1
|
Wang Q, Peng X, Gao X, Qin Y, Li W, Wu Z, Lao Z, Gao A, Mao Z, Xu Y, Chu PK, Zhao X, Geng D, Wang H. Peptide-Oligonucleotide Nanohybrids Designed for Precise Gene Therapy of Rheumatoid Arthritis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500883. [PMID: 40103484 DOI: 10.1002/adma.202500883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by excessive inflammation, pathological bone resorption, and systemic osteoporosis. It lacks effective treatment due to the complex pathogenesis. Gene therapy, especially targeted oligonucleotide (ON) delivery therapy, offers a new prospect for the precise treatment of RA. Nevertheless, the clinical application of ON delivery therapy still faces various challenges such as the rapid enzymolysis by RNAse, the lack of tissue targeting ability, difficulty in cell membrane penetration, and the incapability of endolysosomal escape. To address these issues, a novel kind of engineered peptide and oligonucleotide (PON) nanohybrids are designed and fabricated, which provide various advantages including good biosafety, inflammatory region-targeted delivery, cell membrane penetration, reactive oxygen species (ROS) scavenging, and endolysosomal escape. The PON nanohybrids produce promising effects in suppressing inflammatory responses and osteoclastogenesis of macrophages via multiple signaling pathways. In vivo administration of PON nanohybrids not only ameliorates local joint bone destruction and systemic osteoporosis in the pathological state, but also demonstrates good prophylactic effects against the rapid progression of RA disease. In conclusion, the study presents a promising strategy for precise RA treatment and broadens the biomedical applications of gene therapy based on delivery system.
Collapse
Affiliation(s)
- Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoting Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yi Qin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zebin Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zhiqi Lao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziyan Mao
- United World College of the Atlantic, St Donat's Castle Vale of Glamorgan, Llantwit Major, CF61 1WF, UK
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China
- State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, 518055, China
| |
Collapse
|
2
|
Ma R, Chang Y, Chen Q, Li J, Qiao B. Precise PBAEs: A Highly Efficient Single-Molecularly Defined Gene-Delivery System. Angew Chem Int Ed Engl 2025; 64:e202422134. [PMID: 40040418 DOI: 10.1002/anie.202422134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/06/2025]
Abstract
Gene-delivery polymers have wide therapeutic applications. The structures (e.g., molecular weight, polymer sequence, end groups, and topology) of gene-delivery polymers are of crucial importance to their properties including transfection efficiency, toxicity, and targeting capability. Thus, precise control over the structures of gene-delivery polymers is extremely beneficial for property optimizations and manufacturing reproducibility. However, sequence-defined gene-delivery polymers with high efficiency and low toxicity are rare, limited by synthetic strategies. In this work, we developed a method that enables poly(β-amino esters), one of the most promising gene-delivery polymers, to be synthesized with precisely controlled and vastly variable molecular weight, end group, and topology. This synthetic strategy creates a new family of gene-delivery polymers with defined structures, offering significant potentials and revealing new design principles.
Collapse
Affiliation(s)
- Rong Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Chang
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Qimingxing Chen
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Jianfeng Li
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Bo Qiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
3
|
Davis E, Ermi AG, Sarkar D. Astrocyte Elevated Gene-1/Metadherin (AEG-1/MTDH): A Promising Molecular Marker and Therapeutic Target for Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:1375. [PMID: 40282551 PMCID: PMC12025727 DOI: 10.3390/cancers17081375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. The 5-year survival rate has been estimated to be less than 20% while its incidence rates have more than tripled since the 1980s. Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) has been demonstrated to have an influential role in HCC progression and the development of an aggressive phenotype. AEG-1 has been shown to be upregulated in many cancers, including HCC. Studies have shown that it plays a crucial role in the proliferation, invasion and metastasis, and evasion of apoptosis in HCC. Its relationship with proteins and pathways, such as MYC, SND1, PI3K/AKT, and other signaling pathways demonstrates its pertinent role in oncogenic development and relevance as a biomarker and therapeutic target. Recent studies have shown that AEG-1 is present in tumor tissues, and the anti-AEG-1 antibody is detected in the blood of cancer patients, demonstrating its viability as a diagnostic/prognostic marker. This review paper shines light on recent findings regarding the molecular implications of AEG-1, with emphasis on its role of regulating metabolic dysfunction-associated steatohepatitis (MASH), a key predisposing factor for HCC, new treatment strategies targeting AEG-1, and challenges associated with analyzing this intriguing molecule.
Collapse
Affiliation(s)
- Eva Davis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Ali Gawi Ermi
- Department of Cellular, Molecular and Genetic Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Cellular, Molecular and Genetic Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
4
|
Joshi K, Sojahrood AJ, Sanwal R, Kolios MC, Tsai SSH, Lee WL. Improving the Efficiency of Ultrasound and Microbubble Mediated Gene Delivery by Manipulation of Microbubble Lipid Composition. ACS APPLIED BIO MATERIALS 2025; 8:3227-3238. [PMID: 40110741 DOI: 10.1021/acsabm.5c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Ultrasound and microbubble-mediated gene delivery is emerging as a powerful nonviral gene delivery approach due to its ability to target various tissues. Since microbubble cavitation plays a crucial role in gene delivery, factors affecting cavitation, such as microbubble composition, size, ultrasound pressure, frequency, and pulse interval, can directly affect the efficiency of gene delivery. The effect of ultrasound parameters on gene delivery efficiency has been systematically investigated in numerous studies. However, relatively few studies have investigated the influence of different microbubble compositions on gene delivery. In this paper, we report that microbubbles made with the same lipids but different poly(ethylene glycol) (PEG) derivatives lead to significantly different gene delivery efficiencies in vitro. Moreover, we show that the type of PEG derivative used in microbubble formulations greatly influences the acoustic response of microbubbles (i.e., resonance frequency and frequency-dependent attenuation coefficient), thus explaining the differences in gene delivery efficiencies. Our results highlight that changing a single component in the microbubble formulation, i.e., the type of PEG derivative, can improve gene delivery efficiency by 3-fold. This comparative study of microbubbles made with different PEG derivatives may help researchers in designing microbubble formulations for optimal gene delivery.
Collapse
Affiliation(s)
- Kushal Joshi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST) - A partnership between Toronto Metropolitan University and Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Department of Mechanical, Industrial and Mechatronics Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Amin Jafari Sojahrood
- Institute for Biomedical Engineering, Science and Technology (iBEST) - A partnership between Toronto Metropolitan University and Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Rajiv Sanwal
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Michael C Kolios
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST) - A partnership between Toronto Metropolitan University and Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Scott S H Tsai
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST) - A partnership between Toronto Metropolitan University and Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Department of Mechanical, Industrial and Mechatronics Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST) - A partnership between Toronto Metropolitan University and Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
5
|
Xie Q, Li K, Chen Y, Li Y, Jiang W, Cao W, Yu H, Fan D, Deng B. Gene therapy breakthroughs in ALS: a beacon of hope for 20% of ALS patients. Transl Neurodegener 2025; 14:19. [PMID: 40234983 PMCID: PMC12001736 DOI: 10.1186/s40035-025-00477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/05/2025] [Indexed: 04/17/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that remains incurable. Although the etiologies of ALS are diverse and the precise pathogenic mechanisms are not fully understood, approximately 20% of ALS cases are caused by genetic factors. Therefore, advancing targeted gene therapies holds significant promise, at least for the 20% of ALS patients with genetic etiologies. In this review, we summarize the main strategies and techniques of current ALS gene therapies based on ALS risk genes, and review recent findings from animal studies and clinical trials. Additionally, we highlight ALS-related genes with well-understood pathogenic mechanisms and the potential of numerous emerging gene-targeted therapeutic approaches for ALS.
Collapse
Affiliation(s)
- Qingjian Xie
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaojia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
| | - Wenhua Jiang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
| | - Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Huan Yu
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children'S Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Binbin Deng
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China.
| |
Collapse
|
6
|
Zhao W, Luo J, Wang F, Shi Y, Zhang J, Zhang Y, Li Y, Wang X, Chen Y, Zhang X, Wang X, Mu Y, Ji D, Xiao S, Wang Q, Zhang L, Zhang C, Zhou D. Engineering sialylated N-glycans on adeno-associated virus capsids for targeted gene delivery and therapeutic applications. J Control Release 2025; 380:563-578. [PMID: 39938722 DOI: 10.1016/j.jconrel.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Glycans with diverse biological functions have been extensively identified on enveloped viruses, whereas glycosylation on adeno-associated virus (AAV) serotypes remains poorly understood. Identifying potential glycosylation sites on AAVs could provide critical docking sites for rational engineering of AAV capsids, enabling targeted delivery of therapeutic genes. This study presents a strategy that integrates azido-monosaccharide metabolic incorporation, 1,2-diamino-4,5-methylenedioxybenzene-labeled sialic acid analysis, and mass spectrometry to identify N-glycosylation sites and glycoforms on AAVs. We identified sialylated N- oligosaccharides, particularly the conserved NNNS motif, on AAV2, AAV6, AAV7, and AAV9 capsids. These glycans play critical roles in maintaining capsid stability and enhancing resistance to neutralizing antibodies. Furthermore, we engineered an AAV vector with an azido-labeled terminal sialic acid, which was conjugated via click chemistry to cyclic Arg-Gly-Asp (RGD), a high-affinity ligand for integrin αvβ3, to generate an integrin-targeted delivery vehicle. This approach enabled the efficient delivery of c-Met-targeting shRNA in a glioma mouse model and facilitated CRISPR/Cas9-mediated SMOC2 knockout in a mouse model of kidney fibrosis using single-guide RNA (sgRNA). Our findings establish a foundation for creating editable AAV vectors through sialylated termini, thereby expanding their potential applications in basic research and therapeutic development.
Collapse
Affiliation(s)
- Weixuan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Jinhuan Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Fudi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yingying Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Jiawen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yuanjie Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yingbo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinchen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yingying Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yu Mu
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China
| | - Dezhong Ji
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China
| | - Chuanling Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China.
| |
Collapse
|
7
|
Bereket C, Kunter I, Ashrafian Bonab E, Footohi G. Gene therapy and gene therapy products introduced to market by 2022. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-39. [PMID: 40207986 DOI: 10.1080/15257770.2025.2489495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Gene therapy has revolutionized the concept of treating genetic disorders by addressing the root causes at the genetic level, becoming one of the most quickly evolving fields in medicine today, especially due to its long-term effects. Gene therapy for the treatment of diseases relies on strategies of gene suppression, overexpression, and editing using different tools such as CRISPR and RNA interference. The gene transfer methods are broadly classified into three categories: physical, chemical, and biological. The use of viral vectors, such as adenoviruses, retroviruses, and adeno-associated viruses, is prevalent in clinical settings due to their high efficiency. Safety remains as an issue, and risk mitigation strategies will continue to evolve from clinical data to minimize complications related to gene silencing and immunotoxicity. In this review, various aspects of gene therapy have been covered, such as in-vivo and ex-vivo gene therapy, gene transfer methods, safety issues, as well as the gene therapy products approved until 2022. This review lists 35 licensed gene therapy products, detailing their therapeutic uses, mechanism of action, and vectors employed. Each product illustrates the various applications and potentials of gene therapy against untreatable conditions. Continuous improvements in gene transfer methods, vector safety, and clinical applications will increase the impact of the technology and offer hope for effective treatment and possible cures for different genetic disorders.
