1
|
Koçak S, Çalışkan H, Ömercioğlu G, Akat F, Billur D, İnanç İ, Fıçıcılar H, Baştuğ M. The impact of high-intensity interval training on insulin resistance, oxidative stress, and muscle function in a PCOS rat model. Physiol Behav 2025; 291:114794. [PMID: 39746388 DOI: 10.1016/j.physbeh.2024.114794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders . This study aimed to investigate the effects of high-intensity interval training (HIIT) on insulin resistance, oxidative stress, soleus muscle function, and myokine levels in a PCOS rat model. Female rats were assigned to four groups: Control, PCOS, PCOS+Exercise, and Exercise (n=15 each). PCOS was induced by subcutaneous administration of dehydroepiandrosterone (DHEA) for 3 weeks, and exercise groups underwent HIIT for 12 weeks. Insulin resistance (HOMA-IR), serum oxidative stress markers, hormone levels (FSH, LH), soleus myokine expression, and muscle function were analyzed. Results showed that the PCOS group exhibited increased blood pressure and insulin resistance compared to controls, with a significant reduction in FSH and LH levels in the PCOS+Exercise group. Exercise improved insulin sensitivity and reduced insulin resistance in the PCOS+Exercise group. Serum oxidative stress markers did not differ significantly between groups. Soleus muscle IL-6 levels were significantly reduced in the PCOS+Exercise group. Histological analysis revealed a larger cross-sectional area of the soleus muscle in the PCOS+Exercise group compared to the PCOS group, suggesting improved muscle morphology. Furthermore, exercise improved the functional capacity of soleus muscles, as evidenced by weightlifting performance. These findings indicate that HIIT has beneficial effects on insulin resistance, reproductive hormone levels in PCOS. Exercise also shows potential in slowing oocyte loss and improving follicle health, highlighting its role as a therapeutic intervention for reproductive health in PCOS. This study suggests that HIIT could be a beneficial approach for managing PCOS, and further research is needed to better understand its underlying mechanisms and potential long-term benefits.
Collapse
Affiliation(s)
- Seda Koçak
- Kırşehir Ahi Evran University Faculty of Medicine, Department of Physiology, Kırşehir, Turkey.
| | - Hasan Çalışkan
- Balıkesir University, Faculty of Medicine, Department of Physiology, Balıkesir, Turkey
| | - Göktuğ Ömercioğlu
- Ankara University, Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Fırat Akat
- Ankara University, Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Deniz Billur
- Ankara University, Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - İrem İnanç
- Ankara University, Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - Hakan Fıçıcılar
- Ankara University, Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Metin Baştuğ
- Ankara University, Faculty of Medicine, Department of Physiology, Ankara, Turkey
| |
Collapse
|
2
|
Swarnakar R, Sahu D, Bahinipati J, Pradhan T, Meher D, Sarangi R, Mahapatra S. The significance of ANGPTL3 and ANGPTL4 proteins in the development of dyslipidemia in Type 2 diabetes mellitus. J Family Med Prim Care 2025; 14:947-953. [PMID: 40256107 PMCID: PMC12007761 DOI: 10.4103/jfmpc.jfmpc_1256_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 04/22/2025] Open
Abstract
Background Dyslipidemia is the leading cause of cardiovascular disease (CVD) in Type 2 diabetes mellitus patients. As a result, it is critical to target and manage the level of atherogenic lipids. Angiopoietin-like proteins 3 and 4 (ANGPTL 3 and ANGPTL 4) play an important role in the intravascular lipolysis of triglyceride-rich lipoproteins by blocking the enzyme lipoprotein lipase. This study aimed to determine the amounts of these angiopoietin-like proteins in T2DM and find their association with dyslipidemia in T2DM. Material and Methods Sixty-one T2DM patients of age group 25-65 years and 27 healthy age-matched control participants were enrolled in the study. Glycemic status (FBS, PPBS, HbA1C), serum lipid parameters (cholesterol, TG, LDL, VLDL, HDL, Tc/HDL ratio), free fatty acid, serum insulin, and ANGPTL3, 4 were measured. A correlation was found between the ANGPTLs and the above parameters in T2DM patients. Results Serum ANGPTL3 (P < 0.05) and ANGPTL4 (P < 0.001) were significantly decreased in T2DM. ANGPTL4 was also negatively correlated to PPBS (0.03), HbA1C (P = 0.05), and IR (P = 0.04). However, no such correlation was observed with ANGPTL 3. It was observed that lipid parameters were correlated with ANGPTL3 (LDL (P = 0.03), TC/HDL (P = 0.02)). There was a significant relationship between ANGPTL3 and 4 with FFA (P = 0.001 and P = 0.03, respectively). Conclusion This study shows that ANGPTL 3,4 may be associated with dyslipidemia in T2DM. ANGPTL4 is more correlated with glycemic status.
Collapse
Affiliation(s)
- Rik Swarnakar
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Debadyuti Sahu
- Department of Biochemistry, BSSCCRI, Bhubaneswar, Odisha, India
| | - Jyotirmayee Bahinipati
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Tapaswini Pradhan
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Dayanidhi Meher
- Department of Endocrinology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Rajlaxmi Sarangi
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Srikrushna Mahapatra
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Xu C, Liao M, Zhang S, Chen Y, Shulai X, Wang G, Aa J. The Comorbidity of Depression and Diabetes Is Involved in the Decidual Protein Induced by Progesterone 1 (Depp1) Dysfunction in the Medial Prefrontal Cortex. Metabolites 2025; 15:34. [PMID: 39852377 PMCID: PMC11767987 DOI: 10.3390/metabo15010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/07/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND There is a high rate of depressive symptoms such as irritability, anhedonia, fatigue, and hypersomnia in patients with type 2 diabetes mellitus (T2DM). However, the causes and underlying mechanisms of the comorbidity of depression and diabetes remain unknown. METHODS For the first time, we identified Decidual protein induced by progesterone 1 (Depp1), also known as DEPP autophagy regulator 1, as a hub gene in both depression and T2DM models. Depp1 levels were increased in the mPFC but not in other brain regions, such as the hippocampus or nucleus accumbens, according to Western blot and PCR assays. RESULTS Glucose dysregulation and synaptic loss occur in both depression and T2DM. The typical hyperglycemia in T2DM was observed in two models of depression, namely, chronic social defeat stress (CSDS) and chronic restraint stress (CRS). Hyperglycemia, which occurred in T2DM, was observed, and metabolomics data clearly showed the perturbation of glucose levels and glucose metabolism in the medial prefrontal cortex (mPFC). Decreased protein levels of BDNF and PSD95 suggested significant synaptic loss in depressed and diabetic mice. CONCLUSION These findings suggest that the comorbidity of depression and diabetes is involved in the dysfunction of Depp1 in the mPFC.
Collapse
Affiliation(s)
| | | | | | | | | | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Li Y, Zhang Y, Cao M, Yuan T, Ou S. Angiopoietin-like protein 4 dysregulation in kidney diseases: a promising biomarker and therapeutic target. Front Pharmacol 2025; 15:1475198. [PMID: 39840089 PMCID: PMC11747783 DOI: 10.3389/fphar.2024.1475198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
The global burden of renal diseases is increasingly severe, underscoring the need for in-depth exploration of the molecular mechanisms underlying renal disease progression and the development of potential novel biomarkers or therapeutic targets. Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional cytokine involved in the regulation of key biological processes, such as glucose and lipid metabolism, inflammation, vascular permeability, and angiogenesis, all of which play crucial roles in the pathogenesis of kidney diseases. Over the past 2 decades, ANGPTL4 has been regarded as playing a pivotal role in the progression of various kidney diseases, prompting significant interest from the scientific community regarding its potential clinical utility in renal disorders. This review synthesizes the available literature, provides a concise overview of the molecular biological effects of ANGPTL4, and highlights its relationship with multiple renal diseases and recent research advancements. These findings underscore the important gaps that warrant further investigation to develop novel targets for the prediction or treatment of various renal diseases.
Collapse
Affiliation(s)
- Yan Li
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Yuxin Zhang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Mengxia Cao
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Tingting Yuan
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Santao Ou
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
5
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
6
|
Li X, Li C, Xue W, Wei Z, Shen H, Wu K, Zhu H, Xu H, Wu X, Yi H, Guan J, Yin S. T266M variants of ANGPTL4 improve lipid metabolism by modifying their binding affinity to acetyl-CoA carboxylase in obstructive sleep apnea. Ann Med 2024; 56:2337740. [PMID: 38574398 PMCID: PMC10997356 DOI: 10.1080/07853890.2024.2337740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Angiopoietin-like protein 4 (ANGPTL4) is recognized as a crucial regulator in lipid metabolism. Acetyl-CoA carboxylases (ACACAs) play a role in the β-oxidation of fatty acids. Yet, the functions of ANGPTL4 and ACACA in dyslipidemia of obstructive sleep apnea (OSA) remain unclear. METHODS This study included 125 male OSA subjects from the Shanghai Sleep Health Study (SSHS) who were matched for age, body mass index (BMI), and lipid profile. Serum ANGPTL4 levels were measured via ELISA. The ANGPTL4 T266M variants of 4455 subjects along with their anthropometric, fasting biochemical, and standard polysomnographic parameters were collected. Linear regression was used to analyze the associations between quantitative traits and ANGPTL4 T266M. Molecular docking and molecular dynamic simulation were employed to compare the effects of the wild-type ANGPTL4 and its T266M mutation on ACACA. RESULTS Serum ANGPTL4 levels significantly decreased with increasing OSA severity (non-OSA: 59.6 ± 17.4 ng/mL, mild OSA: 50.0 ± 17.5 ng/mL, moderate OSA: 46.3 ± 15.5 ng/mL, severe OSA: 19.9 ± 14.3 ng/mL, respectively, p = 6.02 × 10-16). No associations were found between T266M and clinical characteristics. Molecular docking indicated that mutant ANGTPL4 T266M had stronger binding affinity for the ACACA protein, compared with wild-type ANGPTL4. In terms of protein secondary structure, mutant ANGTPL4 T266M demonstrated greater stability than wild-type ANGPTL4. CONCLUSIONS Serum ANGTPL4 levels were significantly decreased in OSA patients, particularly among individuals with severe OSA. Although functional ANGTPL4 T266M variants were not associated with lipid levels in OSA, ANGTPL4 T266M could enhance binding affinity for the ACACA protein, potentially regulating lipid metabolism.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, China
| | - Chenyang Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, China
| | - Wenjun Xue
- Department of Otorhinolaryngology Head and Neck surgery, Shanghai Eighth People’s Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Zhicheng Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, China
| | - Hangdong Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, China
| | - Kejia Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, China
| | - Huaming Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, China
| | - Huajun Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, China
| | - Xiaolin Wu
- Central Laboratory of Shanghai Eighth People’s Hospital, Xuhui Branch of Shanghai Sixth People’s Hospital, P. R. China
| | - Hongliang Yi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, China
| | - Jian Guan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
7
|
Xu Z, Jiang G. ANGPTL4-A protein involved in glucose metabolism, lipid metabolism, and tumor development. J Gene Med 2024; 26:e3740. [PMID: 39467822 DOI: 10.1002/jgm.3740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 10/30/2024] Open
Abstract
Since ANGPTL4 was discovered to be involved in lipid metabolism in 2000 for the first time, Angptl4 has attracted the attention of researchers. With the further research, it was found that angptl4 was also involved in many biological activities (glucose metabolism, angiogenesis, wound healing, tumor growth, etc.) in vivo. In this review, we provide an overview of the fundamental role of ANGPTL4 in metabolic regulation and its impact on tumor growth. These insights may provide a way for exploring ANGPTL4 as a potential therapeutic target for future disease treatments.
