1
|
Zheng P, Hu Z, Shen Y, Gu L, Ouyang Y, Duan Y, Ji G, Dong B, Lin Y, Wen T, Tian Q, Hou Y, Zhou Q, Sun X, Chen X, Wang KL, Luo S, Wu S, Sun Y, Li M, Xiao L, Wu Q, Meng Y, Liu G, Wang Z, Bai X, Duan S, Ding Y, Bi Y, Wang Y, Li G, Liu X, Lu Z, Wu X, Tang Z, Xu D. PSAT1 impairs ferroptosis and reduces immunotherapy efficacy via GPX4 hydroxylation. Nat Chem Biol 2025:10.1038/s41589-025-01887-3. [PMID: 40281343 DOI: 10.1038/s41589-025-01887-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/14/2025] [Indexed: 04/29/2025]
Abstract
Tumor cells adapt to the inflammatory tumor microenvironment (TME) and develop resistance to immunotherapy, with ferroptosis being a major form of tumor cell death. However, the mechanisms by which tumor cells coordinate TME stimuli and their unique metabolic traits to evade ferroptosis and develop resistance to immunotherapy remain unclear. Here we showed that interferon-γ (IFNγ)-activated calcium/calmodulin-dependent protein kinase II phosphorylates phosphoserine aminotransferase 1 (PSAT1) at serine 337 (S337), allowing it to interact with glutathione peroxidase 4 (GPX4) and stabilize the protein, counteracting ferroptosis. PSAT1 elevates GPX4 stability by promoting α-ketoglutarate-dependent PHD3-mediated GPX4 proline 159 (P159) hydroxylation, disrupting its binding to HSC70 and inhibiting autophagy-mediated degradation. In mice, reconstitution of PSAT1 S337A or GPX4 P159A promotes ferroptosis and suppresses triple-negative breast cancer (TNBC) progression. Blocking PSAT1 pS337 with CPP elevates IFNγ-induced ferroptosis and enhances the efficacy of programmed cell death protein 1 (PD-1) antibodies in TNBC. Additionally, PSAT1-mediated GPX4 hydroxylation correlates with poor immunotherapy outcomes in patients with TNBC, highlighting PSAT1's noncanonical role in suppressing ferroptosis and immunotherapy sensitivity.
Collapse
Affiliation(s)
- Peixiang Zheng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhiqiang Hu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yuli Shen
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Lina Gu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuan Ouyang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yuran Duan
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Guimei Ji
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Bofei Dong
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yanni Lin
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ting Wen
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Qi Tian
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yueru Hou
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Sun
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaohan Chen
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | | | - Shudi Luo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Shiqi Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yuening Sun
- Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Min Li
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Liwei Xiao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Qingang Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Meng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Guijun Liu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Zheng Wang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengzhong Duan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Bi
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Yuhao Wang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Gaopeng Li
- Department of Colorectal Surgery and Oncology of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoguang Liu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaohong Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| | - Daqian Xu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China.
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Zhou Y, Li M, Lin S, Zhu Z, Zhuang Z, Cui S, Chen L, Zhang R, Wang X, Shen B, Chen C, Yang R. Mechanical sensing protein PIEZO1 controls osteoarthritis via glycolysis mediated mesenchymal stem cells-Th17 cells crosstalk. Cell Death Dis 2025; 16:231. [PMID: 40169556 PMCID: PMC11961634 DOI: 10.1038/s41419-025-07577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/04/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025]
Abstract
Aberrant mechanical stimuli can cause tissue attrition and activate mechanosensitive intracellular signaling, impacting the progression of osteoarthritis (OA). However, the precise relationship between mechanical loading and bone metabolism remains unclear. Here, we present evidence that Piezo1 senses the mechanical stimuli to coordinate the crosstalk between mesenchymal stem cells (MSCs) and T helper 17 (Th17) cells, leading to the deterioration of bone and cartilage in osteoarthritis (OA). Mechanical loading impaired the property of MSCs by inhibiting their osteo-chondrogenic differentiation and promoting inflammatory signaling to enhance Th17 cells. Mechanistically, mechanical stimuli activated Piezo1, thereby facilitating Ca2+ influx which upregulated the activity of Hexokinase 2(HK2), the rate-limiting enzyme of glycolysis. The resultant increase in glycolytic activity enhanced communication between MSCs and T cells, thus promoting Th17 cell polarization in a macrophage migration inhibitory factor (MIF) dependent manner. Functionally, Wnt1cre; Piezo1fl/fl mice reduced bone and cartilage erosion in the temporomandibular joint condyle following mechanical loading compared to control groups. Additionally, we observed activated Piezo1 and HK2-mediated glycolysis in patients with temporomandibular joint OA, thereby confirming the clinical relevance of our findings. Overall, our results provide insights into how Piezo1 in MSCs coordinates with mechano-inflammatory signaling to regulate bone metabolism. The schema shows that mechanical sensing protein PIEZO1 in MSCs controls osteoarthritis via glycolysis mediated MSCs and Th17 cells crosstalk in a MIF dependent manner.
