1
|
Araujo-Castro M, Biagetti B, Menéndez Torre E, Novoa-Testa I, Cordido F, Pascual Corrales E, Rodríguez Berrocal V, Guerrero-Pérez F, Vicente A, Percovich JC, García Centeno R, González L, Ollero García MD, Irigaray Echarri A, Moure Rodríguez MD, Novo-Rodríguez C, Calatayud M, Villar R, Bernabéu I, Alvarez-Escola C, Benítez Valderrama P, Tenorio-Jimenéz C, Abellán Galiana P, Venegas Moreno E, González Molero I, Iglesias P, Blanco C, Vidal-Ostos De Lara F, de Miguel P, López Mezquita E, Hanzu F, Aldecoa I, Lamas C, Aznar S, Aulinas A, Calabrese A, Gracia P, Recio-Córdova JM, Aviles M, Asensio-Wandosel D, Sampedro M, Ruz-Caracuel I, Camara R, Paja M, Fajardo-Montañana C, Marazuela M, Puig-Domingo M. Differences Between GH- and PRL-Cosecreting and GH-Secreting Pituitary Adenomas: a Series of 604 Cases. J Clin Endocrinol Metab 2024; 109:e2178-e2187. [PMID: 38436926 DOI: 10.1210/clinem/dgae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
CONTEXT Few data exist about the clinical course of acromegaly, surgical and medical outcomes in patients with GH- and prolactin cosecreting pituitary adenomas (GH&PRL-PAs). Nevertheless, some series described a more aggressive clinic-radiological behavior than in growth hormone-secreting pituitary adenomas (GH-PAs). OBJECTIVE This work aims to evaluate differences in clinical presentation and in surgical outcomes between GH-PAs and GH&PRL-PAs. METHODS A multicenter retrospective study was conducted of 604 patients with acromegaly who underwent pituitary surgery. Patients were classified into 2 groups according to serum PRL levels at diagnosis and immunohistochemistry (IHC) for PRL: a) GH&PRL-PAs when PRL levels were above the upper limit of normal (ULN) and IHC for GH and PRL was positive or PRL levels were greater than 100 ng/dL and PRL IHC was not available (n = 130) and b) GH-PA patients who did not meet the previously mentioned criteria (n = 474). RESULTS GH&PRL-PAs represented 21.5% (n = 130) of patients with acromegaly. The mean age at diagnosis was lower in GH&PRL-PAs than in GH-PAs (P < .001). GH&PRL-PAs were more frequently macroadenomas (90.6% vs 77.4%; P = .001) and tended to be more invasive (33.6% vs 24.7%; P = .057) than GH-PAs. Furthermore, they had presurgical hypopituitarism more frequently (odds ratio 2.8; 95% CI, 1.83-4.38). Insulin-like growth factor ULN levels at diagnosis were lower in patients with GH&PRL-PAs (median 2.4 [interquartile range (IQR) 1.73-3.29] vs 2.7 [IQR 1.91-3.67]; P = .023). There were no differences in the immediate (41.1% vs 43.3%; P = .659) or long-term postsurgical acromegaly biochemical cure rate (53.5% vs 53.1%; P = .936) between groups. However, there was a higher incidence of permanent arginine-vasopressin deficiency (AVP-D) (7.3% vs 2.4%; P = .011) in GH&PRL-PA patients. CONCLUSION GH&PRL-PAs are responsible for 20% of acromegaly cases. These tumors are more invasive, larger, and cause hypopituitarism more frequently than GH-PAs and are diagnosed at an earlier age. The biochemical cure rate is similar between both groups, but patients with GH&PRL-PAs tend to develop permanent postsurgical AVP-D more frequently.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Endocrinology & Nutrition Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Betina Biagetti
- Endocrinology & Nutrition Department, Hospital Universitario Vall de Hebrón, 08035 Barcelona, Spain
| | - Edelmiro Menéndez Torre
- Endocrinology & Nutrition Department, Hospital Universitario Central de Asturias, 33011 Asturias, Spain
| | - Iría Novoa-Testa
- Endocrinology and Nutrition Department, Hospital Universitario de Coruña, 15006 Coruña, Spain
| | - Fernando Cordido
- Endocrinology and Nutrition Department, Hospital Universitario de Coruña, 15006 Coruña, Spain
| | - Eider Pascual Corrales
- Endocrinology & Nutrition Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | | | - Fernando Guerrero-Pérez
- Endocrinology and Nutrition Department, Hospital Universitario de Bellvitge, 08907 Cataluña L'Hospitalet de Llobregat, Spain
| | - Almudena Vicente
- Endocrinology and Nutrition Department, Hospital Universitario de Toledo, 45007 Toledo, Spain
| | - Juan Carlos Percovich
- Endocrinology and Nutrition Department, Hospital Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Rogelio García Centeno
- Endocrinology and Nutrition Department, Hospital Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Laura González
- Endocrinology and Nutrition Department, Hospital Universitario Gregorio Marañón, 28007 Madrid, Spain
| | | | - Ana Irigaray Echarri
- Endocrinology and Nutrition Department, Hospital Universitario Navarra, 31008 Pamplona, Spain
| | | | - Cristina Novo-Rodríguez
- Endocrinology and Nutrition Department, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - María Calatayud
- Endocrinology and Nutrition Department, Hospital Universitario Doce de Octubre, 28041 Madrid, Spain
| | - Rocío Villar
- Endocrinology and Nutrition Department, Hospital Universitario de Santiago de Compostela, 15706 Galicia, Spain
| | - Ignacio Bernabéu
- Endocrinology and Nutrition Department, Hospital Universitario de Santiago de Compostela, 15706 Galicia, Spain
| | | | | | - Carmen Tenorio-Jimenéz
- Endocrinology and Nutrition Department, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Pablo Abellán Galiana
- Endocrinology and Nutrition Department, Hospital Universitario de Castellón, 12004 Valencia, Spain
| | - Eva Venegas Moreno
- Endocrinology and Nutrition Department, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | | | - Pedro Iglesias
- Endocrinology & Nutrition Department, Hospital Universitario Puerta de Hierro, 28222 Madrid, Spain
| | - Concepción Blanco
- Endocrinology & Nutrition Department, Hospital Universitario Príncipe de Asturias, 28805 Madrid, Spain
| | | | - Paz de Miguel
- Endocrinology & Nutrition Department, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Elena López Mezquita
- Endocrinology & Nutrition Department, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | - Felicia Hanzu
- Endocrinology and Nutrition Department, Hospital Clinic de Barcelona, 08036 Barcelona, Spain
| | - Iban Aldecoa
- Pathology Department, Biomedical Diagnostic Center, Hospital Clinic-University of Barcelona, 08036 Barcelona, Spain
- Neurological Tissue Bank of the Biobank, FCRB-IDIBAPS-Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Cristina Lamas
- Endocrinology and Nutrition Department, Hospital Universitario de Albacete, 02008 Albacete, Spain
| | - Silvia Aznar
- Endocrinology and Nutrition Department, Hospital Universitario de Albacete, 02008 Albacete, Spain
| | - Anna Aulinas
- IR-SANT PAU, CIBERER U747 (ISCIII), Endocrinology and Nutrition Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Anna Calabrese
- Internal Medicine Department, Italia and IR-SANTPAU, Hospital San Luigi Gonzaga, 10043 Turín, Italy
| | - Paola Gracia
- Endocrinology and Nutrition Department, Hospital Royo Villanova, 50015 Zaragoza, Spain
| | - José María Recio-Córdova
- Endocrinology and Nutrition Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Mariola Aviles
- Endocrinology & Nutrition Department, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | - Diego Asensio-Wandosel
- Endocrinology and Nutrition Department, Hospital Universitario Germans Trias i Pujol, 08916 Barcelona, Spain
| | - Miguel Sampedro
- Endocrinology and Nutrition Department, Hospital Universitario La Princesa, 28006 Madrid, Spain
| | - Ignacio Ruz-Caracuel
- Anatomopathological Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Rosa Camara
- Endocrinology and Nutrition Department, Hospital La Fe, 46026 Valencia, Spain
| | - Miguel Paja
- Endocrinology & Nutrition Department, OSI Bilbao-Basurto, Hospital Universitario de Basurto, University of the Basque Country UPV/EHU, 48013 Bilbao, Spain
| | | | - Mónica Marazuela
- Endocrinology and Nutrition Department, Hospital Universitario La Princesa, 28006 Madrid, Spain
| | - Manel Puig-Domingo
- Endocrinology and Nutrition Department, Hospital Universitario Germans Trias i Pujol, 08916 Barcelona, Spain
| |
Collapse
|
2
|
Silva C, Rebelo M, Chendo I. Managing antipsychotic-related sexual dysfunction in patients with schizophrenia. Expert Rev Neurother 2023; 23:1147-1155. [PMID: 37941377 DOI: 10.1080/14737175.2023.2281399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Schizophrenia is a psychotic disorder and one of the most severe and impactful mental illnesses. Sexual dysfunction is highly prevalent in patients with schizophrenia but remains underdiagnosed and undertreated. Sexual dysfunction is frequently attributed to antipsychotics which may reduce medication adherence, but negative symptoms can also reduce sexual drive. AREAS COVERED This review provides an overview of the current knowledge about sexual dysfunction in patients with schizophrenia. The authors first review the literature concerning the mechanisms of sexual dysfunction and explore the impact of antipsychotics on sexual function. Finally, they present the available non-pharmacological and pharmacological treatment strategies for sexual dysfunction in patients with schizophrenia. EXPERT OPINION Sexual dysfunction in patients with schizophrenia is still underrated by clinicians despite having a negative impact on the quality of life and therapeutic adherence. Antipsychotic treatment is still perceived as a major cause of sexual impairment. Psychiatrists must be aware of this condition and actively question the patients. A comprehensive approach, addressing pharmacological and non-pharmacological aspects, is fundamental for managing sexual dysfunction in schizophrenia. Pharmacological strategies include (1) Serum-level adjustment of the antipsychotic dose, if possible (2) switching to a well-tolerable antipsychotic (aripiprazole, brexpiprazole) and (3) adding a coadjuvant drug (phosphodiesterase-5 inhibitors).
Collapse
Affiliation(s)
- Carlos Silva
- Psychiatry Department, Department of Neurosciences, Hospital de Santa Maria, Lisbon, Portugal
- Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Rebelo
- Psychiatry Department, Department of Neurosciences, Hospital de Santa Maria, Lisbon, Portugal
| | - Inês Chendo
- Psychiatry Department, Department of Neurosciences, Hospital de Santa Maria, Lisbon, Portugal
- Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Tng EL, Teo AED, Aung AT. Macroprolactinoma with secondary resistance to dopamine agonists: a case report and review of the literature. J Med Case Rep 2023; 17:96. [PMID: 36927797 PMCID: PMC10021939 DOI: 10.1186/s13256-023-03820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Resistance to dopamine agonists is not uncommonly seen in prolactinomas. However, development of resistance to dopamine agonists after an initial period of robust treatment response is rare, and only 39 cases have been reported in the past four decades. We describe a Chinese man with this rare condition and explored the postulated mechanisms that may explain this phenomenon. We compiled similar cases that were previously reported and compared their etiology, progress, and response to treatment. On the basis of these cases, we derived a list of differential diagnoses to consider in patients with secondary resistance to dopamine agonists. CASE PRESENTATION A 63-year-old Chinese man presented with blurred vision and was subsequently diagnosed with a macroprolactinoma. He had initial response to cabergoline but developed secondary resistance to it after 5 years. The prolactinoma continued to grow, and his serum prolactin remained markedly elevated despite adherence to escalating dosages of cabergoline up to 6 mg/week. The patient finally underwent transsphenoidal surgery and was found to have a sparsely granulated lactotroph tumor with Ki-67 index of 5%. Postoperatively, there was improvement in his serum prolactin level, although he still required treatment with cabergoline at 6 mg/week. CONCLUSIONS Surgery can facilitate disease control in patients with prolactinomas that develop secondary resistance to dopamine agonists. Malignant prolactinoma is an important differential diagnosis in this group of patients, especially when serum prolactin remains markedly elevated despite resolution or stability of the primary pituitary lesion, suggesting a metastatic source of prolactin secretion.