Collapse
Affiliation(s)
- Zhilong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Miao X, Alidadipour A, Saed V, Sayyadi F, Jadidi Y, Davoudi M, Amraee F, Jadidi N, Afrisham R. Hepatokines: unveiling the molecular and cellular mechanisms connecting hepatic tissue to insulin resistance and inflammation. Acta Diabetol 2024; 61:1339-1361. [PMID: 39031190 DOI: 10.1007/s00592-024-02335-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
Insulin resistance arising from Non-Alcoholic Fatty Liver Disease (NAFLD) stands as a prevalent global ailment, a manifestation within societies stemming from individuals' suboptimal dietary habits and lifestyles. This form of insulin resistance emerges as a pivotal factor in the development of type 2 diabetes mellitus (T2DM). Emerging evidence underscores the significant role of hepatokines, as hepatic-secreted hormone-like entities, in the genesis of insulin resistance and eventual onset of type 2 diabetes. Hepatokines exert influence over extrahepatic metabolism regulation. Their principal functions encompass impacting adipocytes, pancreatic cells, muscles, and the brain, thereby playing a crucial role in shaping body metabolism through signaling to target tissues. This review explores the most important hepatokines, each with distinct influences. Our review shows that Fetuin-A promotes lipid-induced insulin resistance by acting as an endogenous ligand for Toll-like receptor 4 (TLR-4). FGF21 reduces inflammation in diabetes by blocking the nuclear translocation of nuclear factor-κB (NF-κB) in adipocytes and adipose tissue, while also improving glucose metabolism. ANGPTL6 enhances AMPK and insulin signaling in muscle, and suppresses gluconeogenesis. Follistatin can influence insulin resistance and inflammation by interacting with members of the TGF-β family. Adropin show a positive correlation with phosphoenolpyruvate carboxykinase 1 (PCK1), a key regulator of gluconeogenesis. This article delves into hepatokines' impact on NAFLD, inflammation, and T2DM, with a specific focus on insulin resistance. The aim is to comprehend the influence of these recently identified hormones on disease development and their underlying physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Arian Alidadipour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vian Saed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Firooze Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amraee
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Fiorenza M, Onslev J, Henríquez-Olguín C, Persson KW, Hesselager SA, Jensen TE, Wojtaszewski JFP, Hostrup M, Bangsbo J. Reducing the mitochondrial oxidative burden alleviates lipid-induced muscle insulin resistance in humans. SCIENCE ADVANCES 2024; 10:eadq4461. [PMID: 39475607 PMCID: PMC11524190 DOI: 10.1126/sciadv.adq4461] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Preclinical models suggest mitochondria-derived oxidative stress as an underlying cause of insulin resistance. However, it remains unknown whether this pathophysiological mechanism is conserved in humans. Here, we used an invasive in vivo mechanistic approach to interrogate muscle insulin action while selectively manipulating the mitochondrial redox state in humans. To this end, we conducted insulin clamp studies combining intravenous infusion of a lipid overload with intake of a mitochondria-targeted antioxidant (mitoquinone). Under lipid overload, selective modulation of mitochondrial redox state by mitoquinone enhanced insulin-stimulated glucose uptake in skeletal muscle. Mechanistically, mitoquinone did not affect canonical insulin signaling but augmented insulin-stimulated glucose transporter type 4 (GLUT4) translocation while reducing the mitochondrial oxidative burden under lipid oversupply. Complementary ex vivo studies in human muscle fibers exposed to high intracellular lipid levels revealed that mitoquinone improves features of mitochondrial bioenergetics, including diminished mitochondrial H2O2 emission. These findings provide translational and mechanistic evidence implicating mitochondrial oxidants in the development of lipid-induced muscle insulin resistance in humans.
Collapse
Affiliation(s)
- Matteo Fiorenza
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Johan Onslev
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Carlos Henríquez-Olguín
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago 1509, Chile
| | - Kaspar W. Persson
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Sofie A. Hesselager
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Thomas E. Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jørgen F. P. Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Morten Hostrup
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jens Bangsbo
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
10
|
Kuo CH, Wang SH, Juan HC, Chen SC, Kuo CH, Kuo HC, Lin SY, Li HY. Angiopoietin-like protein 4 induces growth hormone variant secretion and aggravates insulin resistance during pregnancy, linking obesity to gestational diabetes mellitus. Biofactors 2024; 50:1176-1191. [PMID: 38760159 DOI: 10.1002/biof.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/01/2024] [Indexed: 05/19/2024]
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is a secretory glycoprotein involved in regulating glucose homeostasis in non-pregnant subjects. However, its role in glucose metabolism during pregnancy and the pathophysiology of gestational diabetes mellitus (GDM) remains elusive. Thus, this study aimed to clarify the relationship between ANGPTL4 and GDM and investigate the pathophysiology of placental ANGPTL4 in glucose metabolism. We investigated this issue using blood and placenta samples in 957 pregnant women, the human 3A-sub-E trophoblast cell line, and the L6 skeletal muscle cell line. We found that ANGPTL4 expression in the placenta was higher in obese pregnant women than in lean controls. Palmitic acid significantly induced ANGPTL4 expression in trophoblast cells in a dose-response manner. ANGPTL4 overexpression in trophoblast cells resulted in endoplasmic reticulum (ER) stress, which stimulated the expression and secretion of growth hormone-variant (GH2) but not human placental lactogen. In L6 skeletal muscle cells, soluble ANGPTL4 suppressed insulin-mediated glucose uptake through the epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinases 1/2 (ERK 1/2) pathways. In pregnant women, plasma ANGPTL4 concentrations in the first trimester predicted the incidence of GDM and were positively associated with BMI, plasma triglyceride, and plasma GH2 in the first trimester. However, they were negatively associated with insulin sensitivity index ISI0,120 in the second trimester. Overall, placental ANGPTL4 is induced by obesity and is involved in the pathophysiology of GDM via the induction of ER stress and GH2 secretion. Soluble ANGPTL4 can lead to insulin resistance in skeletal muscle cells and is an early biomarker for predicting GDM.
Collapse
Affiliation(s)
- Chun-Heng Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsien-Chia Juan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Chi Chen
- Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Fang YJ, Lee WY, Lin CL, Cheah YC, Hsieh HH, Chen CH, Tsai FJ, Tien N, Lim YP. Association of antipsychotic drugs on type 2 diabetes mellitus risk in patients with schizophrenia: a population-based cohort and in vitro glucose homeostasis-related gene expression study. BMC Psychiatry 2024; 24:751. [PMID: 39472855 PMCID: PMC11524027 DOI: 10.1186/s12888-024-06222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and its related complications are associated with schizophrenia. However, the relationship between antipsychotic medications (APs) and T2DM risk remains unclear. In this population-based, retrospective cohort study across the country, we investigated schizophrenia and the effect of APs on the risk of T2DM, and glucose homeostasis-related gene expression. METHODS We used information from the Longitudinal Health Insurance Database of Taiwan for individuals newly diagnosed with schizophrenia (N = 4,606) and a disease-free control cohort (N = 4,606). The differences in rates of development of T2DM between the two cohorts were assessed using a Cox proportional hazards regression model. The effects of APs on the expression of glucose homeostasis-related genes in liver and muscle cell lines were assessed using quantitative real-time PCR. RESULTS After controlling potential associated confounding factors, the risk of T2DM was higher in the case group than that in the control group [adjusted hazard ratio (aHR), 1.80, p < 0.001]. Moreover, the likelihood of T2DM incidence in patients with schizophrenia without AP treatment (aHR, 2.83) was significantly higher than that in non-schizophrenia controls and those treated with APs (aHR ≤ 0.60). In an in vitro model, most APs did not affect the expression of hepatic gluconeogenesis genes but upregulated those beneficial for glucose homeostasis in muscle cells. CONCLUSION This study demonstrates the impact of schizophrenia and APs and the risk of developing T2DM in Asian populations. Unmeasured confounding risk factors for T2DM may not have been included in the study. These findings may help psychiatric practitioners identify patients at risk of developing T2DM.
Collapse
Affiliation(s)
- Yi-Jen Fang
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, Taichung, Taiwan
- Digestive Disease Center, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Wan-Yi Lee
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- Department of Pharmacy, College of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist, Taichung City, 406040, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Cun Cheah
- Department of Pharmacy, College of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist, Taichung City, 406040, Taiwan
| | - Hui-Hsia Hsieh
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- Department of Pharmacy, College of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist, Taichung City, 406040, Taiwan
| | - Chi-Hua Chen
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist, Taichung City, 406040, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
12
|
Jamshed L, Jamshed S, Frank RA, Hewitt LM, Thomas PJ, Holloway AC. Assessing Receptor Activation in 2D and 3D Cultured Hepatocytes: Responses to a Single Compound and a Complex Mixture. TOXICS 2024; 12:631. [PMID: 39330559 PMCID: PMC11436198 DOI: 10.3390/toxics12090631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
Responding to global standards and legislative updates in Canada, including Bill S-5 (2023), toxicity testing is shifting towards more ethical, in vitro methods. Traditional two-dimensional (2D) monolayer cell cultures, limited in replicating the complex in vivo environment, have prompted the development of more relevant three-dimensional (3D) spheroidal hepatocyte cultures. This study introduces the first 3D spheroid model for McA-RH7777 cells, assessing xenobiotic receptor activation, cellular signaling, and toxicity against dexamethasone and naphthenic acid (NA)-fraction components; NAFCs. Our findings reveal that 3D McA-RH7777 spheroids demonstrate enhanced sensitivity and more uniform dose-response patterns in gene expression related to xenobiotic metabolism (AhR and PPAR) for both single compounds and complex mixtures. Specifically, 3D cultures showed significant gene expression changes upon dexamethasone exposure and exhibited varying degrees of sensitivity and resistance to the apoptotic effects induced by NAFCs, in comparison to 2D cultures. The optimization of 3D culture conditions enhances the model's physiological relevance and enables the identification of genomic signatures under varied exposures. This study highlights the potential of 3D spheroid cultures in providing a more accurate representation of the liver's microenvironment and advancing our understanding of cellular mechanisms in toxicity testing.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| | - Shanza Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| | - Richard A. Frank
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada; (R.A.F.); (L.M.H.)
| | - L. Mark Hewitt
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada; (R.A.F.); (L.M.H.)
| | - Philippe J. Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1S 5B6, Canada;
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| |
Collapse
|
13
|
Machi JF, Altilio I, Qi Y, Morales AA, Silvestre DH, Hernandez DR, Da Costa-Santos N, Santana AG, Neghabi M, Nategh P, Castro TL, Werneck-de-Castro JP, Ranji M, Evangelista FS, Vazquez-Padron RI, Bernal-Mizrachi E, Rodrigues CO. Endothelial c-Myc knockout disrupts metabolic homeostasis and triggers the development of obesity. Front Cell Dev Biol 2024; 12:1407097. [PMID: 39100099 PMCID: PMC11294153 DOI: 10.3389/fcell.2024.1407097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction: Obesity is a major risk factor associated with multiple pathological conditions including diabetes and cardiovascular disease. Endothelial dysfunction is an early predictor of obesity. However, little is known regarding how early endothelial changes trigger obesity. In the present work we report a novel endothelial-mediated mechanism essential for regulation of metabolic homeostasis, driven by c-Myc. Methods: We used conditional knockout (EC-Myc KO) and overexpression (EC-Myc OE) mouse models to investigate the endothelial-specific role of c-Myc in metabolic homeostasis during aging and high-fat diet exposure. Body weight and metabolic parameters were collected over time and tissue samples collected at endpoint for biochemical, pathology and RNA-sequencing analysis. Animals exposed to high-fat diet were also evaluated for cardiac dysfunction. Results: In the present study we demonstrate that EC-Myc KO triggers endothelial dysfunction, which precedes progressive increase in body weight during aging, under normal dietary conditions. At endpoint, EC-Myc KO animals showed significant increase in white adipose tissue mass relative to control littermates, which was associated with sex-specific changes in whole body metabolism and increase in systemic leptin. Overexpression of endothelial c-Myc attenuated diet-induced obesity and visceral fat accumulation and prevented the development of glucose intolerance and cardiac dysfunction. Transcriptome analysis of skeletal muscle suggests that the protective effects promoted by endothelial c-Myc overexpression are associated with the expression of genes known to increase weight loss, energy expenditure and glucose tolerance. Conclusion: Our results show a novel important role for endothelial c-Myc in regulating metabolic homeostasis and suggests its potential targeting in preventing obesity and associated complications such as diabetes type-2 and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Jacqueline F. Machi
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Isabella Altilio
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Yue Qi
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Alejo A. Morales
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diego H. Silvestre
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diana R. Hernandez
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nicolas Da Costa-Santos
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Aline G. Santana
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Mehrnoosh Neghabi
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Parisa Nategh
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Thiago L. Castro
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - João P. Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mahsa Ranji
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | | | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Claudia O. Rodrigues
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
14
|
Meng X, Wang L, Du YC, Cheng D, Zeng T. PPARβ/δ as a promising molecular drug target for liver diseases: A focused review. Clin Res Hepatol Gastroenterol 2024; 48:102343. [PMID: 38641250 DOI: 10.1016/j.clinre.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Various liver diseases pose great threats to humans. Although the etiologies of these liver diseases are quite diverse, they share similar pathologic phenotypes and molecular mechanisms such as oxidative stress, lipid and glucose metabolism disturbance, hepatic Kupffer cell (KC) proinflammatory polarization and inflammation, insulin resistance, and hepatic stellate cell (HSC) activation and proliferation. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is expressed in various types of liver cells with relatively higher expression in KCs and HSCs. Accumulating evidence has revealed the versatile functions of PPARβ/δ such as controlling lipid homeostasis, inhibiting inflammation, regulating glucose metabolism, and restoring insulin sensitivity, suggesting that PPARβ/δ may serve as a potential molecular drug target for various liver diseases. This article aims to provide a concise review of the structure, expression pattern and biological functions of PPARβ/δ in the liver and its roles in various liver diseases, and to discuss potential future research perspectives.