Collapse
Affiliation(s)
- Yikun Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
- Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mingzhao Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
| | - Shuai Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
| | - Zilu Zhu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
| | - Zimeng Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
| | - Shengjie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
| | - Liujing Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
| | - Ran Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuedong Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
| | - Bo Shen
- National Institute of Biological Sciences, Beijing, China, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China.
| |
Collapse
|
3
|
Sheng Y, Qiao C, Zhang Z, Shi X, Yang L, Xi R, Yu J, Liu W, Zhang G, Wang F. Calcium Channel Blocker Lacidipine Promotes Antitumor Immunity by Reprogramming Tryptophan Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409310. [PMID: 39585774 PMCID: PMC11744582 DOI: 10.1002/advs.202409310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Dysfunction of calcium channels is involved in the development and progression of some cancers. However, it remains unclear the role of calcium channel inhibitors in tumor immunomodulation. Here, calcium channel blocker lacidipine is identified to potently inhibit the enzymatic activity and expression of indoleamine 2,3-dioxygenase 1 (IDO1), a rate-limiting enzyme in tryptophan metabolism. Lacidipine activates effector T cells and incapacitates regulatory T cells (Tregs) to augment the anti-tumor effect of chemotherapeutic agents in breast cancer by converting immunologically "cold" into "hot" tumors. Mechanistically, lacidipine targets calcium channels (CaV1.2/1.3) to inhibit Pyk2-JAK1-calmodulin complex-mediated IDO1 transcription suppression, which suppresses the kynurenine pathway and maintains the total nicotinamide adenine dinucleotide (NAD) pool by regulating NAD biosynthesis. These results reveal a new function of calcium channels in IDO1-mediated tryptophan metabolism in tumor immunity and warrant further development of lacidipine for the metabolic immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Yuwen Sheng
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
| | - Chong Qiao
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
| | - Zhonghui Zhang
- School Of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou511400China
| | - Xiaoke Shi
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
- University of Chinese Academy of SciencesBeijing100049China
| | - Linhan Yang
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ruiying Xi
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jialing Yu
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wanli Liu
- State Key Laboratory of Membrane BiologySchool of Life SciencesInstitute for ImmunologyBeijing Advanced Innovation Center for Structural BiologyBeijing Key Lab for Immunological Research on Chronic DiseasesBeijing100084China
| | - Guolin Zhang
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
| | - Fei Wang
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
| |
Collapse
|
4
|
Zenke K, Sugimoto R, Watanabe S, Muroi M. NF-κB p105-mediated nuclear translocation of ERK is required for full activation of IFNγ-induced iNOS expression. Cell Signal 2024; 124:111424. [PMID: 39304100 DOI: 10.1016/j.cellsig.2024.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Inducible nitric oxidase (iNOS) encoded by Nos2 is a representative IFNγ-inducible effector molecule that plays an important role in both innate and adaptive immunity. In the present study, we demonstrated that full-length NF-κB p105 (p105), which is a precursor of NF-κB p50 (p50), is required for full activation of IFNγ-induced iNOS expression in the RAW264.7 mouse macrophage cell line. In comparison to wild-type (WT) RAW264.7 cells, p105 KO RAW264.7 (p105 KO) cells completely lost IFNγ-induced iNOS expression. Despite the limited effect of exogenous expression of p50 in p105 KO cells on IFNγ-induced Nos2 promoter activity, p105 expression fully restored IFNγ-induced Nos2 promoter activity to a level comparable to that of WT cells, suggesting an important role for full-length p105 in IFNγ-induced iNOS expression. While the expression and phosphorylation of JAK1 and STAT1 were rather enhanced in p105 KO cells, the phosphorylation of c-Jun downstream of MAPK signaling was decreased. IFNγ-induced phosphorylation of ERK, a kinase for IFNγ-induced c-Jun phosphorylation, was not significantly reduced in p105 KO cells, although the nuclear activity of ERK was significantly decreased due to its reduced translocation to the nucleus. Expression of iNOS, nuclear translocation of ERK, and phosphorylation of c-Jun were restored by stable supplementation of p105 in p105 KO cells. These results suggest that p105 is required for the nuclear translocation of ERK and the subsequent phosphorylation of c-Jun, which are necessary for full activation of IFNγ-induced iNOS expression. Reduced nuclear translocation of ERK in p105 KO cells was also observed in the activation of ERK following serum starvation, further suggesting that the involvement of p105 in ERK nuclear translocation is not limited to IFNγ-stimulated cells but is a more general function of p105.
