1
|
Du C, Cai N, Dong J, Xu C, Wang Q, Zhang Z, Li J, Huang C, Ma T. Uncovering the role of cytoskeleton proteins in the formation of neutrophil extracellular traps. Int Immunopharmacol 2023; 123:110607. [PMID: 37506501 DOI: 10.1016/j.intimp.2023.110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Neutrophils are a type of lymphocyte involved in innate immune defense. In response to specific stimuli, these phagocytic cells undergo a unique form of cell death, NETosis, during which they release neutrophil extracellular traps (NETs) composed of modified chromatin structures decorated with cytoplasmic and granular proteins. Multiple proteins and pathways have been implicated in the formation of NETs. The cytoskeleton, an interconnected network of filamentous polymers and regulatory proteins, plays a crucial role in resisting deformation, transporting intracellular cargo, and changing shape during movement of eukaryotic cells. It may also have evolved to defend eukaryotic organisms against infection. Recent research focuses on understanding the mechanisms underlying NETs formation and how cytoskeletal networks contribute to this process, by identifying enzymes that trigger NETosis or interact with NETs and influence cellular behavior through cytoskeletal dynamics. An enhanced understanding of the complex relationship between the cytoskeleton and NET formation will provide a framework for future research and the development of targeted therapeutic strategies, and supports the notion that the long-lived cytoskeleton structures may have a lasting impact on this area of research.
Collapse
Affiliation(s)
- Changlin Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Na Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiahui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chuanting Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qi Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhenming Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
2
|
Van Bruggen S, Jarrot PA, Thomas E, Sheehy CE, Silva CMS, Hsu AY, Cunin P, Nigrovic PA, Gomes ER, Luo HR, Waterman CM, Wagner DD. NLRP3 is essential for neutrophil polarization and chemotaxis in response to leukotriene B4 gradient. Proc Natl Acad Sci U S A 2023; 120:e2303814120. [PMID: 37603754 PMCID: PMC10468616 DOI: 10.1073/pnas.2303814120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Neutrophil recruitment to sites of infection and inflammation is an essential process in the early innate immune response. Upon activation, a subset of neutrophils rapidly assembles the multiprotein complex known as the NLRP3 inflammasome. The NLRP3 inflammasome forms at the microtubule organizing center, which promotes the formation of interleukin (IL)-1β and IL-18, essential cytokines in the immune response. We recently showed that mice deficient in NLRP3 (NLRP3-/-) have reduced neutrophil recruitment to the peritoneum in a model of thioglycolate-induced peritonitis. Here, we tested the hypothesis that this diminished recruitment could be, in part, the result of defects in neutrophil chemotaxis. We find that NLRP3-/- neutrophils show loss of cell polarization, as well as reduced directionality and velocity of migration toward increasing concentrations of leukotriene B4 (LTB4) in a chemotaxis assay in vitro, which was confirmed through intravital microscopy of neutrophil migration toward a laser-induced burn injury of the liver. Furthermore, pharmacologically blocking NLRP3 inflammasome assembly with MCC950 in vitro reduced directionality but preserved nondirectional movement, indicating that inflammasome assembly is specifically required for polarization and directional chemotaxis, but not cell motility per se. In support of this, pharmacological breakdown of the microtubule cytoskeleton via nocodazole treatment induced cell polarization and restored nondirectional cell migration in NLRP3-deficient neutrophils in the LTB4 gradient. Therefore, NLRP3 inflammasome assembly is required for establishment of cell polarity to guide the directional chemotactic migration of neutrophils.
Collapse
Affiliation(s)
- Stijn Van Bruggen
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Whitman Center, Marine Biological Laboratory, Chicago University, Woods Hole, MA02543
| | - Pierre-André Jarrot
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Eline Thomas
- Department of Life Science Technology, Imec, Leuven3001, Belgium
- Department of Biophysics, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Casey E. Sheehy
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Camila M. S. Silva
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Alan Y. Hsu
- Department of Pathology, Harvard Medical School, Boston, MA02115
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Boston, MA02115
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Pierre Cunin
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Peter A. Nigrovic
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Edgar R. Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon1649-028, Portugal
| | - Hongbo R. Luo
- Department of Pathology, Harvard Medical School, Boston, MA02115
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Boston, MA02115
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Clare M. Waterman
- Whitman Center, Marine Biological Laboratory, Chicago University, Woods Hole, MA02543
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute of the NIH, Bethesda, MD20892
| | - Denisa D. Wagner
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Whitman Center, Marine Biological Laboratory, Chicago University, Woods Hole, MA02543
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| |
Collapse
|
3
|
Koo S, Offner R, Haile SM, Brosig A, Hähnel V, Gruber M, Burkhardt R, Ahrens N. Granulocyte concentrate splitting does not affect phenotype and function. Transfusion 2023; 63:393-401. [PMID: 36519400 DOI: 10.1111/trf.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND More granulocyte concentrates (GCs) could be produced for more patients from the same donor if apheresis bags were split and stored for longer periods of time. Hence, we tested the hypothesis that splitting and extension of storage of GCs do not impair granulocyte function or viability. STUDY DESIGN AND METHODS Granulocyte apheresis concentrates were produced using modified fluid gelatin as a separation enhancer, split into two portions, and stored for 24 and 48 h. Granulocyte function, represented by cell migration, reactive oxygen species (ROS) production, and neutrophil extracellular trap formation (NETosis), was measured by live-cell imaging. ROS production, adhesive surface protein expression, and viability were measured by flow cytometry. RESULTS Splitting had no effect on any of the tested parameters. After 24 h of storage, live-cell imaging showed no significant difference in migration, time to maximum ROS production, time to half-maximum NETosis, viability, or CD11b expression, but ROS production induced by phorbol 12-myristate 13-acetate (PMA) decreased from an initial median fluorescence intensity of 1775-590 artificial units. After 48 h, PMA-induced ROS production, viability, and migration declined, as reflected by decreases in median total distance (119 vs. 63.5 μm) and median Euclidean distance (30.75 vs. 14.3 μm). CONCLUSION Splitting GC products has no effect on granulocyte viability or function, but extended storage >24 h does compromise granulocyte function. The findings confirm that GCs should be transfused within 24 h of collection. Longer storage cannot be recommended.
Collapse
Affiliation(s)
- Sebastian Koo
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Raubling, Germany.,Department of Anesthesiology, University Hospital Regensburg, Raubling, Germany
| | - Robert Offner
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Raubling, Germany
| | - Sophie-Marie Haile
- Department of Anesthesiology, University Hospital Regensburg, Raubling, Germany
| | - Andreas Brosig
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Raubling, Germany
| | - Viola Hähnel
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Raubling, Germany
| | - Michael Gruber
- Department of Anesthesiology, University Hospital Regensburg, Raubling, Germany
| | - Ralph Burkhardt
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Raubling, Germany
| | - Norbert Ahrens
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Raubling, Germany.,Amedes MVZ for Laboratory Diagnostics, University Hospital Regensburg, Raubling, Germany
| |
Collapse
|
4
|
Weier AK, Homrich M, Ebbinghaus S, Juda P, Miková E, Hauschild R, Zhang L, Quast T, Mass E, Schlitzer A, Kolanus W, Burgdorf S, Gruß OJ, Hons M, Wieser S, Kiermaier E. Multiple centrosomes enhance migration and immune cell effector functions of mature dendritic cells. J Cell Biol 2022; 221:e202107134. [PMID: 36214847 PMCID: PMC9555069 DOI: 10.1083/jcb.202107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/01/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Centrosomes play a crucial role during immune cell interactions and initiation of the immune response. In proliferating cells, centrosome numbers are tightly controlled and generally limited to one in G1 and two prior to mitosis. Defects in regulating centrosome numbers have been associated with cell transformation and tumorigenesis. Here, we report the emergence of extra centrosomes in leukocytes during immune activation. Upon antigen encounter, dendritic cells pass through incomplete mitosis and arrest in the subsequent G1 phase leading to tetraploid cells with accumulated centrosomes. In addition, cell stimulation increases expression of polo-like kinase 2, resulting in diploid cells with two centrosomes in G1-arrested cells. During cell migration, centrosomes tightly cluster and act as functional microtubule-organizing centers allowing for increased persistent locomotion along gradients of chemotactic cues. Moreover, dendritic cells with extra centrosomes display enhanced secretion of inflammatory cytokines and optimized T cell responses. Together, these results demonstrate a previously unappreciated role of extra centrosomes for regular cell and tissue homeostasis.
Collapse
Affiliation(s)
- Ann-Kathrin Weier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Mirka Homrich
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Stephanie Ebbinghaus
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Pavel Juda
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Eliška Miková
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Lili Zhang
- Life and Medical Sciences Institute, Quantitative Systems Biology, University of Bonn, Bonn, Germany
| | - Thomas Quast
- Life and Medical Sciences Institute, Molecular Immunology and Cell Biology, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune System, University of Bonn, Bonn, Germany
| | - Andreas Schlitzer
- Life and Medical Sciences Institute, Quantitative Systems Biology, University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Life and Medical Sciences Institute, Molecular Immunology and Cell Biology, University of Bonn, Bonn, Germany
| | - Sven Burgdorf
- Life and Medical Sciences Institute, Cellular Immunology, University of Bonn, Bonn, Germany
| | - Oliver J. Gruß
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Miroslav Hons
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Stefan Wieser
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Prichard A, Khuu L, Whitmore LC, Irimia D, Allen LAH. Helicobacter pylori-infected human neutrophils exhibit impaired chemotaxis and a uropod retraction defect. Front Immunol 2022; 13:1038349. [PMID: 36341418 PMCID: PMC9630475 DOI: 10.3389/fimmu.2022.1038349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a major human pathogen that colonizes the gastric mucosa and plays a causative role in development of peptic ulcers and gastric cancer. Neutrophils are heavily infected with this organism in vivo and play a prominent role in tissue destruction and disease. Recently, we demonstrated that H. pylori exploits neutrophil plasticity as part of its virulence strategy eliciting N1-like subtype differentiation that is notable for profound nuclear hypersegmentation. We undertook this study to test the hypothesis that hypersegmentation may enhance neutrophil migratory capacity. However, EZ-TAXIScan™ video imaging revealed a previously unappreciated and progressive chemotaxis defect that was apparent prior to hypersegmentation onset. Cell speed and directionality were significantly impaired to fMLF as well as C5a and IL-8. Infected cells oriented normally in chemotactic gradients, but speed and direction were impaired because of a uropod retraction defect that led to cell elongation, nuclear lobe trapping in the contracted rear and progressive narrowing of the leading edge. In contrast, chemotactic receptor abundance, adhesion, phagocytosis and other aspects of cell function were unchanged. At the molecular level, H. pylori phenocopied the effects of Blebbistatin as indicated by aberrant accumulation of F-actin and actin spikes at the uropod together with enhanced ROCKII-mediated phosphorylation of myosin IIA regulatory light chains at S19. At the same time, RhoA and ROCKII disappeared from the cell rear and accumulated at the leading edge whereas myosin IIA was enriched at both cell poles. These data suggest that H. pylori inhibits the dynamic changes in myosin IIA contractility and front-to-back polarity that are essential for chemotaxis. Taken together, our data advance understanding of PMN plasticity and H. pylori pathogenesis.