Collapse
Affiliation(s)
- Cengiz Bereket
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Sıhhiye, Ankara, Turkey
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Imge Kunter
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | | | - Ghazal Footohi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| |
Collapse
|
8
|
Tiwade PB, Fung V, VanKeulen-Miller R, Narasipura EA, Ma Y, Fenton OS. Non-Viral RNA Therapies for Non-Small Cell Lung Cancer and Their Corresponding Clinical Trials. Mol Pharm 2025; 22:1752-1774. [PMID: 40131145 DOI: 10.1021/acs.molpharmaceut.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Ribonucleic acid (RNA)-based therapies represent a promising class of drugs for the treatment of non-small cell lung cancer (NSCLC) due to their ability to modulate gene expression. Therapies leveraging small interfering RNA (siRNA), messenger RNA (mRNA), microRNA (miRNA), and antisense oligonucleotides (ASOs) offer various advantages over conventional treatments, including the ability to target specific genetic mutations and the potential for personalized medicine approaches. However, the clinical translation of these therapeutics for the treatment of NSCLC faces challenges in delivery due to their immunogenicity, negative charge, and large size, which can be mitigated with delivery platforms. In this review, we provide a description of the pathophysiology of NSCLC and an overview of RNA-based therapeutics, specifically highlighting their potential application in the treatment of NSCLC. We discuss relevant classes of RNA and their therapeutic potential for NSCLC. We then discuss challenges in delivery and non-viral delivery strategies such as lipid- and polymer-based nanoparticles that have been developed to address these issues in preclinical models. Furthermore, we provide a summary table of clinical trials that leverage RNA therapies for NSCLC [which includes their National Clinical Trial (NCT) numbers] to highlight the current progress in NSCLC. We also discuss how these NSCLC therapies can be integrated with existing treatment modalities to enhance their efficacy and improve patient outcomes. Overall, we aim to highlight non-viral strategies that tackle RNA delivery challenges while showcasing RNA's potential as a next-generation therapy for NSCLC treatment.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/therapy
- Lung Neoplasms/drug therapy
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- RNA, Small Interfering/administration & dosage
- Oligonucleotides, Antisense/therapeutic use
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/administration & dosage
- Clinical Trials as Topic
- Animals
- Nanoparticles/chemistry
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- RNA, Messenger/genetics
- Genetic Therapy/methods
- Drug Delivery Systems/methods
Collapse
Affiliation(s)
- Palas Balakdas Tiwade
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Vincent Fung
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel VanKeulen-Miller
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eshan Amruth Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Pavlou M, Probst M, Kaplan L, Filippova E, Prieve AR, Rieke F, Reh TA. AAV-mediated expression of proneural factors stimulates neurogenesis from adult Müller glia in vivo. EMBO Mol Med 2025; 17:722-746. [PMID: 40050705 PMCID: PMC11982270 DOI: 10.1038/s44321-025-00209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 04/11/2025] Open
Abstract
The lack of regeneration in the human central nervous system (CNS) has major health implications. To address this, we previously used transgenic mouse models to show that neurogenesis can be stimulated in the adult mammalian retina by driving regeneration programs that other species activate following injury. Expression of specific proneural factors in adult Müller glia causes them to re-enter the cell cycle and give rise to new neurons following retinal injury. To bring this strategy closer to clinical application, we now show that neurogenesis can also be stimulated when delivering these transcription factors to Müller glia using adeno-associated viral (AAV) vectors. AAV-mediated neurogenesis phenocopies the neurogenesis we observed from transgenic animals, with different proneural factor combinations giving rise to distinct neuronal subtypes in vivo. Vector-borne neurons are morphologically, transcriptomically and physiologically similar to bipolar and amacrine/ganglion-like neurons. These results represent a key step forward in developing a cellular reprogramming approach for regenerative medicine in the CNS.
Collapse
Affiliation(s)
- Marina Pavlou
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Marlene Probst
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Lew Kaplan
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Elizaveta Filippova
- Department of Agricultural and Biological Engineering, Purdue University, Lafayette, IN, USA
| | - Aric R Prieve
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Fred Rieke
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Thomas A Reh
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Jadlowsky JK, Hexner EO, Marshall A, Grupp SA, Frey NV, Riley JL, Veloso E, McConville H, Rogal W, Czuczman C, Hwang WT, Li Y, Leskowitz RM, Farrelly O, Karar J, Christensen S, Barber-Rotenberg J, Gaymon A, Aronson N, Bernstein W, Melenhorst JJ, Roche AM, Everett JK, Zolnoski SA, McFarland AG, Reddy S, Petrichenko A, Cook EJ, Lee C, Gonzalez VE, Alexander K, Kulikovskaya I, Ramírez-Fernández Á, Minehart JC, Ruella M, Gill SI, Schuster SJ, Cohen AD, Garfall AL, Shah PD, Porter DL, Maude SL, Levine BL, Siegel DL, Chew A, McKenna S, Lledo L, Davis MM, Plesa G, Herbst F, Stadtmauer EA, Tebas P, DiNofia A, Haas A, Haas NB, Myers R, O'Rourke DM, Svoboda J, Tanyi JL, Aplenc R, Jacobson JM, Ko AH, Cohen RB, June CH, Bushman FD, Fraietta JA. Long-term safety of lentiviral or gammaretroviral gene-modified T cell therapies. Nat Med 2025; 31:1134-1144. [PMID: 39833408 DOI: 10.1038/s41591-024-03478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Long-term risks of gene therapy are not fully understood. In this study, we evaluated safety outcomes in 783 patients over more than 2,200 total patient-years of observation from 38 T cell therapy trials. The trials employed integrating gammaretroviral or lentiviral vectors to deliver engineered receptors to target HIV-1 infection or cancer. Eighteen patients (2.3%) developed secondary malignancies after treatment, with a median onset of 1.94 years (range: 51 d to 14 years). Where possible, incident tumor samples were analyzed for vector copy number, revealing no evidence of high-level marking or other indications of insertional mutagenesis. One T cell lymphoma was detected, but malignant T cells were not marked by vector integration. Analysis of vector integration sites in 176 patients revealed no pathological insertions linked to secondary malignancies, although, in some cases, integration in or near specific genes, including tumor suppressor genes, was associated with modest clonal expansion and sustained T cell persistence. These findings highlight the safety of engineered T cell therapies.
Collapse
Affiliation(s)
- Julie K Jadlowsky
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth O Hexner
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Marshall
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephan A Grupp
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Noelle V Frey
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James L Riley
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Veloso
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly McConville
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter Rogal
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cory Czuczman
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yimei Li
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel M Leskowitz
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia Farrelly
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayashree Karar
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon Christensen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie Barber-Rotenberg
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Avery Gaymon
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi Aronson
- Department of Medicine, Division of Infectious Diseases, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Wendy Bernstein
- Department of Medicine, Division of Infectious Diseases, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jan Joseph Melenhorst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aoife M Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John K Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonja A Zolnoski
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander G McFarland
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angelina Petrichenko
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma J Cook
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carole Lee
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vanessa E Gonzalez
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen Alexander
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ángel Ramírez-Fernández
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Janna C Minehart
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Saar I Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Schuster
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam D Cohen
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alfred L Garfall
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Payal D Shah
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David L Porter
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon L Maude
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald L Siegel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne Chew
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen McKenna
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lester Lledo
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Friederike Herbst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward A Stadtmauer
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pablo Tebas
- Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda DiNofia
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew Haas
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi B Haas
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Regina Myers
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakub Svoboda
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Janos L Tanyi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard Aplenc
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey M Jacobson
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew H Ko
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Roger B Cohen
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Wang RN, Li L, Zhou J, Ran J. Multifaceted roles of UFMylation in health and disease. Acta Pharmacol Sin 2025; 46:805-815. [PMID: 39775503 PMCID: PMC11950361 DOI: 10.1038/s41401-024-01456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Ubiquitin fold modifier 1 (UFM1) is a newly identified post-translational modifier that is involved in the UFMylation process. Similar to ubiquitination, UFMylation enables the conjugation of UFM1 to specific target proteins, thus altering their stability, activity, or localization. UFM1 chains have the potential to undergo cleavage from their associated proteins via UFM1-specific proteases, thus highlighting a reversible feature of UFMylation. This modification is conserved across nearly all eukaryotic organisms, and is associated with diverse biological activities such as hematopoiesis and the endoplasmic reticulum stress response. The disruption of UFMylation results in embryonic lethality in mice and is associated with various human diseases, thus underscoring its essential role in embryonic development, tissue morphogenesis, and organismal homeostasis. In this review, we aim to provide an in-depth overview of the UFMylation system, its importance in disease processes, and its potential as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Ru-Na Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
12
|
Gu B, Li M, Li D, Huang K. CRISPR-Cas9 Targeting PCSK9: A Promising Therapeutic Approach for Atherosclerosis. J Cardiovasc Transl Res 2025; 18:424-441. [PMID: 39804565 DOI: 10.1007/s12265-024-10587-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/28/2024] [Indexed: 05/01/2025]
Abstract
CRISPR-Cas9 gene editing technology, as an innovative biomedical tool, holds significant potential in the prevention and treatment of atherosclerosis. By precisely editing key genes such as PCSK9, CRISPR-Cas9 offers the possibility of long-term regulation of low-density lipoprotein cholesterol (LDL-C), which may reduce the risk of cardiovascular diseases. Early clinical studies of gene editing therapies like VERVE-101 have yielded encouraging results, highlighting both the feasibility and potential efficacy of this technology. However, clinical applications still face challenges such as off-target effects, immunogenicity, and long-term safety. Future research should focus on enhancing the specificity and efficiency of gene editing, optimizing delivery systems, and improving personalized treatment strategies. Additionally, the establishment of ethical and legal regulatory frameworks will be critical for the safe adoption of this technology. With the continued advancement of gene editing technology, CRISPR-Cas9 may become an important tool for treating atherosclerosis and other complex diseases.
Collapse
Affiliation(s)
- Bin Gu
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou, Sichuan, 646000, China
| | - Min Li
- Department of Cardiology, Neijiang Dongxing District People's Hospital, Neijiang, Sichuan, 641300, China
| | - Dan Li
- Department of Cardiology, Neijiang Dongxing District People's Hospital, Neijiang, Sichuan, 641300, China
| | - Kaisen Huang
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
13
|
Mao M, Lei Y, Ma X, Xie HY. Challenges and Emerging Strategies of Immunotherapy for Glioblastoma. Chembiochem 2025; 26:e202400848. [PMID: 39945240 DOI: 10.1002/cbic.202400848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
Glioblastoma (GBM) is recognized as the most lethal primary malignant tumor of the central nervous system. Although traditional treatments can somewhat prolong patient survival, the overall prognosis remains grim. Immunotherapy has become an effective method for GBM treatment. Oncolytic virus, checkpoint inhibitors, CAR T cells and tumor vaccines have all been applied in this field. Moreover, the combining of immunotherapy with traditional radiotherapy, chemotherapy, or gene therapy can further improve the treatment outcome. This review systematically summarizes the features of GBM, the recent progress of immunotherapy in overcoming GBM.