Collapse
Affiliation(s)
- Kosuke Zenke
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Rino Sugimoto
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Sachiko Watanabe
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Masashi Muroi
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
5
|
Chen Q, Pan Y, Hu Y, Chen G, Chen X, Xie Y, Wang M, Li Z, Huang J, Shi Y, Huang H, Zhang T, Wang M, Zeng P, Wang S, Chen R, Zheng Y, Zhong L, Yang H, Liang D. An L-type calcium channel blocker nimodipine exerts anti-fibrotic effects by attenuating TGF-β1 induced calcium response in an in vitro model of thyroid eye disease. EYE AND VISION (LONDON, ENGLAND) 2024; 11:37. [PMID: 39237996 PMCID: PMC11378575 DOI: 10.1186/s40662-024-00401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Thyroid eye disease (TED) is a vision-threatening autoimmune disorder. Orbital tissue fibrosis leading to intractable complications remains a troublesome issue in TED management. Exploration of novel therapeutic targets and agents to ameliorate tissue fibrosis is crucial for TED. Recent work suggests that Ca2+ signaling participates in tissue fibrosis. However, whether an alteration of Ca2+ signaling has a role in fibrogenesis during TED remains unclear. In this study, we aimed to investigate the role of Ca2+ signaling in the fibrogenesis process during TED and the potential therapeutic effects of a highly selective inhibitor of the L-type calcium channel (LTCC), nimodipine, through a TGF-β1 induced in vitro TED model. METHODS Primary culture of orbital fibroblasts (OFs) were established from orbital adipose connective tissues of patients with TED and healthy control donors. Real-time quantitative polymerase chain reaction (RT-qPCR) and RNA sequencing were used to assess the genes expression associated with LTCC in OFs. Flow cytometry, RT-qPCR, 5-ethynyl-2'-deoxyuridine (EdU) proliferation assay, wound healing assay and Western blot (WB) were used to assess the intracellular Ca2+ response on TGF-β1 stimulation, and to evaluate the potential therapeutic effects of nimodipine in the TGF-β1 induced in vitro TED model. The roles of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and signal transducer and activator of transcription 1 (STAT1) in fibrogenesis during TED were determined by immunohistochemistry, WB, flow cytometry and co-immunoprecipitation assay. Selective inhibitors were used to explore the downstream signaling pathways. RESULTS LTCC inhibitor nimodipine blocked the TGF-β1 induced intracellular Ca2+ response and further reduced the expression of alpha-smooth muscle actin (α-SMA), collagen type I alpha 1 (Col1A1) and collagen type I alpha 2 (Col1A2) in OFs. Besides, nimodipine inhibited cell proliferation and migration of OFs. Moreover, our results provided evidence that activation of the CaMKII/STAT1 signaling pathway was involved in fibrogenesis during TED, and nimodipine inhibited the pro-fibrotic functions of OFs by down-regulating the CaMKII/STAT1 signaling pathway. CONCLUSIONS TGF-β1 induces an LTCC-mediated Ca2+ response, followed by activation of CaMKII/STAT1 signaling pathway, which promotes the pro-fibrotic functions of OFs and participates in fibrogenesis during TED. Nimodipine exerts potent anti-fibrotic benefits in vitro by suppressing the CaMKII/STAT1 signaling pathway. Our work deepens our understanding of the fibrogenesis process during TED and provides potential therapeutic targets and alternative candidate for TED.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Yunwei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Guanyu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Minzhen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Jun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Haixiang Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Te Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Mei Wang
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Peng Zeng
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Sha Wang
- Eye Center of Xiangya Hospital, Central South University, Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China
| | - Rongxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Yongxin Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Liuxueying Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Capatina AL, Malcolm JR, Stenning J, Moore RL, Bridge KS, Brackenbury WJ, Holding AN. Hypoxia-induced epigenetic regulation of breast cancer progression and the tumour microenvironment. Front Cell Dev Biol 2024; 12:1421629. [PMID: 39282472 PMCID: PMC11392762 DOI: 10.3389/fcell.2024.1421629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The events that control breast cancer progression and metastasis are complex and intertwined. Hypoxia plays a key role both in oncogenic transformation and in fueling the metastatic potential of breast cancer cells. Here we review the impact of hypoxia on epigenetic regulation of breast cancer, by interfering with multiple aspects of the tumour microenvironment. The co-dependent relationship between oxygen depletion and metabolic shift to aerobic glycolysis impacts on a range of enzymes and metabolites available in the cell, promoting posttranslational modifications of histones and chromatin, and changing the gene expression landscape to facilitate tumour development. Hormone signalling, particularly through ERα, is also tightly regulated by hypoxic exposure, with HIF-1α expression being a prognostic marker for therapeutic resistance in ER+ breast cancers. This highlights the strong need to understand the hypoxia-endocrine signalling axis and exploit it as a therapeutic target. Furthermore, hypoxia has been shown to enhance metastasis in TNBC cells, as well as promoting resistance to taxanes, radiotherapy and even immunotherapy through microRNA regulation and changes in histone packaging. Finally, several other mediators of the hypoxic response are discussed. We highlight a link between ionic dysregulation and hypoxia signalling, indicating a potential connection between HIF-1α and tumoural Na+ accumulation which would be worth further exploration; we present the role of Ca2+ in mediating hypoxic adaptation via chromatin remodelling, transcription factor recruitment and changes in signalling pathways; and we briefly summarise some of the findings regarding vesicle secretion and paracrine induced epigenetic reprogramming upon hypoxic exposure in breast cancer. By summarising these observations, this article highlights the heterogeneity of breast cancers, presenting a series of pathways with potential for therapeutic applications.