Collapse
Affiliation(s)
- Allan Prichard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Lisa Khuu
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Laura C. Whitmore
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lee-Ann H. Allen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
- Harry S. Truman Memorial VA Hospital, Columbia, MO, United States
- *Correspondence: Lee-Ann H. Allen,
| |
Collapse
|
6
|
Li Y, Chen M, Chang W. Roles of the nucleus in leukocyte migration. J Leukoc Biol 2022; 112:771-783. [PMID: 35916042 DOI: 10.1002/jlb.1mr0622-473rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Leukocytes patrol our bodies in search of pathogens and migrate to sites of injury in response to various stimuli. Rapid and directed leukocyte motility is therefore crucial to our immunity. The nucleus is the largest and stiffest cellular organelle and a mechanical obstacle for migration through constrictions. However, the nucleus is also essential for 3D cell migration. Here, we review the roles of the nucleus in leukocyte migration, focusing on how cells deform their nuclei to aid cell motility and the contributions of the nucleus to cell migration. We discuss the regulation of the nuclear biomechanics by the nuclear lamina and how it, together with the cytoskeleton, modulates the shapes of leukocyte nuclei. We then summarize the functions of nesprins and SUN proteins in leukocytes and discuss how forces are exerted on the nucleus. Finally, we examine the mechanical roles of the nucleus in cell migration, including its roles in regulating the direction of migration and path selection.
Collapse
Affiliation(s)
- Yutao Li
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Mengqi Chen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
7
|
Nette F, Guerra de Souza AC, Laskay T, Ohms M, Dömer D, Drömann D, Rapoport DH. Method for simultaneous tracking of thousands of unlabeled cells within a transparent 3D matrix. PLoS One 2022; 17:e0270456. [PMID: 35749549 PMCID: PMC9232129 DOI: 10.1371/journal.pone.0270456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Three-dimensional tracking of cells is one of the most powerful methods to investigate multicellular phenomena, such as ontogenesis, tumor formation or wound healing. However, 3D tracking in a biological environment usually requires fluorescent labeling of the cells and elaborate equipment, such as automated light sheet or confocal microscopy. Here we present a simple method for 3D tracking large numbers of unlabeled cells in a collagen matrix. Using a small lensless imaging setup, consisting of an LED and a photo sensor only, we were able to simultaneously track ~3000 human neutrophil granulocytes in a collagen droplet within an unusually large field of view (>50 mm2) at a time resolution of 4 seconds and a spatial resolution of ~1.5 μm in xy- and ~30 μm in z-direction. The setup, which is small enough to fit into any conventional incubator, was used to investigate chemotaxis towards interleukin-8 (IL-8 or CXCL8) and N-formylmethionyl-leucyl-phenylalanine (fMLP). The influence of varying stiffness and pore size of the embedding collagen matrix could also be quantified. Furthermore, we demonstrate our setup to be capable of telling apart healthy neutrophils from those where a condition of inflammation was (I) induced by exposure to lipopolysaccharide (LPS) and (II) caused by a pre-existing asthma condition. Over the course of our experiments we have tracked more than 420.000 cells. The large cell numbers increase statistical relevance to not only quantify cellular behavior in research, but to make it suitable for future diagnostic applications, too.
Collapse
Affiliation(s)
- Falk Nette
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology, Lübeck, Germany
| | | | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Mareike Ohms
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Daniel Dömer
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Daniel Drömann
- Medical Clinic III Pneumology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Daniel Hans Rapoport
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
8
|
Ishikawa-Ankerhold H, Kroll J, van den Heuvel D, Renkawitz J, Müller-Taubenberger A. Centrosome Positioning in Migrating Dictyostelium Cells. Cells 2022; 11:cells11111776. [PMID: 35681473 PMCID: PMC9179490 DOI: 10.3390/cells11111776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Directional cell migration and the establishment of polarity play an important role in development, wound healing, and host cell defense. While actin polymerization provides the driving force at the cell front, the microtubule network assumes a regulatory function, in coordinating front protrusion and rear retraction. By using Dictyostelium discoideum cells as a model for amoeboid movement in different 2D and 3D environments, the position of the centrosome relative to the nucleus was analyzed using live-cell microscopy. Our results showed that the centrosome was preferentially located rearward of the nucleus under all conditions tested for directed migration, while the nucleus was oriented toward the expanding front. When cells are hindered from straight movement by obstacles, the centrosome is displaced temporarily from its rearward location to the side of the nucleus, but is reoriented within seconds. This relocalization is supported by the presence of intact microtubules and their contact with the cortex. The data suggest that the centrosome is responsible for coordinating microtubules with respect to the nucleus. In summary, we have analyzed the orientation of the centrosome during different modes of migration in an amoeboid model and present evidence that the basic principles of centrosome positioning and movement are conserved between Dictyostelium and human leukocytes.
Collapse
Affiliation(s)
- Hellen Ishikawa-Ankerhold
- Department of Internal Medicine I, University Hospital, Faculty of Medicine, LMU Munich, 81377 Munich, Germany; (H.I.-A.); (D.v.d.H.)
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Janina Kroll
- Biomedical Center Munich (BMC), Department of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Centre of Experimental Medicine, University Hospital, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; (J.K.); (J.R.)
| | - Dominic van den Heuvel
- Department of Internal Medicine I, University Hospital, Faculty of Medicine, LMU Munich, 81377 Munich, Germany; (H.I.-A.); (D.v.d.H.)
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center Munich (BMC), Department of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Centre of Experimental Medicine, University Hospital, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; (J.K.); (J.R.)
| | - Annette Müller-Taubenberger
- Biomedical Center Munich (BMC), Department of Cell Biology (Anatomy III), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
- Correspondence: ; Tel.: +49-89-2180-75873
| |
Collapse
|
9
|
Khachaturyan G, Holle AW, Ende K, Frey C, Schwederski HA, Eiseler T, Paschke S, Micoulet A, Spatz JP, Kemkemer R. Temperature-sensitive migration dynamics in neutrophil-differentiated HL-60 cells. Sci Rep 2022; 12:7053. [PMID: 35488042 PMCID: PMC9054779 DOI: 10.1038/s41598-022-10858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
Cell migration plays an essential role in wound healing and inflammatory processes inside the human body. Peripheral blood neutrophils, a type of polymorphonuclear leukocyte (PMN), are the first cells to be activated during inflammation and subsequently migrate toward an injured tissue or infection site. This response is dependent on both biochemical signaling and the extracellular environment, one aspect of which includes increased temperature in the tissues surrounding the inflammation site. In our study, we analyzed temperature-dependent neutrophil migration using differentiated HL-60 cells. The migration speed of differentiated HL-60 cells was found to correlate positively with temperature from 30 to 42 °C, with higher temperatures inducing a concomitant increase in cell detachment. The migration persistence time of differentiated HL-60 cells was higher at lower temperatures (30-33 °C), while the migration persistence length stayed constant throughout the temperature range. Coupled with the increased speed observed at high temperatures, this suggests that neutrophils are primed to migrate more effectively at the elevated temperatures characteristic of inflammation. Temperature gradients exist on both cell and tissue scales. Taking this into consideration, we also investigated the ability of differentiated HL-60 cells to sense and react to the presence of temperature gradients, a process known as thermotaxis. Using a two-dimensional temperature gradient chamber with a range of 27-43 °C, we observed a migration bias parallel to the gradient, resulting in both positive and negative thermotaxis. To better mimic the extracellular matrix (ECM) environment in vivo, a three-dimensional collagen temperature gradient chamber was constructed, allowing observation of biased neutrophil-like differentiated HL-60 migration toward the heat source.
Collapse
Affiliation(s)
- Galina Khachaturyan
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany
| | - Andrew W Holle
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore, 117411, Singapore, Republic of Singapore
| | - Karen Ende
- School of Applied Chemistry, Reutlingen University, Alteburgstrasse 150, 72762, Reutlingen, Germany
| | - Christoph Frey
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany
| | - Heiko A Schwederski
- School of Applied Chemistry, Reutlingen University, Alteburgstrasse 150, 72762, Reutlingen, Germany
| | - Tim Eiseler
- Internal Medicine I, University Clinic Ulm, 89081, Ulm, Germany
| | - Stephan Paschke
- General and Visceral Surgery, University Clinic Ulm, 89081, Ulm, Germany
| | - Alexandre Micoulet
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany
| | - Ralf Kemkemer
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany.
- School of Applied Chemistry, Reutlingen University, Alteburgstrasse 150, 72762, Reutlingen, Germany.
| |
Collapse
|
10
|
Klemm LC, Denu RA, Hind LE, Rocha-Gregg BL, Burkard ME, Huttenlocher A. Centriole and Golgi microtubule nucleation are dispensable for the migration of human neutrophil-like cells. Mol Biol Cell 2021; 32:1545-1556. [PMID: 34191538 PMCID: PMC8351748 DOI: 10.1091/mbc.e21-02-0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
Neutrophils migrate in response to chemoattractants to mediate host defense. Chemoattractants drive rapid intracellular cytoskeletal rearrangements including the radiation of microtubules from the microtubule-organizing center (MTOC) toward the rear of polarized neutrophils. Microtubules regulate neutrophil polarity and motility, but little is known about the specific role of MTOCs. To characterize the role of MTOCs on neutrophil motility, we depleted centrioles in a well-established neutrophil-like cell line. Surprisingly, both chemical and genetic centriole depletion increased neutrophil speed and chemotactic motility, suggesting an inhibitory role for centrioles during directed migration. We also found that depletion of both centrioles and GM130-mediated Golgi microtubule nucleation did not impair neutrophil directed migration. Taken together, our findings demonstrate an inhibitory role for centrioles and a resilient MTOC system in motile human neutrophil-like cells.