Collapse
Affiliation(s)
- Xin Meng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lin Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yan-Chao Du
- Jinan Institute for Product Quality Inspection, Jinan, Shandong 250102, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
15
|
Vakilpour A, Amini-Salehi E, Soltani Moghadam A, Keivanlou MH, Letafatkar N, Habibi A, Hashemi M, Eslami N, Zare R, Norouzi N, Delam H, Joukar F, Mansour-Ghanaei F, Hassanipour S, Samethadka Nayak S. The effects of gut microbiome manipulation on glycemic indices in patients with non-alcoholic fatty liver disease: a comprehensive umbrella review. Nutr Diabetes 2024; 14:25. [PMID: 38729941 PMCID: PMC11087547 DOI: 10.1038/s41387-024-00281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a significant risk factor for non-alcoholic fatty liver disease (NAFLD). Increased fasting blood sugar (FBS), fasting insulin (FI), and insulin resistance (HOMA-IR) are observed in patients with NAFLD. Gut microbial modulation using prebiotics, probiotics, and synbiotics has shown promise in NAFLD treatment. This meta-umbrella study aimed to investigate the effects of gut microbial modulation on glycemic indices in patients with NAFLD and discuss potential mechanisms of action. METHODS A systematic search was conducted in PubMed, Web of Science, Scopus, and Cochrane Library until March 2023 for meta-analyses evaluating the effects of probiotics, prebiotics, and synbiotics on patients with NAFLD. Random-effect models, sensitivity analysis, and subgroup analysis were employed. RESULTS Gut microbial therapy significantly decreased HOMA-IR (ES: -0.41; 95%CI: -0.52, -0.31; P < 0.001) and FI (ES: -0.59; 95%CI: -0.77, -0.41; P < 0.001). However, no significant effect was observed on FBS (ES: -0.17; 95%CI: -0.36, 0.02; P = 0.082). Subgroup analysis revealed prebiotics had the most potent effect on HOMA-IR, followed by probiotics and synbiotics. For FI, synbiotics had the most substantial effect, followed by prebiotics and probiotics. CONCLUSION Probiotics, prebiotics, and synbiotics administration significantly reduced FI and HOMA-IR, but no significant effect was observed on FBS.
Collapse
Affiliation(s)
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Mohammad-Hossein Keivanlou
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Habibi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Negar Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Zare
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Naeim Norouzi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Delam
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | | |
Collapse
|
16
|
Wang P, Li Z, Ye D. Single-cell RNA-seq analysis reveals the Wnt/Ca 2+ signaling pathway with inflammation, apoptosis in nucleus pulposus degeneration. BMC Musculoskelet Disord 2024; 25:321. [PMID: 38654287 PMCID: PMC11036596 DOI: 10.1186/s12891-024-07368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Increasing studies have shown degeneration of nucleus pulposus cells (NPCs) as an critical part of the progression of intervertebral disc degeneration (IVDD). However, there are relatively few studies on single-cell transcriptome contrasts in human degenerated NPCs. Moreover, differences in Wnt/Ca2+ signaling in human degenerated nucleus pulposus cells have not been elucidated. The aim of this study is to investigate the differential expression of Wnt/Ca2+ signaling pathway between normal and degenerated nucleus pulposus cells in humans and try to investigate its mechanism. METHODS We performed bioinformatics analysis using our previously published findings to construct single cell expression profiles of normal and degenerated nucleus pulposus. Then, in-depth differential analysis was used to characterize the expression of Wnt/Ca2+ signaling pathway between normal and degenerated nucleus pulposus cells in humans. RESULTS The obtained cell data were clustered into five different chondrocytes clusters, which chondrocyte 4 and chondrocyte 5 mainly accounted for a high proportion in degenerated nucleus pulposus tissues, but rarely in normal nucleus pulposus tissues. Genes associated within the Wnt/Ca2+ signaling pathway, such as Wnt5B, FZD1, PLC (PLCB1), CaN (PPP3CA) and NAFATC1 are mainly present in chondrocyte 3, chondrocyte 4 and chondrocyte 5 from degenerated nucleus pulposus tissues. In addition, as a receptor that activates Wnt signaling pathway, LRP5 is mainly highly expressed in chondrocyte 5 of degenerated nucleus pulposus cells. Six genes, ANGPTL4, PTGES, IGFBP3, GDF15, TRIB3 and TNFRSF10B, which are associated with apoptosis and inflammatory responses, and are widespread in chondrocyte 4 and chondrocyte 5, may be closely related to degenerative of nucleus pulposus cells. CONCLUSIONS Single-cell RNA sequencing revealed differential expression of Wnt/Ca2+ signaling in human normal and degenerated nucleus pulposus cells, and this differential expression may be closely related to the abundance of chondrocyte 4 and chondrocyte 5 in degenerated nucleus pulposus cells. In degenerated nucleus pulposus cells, LRP5 activate Wnt5B, which promotes nucleus pulposus cell apoptosis and inflammatory response by regulating the Wnt/Ca2+ signaling pathway, thereby promoting disc degeneration. ANGPTL4, IGFBP3, PTGES in chondrocyte 4 and TRIB3, GDF15, TNFRSF10B in chondrocyte 5 may play an important role in this process.
Collapse
Affiliation(s)
- Peigeng Wang
- Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong Province, 510220, China
- Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Zhencong Li
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, 524001, China
| | - Dongping Ye
- Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong Province, 510220, China.
- Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China.
| |
Collapse
|
17
|
Hu H, Luo S, Lai P, Lai M, Mao L, Zhang S, Jiang Y, Wen J, Zhou W, Liu X, Wang L, Huang M, Hu Y, Zhao X, Xia L, Zhou W, Jiang Y, Zou Z, Liu A, Guo B, Bai X. ANGPTL4 binds to the leptin receptor to regulate ectopic bone formation. Proc Natl Acad Sci U S A 2024; 121:e2310685120. [PMID: 38147550 PMCID: PMC10769826 DOI: 10.1073/pnas.2310685120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Leptin protein was thought to be unique to leptin receptor (LepR), but the phenotypes of mice with mutation in LepR [db/db (diabetes)] and leptin [ob/ob (obese)] are not identical, and the cause remains unclear. Here, we show that db/db, but not ob/ob, mice had defect in tenotomy-induced heterotopic ossification (HO), implicating alternative ligand(s) for LepR might be involved. Ligand screening revealed that ANGPTL4 (angiopoietin-like protein 4), a stress and fasting-induced factor, was elicited from brown adipose tissue after tenotomy, bound to LepR on PRRX1+ mesenchymal cells at the HO site, thus promotes chondrogenesis and HO development. Disruption of LepR in PRRX1+ cells, or lineage ablation of LepR+ cells, or deletion of ANGPTL4 impeded chondrogenesis and HO in mice. Together, these findings identify ANGPTL4 as a ligand for LepR to regulate the formation of acquired HO.
Collapse
Affiliation(s)
- Hongling Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong528300, China
| | - Sheng Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Pinglin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Mingqiang Lai
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong510900, China
| | - Linlin Mao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yuanjun Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Jiaxin Wen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Wu Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaolin Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Minjun Huang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Yanjun Hu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Anling Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Bin Guo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
- Department of Orthopaedics, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong523018, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| |
Collapse
|
18
|
Hezarkhani S, Hajighaderi A, Hosseinzadeh S, Behnampour N, Veghari G, Fathabadi F, Hesari Z, Joshaghani HR. The serum levels of angiopoietin-like protein 3 and 4 in type 2 diabetic patients with and without metabolic syndrome compared to the control group. Endocrinol Diabetes Metab 2024; 7:e466. [PMID: 38140923 PMCID: PMC10782050 DOI: 10.1002/edm2.466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
INTRODUCTION ANGPTLs (Angiopoietin-like proteins) 3 and 4 play an important role in the development of type 2 diabetes. These glycoproteins affect the modulation of glucose and lipid metabolism. They inhibit lipoprotein lipase (LPL) activity and provoke lipolysis. This study was aimed to investigate the protein levels of ANGPTL3 and 4 in the serum of type 2 diabetic patients with metabolic syndrome in comparison to the type 2 diabetic patients without metabolic syndrome and the control group. METHODS Three groups of individuals were included in this study; Group I: 47 patients with type 2 diabetes and metabolic syndrome; Group II: 25 patients with type 2 diabetes without metabolic syndrome; Group III: 40 non-diabetic healthy people without metabolic syndrome as a control group. After collection of 5 mL fasting blood samples, serum concentrations of fasting blood sugar (FBS), cholesterol (Chol), triglyceride (TG), HDL-C (High-density lipoprotein-Cholesterol) and LDL-C (Low-density lipoprotein-Cholesterol) were measured by the enzymatic method; blood pressure (BP), height and weight with stadiometers; and ANGPTL3 and 4 by the enzyme-linked immunosorbent assay (ELISA). RESULTS The serum levels of ANGPTL3 was significantly different among our three groups (p = .000). In patients with type 2 diabetes and metabolic syndrome (Group I), ANGPTL3 and 4 levels were lower than the control group. The serum levels of the parameters evaluated in this study (except HDL-C) was lower in the group II in comparison with the group I, and this difference was significant for TG, Chol, BP and BMI between these two groups. Also, our results revealed that there was a negative correlation between FBS, TG, Chol, LDL-C and BMI with ANGPTL3 and 4. While, there was a significant positive correlation between ANGPTL4 and ANGPTL3. CONCLUSION Altogether, our findings suggest that the decreased levels of ANGPTL3 and 4 may be a causative factor for type 2 diabetes.