Collapse
Affiliation(s)
- Eng-Loon Tng
- Department of Medicine, Ng Teng Fong General Hospital, 1 Jurong East Street 21, Tower A Level 8, Singapore, 609606, Singapore.
| | - Ada Ee Der Teo
- Department of Medicine, Division of Endocrinology, National University Health System, 1E Kent Ridge Road, NUHS Tower Block Level 10, Singapore, 119228, Singapore
| | - Aye Thida Aung
- Ministry of Health Holdings, 1 Maritime Square, #11-25 HarbourFront Centre, Singapore, 099253, Singapore
| |
Collapse
|
4
|
Garay Guerrero J, Ishida E, Shibusawa N, Lei X, Yamada S, Horiguchi K, Yamada M. Role of Thyrotropin-Releasing Hormone in Regulating Fibroblast Growth Factor 21 in Mouse Pancreatic β Cells. Thyroid 2023; 33:251-260. [PMID: 36333931 DOI: 10.1089/thy.2022.0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background: Thyrotropin-releasing hormone (TRH) is primarily produced in the hypothalamus and regulates the thyrotropin secretion from the pituitary. TRH is distributed ubiquitously in the extrahypothalamic region, especially in pancreatic islets, while its physiological role remains nebulous. We have previously established a TRH-deficient mouse model, and showed impaired glucose tolerance and downregulated expression of fibroblast growth factor 21 (FGF21) in islets. Recent studies have demonstrated the physiological roles of pancreatic FGF21. Therefore, in this study, we elucidate the direct functions of TRH in pancreatic islets via the regulation of FGF21. Methods: To explore the functions of TRH in pancreatic islets, a microarray analysis using isolated islets from TRH-knockout mice was conducted. The regulatory mechanism of TRH in pancreatic FGF21 was investigated using islet cell lines; reverse transcription-quantitative polymerase chain reaction and Western blotting were used to determine the mRNA and protein expression levels of FGF21 in pancreatic islets and islet cell lines. Induction of FGF21 expression by TRH treatment was examined in vitro. To identify the transcription factors binding to the region responsible for TRH-induced stimulation of the FGF21 promoter, electromobility shift assays were conducted. Results: Among the detected and considerably changed genes in microarray, FGF21 was the most consistently downregulated in TRH-deficient mice islets. FGF21 was strongly co-expressed with insulin in mouse islets, and TRH stimulated endogenous Fgf21 mRNA expression in the islet cell line βHC9. The E-box site in the FGF21 promoter was responsible for TRH-induced stimulation via the extracellular signal-regulated kinase (ERK)1/2 signaling pathway. The transcription factor upstream stimulatory factor 1 (USF1) could specifically bind to the E-box site. Overexpression of USF1 increased FGF21 promoter activity. Conclusion: FGF21 was transcriptionally upregulated by TRH through the ERK1/2 and USF1 pathways in pancreatic β cells.
Collapse
Affiliation(s)
- Jennifer Garay Guerrero
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Emi Ishida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nobuyuki Shibusawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Xiao Lei
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sayaka Yamada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuhiko Horiguchi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masanobu Yamada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
5
|
Borsò M, Agretti P, Zucchi R, Saba A. Mass spectrometry in the diagnosis of thyroid disease and in the study of thyroid hormone metabolism. MASS SPECTROMETRY REVIEWS 2022; 41:443-468. [PMID: 33238065 DOI: 10.1002/mas.21673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
The importance of thyroid hormones in the regulation of development, growth, and energy metabolism is well known. Over the last decades, mass spectrometry has been extensively used to investigate thyroid hormone metabolism and to discover and characterize new molecules involved in thyroid hormones production, such as thyrotropin-releasing hormone. In the earlier period, the quantification methods, usually based on gas chromatography-mass spectrometry, were complicated and time consuming. They were mainly focused on basic research, and were not suitable for clinical diagnostics on a routine basis. The development of the modern mass spectrometers, mainly coupled to liquid chromatography, enabled simpler sample preparation procedures, and the accurate quantification of thyroid hormones, of their precursors, and of their metabolites in biological fluids, tissues, and cells became feasible. Nowadays, molecules of physiological and pathological interest can be assayed also for diagnostic purposes on a routine basis, and mass spectrometry is slowly entering the clinical laboratory. This review takes stock of the advancements in the field of thyroid metabolism that were carried out with mass spectrometry, with special focus on the use of this technique for the quantification of molecules involved in thyroid diseases.
Collapse
Affiliation(s)
- Marco Borsò
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Patrizia Agretti
- Department of Laboratory Medicine, Laboratory of Chemistry and Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Riccardo Zucchi
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Saba
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Department of Laboratory Medicine, Laboratory of Clinical Pathology, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Jannini TB, Sansone A, Rossi R, Di Lorenzo G, Toscano M, Siracusano A, Jannini EA. Pharmacological strategies for sexual recovery in men undergoing antipsychotic treatment. Expert Opin Pharmacother 2022; 23:1065-1080. [PMID: 35470768 DOI: 10.1080/14656566.2022.2071124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION : First- and second-generation antipsychotics are highly accountable for causing a plethora of medical side effects, ranging from metabolic imbalances to sexual dysfunction (SD), that frequently undermine patient-doctor relationships. Nevertheless, to date antipsychotics are one of the best treatment options for dealing with numerous either acute or chronic conditions like agitation, suicidality, depression, dementia, and of course psychosis. For these reasons, clinicians need to handle them wisely to preserve patients' sexual health, avoid poor therapeutic adherence and prevent high rates of therapy drop-out. AREAS COVERED : This article reviews the literature on pharmacologic approaches for management strategies in men who are administered with antipsychotics and developed SD. The etiology of antipsychotic-induced SD is also discussed. EXPERT OPINION : Clinicians must consider sexual life as a major health domain. To do so, a first step would be to measure and monitor sexual function by means of psychometric tools. Secondly, primary prevention should be conducted when choosing antipsychotics, i.e., picking sex-sparing compounds like aripiprazole or brexpiprazole. Thirdly, if sexolytic compounds cannot be dismissed, such as first-generation antipsychotics, risperidone, paliperidone, or amisulpride, then aripiprazole 5-20 mg/day adjunctive therapy has proven to be most effective in normalizing prolactin levels and consequently treating antipsychotic-induced SD.
Collapse
Affiliation(s)
- Tommaso B Jannini
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Rodolfo Rossi
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giorgio Di Lorenzo
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS-Fondazione Santa Lucia, Rome, Italy
| | - Massimiliano Toscano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Department of Neurology, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Alberto Siracusano
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emmanuele A Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Abassi W, Ouerghi N, Ghouili H, Haouami S, Bouassida A. Greater effects of high- compared with moderate-intensity interval training on thyroid hormones in overweight/obese adolescent girls. Horm Mol Biol Clin Investig 2020; 41:hmbci-2020-0031. [PMID: 33581014 DOI: 10.1515/hmbci-2020-0031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To investigate the effects of 12-week high-intensity- (HIIT) vs. moderate-intensity-interval training (MIIT) on thyroid stimulating hormone (TSH) and thyroxine (T4) and insulin-resistance in overweight/obese adolescent girls. METHODS Twenty four adolescent girls (age 16.5±1.36 yrs) were randomly allocated into three groups: (1) HIIT (2 blocks per session of 6-8 bouts of 30 s runs at 100-110% maximal aerobic speed (MAS), with 30 s active recovery between bouts at 50% MAS; n=8), (2) MIIT (2 blocks per session of 6-8 bouts of 30 s runs at 70-80% MAS, with 30 s active recovery between bouts at 50% MAS; n=8) and (3) control group (no exercise, n=8). Each training groups engaged in three sessions per week during three months. Anthropometric parameters, aerobic capacity, homeostasis model assessment index for insulin resistance (HOMA-IR) as well as plasma TSH and T4 levels were assessed in all subjects before- and after-training. RESULTS Following both training programs, body mass, body mass index Z-score, waist circumference and body fat decreased, while aerobic capacity increased. However, TSH and T4 concentrations decreased only after the HIIT (-30.47%, p<0.05, ES=1.42 and -12.86%, p<0.05, ES=1.18; respectively). The HOMA-IR decreased in both training groups (-26.25%, p<0.05, ES=1.87 for MIIT and -21.72%, p<0.05, ES=2.14 for HIIT). CONCLUSION Twelve weeks of HIIT was effective in reducing circulating TSH and T4 levels, unlike MIIT, in overweight/obese adolescent girls. These findings indicated that the stimulation of pituitary-thyroid function is more sensitive to training intensity than training duration. Further studies are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Wissal Abassi
- Research Unit, Sportive Performance and Physical Rehabilitation, High Institute of Sports and Physical Education of Kef, University of Jendouba, Kef, Tunisia.,Higher Institute of Sport and Physical Education of Ksar Said, University of "La Manouba", Manouba, Tunisia
| | - Nejmeddine Ouerghi
- Research Unit, Sportive Performance and Physical Rehabilitation, High Institute of Sports and Physical Education of Kef, University of Jendouba, Kef, Tunisia.,University of Tunis El Manar, Faculty of Medicine of Tunis, Rabta Hospital, Tunis, Tunisia
| | - Hatem Ghouili
- Research Unit, Sportive Performance and Physical Rehabilitation, High Institute of Sports and Physical Education of Kef, University of Jendouba, Kef, Tunisia
| | - Salma Haouami
- Research Unit, Sportive Performance and Physical Rehabilitation, High Institute of Sports and Physical Education of Kef, University of Jendouba, Kef, Tunisia
| | - Anissa Bouassida
- Research Unit, Sportive Performance and Physical Rehabilitation, High Institute of Sports and Physical Education of Kef, University of Jendouba, Kef, Tunisia
| |
Collapse
|
8
|
TRH in the nucleus accumbens acts downstream to α-MSH to decrease food intake in rats. Neurosci Lett 2020; 739:135403. [PMID: 32980456 DOI: 10.1016/j.neulet.2020.135403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
Abstract
Feeding-regulatory peptides such as thyrotropin-releasing hormone (TRH), α-melanocyte-stimulating hormone (α-MSH) and their receptors are expressed in brain regions involved in the homeostatic and hedonic control of food intake, such as the hypothalamus and the mesolimbic system, respectively. The nucleus accumbens (NAc) is part of the latter, a brain circuit involved in processing reward stimuli and the appetitive motivation of feeding. When TRH or α-MSH are administered in the NAc, both decrease food intake, through activating their respective receptors, TRH-R1 and MC4R. The actions of α-MSH as a homeostatic feeding-regulator involves the increase of hypothalamic TRH expression, thus, we aimed to identify whether TRH signaling in the NAc was also participating in α-MSH-induced reduction of food intake. α-MSH administration in the NAc of 48 h fasted rats reduced their food intake during the 2-h period of refeeding, increased accumbal TRH mRNA expression and decreased that of MC4R. Such downregulated MC4R mRNA levels implied a compensatory decrease of α-MSH actions in the NAc after the previous pathway stimulation. The co-administration of α-MSH along with an antisense oligonucleotide directed against pro-TRH mRNA in the NAc impaired the α-MSH-induced feeding reduction, supporting that the accumbal TRHergic pathway is downstream of α-MSH actions to inhibit feeding. Our results suggested that TRH in the NAc mediates some effects of α-MSH on inhibition of food intake; this supports the role of TRH not only as a homeostatic regulator but also as modulating the motivational aspects of feeding.