Collapse
Affiliation(s)
| | - Jodie R Malcolm
- Department of Biology, University of York, York, United Kingdom
| | - Jack Stenning
- Department of Biology, University of York, York, United Kingdom
| | - Rachael L Moore
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Katherine S Bridge
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew N Holding
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
7
|
Joustra V, Li Yim AYF, van Gennep S, Hageman I, de Waard T, Levin E, Lauffer P, de Jonge W, Henneman P, Löwenberg M, D’Haens G. Peripheral Blood DNA Methylation Signatures and Response to Tofacitinib in Moderate-to-severe Ulcerative Colitis. J Crohns Colitis 2024; 18:1179-1189. [PMID: 37526299 PMCID: PMC11324342 DOI: 10.1093/ecco-jcc/jjad129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION Predictive biomarkers for treatment efficacy of ulcerative colitis [UC] treatments are lacking. Here, we performed a longitudinal study investigating the association and potential predictive power of genome-wide peripheral blood [PB] DNA methylation signatures and response to tofacitinib treatment in UC. METHODS We recruited moderate-to-severe UC patients starting tofacitinib treatment, and measured PB DNA methylation profiles at baseline [T1], after 8 weeks [T2], and in a subset [n = 8] after a median of 20 weeks [T3] using the Illumina Infinium HumanMethylation EPIC BeadChip. After 8 weeks, we distinguished responders [R] from non-responders [NR] based on a centrally read endoscopic response [decrease in endoscopic Mayo score ≥1 or Ulcerative Colitis Endoscopic Index of Severity ≥2] combined with corticosteroid-free clinical and/or biochemical response. T1 PB samples were used for biomarker identification, and T2 and publicly available intraclass correlation [ICC] data were used for stability analyses. RNA-sequencing was performed to understand the downstream effects of the predictor CpG loci. RESULTS In total, 16 R and 15 NR patients, with a median disease duration of 7 [4-12] years and overall comparable patient characteristics at baseline, were analysed. We identified a panel of 53 differentially methylated positions [DMPs] associated with response to tofacitinib [AUROC 0.74]. Most DMPs [77%] demonstrated both short- and long-term hyperstability [ICC ≥0.90], irrespective of inflammatory status. Gene expression analysis showed lower FGFR2 [pBH = 0.011] and LRPAP1 [pBH = 0.020], and higher OR2L13 [pBH = 0.016] expression at T1 in R compared with NR. CONCLUSION Our observations demonstrate the utility of genome-wide PB DNA methylation signatures to predict response to tofacitinib.
Collapse
Affiliation(s)
- Vincent Joustra
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Andrew Y F Li Yim
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sara van Gennep
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ishtu Hageman
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Peter Lauffer
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter de Jonge
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Peter Henneman
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Löwenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert D’Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Lundrigan E, Toudic C, Pennock E, Pezacki JP. SARS-CoV-2 Protein Nsp9 Is Involved in Viral Evasion through Interactions with Innate Immune Pathways. ACS OMEGA 2024; 9:26428-26438. [PMID: 38911767 PMCID: PMC11191075 DOI: 10.1021/acsomega.4c02631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 06/25/2024]
Abstract
The suppression of the host's innate antiviral immune response by SARS-CoV-2, a contributing factor to the severity of disease, has been considerably studied in recent years. Many of these studies have focused on the actions of the structural proteins of the virus because of their accessibility to host immunological components. However, less is known about SARS-CoV-2 nonstructural and accessory proteins in relation to viral evasion. Herein, we study SARS-CoV-2 nonstructural proteins Orf3a, Orf6, and Nsp9 in a mimicked virus-infected state using poly(I:C), a synthetic analog of viral dsRNA, that elicits the antiviral immune response. Through genome-wide expression profiling, we determined that Orf3a, Orf6, and Nsp9 all modulate the host antiviral signaling transcriptome to varying extents, uniquely suppressing aspects of innate immune signaling. Our data suggest that SARS-CoV-2 Nsp9 hinders viral detection through suppression of RIG-I expression and antagonizes the interferon antiviral cascade by downregulating NF-kB and TBK1. Our data point to unique molecular mechanisms through which the different SARS-CoV-2 proteins suppress immune signaling and promote viral evasion. Nsp9 in particular acts on major elements of the host antiviral pathways to impair the antiviral immune response.
Collapse
Affiliation(s)
- Eryn Lundrigan
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Caroline Toudic
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Emily Pennock
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
9
|
Kang YJ, Hyeon SJ, McQuade A, Lim J, Baek SH, Diep YN, Do KV, Jeon Y, Jo D, Lee CJ, Blurton‐Jones M, Ryu H, Cho H. Neurotoxic Microglial Activation via IFNγ-Induced Nrf2 Reduction Exacerbating Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304357. [PMID: 38482922 PMCID: PMC11132036 DOI: 10.1002/advs.202304357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/08/2024] [Indexed: 05/29/2024]
Abstract
Microglial neuroinflammation appears to be neuroprotective in the early pathological stage, yet neurotoxic, which often precedes neurodegeneration in Alzheimer's disease (AD). However, it remains unclear how the microglial activities transit to the neurotoxic state during AD progression, due to complex neuron-glia interactions. Here, the mechanism of detrimental microgliosis in AD by employing 3D human AD mini-brains, brain tissues of AD patients, and 5XFAD mice is explored. In the human and animal AD models, amyloid-beta (Aβ)-overexpressing neurons and reactive astrocytes produce interferon-gamma (IFNγ) and excessive oxidative stress. IFNγ results in the downregulation of mitogen-activated protein kinase (MAPK) and the upregulation of Kelch-like ECH-associated Protein 1 (Keap1) in microglia, which inactivate nuclear factor erythroid-2-related factor 2 (Nrf2) and sensitize microglia to the oxidative stress and induces a proinflammatory microglia via nuclear factor kappa B (NFκB)-axis. The proinflammatory microglia in turn produce neurotoxic nitric oxide and proinflammatory mediators exacerbating synaptic impairment, phosphorylated-tau accumulation, and discernable neuronal loss. Interestingly, recovering Nrf2 in the microglia prevents the activation of proinflammatory microglia and significantly blocks the tauopathy in AD minibrains. Taken together, it is envisioned that IFNγ-driven Nrf2 downregulation in microglia as a key target to ameliorate AD pathology.