Collapse
Affiliation(s)
- Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yao Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Hai-Yan Xie
- Chemical Biology Center, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
14
|
Wu R, Wu X, Zhang L, Zhang F, Ding Y, Mao Y, Ni J. Tailored virus-mimicking nanoparticles mediate high transfection of pTRAIL for bystander effects in oncotherapy. Mater Today Bio 2025; 31:101633. [PMID: 40124336 PMCID: PMC11930097 DOI: 10.1016/j.mtbio.2025.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
Viral vectors share unparalleled gene-transfection efficiency due to protein capsid-mediated target-cell recognition and efficient cellular translocation, but clinical applications are seriously hampered by potential biosafety issues. Herein, we develop a virus-mimicking nanoparticle to enable safe, selective, and efficient TRAIL-expressing plasmid (pTRAIL) transfection for site-specific apoptosis and bystander effects. For preparation, a reactive oxygen species (ROS)-responsive phenylboronic acid-rich quaternized polymer (CRP) is synthesized for electrostatic compression of pTRAIL and coordinative coupling for apolipoprotein A-I with iRGD peptide conjugation, which is termed as iaCRP/pTRAIL nanoparticles with "gene core-protein shell" structure. The tailored virus-mimicking nanoparticles could prevent pTRAIL payloads from serum elimination, accompanied by site-specific accumulation and penetration. After cellular internalization, ROS-triggered nanoparticles disassembly could further perform burst pTRAIL release and high TRAIL expression. Our findings confirm TRAIL-derived apoptosis and bystander effects, giving in vivo tumor inhibition of ∼80 % and metastasis suppression of over 90 %. Collectively, the virus-mimicking strategy provides novel insights into bionic gene delivery and transfection design for efficient and safe oncotherapy.
Collapse
Affiliation(s)
- Ruirong Wu
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214028, China
| | - Xiufeng Wu
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, 214028, China
| | - Lan Zhang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Feng Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Yong Mao
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214028, China
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, 214028, China
| |
Collapse
|
15
|
Wu X, Cadinanos-Garai A, Quach V, Jurado E, Vaissié A, Abou-El-Enein M. Redefining quality in cell and gene therapies: Lessons from implementing electronic QMS in academic cGMP facility. Mol Ther 2025:S1525-0016(25)00258-8. [PMID: 40170354 DOI: 10.1016/j.ymthe.2025.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025] Open
Abstract
Manufacturing cell and gene therapies (CGTs) involves complex processes that require robust quality management, especially within academic current Good Manufacturing Practice (cGMP) facilities, where resources are often limited. Traditional paper-based quality management systems (QMSs), while initially convenient, often become burdensome, leading to errors, poor traceability, and compliance risks. Electronic QMSs (eQMSs) are gaining recognition for their ability to centralize and automate key quality processes, significantly enhancing operational efficiency and regulatory readiness. Through an in-depth case study of the University of Southern California and Children's Hospital of Los Angeles academic cGMP facility, this review demonstrates tangible improvements achieved by adopting an eQMS. Practical insights gained from this experience are shared, including careful selection of eQMS platforms, phased rollout strategies, and comprehensive staff training. The review also addresses common implementation challenges and suggests practical solutions to overcome them. Lessons learned and strategies discussed here can serve as valuable guidance for other academic institutions considering eQMS adoption. Ultimately, embracing an eQMS enables academic CGT manufacturers to operate more efficiently and stay ahead in a fast-moving field.
Collapse
Affiliation(s)
- Xia Wu
- USC/CHLA Cell Therapy Program, University of Southern California and Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Amaia Cadinanos-Garai
- USC/CHLA Cell Therapy Program, University of Southern California and Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Vivian Quach
- USC/CHLA Cell Therapy Program, University of Southern California and Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Eric Jurado
- USC/CHLA Cell Therapy Program, University of Southern California and Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Alix Vaissié
- USC/CHLA Cell Therapy Program, University of Southern California and Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Mohamed Abou-El-Enein
- USC/CHLA Cell Therapy Program, University of Southern California and Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA; Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Regulatory and Quality Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
16
|
Chang H, Cai F, Li X, Li A, Zhang Y, Yang X, Liu X. Biomaterial-based circular RNA therapeutic strategy for repairing intervertebral disc degeneration. BIOMEDICAL TECHNOLOGY 2025; 9:100057. [DOI: 10.1016/j.bmt.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Xiao X, Yang S, Jiang G, He S. Current views and trends of nanomaterials as vectors for gene delivery since the 21st century: a bibliometric analysis. Nanomedicine (Lond) 2025; 20:439-454. [PMID: 39878523 PMCID: PMC11875476 DOI: 10.1080/17435889.2025.2457781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Gene therapy is garnering increasing support due to its potential for a "once-delivered, lifelong benefit." The limitations of traditional gene delivery methods have spurred the advancement of bionanomaterials. Despite this progress, a thorough analysis of the evolution, current state, key contributors, focal studies, and future directions of nanomaterials in gene delivery remains absent. METHODS This study scrutinizes articles from the Web of Science, spanning 1 January 2 000, to 31 December 2023, employing various online tools for analysis and visualization. RESULTS The 21st century has witnessed consistent growth in scholarly work in this domain globally, with notable contributions from China and the US. At the same time, the Chinese Academy of Sciences (CAS), Harvard University, and Massachusetts Institute of Technology (MIT) have emerged as the most productive institutions, with CAS's academician Weihong Tan becoming the field's leading author. While drug delivery and nanoparticles (NPs) have been central themes for two decades, the research focus has shifted from modifying NPs and ultrafine particles to exploring polymer-hybrid NPs, mRNA vaccines, immune responses, green synthesis, and CRISPR/Cas tools. CONCLUSIONS This shift marks the transition from nanomaterials to bionanomaterials. The insights provided by this research offer a comprehensive overview of the field and valuable guidance for future investigations.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng Yang
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ge Jiang
- Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shisheng He
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Yang H, Li J, Song C, Li H, Luo Q, Chen M. Emerging Gene Therapy Based on Nanocarriers: A Promising Therapeutic Alternative for Cardiovascular Diseases and a Novel Strategy in Valvular Heart Disease. Int J Mol Sci 2025; 26:1743. [PMID: 40004206 PMCID: PMC11855571 DOI: 10.3390/ijms26041743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular disease remains a leading cause of global mortality, with many unresolved issues in current clinical treatment strategies despite years of extensive research. Due to the great progress in nanotechnology and gene therapy in recent years, the emerging gene therapy based on nanocarriers has provided a promising therapeutic alternative for cardiovascular diseases. This review outlines the status of nanocarriers as vectors in gene therapy for cardiovascular diseases, including coronary heart disease, pulmonary hypertension, hypertension, and valvular heart disease. It discusses challenges and future prospects, aiming to support emerging clinical treatments. This review is the first to summarize gene therapy using nanocarriers for valvular heart disease, highlighting their potential in targeting challenging tissues.
Collapse
Affiliation(s)
- Haoran Yang
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
| | - Junli Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengxiang Song
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
| | - Hongde Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
| | - Qiang Luo
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mao Chen
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Qie B, Tuo J, Chen F, Ding H, Lyu L. Gene therapy for genetic diseases: challenges and future directions. MedComm (Beijing) 2025; 6:e70091. [PMID: 39949979 PMCID: PMC11822459 DOI: 10.1002/mco2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Genetic diseases constitute the majority of rare human diseases, resulting from abnormalities in an individual's genetic composition. Traditional treatments offer limited relief for these challenging conditions. In contrast, the rapid advancement of gene therapy presents significant advantages by directly addressing the underlying causes of genetic diseases, thereby providing the potential for precision treatment and the possibility of curing these disorders. This review aims to delineate the mechanisms and outcomes of current gene therapy approaches in clinical applications across various genetic diseases affecting different body systems. Additionally, genetic muscular disorders will be examined as a case study to investigate innovative strategies of novel therapeutic approaches, including gene replacement, gene suppression, gene supplementation, and gene editing, along with their associated advantages and limitations at both clinical and preclinical levels. Finally, this review emphasizes the existing challenges of gene therapy, such as vector packaging limitations, immunotoxicity, therapy specificity, and the subcellular localization and immunogenicity of therapeutic cargos, while discussing potential optimization directions for future research. Achieving delivery specificity, as well as long-term effectiveness and safety, will be crucial for the future development of gene therapies targeting genetic diseases.
Collapse
Affiliation(s)
- Beibei Qie
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Jianghua Tuo
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Feilong Chen
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Haili Ding
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Lei Lyu
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| |
Collapse
|
20
|
Yang Y, Bian L, Cheng Y, Xu Y, Shao H, Rao J, Ge S, Gong J, Jiang M, Zheng X, Liu L, Ma S, Liu X, Cheng T, Gao C. The Role and Challenges of Investigator-Initiated Trials in the Cell and Gene Therapy Products Boom in Mainland China. Clin Transl Sci 2025; 18:e70148. [PMID: 39936621 DOI: 10.1111/cts.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
As cutting-edge technologies in biomedicine, cell and gene therapy (CGT) products demonstrate immense potential in treating cancer, rare diseases, and genetic disorders, thereby driving the importance of clinical research in this area. This study analyzes the growth trends and key characteristics of 1033 Investigator-Initiated Trials (IITs) conducted by mainland Chinese institutions in the CGT field. The results show that IITs have played a positive role in the early proof-of-concept of CGT products, helping to obtain preliminary safety and efficacy data, and exploring the combination of CGT products with other therapies. Additionally, this study discusses the regional distribution, therapeutic areas, and challenges faced by IITs in the development of CGT products in China. Based on these findings, policy suggestions are proposed to optimize the regulation of IITs in mainland China, such as improving regulatory frameworks and enhancing technical guidance. It is hoped that these measures will further improve the efficiency and quality of IITs, fully utilize the large patient base and abundant clinical resources, and support the development of high-quality CGT products in mainland China.