Collapse
|
9
|
Noy EB, Watanabe Y, Grommen SVH, De Groef B. Transcriptional regulation of the chicken CRHR2 gene by pituitary transcription factors. Gen Comp Endocrinol 2019; 284:113263. [PMID: 31454497 DOI: 10.1016/j.ygcen.2019.113263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022]
Abstract
Corticotropin-releasing hormone (CRH) is known to act as a potent thyrotropin-releasing factor in non-mammalian species such as chicken and bullfrog. This interaction is mediated by type 2 CRH receptors (CRHR2) expressed by the thyrotropes in the pituitary gland. However, the response elements (REs) and their corresponding transcription factors (TFs) that control CRHR2 expression in thyrotropes are not known. Since thyrotrope-specific expression of the β-subunit of thyrotropin is synergistically stimulated by the co-expression of POU1F1 and GATA2, we hypothesised that in non-mammalian vertebrates like chicken, CRHR2 expression is controlled by the same TFs and that their REs are present in the chicken CRHR2 gene promoter. In situ hybridisation and immunohistochemistry suggest that chicken thyrotropes, like those of mammals, express the mRNAs for the TFs GATA2, POU1F1 and PITX1, but not NR5A1. Using luciferase reporter assays, we show that both GATA2 and PITX1 can activate the promoter of CRHR2, but PITX1 requires a functional GATA2 RE to be present. POU1F1 alone did not affect promoter activity, but synergistically increased the effect of GATA2. Promoter deletion analysis and mutagenesis showed that essential GATA2 and PITX1 REs are located between 116 and 198 bp upstream of the start codon. These REs are highly conserved in non-mammalian species. Additionally, NR5A1 (steroidogenic factor 1) suppressed both GATA2- and PITX1-induced promoter activity and may therefore play a role in restricting CRHR2 expression in gonadotropes. We conclude that the expression of CRHR2 in chicken thyrotropes is stimulated by GATA2 with interactions with POU1F1 and PITX1, in the absence of NR5A1.
Collapse
Affiliation(s)
- Ellyse B Noy
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Yugo Watanabe
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Sylvia V H Grommen
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Bert De Groef
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia.
| |
Collapse
|
10
|
Thyroid Disorders in Homozygous β-Thalassemia: Current Knowledge, Emerging Issues and Open Problems. Mediterr J Hematol Infect Dis 2019; 11:e2019029. [PMID: 31205633 PMCID: PMC6548211 DOI: 10.4084/mjhid.2019.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022] Open
Abstract
Changes in thyroid function and thyroid function tests occur in patients with β-thalassemia major (TM). The frequency of hypothyroidism in TM patients ranges from 4% to 29 % in different reports. The wide variation has been attributed to several factors such as patients’ genotype, age, ethnic heterogeneity, treatment protocols of transfusions and chelation, and varying compliance to treatment. Hypothyroidism is the result of primary gland failure or insufficient thyroid gland stimulation by the hypothalamus or pituitary gland. The main laboratory parameters of thyroid function are the assessments of serum thyroid-stimulating hor-mone (TSH) and serum free thyroxine (FT4). It is of primary importance to interpret these measurements within the context of the laboratory-specific normative range for each test. An elevated serum TSH level with a standard range of serum FT4 level is consistent with subclinical hypothyroidism. A low serum FT4 level with a low, or inappropriately normal, serum TSH level is consistent with secondary hypothyroidism. Doctors caring for TM patients most commonly encounter subjects with subclinical primary hypothyroidism in the second decade of life. Several aspects remain to be elucidated as the frequency of thyroid cancer and the possible existence of a relationship between thyroid dysfunction, on one hand, cardiovascular diseases, components of metabolic syndrome (insulin resistance) and hypercoagulable state, on the other hand. Further studies are needed to explain these emerging issues. Following a brief description of thyroid hormone regulation, production and actions, this article is conceptually divided into two parts; the first reports the spectrum of thyroid disease occurring in patients with TM, and the second part focuses on the emerging issues and the open problems in TM patients with thyroid disorders.
Collapse
|
11
|
Jakobsson T, Vedin LL, Parini P. Potential Role of Thyroid Receptor β Agonists in the Treatment of Hyperlipidemia. Drugs 2019; 77:1613-1621. [PMID: 28865063 PMCID: PMC5613055 DOI: 10.1007/s40265-017-0791-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thyroid hormones have important effects on cellular development, growth, and metabolism and are necessary for the healthy function of almost all tissues. Hyperthyroid patients with excess thyroid hormone levels experience tachycardia, fatigue, muscle wasting, and osteoporosis. However, although high thyroid hormone levels have adverse effects, efforts have been made to harness the beneficial effects, such as reduced serum low-density lipoprotein (LDL) cholesterol levels, elevated basal metabolic rate, and weight loss. Thyroid hormones interact with nuclear thyroid hormone receptors (TRs), and cholesterol levels are reduced through TRβ, whereas extrahepatic adverse actions are primarily connected to TRα. Thus, to develop a useful compound for clinical use, efforts have been focusing on developing compounds with isomer-specific functions based on the structure of thyroid hormones, i.e., thyromimetics that are liver and/or TRβ specific. In this short review, we discuss the development of the early thyromimetics that enabled, through modern molecular techniques, the progress towards improved design of TRβ-selective thyromimetics. We also address the early promise shown in human clinical trials and the current status of these drugs and other emerging compounds.
Collapse
Affiliation(s)
- Tomas Jakobsson
- Division of Clinical Chemistry, C1:74, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Lise-Lotte Vedin
- Division of Clinical Chemistry, C1:74, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, C1:74, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden. .,Metabolism Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden. .,Inflammation and Infection Theme, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
12
|
Zada MH, Kubek M, Khan W, Kumar A, Domb A. Dispersible hydrolytically sensitive nanoparticles for nasal delivery of thyrotropin releasing hormone (TRH). J Control Release 2019; 295:278-289. [PMID: 30610951 DOI: 10.1016/j.jconrel.2018.12.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
Nose-to-brain delivery of drugs is affected by nanoparticles (NPs) deposited on the olfactory surface and absorbed directly into the brain. Thyrotropin releasing hormone (TRH), a water soluble drug used for treating suicidal patients, was incorporated into a fast degrading poly(sebacic anhydride) (PSA) NPs. NPs were prepared by a solvent-antisolvent process under strict anhydrous environment to obtain high TRH loading and to avoid premature PSA degradation and TRH release. PSA and TRH were dissolved in a mixture of dichloromethane and ethanol and added dropwise to a dispersion of mannitol particles in heptane as an antisolvent. Mannitol powder was included in the antisolvent, so that formed NPs adhered to the mannitol microparticles for easy isolation and immediate dispersion in water prior to use. The size, surface charge, and morphology of the TRH-PSA NPs were determined using dynamic light scattering (DLS), zeta-potential, and Scanning Electron Microscopy (SEM), respectively. The NPs prepared were uniform and spherical of ~250 nm. Further, the in vitro release profile of TRH from NPs lasted for 12 h with most TRH released within the first hour in water. Concentration dependent cell toxicity studies revealed low toxicity level at low concentrations of the NPs. Surface adsorption of the NPs was also uniform on the cell surface as examined through the odyssey near infrared fluorescence (NIR) images using Indocyanine green (ICG). The NPs are designed to enable direct delivery to the olfactory epithelium using a refillable nasal atomizer that deposits mist onto the olfactory neuro-epithelium.
Collapse
Affiliation(s)
- Moran Haim Zada
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Michael Kubek
- Anatomy & Cell Biology, Indiana University, HITS 0030L, ANAT, Indianapolis, IN, United States
| | - Wahid Khan
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Awanish Kumar
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Abraham Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
13
|
Dussor G, Boyd JT, Akopian AN. Pituitary Hormones and Orofacial Pain. Front Integr Neurosci 2018; 12:42. [PMID: 30356882 PMCID: PMC6190856 DOI: 10.3389/fnint.2018.00042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Clinical and basic research on regulation of pituitary hormones, extra-pituitary release of these hormones, distribution of their receptors and cell signaling pathways recruited upon receptor binding suggests that pituitary hormones can regulate mechanisms of nociceptive transmission in multiple orofacial pain conditions. Moreover, many pituitary hormones either regulate glands that produce gonadal hormones (GnH) or are regulated by GnH. This implies that pituitary hormones may be involved in sex-dependent mechanisms of orofacial pain and could help explain why certain orofacial pain conditions are more prevalent in women than men. Overall, regulation of nociception by pituitary hormones is a relatively new and emerging area of pain research. The aims of this review article are to: (1) present an overview of clinical conditions leading to orofacial pain that are associated with alterations of serum pituitary hormone levels; (2) discuss proposed mechanisms of how pituitary hormones could regulate nociceptive transmission; and (3) outline how pituitary hormones could regulate nociception in a sex-specific fashion. Pituitary hormones are routinely used for hormonal replacement therapy, while both receptor antagonists and agonists are used to manage certain pathological conditions related to hormonal imbalance. Administration of these hormones may also have a place in the treatment of pain, including orofacial pain. Hence, understanding the involvement of pituitary hormones in orofacial pain, especially sex-dependent aspects of such pain, is essential to both optimize current therapies as well as provide novel and sex-specific pharmacology for a diversity of associated conditions.
Collapse
Affiliation(s)
- Gregory Dussor
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Jacob T Boyd
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Armen N Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
14
|
Benvenga S, Klose M, Vita R, Feldt-Rasmussen U. Less known aspects of central hypothyroidism: Part 2 - Congenital etiologies. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2018; 14:5-11. [PMID: 30294553 PMCID: PMC6171088 DOI: 10.1016/j.jcte.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/12/2018] [Accepted: 09/25/2018] [Indexed: 12/27/2022]
Abstract
Central hypothyroidism (CH) occurs approximately in 1:50,000, and therefore is expected to be one thousand times rarer compared with primary hypothyroidism. Despite its rarity in the general population, it is much more common in certain disorders, in which it is frequently associated with other pituitary hormone deficiencies. The aim of this paper is to provide an updated review on the frequency of congenital CH, which is <1:50,000, and on its etiology, disregarding CH caused by other genetic defects, such as mutations of transcription factors involved in pituitary organogenesis or mutations of the genes encoding TRH or TRH receptor.