Collapse
Affiliation(s)
- Sharabeh Hezarkhani
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| | - Aytekin Hajighaderi
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| | - Sara Hosseinzadeh
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| | - Naser Behnampour
- Department of Biostatistics, Faculty of HealthGolestan University of Medical SciencesGorganIran
| | - Gholamreza Veghari
- Ischemic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| | - Farshid Fathabadi
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| | - Zahra Hesari
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| |
Collapse
|
19
|
Wang J, Sun L, You J, Peng H, Yan H, Wang J, Sun F, Cui M, Wang S, Zhang Z, Fan X, Liu D, Liu C, Qiu C, Chen C, Xu Z, Chen J, Li W, Liu B. Role and mechanism of PVN-sympathetic-adipose circuit in depression and insulin resistance induced by chronic stress. EMBO Rep 2023; 24:e57176. [PMID: 37870400 DOI: 10.15252/embr.202357176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic stress induces depression and insulin resistance, between which there is a bidirectional relationship. However, the mechanisms underlying this comorbidity remain unclear. White adipose tissue (WAT), innervated by sympathetic nerves, serves as a central node in the interorgan crosstalk through adipokines. Abnormal secretion of adipokines is involved in mood disorders and metabolic morbidities. We describe here a brain-sympathetic nerve-adipose circuit originating in the hypothalamic paraventricular nucleus (PVN) with a role in depression and insulin resistance induced by chronic stress. PVN neurons are labelled after inoculation of pseudorabies virus (PRV) into WAT and are activated under restraint stress. Chemogenetic manipulations suggest a role for the PVN in depression and insulin resistance. Chronic stress increases the sympathetic innervation of WAT and downregulates several antidepressant and insulin-sensitizing adipokines, including leptin, adiponectin, Angptl4 and Sfrp5. Chronic activation of the PVN has similar effects. β-adrenergic receptors translate sympathetic tone into an adipose response, inducing downregulation of those adipokines and depressive-like behaviours and insulin resistance. We finally show that AP-1 has a role in the regulation of adipokine expression under chronic stress.
Collapse
Affiliation(s)
- Jing Wang
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, China
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Linshan Sun
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Jingjing You
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, China
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Honghai Peng
- Department of Neurosurgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haijing Yan
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Jiangong Wang
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, China
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Fengjiao Sun
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, China
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Minghu Cui
- Department of Psychiatry, Binzhou Medical University Hospital, Binzhou, China
| | - Sanwang Wang
- Department of Psychiatry, Binzhou Medical University Hospital, Binzhou, China
| | - Zheng Zhang
- Department of Psychiatry, Binzhou Youfu Hospital, Binzhou, China
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Dunjiang Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Changyun Qiu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Chao Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Zhicheng Xu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Jinbo Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Wei Li
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, China
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
20
|
Todero J, Douillet C, Shumway AJ, Koller BH, Kanke M, Phuong DJ, Stýblo M, Sethupathy P. Molecular and Metabolic Analysis of Arsenic-Exposed Humanized AS3MT Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127021. [PMID: 38150313 PMCID: PMC10752418 DOI: 10.1289/ehp12785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Chronic exposure to inorganic arsenic (iAs) has been associated with type 2 diabetes (T2D). However, potential sex divergence and the underlying mechanisms remain understudied. iAs is not metabolized uniformly across species, which is a limitation of typical exposure studies in rodent models. The development of a new "humanized" mouse model overcomes this limitation. In this study, we leveraged this model to study sex differences in the context of iAs exposure. OBJECTIVES The aim of this study was to determine if males and females exhibit different liver and adipose molecular profiles and metabolic phenotypes in the context of iAs exposure. METHODS Our study was performed on wild-type (WT) 129S6/SvEvTac and humanized arsenic + 3 methyl transferase (human AS3MT) 129S6/SvEvTac mice treated with 400 ppb of iAs via drinking water ad libitum. After 1 month, mice were sacrificed and the liver and gonadal adipose depots were harvested for iAs quantification and sequencing-based microRNA and gene expression analysis. Serum blood was collected for fasting blood glucose, fasting plasma insulin, and homeostatic model assessment for insulin resistance (HOMA-IR). RESULTS We detected sex divergence in liver and adipose markers of diabetes (e.g., miR-34a, insulin signaling pathways, fasting blood glucose, fasting plasma insulin, and HOMA-IR) only in humanized (not WT) mice. In humanized female mice, numerous genes that promote insulin sensitivity and glucose tolerance in both the liver and adipose are elevated compared to humanized male mice. We also identified Klf11 as a putative master regulator of the sex divergence in gene expression in humanized mice. DISCUSSION Our study underscored the importance of future studies leveraging the humanized mouse model to study iAs-associated metabolic disease. The findings suggested that humanized males are at increased risk for metabolic dysfunction relative to humanized females in the context of iAs exposure. Future investigations should focus on the detailed mechanisms that underlie the sex divergence. https://doi.org/10.1289/EHP12785.
Collapse
Affiliation(s)
- Jenna Todero
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alexandria J. Shumway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Beverly H. Koller
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Daryl J. Phuong
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
21
|
Chen S, Jiang J, Su M, Chen P, Liu X, Lei W, Zhang S, Wu Q, Rong F, Li X, Zheng X, Xiao Q. A nomogram based on the expression level of angiopoietin-like 4 to predict the severity of community-acquired pneumonia. BMC Infect Dis 2023; 23:677. [PMID: 37821811 PMCID: PMC10568757 DOI: 10.1186/s12879-023-08648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND The morbidity and mortality of community-acquired pneumonia (CAP) remain high among infectious diseases. It was reported that angiopoietin-like 4 (ANGPTL4) could be a diagnostic biomarker and a therapeutic target for pneumonia. This study aimed to develop a more objective, specific, accurate, and individualized scoring system to predict the severity of CAP. METHODS Totally, 31 non-severe community-acquired pneumonia (nsCAP) patients and 14 severe community-acquired pneumonia (sCAP) patients were enrolled in this study. The CURB-65 and pneumonia severity index (PSI) scores were calculated from the clinical data. Serum ANGPTL4 level was measured by enzyme-linked immunosorbent assay (ELISA). After screening factors by univariate analysis and receiver operating characteristic (ROC) curve analysis, multivariate logistic regression analysis of ANGPTL4 expression level and other risk factors was performed, and a nomogram was developed to predict the severity of CAP. This nomogram was further internally validated by bootstrap resampling with 1000 replications through the area under the ROC curve (AUC), the calibration curve, and the decision curve analysis (DCA). Finally, the prediction performance of the new nomogram model, CURB-65 score, and PSI score was compared by AUC, net reclassification index (NRI), and integrated discrimination improvement (IDI). RESULTS A nomogram for predicting the severity of CAP was developed using three factors (C-reactive protein (CRP), procalcitonin (PCT), and ANGPTL4). According to the internal validation, the nomogram showed a great discrimination capability with an AUC of 0.910. The Hosmer-Lemeshow test and the approximately fitting calibration curve suggested a satisfactory accuracy of prediction. The results of DCA exhibited a great net benefit. The AUC values of CURB-65 score, PSI score, and the new prediction model were 0.857, 0.912, and 0.940, respectively. NRI comparing the new model with CURB-65 score was found to be statistically significant (NRI = 0.834, P < 0.05). CONCLUSION A robust model for predicting the severity of CAP was developed based on the serum ANGPTL4 level. This may provide new insights into accurate assessment of the severity of CAP and its targeted therapy, particularly in the early-stage of the disease.
Collapse
Affiliation(s)
- Siqin Chen
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China
| | - Jia Jiang
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China
| | - Minhong Su
- Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xiang Liu
- Departments of Hematology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Wei Lei
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China
| | - Shaofeng Zhang
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China
| | - Qiang Wu
- Department of Cardiology, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Fu Rong
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China
| | - Xi Li
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China
| | - Xiaobin Zheng
- Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 East Meihua Rd., Zhuhai, 519000, China.
| | - Qiang Xiao
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China.
| |
Collapse
|
22
|
Tamel Selvan K, Goon JA, Makpol S, Tan JK. Therapeutic Potentials of Microalgae and Their Bioactive Compounds on Diabetes Mellitus. Mar Drugs 2023; 21:462. [PMID: 37755075 PMCID: PMC10532649 DOI: 10.3390/md21090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia due to impaired insulin secretion, insulin resistance, or both. Oxidative stress and chronic low-grade inflammation play crucial roles in the pathophysiology of diabetes mellitus. There has been a growing interest in applying natural products to improve metabolic derangements without the side effects of anti-diabetic drugs. Microalgae biomass or extract and their bioactive compounds have been applied as nutraceuticals or additives in food products and health supplements. Several studies have demonstrated the therapeutic effects of microalgae and their bioactive compounds in improving insulin sensitivity attributed to their antioxidant, anti-inflammatory, and pancreatic β-cell protective properties. However, a review summarizing the progression in this topic is lacking despite the increasing number of studies reporting their anti-diabetic potential. In this review, we gathered the findings from in vitro, in vivo, and human studies to discuss the effects of microalgae and their bioactive compounds on diabetes mellitus and the mechanisms involved. Additionally, we discuss the limitations and future perspectives of developing microalgae-based compounds as a health supplement for diabetes mellitus. In conclusion, microalgae-based supplementation has the potential to improve diabetes mellitus and be applied in more clinical studies in the future.
Collapse
Affiliation(s)
| | | | | | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Ya’acob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
23
|
Garruti G, Baj J, Cignarelli A, Perrini S, Giorgino F. Hepatokines, bile acids and ketone bodies are novel Hormones regulating energy homeostasis. Front Endocrinol (Lausanne) 2023; 14:1154561. [PMID: 37274345 PMCID: PMC10236950 DOI: 10.3389/fendo.2023.1154561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 06/06/2023] Open
Abstract
Current views show that an impaired balance partly explains the fat accumulation leading to obesity. Fetal malnutrition and early exposure to endocrine-disrupting compounds also contribute to obesity and impaired insulin secretion and/or sensitivity. The liver plays a major role in systemic glucose homeostasis through hepatokines secreted by hepatocytes. Hepatokines influence metabolism through autocrine, paracrine, and endocrine signaling and mediate the crosstalk between the liver, non-hepatic target tissues, and the brain. The liver also synthetizes bile acids (BAs) from cholesterol and secretes them into the bile. After food consumption, BAs mediate the digestion and absorption of fat-soluble vitamins and lipids in the duodenum. In recent studies, BAs act not simply as fat emulsifiers but represent endocrine molecules regulating key metabolic pathways. The liver is also the main site of the production of ketone bodies (KBs). In prolonged fasting, the brain utilizes KBs as an alternative to CHO. In the last few years, the ketogenic diet (KD) became a promising dietary intervention. Studies on subjects undergoing KD show that KBs are important mediators of inflammation and oxidative stress. The present review will focus on the role played by hepatokines, BAs, and KBs in obesity, and diabetes prevention and management and analyze the positive effects of BAs, KD, and hepatokine receptor analogs, which might justify their use as new therapeutic approaches for metabolic and aging-related diseases.
Collapse
Affiliation(s)
- Gabriella Garruti
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, Lublin, Poland
| | - Angelo Cignarelli
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Sebastio Perrini
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giorgino
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
24
|
Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, Kleiner DE, Loomba R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023; 77:1797-1835. [PMID: 36727674 PMCID: PMC10735173 DOI: 10.1097/hep.0000000000000323] [Citation(s) in RCA: 1051] [Impact Index Per Article: 525.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Affiliation(s)
- Mary E. Rinella
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | | | | | | | - Stephen Caldwell
- School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Diana Barb
- University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Rohit Loomba
- University of California, San Diego, San Diego, California, USA
| |
Collapse
|
25
|
Hepatokines and Adipokines in Metabolic Syndrome. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2023. [DOI: 10.1055/s-0042-1760087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
AbstractHepatokines and adipokines are secretory proteins derived from hepatocytes and adipocytes, respectively. These proteins play a main role in the pathogenesis of metabolic syndrome (MetS), characterized by obesity, dysglycemia, insulin resistance, dyslipidemia, and hypertension. Adipose tissue and liver are important endocrine organs because they regulate metabolic homeostasis as well as inflammation because they secrete adipokines and hepatokines, respectively. These adipokines and hepatokines communicate their action through different autocrine, paracrine and endocrine pathways. Liver regulates systemic homeostasis and also glucose and lipid metabolism through hepatokines. Dysregulation of hepatokines can lead to progression toward MetS, type 2 diabetes (T2D), inflammation, hypertension, and other diseases. Obesity is now a worldwide epidemic. Increasing cases of obesity and obesity-associated metabolic syndrome has brought the focus on understanding the biology of adipocytes and the mechanisms occurring in adipose tissue of obese individuals. A lot of facts are now available on adipose tissue as well. Adipose tissue is now given the status of an endocrine organ. Recent evidence indicates that obesity contributes to systemic metabolic dysfunction. Adipose tissue plays a significant role in systemic metabolism by communicating with other central and peripheral organs via the production and secretion of a group of proteins known as adipokines. Adipokine levels regulate metabolic state of our body and are potent enough to have a direct impact upon energy homeostasis and systemic metabolism. Dysregulation of adipokines contribute to obesity, T2D, hypertension and several other pathological changes in various organs. This makes characterization of hepatokines and adipokines extremely important to understand the pathogenesis of MetS. Hepatokines such as fetuin-A and leukocyte cell-derived chemotaxin 2, and adipokines such as resistin, leptin, TNF-α, and adiponectin are some of the most studied proteins and they can modulate the manifestations of MetS. Detailed insight into the function and mechanism of these adipokines and hepatokines in the pathogenesis of MetS can show the path for devising better preventative and therapeutic strategies against this present-day pandemic.