Collapse
Affiliation(s)
- Yifan Yang
- Changping Laboratory, Beijing, China
- China Pharmaceutical University, Nanjing, China
| | | | - Yuan Cheng
- Changping Laboratory, Beijing, China
- Beijing Advanced and Innovative Medical Device Industrialization Alliance, Beijing, China
| | - Yan Xu
- Peking University Third Hospital, Beijing, China
| | - Hui Shao
- Changping Laboratory, Beijing, China
| | - Jian Rao
- Changping Laboratory, Beijing, China
| | | | | | - Min Jiang
- Beijing Cancer Hospital, Beijing, China
| | | | - Lijun Liu
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Shihui Ma
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Xuan Liu
- Tsinghua Changgung Hospital, Beijing, China
| | - Tao Cheng
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | | |
Collapse
|
21
|
Vo GTT, Nguyen KKH, Kim BS. Evaluation of the Role of PnuC Gene in Enhancing Nicotinamide Mononucleotide Synthesis. Biotechnol Appl Biochem 2025. [PMID: 39865734 DOI: 10.1002/bab.2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/22/2024] [Indexed: 01/28/2025]
Abstract
The PnuC gene plays a crucial role in the complex processes related to the absorption and synthesis of the nicotinamide mononucleotide (NMN) precursor. NMN, a nicotinamide adenine dinucleotide (NAD+) precursor, is important for cellular energy metabolism, DNA repair, and antiaging. This study focuses on elucidating the precursor absorption mechanism and the specific function of the PnuC gene in encoding membrane transport proteins, as well as its impact on the regulation and dynamics of NMN within the cell. This understanding aims to provide insights into its potential effects on metabolic balance, illustrated through two NAD+ biosynthesis pathways based on renewable and readily available cytoplasmic resources, assessing the potential of PnuC gene expression in clarifying complex interactions within regulation mechanisms. Enhanced expression analysis of the PnuC gene has initiated discussions on its potential applications in treating aging-related diseases and dysfunctions, contributing to cellular health maintenance.
Collapse
Affiliation(s)
- Giang Thi Thu Vo
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Khang Khoa Hoang Nguyen
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
22
|
Youssef E, Fletcher B, Palmer D. Enhancing precision in cancer treatment: the role of gene therapy and immune modulation in oncology. Front Med (Lausanne) 2025; 11:1527600. [PMID: 39871848 PMCID: PMC11769984 DOI: 10.3389/fmed.2024.1527600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025] Open
Abstract
Gene therapy has long been a cornerstone in the treatment of rare diseases and genetic disorders, offering targeted solutions to conditions once considered untreatable. As the field advances, its transformative potential is now expanding into oncology, where personalized therapies address the genetic and immune-related complexities of cancer. This review highlights innovative therapeutic strategies, including gene replacement, gene silencing, oncolytic virotherapy, CAR-T cell therapy, and CRISPR-Cas9 gene editing, with a focus on their application in both hematologic malignancies and solid tumors. CRISPR-Cas9, a revolutionary tool in precision medicine, enables precise editing of cancer-driving mutations, enhancing immune responses and disrupting tumor growth mechanisms. Additionally, emerging approaches target ferroptosis-a regulated, iron-dependent form of cell death-offering new possibilities for selectively inducing tumor cell death in resistant cancers. Despite significant breakthroughs, challenges such as tumor heterogeneity, immune evasion, and the immunosuppressive tumor microenvironment (TME) remain. To overcome these barriers, novel approaches like dual-targeting, armored CAR-T cells, and combination therapies with immune checkpoint inhibitors and ferroptosis inducers are being explored. Additionally, the rise of allogeneic "off-the-shelf" CAR-T therapies offers scalable and more accessible treatment options. The regulatory landscape is evolving to accommodate these advancements, with frameworks like RMAT (Regenerative Medicine Advanced Therapy) in the U.S. and ATMP (Advanced Therapy Medicinal Products) in Europe fast-tracking the approval of gene therapies. However, ethical considerations surrounding CRISPR-based gene editing-such as off-target effects, germline editing, and ensuring equitable access-remain at the forefront, requiring ongoing ethical oversight. Advances in non-viral delivery systems, such as lipid nanoparticles (LNPs) and exosomes, are improving the safety and efficacy of gene therapies. By integrating these innovations with combination therapies and addressing regulatory and ethical concerns, gene therapy is poised to revolutionize cancer treatment, providing durable, effective, and personalized solutions for both hematologic and solid tumors.
Collapse
|
23
|
Corydon TJ, Bek T. Multiple gene therapy as a tool for regulating the expression of molecules involved in neovascular age-related macular degeneration. Prog Retin Eye Res 2025; 104:101323. [PMID: 39672501 DOI: 10.1016/j.preteyeres.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapies have revolutionized the treatment of neovascular age-related macular degeneration (nAMD) and other retinal diseases. However, the necessity for repeated intravitreal injections and the observation of variable treatment responses calls for new treatment modalities where fewer and more effective interventions can result in a clinical effect. Gene therapy might be such an alternative, and therefore the development and clinical application of gene therapy aimed at modifying gene expression has received considerable attention. The article reviews current knowledge of the background, pathophysiological mechanisms, technologies, limitations, and future directions for gene therapy aimed at modifying the synthesis of compounds involved in acquired and senescent retinal disease. The authors have contributed to the field by developing gene therapy to reduce the expression of vascular endothelial growth factor (VEGF), as well as multiple gene therapy for simultaneous downregulation of the synthesis of VEGF and upregulation of pigment epithelium-derived factor (PEDF) using adeno-associated virus (AAV) vectors. It is suggested that such multi-target gene therapy might be included in future treatments of retinal diseases where the underlying mechanisms are complex and cannot be attributed to one specific mediator. Such diseases might include dry AMD (dAMD) with geographic atrophy, but also diabetic macular edema (DME) and retinal vein occlusion (RVO). Gene therapy can be expected to be most beneficial for the patients in need of multiple intra-vitreal injections and in whom the therapeutic response is insufficient. It is concluded, that in parallel with basic research, there is a need for clinical studies aimed at identifying factors that can be used to identify patients who will benefit from gene therapy already at the time of diagnosis of the retinal disease.
Collapse
Affiliation(s)
- Thomas J Corydon
- Department of Biomedicine, Hoegh Guldbergs Gade 10, Aarhus University, 8000, Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
24
|
Hołubowicz R, Du SW, Felgner J, Smidak R, Choi EH, Palczewska G, Menezes CR, Dong Z, Gao F, Medani O, Yan AL, Hołubowicz MW, Chen PZ, Bassetto M, Risaliti E, Salom D, Workman JN, Kiser PD, Foik AT, Lyon DC, Newby GA, Liu DR, Felgner PL, Palczewski K. Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nat Biomed Eng 2025; 9:57-78. [PMID: 39609561 PMCID: PMC11754100 DOI: 10.1038/s41551-024-01296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Delivering ribonucleoproteins (RNPs) for in vivo genome editing is safer than using viruses encoding for Cas9 and its respective guide RNA. However, transient RNP activity does not typically lead to optimal editing outcomes. Here we show that the efficiency of delivering RNPs can be enhanced by cell-penetrating peptides (covalently fused to the protein or as excipients) and that lipid nanoparticles (LNPs) encapsulating RNPs can be optimized for enhanced RNP stability, delivery efficiency and editing potency. Specifically, after screening for suitable ionizable cationic lipids and by optimizing the concentration of the synthetic lipid DMG-PEG 2000, we show that the encapsulation, via microfluidic mixing, of adenine base editor and prime editor RNPs within LNPs using the ionizable lipid SM102 can result in in vivo editing-efficiency enhancements larger than 300-fold (with respect to the delivery of the naked RNP) without detectable off-target edits. We believe that chemically defined LNP formulations optimized for RNP-encapsulation stability and delivery efficiency will lead to safer genome editing.
Collapse
Grants
- F30 EY033642 NEI NIH HHS
- FENG.02.01-IP.05-T005/23 Fundacja na rzecz Nauki Polskiej (Foundation for Polish Science)
- R01 EY032948 NEI NIH HHS
- R01EY032948, R21NS113264 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- RM1 HG009490 NHGRI NIH HHS
- R00 HL163805 NHLBI NIH HHS
- R21 NS113264 NINDS NIH HHS
- R01 EY030873 NEI NIH HHS
- U01 AI142756 NIAID NIH HHS
- UG3AI150551, U01AI142756, R35GM118062, RM1HG009490 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 EY034501 NEI NIH HHS
- N66001-21-C-4013 United States Department of Defense | Defense Threat Reduction Agency (DTRA)
- T32GM008620, F30EY033642 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- T32GM148383 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- P30EY034070 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- I01BX004939 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- UG3 AI150551 NIAID NIH HHS
- 75N93022C00054 NIAID NIH HHS
- R01EY009339, R01EY030873, P30EY034070, P30CA062203 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 EY009339 NEI NIH HHS
- P30 EY034070 NEI NIH HHS
- T32 GM008620 NIGMS NIH HHS
- R00HL163805 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- I01 BX004939 BLRD VA
- R35 GM118062 NIGMS NIH HHS
- T32 GM148383 NIGMS NIH HHS
- P30 CA062203 NCI NIH HHS
- 2022/47/B/NZ5/03023, 2020/39/D/NZ4/01881, 2019/34/E/NZ5/00434 Narodowe Centrum Nauki (National Science Centre)
- Knights Templar Eye Foundation (Knights Templar Eye Foundation, Inc.)
- Howard Hughes Medical Institute (HHMI)
Collapse
Affiliation(s)
- Rafał Hołubowicz
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Samuel W Du
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Jiin Felgner
- Adeline Yen Mah Vaccine Center, Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Roman Smidak
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Elliot H Choi
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Grazyna Palczewska
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Carolline Rodrigues Menezes
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Zhiqian Dong
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Fangyuan Gao
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Omar Medani
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Alexander L Yan
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Program in Neuroscience, Amherst College, Amherst, MA, USA
| | - Maria W Hołubowicz
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Paul Z Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marco Bassetto
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
- Research Service, Tibor Rubin VA Long Beach Medical Center, Long Beach, CA, USA
| | - Eleonora Risaliti
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - David Salom
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - J Noah Workman
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Philip D Kiser
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
- Research Service, Tibor Rubin VA Long Beach Medical Center, Long Beach, CA, USA
- Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Andrzej T Foik
- International Centre for Translational Eye Research (ICTER), Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - David C Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| | - Philip L Felgner
- Adeline Yen Mah Vaccine Center, Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA.
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
25
|
Zhong G, Liu W, Venkatesan JK, Wang D, Madry H, Cucchiarini M. Autologous transplantation of mitochondria/rAAV IGF-I platforms in human osteoarthritic articular chondrocytes to treat osteoarthritis. Mol Ther 2024:S1525-0016(24)00847-5. [PMID: 39741406 DOI: 10.1016/j.ymthe.2024.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Despite various available treatments, highly prevalent osteoarthritis (OA) cannot be cured in patients. In light of evidence showing mitochondria dysfunction during the disease progression, our goal was to develop a novel therapeutic concept based on the transplantation of mitochondria as a platform to deliver recombinant adeno-associated virus (rAAV) gene vectors with potency for OA. For the first time, to our best knowledge, we report the successful creation of a safe mitochondria/rAAV system effectively promoting the overexpression of a candidate insulin-like growth factor I (IGF-I) by administration to autologous human osteoarthritic articular chondrocytes versus control conditions (reporter mitochondria/rAAV lacZ system, rAAV-free system, absence of mitochondria transplantation; up to 8.4-fold difference). The candidate mitochondria/rAAV IGF-I system significantly improved key activities in the transplanted cells (proliferation/survival, extracellular matrix production, mitochondria functions) relative to the control conditions (up to a 9.5-fold difference), including when provided in a pluronic F127 (PF127) hydrogel for reinforced delivery (up to a 5.9-fold difference). Such effects were accompanied by increased levels of cartilage-specific SOX9 and Mfn-1 (mitochondria fusion) and decreased levels of Drp-1 (mitochondria fission) and proinflammatory tumor necrosis factor alpha (TNF-α; up to 4.5-fold difference). This study shows the potential of combining the use of mitochondria with rAAV as a promising approach for human OA.