Collapse
Affiliation(s)
- Lucas C. Klemm
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Ryan A. Denu
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison, Madison, WI 53706
| | - Laurel E. Hind
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Briana L. Rocha-Gregg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Mark E. Burkard
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison, Madison, WI 53706
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
11
|
Imoto D, Saito N, Nakajima A, Honda G, Ishida M, Sugita T, Ishihara S, Katagiri K, Okimura C, Iwadate Y, Sawai S. Comparative mapping of crawling-cell morphodynamics in deep learning-based feature space. PLoS Comput Biol 2021; 17:e1009237. [PMID: 34383753 PMCID: PMC8360578 DOI: 10.1371/journal.pcbi.1009237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Navigation of fast migrating cells such as amoeba Dictyostelium and immune cells are tightly associated with their morphologies that range from steady polarized forms that support high directionality to those more complex and variable when making frequent turns. Model simulations are essential for quantitative understanding of these features and their origins, however systematic comparisons with real data are underdeveloped. Here, by employing deep-learning-based feature extraction combined with phase-field modeling framework, we show that a low dimensional feature space for 2D migrating cell morphologies obtained from the shape stereotype of keratocytes, Dictyostelium and neutrophils can be fully mapped by an interlinked signaling network of cell-polarization and protrusion dynamics. Our analysis links the data-driven shape analysis to the underlying causalities by identifying key parameters critical for migratory morphologies both normal and aberrant under genetic and pharmacological perturbations. The results underscore the importance of deciphering self-organizing states and their interplay when characterizing morphological phenotypes. Migratory cells that move by crawling do so by extending and retracting their plasma membrane. When and where these events take place determine the cell shape, and this is directly linked to the movement patterns. Understanding how the highly plastic and interconvertible morphologies appear from their underlying dynamics remains a challenge partly because their inherent complexity makes quantitatively comparison against the outputs of mathematical models difficult. To this end, we employed machine-learning based classification to extract features that characterize the basic migrating morphologies. The obtained features were then used to compare real cell data with outputs of a conceptual model that we introduced which describes coupling via feedback between local protrusive dynamics and polarity. The feature mapping showed that the model successfully recapitulates the shape dynamics that were not covered by previous related models and also hints at the critical parameters underlying state transitions. The ability of the present approach to compare model outputs with real cell data systematically and objectively is important as it allows outputs of future mathematical models to be quantitatively tested in an accessible and common reference frame.
Collapse
Affiliation(s)
- Daisuke Imoto
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Nen Saito
- Universal Biological Institute, University of Tokyo, Tokyo, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Akihiko Nakajima
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Gen Honda
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Motohiko Ishida
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Toyoko Sugita
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Sayaka Ishihara
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Koko Katagiri
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Chika Okimura
- Faculty of Science, Yamaguchi University, Yamaguchi, Japan
| | | | - Satoshi Sawai
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
- Universal Biological Institute, University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
- Department of Biology, Graduate School of Science, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
12
|
Roncato F, Regev O, Yadav SK, Alon R. Microtubule destabilization is a critical checkpoint of chemotaxis and transendothelial migration in melanoma cells but not in T cells. Cell Adh Migr 2021; 15:166-179. [PMID: 34152257 PMCID: PMC8218694 DOI: 10.1080/19336918.2021.1934958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microtubules (MTs) control cell shape and intracellular cargo transport. The role of MT turnover in the migration of slow-moving cells through endothelial barriers remains unclear. To irreversibly interfere with MT disassembly, we have used the MT-stabilizing agent zampanolide (ZMP) in Β16F10 melanoma as amodel of slow-moving cells. ZMP-treated B16 cells failed to follow chemotactic gradients across rigid confinements and could not generate stable sub-endothelial pseudopodia under endothelial monolayers. In vivo, ZMP-treated Β16 cells failed to extravasate though lung capillaries. In contrast to melanoma cells, the chemotaxis and transendothelial migration of ZMP-treated Tcells were largely conserved. This is afirst demonstration that MT disassembly is akey checkpoint in the directional migration of cancer cells but not of lymphocytes.
Collapse
Affiliation(s)
- Francesco Roncato
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Regev
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Weavers H, Martin P. The cell biology of inflammation: From common traits to remarkable immunological adaptations. J Cell Biol 2021; 219:151857. [PMID: 32539109 PMCID: PMC7337495 DOI: 10.1083/jcb.202004003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue damage triggers a rapid and robust inflammatory response in order to clear and repair a wound. Remarkably, many of the cell biology features that underlie the ability of leukocytes to home in to sites of injury and to fight infection—most of which are topics of intensive current research—were originally observed in various weird and wonderful translucent organisms over a century ago by Elie Metchnikoff, the “father of innate immunity,” who is credited with discovering phagocytes in 1882. In this review, we use Metchnikoff’s seminal lectures as a starting point to discuss the tremendous variety of cell biology features that underpin the function of these multitasking immune cells. Some of these are shared by other cell types (including aspects of motility, membrane trafficking, cell division, and death), but others are more unique features of innate immune cells, enabling them to fulfill their specialized functions, such as encapsulation of invading pathogens, cell–cell fusion in response to foreign bodies, and their self-sacrifice as occurs during NETosis.
Collapse
Affiliation(s)
- Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol UK
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol UK.,School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, UK.,School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
14
|
Das R, Chinnathambi S. Microglial remodeling of actin network by Tau oligomers, via G protein-coupled purinergic receptor, P2Y12R-driven chemotaxis. Traffic 2021; 22:153-170. [PMID: 33527700 DOI: 10.1111/tra.12784] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is associated with age-related neurodegeneration, synaptic deformation and chronic inflammation mediated by microglia and infiltrated macrophages in the brain. Tau oligomers can be released from damaged neurons via various mechanisms such as exosomes, neurotransmitter, membrane leakage etc. Microglia sense the extracellular Tau through several cell-surface receptors and mediate chemotaxis and phagocytosis. The purinergic receptor P2Y12R recently gained interest in neurodegeneration for neuro-glial communication and microglial chemotaxis towards the site of plaque deposition. To understand the effect of extracellular Tau oligomers in microglial migration, the P2Y12R-mediated actin remodeling, reorientation of tubulin network and rate of migration were studied in the presence of ATP. The extracellular Tau species directly interacted with P2Y12R and also induced this purinoceptor expression in microglia. Microglial P2Y12R colocalized with remodeled membrane-associated actin network as a component of migration in response to Tau oligomers. As an inducer of P2Y12R, ATP facilitated the localization of P2Y12R in lamellipodia and filopodia during accelerated microglial migration. The direct interaction of extracellular Tau oligomers with microglial P2Y12R would facilitate the signal transduction in both way, directional chemotaxis and receptor-mediated phagocytosis. These unprecedented findings emphasize that microglia can modulate the membrane-associated actin structure and incorporate P2Y12R to perceive the axis and rate of chemotaxis in Tauopathy.
Collapse
Affiliation(s)
- Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Kopf A, Kiermaier E. Dynamic Microtubule Arrays in Leukocytes and Their Role in Cell Migration and Immune Synapse Formation. Front Cell Dev Biol 2021; 9:635511. [PMID: 33634136 PMCID: PMC7900162 DOI: 10.3389/fcell.2021.635511] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
The organization of microtubule arrays in immune cells is critically important for a properly operating immune system. Leukocytes are white blood cells of hematopoietic origin, which exert effector functions of innate and adaptive immune responses. During these processes the microtubule cytoskeleton plays a crucial role for establishing cell polarization and directed migration, targeted secretion of vesicles for T cell activation and cellular cytotoxicity as well as the maintenance of cell integrity. Considering this large spectrum of distinct effector functions, leukocytes require flexible microtubule arrays, which timely and spatially reorganize allowing the cells to accommodate their specific tasks. In contrast to other specialized cell types, which typically nucleate microtubule filaments from non-centrosomal microtubule organizing centers (MTOCs), leukocytes mainly utilize centrosomes for sites of microtubule nucleation. Yet, MTOC localization as well as microtubule organization and dynamics are highly plastic in leukocytes thus allowing the cells to adapt to different environmental constraints. Here we summarize our current knowledge on microtubule organization and dynamics during immune processes and how these microtubule arrays affect immune cell effector functions. We particularly highlight emerging concepts of microtubule involvement during maintenance of cell shape and physical coherence.
Collapse
Affiliation(s)
- Aglaja Kopf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Kopf A, Renkawitz J, Hauschild R, Girkontaite I, Tedford K, Merrin J, Thorn-Seshold O, Trauner D, Häcker H, Fischer KD, Kiermaier E, Sixt M. Microtubules control cellular shape and coherence in amoeboid migrating cells. J Cell Biol 2020; 219:151745. [PMID: 32379884 PMCID: PMC7265309 DOI: 10.1083/jcb.201907154] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. In migrating dendritic cells, local microtubule depolymerization within protrusions remote from the microtubule organizing center triggers actomyosin contractility controlled by RhoA and its exchange factor Lfc. Depletion of Lfc leads to aberrant myosin localization, thereby causing two effects that rate-limit locomotion: (1) impaired cell edge coordination during path finding and (2) defective adhesion resolution. Compromised shape control is particularly hindering in geometrically complex microenvironments, where it leads to entanglement and ultimately fragmentation of the cell body. We thus demonstrate that microtubules can act as a proprioceptive device: they sense cell shape and control actomyosin retraction to sustain cellular coherence.
Collapse
Affiliation(s)
- Aglaja Kopf
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jörg Renkawitz
- Institute of Science and Technology Austria, Klosterneuburg, Austria,Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, University Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Irute Girkontaite
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Kerry Tedford
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Jack Merrin
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY
| | - Hans Häcker
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Klaus-Dieter Fischer
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Eva Kiermaier
- Institute of Science and Technology Austria, Klosterneuburg, Austria,Life and Medical Sciences Institute (LIMES), Immune and Tumor Biology, University of Bonn, Bonn, Germany,Eva Kiermaier:
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria,Eva Kiermaier:
| |
Collapse
|
17
|
Basquin C, Ershov D, Gaudin N, Vu HTK, Louis B, Papon JF, Orfila AM, Mansour S, Rink JC, Azimzadeh J. Emergence of a Bilaterally Symmetric Pattern from Chiral Components in the Planarian Epidermis. Dev Cell 2019; 51:516-525.e5. [DOI: 10.1016/j.devcel.2019.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 09/06/2019] [Accepted: 10/21/2019] [Indexed: 01/22/2023]
|
18
|
Heikenwalder M, Lorentzen A. The role of polarisation of circulating tumour cells in cancer metastasis. Cell Mol Life Sci 2019; 76:3765-3781. [PMID: 31218452 PMCID: PMC6744547 DOI: 10.1007/s00018-019-03169-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/23/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Metastasis is the spread of cancer cells from a primary tumour to a distant site of the body. Metastasising tumour cells have to survive and readjust to different environments, such as heterogeneous solid tissues and liquid phase in lymph- or blood circulation, which they achieve through a high degree of plasticity that renders them adaptable to varying conditions. One defining characteristic of the metastatic process is the transition of tumour cells between different polarised phenotypes, ranging from differentiated epithelial polarity to migratory front-rear polarity. Here, we review the polarisation types adopted by tumour cells during the metastatic process and describe the recently discovered single-cell polarity in liquid phase observed in circulating tumour cells. We propose that single-cell polarity constitutes a mode of polarisation of the cell cortex that is uncoupled from the intracellular polarisation machinery, which distinguishes single-cell polarity from other types of polarity identified so far. We discuss how single-cell polarity can contribute to tumour metastasis and the therapeutic potential of this new discovery.