Collapse
|
26
|
Tamel Selvan K, Goon JA, Makpol S, Tan JK. Effects of Microalgae on Metabolic Syndrome. Antioxidants (Basel) 2023; 12:449. [PMID: 36830009 PMCID: PMC9952430 DOI: 10.3390/antiox12020449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic disturbances, including abdominal obesity, hypertension, hypertriglyceridemia, reduced high-density lipoprotein cholesterol (HDL-C) and hyperglycemia. Adopting a healthier lifestyle and multiple drug-based therapies are current ways to manage MetS, but they have limited efficacy, albeit the prevalence of MetS is rising. Microalgae is a part of the human diet and has also been consumed as a health supplement to improve insulin sensitivity, inflammation, and several components of MetS. These therapeutic effects of microalgae are attributed to the bioactive compounds present in them that exhibit antioxidant, anti-inflammatory, anti-obesity, antihypertensive, hepatoprotective and immunomodulatory effects. Therefore, studies investigating the potential of microalgae in alleviating MetS are becoming more popular, but a review on this topic remains scarce. In this review, we discuss the effects of microalgae, specifically on MetS, by reviewing the evidence from scientific literature covering in vitro and in vivo studies. In addition, we also discuss the underlying mechanisms that modulate the effects of microalgae on MetS, and the limitations and future perspectives of developing microalgae as a health supplement for MetS. Microalgae supplementation is becoming a viable approach in alleviating metabolic disturbances and as a unique addition to the management of MetS.
Collapse
Affiliation(s)
| | | | | | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Ya’acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
27
|
Jiang Q, Miao R, Wang Y, Wang W, Zhao D, Niu Y, Ding Q, Li Y, Leung PCK, Wei D, Chen ZJ. ANGPTL4 inhibits granulosa cell proliferation in polycystic ovary syndrome by EGFR/JAK1/STAT3-mediated induction of p21. FASEB J 2023; 37:e22693. [PMID: 36607250 DOI: 10.1096/fj.202201246rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 01/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common, heterogenous endocrine disorders and is the leading cause of ovulatory obstacle associated with abnormal folliculogenesis. Dysfunction of ovarian granulosa cells (GCs) is recognized as a major factor that underlies abnormal follicle maturation. Angiopoietin-like 4 (ANGPTL4) expression in GCs differs between patients with and without PCOS. However, the role and mechanism of ANGPTL4 in impaired follicular development are still poorly understood. Here, the case-control study was designed to investigate the predictive value of ANGPTL4 in PCOS while cell experiments in vitro were set for mechanism research. Results found that ANGPTL4 levels in serum and in follicular fluid, and its expression in GCs, were upregulated in patients with PCOS. In KGN and SVOG cells, upregulation of ANGPTL4 inhibited the proliferation of GCs by blocking G1/S cell cycle progression, as well as the molecular activation of the EGFR/JAK1/STAT3 cascade. Moreover, the STAT3-dependent CDKN1A(p21) promoter increased CDKN1A transcription, resulting in remarkable suppression effect on GCs. Together, our results demonstrated that overexpression of ANGPTL4 inhibited the proliferation of GCs through EGFR/JAK1/STAT3-mediated induction of p21, thus providing a novel epigenetic mechanism for the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Qi Jiang
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Ruolan Miao
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yuhuan Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Wenqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Dingying Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yue Niu
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Qiaoqiao Ding
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| |
Collapse
|
28
|
Diclofenac Disrupts the Circadian Clock and through Complex Cross-Talks Aggravates Immune-Mediated Liver Injury-A Repeated Dose Study in Minipigs for 28 Days. Int J Mol Sci 2023; 24:ijms24021445. [PMID: 36674967 PMCID: PMC9863319 DOI: 10.3390/ijms24021445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
Diclofenac effectively reduces pain and inflammation; however, its use is associated with hepato- and nephrotoxicity. To delineate mechanisms of injury, we investigated a clinically relevant (3 mg/kg) and high-dose (15 mg/kg) in minipigs for 4 weeks. Initially, serum biochemistries and blood-smears indicated an inflammatory response but returned to normal after 4 weeks of treatment. Notwithstanding, histopathology revealed drug-induced hepatitis, marked glycogen depletion, necrosis and steatosis. Strikingly, the genomic study revealed diclofenac to desynchronize the liver clock with manifest inductions of its components CLOCK, NPAS2 and BMAL1. The > 4-fold induced CRY1 expression underscored an activated core-loop, and the dose dependent > 60% reduction in PER2mRNA repressed the negative feedback loop; however, it exacerbated hepatotoxicity. Bioinformatics enabled the construction of gene-regulatory networks, and we linked the disruption of the liver-clock to impaired glycogenesis, lipid metabolism and the control of immune responses, as shown by the 3-, 6- and 8-fold induced expression of pro-inflammatory CXCL2, lysozyme and ß-defensin. Additionally, diclofenac treatment caused adrenocortical hypertrophy and thymic atrophy, and we evidenced induced glucocorticoid receptor (GR) activity by immunohistochemistry. Given that REV-ERB connects the circadian clock with hepatic GR, its > 80% repression alleviated immune responses as manifested by repressed expressions of CXCL9(90%), CCL8(60%) and RSAD2(70%). Together, we propose a circuitry, whereby diclofenac desynchronizes the liver clock in the control of the hepatic metabolism and immune response.
Collapse
|
29
|
Heintz MM, Eccles JA, Olack EM, Maner-Smith KM, Ortlund EA, Baldwin WS. Human CYP2B6 produces oxylipins from polyunsaturated fatty acids and reduces diet-induced obesity. PLoS One 2022; 17:e0277053. [PMID: 36520866 PMCID: PMC9754190 DOI: 10.1371/journal.pone.0277053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple factors in addition to over consumption lead to obesity and non-alcoholic fatty liver disease (NAFLD) in the United States and worldwide. CYP2B6 is the only human detoxification CYP whose loss is associated with obesity, and Cyp2b-null mice show greater diet-induced obesity with increased steatosis than wildtype mice. However, a putative mechanism has not been determined. LC-MS/MS revealed that CYP2B6 metabolizes PUFAs, with a preference for metabolism of ALA to 9-HOTrE and to a lesser extent 13-HOTrE with a preference for metabolism of PUFAs at the 9- and 13-positions. To further study the role of CYP2B6 in vivo, humanized-CYP2B6-transgenic (hCYP2B6-Tg) and Cyp2b-null mice were fed a 60% high-fat diet for 16 weeks. Compared to Cyp2b-null mice, hCYP2B6-Tg mice showed reduced weight gain and metabolic disease as measured by glucose tolerance tests, however hCYP2B6-Tg male mice showed increased liver triglycerides. Serum and liver oxylipin metabolite concentrations increased in male hCYP2B6-Tg mice, while only serum oxylipins increased in female hCYP2B6-Tg mice with the greatest increases in LA oxylipins metabolized at the 9 and 13-positions. Several of these oxylipins, specifically 9-HODE, 9-HOTrE, and 13-oxoODE, are PPAR agonists. RNA-seq data also demonstrated sexually dimorphic changes in gene expression related to nuclear receptor signaling, especially CAR > PPAR with qPCR suggesting PPARγ signaling is more likely than PPARα signaling in male mice. Overall, our data indicates that CYP2B6 is an anti-obesity enzyme, but probably to a lesser extent than murine Cyp2b's. Therefore, the inhibition of CYP2B6 by xenobiotics or dietary fats can exacerbate obesity and metabolic disease potentially through disrupted PUFA metabolism and the production of key lipid metabolites.
Collapse
Affiliation(s)
- Melissa M. Heintz
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Jazmine A. Eccles
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Emily M. Olack
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kristal M. Maner-Smith
- Emory Integrated Metabolomics and Lipodomics Core, Emory University, Atlanta, Georgia, United States of America
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - William S. Baldwin
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
Musazadeh V, Faghfouri AH, Kavyani Z, Dehghan P. Synbiotic as an adjunctive agent can be useful in the management of hyperglycemia in adults: An umbrella review and meta-research of meta-analysis studies. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
31
|
Vachher M, Bansal S, Kumar B, Yadav S, Arora T, Wali NM, Burman A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J Cell Biochem 2022; 123:1553-1584. [PMID: 35818831 DOI: 10.1002/jcb.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.
Collapse
Affiliation(s)
- Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Savita Bansal
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Taruna Arora
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Nalini Moza Wali
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| |
Collapse
|
32
|
Chun J, Riella CV, Chung H, Shah SS, Wang M, Magraner JM, Ribas GT, Ribas HT, Zhang JY, Alper SL, Friedman DJ, Pollak MR. DGAT2 Inhibition Potentiates Lipid Droplet Formation To Reduce Cytotoxicity in APOL1 Kidney Risk Variants. J Am Soc Nephrol 2022; 33:889-907. [PMID: 35232775 PMCID: PMC9063887 DOI: 10.1681/asn.2021050723] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/22/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Two variants in the gene encoding apolipoprotein L1 (APOL1) that are highly associated with African ancestry are major contributors to the large racial disparity in rates of human kidney disease. We previously demonstrated that recruitment of APOL1 risk variants G1 and G2 from the endoplasmic reticulum to lipid droplets leads to reduced APOL1-mediated cytotoxicity in human podocytes. METHODS We used CRISPR-Cas9 gene editing of induced pluripotent stem cells to develop human-derived APOL1G0/G0 and APOL1G2/G2 kidney organoids on an isogenic background, and performed bulk RNA sequencing of organoids before and after treatment with IFN-γ. We examined the number and distribution of lipid droplets in response to treatment with inhibitors of diacylglycerol O-acyltransferases 1 and 2 (DGAT1 and DGAT2) in kidney cells and organoids. RESULTS APOL1 was highly upregulated in response to IFN-γ in human kidney organoids, with greater increases in organoids of high-risk G1 and G2 genotypes compared with wild-type (G0) organoids. RNA sequencing of organoids revealed that high-risk APOL1G2/G2 organoids exhibited downregulation of a number of genes involved in lipogenesis and lipid droplet biogenesis, as well as upregulation of genes involved in fatty acid oxidation. There were fewer lipid droplets in unstimulated high-risk APOL1G2/G2 kidney organoids than in wild-type APOL1G0/G0 organoids. Whereas DGAT1 inhibition reduced kidney organoid lipid droplet number, DGAT2 inhibition unexpectedly increased organoid lipid droplet number. DGAT2 inhibition promoted the recruitment of APOL1 to lipid droplets, with associated reduction in cytotoxicity. CONCLUSIONS Lipogenesis and lipid droplet formation are important modulators of APOL1-associated cytotoxicity. Inhibition of DGAT2 may offer a potential therapeutic strategy to attenuate cytotoxic effects of APOL1 risk variants.