Collapse
Affiliation(s)
- Gang Zhong
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Dan Wang
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany.
| |
Collapse
|
26
|
Wu J, Liu X, Yang H, He Y, Yu D. Advances in biopharmaceutical products for hemophilia. iScience 2024; 27:111436. [PMID: 39717090 PMCID: PMC11665423 DOI: 10.1016/j.isci.2024.111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Hemophilia is caused by the deficiency of clotting factors due to a single genetic abnormality. Replacement therapies have evolved from plasma-derived to recombinant coagulation factor concentrates but continue to have certain limitations. Monoclonal antibodies are clinical prophylactic treatment options unaffected by inhibitors and have better compliance than coagulation factor concentrates for patients with hemophilia. Gene therapy is a breakthrough in hemophilia treatment, as it drives the hepatic expression of factor VIII or factor IX and requires only a single administration to enable long-term replacement treatment in adult patients. Furthermore, biopharmaceutical products that target new pathways unaffected by inhibitors, including tissue factor pathway inhibitors, activated protein C, and antithrombin, as well as pharmaceutical technology advances to reduce dosing frequency, have demonstrated promising clinical results. This review provides a comprehensive overview of these biopharmaceutical products and explores the future of hemophilia treatment.
Collapse
Affiliation(s)
- Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd, Chengdu 610041, China
| | - Xiaoling Liu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd, Chengdu 610041, China
| | - Huichuan Yang
- China National Biotec Group Company Limited, Beijing 100029, China
| | - Yanlin He
- Beijing Tiantan Biological Products Co., Ltd, Beijing 100024, China
| | - Ding Yu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd, Chengdu 610041, China
- Beijing Tiantan Biological Products Co., Ltd, Beijing 100024, China
| |
Collapse
|
27
|
Jiazhen N, Meihui S, De-E L, Na L, Youtao X, Qixian C, Yunjian Y, Feihe M, Mahmoud E, Hui G. Remodeling the Inflammatory and Immunosuppressive Tumor Microenvironment for Enhancing Antiangiogenic Gene Therapy of Colorectal Cancer. Adv Healthc Mater 2024:e2402887. [PMID: 39703083 DOI: 10.1002/adhm.202402887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/29/2024] [Indexed: 12/21/2024]
Abstract
Fusobacterium nucleatum (Fn), as an intestinal pathogenic bacterium, is closely related to the occurrence, progression, and limited therapeutic efficacy of colorectal cancer (CRC). The presence of Fn within CRC communities induces an inflammatory and immunosuppressive microenvironment while promoting new vessel formation. Therefore, developing novel methods to efficiently eliminate Fn and enhance the therapeutic outcomes against Fn-associated CRC is of great significance. Herein, a nanosystem named AFGTs-PEG, which integrates antimicrobial agent lauric acid (LA), an antiangiogenic gene (sFlt-1), a targeted polymer (OEI-LA/PBA, OLP), and DSPE-mPEG, to boost the gene therapy of Fn-infected CRC, is developed. The sFlt-1 gene is delivered to CRC cells through lysosome escape, remarkably inhibiting new vessel formation at the CRC site and ultimately leading to CRC cell death. In principle, LA is used to eliminate Fn and its biofilms, and remodel the inflammatory and immunosuppressive microenvironment by restraining the generation of inflammatory factors and preventing polarization of M1 into M2 macrophages, thereby mitigating the adverse effects of Fn on antiangiogenic gene therapy. This study holds great promise for the treatment of bacteria-colonized tumors.
Collapse
Affiliation(s)
- Niu Jiazhen
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Su Meihui
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Liu De-E
- School of Materials Science and Engineering, Tianjin ChengJian University, Tianjin, 300384, P. R. China
| | - Li Na
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Xin Youtao
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Chen Qixian
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, P. R. China
| | - Yu Yunjian
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Ma Feihe
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Elsabahy Mahmoud
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Gao Hui
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
28
|
Hu Q, Wu X, Guo C, Wang T, Guo H, Wang J, Wang B, Cui W, Bai H, Zhou J, Li L, Han L, Cao L, Ge S, Gao G, Wang T, Wu Z, Guo W, Qu Y, Feng J, Liu H. Astrocyte-neuron crosstalk through extracellular vesicle-shuttled miRNA-382-5p promotes traumatic brain injury. Exp Mol Med 2024; 56:2642-2658. [PMID: 39617787 DOI: 10.1038/s12276-024-01355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 12/28/2024] Open
Abstract
Although astrocytes undergo functional changes in response to brain injury and may be the driving force of subsequent neuronal death, the underlying mechanisms remain incompletely elucidated. Here, we showed that extracellular vesicle (EV)-shuttled miRNA-382-5p may serve as a biomarker for the severity of traumatic brain injury (TBI), as the circulating EV-miRNA-382-5p level was significantly increased in both human patients and TBI model mice. Mechanistically, astrocyte-derived EVs delivered the shuttled miRNA-382-5p to mediate astrocyte-neuron communication, which promoted neuronal mitochondrial dysfunction by inhibiting the expression of optic atrophy-1 (OPA1). Consistent with these findings, genetic ablation of neuronal OPA1 exacerbated mitochondrial damage and neuronal apoptosis in response to TBI. Moreover, engineered RVG-miRNA-382-5p inhibitor-EVs, which can selectively deliver a miRNA-382-5p inhibitor to neurons, significantly attenuated mitochondrial damage and improved neurological function after TBI. Taken together, our data suggest that EV-shuttled miRNA-382-5p may be a critical mediator of astrocyte-induced neurotoxicity under pathological conditions and that targeting miRNA-382-5p-OPA1 signaling has potential for clinical translation in the treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Qing Hu
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Xun Wu
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Chengxuan Guo
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Tinghao Wang
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Hao Guo
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
- Shaanxi Clinical Research Center for Neurosurgical Diseases, Xi'an, Shaanxi, China
| | - Jin Wang
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Bodong Wang
- Department of Neurosurgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, China
| | - Wenxing Cui
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Hao Bai
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Jinpeng Zhou
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
- Shaanxi Clinical Research Center for Neurosurgical Diseases, Xi'an, Shaanxi, China
| | - Leiyang Li
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Liying Han
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Liang Cao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
- Shaanxi Clinical Research Center for Neurosurgical Diseases, Xi'an, Shaanxi, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
- Shaanxi Clinical Research Center for Neurosurgical Diseases, Xi'an, Shaanxi, China
| | - Ting Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyong Wu
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Guo
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
- Shaanxi Clinical Research Center for Neurosurgical Diseases, Xi'an, Shaanxi, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China.
- Shaanxi Clinical Research Center for Neurosurgical Diseases, Xi'an, Shaanxi, China.
| | - Jing Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China.
- Shaanxi Clinical Research Center for Neurosurgical Diseases, Xi'an, Shaanxi, China.
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
29
|
Zhu M, Fang Y, Sun Y, Li S, Yu J, Xiong B, Wen C, Zhou B, Huang B, Yin H, Xu H. Sonogenetics in the Treatment of Chronic Diseases: A New Method for Cell Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407373. [PMID: 39488795 PMCID: PMC11672274 DOI: 10.1002/advs.202407373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Sonogenetics is an innovative technology that integrates ultrasound with genetic editing to precisely modulate cellular activities in a non-invasive manner. This method entails introducing and activating mechanosensitive channels on the cell membrane of specific cells using gene delivery vectors. When exposed to ultrasound, these channels can be manipulated to open or close, thereby impacting cellular functions. Sonogenetics is currently being used extensively in the treatment of various chronic diseases, including Parkinson's disease, vision restoration, and cancer therapy. This paper provides a comprehensive review of key components of sonogenetics and focuses on evaluating its prospects and potential challenges in the treatment of chronic disease.
Collapse
Affiliation(s)
- Mingrui Zhu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yan Fang
- Department of Ultrasound, Huashan HospitalFudan UniversityShanghai200040P. R. China
| | - Yikang Sun
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Shaoyue Li
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalUltrasound Research and Education InstituteClinical Research Center for Interventional MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Jifeng Yu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Bing Xiong
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Congjian Wen
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Boyang Zhou
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Bin Huang
- Zhejiang HospitalHangzhou310013P. R. China
| | - Haohao Yin
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Huixiong Xu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| |
Collapse
|
30
|
Lv L, Li Z, Liu X, Zhang W, Zhang Y, Liang Y, Zhang Z, Li Y, Ding M, Li R, Lin J. Revolutionizing medicine: Harnessing plant-derived vesicles for therapy and drug transport. Heliyon 2024; 10:e40127. [PMID: 39634409 PMCID: PMC11615498 DOI: 10.1016/j.heliyon.2024.e40127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
The emergence of extracellular vesicles (EVs), which are natural lipid bilayer membrane structures facilitating intercellular substance and information exchange, has sparked innovative approaches in drug development and carrier enhancement. Plant-derived EVs notably offer advantages including low preparation cost, low immunogenicity, flexible drug delivery, high stability, good tissue permeability, and high inherent medicinal value compared to their animal-derived counterparts. Despite these promising attributes, the research on plant-derived EVs remains fragmented and lacks comprehensive synthesis. This review aims to address this gap by summarizing the isolation methods, biological characteristics, and storage techniques of plant-derived EVs. Additionally, we explore the potential of plant-derived EVs as therapeutic agents and drug carriers for treating various diseases. Finally, we delineate the current impediments to plant-derived EV development and highlight future research directions. By providing a detailed overview, we hope to facilitate further research and application in this emerging field.