Collapse
Affiliation(s)
- You Jung Kang
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Seung Jae Hyeon
- Center for Brain DisordersBrain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Amanda McQuade
- Institute for Neurodegenerative DiseasesUniversity of CaliforniaSan FranciscoCA94158USA
- Department of Neurobiology & BehaviorUniversity of California IrvineIrvineCA92697USA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCA92697USA
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCA92697USA
| | - Jiwoon Lim
- IBS SchoolUniversity of Science and Technology (UST)Daejeon34114Republic of Korea
- Center for Cognition and SocialityInstitute for Basic Science (IBS)Daejeon34126Republic of Korea
| | - Seung Hyun Baek
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Yen N. Diep
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Khanh V. Do
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Yeji Jeon
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Dong‐Gyu Jo
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Biomedical Institute for ConvergenceSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Samsung Advanced Institute for Health Sciences and TechnologySungkyunkwan UniversitySeoul16419Republic of Korea
| | - C. Justin Lee
- Center for Cognition and SocialityInstitute for Basic Science (IBS)Daejeon34126Republic of Korea
| | - Mathew Blurton‐Jones
- Department of Neurobiology & BehaviorUniversity of California IrvineIrvineCA92697USA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCA92697USA
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCA92697USA
| | - Hoon Ryu
- Center for Brain DisordersBrain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Hansang Cho
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| |
Collapse
|
10
|
Si J, Meir AY, Hong X, Wang G, Huang W, Pearson C, Adams WG, Wang X, Liang L. Maternal pre-pregnancy BMI, offspring epigenome-wide DNA methylation, and childhood obesity: findings from the Boston Birth Cohort. BMC Med 2023; 21:317. [PMID: 37612641 PMCID: PMC10463574 DOI: 10.1186/s12916-023-03003-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Maternal pre-pregnancy obesity is an established risk factor for childhood obesity. Investigating epigenetic alterations induced by maternal obesity during fetal development could gain mechanistic insight into the developmental origins of childhood obesity. While obesity disproportionately affects underrepresented racial and ethnic mothers and children in the USA, few studies investigated the role of prenatal epigenetic programming in intergenerational obesity of these high-risk populations. METHODS This study included 903 mother-child pairs from the Boston Birth Cohort, a predominantly urban, low-income minority birth cohort. Mother-infant dyads were enrolled at birth and the children were followed prospectively to age 18 years. Infinium Methylation EPIC BeadChip was used to measure epigenome-wide methylation level of cord blood. We performed an epigenome-wide association study of maternal pre-pregnancy body mass index (BMI) and cord blood DNA methylation (DNAm). To quantify the degree to which cord blood DNAm mediates the maternal BMI-childhood obesity, we further investigated whether maternal BMI-associated DNAm sites impact birthweight or childhood overweight or obesity (OWO) from age 1 to age 18 and performed corresponding mediation analyses. RESULTS The study sample contained 52.8% maternal pre-pregnancy OWO and 63.2% offspring OWO at age 1-18 years. Maternal BMI was associated with cord blood DNAm at 8 CpG sites (genome-wide false discovery rate [FDR] < 0.05). After accounting for the possible interplay of maternal BMI and smoking, 481 CpG sites were discovered for association with maternal BMI. Among them 123 CpGs were associated with childhood OWO, ranging from 42% decrease to 87% increase in OWO risk for each SD increase in DNAm. A total of 14 identified CpG sites showed a significant mediation effect on the maternal BMI-child OWO association (FDR < 0.05), with mediating proportion ranging from 3.99% to 25.21%. Several of these 14 CpGs were mapped to genes in association with energy balance and metabolism (AKAP7) and adulthood metabolic syndrome (CAMK2B). CONCLUSIONS This prospective birth cohort study in a high-risk yet understudied US population found that maternal pre-pregnancy OWO significantly altered DNAm in newborn cord blood and provided suggestive evidence of epigenetic involvement in the intergenerational risk of obesity.
Collapse
Affiliation(s)
- Jiahui Si
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anat Yaskolka Meir
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiumei Hong
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Guoying Wang
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wanyu Huang
- Department of Civil and Systems Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - William G Adams
- Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Xiaobin Wang
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Liming Liang
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
11
|
Wanford JJ, Odendall C. Ca 2+-calmodulin signalling at the host-pathogen interface. Curr Opin Microbiol 2023; 72:102267. [PMID: 36716574 DOI: 10.1016/j.mib.2023.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/29/2023]
Abstract
Multiple eukaryotic cell processes are modulated by calcium ions (Ca2+). As such, Ca2+ is emerging as a crucial regulator of innate immunity in multicellular organisms. In particular, recent studies have identified roles of Ca2+ signalling at the host-bacteria interface. Following microbial exposure, Ca2+ signals mobilised from the extracellular milieu or intracellular stores are transduced into cell physiological responses. However, during infection with host-adapted pathogens, Ca2+ signals are often atypical, due to the activities of virulence factors, with varied consequences for both the pathogen and the host cell. In this review, we describe the Ca2+-dependent host factors regulating antibacterial immunity, in addition to bacterial effectors that promote, inhibit, or co-opt Ca2+-calmodulin signalling to promote infection.