Collapse
Affiliation(s)
- Justin Chun
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Division of Nephrology, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Cristian V. Riella
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Hyunjae Chung
- Department of Medicine, Division of Nephrology, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Shrijal S. Shah
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Minxian Wang
- Cardiovascular Disease Initiative and the Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jose M. Magraner
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Guilherme T. Ribas
- Professional and Technological Education Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Hennrique T. Ribas
- Professional and Technological Education Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Jia-Yue Zhang
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Seth. L. Alper
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - David J. Friedman
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Martin R. Pollak
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Boeckmans J, Gatzios A, Heymans A, Rombaut M, Rogiers V, De Kock J, Vanhaecke T, Rodrigues RM. Transcriptomics Reveals Discordant Lipid Metabolism Effects between In Vitro Models Exposed to Elafibranor and Liver Samples of NAFLD Patients after Bariatric Surgery. Cells 2022; 11:893. [PMID: 35269515 PMCID: PMC8909190 DOI: 10.3390/cells11050893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND AIMS Non-alcoholic steatohepatitis (NASH) is a life-threatening stage of non-alcoholic fatty liver disease (NAFLD) for which no drugs have been approved. We have previously shown that human-derived hepatic in vitro models can be used to mimic key cellular mechanisms involved in the progression of NASH. In the present study, we first characterize the transcriptome of multiple in vitro NASH models. Subsequently, we investigate how elafibranor, which is a peroxisome proliferator-activated receptor (PPAR)-α/δ agonist that has recently failed a phase 3 clinical trial as a potential anti-NASH compound, modulates the transcriptome of these models. Finally, we compare the elafibranor-induced gene expression modulation to transcriptome data of patients with improved/resolved NAFLD/NASH upon bariatric surgery, which is the only proven clinical NASH therapy. METHODS Human whole genome microarrays were used for the transcriptomics evaluation of hepatic in vitro models. Comparison to publicly available clinical datasets was conducted using multiple bioinformatic application tools. RESULTS Primary human hepatocytes (PHH), HepaRG, and human skin stem cell-derived hepatic progenitors (hSKP-HPC) exposed to NASH-inducing triggers exhibit up to 35% overlap with datasets of liver samples from NASH patients. Exposure of the in vitro NASH models to elafibranor partially reversed the transcriptional modulations, predicting an inhibition of toll-like receptor (TLR)-2/4/9-mediated inflammatory responses, NFκB-signaling, hepatic fibrosis, and leukocyte migration. These transcriptomic changes were also observed in the datasets of liver samples of patients with resolved NASH. Peroxisome Proliferator Activated Receptor Alpha (PPARA), PPARG Coactivator 1 Alpha (PPARGC1A), and Sirtuin 1 (SIRT1) were identified as the major common upstream regulators upon exposure to elafibranor. Analysis of the downstream mechanistic networks further revealed that angiopoietin Like 4 (ANGPTL4), pyruvate dehydrogenase kinase 4 (PDK4), and perilipin 2 (PLIN2), which are involved in the promotion of hepatic lipid accumulation, were also commonly upregulated by elafibranor in all in vitro NASH models. Contrarily, these genes were not upregulated in liver samples of patients with resolved NASH. CONCLUSION Transcriptomics comparison between in vitro NASH models exposed to elafibranor and clinical datasets of NAFLD patients after bariatric surgery reveals commonly modulated anti-inflammatory responses, but discordant modulations of key factors in lipid metabolism. This discordant adverse effect of elafibranor deserves further investigation when assessing PPAR-α/δ agonism as a potential anti-NASH therapy.
Collapse
Affiliation(s)
- Joost Boeckmans
- Correspondence: (J.B.); (R.M.R.); Tel.: +32-(0)-2-477-45-19 (R.M.R.)
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Han X, Song D. Using a Machine Learning Approach to Identify Key Biomarkers for Renal Clear Cell Carcinoma. Int J Gen Med 2022; 15:3541-3558. [PMID: 35392028 PMCID: PMC8980298 DOI: 10.2147/ijgm.s351168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background The most common and deadly subtype of renal carcinoma is kidney renal clear cell carcinoma (KIRC), which accounts for approximately 75% of renal carcinoma. However, the main cause of death in KIRC patients is tumor metastasis. There are no obvious clinical features in the early stage of kidney cancer, and 25–30% of patients have already metastasized when they are first diagnosed. Moreover, KIRC patients whose local tumors have been removed by nephrectomy are still at high risk of metastasis and recurrence and are not sensitive to chemotherapy and radiotherapy, leading to poor prognosis. Therefore, early diagnosis and treatment of this disease are very important. Methods KIRC-related patient datasets were downloaded from the GEO database and TCGA database. DEG screening and GO, KEGG and GSEA enrichment analysis was firstly conducted and then the LASSO and support vector machine (SVM) RFE algorithms were adopted to identify KIRC-associated key genes in training sets and validate them in the test set. The clinical prognostic analysis including the association between the expression of key genes and the overall survival, stage, grade across KIRC, the immune infiltration difference between normal samples and cancer samples, the correlation between the key genes and immune cells, immunomodulator, immune subtypes of KIRC were investigated in this research. Results We finally screened out 4 key genes, including ACPP, ANGPTL4, SCNN1G, SLC22A7. The expression of key genes show difference among normal samples and tumor samples, SCNN1G and SLC22A7 could be predictor of prognosis of patients. The expression of key genes was related with the abundance of tumor infiltration immune cells and the gene expression of immune checkpoint. Conclusion This study screened the 4 key genes, which contributed to early diagnosis, prognosis assessment and immune target treatment of patients with KIRC.
Collapse
Affiliation(s)
- Xiaying Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People’s Republic of China
- Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People’s Republic of China
- Correspondence: Dianwen Song, Email
| |
Collapse
|
35
|
Guo J, Zhang M, Wang H, Li N, Lu Z, Li L, Hui S, Xu H. Gut microbiota and short chain fatty acids partially mediate the beneficial effects of inulin on metabolic disorders in obese ob/ob mice. J Food Biochem 2022; 46:e14063. [PMID: 35128673 DOI: 10.1111/jfbc.14063] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 02/01/2023]
Abstract
Mounting evidence has linked both obesity and metabolic disorders with dysbiosis of the gut microbiota. Dietary inulin is conducive to modulating this dysbiosis, and represents a potential means to improve disorders of glucose and lipid metabolism. However, the mechanisms underlying these improvements are largely unclear. Obese ob/ob mice were fed a standard chow, a low fiber diet (LFD) or a high fiber diet (HFD) for 4 weeks, and the body weight, fecal short chain fatty acids (SCFAs) level, and plasma and liver lipid profiles were analyzed. Oral glucose tolerance testing, and gut microbiota sequencing were also conducted. Dietary inulin improved the dysbiosis of the gut microbiota, attenuated the decrease in phylum Bacteroidetes, repressed the increase of phylum Firmicutes, and led to an increase in the ratio of Firmicutes/Bacteroidetes. At the family level, inulin promoted the expansion of SCFAs-producing Ruminococcaceae and Lachnospiraceae bacteria, which increased the fecal SCFAs concentrations. At the genus level, inulin increased the levels of Bacteroides and Bifidobacteria. Furthermore, our results revealed that there was enhanced expression of angiopoietin-like protein 4 (ANGPTL4), which might be induced by the higher production of SCFAs, and this may underlie the improvements in the disorders of glucose and lipid metabolism seen in mice with added dietary inulin. In conclusion, inulin may ameliorate metabolic disorders by remodeling the gut microbiota and increasing the production of SCFAs, which might be mediated by the ANGPTL4-related signaling pathway. Interventions targeting the gut microbiota warrant further investigation as a novel therapy for metabolic diseases. PRACTICAL APPLICATIONS: Mounting evidence has linked both obesity and metabolic disorders with dysbiosis of the gut microbiota. Dietary inulin is conducive to modulating this dysbiosis, and represents a potential means to improve disorders of glucose and lipid metabolism. However, the mechanisms underlying these improvements are largely unclear. In the present study, we investigated the effects of dietary fiber (inulin) on metabolic homeostasis using ob/ob mice. The results of our study demonstrate that inulin-induced remodeling of the gut microbiota resulted in increased production of short chain fatty acids (SCFAs), leading to the enhanced expression of angiopoietin-like protein 4 (ANGPTL4), which improved the glucose and lipid metabolism. Our results suggest that the gut microbiota, SCFAs and ANGPTL4 pathway at least partially mediate the beneficial effects of inulin on metabolic disorders in ob/ob mice.
Collapse
Affiliation(s)
- Jing Guo
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengyuan Zhang
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - He Wang
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Na Li
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zongliang Lu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Long Li
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Suocheng Hui
- Research Department, The Rocket Force Characteristic Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Hongxia Xu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
36
|
Zhao Z, Deng X, Jia J, Zhao L, Wang C, Cai Z, Guo C, Yang L, Wang D, Ma S, Deng J, Li H, Zhou L, Tu Z, Yuan G. Angiopoietin-like protein 8 (betatrophin) inhibits hepatic gluconeogenesis through PI3K/Akt signaling pathway in diabetic mice. Metabolism 2022; 126:154921. [PMID: 34715116 DOI: 10.1016/j.metabol.2021.154921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Angiopoietin-like protein 8 (ANGPTL8) is a 198 amino-acid long, novel secreted protein that is mainly expressed in the liver and brown adipose tissues. At present, evidence supporting the involvement of ANGPTL8 in the regulation of glucose metabolism is inconclusive, along with its function in the liver. Previous studies mainly focused on the effect of ANGPTL8 on glucose metabolism in non-diabetic mice, and few relevant studies in diabetic mice exist. Therefore, this study aimed to investigate the role of ANGPTL8 on glucose homeostasis and elucidate the underlying mechanisms in diabetic mice. METHODS db/db diabetic and high-fat diet/streptozotocin-induced diabetic mice were injected with adenovirus expressing ANGPTL8 through the tail vein. Blood glucose levels were measured and glucose, insulin, and pyruvate tolerance tests were performed. To explore the molecular mechanism by which ANGPTL8 regulates hepatic glucose metabolism and manipulate mouse ANGPTL8 expression levels both in vivo and in vitro based on adenoviral transduction, gain- and loss-of-function strategies were adopted. RESULTS Adenovirus-mediated overexpression of ANGPTL8 decreased fasting blood glucose levels and improved glucose tolerance and insulin sensitivity in db/db and high-fat diet/streptozotocin-induced diabetic mice. ANGPTL8 knockdown yielded the opposite effects. ANGPTL8 was upregulated in the cAMP/Dex-induced hepatocyte gluconeogenesis model. Moreover, ANGPTL8 overexpression in primary hepatocytes and diabetic mouse livers inhibited the expression of gluconeogenesis-related genes, including PEPCK and G6PC, by activating the AKT signaling pathway and, thereby, reducing glucose production. Therefore, the results demonstrated that ANGPTL8 improved glucose metabolism via inhibition of hepatic gluconeogenesis in diabetic mice. CONCLUSIONS Current findings highlight a critical role of hepatic ANGPTL8 in glucose homeostasis, suggesting that increased ANGPTL8 expression could be an underlying factor for the inhibition of hepatic gluconeogenesis, which could be targeted for the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Zhicong Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, China
| | - Jue Jia
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, China
| | - Li Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, China
| | - Chenxi Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, China
| | - Zhensheng Cai
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, China
| | - Chang Guo
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, China
| | - Ling Yang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, China
| | - Dong Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, China
| | - Suxian Ma
- Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, China
| | - Jialiang Deng
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, China
| | - Haoxiang Li
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, China
| | - Libin Zhou
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, China.
| |
Collapse
|
37
|
Choudhuri R, Sowers AL, Chandramouli GVR, Gamson J, Krishna MC, Mitchell JB, Cook JA. The antioxidant tempol transforms gut microbiome to resist obesity in female C3H mice fed a high fat diet. Free Radic Biol Med 2022; 178:380-390. [PMID: 34883252 PMCID: PMC8753776 DOI: 10.1016/j.freeradbiomed.2021.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
The nitroxide, Tempol, prevents obesity related changes in mice fed a high fat diet (HFD). The purpose of this study was to gain insight into the mechanisms that result in such changes by Tempol in female C3H mice. Microarray methodology, Western blotting, bile acid analyses, and gut microbiome sequencing were used to identify multiple genes, proteins, bile acids, and bacteria that are regulated by Tempol in female C3H mice on HFD. The effects of antibiotics in combination with Tempol on the gut microflora were also studied. Adipose tissue, from Tempol treated mice, was analyzed using targeted gene microarrays revealing up-regulation of fatty acid metabolism genes (Acadm and Acadl > 4-fold, and Acsm3 and Acsm5 > 10-fold). Gene microarray studies of liver tissue from mice switched from HFD to Tempol HFD showed down-regulation of fatty acid synthesis genes and up-regulation of fatty acid oxidation genes. Analyses of proteins involved in obesity revealed that the expression of aldehyde dehydrogenase 1A1 (ALDH1A1) and fasting induced adipose factor/angiopoietin-like protein 4 (FIAF/ANGPTL4) was altered by Tempol HFD. Bile acid studies revealed increases in cholic acid (CA) and deoxycholic acid (DCA) in both the liver and serum of Tempol treated mice. Tempol HFD effect on the gut microbiome composition showed an increase in the population of Akkermansia muciniphila, a bacterial species known to be associated with a lean, anti-inflammatory phenotype. Antibiotic treatment significantly reduced the total level of bacterial numbers, however, Tempol was still effective in reducing the HFD weight gain. Even after antibiotic treatment Tempol still positively influenced several bacterial species such as as Akkermansia muciniphila and Bilophila wadsworthia. The positive effects of Tempol moderating weight gain in female mice fed a HFD involves changes to the gut microbiome, bile acids composition, and finally to changes in genes and proteins involved in fatty acid metabolism and storage.