Collapse
Affiliation(s)
- Li Lv
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Zhenkun Li
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Xin Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Wenhui Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Yi Zhang
- Department of Thyroid - Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Ying Liang
- Department of Thyroid - Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Zhixian Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Yueqiao Li
- Department of Medical Oncology, Yanjin Country People's Hospital, No. 87, Pingjie Street, Yanjin County, Zhaotong, 657500, Yunnan, China
| | - Mingxia Ding
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Rongqing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Jie Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| |
Collapse
|
31
|
Abo Qoura L, Morozova E, Ramaa СS, Pokrovsky VS. Smart nanocarriers for enzyme-activated prodrug therapy. J Drug Target 2024; 32:1029-1051. [PMID: 39045650 DOI: 10.1080/1061186x.2024.2383688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Exogenous enzyme-activated prodrug therapy (EPT) is a potential cancer treatment strategy that delivers non-human enzymes into or on the surface of the cell and subsequently converts a non-toxic prodrug into an active cytotoxic substance at a specific location and time. The development of several pharmacological pairs based on EPT has been the focus of anticancer research for more than three decades. Numerous of these pharmacological pairs have progressed to clinical trials, and a few have achieved application in specific cancer therapies. The current review highlights the potential of enzyme-activated prodrug therapy as a promising anticancer treatment. Different microbial, plant, or viral enzymes and their corresponding prodrugs that advanced to clinical trials have been listed. Additionally, we discuss new trends in the field of enzyme-activated prodrug nanocarriers, including nanobubbles combined with ultrasound (NB/US), mesoscopic-sized polyion complex vesicles (PICsomes), nanoparticles, and extracellular vesicles (EVs), with special emphasis on smart stimuli-triggered drug release, hybrid nanocarriers, and the main application of nanotechnology in improving prodrugs.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the, Russian Academy of Sciences, Moscow, Russia
| | - С S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Mumbai, India
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
32
|
Cai J, Qiu Z, Chi‐Shing Cho W, Liu Z, Chen S, Li H, Chen K, Li Y, Zuo C, Qiu M. Synthetic circRNA therapeutics: innovations, strategies, and future horizons. MedComm (Beijing) 2024; 5:e720. [PMID: 39525953 PMCID: PMC11550093 DOI: 10.1002/mco2.720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
Small molecule drugs are increasingly emerging as innovative and effective treatments for various diseases, with mRNA therapeutics being a notable representative. The success of COVID-19 vaccines has underscored the transformative potential of mRNA in RNA therapeutics. Within the RNA family, there is another unique type known as circRNA. This single-stranded closed-loop RNA molecule offers notable advantages over mRNA, including enhanced stability and prolonged protein expression, which may significantly impact therapeutic strategies. Furthermore, circRNA plays a pivotal role in the pathogenesis of various diseases, such as cancers, autoimmune disorders, and cardiovascular diseases, making it a promising clinical intervention target. Despite these benefits, the application of circRNA in clinical settings remains underexplored. This review provides a comprehensive overview of the current state of synthetic circRNA therapeutics, focusing on its synthesis, optimization, delivery, and diverse applications. It also addresses the challenges impeding the advancement of circRNA therapeutics from bench to bedside. By summarizing these aspects, the review aims to equip researchers with insights into the ongoing developments and future directions in circRNA therapeutics. Highlighting both the progress and the existing gaps in circRNA research, this review offers valuable perspectives for advancing the field and guiding future investigations.
Collapse
Affiliation(s)
- Jingsheng Cai
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Zonghao Qiu
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | | | - Zheng Liu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Shaoyi Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Haoran Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Kezhong Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Yun Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
| | - Chijian Zuo
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | - Mantang Qiu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| |
Collapse
|
33
|
Zhang Y, Shi Y, Khan MM, Xiao F, Chen W, Tao W, Yao K, Kong N. Ocular RNA nanomedicine: engineered delivery nanoplatforms in treating eye diseases. Trends Biotechnol 2024; 42:1439-1452. [PMID: 38821834 DOI: 10.1016/j.tibtech.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Ocular disorders remain a major global health challenge with unmet medical needs. RNA nanomedicine has shown significant therapeutic benefits and safety profiles in patients with complex eye disorders, already benefiting numerous patients with gene-related eye disorders. The effective delivery of RNA to the unique structure of the eye is challenging owing to RNA instability, off-target effects, and ocular physiological barriers. Specifically tailored RNA medication, coupled with sophisticated engineered delivery platforms, is crucial to guide and advance developments in treatments for oculopathy. Herein we review recent advances in RNA-based nanomedicine, innovative delivery strategies, and current clinical progress and present challenges in ocular disease therapy.
Collapse
Affiliation(s)
- Yiming Zhang
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yesi Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Muhammad M Khan
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ke Yao
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Batran RA, Kamel M, Bahr A, Khalil A, Elsokary M. Hemophilia A: Economic burden, therapeutic advances, and future forecasts in the Middle East and North Africa region. Thromb Res 2024; 243:109175. [PMID: 39362176 DOI: 10.1016/j.thromres.2024.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Hemophilia A, a severe hereditary hemorrhagic disorder characterized by a deficiency in blood clotting factors, imposes a significant economic burden on individuals, healthcare systems, and society, with inhibitors exacerbating the socioeconomic impact. The detrimental impact on the quality of life for patients and caregivers, including functional limitations, is particularly pronounced during bleeding episodes and in the presence of inhibitors. The increasing prevalence of Hemophilia A across the MENA region is evident, marked by the approval of various therapies and intensified research and development efforts focusing on treatment innovations. Despite commendable progress in Hemophilia management, challenges persist in providing care for Hemophilia patients in the region. This review aims to shed light on the current landscape, challenges, and market forecasts for Hemophilia A in the MENA region. Additionally, it strives to provide valuable insights for the future, emphasizing the need for clear approaches to ensure comprehensive care for individuals with Hemophilia.
Collapse
Affiliation(s)
- Radwa Ahmed Batran
- Medical Affairs Department, Volaris LLC, Dubai, United Arab Emirates; Clinical Pharmacy & HEOR, Cairo University Hospitals, Cairo, Egypt.
| | - Mohab Kamel
- Medical Affairs Department, Volaris LLC, Dubai, United Arab Emirates
| | - Ayman Bahr
- Medical Affairs Department, Volaris LLC, Jeddah, Saudi Arabia
| | - Ahmed Khalil
- Medical Affairs Department, Volaris LLC, Cairo, Egypt
| | - Mohamed Elsokary
- Medical Affairs Department, Volaris LLC, Dubai, United Arab Emirates
| |
Collapse
|
35
|
Ma G, Xu Z, Li C, Zhou F, Hu B, Guo J, Ke C, Chen L, Zhang G, Lau H, Pan H, Chen X, Li R, Liu L. Induction of neutralizing antibody responses by AAV5-based vaccine for respiratory syncytial virus in mice. Front Immunol 2024; 15:1451433. [PMID: 39469716 PMCID: PMC11513327 DOI: 10.3389/fimmu.2024.1451433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Respiratory Syncytial Virus (RSV) is a significant cause of respiratory illnesses worldwide, particularly in infants and elderly individuals. Despite the burden RSV imposes, effective preventive measures are limited. The research application of adeno-associated virus (AAV) in vaccine platforms has been expanding, and its potential in prevention and treatment has garnered much attention. Methods In this study, we explored the potential application of a recombinant adeno-associated virus 5 (rAAV5) vector-based RSV vaccine, focusing on the expression of the pre-fusion (Pre-F) protein structure. Through intramuscular immunization in mice. The immunogenicity of the vaccine was evaluated in Balb/c mice immunized intramuscularly and intranasal, respectively. Results The rAAV5-RSV-Fm vaccine demonstrated positive humoral and induced antibody titers against RSV strains A and B for up to 120 days post-immunization. Notably, intranasal administration also elicited protective antibodies. Characterization studies confirmed the ability of the vac-cine to express the Pre-F protein and its superior immunogenicity compared to that of full-length F protein. Conclusion These findings underscore the potential application of rAAV5 vector platforms in RSV vaccine development and further investigation into their protective efficacy is warranted.
Collapse
Affiliation(s)
- Gangyuan Ma
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Zeping Xu
- Guangdong Keguanda Pharmaceutical Technology Co., Ltd, Guangzhou, China
| | - Chinyu Li
- Guangdong Keguanda Pharmaceutical Technology Co., Ltd, Guangzhou, China
| | - Feng Zhou
- Guangzhou National Laboratory, Guangzhou, China
| | - Bobo Hu
- Guangzhou National Laboratory, Guangzhou, China
| | - Junwei Guo
- Guangdong Keguanda Pharmaceutical Technology Co., Ltd, Guangzhou, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Liqing Chen
- Guangzhou National Laboratory, Guangzhou, China
| | - Guilin Zhang
- Guangdong Keguanda Pharmaceutical Technology Co., Ltd, Guangzhou, China
| | - Hungyan Lau
- Guangdong Keguanda Pharmaceutical Technology Co., Ltd, Guangzhou, China
| | - Hudan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Chinese Medicine Guangdong Laboratory, Hengqin, China
| | - Xixin Chen
- Guangdong Keguanda Pharmaceutical Technology Co., Ltd, Guangzhou, China
| | - Runze Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Chinese Medicine Guangdong Laboratory, Hengqin, China
| | - Liang Liu
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Chinese Medicine Guangdong Laboratory, Hengqin, China
| |
Collapse
|
36
|
Wang F, Huang Y, Li J, Zhou W, Wang W. Targeted gene delivery systems for T-cell engineering. Cell Oncol (Dordr) 2024; 47:1537-1560. [PMID: 38753155 DOI: 10.1007/s13402-024-00954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
T lymphocytes are indispensable for the host systems of defense against pathogens, tumors, and environmental threats. The therapeutic potential of harnessing the cytotoxic properties of T lymphocytes for antigen-specific cell elimination is both evident and efficacious. Genetically engineered T-cells, such as those employed in CAR-T and TCR-T cell therapies, have demonstrated significant clinical benefits in treating cancer and autoimmune disorders. However, the current landscape of T-cell genetic engineering is dominated by strategies that necessitate in vitro T-cell isolation and modification, which introduce complexity and prolong the development timeline of T-cell based immunotherapies. This review explores the complexities of gene delivery systems designed for T cells, covering both viral and nonviral vectors. Viral vectors are known for their high transduction efficiency, yet they face significant limitations, such as potential immunogenicity and the complexities involved in large-scale production. Nonviral vectors, conversely, offer a safer profile and the potential for scalable manufacturing, yet they often struggle with lower transduction efficiency. The pursuit of gene delivery systems that can achieve targeted gene transfer to T cell without the need for isolation represents a significant advancement in the field. This review assesses the design principles and current research progress of such systems, highlighting the potential for in vivo gene modification therapies that could revolutionize T-cell based treatments. By providing a comprehensive analysis of these systems, we aim to contribute valuable insights into the future development of T-cell immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - JiaQian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
37
|
Zhang Y, Lu K, Yao L, Zhang H, Zhang S, Zou Y, Yu Q, Chen H. A photothermal surface modified with polyelectrolyte multilayers for gene transfection and cell harvest. Colloids Surf B Biointerfaces 2024; 242:114110. [PMID: 39047645 DOI: 10.1016/j.colsurfb.2024.114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Gene transfection, which involves introducing nucleic acids into cells, is a pivotal technology in the life sciences and medical fields, particularly in gene therapy. Surface-mediated transfection, primarily targeting cells adhering to surfaces, shows promise for enhancing cell transfection by localizing and presenting surface-bound nucleic acids directly to the cells. However, optimizing endocytosis for efficient delivery remains a persistent challenge. Additionally, ensuring efficient and non-traumatic cell harvest capability is crucial for applications such as ex vivo cell-based therapy. To address these challenges, we developed a photothermal platform with enzymatic degradation capability for efficient gene transfection and cell harvest. This platform is based on carbon nanotubes (CNTs) doped with poly(dimethylsiloxane) and modified with polyelectrolyte multilayers (PEMs) containing hyaluronic acid and quaternized chitosan, allowing for substantial loading of poly(ethyleneimine)/plasmid DNA (pDNA) complexes through electrostatic interactions. Upon irradiation of near-infrared laser, the photothermal properties of CNTs enable high transfection efficiency by delivering pDNA into attached cells via a membrane disruption mechanism. The engineered cells can be harvested by treating with a non-toxic hyaluronidase solution to degrade PEMs, thus maintaining good viability for further applications. This platform has demonstrated remarkable efficacy across various cell lines (including Hep-G2 cells, Ramos cells and primary T cells), achieving a transfection efficiency exceeding 95 %, cell viability exceeding 90 %, and release efficiency surpassing 95 %, highlighting its potential for engineering living cells.
