when insulin secretion is impaired but not when insulin secretion is intact, twenty nondiabetic subjects were studied on two occasions. On both occasions, a "prandial" glucose infusion was given over 5 h while endogenous hormone secretion was inhibited. Insulin was infused so as to mimic either a nondiabetic (n = 10) or diabetic (n = 10) postprandial profile. Glucagon was infused at a rate of 1.25 ng. kg(-1). min(-1), beginning either at time zero to prevent a fall in glucagon (nonsuppressed study day) or at 2 h to create a transient fall in glucagon (suppressed study day). During the "diabetic" insulin profile, lack of glucagon suppression resulted in a marked increase (P < 0.002) in both the peak glucose concentration (11.9 +/- 0.4 vs. 8.9 +/- 0.4 mmol/l) and the area above basal of glucose (927 +/- 77 vs. 546 +/- 112 mmol. l(-1). 6 h) because of impaired (P < 0.001) suppression of glucose production. In contrast, during the "nondiabetic" insulin profile, lack of suppression of glucagon resulted in only a slight increase (P < 0.02) in the peak glucose concentration (9.1 +/- 0.4 vs. 8.4 +/- 0.3 mmol/l) and the area above basal of glucose (654 +/- 146 vs. 488 +/- 118 mmol. l(-1). 6 h). Of interest, when glucagon was suppressed, glucose concentrations differed only minimally during the nondiabetic and diabetic insulin profiles. These data indicate that lack of suppression of glucagon can cause substantial hyperglycemia when insulin availability is limited, therefore implying that inhibitors of glucagon secretion and/or glucagon action are likely to be useful therapeutic agents in such individuals.
Collapse
Affiliation(s)
- P Shah
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
46
|
Nyholm B, Orskov L, Hove KY, Gravholt CH, Møller N, Alberti KG, Moyses C, Kolterman O, Schmitz O. The amylin analog pramlintide improves glycemic control and reduces postprandial glucagon concentrations in patients with type 1 diabetes mellitus. Metabolism 1999; 48:935-41. [PMID: 10421239 DOI: 10.1016/s0026-0495(99)90232-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To explore further the effects of the human amylin analog pramlintide on overall glycemic control and postprandial responses of circulating glucose, glucagon, and metabolic intermediates in type 1 diabetes mellitus, 14 male type 1 diabetic patients were examined in a double-blind, placebo-controlled, crossover study. Pramlintide (30 microg four times daily) or placebo were administered for 4 weeks, after which a daytime blood profile (8:30 AM to 4:30 PM) was performed. Serum fructosamine was decreased after pramlintide (314+/-14 micromol/L) compared with placebo (350+/-14 micromol/L, P = .008). On the profile day, the mean plasma glucose (8.3+/-0.7 v 10.2+/-0.8 mmol/L, P = .04) and postprandial concentrations (incremental areas under the curve [AUCs] from 0 to 120 minutes) were significantly decreased during pramlintide administration (P < .01 for both) despite comparable circulating insulin levels (359+/-41 v 340+/-35 pmol/L). Mean blood glycerol values were reduced (0.029+/-0.004 v 0.040+/-0.004 mmol/L, P = .01) and blood alanine levels were elevated (0.274+/-0.012 v 0.246+/-0.008 mmol/L, P = .03) after pramlintide versus placebo. Blood lactate concentrations did not differ during the two regimens. During pramlintide administration, the AUC (0 to 120 minutes) for plasma glucagon after breakfast was diminished (P = .02), and a similar trend was observed following lunch. In addition, peak plasma glucagon concentrations 60 minutes after breakfast (45.8+/-7.3 v 72.4+/-8.0 ng/L, P = .005) and lunch (47.6+/-9.0 v 60.9+/-8.2 ng/L, P = .02) were both decreased following pramlintide. These data indicate that pramlintide (30 microg four times daily) is capable of improving metabolic control in type 1 diabetics. This may relate, in part, to suppression of glucagon concentrations. Longer-term studies are required to ascertain whether these findings are sustained over time.
Collapse
Affiliation(s)
- B Nyholm
- Department of Medicine M (Endocrinology and Diabetes), Kommunehospitalet, University Hospital of Aarhus, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cowett RM, Rapoza RE, Gelardi NL. Insulin counterregulatory hormones are ineffective in neonatal hyperinsulinemic hypoglycemia. Metabolism 1999; 48:568-74. [PMID: 10337855 DOI: 10.1016/s0026-0495(99)90052-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insulin counterregulatory hormones play a major role in the maintenance of glucose homeostasis. To evaluate the hypothesis that the reported imprecise control of glucose production by insulin is mirrored by a corresponding lack of response to the various insulin counterregulatory hormones, 30 spontaneously delivered mixed-breed term lambs weighing 4.9 +/- 0.5 kg (mean +/- SD) were studied at 5.0 +/- 0.7 days after birth following administration of 100 microCi D-[6-(3)H2]glucose in 0.9% NaCl by the primed-constant infusion technique to measure glucose kinetics. Infusion of 2.0 mU kg(-1) x min(-1) insulin produced hyperinsulinemic hypoglycemia and was combined with 1.0 mg x kg(-1) x min(-1) somatostatin (SRIF) to block insulin, glucagon, and growth hormone release. Infusion of 2 ng x mg(-1) x min(-1) glucagon or 10 microg x kg(-1) x h(-1) growth hormone with SRIF and insulin isolated the glucagon or growth hormone effect, respectively. The addition of metyrapone blocked cortisol release. Controls received only the isotope. In toto, the data can be interpreted to suggest that insulin has a greater effect on glucose uptake than on glucose production, and that neither glucagon, growth hormone, nor cortisol appreciably influenced the endogenous glucose production rate (Rp) during hyperinsulinemic hypoglycemia. The imprecise effect of these insulin counterregulatory hormones on neonatal glucose production mirrors the previously documented imprecise control by insulin.