Collapse
Key Words
- ACTH, adrenocorticotropin hormone
- ALGS, arteriohepatic dysplasia
- CH, central hypothyroidism
- Central hypothyroidism
- Congenital hypothyroidism
- DWS, Dandy-Walker syndrome
- FT3, free triiodothyronine
- FT4, free thyroxine
- GH, growth hormone
- HCG, human chorionic gonadotropin
- Hypopituitarism
- IGDF1, immunogobulin superfamily member 1
- PC1/3, proprotein convertase 1/3
- PWS, Prader-Willi syndrome
- ROHHAD, rapid-onset obesity with hypoventilation, hypothalamic dysfunction and autonomic dysregulation
- SCD, sickle cell anemia
- SMMCIS, solitary median maxillary central incisor syndrome
- SOD, septo-optic dysplasia
- SWS, Sturge-Weber syndrome
- TRH, TSH-releasing hormone
- TSH, thyrotropin
- TT3, total triiodothyronine
- TT4, total thyroxine
- Thyrotropin deficiency
Collapse
Affiliation(s)
- Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy.,Interdepartmental Program of Molecular & Clinical Endocrinology, and Women's Endocrine Health, University Hospital Policlinico G. Martino, Messina, Italy
| | - Marianne Klose
- Department of Medical Endocrinology and Metabolism, Rigshospitalet, National University Hospital, Copenhagen University, Copenhagen, Denmark
| | - Roberto Vita
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology and Metabolism, Rigshospitalet, National University Hospital, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
15
|
Lenz K, Perry-Rose J, Shad M. Delayed galactorrhea after discontinuation of risperidone in a schizophrenia patient. Asian J Psychiatr 2017; 30:75-76. [PMID: 28837941 DOI: 10.1016/j.ajp.2017.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Kyle Lenz
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Judy Perry-Rose
- Department of Psychiatry, Oregon State Hospital, Salem, OR, USA
| | - Mujeeb Shad
- School of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Psychiatry, Oregon State Hospital, Salem, OR, USA.
| |
Collapse
|
16
|
Gnocchi D, Steffensen KR, Bruscalupi G, Parini P. Emerging role of thyroid hormone metabolites. Acta Physiol (Oxf) 2016; 217:184-216. [PMID: 26748938 DOI: 10.1111/apha.12648] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 01/03/2016] [Indexed: 12/15/2022]
Abstract
Thyroid hormones (THs) are essential for the regulation of development and metabolism in key organs. THs produce biological effects both by directly affecting gene expression through the interaction with nuclear receptors (genomic effects) and by activating protein kinases and/or ion channels (short-term effects). Such activations can be either direct, in the case of ion channels, or mediated by membrane or cytoplasmic receptors. Short-term-activated signalling pathways often play a role in the regulation of genomic effects. Several TH intermediate metabolites, which were previously considered without biological activity, have now been associated with a broad range of actions, mostly attributable to short-term effects. Here, we give an overview of the physiological roles and mechanisms of action of THs, focusing on the emerging position that TH metabolites are acquiring as important regulators of physiology and metabolism.
Collapse
Affiliation(s)
- D. Gnocchi
- Division of Clinical Chemistry; Department of Laboratory Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
| | - K. R. Steffensen
- Division of Clinical Chemistry; Department of Laboratory Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
| | - G. Bruscalupi
- Department of Biology and Biotechnology ‘Charles Darwin’; Sapienza University of Rome; Rome Italy
| | - P. Parini
- Division of Clinical Chemistry; Department of Laboratory Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
- Metabolism Unit; Department of Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
| |
Collapse
|
17
|
Ohuchi K, Funato M, Kato Z, Seki J, Kawase C, Tamai Y, Ono Y, Nagahara Y, Noda Y, Kameyama T, Ando S, Tsuruma K, Shimazawa M, Hara H, Kaneko H. Established Stem Cell Model of Spinal Muscular Atrophy Is Applicable in the Evaluation of the Efficacy of Thyrotropin-Releasing Hormone Analog. Stem Cells Transl Med 2015; 5:152-63. [PMID: 26683872 DOI: 10.5966/sctm.2015-0059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/07/2015] [Indexed: 11/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by the degeneration of spinal motor neurons. This disease is mainly caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Currently, no effective treatment is available, and only symptomatic treatment can be provided. Our purpose in the present study was to establish a human SMA-derived induced pluripotent stem cell (SMA-iPSC) disease model and assay a therapeutic drug in preparation for the development of a novel treatment of SMA. We generated iPSCs from the skin fibroblasts of a patient with SMA and confirmed that they were pluripotent and undifferentiated. The neural differentiation of SMA-iPSCs shortened the dendrite and axon length and increased the apoptosis of the spinal motor neurons. In addition, we found activated astrocytes in differentiated SMA-iPSCs. Using this model, we confirmed that treatment with the thyrotropin-releasing hormone (TRH) analog, 5-oxo-l-prolyl-l-histidyl-l-prolinamide, which had marginal effects in clinical trials, increases the SMN protein level. This increase was mediated through the transcriptional activation of the SMN2 gene and inhibition of glycogen synthase kinase-3β activity. Finally, the TRH analog treatment resulted in dendrite and axon development of spinal motor neurons in differentiated SMA-iPSCs. These results suggest that this human in vitro disease model stimulates SMA pathology and reveal the potential efficacy of TRH analog treatment for SMA. Therefore, we can screen novel therapeutic drugs such as TRH for SMA easily and effectively using the human SMA-iPSC model. Significance: Platelet-derived growth factor (PDGF) has recently been reported to produce the greatest increase in survival motor neuron protein levels by inhibiting glycogen synthase kinase (GSK)-3β; however, motor neurons lack PDGF receptors. A human in vitro spinal muscular atrophy-derived induced pluripotent stem cell model was established, which showed that the thyrotropin releasing hormone (TRH) analog promoted transcriptional activation of the SMN2 gene and inhibition of GSK-3β activity, resulting in the increase and stabilization of the SMN protein and axon elongation of spinal motor neurons. These results reveal the potential efficacy of TRH analog treatment for SMA.
Collapse
Affiliation(s)
- Kazuki Ohuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Michinori Funato
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Zenichiro Kato
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Junko Seki
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Chizuru Kawase
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Yuya Tamai
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Yoko Ono
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Nagahara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yasuhiro Noda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tsubasa Kameyama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Shiori Ando
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideo Kaneko
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| |
Collapse
|
18
|
Abstract
Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5'-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets.
Collapse
|
19
|
Crowther CA, Alfirevic Z, Han S, Haslam RR, Cochrane Pregnancy and Childbirth Group. Thyrotropin-releasing hormone added to corticosteroids for women at risk of preterm birth for preventing neonatal respiratory disease. Cochrane Database Syst Rev 2013; 2013:CD000019. [PMID: 24265169 PMCID: PMC7263441 DOI: 10.1002/14651858.cd000019.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Thyrotropin-releasing hormones (TRH) added to prenatal corticosteroids has been suggested as a way to further reduce breathing problems and neonatal lung disease in infants born preterm. OBJECTIVES To assess the effects of giving prenatal TRH in addition to corticosteroids to women at risk of preterm birth for the prevention of neonatal respiratory disease. SEARCH METHODS We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 June 2013) and reference lists of retrieved studies. We also contacted trial authors. SELECTION CRITERIA Randomised controlled trials in women at sufficient risk of preterm birth to warrant the use of prenatal corticosteroids to promote lung maturity. TRH and corticosteroids were compared with corticosteroids, with or without placebo. DATA COLLECTION AND ANALYSIS All assessments of trial eligibility, risk of bias and data extractions were independently carried out by at least two review authors. MAIN RESULTS Over 4600 women were recruited into the 15 trials included in the review, however two trials did not contribute any outcome data to the review. The trials had a moderate risk of bias. Overall, prenatal TRH, in addition to corticosteroids, did not reduce the risk of death prior to hospital discharge (risk ratio (RR) 1.05, 95% confidence interval (CI) 0.86 to 1.27, six trials, 3694 infants), neonatal respiratory distress syndrome (average RR 1.05, 95% CI 0.91 to 1.22, nine trials, 3833 infants), or chronic lung disease (RR 1.01, 95% CI 0.85 to 1.19, five trials, 2511 infants), and did not improve any of the secondary fetal, neonatal or childhood outcomes assessed by intention-to-treat analyses.Indeed, the data showed prenatal TRH to have adverse effects for women and their infants. All side effects reported (nausea, vomiting, light headedness, urgency of micturition, facial flushing) were significantly more likely to occur in women receiving TRH. In the infants, prenatal TRH increased the risk of needing respiratory support (RR 1.16, 95% CI 1.03 to 1.29, three trials, 1969 infants), and of having a low Apgar score at five minutes (RR 1.48, 95% CI 1.14 to 1.92, three trials, 1969 infants). Only three trials provided data on childhood follow-up, and while one trial suggested poorer outcomes for infants who were exposed to prenatal TRH, the other two trials, that assessed infants using an established developmental instrument, showed no clear differences between groups in follow-up outcomes.Sensitivity analyses by trial quality, or subgroups with differing times from entry to birth, or different dose regimens of TRH, did not change these findings. AUTHORS' CONCLUSIONS Prenatal TRH in addition to corticosteroids, given to women at risk of preterm birth, does not improve infant outcomes and can cause maternal side effects.
Collapse
Affiliation(s)
- Caroline A Crowther
- The University of AucklandLiggins InstitutePrivate Bag 9201985 Park RoadAucklandNew Zealand
- The University of AdelaideARCH: Australian Research Centre for Health of Women and Babies, The Robinson Institute, Discipline of Obstetrics and GynaecologyWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
| | - Zarko Alfirevic
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Shanshan Han
- The University of AdelaideARCH: Australian Research Centre for Health of Women and Babies, The Robinson Institute, Discipline of Obstetrics and GynaecologyWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
| | - Ross R Haslam
- The University of AdelaideDepartment of Perinatal MedicineWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
| | | |
Collapse
|
20
|
Fernandez-Rodriguez E, Bernabeu I, Andujar-Plata P, Casanueva FF. Subclinical hypopituitarism. Best Pract Res Clin Endocrinol Metab 2012; 26:461-9. [PMID: 22863388 DOI: 10.1016/j.beem.2011.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The presence of subclinical or minor pituitary hormone deficiencies could be recognised in clinical practice and might represent intermediate situations among normal pituitary hormone secretion and clinical hypopituitarism. However, this entity has not been correctly identified and associated clinical impairment and even more, long-term consequences regarding to morbidity and mortality, strongly related to clinical hypopituitarism, has not been correctly settled. Furthermore, best test or methods for diagnosis and the cut off to define these intermediate situates are also unknown. With this purpose, long-term controlled studies are needed to define correctly this entity, the appropriate methods for diagnosis and the potential benefits of substitutive hormone therapy in detected cases. The present review will focus on the available evidence concerning the prevalence, clinical features and diagnosis of subclinical hypopituitarism.