Collapse
Affiliation(s)
- Mathias Heikenwalder
- Divison of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| | - Anna Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
19
|
Ren C, Yuan Q, Braun M, Zhang X, Petri B, Zhang J, Kim D, Guez-Haddad J, Xue W, Pan W, Fan R, Kubes P, Sun Z, Opatowsky Y, Polleux F, Karatekin E, Tang W, Wu D. Leukocyte Cytoskeleton Polarization Is Initiated by Plasma Membrane Curvature from Cell Attachment. Dev Cell 2019; 49:206-219.e7. [PMID: 30930167 PMCID: PMC6482112 DOI: 10.1016/j.devcel.2019.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 01/15/2019] [Accepted: 02/25/2019] [Indexed: 12/30/2022]
Abstract
Cell polarization is important for various biological processes. However, its regulation, particularly initiation, is incompletely understood. Here, we investigated mechanisms by which neutrophils break their symmetry and initiate their cytoskeleton polarization from an apolar state in circulation for their extravasation during inflammation. We show here that a local increase in plasma membrane (PM) curvature resulting from cell contact to a surface triggers the initial breakage of the symmetry of an apolar neutrophil and is required for subsequent polarization events induced by chemical stimulation. This local increase in PM curvature recruits SRGAP2 via its F-BAR domain, which in turn activates PI4KA and results in PM PtdIns4P polarization. Polarized PM PtdIns4P is targeted by RPH3A, which directs PIP5K1C90 and subsequent phosphorylated myosin light chain polarization, and this polarization signaling axis regulates neutrophil firm attachment to endothelium. Thus, this study reveals a mechanism for the initiation of cell cytoskeleton polarization.
Collapse
Affiliation(s)
- Chunguang Ren
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA
| | - Qianying Yuan
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA
| | - Martha Braun
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Xia Zhang
- Department of Geriatrics, the First affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Björn Petri
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary AB T2N 4N1, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jiasheng Zhang
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Julia Guez-Haddad
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Wenzhi Xue
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Paul Kubes
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary AB T2N 4N1, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, and Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Zhaoxia Sun
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Yarden Opatowsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Franck Polleux
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10025, USA
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520, USA; Centre National de la Recherche Scientifique (CNRS), Paris, France.
| | - Wenwen Tang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA.
| | - Dianqing Wu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
20
|
Furuya Y. Early neutropenia on day 8 treated with adjuvant Docetaxel-based chemotherapy in early breast cancer patients: Putative mechanisms within the neutrophil pool system. PLoS One 2019; 14:e0215576. [PMID: 30998754 PMCID: PMC6472781 DOI: 10.1371/journal.pone.0215576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/04/2019] [Indexed: 12/23/2022] Open
Abstract
Most chemotherapy regimens cause neutropenic nadirs between days 10 and 14, and administration of granulocyte colony-stimulating factor (G-CSF) support relies on this timing. In docetaxel (DOC)-based chemotherapy, the frequency of febrile neutropenia (FN) and the G-CSF dose administered varied greatly between studies. Our study goal was to forecast the necessary dose of G-CSF by comparing day 8 neutropenia with putative changes within the neutrophil pool. We conducted a retrospective observational analysis of 242 early breast cancer patients who had received adjuvant DOC-based chemotherapy (DOC group) compared with 43 patients who had received FEC chemotherapy (FEC group). Patients who were given a standard dose and had a blood test on day 8 in the 1st cycle were eligible. In the DOC group, patients routinely received prophylactic administration of G-CSF (150 μg/body) on day 3 and received additional G-CSF based on a blood test on day 8. Results of the day 8 blood test showed that severe neutropenia (<500/mm3, average 494/mm3) was observed in 152 out of 242 (62.8%) patients in the DOC group, while in the FEC group (n = 43), neutropenia was ambiguous (average 1,741/mm3). In the FEC group, 9 out of 43 patients (20.9%) and in the DOC group, 27 out of 242 patients (11.1%) experienced FN. In the DOC group, day 8 neutropenia was predictive for FN in a logistic regression model (OR 0.79 [95% CI: 0.655-0.952], p = 0.013). Among 214 patients under 70 years old, the planned chemotherapy cycle was completed in 190 (88.8%) patients who also received the maximum dose of G-CSF (150 μg/body) four times, while 23 patients could not complete the planned chemotherapy cycle, but only five because of FN-related complications. Patients treated with DOC should be treated for primary prophylaxis with G-CSF support at an earlier time starting with a relatively small dose.
Collapse
Affiliation(s)
- Yoshihiko Furuya
- Department of Surgery, Saiseikai Osaka Nakatsu Hospital, Osaka, Japan
| |
Collapse
|
21
|
Yadav SK, Stojkov D, Feigelson SW, Roncato F, Simon HU, Yousefi S, Alon R. Chemokine-triggered microtubule polymerization promotes neutrophil chemotaxis and invasion but not transendothelial migration. J Leukoc Biol 2019; 105:755-766. [PMID: 30802327 DOI: 10.1002/jlb.3a1118-437rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/29/2022] Open
Abstract
Microtubules (MTs) are critically involved in the transport of material within cells, but their roles in chemotactic leukocyte motility and effector functions are still obscure. Resting neutrophils contain few MTs assembled in an MT organizing center (MTOC) behind their multilobular nuclei. Using a probe of real-time tubulin polymerization, SiR-tubulin, we found that neutrophils elongated their MTs within minutes in response to signals from the two prototypic chemotactic peptides, CXCL1 and fMLP. Taxol, a beta-tubulin binding and MT stabilizing drug, was found to abolish this CXCL1- and fMLP-stimulated MT polymerization. Nevertheless, taxol treatment as well as disruption of existing and de novo generated MTs did not impair neutrophil protrusion and squeezing through IL-1β-stimulated endothelial monolayers mediated by endothelial deposited CXCL1 and neutrophil CXCR2. Notably, CXCL1-dependent neutrophil TEM was not associated with neutrophil MT polymerization. Chemokinetic neutrophil motility on immobilized CXCL1 was also not associated with MT polymerization, and taxol treatment did not interfere with this motility. Nevertheless, and consistent with its ability to suppress MT polymerization induced by soluble CXCL1 and fMLP, taxol treatment inhibited neutrophil chemotaxis toward both chemotactic peptides. Taxol treatment also suppressed CXCL1- and fMLP-triggered elastase-dependent neutrophil invasion through collagen I barriers. Collectively, our results highlight de novo chemoattractant-triggered MT polymerization as key for neutrophil chemotaxis and elastase-dependent invasion but not for chemotactic neutrophil crossing of inflamed endothelial barriers.
Collapse
Affiliation(s)
- Sandeep Kumar Yadav
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Sara W Feigelson
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Roncato
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
Manley HR, Keightley MC, Lieschke GJ. The Neutrophil Nucleus: An Important Influence on Neutrophil Migration and Function. Front Immunol 2018; 9:2867. [PMID: 30564248 PMCID: PMC6288403 DOI: 10.3389/fimmu.2018.02867] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/21/2018] [Indexed: 11/13/2022] Open
Abstract
Neutrophil nuclear morphology has historically been used in haematology for neutrophil identification and characterisation, but its exact role in neutrophil function has remained enigmatic. During maturation, segmentation of the neutrophil nucleus into its mature, multi-lobulated shape is accompanied by distinct changes in nuclear envelope composition, resulting in a unique nucleus that is believed to be imbued with extraordinary nuclear flexibility. As a rate-limiting factor for cell migration, nuclear morphology and biomechanics are particularly important in the context of neutrophil migration during immune responses. Being an extremely plastic and fast migrating cell type, it is to be expected that neutrophils have an especially deformable nucleus. However, many questions still surround the dynamic capacities of the neutrophil nucleus, and which nuclear and cytoskeletal elements determine these dynamics. The biomechanics of the neutrophil nucleus should also be considered for their influences on the production of neutrophil extracellular traps (NETs), given this process sees the release of chromatin "nets" from nucleoplasm to extracellular space. Although past studies have investigated neutrophil nuclear composition and shape, in a new era of more sophisticated biomechanical and genetic techniques, 3D migration studies, and higher resolution microscopy we now have the ability to further investigate and understand neutrophil nuclear plasticity at an unprecedented level. This review addresses what is currently understood about neutrophil nuclear structure and its role in migration and the release of NETs, whilst highlighting open questions surrounding neutrophil nuclear dynamics.