Collapse
Affiliation(s)
- R M Cowett
- Department of Pediatrics, Brown University School of Medicine, Providence, RI, USA
| | | | | |
Collapse
|
48
|
Provonsha S, Wade C, Sherma A. Syndrome-AC: non-insulin-dependent diabetes mellitus and the anabolic/catabolic paradox. Med Hypotheses 1998; 51:429-38. [PMID: 9848473 DOI: 10.1016/s0306-9877(98)90040-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
When an organism is starving, infected or injured, the body initiates a catabolic response that, among other things, creates insulin resistance. While many possible mechanisms and numerous loci of insulin resistance have been studied, a theme of inappropriately activated components of catabolic chemistry emerges. Patients with non-insulin-dependent diabetes mellitus (NIDDM) have elevated blood levels of glucagon, cortisol, fatty acids, protein, glucose and possibly acute phase reactants. Recent studies hint that this can occur with meals, resulting in a multilevel, multiorgan interference with glucose handling. This implies NIDDM is the result of the dietary activation of catabolic chemistry simultaneously with that of anabolic chemistry. We review the possibility that this is caused by the consumption of body tissue, the substance ordinarily endogenously released in starvation or injury. Activating the catabolic pathways when eating creates a hormonal paradox, forcing exaggerated insulin levels to compensate. Five case studies are reviewed.
Collapse
Affiliation(s)
- S Provonsha
- Department of Preventive Medicine, Kaiser Permanente, Riverside, California 92503, USA
| | | | | |
Collapse
|
49
|
Andrade AS, Vilela L, Tunes H. Purification of bovine pancreatic glucagon as a by-product of insulin production. Braz J Med Biol Res 1997; 30:1421-6. [PMID: 9686160 DOI: 10.1590/s0100-879x1997001200006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A process for purifying bovine pancreatic glucagon as a by-product of insulin production is described. The glucagon-containing supernatant from the alkaline crystallization of insulin was precipitated using ammonium sulfate and isoelectric precipitation. The isoelectric precipitate containing glucagon was then purified by ion-exchange chromatography on Q-Sepharose FF, gel filtration on Sephadex G-25 and ion-exchange chromatography on S-Sepharose FF. A pilot scale test was performed with a recovery of 87.6% and a purification factor of 8.78 for the first chromatographic step, a recovery of 75.1% and a purification factor of 3.90 for the second, and a recovery of 76.2% and a purification factor of 2.36 for the last one. The overall yield was 50%, a purification factor of 80.8 was obtained and the fraction containing active glucagon (suitable for pharmaceutical preparations) was 84% pure as analyzed by HPLC.
Collapse
Affiliation(s)
- A S Andrade
- Departamento de Bioquímica, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | | |
Collapse
|
50
|
Holste LC, Connolly CC, Moore MC, Neal DW, Cherrington AD. Physiological changes in circulating glucagon alter hepatic glucose disposition during portal glucose delivery. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:E488-96. [PMID: 9316437 DOI: 10.1152/ajpendo.1997.273.3.e488] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study examined whether physiological changes in glucagon alter net hepatic glucose uptake (NHGU) or glycogen synthesis under conditions of hyperglycemia, hyperinsulinemia, and portal vein glucose concentrations exceeding those in the arterial circulation. Somatostatin was infused into 42-h-fasted dogs, insulin and glucagon were replaced intraportally at basal rates, and peripheral infusion of glucose maintained the hepatic glucose load twofold basal for 90 min (period 1). In period 2 (240 min) the insulin infusion was increased fourfold, glucose was infused intraportally, the hepatic glucose load was twofold basal, and glucagon was infused to create levels 150% basal (HiGGN, n = 6) or 40% basal (LoGGN, n = 6). NHGU rates (mg.kg-1.min-1) were low during period 1 (-0.9 +/- 0.7 in LoGGN and -0.2 +/- 0.4 in HiGGN, not significant) but increased during period 2 (-4.1 +/- 0.6 in LoGGN and -1.9 +/- 0.2 in HiGGN, P < 0.05). Endogenous glucose production (Endo Ra) declined during period 2 in LoGGN (P < 0.01 vs. basal) but did not change in HiGGN. Tracer-determined hepatic glucose uptake did not differ between groups. The poststudy increment in liver glycogen synthase I (12.5 +/- 3 vs. 6.5 +/- 2% of total) was greater in LoGGN (P < 0.05), as was net glycogen synthesis (27 +/- 8 vs. 13 +/- 3 mg/g liver, P = 0.06). An elevation in glucagon reduced NHGU (because of failure to suppress Endo Ra) and glycogen synthase activation and tended to reduce glycogen deposition.
Collapse
Affiliation(s)
- L C Holste
- Department of Molecular Physiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|