Collapse
Affiliation(s)
- Eva Fernandez-Rodriguez
- Endocrinology Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Departamento de Medicina, Universidad de Santiago de Compostela, Travesía da Choupana s/n. 15706 Santiago de Compostela, La Coruña, Spain
| | | | | | | |
Collapse
|
21
|
Nakajima Y, Yamada M, Taguchi R, Shibusawa N, Ozawa A, Tomaru T, Hashimoto K, Saito T, Tsuchiya T, Okada S, Satoh T, Mori M. NR4A1 (Nur77) mediates thyrotropin-releasing hormone-induced stimulation of transcription of the thyrotropin β gene: analysis of TRH knockout mice. PLoS One 2012; 7:e40437. [PMID: 22792320 PMCID: PMC3392219 DOI: 10.1371/journal.pone.0040437] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/07/2012] [Indexed: 12/19/2022] Open
Abstract
Thyrotropin-releasing hormone (TRH) is a major stimulator of thyrotropin-stimulating hormone (TSH) synthesis in the anterior pituitary, though precisely how TRH stimulates the TSHβ gene remains unclear. Analysis of TRH-deficient mice differing in thyroid hormone status demonstrated that TRH was critical for the basal activity and responsiveness to thyroid hormone of the TSHβ gene. cDNA microarray and K-means cluster analyses with pituitaries from wild-type mice, TRH-deficient mice and TRH-deficient mice with thyroid hormone replacement revealed that the largest and most consistent decrease in expression in the absence of TRH and on supplementation with thyroid hormone was shown by the TSHβ gene, and the NR4A1 gene belonged to the same cluster as and showed a similar expression profile to the TSHβ gene. Immunohistochemical analysis demonstrated that NR4A1 was expressed not only in ACTH- and FSH- producing cells but also in thyrotrophs and the expression was remarkably reduced in TRH-deficient pituitary. Furthermore, experiments in vitro demonstrated that incubation with TRH in GH4C1 cells increased the endogenous NR4A1 mRNA level by approximately 50-fold within one hour, and this stimulation was inhibited by inhibitors for PKC and ERK1/2. Western blot analysis confirmed that TRH increased NR4A1 expression within 2 h. A series of deletions of the promoter demonstrated that the region between bp -138 and +37 of the TSHβ gene was responsible for the TRH-induced stimulation, and Chip analysis revealed that NR4A1 was recruited to this region. Conversely, knockdown of NR4A1 by siRNA led to a significant reduction in TRH-induced TSHβ promoter activity. Furthermore, TRH stimulated NR4A1 promoter activity through the TRH receptor. These findings demonstrated that 1) TRH is a highly specific regulator of the TSHβ gene, and 2) TRH mediated induction of the TSHβ gene, at least in part by sequential stimulation of the NR4A1-TSHβ genes through a PKC and ERK1/2 pathway.
Collapse
Affiliation(s)
- Yasuyo Nakajima
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kwak WJ, Patel A, Haq F, Siddiqui F, Younis M, Raza S, Gholkar R. Antipsychotic-induced euprolactinemic galactorrhea in an adolescent girl: a case report. Prim Care Companion CNS Disord 2012; 14:11l01239. [PMID: 22690360 DOI: 10.4088/pcc.11l01239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Woo Jin Kwak
- Department of Psychiatry, University of South Alabama, Mobile
| | | | | | | | | | | | | |
Collapse
|
23
|
Mijiddorj T, Kanasaki H, Purwana I, Unurjargal S, Oride A, Miyazaki K. Effects of estradiol and progesterone on prolactin transcriptional activity in somatolactotrophic cells. Endocr J 2012; 59:867-79. [PMID: 22785235 DOI: 10.1507/endocrj.ej12-0093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We examined the effects of sex steroids on prolactin promoter activity in rat somatolactotrophic GH3 cells. Both estradiol (E2) and progesterone (P4) were found to inhibit basal prolactin promoter activity, but to potentiate Thyrotropin-releasing hormone (TRH)-induced prolactin promoter activity. P4 had a greater inhibitory effect on basal prolactin promoter activity than E2, and P4 also potentiated TRH-induced prolactin promoter more potently than E2. Combined treatment with E2 and P4 further increased TRH-induced prolactin promoter activity. E2 and P4 also both reduced basal serum response element (SRE) promoter activity, and increased TRH-induced SRE promoter activity. Combination treatment with E2 and P4 reduced basal activity of SRE promoter and increased TRH-induced SRE activity more potently than E2 or P4 alone. In contrast, basal cAMP response element (CRE) promoter activity was not influenced by either E2 or P4, although TRH-induced CRE promoter was potentiated by each of these steroids, and was further increased by E2 and P4 combination treatment. Both E2 and P4 increased TRH-induced extracellular signal-regulated kinase (ERK) phosphorylation; however, intracellular cAMP levels was not influenced by E2 or P4. TRH-induced CRE promoter was inhibited by mitogen-activated protein kinase/ERK kinase (MEK) inhibitor and was increased by overexpression of MEK kinase (MEKK). This study showed that ERK and SRE transcriptional pathways, but not the cAMP/CRE pathway, may be involved in the suppression of basal prolactin promoter activity, whereas both the ERK/SRE and MAP kinase-mediated CRE pathways appear to be involved in the increased transcriptional efficiency of the prolactin promoter induced by TRH stimulation.
Collapse
Affiliation(s)
- Tselmeg Mijiddorj
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Saito Y, Mekuchi M, Kobayashi N, Kimura M, Aoki Y, Masuda T, Azuma T, Fukami M, Iigo M, Yanagisawa T. Molecular cloning, molecular evolution and gene expression of cDNAs encoding thyrotropin-releasing hormone receptor subtypes in a teleost, the sockeye salmon (Oncorhynchus nerka). Gen Comp Endocrinol 2011; 174:80-8. [PMID: 21827760 DOI: 10.1016/j.ygcen.2011.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 06/22/2011] [Accepted: 07/25/2011] [Indexed: 12/21/2022]
Abstract
Molecular cloning of thyrotropin-releasing hormone receptors (TRHR) was performed in a teleost, the sockeye salmon (Oncorhynchus nerka). Four different TRHR cDNAs were cloned and named TRHR1, TRHR2a, TRHR2b and TRHR3 based on their similarity to known TRHR subtypes in vertebrates. Important residues for TRH binding were conserved in deduced amino acid sequences of the three TRHR subtypes except for the TRHR2b. Seven transmembrane domains were predicted for TRHR1, TRHR2a and TRHR3 proteins but only five for TRHR2b which appears to be truncated. In silico database analysis identified putative TRHR sequences including invertebrate TRHR and reptilian, avian and mammalian TRHR3. Phylogenetic analyses predicted the molecular evolution of TRHR in vertebrates: from the common ancestral TRHR (i.e. invertebrate TRHR), the TRHR2 subtype diverged first and then TRHR1 and TRHR3 diverged. Reverse transcription-polymerase chain reaction analyses revealed TRHR1 transcripts in the brain (hypothalamus), retina, pituitary gland and large intestine; TRHR2a in the brain (telencephalon and hypothalamus); and TRHR3 in the brain (olfactory bulbs) and retina.
Collapse
Affiliation(s)
- Yuichi Saito
- Department of Biotechnology, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Central hypothyroidism is defined as hypothyroidism due to insufficient stimulation by thyroid stimulating hormone (TSH) of an otherwise normal thyroid gland. It has an estimated prevalence of approximately 1 in 80,000 to 1 in 120,000. It can be secondary hypothyroidism (pituitary) or tertiary hypothyroidism (hypothalamus) in origin. In children, it is usually caused by craniopharyngiomas or previous cranial irradiation for brain tumors or hematological malignancies. In adults, it is usually due to pituitary macroadenomas, pituitary surgeries or post-irradiation. Fatigue and peripheral edema are the most specific clinical features. Diagnosis is established by the presence of normal to low-normal TSH on the background of low-normal thyroid hormones, confirmed by the thyrotropin releasing hormone stimulation test. Therapy includes use of levothyroxine titrated to improvement in symptomology and keeping free T4 in the upper limit of normal reference range.
Collapse
Affiliation(s)
- Vishal Gupta
- Department of Endocrinology, Jaslok Hospital and Research Centre, 15-Deshmukh Marg, Mumbai - 400 026, India
| | - Marilyn Lee
- Department of General Medicine/Endocrinology, Khoo Teck Puat Hospital, Singapore
| |
Collapse
|
26
|
Mekuchi M, Saito Y, Aoki Y, Masuda T, Iigo M, Yanagisawa T. Molecular cloning, gene structure, molecular evolution and expression analyses of thyrotropin-releasing hormone receptors from medaka (Oryzias latipes). Gen Comp Endocrinol 2011; 170:374-80. [PMID: 20977909 DOI: 10.1016/j.ygcen.2010.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/31/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
Abstract
Molecular cloning of thyrotropin-releasing hormone receptors (TRHR) was performed in a model teleost fish, medaka (Oryzias latipes). Four subtypes of TRHR were cloned and named them as TRHR1a, TRHR1b, TRHR2 and TRHR3 based on their similarity to known TRHR subtypes in vertebrates. TRHR1a, TRHR1b, TRHR2, and TRHR3 of medaka encode 416, 398, 451, and 386 amino acid residues, respectively. Comparison of cDNA sequences of medaka TRHR subtypes with respective genomic DNA sequences revealed gene structures: TRHR1a, TRHR1b and TRHR3genes consist of two exons while the TRH2 gene consists of five exons. Molecular phylogenetic analyses depicted the molecular evolution of TRHR in vertebrates: From the ancestral molecule, TRHR2 diverged first and then TRHR1 and TRHR3. Reverse transcription-polymerase chain reaction analyses revealed the sites of TRHR expression: Expression of TRHR1, TRHR1b and TRHR2 subtypes has been confirmed in the brain, pineal organ, retina and pituitary gland. In addition, TRHR1b is expressed in spleen, digestive tract and skin, and TRHR2 in testis, ovary and gill. TRHR3 is widely expressed in various tissues. These results indicate that in medaka, TRH might exert multiple functions mediated by different TRHR subtypes expressed in each tissue.
Collapse
Affiliation(s)
- Miyuki Mekuchi
- Department of Applied Biochemistry, Faculty of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
|
29
|
Abstract
Thyrotropin-releasing hormone (TRH) was originally isolated from the hypothalamus. Besides controlling the secretion of TSH from the anterior pituitary, this tripeptide is widely distributed in the central nervous system and regarded as a neurotransmitter or modulator of neuronal activities in extrahypothalamic regions, including the cerebellum. TRH has an important role in the regulation of energy homeostasis, feeding behavior, thermogenesis, and autonomic regulation. TRH controls energy homeostasis mainly through its hypophysiotropic actions to regulate circulating thyroid hormone levels. Recent investigations have revealed that TRH production is regulated directly at the transcriptional level by leptin, one of the adipocytokines that plays a critical role in feeding and energy expenditure. The improvement of ataxic gait is one of the important pharmacological properties of TRH. In the cerebellum, cyclic GMP has been shown to be involved in the effects of TRH. TRH knockout mice show characteristic phenotypes of tertiary hypothyroidism, but no morphological changes in their cerebellum. Further analysis of TRH-deficient mice revealed that the expression of PFTAIRE protein kinase1 (PFTK1), a cdc2-related kinase, in the cerebellum was induced by TRH through the NO-cGMP pathway. The antiataxic effect of TRH and TRH analogs has been investigated in rolling mouse Nagoya (RMN) or 3-acetylpyridine treated rats, which are regarded as a model of human cerebellar degenerative disease. TRH and TRH analogs are promising clinical therapeutic agents for inducing arousal effects, amelioration of mental depression, and improvement of cerebellar ataxia.