Collapse
Affiliation(s)
- Joseph J Wanford
- School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Charlotte Odendall
- School of Immunology and Microbial Sciences, Kings College London, London, UK.
| |
Collapse
|
12
|
Dai L, Liu Z, Guo L, Chai Y, Yang Y, Wang Y, Ma Y, Shi C, Zhang W. Multi-Tissue Transcriptome Study of Innate Immune Gene Expression Profiling Reveals Negative Energy Balance Altered the Defense and Promoted System Inflammation of Dairy Cows. Vet Sci 2023; 10:vetsci10020107. [PMID: 36851411 PMCID: PMC9959304 DOI: 10.3390/vetsci10020107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Negative energy balance (NEB) during the perinatal period leads to metabolic and immunological disorders in dairy cows, resulting in systemic responses and inflammation. The innate immune system is crucial for the host's protection and inflammatory response. However, systematic research is still lacking on how NEB affects the innate immune system to alter the 'host defense capability and inflammatory response. In this investigation, raw transcriptome data of adipose, blood, endometrial, hypothalamus, and liver tissues were downloaded from a public database, cleaned, aligned, quantified, and batch-corrected. The innate immune gene list was retrieved from innateDB, followed by the expression matrix of innate immune genes in various tissues for differential expression analysis, principle component analysis (PCA), and gene set enrichment analysis (GSEA). Under the effect of NEB, adipose tissue had the most differentially expressed genes, which were predominantly up-regulated, whereas blood GSEA had the most enriched biological processes, which were predominantly down-regulated. The gene sets shared by different tissues, which are predominantly involved in biological processes associated with defense responses and inflammation, were dramatically down-regulated in endometrial tissues and highly up-regulated in other tissues. Under the impact of NEB, LBP, PTX3, S100A12, and LCN2 play essential roles in metabolism and immunological control. In conclusion, NEB can downregulate the defensive response of innate immune genes in endometrial, upregulate the immune and inflammatory response of other tissues, activate the host defense response, and increase the systemic inflammatory response. The analysis of the effects of NEB on innate immune genes from the multiple tissues analysis provides new insights into the crosstalk between metabolism and immunity and also provides potential molecular targets for disease diagnosis and disease resistance breeding in dairy cows.
Collapse
Affiliation(s)
- Lingli Dai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Zaixia Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lili Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Chai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanda Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanfen Ma
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Caixia Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (C.S.); (W.Z.)
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (C.S.); (W.Z.)
| |
Collapse
|
13
|
Liang Z, Yuan ZH, Wang Y, Du ZH, Guo JJ, Xia LL, Shan Y. New Mechanistic Insight into the Protective Effects of Ganoderma lucidum Polysaccharides Against Palmitic Acid-Induced Cell Damage in Porcine Intestinal Epithelial Cell Line IPEC-J2. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221128103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ganoderma lucidum ( G. lucidum) is one of the well-known mushrooms in China, which has G. lucidum polysaccharides (GLP) that have been widely studied for various biological activities, such as antioxidant, antitumor, antiinflammatory, antiviral, antidiabetes, and immunomodulatory activities. A signal transducer and activator of transcription (STAT) signaling pathway is related to cell proliferation and apoptosis. The relationship between STAT and intestinal protection of GLP is still unknown. We studied the inhibitors AG490 in the STAT pathway and its downstream molecules to analyze the unique effects in the protection of GLP against palmitic acid (PA)-induced porcine intestinal epithelial cells (IPEC-J2) injury. Compared to PA treatment, GLP + PA obviously decreased Ca2+ concentration, H2O2 production, NF-E2-related factor 2 (Nrf2) nuclear translocation, STAT1 and STAT2 protein levels, and increased nuclear factor kappa-B (NF-κB) nuclear translocation and p-STAT3/STAT3 ratio in IPEC-J2 cells. After inhibition of STAT3 signaling, p-STAT3/STAT3 ratio, NF-κB nuclear translocation obviously decreased and Nrf2 nuclear translocation significantly increased in the GLP + PA group. The protection of GLP on proliferation and apoptosis of PA-induced IPEC-J2 cells was suppressed by inhibiting STAT3. The STAT3 pathway regulated the enterocyte-protective effects of GLP by modulating the nuclear translocation of Nrf2 and NF-κB. We provide new insights into the mechanism of STAT signaling for the protection of GLP on PA-induced intestinal epithelial cell injury.