Collapse
Affiliation(s)
- Yuheng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Lihua Yao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Haixin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Sulei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
38
|
He J, Lin C, Hu Y, Gu S, Deng H, Shen Z. Research progress of graphene-based nanomaterials in the diagnosis and treatment of head and neck cancer. Sci Prog 2024; 107:368504241291342. [PMID: 39574301 PMCID: PMC11585035 DOI: 10.1177/00368504241291342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Head and neck cancer (HNC) is the sixth most common cancer in the world, and its incidence is increasing year by year. Due to the late-stage diagnosis and poor prognosis of HNC, as well as the limitations of traditional treatment methods, it is urgent to improve early detection rates and explore alternative treatment approaches. Graphene-based nanomaterials (GBNs) have been widely applied in biomedical fields due to their high surface area, excellent photothermal properties, and high loading capacity. This literature review introduces the functionalization and biocompatibility of GBNs, followed by a focus on their applications in the diagnosis and treatment of HNC. This includes their potential as bioimaging or biosensing platforms for diagnosis and monitoring, as well as their research progress in chemotherapy drug delivery, phototherapy, and gene transfection. The tremendous potential of GBNs as a platform for combination therapies is emphasized. Finally, in this literature review, we briefly discuss the toxicity and limitations of GBNs in the current research and provide an outlook on their future clinical applications in the diagnosis and treatment of HNC.
Collapse
Affiliation(s)
- Jiali He
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Chen Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yanghao Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Shanshan Gu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
39
|
Chan CH, Pearce DA. Demystifying gene(tic) therapies. Eur J Med Genet 2024; 71:104963. [PMID: 39069254 DOI: 10.1016/j.ejmg.2024.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
This article summarizes the discussion from a session entitled "Demystifying gene therapies" that was held at the joint RE(ACT) congress and IRDiRC conference, 14-15 March 2023 in Berlin, Germany. The focus of this session was to discuss the changing landscape of genetic therapies and whether current resources exist to provide adequate education to stakeholders, such as researchers, clinicians, patient advocates, legislators, as well as the patients and their families. The goal of this article is not to provide a comprehensive overview of the current landscape in genetic therapies, but rather to highlight resources that may be useful to help "demystify" the myriad of genetic therapeutic approaches.
Collapse
Affiliation(s)
| | - David A Pearce
- Sanford Research, Sioux Falls, SD, USA; Sanford Health, Sioux Falls, SD, USA; Dept. of Pediatrics, Sanford School of Medicine, University of South Dakota, USA.
| |
Collapse
|
40
|
Liu J, Li Y, Zhou K, Zhang S, Wang Y, Wang X, Lan X, Chen Q, Zhao Y. In Situ Polymerization for Manufacture of Multifunctional Delivery Systems for Transcellular Delivery of Nucleic Acids. Bioconjug Chem 2024; 35:1417-1428. [PMID: 39225485 DOI: 10.1021/acs.bioconjchem.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Electrostatic self-assembly between negatively charged nucleic acids and cationic materials is the basis for the formulation of the delivery systems. Nevertheless, structural disintegration occurs because their colloidal stabilities are frequently insufficient in a hostile biological environment. To overcome the sequential biological barriers encountered during transcellular gene delivery, we attempted to use in situ polymerization onto plasmid DNA (pDNA) with a variety of functional monomers, including N-(3-aminopropyl)methacrylate, (aminopropyl)methacrylamide hydrochloride, 1-vinylimidazole, and 2-methacryloyloxyethylphosphorylcholine and N,N'-bis(acryloyl) cystamine. The covalently linked monomers could polymerize into a network structure on top of pDNA, providing excellent structural stability. Additionally, the significant proton buffering capacity of 1-vinylimidazole is expected to aid in the release of pDNA payloads from acidic and digestive endolysosomes. In addition, the redox-mediated cleavage of the disulfide bond in N,N'-bis(acryloyl)cystamine allows for the selective cleavage of the covalently linked network in the cytosolic microenvironment. This is due to the high intracellular level of glutathione, which promotes the liberation of pDNA payloads in the cell interiors. The proposed polymerization strategies resulted in well-defined nanoscale pDNA delivery systems. Excellent colloidal stabilities were observed, even when incubated in the presence of high concentrations of heparin (10 mg/mL). In contrast, the release of pDNA was confirmed upon incubation in the presence of glutathione, mimicking the intracellular microenvironment. Cell transfection experiments verified their efficient cellular uptake and gene expression activities in the hard-transfected MCF-7 cells. Hence, the polymerization strategy used in the fabrication of covalently linked nonviral gene delivery systems shows promise in creating high-performance gene delivery systems with diverse functions. This could open new avenues in cellular microenvironment engineering.
Collapse
Affiliation(s)
- Jun Liu
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Jiaxing Qingzhun Pharmaceutical Technology Co., Ltd, Western Kechuang Bay Valley, Tongxiang Town, Jiaxing, Zhejiang 314500, China
| | - Yanhua Li
- International Medical Department, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian 116027, China
| | - Kehui Zhou
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Shijia Zhang
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Yue Wang
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
- Department of Gastric Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
| | - Xiumei Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiabin Lan
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Qixian Chen
- Jiaxing Qingzhun Pharmaceutical Technology Co., Ltd, Western Kechuang Bay Valley, Tongxiang Town, Jiaxing, Zhejiang 314500, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Yan Zhao
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
- Department of Gastric Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
| |
Collapse
|
41
|
Bukini D, Makani J, McCune J, Lee D, Bansbach C, De Vita S, Kemps D, Amin E, Spector J, Tisdale J. Consensus-driven target product profiles for curative sickle cell disease gene therapies. Mol Ther Methods Clin Dev 2024; 32:101287. [PMID: 39104574 PMCID: PMC11298580 DOI: 10.1016/j.omtm.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Therapeutic innovation to address sickle cell disease (SCD) is at a historical apex, characterized by a drug discovery, development, and commercialization landscape that includes potentially curative gene therapies. Given the wide geographic distribution of SCD, with a major presence in Africa, it is imperative that new medicines are designed to meet the specific needs of persons with SCD everywhere. Target product profiles (TPPs) detail the desired attributes of new medicines and serve as a guide for drug developers. To support research efforts for curative treatments for SCD, we mobilized a large multi-disciplinary expert group to generate consensus-driven TPPs for ex vivo and in vivo SCD gene therapies, utilizing a modified Delphi methodology supplemented with virtual workshops. The main findings are TPPs that describe 20 minimal and optimal criteria for novel gene therapy products in categories of scope (3 criteria), performance/safety (11 criteria), manufacturing (4 criteria), and administration (2 criteria). TPPs for ex vivo and in vivo products differed in some performance/safety criteria and all criteria pertaining to manufacturing and administration. These outputs will ideally support development of durable treatments that are safe, efficacious, and practical for persons with SCD in global settings.
Collapse
Affiliation(s)
- Daima Bukini
- Sickle Cell Disease Program, Muhimbili University of Health and Allied Sciences, Dar es Salaam 65001, Tanzania
| | - Julie Makani
- Sickle Cell Disease Program, Muhimbili University of Health and Allied Sciences, Dar es Salaam 65001, Tanzania
- SickleInAfrica, Clinical Coordinating Center, Muhimbili University of Health and Allied Sciences, Dar es Salaam 65001, Tanzania
- Imperial College London, SW7 2AZ London, UK
| | - Joseph McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
| | - Dennis Lee
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
| | | | - Serena De Vita
- Translational Clinical Oncology, Biomedical Research, Novartis, Cambridge, MA 02139, USA
| | - Dominic Kemps
- HIV Cure Africa Acceleration Partnership, Sommartel, NW1 8DS London, UK
| | - Elianna Amin
- Global Health, Biomedical Research, Novartis, Emeryville, CA 94608, USA
| | - Jonathan Spector
- Global Health, Biomedical Research, Novartis, Cambridge, MA 02139, USA
| | - John Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, Bethesda, MD 20814, USA
| |
Collapse
|
42
|
An J, Zhang Z, Zhang J, Zhang L, Liang G. Research progress in tumor therapy of carrier-free nanodrug. Biomed Pharmacother 2024; 178:117258. [PMID: 39111083 DOI: 10.1016/j.biopha.2024.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024] Open
Abstract
Carrier-free nanodrugs are a novel type of drug constructed by the self-assembly of drug molecules without carrier involvement. They have the characteristics of small particle size, easy penetration of various barriers, targeting tumors, and efficient release. In recent years, carrier-free nanodrugs have become a hot topic in tumor therapy as they solve the problems of low drug loading, poor biocompatibility, and low uptake efficiency of carrier nanodrugs. A series of recent studies have shown that carrier-free nanodrugs play a vital role in the treatment of various tumors, with similar or better effects than carrier nanodrugs. Based on the literature published in the past decades, this paper first summarizes the recent progress in the assembly modes of carrier-free nanodrugs, then describes common therapeutic modalities of carrier-free nanodrugs in tumor therapy, and finally depicts the existing challenges along with future trends of carrier-free nanodrugs. We hope that this review can guide the design and application of carrier-free nanodrugs in the future.
Collapse
Affiliation(s)
- Junling An
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Zequn Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Jinrui Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Lingyang Zhang
- Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, Henan, People's Republic of China.