Collapse
|
30
|
Oride A, Kanasaki H, Purwana IN, Mutiara S, Miyazaki K. Follistatin, induced by thyrotropin-releasing hormone (TRH), plays no role in prolactin expression but affects gonadotropin FSHbeta expression as a paracrine factor in pituitary somatolactotroph GH3 cells. ACTA ACUST UNITED AC 2009; 156:65-71. [PMID: 19446581 DOI: 10.1016/j.regpep.2009.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/19/2009] [Accepted: 05/06/2009] [Indexed: 11/15/2022]
Abstract
Follistatin regulates FSHbeta gene expression by binding to and bioneutralizing activin effects. In this study, we found that thyrotropin-releasing hormone (TRH) increased follistatin gene expression in pituitary somatolactotroph GH3 cells. Treatment of GH3 with 100 nM TRH significantly increased follistatin mRNA expression as determined by real time PCR. TRH-induced follistatin expression was significantly abrogated in the presence of MEK inhibitor, U0126. Overexpression of constitutive active MEKK in GH3 cells dramatically increased follistatin expressions. Transfection of GH3 cells with follistatin siRNA reduced endogenous follistatin mRNA expression, but failed to modulate prolactin promoter activity. Prolactin mRNA levels were not affected by increasing the dose of follistatin, and TRH-induced prolactin promoter activity was not modulated in the presence of follistatin. In other experiments using pituitary gonadotroph LbetaT2 cells, activin increased FSHbeta promoter activity and mRNA expression, and follistatin completely inhibited this activin-increased FSHbeta gene expression. Treatment of GH3 cells with activin reduced the basal activity of prolactin promoter and follistatin prevented this effect. GH3 cells were co-cultured with LbetaT2 cells, which had been transfected with FSHbeta promoter-linked luciferase vectors and treated with activin in the presence of TRH. Activin-induced FSHbeta promoter activity was completely inhibited in the presence of TRH. In addition to that, FSHbeta mRNA was not detected from LbetaT2 cells which were co-cultured with GH3 cells. Our current results suggest the possibility that TRH increases follistatin gene expression in prolactin-producing cells in association with ERK pathways. Somatolactotroph-derived follistatin affects gonadotrophs by countering activin-induced FSHbeta gene expression in a paracrine fashion.
Collapse
Affiliation(s)
- Aki Oride
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | | | | | | | | |
Collapse
|
31
|
Oride A, Kanasaki H, Purwana IN, Miyazaki K. Possible involvement of mitogen-activated protein kinase phosphatase-1 (MKP-1) in thyrotropin-releasing hormone (TRH)-induced prolactin gene expression. Biochem Biophys Res Commun 2009; 382:663-7. [DOI: 10.1016/j.bbrc.2009.03.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
|
32
|
Mulla CM, Geras-Raaka E, Raaka BM, Gershengorn MC. High levels of thyrotropin-releasing hormone receptors activate programmed cell death in human pancreatic precursors. Pancreas 2009; 38:197-202. [PMID: 18948837 PMCID: PMC2647589 DOI: 10.1097/mpa.0b013e31818d14a8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Thyrotropin-releasing hormone (TRH) is expressed in rodent and human adult pancreata and in mouse pancreas during embryonic development. However, expression of TRH receptors (TRHRs) in the pancreas is controversial. We sought to provide evidence that the TRH/TRHR system might play a role in fetal development. METHODS We used quantitative reverse transcription-polymerase chain reaction to measure TRH and TRHR messenger RNA (mRNA). To study the effects of TRHR expression in a pancreatic progenitor population, we expressed TRHRs in human islet-derived precursor cells (hIPCs) by infection with adenoviral vector AdCMVmTRHR. Thyrotropin-releasing hormone receptor signaling was measured as inositol phosphate production and intracellular calcium transients. Thyrotropin-releasing hormone receptor expression was measured by [H]methyl-TRH binding. Apoptosis was monitored by release of cytochrome c from mitochondria. RESULTS We show that TRH mRNA is expressed in human fetal and adult pancreata, and that TRHR mRNA is expressed in fetal human pancreas but not in adult human pancreas. Thyrotropin-releasing hormone receptors expressed in hIPCs were shown to signal normally. Most importantly, TRH treatment for several days stimulated apoptosis in hIPCs expressing approximately 400,000 TRHRs per cell. CONCLUSIONS These findings suggest a possible role for TRH/TRHR signaling in pancreatic precursors to promote programmed cell death, a normal constituent of morphogenesis during embryonic development in humans.
Collapse
Affiliation(s)
- Christopher M Mulla
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-8029, USA
| | | | | | | |
Collapse
|
33
|
|
34
|
Dare GLR, de Castro M, Maciel LMZ. Hypothalamic-pituitary axis and peripheral tissue responses to TRH stimulation and liothyronine suppression tests in normal subjects evaluated by current methods. Thyroid 2008; 18:401-9. [PMID: 18399766 DOI: 10.1089/thy.2007.0237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To reevaluate the responses of thyrotropin-releasing hormone (TRH) stimulation test in baseline condition as well as after the administration of graded supraphysiological doses of liothyronine (L-T(3)) in normal subjects. DESIGN To assess various parameters related to the hypothalamic-pituitary axis and peripheral tissue responses to L-T(3) in 22 normal individuals (median age: 30.5 years). Subjects were submitted to an intravenous TRH test at baseline condition and also to the oral administration of sequential and graded doses of L-T(3) (50, 100, and 200 microg/day), each given over 3 days, at an outpatient clinic. Blood samples were obtained for thyrotropin (TSH) and prolactin (PRL) at basal and then 15, 30, and 60 minutes after the TRH injection. Effects of L-T(3) administration on cholesterol, creatine kinase, retinol, ferritin, and sex hormone-binding globulin (SHBG) were also measured at basal and after the oral administration of L-T(3). MAIN OUTCOME TRH administration resulted in an increase of 4- to 14-fold rise in serum TSH (8.3 +/- 2.5-fold), and in a slight rise in serum PRL concentrations (3.8 +/- 1.5-fold). Administration of graded doses of triiodothyronine (T(3)) resulted in a dose-dependent suppression of TSH and PRL. Basal thyroxine-binding globulin (TBG) and cholesterol levels decreased, and ferritin and SHBG increased after L-T(3) administration, while creatine kinase and retinol did not change throughout the study. There was a positive correlation between basal TSH and TSH peak response to TRH at basal condition and after each sequential L-T(3) doses. On the other hand, TSH peak response to the TRH test did not predict cholesterol, TBG, ferritin, or SHBG values. CONCLUSION Using the current methods on hormone and biochemical analysis, we standardized the response of many parameters to TRH stimulation test after sequential and graded T(3) suppression test in normal subjects. Our data suggest that the evaluation of the responses of the hypothalamus-pituitary axis to TRH test as well as the impact of L-T(3) on peripheral tissues were not modified by the current methods.
Collapse
Affiliation(s)
- Gustavo Leopoldo Rodrigues Dare
- Division of Endocrinology, Department of Internal Medicine, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | | | | |
Collapse
|
35
|
Aoki Y, Ono H, Yasuo S, Masuda T, Yoshimura T, Ebihara S, Iigo M, Yanagisawa T. Molecular Evolution of Prepro-Thyrotropin-Releasing Hormone in the Chicken (Gallus gallus) and Its Expression in the Brain. Zoolog Sci 2007; 24:686-92. [PMID: 17824776 DOI: 10.2108/zsj.24.686] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 01/28/2007] [Indexed: 11/17/2022]
Abstract
A cDNA encoding prepro-thyrotropin-relaesing hormone (ppTRH) in chicken (Gallus gallus) was isolated and the sites of expression in the brain were determined. The chicken ppTRH cDNA encodes 260 amino acids, including four TRH progenitor sequences (-Lys/Arg-Arg-Gln-His-Pro-Gly-Lys/Arg-Arg-). It is interesting to note that chicken ppTRH harbors four TRH progenitor-like sequences. According to the hydropathy profile of chicken ppTRH, not only the TRH progenitor sequences but also the TRH progenitor-like sequences are localized in hydrophilic regions. The TRH progenitor-like sequences might be related to structural conservation in the evolution of ppTRH, although they cannot be processed into TRH due to the mutation of several amino acids. According to the alignment of the deduced amino-acid sequences of known vertebrate ppTRHs and the molecular phylogenetic tree we constructed, we speculate on the molecular evolution of ppTRH in vertebrates. In situ hybridization demonstrated experession of the ppTRH gene in the nucleus preopticus periventricularis, nucleus preopticus medialis, regio lateralis hypothalami, paraventricular nucleus, nucleus periventricularis hypothalami, and nucleus ventromedialis hypothalami in the chicken brain.
Collapse
Affiliation(s)
- Yasuhiro Aoki
- Department of Biotechnology, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Aoki Y, Masuda T, Iigo M, Yanagisawa T. Molecular cloning of prepro-thyrotropin-releasing hormone cDNA from medaka (Oryzias latipes). Gen Comp Endocrinol 2007; 150:364-70. [PMID: 17098236 DOI: 10.1016/j.ygcen.2006.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 09/25/2006] [Accepted: 09/27/2006] [Indexed: 11/18/2022]
Abstract
The cDNA encoding prepro-thyrotropin-releasing hormone (ppTRH) in a teleost, medaka (Oryzias latipes) was isolated and characterized. The medaka ppTRH cDNA codes for 270 amino acid residues including eight TRH progenitor sequences (-Lys/Arg-Arg-Gln-His-Pro-Gly-Lys/Arg-Arg-). In silico analyses of the medaka genome database predicted that the structure of the medaka ppTRH gene is similar to the ppTRH genes of the other vertebrate species studied to date; consisting of three exons and two introns. Identity of the medaka ppTRH with the other vertebrates is rather low except the sockeye salmon. A molecular phylogenic tree showed that the ppTRH sequences reflected the predicted pattern of species classification. RT-PCR analysis demonstrated ppTRH gene expression in the brain and retina. These results gave some insight into the molecular evolution of ppTRH and physiological functions of TRH in vertebrates.
Collapse
Affiliation(s)
- Yasuhiro Aoki
- Department of Biotechnology, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
37
|
Yamada M, Shibusawa N, Ishii S, Horiguchi K, Umezawa R, Hashimoto K, Monden T, Satoh T, Hirato J, Mori M. Prolactin secretion in mice with thyrotropin-releasing hormone deficiency. Endocrinology 2006; 147:2591-6. [PMID: 16484326 DOI: 10.1210/en.2005-1326] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The physiological roles of TRH in pituitary lactotrophs, particularly during lactation, remain unclear. We studied the prolactin (PRL) status, including serum PRL and PRL mRNA levels in the pituitary, in nonlactating and lactating TRH-deficient (TRH(-/-)) mice with a rescue study with thyroid hormone and TRH. We found that, as reported previously for male TRH(-/-) mice, neither the morphology of the lactotrophs, PRL content in the pituitary, nor the serum PRL concentration was changed in nonlactating female TRH(-/-) mice. However, concurrent hypothyroidism induced a mild decrease in the PRL mRNA level. In contrast, during lactation, the serum PRL level in TRH(-/-) mice was significantly reduced to about 60% of the level in wild-type mice, and this was reversed by prolonged TRH administration, but not by thyroid hormone replacement. The PRL content and PRL mRNA level in the mutant pituitary during lactation were significantly lower than those in wild-type mice, and these reductions were reversed completely by TRH administration, but only partially by thyroid hormone replacement. Despite the low PRL levels, TRH(-/-) dams were fertile, and the nourished pups exhibited normal growth. Furthermore, the morphology of the pituitary was normal, and high performance gel filtration chromatography analysis of the PRL molecule revealed no apparent changes. We concluded that 1) TRH is not essential for pregnancy and lactation, but is required for full function of the lactotrophs, particularly during lactation; and 2) the PRL mRNA level in the pituitary is regulated by TRH, both directly and indirectly via thyroid hormone.