Collapse
Affiliation(s)
- Zengenni Liang
- Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | | | - Yan Wang
- Hunan Biological and Electromechanical Polytechnic, Changsha, China
| | - Zhong-Hua Du
- Changsha Qiantu Biological Technology Limited Company, Changsha, China
| | - Jia-Jing Guo
- Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ling-Li Xia
- Changsha Diwei Agricultural Technology Limited Company, Changsha, China
| | - Yang Shan
- Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
14
|
Alphonse N, Wanford JJ, Voak AA, Gay J, Venkhaya S, Burroughs O, Mathew S, Lee T, Evans SL, Zhao W, Frowde K, Alrehaili A, Dickenson RE, Munk M, Panina S, Mahmood IF, Llorian M, Stanifer ML, Boulant S, Berchtold MW, Bergeron JRC, Wack A, Lesser CF, Odendall C. A family of conserved bacterial virulence factors dampens interferon responses by blocking calcium signaling. Cell 2022; 185:2354-2369.e17. [PMID: 35568036 PMCID: PMC9596379 DOI: 10.1016/j.cell.2022.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
Interferons (IFNs) induce an antimicrobial state, protecting tissues from infection. Many viruses inhibit IFN signaling, but whether bacterial pathogens evade IFN responses remains unclear. Here, we demonstrate that the Shigella OspC family of type-III-secreted effectors blocks IFN signaling independently of its cell death inhibitory activity. Rather, IFN inhibition was mediated by the binding of OspC1 and OspC3 to the Ca2+ sensor calmodulin (CaM), blocking CaM kinase II and downstream JAK/STAT signaling. The growth of Shigella lacking OspC1 and OspC3 was attenuated in epithelial cells and in a murine model of infection. This phenotype was rescued in both models by the depletion of IFN receptors. OspC homologs conserved in additional pathogens not only bound CaM but also inhibited IFN, suggesting a widespread virulence strategy. These findings reveal a conserved but previously undescribed molecular mechanism of IFN inhibition and demonstrate the critical role of Ca2+ and IFN targeting in bacterial pathogenesis.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK; Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | - Joseph J Wanford
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Andrew A Voak
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jack Gay
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Shayla Venkhaya
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Owen Burroughs
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sanjana Mathew
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Truelian Lee
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sasha L Evans
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Weiting Zhao
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Kyle Frowde
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Abrar Alrehaili
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Ruth E Dickenson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Mads Munk
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Svetlana Panina
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ishraque F Mahmood
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Miriam Llorian
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Megan L Stanifer
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Julien R C Bergeron
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
15
|
Zhang Z, Bu L, Luo J, Guo J. Targeting protein kinases benefits cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188738. [PMID: 35660645 DOI: 10.1016/j.bbcan.2022.188738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023]
Abstract
Small-molecule kinase inhibitors have been well established and successfully developed in the last decades for cancer target therapies. However, intrinsic or acquired drug resistance is becoming the major barrier for their clinical application. With the development of immunotherapies, in particular the discovery of immune checkpoint inhibitors (ICIs), the combination of ICIs with other therapies have recently been extensively explored, among which combination of ICIs with kinase inhibitors achieves promising clinical outcome in a plethora of cancer types. Here we comprehensively summarize the potent roles of protein kinases in modulating immune checkpoints both in tumor and immune cells, and reshaping tumor immune microenvironments by evoking innate immune response and neoantigen generation or presentation. Moreover, the clinical trial and approval of combined administration of kinase inhibitors with ICIs are collected, highlighting the precise strategies to benefit cancer immune therapies.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lang Bu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Junhang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
16
|
Lewuillon C, Laguillaumie MO, Quesnel B, Idziorek T, Touil Y, Lemonnier L. Put in a “Ca2+ll” to Acute Myeloid Leukemia. Cells 2022; 11:cells11030543. [PMID: 35159351 PMCID: PMC8834247 DOI: 10.3390/cells11030543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder characterized by genetic aberrations in myeloid primitive cells (blasts) which lead to their defective maturation/function and their proliferation in the bone marrow (BM) and blood of affected individuals. Current intensive chemotherapy protocols result in complete remission in 50% to 80% of AML patients depending on their age and the AML type involved. While alterations in calcium signaling have been extensively studied in solid tumors, little is known about the role of calcium in most hematologic malignancies, including AML. Our purpose with this review is to raise awareness about this issue and to present (i) the role of calcium signaling in AML cell proliferation and differentiation and in the quiescence of hematopoietic stem cells; (ii) the interplay between mitochondria, metabolism, and oxidative stress; (iii) the effect of the BM microenvironment on AML cell fate; and finally (iv) the mechanism by which chemotherapeutic treatments modify calcium homeostasis in AML cells.