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China; Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
43
|
Zhang K, Wan P, Wang L, Wang Z, Tan F, Li J, Ma X, Cen J, Yuan X, Liu Y, Sun Z, Cheng X, Liu Y, Liu X, Hu J, Zhong G, Li D, Xia Q, Hui L. Efficient expansion and CRISPR-Cas9-mediated gene correction of patient-derived hepatocytes for treatment of inherited liver diseases. Cell Stem Cell 2024; 31:1187-1202.e8. [PMID: 38772378 DOI: 10.1016/j.stem.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Cell-based ex vivo gene therapy in solid organs, especially the liver, has proven technically challenging. Here, we report a feasible strategy for the clinical application of hepatocyte therapy. We first generated high-quality autologous hepatocytes through the large-scale expansion of patient-derived hepatocytes. Moreover, the proliferating patient-derived hepatocytes, together with the AAV2.7m8 variant identified through screening, enabled CRISPR-Cas9-mediated targeted integration efficiently, achieving functional correction of pathogenic mutations in FAH or OTC. Importantly, these edited hepatocytes repopulated the injured mouse liver at high repopulation levels and underwent maturation, successfully treating mice with tyrosinemia following transplantation. Our study combines ex vivo large-scale cell expansion and gene editing in patient-derived transplantable hepatocytes, which holds potential for treating human liver diseases.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Jie Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Xiaolong Ma
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Cen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Zhen Sun
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanhua Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuhao Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
| | - Lijian Hui
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
44
|
Yan W, Cao Y, Yin Q, Li Y. Biomimetic Nucleic Acid Drug Delivery Systems for Relieving Tumor Immunosuppressive Microenvironment. Pharmaceutics 2024; 16:1028. [PMID: 39204373 PMCID: PMC11360391 DOI: 10.3390/pharmaceutics16081028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Immunotherapy combats tumors by enhancing the body's immune surveillance and clearance of tumor cells. Various nucleic acid drugs can be used in immunotherapy, such as DNA expressing cytokines, mRNA tumor vaccines, small interfering RNAs (siRNA) knocking down immunosuppressive molecules, and oligonucleotides that can be used as immune adjuvants. Nucleic acid drugs, which are prone to nuclease degradation in the circulation and find it difficult to enter the target cells, typically necessitate developing appropriate vectors for effective in vivo delivery. Biomimetic drug delivery systems, derived from viruses, bacteria, and cells, can protect the cargos from degradation and clearance, and deliver them to the target cells to ensure safety. Moreover, they can activate the immune system through their endogenous activities and active components, thereby improving the efficacy of antitumor immunotherapeutic nucleic acid drugs. In this review, biomimetic nucleic acid delivery systems for relieving a tumor immunosuppressive microenvironment are introduced. Their immune activation mechanisms, including upregulating the proinflammatory cytokines, serving as tumor vaccines, inhibiting immune checkpoints, and modulating intratumoral immune cells, are elaborated. The advantages and disadvantages, as well as possible directions for their clinical translation, are summarized at last.
Collapse
Affiliation(s)
- Wenlu Yan
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (W.Y.); (Y.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cao
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (W.Y.); (Y.C.)
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qi Yin
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (W.Y.); (Y.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (W.Y.); (Y.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China
| |
Collapse
|
45
|
Fu C, Gobbooru S, Martino AT, Low WK. Production of VP3-only virus-like particles of Adeno-associated virus 2 in E. coli cells. Protein Expr Purif 2024; 220:106502. [PMID: 38754753 DOI: 10.1016/j.pep.2024.106502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Adeno-associated Virus (AAV) is a promising vector for gene therapy. However, few studies have focused on producing virus-like particles (VLPs) of AAV in cells, especially in E. coli. In this study, we describe a method to produce empty VP3-only VLPs of AAV2 in E. coli by co-expressing VP3 and assembly-activating protein (AAP) of AAV2. Although the yields of VLPs produced with our method were low, the VLPs were able to self-assemble in E. coli without the need of in vitro capsid assembly. The produced VLPs were characterized by immunological detection and transmission electron microscopy (TEM). In conclusion, this study demonstrated that capsid assembly of AAV2 is possible in E. coli, and E. coli may be a candidate system for production of VLPs of AAV.
Collapse
Affiliation(s)
- Chengyu Fu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Shruthi Gobbooru
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Ashley T Martino
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Woon-Kai Low
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
46
|
Kou F, Wang W, Zhu X, Han TY, Shi Y, Zhang BL. Construction of GSH-responsive polyethyleneimine-based delivery vector for effective gene transfection. NANOTECHNOLOGY 2024; 35:415102. [PMID: 39008958 DOI: 10.1088/1361-6528/ad6326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
The rise of gene therapy has solved many diseases that cannot be effectively treated by conventional methods. Gene vectors is very important to protect and deliver the therapeutic genes to the target site. Polyethyleneimine (PEI) modified with mannitol could enhance the gene transfection efficiency reported by our group previously. In order to further control and improve the effective gene release to action site, disulfide bonds were introduced into mannitol-modified PEI to construct new non-viral gene vectors PeiSM. The degrees of mannitol linking with disulfide bonds were screened. Among them, moderate mannitol-modified PEI with disulfide bonds showed the best transfection efficiency, and significantly enhanced long-term systemic transgene expression for 72 hin vivoeven at a single dose administration, and could promote caveolae-mediated uptake through up-regulating the phosphorylation of caveolin-1 and increase the loaded gene release from the nanocomplexes in high glutathione intracellular environment. This functionalized gene delivery system can be used as an potential and safe non-viral nanovector for further gene therapy.
Collapse
Affiliation(s)
- Fang Kou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, People's Republic of China
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, and Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, People's Republic of China
| | - Wei Wang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, and Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, People's Republic of China
| | - Xiaohong Zhu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, and Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, People's Republic of China
- Shannxi Institute for Food and Drug Control, Xi'an 710065, People's Republic of China
| | - Tian-Yan Han
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, and Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, People's Republic of China
| | - Yajun Shi
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Bang-Le Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, People's Republic of China
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, and Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, People's Republic of China
| |
Collapse
|
47
|
Leyden MC, Oviedo F, Saxena S, Kumar R, Le N, Reineke TM. Synergistic Polymer Blending Informs Efficient Terpolymer Design and Machine Learning Discerns Performance Trends for pDNA Delivery. Bioconjug Chem 2024; 35:897-911. [PMID: 38924453 DOI: 10.1021/acs.bioconjchem.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Cationic polymers offer an alternative to viral vectors in nucleic acid delivery. However, the development of polymer vehicles capable of high transfection efficiency and minimal toxicity has remained elusive, and continued exploration of the vast design space is required. Traditional single polymer syntheses with large monomer bases are very time-intensive, limiting the speed at which new formulations are identified. In this work, we present an experimental method for the quick probing of the design space, utilizing a combinatorial set of 90 polymer blends, derived from 6 statistical copolymers, to deliver pDNA. This workflow facilitated rapid screening of polyplex compositions, successfully tailoring polyplex hydrophobicity, particle size, and payload binding affinity. This workflow identified blended polyplexes with high levels of transfection efficiency and cell viability relative to single copolymer controls and commercial JetPEI, indicating synergistic benefits from copolymer blending. Polyplex composition was coupled with biological outputs to guide the synthesis of single terpolymer vehicles, with high-performing polymers P10 and M20, providing superior transfection of HEK293T cells in serum-free and serum-containing media, respectively. Machine learning coupled with SHapley Additive exPlanations (SHAP) was used to identify polymer/polyplex attributes that most impact transfection efficiency, viability, and overall effective efficiency. Subsequent transfections on ARPE-19 and HDFn cells found that P10 and M20 were surpassed in performance by M10, contrasting with results in HEK293T cells. This cell type dependency reinforced the need to evaluate transfection conditions with multiple cell models to potentially identify moieties more beneficial to delivery in certain tissues. Overall, the workflow employed can be used to expedite the exploration of the polymer design space, bypassing extensive synthesis, and to develop improved polymer delivery vehicles more readily for nucleic acid therapies.
Collapse
Affiliation(s)
- Michael C Leyden
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Felipe Oviedo
- Nanite Inc., Boston, Massachusetts 02109, United States
| | - Sonashree Saxena
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ramya Kumar
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ngoc Le
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
48
|
Chen Y, Wang G, Chen J, Wang C, Dong X, Chang HM, Yuan S, Zhao Y, Mu L. Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome. Endocr Rev 2024; 45:437-459. [PMID: 38298137 DOI: 10.1210/endrev/bnae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
The treatment of polycystic ovary syndrome (PCOS) faces challenges as all known treatments are merely symptomatic. The US Food and Drug Administration has not approved any drug specifically for treating PCOS. As the significance of genetics and epigenetics rises in drug development, their pivotal insights have greatly enhanced the efficacy and success of drug target discovery and validation, offering promise for guiding the advancement of PCOS treatments. In this context, we outline the genetic and epigenetic advancement in PCOS, which provide novel insights into the pathogenesis of this complex disease. We also delve into the prospective method for harnessing genetic and epigenetic strategies to identify potential drug targets and ensure target safety. Additionally, we shed light on the preliminary evidence and distinctive challenges associated with gene and epigenetic therapies in the context of PCOS.
Collapse
Affiliation(s)
- Yi Chen
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Guiquan Wang
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Reproduction and Genetics, Xiamen University, Xiamen 361023, China
| | - Jingqiao Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Congying Wang
- The Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 322000, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40400, Taiwan
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm 171 65, Sweden
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100007, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing 100191, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
49
|
Zhao F, Wang J, Zhang Y, Hu J, Li C, Liu S, Li R, Du R. In vivo Fate of Targeted Drug Delivery Carriers. Int J Nanomedicine 2024; 19:6895-6929. [PMID: 39005963 PMCID: PMC11246094 DOI: 10.2147/ijn.s465959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
This review aimed to systematically investigate the intracellular and subcellular fate of various types of targeting carriers. Upon entering the body via intravenous injection or other routes, a targeting carrier that can deliver therapeutic agents initiates their journey. If administered intravenously, the carrier initially faces challenges presented by the blood circulation before reaching specific tissues and interacting with cells within the tissue. At the subcellular level, the car2rier undergoes processes, such as drug release, degradation, and metabolism, through specific pathways. While studies on the fate of 13 types of carriers have been relatively conclusive, these studies are incomplete and lack a comprehensive analysis. Furthermore, there are still carriers whose fate remains unclear, underscoring the need for continuous research. This study highlights the importance of comprehending the in vivo and intracellular fate of targeting carriers and provides valuable insights into the operational mechanisms of different carriers within the body. By doing so, researchers can effectively select appropriate carriers and enhance the successful clinical translation of new formulations.
Collapse
Affiliation(s)
- Fan Zhao
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jitong Wang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yu Zhang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jinru Hu
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ruofei Du
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
50
|
Wang J, Gao G, Wang D. Developing AAV-delivered nonsense suppressor tRNAs for neurological disorders. Neurotherapeutics 2024; 21:e00391. [PMID: 38959711 PMCID: PMC11269797 DOI: 10.1016/j.neurot.2024.e00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is a clinical stage therapeutic modality for neurological disorders. A common genetic defect in myriad monogenic neurological disorders is nonsense mutations that account for about 11% of all human pathogenic mutations. Stop codon readthrough by suppressor transfer RNA (sup-tRNA) has long been sought as a potential gene therapy approach to target nonsense mutations, but hindered by inefficient in vivo delivery. The rapid advances in AAV delivery technology have not only powered gene therapy development but also enabled in vivo preclinical assessment of a range of nucleic acid therapeutics, such as sup-tRNA. Compared with conventional AAV gene therapy that delivers a transgene to produce therapeutic proteins, AAV-delivered sup-tRNA has several advantages, such as small gene sizes and operating within the endogenous gene expression regulation, which are important considerations for treating some neurological disorders. This review will first examine sup-tRNA designs and delivery by AAV vectors. We will then analyze how AAV-delivered sup-tRNA can potentially address some neurological disorders that are challenging to conventional gene therapy, followed by discussing available mouse models of neurological diseases for in vivo preclinical testing. Potential challenges for AAV-delivered sup-tRNA to achieve therapeutic efficacy and safety will also be discussed.
Collapse
Affiliation(s)
- Jiaming Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|