Collapse
Affiliation(s)
- Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kajiya H, Takekoshi S, Miyai S, Ikeda T, Kimura S, Osamura RY. Dietary Soybean Enhances Pit-1 Dependent Pituitary Hormone Production in Iodine Deficient Rats. J Mol Histol 2005; 36:265-74. [PMID: 16200459 DOI: 10.1007/s10735-005-4710-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 03/30/2005] [Indexed: 10/25/2022]
Abstract
Reports have shown that soybeans are goitrogenic. In the present study, we investigated the effects of a high soybean diet in rats that were fed normal or iodine-deficient chow on the regulation of anterior pituitary hormone production. Iodine deficiency alone resulted in thyroid hyperplasia, reduced serum thyroxine levels, and a tendency towards an increase in serum thyroid stimulating hormone (TSH). The combination of a high soybean and low iodine diet (ID + DS) acted synergistically to induce thyroid hypertrophy, reduce serum thyroxine and tri-iodothyronine, and markedly increase serum TSH. Immunohistochemical analysis revealed that rats fed the ID + DS diet exhibited a marked increase in their number of pituitary TSH, prolactin (PRL), and growth hormone (GH) producing cells. Pituitary transcription factor-1 (Pit-1) which is involved in the expression of the TSH, PRL, and GH genes was also increased in ID + DS fed rats. These results suggest that a diet high in soybean products modulates anterior pituitary hormone production by regulating Pit-1 induction, in iodine-deficient animals.
Collapse
Affiliation(s)
- Hanako Kajiya
- Graduate School of Human Life Science, Showa Women's University, 1-7, Taishido, 154-8533, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Kok SW, Roelfsema F, Overeem S, Lammers GJ, Frölich M, Meinders AE, Pijl H. Altered setting of the pituitary-thyroid ensemble in hypocretin-deficient narcoleptic men. Am J Physiol Endocrinol Metab 2005; 288:E892-9. [PMID: 15625087 DOI: 10.1152/ajpendo.00327.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Narcolepsy is a sleep disorder caused by disruption of hypocretin (orexin) neurotransmission. Injection of hypocretin-1 acutely suppresses TRH and TSH release in rats. In contrast, subchronic administration does not appear to affect the hypothalamo-pituitary-thyroid ensemble in animals. We explored (in 7 patients and 7 controls) whether hypocretin deficiency impacts circulating TSH levels and circadian timing of TSH release in narcoleptic humans. Plasma TSH concentration profiles (blood samples taken at 10-min intervals during 24 h) and TSH levels in response to TRH injection were analyzed by Cluster, robust regression, approximate entropy (ApEn), and deconvolution. Circulating TSH levels were lower in patients, which was primarily attributable to lower pulse amplitude and nadir concentrations. TSH secretion correlated positively with mean 24-h leptin levels (R2 = 0.46, P = 0.02) and negatively with amount of sleep (R2 = 0.29, P = 0.048). Pattern-synchrony between 24-h leptin and TSH concentrations was demonstrated by significant cross-correlation and cross-ApEn analyses with no differences between controls and patients. Sleep onset was closely associated with a fall in circulating TSH. Features of diurnal rhythmicity of circulating TSH fluctuations were similar in patients and controls, with the acrophase occurring shortly after midnight. Thyroxine and triiodothyronine concentrations were similar in patients and controls and did not display a diurnal rhythm. The response of plasma TSH levels to TRH was also similar in both groups. Sleep patterns in narcoleptics were significantly disorderly compared with controls, as measured by ApEn (P = 0.006). In summary, circulating TSH concentrations are low in hypocretin-deficient narcoleptic men, which could be attributable to their low plasma leptin levels and/or their abnormal sleep-wake cycle.
Collapse
Affiliation(s)
- Simon W Kok
- Department of General Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Badiu C, Ham J, Scanlon M, Møller M, Coculescu M. Expression of thyrotropin-releasing hormone messenger RNA in human pituitary adenomas with follicle-stimulating hormone immunoreactivity. Endocr Pract 2005; 5:10-6. [PMID: 15251697 DOI: 10.4158/ep.5.1.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To assess the correlation between thyrotropin-releasing hormone (TRH) messenger RNA (mRNA) and the immunoreactive type of human pituitary adenomas. METHODS Twenty-eight patients (14 to 73 years old) who had pituitary adenomas (18 nonfunctioning adenomas, 8 growth hormone-secreting adenomas, and 2 prolactinomas) underwent surgical treatment. Pituitaries removed at autopsy from four patients without evidence of pituitary disease were used as controls. Fragments of pituitary adenomas were processed for TRH mRNA by in situ hybridization (radioactive and nonradioactive) and for TRH peptide and anterior pituitary hormones (b-thyrotropin, b-follicle-stimulating hormone [FSH], bluteinizing hormone [LH], prolactin, and growth hormone) by immunohistochemistry with use of the avidinbiotin technique. Quantitative immunohistochemical studies were performed by using image analysis software. The signal was considered positive when more than 5% of the cells were stained. RESULTS Cells expressing TRH mRNA were detected in 22 of 28 pituitary adenomas--15 of 18 nonfunctioning pituitary adenomas, 5 of 8 growth hormone-secreting adenomas, and both prolactinomas. TRH peptide was revealed in only 10 adenomas, all expressing TRH mRNA as well. All but one nonfunctioning adenoma expressing TRH mRNA in more than 5% of the cells were b-FSH immunoreactive (15 of 16 cases; P<0.005, c 2 test), whereas only 6 of 16 nonfunctioning adenomas exhibited both b-thyrotropin and TRH mRNA and only 5 of 16 were positive for both b-LH and TRH mRNA. CONCLUSION These results confirm previous data demonstrating the presence of TRH mRNA and TRH peptide in human pituitary tumor cells. We further showed that the presence of TRH mRNA is significantly correlated with FSH immunoreactive gonadotropinomas. The release of FSH after an intravenous TRH test only in gonadotropinomas, together with local production of TRH, suggests a role for TRH in pathogenesis.
Collapse
Affiliation(s)
- C Badiu
- Department of Endocrinology, Carol Davila University of Medicine, and Pharmacy, Bucharest, Romania
| | | | | | | | | |
Collapse
|
41
|
Aoki Y, Takahashi M, Masuda T, Tsukamoto T, Iigo M, Yanagisawa T. Molecular cloning of prepro-thyrotropin-releasing hormone cDNAs from the common carp Cyprinus carpio and goldfish Carassius auratus. Gen Comp Endocrinol 2005; 141:84-92. [PMID: 15707606 DOI: 10.1016/j.ygcen.2004.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 11/09/2004] [Accepted: 11/29/2004] [Indexed: 11/26/2022]
Abstract
To expand our knowledge on the evolution of prepro-thyrotropin-releasing hormone (ppTRH) from fish to tetrapods, sequences of ppTRH cDNAs from two cyprinid teleosts, the common carp Cyprinus carpio and goldfish Carassius auratus, were determined. Degenerate primers were designed based on the conserved regions between the zebrafish ppTRH sequence identified from the zebrafish EST database and the sockeye salmon ppTRH sequence, and PCR amplification was performed. Full-length ppTRHs were confirmed from ppTRH cDNAs obtained by 5'- and 3'-rapid amplification of cDNA ends. The common carp ppTRH cDNA encodes 187 amino acids including 6 copies of the TRH progenitor sequence (Lys/Arg-Arg-Gln-His-Pro-Gly-Lys/Arg-Arg), whereas the goldfish ppTRH cDNA encodes 231 amino acids including 8 copies of the TRH progenitor sequence. The molecular phylogenetic analysis of the ppTRH sequences reflected the predicted pattern of species classification. The common carp, goldfish, and zebrafish ppTRHs have some unique characteristics. The common carp and zebrafish ppTRHs are smaller than that of the goldfish mainly due to the absence of 29 and 17 consecutive amino acids, respectively. The deleted region includes one or two TRH progenitor sequences flanked by some glutamate residues, similar to the glutamate-rich regions of human ppTRH. Hydropathy profiles showed that the presence of a TRH progenitor sequence in the C-terminal hydrophilic region is a characteristic of teleosts and human ppTRHs. These observations may provide clues to a better understanding of the molecular evolution of ppTRH.
Collapse
Affiliation(s)
- Yasuhiro Aoki
- Department of Applied Biochemistry, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Crowther CA, Alfirevic Z, Haslam RR. Thyrotropin-releasing hormone added to corticosteroids for women at risk of preterm birth for preventing neonatal respiratory disease. Cochrane Database Syst Rev 2004:CD000019. [PMID: 15106139 DOI: 10.1002/14651858.cd000019.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Thyrotropin-releasing hormones (TRH) added to prenatal corticosteroids has been suggested as a way to further reduce breathing problems and neonatal lung disease in infants born preterm. OBJECTIVES To assess the effect of giving prenatal TRH in addition to corticosteroids to women at risk of very preterm birth for the prevention of neonatal respiratory disease. SEARCH STRATEGY We searched the Cochrane Pregnancy and Childbirth Group trials register (July 2003), the Cochrane Central Register of Controlled Trials (The Cochrane Library, Issue 3, 2003), MEDLINE (1965 to July 2003), EMBASE (1988 to July 2003), Current Contents (1997 to July 2003). SELECTION CRITERIA Randomised controlled trials in women at sufficient risk of preterm birth to warrant the use of prenatal corticosteroids to promote lung maturity. TRH and corticosteroids were compared with corticosteroids with or without placebo. The main outcomes considered were fetal and infant mortality, infant morbidity, childhood development and maternal morbidity. DATA COLLECTION AND ANALYSIS All assessments of trial eligibility, quality and data extractions were done by at least two authors independently. MAIN RESULTS Over 4600 women were recruited into the 13 included trials. Five trials were rated of high quality. Overall, prenatal TRH, in addition to corticosteroids, did not reduce the risk of neonatal respiratory disease or chronic oxygen dependence, and did not improve any of the fetal, neonatal or childhood outcomes assessed by intention to treat analyses.Indeed, the data showed prenatal TRH to have adverse effects for women and their infants. All side-effects monitored were more likely to occur in women receiving TRH. In the infants, prenatal TRH increased the risk of needing ventilation (relative risk (RR) 1.16, 95% confidence interval (CI) 1.03 to 1.29, 3 trials, 1969 infants), having a low Apgar score at five minutes (RR 1.48, 95% CI 1.14 to 1.92, 3 trials, 1969 infants) and, for the two trials providing data, was associated with poorer outcomes at childhood follow up. Sensitivity analyses by trial quality, or subgroups with differing times from entry to birth, or different dose regimens of TRH, did not change these findings. REVIEWERS' CONCLUSIONS Prenatal thyrotropin-releasing hormones, in addition to corticosteroids, given to women at risk of very preterm birth do not improve infant outcomes and can cause maternal side-effects.