Collapse
Affiliation(s)
- Harriet R Manley
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
23
|
Wang X, Jodoin E, Jorgensen J, Lee J, Markmann JJ, Cataltepe S, Irimia D. Progressive mechanical confinement of chemotactic neutrophils induces arrest, oscillations, and retrotaxis. J Leukoc Biol 2018; 104:1253-1261. [PMID: 30129679 DOI: 10.1002/jlb.5ta0318-110rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
Neutrophils reach the sites of inflammation and infection in a timely manner by navigating efficiently through mechanically complex interstitial spaces, following the guidance of chemical gradients. However, our understanding of how neutrophils that follow chemical cues overcome mechanical obstacles in their path is restricted by the limitations of current experimental systems. Observations in vivo provide limited insights due to the complexity of the tissue environment. Here, we developed microfluidic devices to study the effect of progressive mechanical confinement on the migration patterns of human neutrophils toward chemical attractants. Using these devices, we identified four migration patterns: arrest, oscillation, retrotaxis, and persistent migration. The proportion of these migration patterns is different in patients receiving immunosuppressant treatments after kidney transplant, patients in critical care, and neonatal patients with infections and is distinct from that in healthy donors. The occurrence of these migration patterns is independent of the nuclear lobe number of the neutrophils and depends on the integrity of their cytoskeletal components. Our study highlights the important role of mechanical cues in moving neutrophils and suggests the mechanical constriction-induced migration patterns as potential markers for infection and inflammation.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, Massachusetts, USA
| | - Emily Jodoin
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, Massachusetts, USA
| | - Julianne Jorgensen
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, Massachusetts, USA
| | - Jarone Lee
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James J Markmann
- Department of Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sule Cataltepe
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Amini P, Stojkov D, Felser A, Jackson CB, Courage C, Schaller A, Gelman L, Soriano ME, Nuoffer JM, Scorrano L, Benarafa C, Yousefi S, Simon HU. Neutrophil extracellular trap formation requires OPA1-dependent glycolytic ATP production. Nat Commun 2018; 9:2958. [PMID: 30054480 PMCID: PMC6063938 DOI: 10.1038/s41467-018-05387-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 07/03/2018] [Indexed: 01/21/2023] Open
Abstract
Optic atrophy 1 (OPA1) is a mitochondrial inner membrane protein that has an important role in mitochondrial fusion and structural integrity. Dysfunctional OPA1 mutations cause atrophy of the optic nerve leading to blindness. Here, we show that OPA1 has an important role in the innate immune system. Using conditional knockout mice lacking Opa1 in neutrophils (Opa1N∆), we report that lack of OPA1 reduces the activity of mitochondrial electron transport complex I in neutrophils. This then causes a decline in adenosine-triphosphate (ATP) production through glycolysis due to lowered NAD+ availability. Additionally, we show that OPA1-dependent ATP production in these cells is required for microtubule network assembly and for the formation of neutrophil extracellular traps. Finally, we show that Opa1N∆ mice exhibit a reduced antibacterial defense capability against Pseudomonas aeruginosa. Optic atrophy 1 (OPA1) is known to be important for mitochondrial fusion and structural integrity. Here, using OPA1 knockout mice, the authors show a detrimental effect on host defense capabilities against pathogen infections. This study reports a critical role for OPA1 in innate immunity.
Collapse
Affiliation(s)
- Poorya Amini
- Institute of Pharmacology, University of Bern, 3010, Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, 3010, Bern, Switzerland
| | - Andrea Felser
- University Institute of Clinical Chemistry, Bern University Hospital, 3010, Bern, Switzerland
| | - Christopher B Jackson
- Research Program for Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Carolina Courage
- Division of Human Genetics and Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - André Schaller
- Division of Human Genetics and Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland
| | | | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, Bern University Hospital, 3010, Bern, Switzerland
| | - Luca Scorrano
- Venetian Institute of Molecular Medicine (VIMM), 35129, Padua, Italy
| | - Charaf Benarafa
- Institute of Virology and Immunology, 3147, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, 3010, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
25
|
Moalli F, Ficht X, Germann P, Vladymyrov M, Stolp B, de Vries I, Lyck R, Balmer J, Fiocchi A, Kreutzfeldt M, Merkler D, Iannacone M, Ariga A, Stoffel MH, Sharpe J, Bähler M, Sixt M, Diz-Muñoz A, Stein JV. The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8 + T cells. J Exp Med 2018; 215:1869-1890. [PMID: 29875261 PMCID: PMC6028505 DOI: 10.1084/jem.20170896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/28/2017] [Accepted: 05/11/2018] [Indexed: 12/27/2022] Open
Abstract
Moalli et al. combine in vitro CD8+ T cell motility analysis with intravital imaging of mouse tissues to identify the actomyosin regulator Myo9b as a central player for nonlymphoid tissue infiltration during adaptive immune responses by facilitating crossing of tissue barriers. T cells are actively scanning pMHC-presenting cells in lymphoid organs and nonlymphoid tissues (NLTs) with divergent topologies and confinement. How the T cell actomyosin cytoskeleton facilitates this task in distinct environments is incompletely understood. Here, we show that lack of Myosin IXb (Myo9b), a negative regulator of the small GTPase Rho, led to increased Rho-GTP levels and cell surface stiffness in primary T cells. Nonetheless, intravital imaging revealed robust motility of Myo9b−/− CD8+ T cells in lymphoid tissue and similar expansion and differentiation during immune responses. In contrast, accumulation of Myo9b−/− CD8+ T cells in NLTs was strongly impaired. Specifically, Myo9b was required for T cell crossing of basement membranes, such as those which are present between dermis and epidermis. As consequence, Myo9b−/− CD8+ T cells showed impaired control of skin infections. In sum, we show that Myo9b is critical for the CD8+ T cell adaptation from lymphoid to NLT surveillance and the establishment of protective tissue–resident T cell populations.
Collapse
Affiliation(s)
- Federica Moalli
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Xenia Ficht
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Philipp Germann
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,European Molecular Biology Laboratory, Barcelona, Spain
| | - Mykhailo Vladymyrov
- Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Bern, Switzerland
| | - Bettina Stolp
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Ingrid de Vries
- Institute for Science and Technology Austria, Klosterneuburg, Austria
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Jasmin Balmer
- Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - Amleto Fiocchi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Akitaka Ariga
- Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Bern, Switzerland
| | - Michael H Stoffel
- Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - James Sharpe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,European Molecular Biology Laboratory, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Martin Bähler
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Michael Sixt
- Institute for Science and Technology Austria, Klosterneuburg, Austria
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Yadav SK, Feigelson SW, Roncato F, Antman-Passig M, Shefi O, Lammerding J, Alon R. Frontline Science: Elevated nuclear lamin A is permissive for granulocyte transendothelial migration but not for motility through collagen I barriers. J Leukoc Biol 2018; 104:239-251. [PMID: 29601096 DOI: 10.1002/jlb.3hi1217-488r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 01/21/2023] Open
Abstract
Transendothelial migration (TEM) of lymphocytes and neutrophils is associated with the ability of their deformable nuclei to displace endothelial cytoskeletal barriers. Lamin A is a key intermediate filament component of the nuclear lamina that is downregulated during granulopoiesis. When elevated, lamin A restricts nuclear squeezing through rigid confinements. To determine if the low lamin A expression by leukocyte nuclei is critical for their exceptional squeezing ability through endothelial barriers, we overexpressed this protein in granulocyte-like differentiated HL-60 cells. A 10-fold higher lamin A expression did not interfere with chemokinetic motility of these granulocytes on immobilized CXCL1. Furthermore, these lamin A high leukocytes exhibited normal chemotaxis toward CXCL1 determined in large pore transwell barriers, but poorly squeezed through 3 μm pores toward identical CXCL1 gradients. Strikingly, however, these leukocytes successfully completed paracellular TEM across inflamed endothelial monolayers under shear flow, albeit with a small delay in nuclear squeezing into their sub-endothelial pseudopodia. In contrast, CXCR2 mediated granulocyte motility through collagen I barriers was dramatically delayed by lamin A overexpression due to a failure of lamin A high nuclei to translocate into the pseudopodia of the granulocytes. Collectively, our data predict that leukocytes maintain a low lamin A content in their nuclear lamina in order to optimize squeezing through extracellular collagen barriers but can tolerate high lamin A content when crossing the highly adaptable barriers presented by the endothelial cytoskeleton.
Collapse
Affiliation(s)
- Sandeep Kumar Yadav
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Sara W Feigelson
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Roncato
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Merav Antman-Passig
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
27
|
Stojkov D, Amini P, Oberson K, Sokollik C, Duppenthaler A, Simon HU, Yousefi S. ROS and glutathionylation balance cytoskeletal dynamics in neutrophil extracellular trap formation. J Cell Biol 2017; 216:4073-4090. [PMID: 29150539 PMCID: PMC5716265 DOI: 10.1083/jcb.201611168] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/27/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022] Open
Abstract
Neutrophils can release their genomic DNA as extracellular traps (NETs), which ensnare bacteria and limit their replication. Stojkov et al. find that modulation of cytoskeletal dynamics by reactive oxygen species and glutathionylation controls the degranulation and release of mitochondrial DNA required for NET formation. The antimicrobial defense activity of neutrophils partly depends on their ability to form neutrophil extracellular traps (NETs), but the underlying mechanism controlling NET formation remains unclear. We demonstrate that inhibiting cytoskeletal dynamics with pharmacological agents or by genetic manipulation prevents the degranulation of neutrophils and mitochondrial DNA release required for NET formation. Wiskott-Aldrich syndrome protein–deficient neutrophils are unable to polymerize actin and exhibit a block in both degranulation and DNA release. Similarly, neutrophils with a genetic defect in NADPH oxidase fail to induce either actin and tubulin polymerization or NET formation on activation. Moreover, neutrophils deficient in glutaredoxin 1 (Grx1), an enzyme required for deglutathionylation of actin and tubulin, are unable to polymerize either cytoskeletal network and fail to degranulate or release DNA. Collectively, cytoskeletal dynamics are achieved as a balance between reactive oxygen species–regulated effects on polymerization and glutathionylation on the one hand and the Grx1-mediated deglutathionylation that is required for NET formation on the other.
Collapse
Affiliation(s)
- Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Poorya Amini
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Kevin Oberson
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Christiane Sokollik
- Unit of Pediatric Infectious Diseases, University Children's Hospital Bern, Bern, Switzerland
| | - Andrea Duppenthaler
- Unit of Pediatric Infectious Diseases, University Children's Hospital Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Barros-Becker F, Lam PY, Fisher R, Huttenlocher A. Live imaging reveals distinct modes of neutrophil and macrophage migration within interstitial tissues. J Cell Sci 2017; 130:3801-3808. [PMID: 28972134 DOI: 10.1242/jcs.206128] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022] Open
Abstract
Cell motility is required for diverse processes during immunity and inflammation. Classically, leukocyte motility is defined as an amoeboid type of migration, however some leukocytes, like macrophages, also employ a more mesenchymal mode of migration. Here, we sought to characterize the mechanisms that regulate neutrophil and macrophage migration in vivo by using real-time imaging of leukocyte motility within interstitial tissues in zebrafish larvae. Neutrophils displayed a rounded morphology and rapid protease-independent motility, lacked defined paxillin puncta, and had persistent rearward polarization of stable F-actin and the microtubule network. By contrast, macrophages displayed an elongated morphology with reduced speed and increased directional persistence and formed paxillin-containing puncta but had a less-defined polarization of the microtubule and actin networks. We also observed differential effects of protease inhibition, microtubule disruption and ROCK inhibition on the efficiency of neutrophil and macrophage motility. Taken together, our findings suggest that larval zebrafish neutrophils and macrophage display distinct modes of migration within interstitial tissues in vivo.