Collapse
Affiliation(s)
- Rajani Choudhuri
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anastasia L Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Janet Gamson
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John A Cook
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
38
|
Nolte W, Weikard R, Albrecht E, Hammon HM, Kühn C. Metabogenomic analysis to functionally annotate the regulatory role of long non-coding RNAs in the liver of cows with different nutrient partitioning phenotype. Genomics 2021; 114:202-214. [PMID: 34923089 DOI: 10.1016/j.ygeno.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 07/26/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) hold gene regulatory potential, but require substantial further functional annotation in livestock. Applying two metabogenomic approaches by combining transcriptomic and metabolomic analyses, we aimed to identify lncRNAs with potential regulatory function for divergent nutrient partitioning of lactating crossbred cows and to establish metabogenomic interaction networks comprising metabolites, genes and lncRNAs. Through correlation analysis of lncRNA expression with transcriptomic and metabolomic data, we unraveled lncRNAs that have a putative regulatory role in energy and lipid metabolism, the urea and tricarboxylic acid cycles, and gluconeogenesis. Especially FGF21, which correlated with a plentitude of differentially expressed genes, differentially abundant metabolites, as well as lncRNAs, suggested itself as a key metabolic regulator. Notably, lncRNAs in close physical proximity to coding-genes as well as lncRNAs with natural antisense transcripts appear to perform a fine-tuning function in gene expression involved in metabolic pathways associated with different nutrient partitioning phenotypes.
Collapse
Affiliation(s)
- Wietje Nolte
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Rosemarie Weikard
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Harald M Hammon
- Institute of Nutritional Physiology "Oskar Kellner", Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Christa Kühn
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany.
| |
Collapse
|
39
|
Kim TH, Hong DG, Yang YM. Hepatokines and Non-Alcoholic Fatty Liver Disease: Linking Liver Pathophysiology to Metabolism. Biomedicines 2021; 9:biomedicines9121903. [PMID: 34944728 PMCID: PMC8698516 DOI: 10.3390/biomedicines9121903] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022] Open
Abstract
The liver plays a key role in maintaining energy homeostasis by sensing and responding to changes in nutrient status under various metabolic conditions. Recently highlighted as a major endocrine organ, the contribution of the liver to systemic glucose and lipid metabolism is primarily attributed to signaling crosstalk between multiple organs via hepatic hormones, cytokines, and hepatokines. Hepatokines are hormone-like proteins secreted by hepatocytes, and a number of these have been associated with extra-hepatic metabolic regulation. Mounting evidence has revealed that the secretory profiles of hepatokines are significantly altered in non-alcoholic fatty liver disease (NAFLD), the most common hepatic manifestation, which frequently precedes other metabolic disorders, including insulin resistance and type 2 diabetes. Therefore, deciphering the mechanism of hepatokine-mediated inter-organ communication is essential for understanding the complex metabolic network between tissues, as well as for the identification of novel diagnostic and/or therapeutic targets in metabolic disease. In this review, we describe the hepatokine-driven inter-organ crosstalk in the context of liver pathophysiology, with a particular focus on NAFLD progression. Moreover, we summarize key hepatokines and their molecular mechanisms of metabolic control in non-hepatic tissues, discussing their potential as novel biomarkers and therapeutic targets in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Dong-Gyun Hong
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-6909
| |
Collapse
|
40
|
Expression of ANGPTL4 in Nucleus Pulposus Tissues Is Associated with Intervertebral Disc Degeneration. DISEASE MARKERS 2021; 2021:3532716. [PMID: 34876931 PMCID: PMC8645404 DOI: 10.1155/2021/3532716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Objective Angiopoietin-like protein 4 (ANGPTL4), encoding a glycosylated secreted protein, has been reported to be closely related to many kinds of diseases, including diabetes, tumor, and some musculoskeletal pathologies, such as rheumatoid arthritis, osteoarthritis, and osteoporosis. The aim of the current study is to investigate the role of ANGPTL4 in intervertebral disc degeneration and analyze the association of ANGPTL4 expression with Pfirrmann grades. Methods A total of 162 nucleus pulposus tissues were collected from lumbar intervertebral disc herniation patients undergoing interforaminal endoscopic surgery. Real-time quantitative PCR and western blot were performed to determine the mRNA and protein expression of ANGPTL4 in nucleus pulposus samples. Statistical analysis was performed to analyze the association of ANGPTL4 expression with Pfirrmann grades. Results Based on the clinical data of 162 patients, results showed that Pfirrmann grades were significantly associated with patients' age (r = 0.162, P = 0.047) and were not significantly associated with patients' gender (P > 0.05). RT-qPCR and western blot results showed that the mRNA (r = 0.287, P < 0.05) and protein (r = 0.356, P < 0.05) expressions of ANGPTL4 were both closely associated with Pfirrmann grades. The expression of ANGPTL4 was remarkably increased in the groups of high IVDD Pfirrmann grades. Conclusion The results demonstrated that ANGPTL4 expression was positively associated with the Pfirrmann grades and the severity of intervertebral disc degeneration. ANGPTL4 may be served as a candidate biomarker for intervertebral disc degeneration.
Collapse
|
41
|
El Hini SH, Mahmoud YZ, Saedii AA, Mahmoud SS, Amin MA, Mahmoud SR, Matta RA. Angiopoietin-like proteins 3, 4 and 8 are linked to cardiovascular function in naïve sub-clinical and overt hypothyroid patients receiving levothyroxine therapy. Endocr Connect 2021; 10:1570-1583. [PMID: 34739390 PMCID: PMC8679937 DOI: 10.1530/ec-21-0398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/05/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Angiopoietin-like proteins (ANGPTL) 3, 4 and 8 are upcoming cardiovascular biomarkers. Experimental studies showed that thyroid hormones altered their levels. We assessed ANGPTL3, 4 and 8 as predictors of cardiovascular functions among naïve subclinical and naïve overt hypothyroidism (SCH and OH) and altered ANGPTL levels with levothyroxine replacement (LT4) and their association with improved cardiovascular risk factors and cardiovascular function. DESIGN AND METHODS The study was a prospective follow-up study that assessed ANGPTL3, 4 and 8 levels, vascular status (flow-mediated dilation% of brachial artery (FMD%), carotid intima-media thickness (CIMT), aortic stiffness index (ASI)), left ventricle (LV) parameters (ejection fraction (EF), myocardial performance index (MPI), and LV mass), well-known cardiovascular risk factors and homeostatic model for the assessment of insulin resistance, at two time points, that is, among naïve SCH, naïve OH, and healthy subjects groups; and at 6 months after achieving the euthyroid state with LT4 by calculating their increased or decreased delta changes (∆↑ or ∆↓) in longitudinal arm among LT4-hypothyroid groups. RESULTS Significantly elevated levels of ANGPTL3, 4 and 8 among hypothyroid groups than the healthy subjects were reduced with LT4. Multivariate analysis revealed ANGPTLs as independent predictors of cardiovascular functions and the contributors for ANGPTL level included ANGPTL3 and 4 for impaired FMD%, and ANGPTL8 for LV mass among naïve SCH; ANGPTL3 for EF% and ANGPTL8 for CIMT in naïve OH; ∆↓ANGPTL3 for ∆↓ASI meanwhile ∆↑freeT4 for ∆↓ANGPTL3, ∆↓fasting glucose, ∆↓triglyceride, and ∆↓thyroid peroxidase antibody for ∆↓ANGPTL4 among LT4-SCH. ∆↓ANGPTL4 for ∆↓MPI and ∆↓LV mass, meanwhile ∆↓TSH and ∆↓triglyceride for ∆↓ANGPTL3, ∆↑free T3 and ∆↓HOMA-IR for ∆↓ANGPTL4, and systolic blood pressure and waist circumference for ∆↓ANGPTL8 among LT4-OH. CONCLUSION Elevated ANGPTL3, 4 and 8 levels are differentially independent predictors of endothelial and cardiac function and are reduced with LT4 in SCH and OH.
Collapse
Affiliation(s)
- Sahar Hossam El Hini
- Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Yehia Zakaria Mahmoud
- Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | | | | | - Mohamed Ahmed Amin
- Department of Radiology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Shereen Riad Mahmoud
- Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ragaa Abdelshaheed Matta
- Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
- Correspondence should be addressed to R A Matta:
| |
Collapse
|
42
|
Lin J, Jiang X, Dong M, Liu X, Shen Q, Huang Y, Zhang H, Ye R, Zhou H, Yan C, Yuan S, Wu X, Chen L, Wang Y, He M, Tao Y, Zhang Z, Jin W. Hepatokine Pregnancy Zone Protein Governs the Diet-Induced Thermogenesis Through Activating Brown Adipose Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101991. [PMID: 34514733 PMCID: PMC8564441 DOI: 10.1002/advs.202101991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Indexed: 05/06/2023]
Abstract
Intermittent fasting (IF), as a dietary intervention for weight loss, takes effects primarily through increasing energy expenditure. However, whether inter-organ systems play a key role in IF remains unclear. Here, a novel hepatokine, pregnancy zone protein (PZP) is identified, which has significant induction during the refeeding stage of IF. Further, loss of function studies and protein therapeutic experiment in mice revealed that PZP promotes diet-induced thermogenesis through activating brown adipose tissue (BAT). Mechanistically, circulating PZP can bind to cell surface glucose-regulated protein of 78 kDa (GRP78) to promote uncoupling protein 1 (UCP1) expression via a p38 MAPK-ATF2 signaling pathway in BAT. These studies illuminate a systemic regulation in which the IF promotes BAT thermogenesis through the endocrinal system and provide a novel potential target for treating obesity and related disorders.
Collapse
Affiliation(s)
- Jun Lin
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Xiaoxiao Jiang
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational MedicineCollege of Life Science and AgronomyZhoukou Normal UniversityZhoukou466000China
| | - Qiwei Shen
- Department of General SurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Yuanyuan Huang
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Rongcai Ye
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Huiqiao Zhou
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chunlong Yan
- College of AgricultureYanbian UniversityYanji133000China
| | - Shouli Yuan
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiangnan Wu
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Li Chen
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yanfang Wang
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193China
| | - Min He
- Division of Endocrinology and MetabolismHuashan HospitalFudan UniversityShanghaiChina
| | - Yi Tao
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Zhaoyun Zhang
- Division of Endocrinology and MetabolismHuashan HospitalFudan UniversityShanghaiChina
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
43
|
Sylvers-Davie KL, Davies BSJ. Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab 2021; 321:E493-E508. [PMID: 34338039 PMCID: PMC8560382 DOI: 10.1152/ajpendo.00195.2021] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 01/28/2023]
Abstract
Triglyceride-rich lipoproteins deliver fatty acids to tissues for oxidation and for storage. Release of fatty acids from circulating lipoprotein triglycerides is carried out by lipoprotein lipase (LPL), thus LPL serves as a critical gatekeeper of fatty acid uptake into tissues. LPL activity is regulated by a number of extracellular proteins including three members of the angiopoietin-like family of proteins. In this review, we discuss our current understanding of how, where, and when ANGPTL3, ANGPTL4, and ANGPTL8 regulate lipoprotein lipase activity, with a particular emphasis on how these proteins interact with each other to coordinate triglyceride metabolism and fat partitioning.