Collapse
Affiliation(s)
- C A Crowther
- Department of Obstetrics and Gynaecology, University of Adelaide, Women's and Children's Hospital, 72 King William Road, Adelaide, South Australia, Australia, 5006
| | | | | |
Collapse
|
43
|
Abstract
Thyrotropin-releasing hormone (TRH) is localized in the brain hypothalamus and stimulates the secretion and synthesis of pituitary thyrotropin (TSH). Although TRH deficiency caused by artificial hypothalamic destructions has been reported to result in significant decreases in TSH secretion in rodents, clinical observations from the patients with possible TRH deficiency did not entirely agree with these animal results. Because of its ubiquitous distribution throughout the brain and in the peripheral tissues, TRH has been suggested to possess a wide variety of functions in these regions. However, the neurobehavioral and peripheral actions of TRH still remains to be established. It has been, therefore, anticipated that detailed analysis of TRH-knockout mice might provide insight into the physiological significance of endogenous TRH. The present review focuses on the phenotypic findings of mice deficient in TRH.
Collapse
Affiliation(s)
- Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | |
Collapse
|
44
|
Hwang IK, Go VLW, Harris DM, Yip I, Kang KW, Song MK. Effects of cyclo (his-pro) plus zinc on glucose metabolism in genetically diabetic obese mice. Diabetes Obes Metab 2003; 5:317-24. [PMID: 12940869 DOI: 10.1046/j.1463-1326.2003.00281.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The specific objective of this study was to determine acute and long-term effects of cyclo (his-pro) (CHP) plus zinc and l-histidine (CZH) treatment on glucose metabolism in genetically obese (ob/ob), type 2 diabetic mice. METHODS Acute effects of 0.3 mg of CHP plus 10 mg of zinc and 0.5 mg of l-histidine/kg body weight (BW) on fed blood glucose concentrations and 3-h average of above fasting blood glucose concentrations (TAFGCs), an index of oral glucose tolerance test, in lean and ob/ob mice were determined. To evaluate long-term effects of CZH on TAFGCs, lean and ob/ob mice were treated with drinking water containing increasing doses of CHP (0, 0.5, 1.0 or 1.5 mg/l) plus 10 mg zinc and 0.5 mg of l-histidine/l for 3 weeks. During the treatment period, fed blood glucose concentrations, BW and food and water intake were determined. At the end of the treatment, fasting blood glucose concentrations, TAFGC and fed plasma insulin concentrations were determined. RESULTS Blood glucose concentrations significantly decreased when CZH was administered acutely via gastric gavage in food-deprived ob/ob mice. Similarly, 1.0 mg/l CHP treatment of mice with fixed amounts of 10 mg zinc and 0.5 mg l-histidine/l was optimal to decrease fed blood glucose and plasma insulin concentrations during a 3-week treatment period in ob/ob mice. TAFGC values in these mice also improved most significantly with the same combination of CHP, zinc and l-histidine used to test for fed blood glucose and plasma insulin levels. Fasting blood glucose concentrations and BW gains also decreased in ob/ob mice treated with 1.0 mg of CHP/l plus the same amount of zinc and l-histidine used in the above experiments. No effects of CZH treatment in lean mice were observed. CONCLUSIONS CZH is effective in decreasing blood glucose concentrations in genetically obese (ob/ob), type 2 diabetic mice. These data support our working hypothesis that CZH may be an important anti-hyperglycaemic agent.
Collapse
Affiliation(s)
- I K Hwang
- UCLA Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Thyroid dysfunction is a prominent finding in alcoholism. Subclinical and clinical hypothyroidism have been associated with clinical depression and cognitive impairment and may increase the relapse risk among alcoholics. In spite of these important clinical associations, there is no consensus on thyroid dysfunction in alcoholism in the literature. In this paper, we present a review of the literature and develop a hypothesis that may explain dysfunction of the hypothalamic-pituitary-thyroid axis in alcoholism. Based on a Medline research of the years 1980-2001 we found 33 empirical studies that assessed thyroid function in alcoholism. The most consistent findings were a reduction in total thyroxine and total and free triiodothyronine concentrations during early abstinence. About one-third of all alcoholics also displayed a blunted thyroid stimulation hormone (TSH) response in the thyrotrophin-releasing hormone test (TRH-test). Blunting was observed frequently during detoxification, but was also present in some alcoholics after several weeks of abstinence. We suggest that a reduction in peripheral thyroid hormones may be caused by a direct toxic effect of alcohol on the thyroid gland, which induces a central compensatory activation of the hypothalamic-pituitary axis with an increased TRH release. The TRH release induces a downregulation of pituitary TRH receptors, which manifest as a blunted TSH response to the TRH test. We discuss further additional effects of alcohol on thyroid-hormone metabolizing deiodinases and on monoaminergic systems, which may interact directly with mood states among abstinent alcoholics.
Collapse
Affiliation(s)
- Derik Hermann
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Mannheim, Germany.
| | | | | |
Collapse
|
46
|
Russell SH, Small CJ, Sunter D, Morgan I, Dakin CL, Cohen MA, Bloom SR. Chronic intraparaventricular nuclear administration of orexin A in male rats does not alter thyroid axis or uncoupling protein-1 in brown adipose tissue. REGULATORY PEPTIDES 2002; 104:61-8. [PMID: 11830278 DOI: 10.1016/s0167-0115(01)00349-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Orexin A, synthesised in the posterolateral hypothalamus, has widespread distribution including the paraventricular nucleus (PVN), which is rich in thyrotropin-releasing hormone (TRH) neurones. Nerve fibres in the PVN synapse on neurones that send polysynaptic projections to brown adipose tissue (BAT), which is important in thermogenesis. A number of observations suggests orexin A may be involved in regulation of metabolism and thermogenesis. We investigated the effect of orexin A injected intracerebroventricularly (ICV) on thyroid-stimulating hormone (TSH) and thyroid hormones in male rats. We then examined the effect of chronic iPVN injections of orexin A on plasma TSH and uncoupling protein-1 (UCP-1) protein in BAT. Orexin A (3 nmol) administered ICV significantly suppressed plasma TSH at 10 and 90 min. Orexin A (0.3 nmol) administered into the PVN twice daily for 3 days significantly increased day-time 2-h food intake, but did not significantly alter nocturnal food intake. Though chronic iPVN orexin A altered diurnal food intake, there was no effect on 24-h food intake or body weight. Furthermore, orexin A administered chronically into the PVN did not alter UCP-1 level in BAT, or plasma hormones relative to saline injected animals. Chronic iPVN orexin A does not appear to influence thermogenesis through activation of UCP-1 or the thyroid axis.
Collapse
Affiliation(s)
- S H Russell
- ICSM Endocrine Unit, Hammersmith Hospital, Du Cane Road, W12 ONN, London, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Schmitmeier S, Thole H, Bader A, Bauer K. Purification and characterization of the thyrotropin-releasing hormone (TRH)-degrading serum enzyme and its identification as a product of liver origin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1278-86. [PMID: 11856362 DOI: 10.1046/j.1432-1033.2002.02768.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous biochemical studies have indicated that the membrane-bound thyrotropin-releasing hormone (TRH)-degrading enzyme (TRH-DE) from brain and liver and the serum TRH-DE are derived from the same gene. These studies also suggested that the serum enzyme is of liver origin. The present study was undertaken to verify these hypotheses. In different species, a close relationship between the activities of the serum enzyme and the particulate liver enzyme was noticed. The activity of the serum enzyme decreased when rats were treated with thioacetamide, a known hepatotoxin. With hepatocytes cultured in a sandwich configuration, release of the TRH-DE into the culture medium could also be demonstrated. The trypsin-solubilized particulate liver TRH-DE and the serum TRH-DE were purified to electrophoretic homogeneity. Both enzymes and the brain TRH-DE were recognized by a monoclonal antibody generated with the purified brain enzyme as antigen. Lectin blot analysis indicated that the serum enzyme and the liver enzyme are glycoproteins containing a sugar structure of the complex type, whereas the brain enzyme exhibits an oligomannose/hybrid glycostructure. A molecular mass of 97 000 Da could be estimated for all three enzymes after deglycosylation and SDS/PAGE followed by Western blotting. Fragment analysis of the serum TRH-DE revealed that the peptide sequences correspond to the cDNA deduced amino-acid sequences of the membrane-bound brain TRH-DE, whereby two peptides were identified that are encoded by exon 1. These data strongly support the hypothesis that the TRH-DEs are all derived from the same gene, whereby the serum enzyme is generated by proteolytic cleavage of the particulate liver enzyme.
Collapse
|
48
|
|
49
|
Abstract
It has been recognized for some time that a number of different neuropeptides exert powerful effects on food intake. During the last few years, the neurocircuitry within which these peptides operate has also begun to be elucidated. Peptidergic feeding-regulatory neurones are found both in the hypothalamus and the brainstem, where they act as input stations for hormonal and gastrointestinal information, respectively. These cell populations both project to several other brain regions and interconnect extensively. The present review summarizes the neuroanatomy and connectivity of some prominent peptides involved in food intake control, including neuropeptide Y, melanocortin peptides, agouti gene-related protein, cocaine- and amphetamine-regulated transcript, orexin/hypocretin, melanin-concentrating hormone and cholecystokinin. Disturbances in the hypothalamic neuropeptide systems have been implicated in the phenotype of a genetic model of fatal hypophagia, the mouse anorexia (anx) mutation, which is also discussed.
Collapse
Affiliation(s)
- C Broberger
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | | |
Collapse
|
50
|
Harder S, Dammann O, Buck F, Zwiers H, Lederis K, Richter D, Bruhn TO. Cloning of two thyrotropin-releasing hormone receptor subtypes from a lower vertebrate (Catostomus commersoni): functional expression, gene structure, and evolution. Gen Comp Endocrinol 2001; 124:236-45. [PMID: 11703088 DOI: 10.1006/gcen.2001.7709] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A PCR approach was used to clone thyrotropin-releasing hormone receptors (TRH-R) from the brain and anterior pituitary of the teleost Catostomus commersoni (cc), the white sucker. Two distinct TRH-R, designated ccTRH-R1 and ccTRH-R2, were identified. ccTRH-R1 was similar to mammalian TRH-R of the subtype 1, whereas ccTRH-R2 exhibited the highest identity (61% at the amino acid level) with the recently discovered rat TRH-R2. It is postulated that ccTRH-R2 and rat TRH-R2 are members of the same TRH-R subfamily 2. Functional expression of ccTRH receptors in human embryonic kidney cells and in Xenopus laevis oocytes demonstrated that both ccTRH receptors were fully functional in both systems. Oocytes expressing either receptor responded to the application of TRH by an induction of membrane chloride currents, indicating that ccTRH-R of both subtypes are coupled to the inositol phosphate/calcium pathway. The analysis of genomic clones revealed, for the first time, both similarities and differences in the structure of TRH-R subtype genes. Both ccTRH-R genes contained an intron within the coding region at the beginning of transmembrane domain (TM) 6. The position of this intron is highly conserved, as it was found at an identical position in the human TRH-R1 gene. The ccTRH-R2 gene contained an additional intron at the end of TM 3 that was not found in any of the TRH-R1 genes identified so far. The analysis of the gene structure of ccTRH-R and the amino acid sequence comparisons of mammalian and teleost TRH-R of both subtypes suggest that TRH receptors have been highly conserved during the course of vertebrate evolution. A common ancestral TRH receptor gene that could be found much earlier in evolution, possibly in invertebrates, might be the origin of ccTRH-R genes.
Collapse
Affiliation(s)
- S Harder
- Institut für Zellbiochemie und klinische Neurobiologie, Universität Hamburg, Martinistrasse 52, Hamburg, D-20246, Germany
| | | | | | | | | | | | | |
Collapse
|