Collapse
Affiliation(s)
- Francisco Barros-Becker
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pui-Ying Lam
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Fisher
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
29
|
Abstract
During an innate immune response, myeloid cells undergo complex morphological adaptations in response to inflammatory cues, which allow them to exit the vasculature, enter the tissues, and destroy invading pathogens. The actin and microtubule cytoskeletons are central to many of the most essential cellular functions including cell division, cell morphology, migration, intracellular trafficking, and signaling. Cytoskeletal structure and regulation are crucial for many myeloid cell functions, which require rapid and dynamic responses to extracellular signals. In this chapter, we review the roles of the actin and microtubule cytoskeletons in myeloid cells, focusing primarily on their roles in chemotaxis and phagocytosis. The role of myeloid cell cytoskeletal defects in hematological disorders is highlighted throughout.
Collapse
|
30
|
Mechanochemical feedback underlies coexistence of qualitatively distinct cell polarity patterns within diverse cell populations. Proc Natl Acad Sci U S A 2017; 114:E5750-E5759. [PMID: 28655842 DOI: 10.1073/pnas.1700054114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell polarization and directional cell migration can display random, persistent, and oscillatory dynamic patterns. However, it is not clear whether these polarity patterns can be explained by the same underlying regulatory mechanism. Here, we show that random, persistent, and oscillatory migration accompanied by polarization can simultaneously occur in populations of melanoma cells derived from tumors with different degrees of aggressiveness. We demonstrate that all of these patterns and the probabilities of their occurrence are quantitatively accounted for by a simple mechanism involving a spatially distributed, mechanochemical feedback coupling the dynamically changing extracellular matrix (ECM)-cell contacts to the activation of signaling downstream of the Rho-family small GTPases. This mechanism is supported by a predictive mathematical model and extensive experimental validation, and can explain previously reported results for diverse cell types. In melanoma, this mechanism also accounts for the effects of genetic and environmental perturbations, including mutations linked to invasive cell spread. The resulting mechanistic understanding of cell polarity quantitatively captures the relationship between population variability and phenotypic plasticity, with the potential to account for a wide variety of cell migration states in diverse pathological and physiological conditions.
Collapse
|
31
|
Abstract
Cell motility is required for diverse biological processes including development, homing of immune cells, wound healing, and cancer cell invasion. Motile neutrophils exhibit a polarized morphology characterized by the formation of leading-edge pseudopods and a highly contractile cell rear known as the uropod. Although it is known that perturbing uropod formation impairs neutrophil migration, the role of the uropod in cell polarization and motility remains incompletely understood. Here we discuss cell intrinsic mechanisms that regulate neutrophil polarization and motility, with a focus on the uropod, and examine how relationships among regulatory mechanisms change when cells change their direction of migration.
Collapse
|
32
|
EB1 contributes to proper front-to-back polarity in neutrophil-like HL-60 cells. Eur J Cell Biol 2017; 96:143-153. [DOI: 10.1016/j.ejcb.2017.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/10/2016] [Accepted: 01/16/2017] [Indexed: 12/30/2022] Open
|
33
|
Zhang ER, Liu S, Wu LF, Altschuler SJ, Cobb MH. Chemoattractant concentration-dependent tuning of ERK signaling dynamics in migrating neutrophils. Sci Signal 2016; 9:ra122. [PMID: 27965424 DOI: 10.1126/scisignal.aag0486] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The directed migration (chemotaxis) of neutrophils toward the bacterial peptide N-formyl-Met-Leu-Phe (fMLP) is a crucial process in immune defense against invading bacteria. While navigating through a gradient of increasing concentrations of fMLP, neutrophils and neutrophil-like HL-60 cells switch from exhibiting directional migration at low fMLP concentrations to exhibiting circuitous migration at high fMLP concentrations. The extracellular signal-regulated kinase (ERK) pathway is implicated in balancing this fMLP concentration-dependent switch in migration modes. We investigated the role and regulation of ERK signaling through single-cell analysis of neutrophil migration in response to different fMLP concentrations over time. We found that ERK exhibited gradated, rather than all-or-none, responses to fMLP concentration. Maximal ERK activation occurred in response to about 100 nM fMLP, and ERK inactivation was promoted by p38. Furthermore, we found that directional migration of neutrophils reached a maximal extent at about 100 nM fMLP and that ERK, but not p38, was required for neutrophil migration. Thus, our data suggest that, in chemotactic neutrophils responding to fMLP, ERK displays gradated activation and p38-dependent inhibition and that these ERK dynamics promote neutrophil migration.
Collapse
Affiliation(s)
- Elizabeth R Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shanshan Liu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lani F Wu
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven J Altschuler
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
34
|
Diz-Muñoz A, Romanczuk P, Yu W, Bergert M, Ivanovitch K, Salbreux G, Heisenberg CP, Paluch EK. Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biol 2016; 14:74. [PMID: 27589901 PMCID: PMC5010735 DOI: 10.1186/s12915-016-0294-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. RESULTS Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. CONCLUSIONS Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.
Collapse
Affiliation(s)
- Alba Diz-Muñoz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany.
| | - Pawel Romanczuk
- Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.
- Department of Biology, Institute of Theoretical Biology, Humboldt University, Berlin, 10115, Germany.
| | - Weimiao Yu
- Institute of Molecular and Cell Biology, A-STAR, Singapore, 138673, Singapore
| | - Martin Bergert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK
| | - Kenzo Ivanovitch
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK
- Present address: Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany
- The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincolns Inn Fields, London, WC2A 3LY, UK
| | | | - Ewa K Paluch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK
| |
Collapse
|
35
|
Abstract
Cellular motility is essential for many processes such as embryonic development, wound healing processes, tissue assembly and regeneration, immune cell trafficing and diseases such as cancer. The migration efficiency and the migratory potential depend on the type of migration mode. The previously established migration modes such as epithelial (non-migratory) and mesenchymal (migratory) as well as amoeboid (squeezing motility) relay mainly on phenomenological criteria such as cell morphology and molecular biological criteria such as gene expression. However, the physical view on the migration modes is still not well understood. As the process of malignant cancer progression such as metastasis depends on the migration of single cancer cells and their migration mode, this review focuses on the different migration strategies and discusses which mechanical prerequisites are necessary to perform a special migration mode through a 3-dimensional microenvironment. In particular, this review discusses how cells can distinguish and finally switch between the migration modes and what impact do the physical properties of cells and their microenvironment have on the transition between the novel migration modes such as blebbing and protrusive motility.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- a Faculty of Physics and Earth Science; Institute of Experimental Physics I; Biological Physics Division; University of Leipzig ; Leipzig , Germany
| |
Collapse
|
36
|
Wang G, Cao L, Liu X, Sieracki NA, Di A, Wen X, Chen Y, Taylor S, Huang X, Tiruppathi C, Zhao YY, Song Y, Gao X, Jin T, Bai C, Malik AB, Xu J. Oxidant Sensing by TRPM2 Inhibits Neutrophil Migration and Mitigates Inflammation. Dev Cell 2016; 38:453-62. [PMID: 27569419 DOI: 10.1016/j.devcel.2016.07.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/22/2016] [Accepted: 07/18/2016] [Indexed: 02/05/2023]
Abstract
Blood neutrophils perform an essential host-defense function by directly migrating to bacterial invasion sites to kill bacteria. The mechanisms mediating the transition from the migratory to bactericidal phenotype remain elusive. Here, we demonstrate that TRPM2, a trp superfamily member, senses neutrophil-generated reactive oxygen species and restrains neutrophil migration. The inhibitory function of oxidant sensing by TRPM2 requires the oxidation of Cys549, which then induces TRMP2 binding to formyl peptide receptor 1 (FPR1) and subsequent FPR1 internalization and signaling inhibition. The oxidant sensing-induced termination of neutrophil migration at the site of infection permits a smooth transition to the subsequent microbial killing phase.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Luyang Cao
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Xiaowen Liu
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Nathan A Sieracki
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Anke Di
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Xi Wen
- Chemotaxis Signal Section, Laboratory of Immunogenetics, NIAID, NIH, Bethesda, MD 20892, USA
| | - Yong Chen
- Proteomic Core Facility, NHLBI, NIH, Bethesda, MD 20824, USA
| | - Shalina Taylor
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Xiaojia Huang
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | | | - You-Yang Zhao
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaopei Gao
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Jingsong Xu
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA; Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
37
|
Directional memory arises from long-lived cytoskeletal asymmetries in polarized chemotactic cells. Proc Natl Acad Sci U S A 2016; 113:1267-72. [PMID: 26764383 DOI: 10.1073/pnas.1513289113] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chemotaxis, the directional migration of cells in a chemical gradient, is robust to fluctuations associated with low chemical concentrations and dynamically changing gradients as well as high saturating chemical concentrations. Although a number of reports have identified cellular behavior consistent with a directional memory that could account for behavior in these complex environments, the quantitative and molecular details of such a memory process remain unknown. Using microfluidics to confine cellular motion to a 1D channel and control chemoattractant exposure, we observed directional memory in chemotactic neutrophil-like cells. We modeled this directional memory as a long-lived intracellular asymmetry that decays slower than observed membrane phospholipid signaling. Measurements of intracellular dynamics revealed that moesin at the cell rear is a long-lived element that when inhibited, results in a reduction of memory. Inhibition of ROCK (Rho-associated protein kinase), downstream of RhoA (Ras homolog gene family, member A), stabilized moesin and directional memory while depolymerization of microtubules (MTs) disoriented moesin deposition and also reduced directional memory. Our study reveals that long-lived polarized cytoskeletal structures, specifically moesin, actomyosin, and MTs, provide a directional memory in neutrophil-like cells even as they respond on short time scales to external chemical cues.
Collapse
|
38
|
Sturrock M, Dawes AT. Protein abundance may regulate sensitivity to external cues in polarized cells. J R Soc Interface 2015; 12:rsif.2015.0150. [PMID: 25878132 DOI: 10.1098/rsif.2015.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell polarization is a ubiquitous process which results in cellular constituents being organized into discrete intracellular spatial domains. It occurs in a variety of cell types, including epithelial cells, immune system cells and neurons. A key player in this process is the Par protein family whose asymmetric localization to anterior and posterior parts of the cell is crucial for proper division and cell fate specification. In this paper, we explore a stochastic analogue of the temporal model of Par protein interactions first developed in Dawes & Munro (Dawes and Munro 2011 Biophys. J. 101, 1412-1422. (doi:10.1016/j.bpj.2011.07.030)). We focus on how protein abundance influences the behaviour of both the deterministic and stochastic versions of the model. In Dawes & Munro (2011), it was found that bistable behaviour in the temporal model of Par protein led to the existence of complementary domains in the corresponding spatio-temporal model. Here, we find that the corresponding temporal stochastic model permits switching behaviour (the model solution 'jumps' between steady states) for lower protein abundances, whereas for higher protein abundances the stochastic and deterministic models are in good agreement (the model solution evolves to one of two steady states). This led us to the testable hypothesis that cells with lower abundances of Par protein may be more sensitive to external cues, whereas cells with higher abundances of Par protein may be less sensitive to external cues. In order to gain more control over the precise abundance of Par protein, we proposed and explored a second model (again, examining both deterministic and stochastic versions) in which the total number of Par molecules is conserved. We found that this model required an additional dimerization reaction in the cytoplasm in order for bistable and switching behaviour to be found. Once this additional reaction was included, we found that both the first and second models gave qualitatively similar results but in different regions of the parameter space, suggesting a further regulatory mechanism that cells could potentially use to modulate their response to external signals.