Collapse
Affiliation(s)
- Kelli L Sylvers-Davie
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| | - Brandon S J Davies
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| |
Collapse
|
44
|
Oleic and palmitic acids induce hepatic angiopoietin-like 4 expression predominantly via PPAR- γ in Larimichthys crocea. Br J Nutr 2021; 129:1657-1666. [PMID: 34556193 DOI: 10.1017/s000711452100386x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Angiopoietin-like 4 (ANGPTL4) is a potent regulator of TAG metabolism, but knowledge of the mechanisms underlying ANGPTL4 transcription in response to fatty acids is still limited in teleost. In the current study, we explored the molecular characterisation of ANGPTL4 and regulatory mechanisms of ANGPTL4 in response to fatty acids in large yellow croaker (Larimichthys crocea). Here, croaker angptl4 contained a 1416 bp open reading frame encoding a protein of 471 amino acids with highly conserved 12-amino acid consensus motif. Angptl4 was widely expressed in croaker, with the highest expression in the liver. In vitro, oleic and palmitic acids (OA and PA) treatments strongly increased angptl4 mRNA expression in croaker hepatocytes. Moreover, angptl4 expression was positively regulated by PPAR family (PPAR-α, β and γ), and expression of PPARγ was also significantly increased in response to OA and PA. Moreover, inhibition of PPARγ abrogated OA- or PA-induced angptl4 mRNA expression. Beyond that, PA might increase angptl4 expression partly via the insulin signalling. Overall, the expression of ANGPTL4 is strongly upregulated by OA and PA via PPARγ in the liver of croaker, which contributes to improve the understanding of the regulatory mechanisms of ANGPTL4 in fish.
Collapse
|
45
|
Simeon J, Thrush J, Bailey TA. Angiopoietin-like protein 4 is a chromatin-bound protein that enhances mammosphere formation in vitro and experimental triple-negative breast cancer brain and liver metastases in vivo. J Carcinog 2021; 20:8. [PMID: 34447288 PMCID: PMC8356708 DOI: 10.4103/jcar.jcar_20_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 01/06/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION: Metastatic progression in triple-negative breast cancer (TNBC) patients occurs primarily because of nuclear reprogramming that includes chromatin remodeling and epigenetic modifications. The existing and most successful chemotherapies available for metastatic TNBC target nuclear proteins or damage DNA. The objectives here are to investigate an undescribed role for the molecular biology of nuclear angiopoietin-like protein 4 (ANGPTL4) and to characterize the effect of ectopic overexpression of ANGPTL4 in the metastatic biology of TNBC. MATERIALS AND METHODS: Lentiviral-mediated transduction was used to overexpress ANGPTL4 in the TNBC cell line MD Anderson–metastatic breast cancer 231. The overexpression of ANGPTL4 was confirmed by western blot and ELISA. Subcellular fractionation, western blot, and immunofluorescence microscopy were used to characterize the intracellular localization of ANGPTL4. Mammosphere culture and the anchorage-independent growth assay analyzed the metastatic potential of the cell line. Xenograft assays assessed the effect of ANGPTL4 overexpression on TNBC metastases in vivo. RESULTS: The ANGPTL4 overexpressing cell line formed larger mammospheres and anchorage-independent colonies in vitro and developed larger primary tumors, more liver metastases, and brain metastatic outgrowth in vivo in comparison to a cell line that expressed endogenous levels of ANGPTL4. ANGPTL4, aurora kinase A (AURKA), a mitotic kinase, and Tat-interacting protein p60 kDa (Tip60), a lysine acetyltransferase, associated with chromatin in the ANGPTL4 overexpressing cells but not in cells that expressed endogenous levels of ANGPTL4. CONCLUSIONS: The ANGPTL4 overexpressing cell line showed in vitro and in vivo activities that suggest that nuclear ANGPTL4, AURKA, and Tip60 may cooperatively modulate TNBC metastases within chromatin-remodeling complexes or DNA-associated machinery.
Collapse
Affiliation(s)
- Jodi Simeon
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA.,Department of Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jessica Thrush
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA.,Department of Honors College, University of Arkansas, Fayetteville, Arkansas, USA
| | - Tameka A Bailey
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA.,Department of Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
46
|
Singh AK, Chaube B, Zhang X, Sun J, Citrin KM, Canfrán-Duque A, Aryal B, Rotllan N, Varela L, Lee RG, Horvath TL, Price NL, Suárez Y, Fernández-Hernando C. Hepatocyte-specific suppression of ANGPTL4 improves obesity-associated diabetes and mitigates atherosclerosis in mice. J Clin Invest 2021; 131:140989. [PMID: 34255741 PMCID: PMC8409581 DOI: 10.1172/jci140989] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatic uptake and biosynthesis of fatty acids (FA), as well as the partitioning of FA into oxidative, storage, and secretory pathways are tightly regulated processes. Dysregulation of one or more of these processes can promote excess hepatic lipid accumulation, ultimately leading to systemic metabolic dysfunction. Angiopoietin-like-4 (ANGPTL4) is a secretory protein that inhibits lipoprotein lipase (LPL) and modulates triacylglycerol (TAG) homeostasis. To understand the role of ANGPTL4 in liver lipid metabolism under normal and high-fat fed conditions, we generated hepatocyte specific Angptl4 mutant mice (Hmut). Using metabolic turnover studies, we demonstrate that hepatic Angptl4 deficiency facilitates catabolism of TAG-rich lipoprotein (TRL) remnants in the liver via increased hepatic lipase (HL) activity, which results in a significant reduction in circulating TAG and cholesterol levels. Consequently, depletion of hepatocyte Angptl4 protects against diet-induce obesity, glucose intolerance, liver steatosis, and atherogenesis. Mechanistically, we demonstrate that loss of Angptl4 in hepatocytes promotes FA uptake which results in increased FA oxidation, ROS production, and AMPK activation. Finally, we demonstrate the utility of a targeted pharmacologic therapy that specifically inhibits Angptl4 gene expression in the liver and protects against diet-induced obesity, dyslipidemia, glucose intolerance, and liver damage, which likely occurs via increased HL activity. Notably, this novel inhibition strategy does not cause any of the deleterious effects previously observed with neutralizing antibodies.
Collapse
Affiliation(s)
- Abhishek K. Singh
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and
| | - Balkrishna Chaube
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and
| | - Kathryn M. Citrin
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and
| | - Binod Aryal
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and
| | - Luis Varela
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and
| | - Richard G. Lee
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Tamas L. Horvath
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and
| | - Nathan L. Price
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
47
|
Angiopoietin-like protein 4 regulates breast muscle lipid metabolism in broilers. Poult Sci 2021; 100:101159. [PMID: 34077847 PMCID: PMC8181176 DOI: 10.1016/j.psj.2021.101159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/20/2020] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
The objective of this study was to determine the effects of angiopoietin-like protein 4 (ANGPTL4) on breast muscle lipid metabolism in broilers. In experiment 1, 36 thirty-five-day-old male Arbor Acres broilers were randomly allocated into 6 treatment groups with 6 birds in a completely randomized design. The broilers were subjected to intravenous injection of His-SUMO-ANGPTL4 at the dose of 0 (injection of normal saline [NS]), 20, 100, 500, 2,500, or 12,500 ng/kg BW, respectively. The results showed that broilers at 30 min after His-SUMO-ANGPTL4 at the level of 12,500 ng/kg BW intravenous injection had higher (P < 0.05) concentrations of triglyceride and non-esterified fatty acid in the serum, higher (P < 0.05) adipose triglyceride lipase and carnitine palmitoyltransferase 1 mRNA expression in the breast muscle, but lower (P < 0.05) lipoprotein lipase (LPL) mRNA expression in the breast muscle. In experiment 2, 18 thirty-five-day-old male Arbor Acres broilers were randomly allocated into 3 treatment groups with 6 birds in a completely randomized design. The broilers were subjected to intravenous injection of NS, His-SUMO, or His-SUMO-ANGPTL4 (12,500 ng/kg BW) in order to rule out the effect of His-SUMO tag. It's confirmed that ANGPTL4 could increase (P < 0.05) concentrations of triglyceride and non-esterified fatty acid in the serum, enhance (P < 0.05) adipose triglyceride lipase mRNA expression in the breast muscle, and decrease (P < 0.05) LPL mRNA expression in the breast muscle. In experiment 3 and 4, co-culture experiments of chicken primary myoblasts and NS, His-SUMO, or His-SUMO-ANGPTL4 (250 pg/mL, physiological dose) were set up to monitor the cytotoxicity of ANGPTL4 and the changes of lipid metabolism-related genes expression. It was found that cell viability was not affected but LPL mRNA expression in chicken primary myoblasts was highly reduced (P < 0.05) by ANGPTL4. In conclusion, ANGPTL4 could promote lipodieresis and inhibit LPL in the breast muscle of broilers.
Collapse
|
48
|
Hepatokines as a Molecular Transducer of Exercise. J Clin Med 2021; 10:jcm10030385. [PMID: 33498410 PMCID: PMC7864203 DOI: 10.3390/jcm10030385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023] Open
Abstract
Exercise has health benefits and prevents a range of chronic diseases caused by physiological and biological changes in the whole body. Generally, the metabolic regulation of skeletal muscle through exercise is known to have a protective effect on the pathogenesis of metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), and cardiovascular disease (CVD). Besides this, the importance of the liver as an endocrine organ is a hot research topic. Hepatocytes also secrete many hepatokines in response to nutritional conditions and/or physical activity. In particular, certain hepatokines play a major role in the regulation of whole-body metabolic homeostasis. In this review, we summarize the recent research findings on the exercise-mediated regulation of hepatokines, including fibroblast growth factor 21, fetuin-A, angiopoietin-like protein 4, and follistatin. These hepatokines serve as molecular transducers of the metabolic benefits of physical activity in chronic metabolic diseases, including NAFLD, T2D, and CVDs, in various tissues.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Since the first discovery of Angiopoetin-like 4 (ANGPTL4) in 2000, the involvement of ANGPTL4 in different aspects of lipid metabolism and vascular biology has emerged as an important research field. In this review, we summarize the fundamental roles of ANGPTL4 in regulating metabolic and nonmetabolic functions and their implication in lipid metabolism and with several aspects of vascular function and dysfunction. RECENT FINDINGS ANGPTL4 is a secreted glycoprotein with a physiological role in lipid metabolism and a predominant expression in adipose tissue and liver. ANGPTL4 inhibits the activity of lipoprotein lipase and thereby promotes an increase in circulating triglyceride levels. Therefore, ANGPTL4 has been highly scrutinized as a potential therapeutic target. Further involvement of ANGPTL4 has been shown to occur in tumorigenesis, angiogenesis, vascular permeability and stem cell regulation, which opens new opportunities of using ANGPTL4 as potential therapeutic targets for other pathophysiological conditions. SUMMARY Further determination of ANGPTL4 regulatory circuits and defining specific molecular events that mediate its biological effects remain key to future ANGPTL4-based therapeutic applications in different disease settings. Many new and unanticipated roles of ANGPTL4 in the control of cell-specific functions will assist clinicians and researchers in developing potential therapeutic applications.
Collapse
|
50
|
Lui DTW, Lee CH, Woo YC, Fong CHY, Tso AWK, Cheung BMY, Lam TH, Janus E, Lam KSL. Cohort Profile: The Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS) and the follow-up studies. Int J Epidemiol 2021; 50:1069-1069h. [PMID: 33393991 DOI: 10.1093/ije/dyaa240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/02/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- David Tak Wai Lui
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Chi Ho Lee
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Yu Cho Woo
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Carol Ho Yi Fong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Annette Wai Kwan Tso
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | | | - Tai Hing Lam
- The School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Edward Janus
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Australia.,General Internal Medicine Unit, Western Health, St Albans, Victoria, Australia
| | - Karen Siu Ling Lam
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|