Collapse
Affiliation(s)
- Marc Sturrock
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Adriana T Dawes
- Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, OH 43210, USA Department of Molecular Genetics, The Ohio State University, 231 West 18th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Cytoskeletal rearrangement and Src and PI-3K-dependent Akt activation control GABA(B)R-mediated chemotaxis. Cell Signal 2015; 27:1178-1185. [PMID: 25725285 DOI: 10.1016/j.cellsig.2015.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/01/2015] [Accepted: 02/15/2015] [Indexed: 01/13/2023]
Abstract
The γ-amino butyric acid (GABA) type B receptors (GABA(B)R) function as chemoattractant receptors in response to GABA(B)R agonists in human neutrophils. The goal of this study was to define signaling mechanisms regulating GABA(B)R-mediated chemotaxis and cytoskeletal rearrangement. In a proteomic study we identified serine/threonine kinase Akt, tyrosine kinases Src and Pyk2, microtubule regulator kinesin and microtubule affinity-regulating kinase (MARK) co-immunoprecipitating with GABA(B)R. To define the contributions of these candidate signaling events in GABA(B)R-mediated chemotaxis, we used rat basophilic leukemic cells (RBL-2H3 cells) stably transfected with human GABA(B1b) and GABA(B2) receptors. The GABA(B)R agonist baclofen induced Akt phosphorylation and chemotaxis by binding to its specific GABA(B)R since pretreatment of cells with CGP52432, a GABA(B)R antagonist, blocked such effects. Moreover, baclofen induced Akt phosphorylation was shown to be dependent upon PI-3K and Src kinases. Baclofen failed to stimulate actin polymerization in suspended RBL cells unless exposed to a baclofen gradient. However, baclofen stimulated both actin and tubulin polymerization in adherent RBL-GABA(B)R cells. Blockade of actin and tubulin polymerization by treatment of cells with cytochalasin D or nocodazole respectively, abolished baclofen-mediated chemotaxis. Furthermore, baclofen stimulated Pyk2 and STAT3 phosphorylation, both known regulators of cell migration. In conclusion, GABA(B)R stimulation promotes chemotaxis in RBL cells which is dependent on signaling via PI3-K/Akt, Src kinases and on rearrangement of both microtubules and actin cytoskeleton. These data define mechanisms of GABA(B)R-mediated chemotaxis which may potentially be used to therapeutically regulate cellular response to injury and disease.
Collapse
|
40
|
Boding L, Hansen AK, Nielsen MM, Meroni G, Braunstein TH, Woetmann A, Ødum N, Bonefeld CM, Geisler C. Midline 1 controls polarization and migration of murine cytotoxic T cells. IMMUNITY INFLAMMATION AND DISEASE 2015; 2:262-71. [PMID: 25866633 PMCID: PMC4386920 DOI: 10.1002/iid3.44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/13/2014] [Accepted: 11/15/2014] [Indexed: 11/24/2022]
Abstract
Midline 1 (MID1) is a microtubule-associated ubiquitin ligase that regulates protein phosphatase 2 A levels. Loss-of-function mutations in MID1 lead to the human X-linked Opitz G/BBB (OS) syndrome characterized by defective midline development during embryogenesis. We have recently shown that MID1 is strongly up-regulated in murine cytotoxic T lymphocytes (CTLs), and that it has a significant impact on exocytosis of lytic granules and the killing capacity of CTLs. The aims of the present study were to determine the localization of MID1 in migrating CTLs, and to investigate whether MID1 affects CTL polarization and migration. We found that MID1 mainly localizes to the uropod of migrating CTLs and that it has a substantial impact on CTL polarization and migration in vitro. Furthermore, analysis of contact hypersensitivity responses supported that MID1 controls effector functions of CTLs in hapten-challenged skin in vivo. These results provide significant new knowledge on the role of MID1 in CTL biology.
Collapse
Affiliation(s)
- Lasse Boding
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Ann K Hansen
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Morten M Nielsen
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Germana Meroni
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo" Trieste, Italy
| | - Thomas H Braunstein
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Anders Woetmann
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Niels Ødum
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Charlotte M Bonefeld
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
41
|
Liu X, Yang T, Suzuki K, Tsukita S, Ishii M, Zhou S, Wang G, Cao L, Qian F, Taylor S, Oh MJ, Levitan I, Ye RD, Carnegie GK, Zhao Y, Malik AB, Xu J. Moesin and myosin phosphatase confine neutrophil orientation in a chemotactic gradient. ACTA ACUST UNITED AC 2015; 212:267-80. [PMID: 25601651 PMCID: PMC4322047 DOI: 10.1084/jem.20140508] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Jingsong Xu and colleagues investigate how neutrophils initiate polarized migration toward bacteria or chemoattractants. They find that attractant-induced activation of myosin phosphatase results in the deactivation of moesin at the prospective leading edge and its redistribution to the trailing edge, establishing polarity and directional pseudopod formation. Neutrophils respond to invading bacteria by adopting a polarized morphology, migrating in the correct direction, and engulfing the bacteria. How neutrophils establish and precisely orient this polarity toward pathogens remains unclear. Here we report that in resting neutrophils, the ERM (ezrin, radixin, and moesin) protein moesin in its active form (phosphorylated and membrane bound) prevented cell polarization by inhibiting the small GTPases Rac, Rho, and Cdc42. Attractant-induced activation of myosin phosphatase deactivated moesin at the prospective leading edge to break symmetry and establish polarity. Subsequent translocation of moesin to the trailing edge confined the formation of a prominent pseudopod directed toward pathogens and prevented secondary pseudopod formation in other directions. Therefore, both moesin-mediated inhibition and its localized deactivation by myosin phosphatase are essential for neutrophil polarization and effective neutrophil tracking of pathogens.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Pharmacology and Department of Medicine, University of Illinois, Chicago, IL 60612
| | - Tao Yang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Koya Suzuki
- Laboratory of Biological Science and Laboratory of Cellular Dynamics, Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science and Laboratory of Cellular Dynamics, Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
| | - Masaru Ishii
- Laboratory of Biological Science and Laboratory of Cellular Dynamics, Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
| | - Shuping Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Wang
- Department of Pharmacology and Department of Medicine, University of Illinois, Chicago, IL 60612
| | - Luyang Cao
- Department of Pharmacology and Department of Medicine, University of Illinois, Chicago, IL 60612
| | - Feng Qian
- Department of Pharmacology and Department of Medicine, University of Illinois, Chicago, IL 60612
| | - Shalina Taylor
- Department of Pharmacology and Department of Medicine, University of Illinois, Chicago, IL 60612
| | - Myung-Jin Oh
- Department of Pharmacology and Department of Medicine, University of Illinois, Chicago, IL 60612
| | - Irena Levitan
- Department of Pharmacology and Department of Medicine, University of Illinois, Chicago, IL 60612
| | - Richard D Ye
- Department of Pharmacology and Department of Medicine, University of Illinois, Chicago, IL 60612
| | - Graeme K Carnegie
- Department of Pharmacology and Department of Medicine, University of Illinois, Chicago, IL 60612
| | - Yong Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Asrar B Malik
- Department of Pharmacology and Department of Medicine, University of Illinois, Chicago, IL 60612
| | - Jingsong Xu
- Department of Pharmacology and Department of Medicine, University of Illinois, Chicago, IL 60612
| |
Collapse
|
42
|
Chan KT, Asokan SB, King SJ, Bo T, Dubose ES, Liu W, Berginski ME, Simon JM, Davis IJ, Gomez SM, Sharpless NE, Bear JE. LKB1 loss in melanoma disrupts directional migration toward extracellular matrix cues. ACTA ACUST UNITED AC 2015; 207:299-315. [PMID: 25349262 PMCID: PMC4210439 DOI: 10.1083/jcb.201404067] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The LKB1 kinase regulates directional migration in response to extracellular matrix gradients and may inhibit invasive motility by sensing inhibitory matrix cues. Somatic inactivation of the serine/threonine kinase gene STK11/LKB1/PAR-4 occurs in a variety of cancers, including ∼10% of melanoma. However, how the loss of LKB1 activity facilitates melanoma invasion and metastasis remains poorly understood. In LKB1-null cells derived from an autochthonous murine model of melanoma with activated Kras and Lkb1 loss and matched reconstituted controls, we have investigated the mechanism by which LKB1 loss increases melanoma invasive motility. Using a microfluidic gradient chamber system and time-lapse microscopy, in this paper, we uncover a new function for LKB1 as a directional migration sensor of gradients of extracellular matrix (haptotaxis) but not soluble growth factor cues (chemotaxis). Systematic perturbation of known LKB1 effectors demonstrated that this response does not require canonical adenosine monophosphate–activated protein kinase (AMPK) activity but instead requires the activity of the AMPK-related microtubule affinity-regulating kinase (MARK)/PAR-1 family kinases. Inhibition of the LKB1–MARK pathway facilitated invasive motility, suggesting that loss of the ability to sense inhibitory matrix cues may promote melanoma invasion.
Collapse
Affiliation(s)
- Keefe T Chan
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Sreeja B Asokan
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Samantha J King
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Tao Bo
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Evan S Dubose
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Wenjin Liu
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Matthew E Berginski
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Jeremy M Simon
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Ian J Davis
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Shawn M Gomez
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Norman E Sharpless
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - James E Bear
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
43
|
Ji P. New Insights into the Mechanisms of Mammalian Erythroid Chromatin Condensation and Enucleation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:159-82. [DOI: 10.1016/bs.ircmb.2015.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Valignat MP, Nègre P, Cadra S, Lellouch AC, Gallet F, Hénon S, Theodoly O. Lymphocytes can self-steer passively with wind vane uropods. Nat Commun 2014; 5:5213. [PMID: 25323331 DOI: 10.1038/ncomms6213] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/09/2014] [Indexed: 01/06/2023] Open
Abstract
A wide variety of cells migrate directionally in response to chemical or mechanical cues, however the mechanisms involved in cue detection and translation into directed movement are debatable. Here we investigate a model of lymphocyte migration on the inner surface of blood vessels. Cells orient their migration against fluid flow, suggesting the existence of an adaptive mechano-tranduction mechanism. We find that flow detection may not require molecular mechano-sensors of shear stress, and detection of flow direction can be achieved by the orientation in the flow of the non-adherent cell rear, the uropod. Uropods act as microscopic wind vanes that can transmit detection of flow direction into cell steering via the on-going machinery of polarity maintenance, without the need for novel internal guidance signalling triggered by flow. Contrary to chemotaxis, which implies active regulation of cue-dependent signalling, upstream flow mechanotaxis of lymphocytes may only rely on a passive self-steering mechanism.
Collapse
Affiliation(s)
- Marie-Pierre Valignat
- 1] Laboratory Adhesion &Inflammation, Aix Marseille Université, LAI UM 61, Marseille F-13288, France [2] Inserm, UMR_S 1067, Marseille F-13288, France [3] CNRS, UMR 7333, Marseille F-13288, France
| | - Paulin Nègre
- 1] Laboratory Adhesion &Inflammation, Aix Marseille Université, LAI UM 61, Marseille F-13288, France [2] Inserm, UMR_S 1067, Marseille F-13288, France [3] CNRS, UMR 7333, Marseille F-13288, France [4] APHM, Hôpital de la Conception, Laboratoire d'Immunologie, Marseille F-13385, France
| | - Sophie Cadra
- 1] Laboratory Adhesion &Inflammation, Aix Marseille Université, LAI UM 61, Marseille F-13288, France [2] Inserm, UMR_S 1067, Marseille F-13288, France [3] CNRS, UMR 7333, Marseille F-13288, France
| | - Annemarie C Lellouch
- 1] Laboratory Adhesion &Inflammation, Aix Marseille Université, LAI UM 61, Marseille F-13288, France [2] Inserm, UMR_S 1067, Marseille F-13288, France [3] CNRS, UMR 7333, Marseille F-13288, France
| | - François Gallet
- Université Paris-Diderot, CNRS, MSC UMR 7057, Paris F-75205, France
| | - Sylvie Hénon
- Université Paris-Diderot, CNRS, MSC UMR 7057, Paris F-75205, France
| | - Olivier Theodoly
- 1] Laboratory Adhesion &Inflammation, Aix Marseille Université, LAI UM 61, Marseille F-13288, France [2] Inserm, UMR_S 1067, Marseille F-13288, France [3] CNRS, UMR 7333, Marseille F-13288, France
| |
Collapse
|
45
|
Crespo CL, Vernieri C, Keller PJ, Garrè M, Bender JR, Wittbrodt J, Pardi R. The PAR complex controls the spatiotemporal dynamics of F-actin and the MTOC in directionally migrating leukocytes. J Cell Sci 2014; 127:4381-95. [PMID: 25179599 PMCID: PMC4197085 DOI: 10.1242/jcs.146217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inflammatory cells acquire a polarized phenotype to migrate towards sites of infection or injury. A conserved polarity complex comprising PAR-3, PAR-6 and atypical protein kinase C (aPKC) relays extracellular polarizing cues to control cytoskeletal and signaling networks affecting morphological and functional polarization. However, there is no evidence that myeloid cells use PAR signaling to migrate vectorially in three-dimensional (3D) environments in vivo. Using genetically encoded bioprobes and high-resolution live imaging, we reveal the existence of F-actin oscillations in the trailing edge and constant repositioning of the microtubule organizing center (MTOC) to direct leukocyte migration in wounded medaka fish larvae (Oryzias latipes). Genetic manipulation in live myeloid cells demonstrates that the catalytic activity of aPKC and the regulated interaction with PAR-3 and PAR-6 are required for consistent F-actin oscillations, MTOC perinuclear mobility, aPKC repositioning and wound-directed migration upstream of Rho kinase (also known as ROCK or ROK) activation. We propose that the PAR complex coordinately controls cytoskeletal changes affecting both the generation of traction force and the directionality of leukocyte migration to sites of injury.
Collapse
Affiliation(s)
- Carolina Lage Crespo
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Vernieri
- IFOM Foundation, Institute FIRC of Molecular Oncology, 20139 Milan, Italy
| | - Philipp J Keller
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, 20147 VI, USA
| | - Massimiliano Garrè
- IFOM Foundation, Institute FIRC of Molecular Oncology, 20139 Milan, Italy
| | - Jeffrey R Bender
- Department of Medicine, Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University, New Haven, 06511 CT, USA
| | - Joachim Wittbrodt
- Center for Organismal Studies Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ruggero Pardi
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy
| |
Collapse
|
46
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
47
|
Morris EJ, Nader GPF, Ramalingam N, Bartolini F, Gundersen GG. Kif4 interacts with EB1 and stabilizes microtubules downstream of Rho-mDia in migrating fibroblasts. PLoS One 2014; 9:e91568. [PMID: 24658398 PMCID: PMC3962350 DOI: 10.1371/journal.pone.0091568] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/12/2014] [Indexed: 01/03/2023] Open
Abstract
Selectively stabilized microtubules (MTs) form in the lamella of fibroblasts and contribute to cell migration. A Rho-mDia-EB1 pathway regulates the formation of stable MTs, yet how selective stabilization of MTs is achieved is unknown. Kinesin activity has been implicated in selective MT stabilization and a number of kinesins regulate MT dynamics both in vitro and in cells. Here, we show that the mammalian homolog of Xenopus XKLP1, Kif4, is both necessary and sufficient for the induction of selective MT stabilization in fibroblasts. Kif4 localized to the ends of stable MTs and participated in the Rho-mDia-EB1 MT stabilization pathway since Kif4 depletion blocked mDia- and EB1-induced selective MT stabilization and EB1 was necessary for Kif4 induction of stable MTs. Kif4 and EB1 interacted in cell extracts, and binding studies revealed that the tail domain of Kif4 interacted directly with the N-terminal domain of EB1. Consistent with its role in regulating formation of stable MTs in interphase cells, Kif4 knockdown inhibited migration of cells into wounded monolayers. These data identify Kif4 as a novel factor in the Rho-mDia-EB1 MT stabilization pathway and cell migration.
Collapse
Affiliation(s)
- Edward J. Morris
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Guilherme P. F. Nader
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Nagendran Ramalingam
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Gregg G. Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
48
|
Niggli V. Insights into the mechanism for dictating polarity in migrating T-cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:201-70. [PMID: 25262243 DOI: 10.1016/b978-0-12-800178-3.00007-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review is focused on mechanisms of chemokine-induced polarization of T-lymphocytes. Polarization involves, starting from spherical cells, formation of a morphologically and functionally different rear (uropod) and front (leading edge). This polarization is required for efficient random and directed T-cell migration. The addressed topics concern the specific location of cell organelles and of receptors, signaling molecules, and cytoskeletal proteins in chemokine-stimulated polarized T-cells. In chemokine-stimulated, polarized T-cells, specific proteins, signaling molecules and organelles show enrichment either in the rear, the midzone, or the front; different from the random location in spherical resting cells. Possible mechanisms involved in this asymmetric location will be discussed. A major topic is also the functional role of proteins and cell organelles in T-cell polarization and migration. Specifically, the roles of adhesion and chemokine receptors, cytoskeletal proteins, signaling molecules, scaffolding proteins, and membrane microdomains in these processes will be discussed. The polarity which is established during contact formation of T-cells with antigen-presenting cells is not discussed in detail.
Collapse
Affiliation(s)
- Verena Niggli
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
49
|
He Y, Li D, Cook SL, Yoon MS, Kapoor A, Rao CV, Kenis PJA, Chen J, Wang F. Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Mol Biol Cell 2013; 24:3369-80. [PMID: 24006489 PMCID: PMC3814157 DOI: 10.1091/mbc.e13-07-0405] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 12/02/2022] Open
Abstract
Chemotaxis allows neutrophils to seek out sites of infection and inflammation. The asymmetric accumulation of filamentous actin (F-actin) at the leading edge provides the driving force for protrusion and is essential for the development and maintenance of neutrophil polarity. The mechanism that governs actin cytoskeleton dynamics and assembly in neutrophils has been extensively explored and is still not fully understood. By using neutrophil-like HL-60 cells, we describe a pivotal role for Rictor, a component of mammalian target of rapamycin complex 2 (mTORC2), in regulating assembly of the actin cytoskeleton during neutrophil chemotaxis. Depletion of mTOR and Rictor, but not Raptor, impairs actin polymerization, leading-edge establishment, and directional migration in neutrophils stimulated with chemoattractants. Of interest, depletion of mSin1, an integral component of mTORC2, causes no detectable defects in neutrophil polarity and chemotaxis. In addition, experiments with chemical inhibition and kinase-dead mutants indicate that mTOR kinase activity and AKT phosphorylation are dispensable for chemotaxis. Instead, our results suggest that the small Rho GTPases Rac and Cdc42 serve as downstream effectors of Rictor to regulate actin assembly and organization in neutrophils. Together our findings reveal an mTORC2- and mTOR kinase-independent function and mechanism of Rictor in the regulation of neutrophil chemotaxis.
Collapse
Affiliation(s)
- Yuan He
- Department of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Dong Li
- Department of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Sara L. Cook
- Department of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Mee-Sup Yoon
- Department of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Ashish Kapoor
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Paul J. A. Kenis
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Fei Wang
- Department of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
50
|
Shelef MA, Tauzin S, Huttenlocher A. Neutrophil migration: moving from zebrafish models to human autoimmunity. Immunol Rev 2013; 256:269-81. [PMID: 24117827 PMCID: PMC4117680 DOI: 10.1111/imr.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There has been a resurgence of interest in the neutrophil's role in autoimmune disease. Classically considered an early responder that dies at the site of inflammation, new findings using live imaging of embryonic zebrafish and other modalities suggest that neutrophils can reverse migrate away from sites of inflammation. These 'inflammation-sensitized' neutrophils, as well as the neutrophil extracellular traps and other products made by neutrophils in general, may have many implications for autoimmunity. Here, we review what is known about the role of neutrophils in three different autoimmune diseases: rheumatoid arthritis, systemic lupus erythematosus, and small vessel vasculitis. We then highlight recent findings related to several cytoskeletal regulators that guide neutrophil recruitment including Lyn, Rac2, and SHIP. Finally, we discuss how our improved understanding of the molecules that control neutrophil chemotaxis may impact our knowledge of autoimmunity.
Collapse
Affiliation(s)
- Miriam A. Shelef
- Division of Rheumatology, Department of Medicine, University of Wisconsin – Madison, Madison, WI
| | - Sebastien Tauzin
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin – Madison, Madison, WI
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin – Madison, Madison, WI
| |
Collapse
|