Collapse
Affiliation(s)
- Clara Lewuillon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Marie-Océane Laguillaumie
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Thierry Idziorek
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Yasmine Touil
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Loïc Lemonnier
- Univ. Lille, Inserm, U1003—PHYCEL—Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, F-59655 Villeneuve d’Ascq, France
- Correspondence:
| |
Collapse
|
17
|
Kong F, You H, Zheng K, Tang R, Zheng C. The crosstalk between pattern-recognition receptor signaling and calcium signaling. Int J Biol Macromol 2021; 192:745-756. [PMID: 34634335 DOI: 10.1016/j.ijbiomac.2021.10.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023]
Abstract
The innate immune system is the first line of host defense, and it is capable of resisting both exogenous pathogenic challenges and endogenous danger signals via different pattern recognition receptors (PRRs), including Toll-like receptors, retinoic acid-inducible gene-1 (RIG-1)-like receptors, cytosolic DNA sensors, as well as nucleotide-binding oligomerization domain (NOD)-like receptors. After recognizing the pathogen-associated molecular patterns from exogenous microbes or the damage-associated molecular patterns from endogenous immune-stimulatory signals, these PRRs signaling pathways can induce the expression of interferons and inflammatory factors against microbial pathogen invasion and endogenous stresses. Calcium (Ca2+) is a second messenger that participates in the modulation of various biological processes, including survival, proliferation, apoptosis, and immune response, and is involved in diverse diseases, such as autoimmune diseases and virus infection. To date, accumulating evidence elucidated that the PRR signaling exhibited a regulatory effect on Ca2+ signaling. Meanwhile, Ca2+ signaling also played a critical role in controlling biological processes mediated by the PRR adaptors. Since the importance of these two signalings, it would be interesting to clarify the deeper biological implications of their interplays. This review focuses on the crosstalk between Ca2+ signaling and PRR signaling to regulate innate immune responses.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
18
|
Pan X, Li R, Guo H, Zhang W, Xu X, Chen X, Ding L. Dihydropyridine Calcium Channel Blockers Suppress the Transcription of PD-L1 by Inhibiting the Activation of STAT1. Front Pharmacol 2021; 11:539261. [PMID: 33519429 PMCID: PMC7838064 DOI: 10.3389/fphar.2020.539261] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) which is upregulated in various epithelial tumors, plays a central role in the evasion of the immune system. In addition to monoclonal antibodies that blocking PD1/PD-L1 axis, finding small molecule compounds that can suppress PD-L1 expression might be another substitutable strategy for PD1/PD-L1 based therapy. Here, we found that dihydropyridine calcium channel blockers dose-dependently reduced the expression of PD-L1, both in the cytoplasm and cell surface. IFNγ induced PD-L1 transcription was consistently suppressed by Lercanidipine in 24 h, whereas, the half-life of PD-L1 protein was not significantly affected. IFNγ trigged significant STAT1 phosphorylation, which was eliminated by Lercanidipine. Similarly, STAT1 phosphorylation could also be abolished by extracellular calcium chelating agent EGTA and intracellular calcium chelator BAPTA-AM. Furthermore, Lercanidipine enhanced killing ability of T cells by down-regulating PD-L1. Taken together, our studies suggest that calcium signal is a crucial factor that mediates the transcription of PD-L1 and regulation of calcium can be used as a potential strategy for PD-L1 inhibition.
Collapse
Affiliation(s)
- Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Run Li
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaqing Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Li C, Yao H, Wang H, Fang JY, Xu J. Repurposing screen identifies Amlodipine as an inducer of PD-L1 degradation and antitumor immunity. Oncogene 2020; 40:1128-1146. [PMID: 33323966 DOI: 10.1038/s41388-020-01592-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/08/2023]
Abstract
Cancer cell expression of PD-L1 leads to T cells exhaustion by transducing co-inhibitory signal, and further understanding the regulation of PD-L1 in cancer cells may provide additional therapeutic strategies. Here by drug repurposing screen, we identified amlodipine as a potent inhibitor of PD-L1 expression in cancer cells. Further survey of calcium-associated pathways revealed calpain-dependent stabilization of the PD-L1 protein. Intracellular calcium delivered an operational signal to calpain-dependent Beclin-1 cleavage, blocking autophagic degradation of PD-L1 accumulated on recycling endosome (RE). Blocking calcium flux by amlodipine depleted PD-L1 expression and increased CD8+ T-cell infiltration in tumor tissues but not in myocardium, causing dose-dependent tumor suppression in vivo. Rescuing PD-L1 expression eliminated the effects of amlodipine, suggesting the PD-L1-dependent effect of amlodipine. These results reveal a calcium-dependent mechanism controlling PD-L1 degradation, and highlight calcium flux blockade as a potential strategy for combinatorial immunotherapy.
Collapse
Affiliation(s)
- Chushu Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Han Yao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Huanbin Wang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China. .,Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| |
Collapse
|
20
|
Taha TY, Anirudhan V, Limothai U, Loeb DD, Petukhov PA, McLachlan A. Modulation of hepatitis B virus pregenomic RNA stability and splicing by histone deacetylase 5 enhances viral biosynthesis. PLoS Pathog 2020; 16:e1008802. [PMID: 32822428 PMCID: PMC7467325 DOI: 10.1371/journal.ppat.1008802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/02/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) is a worldwide health problem without curative treatments. Investigation of the regulation of HBV biosynthesis by class I and II histone deacetylases (HDACs) demonstrated that catalytically active HDAC5 upregulates HBV biosynthesis. HDAC5 expression increased both the stability and splicing of the HBV 3.5 kb RNA without altering the translational efficiency of the viral pregenomic or spliced 2.2 kb RNAs. Together, these observations point to a broader role of HDAC5 in regulating RNA splicing and transcript stability while specifically identifying a potentially novel approach toward antiviral HBV therapeutic development. This study demonstrates that HDAC5 deacetylation of host cellular factor(s) results in increased HBV biosynthesis by enhancing viral transcript stability and splicing via direct or indirect binding of host factors to viral intron sequences. This represents the first demonstration of this type of post-transcriptional regulation in the liver and is similar to observations seen for cellular transcripts in neural and cardiac cell types. These observations suggest a more general phenomenon which could represent an additional post-transcriptional code governing the regulation of RNA:protein interactions and hence RNA metabolism. Therefore, covalent modifications of RNA binding proteins may modulate post-transcriptional gene expression in an analogous manner to the known histone code that controls gene transcription. Although this analysis primarily relates to the mechanism(s) by which HDAC5 governs HBV RNA metabolism, it does have significant therapeutic implications. The inhibition of HDAC5 in combination with current nucleos(t)ide analog drugs targeting the viral reverse transcriptase/DNA polymerase might aid in the treatment and possible resolution of chronic infections by targeting both host and viral factors.
Collapse
Affiliation(s)
- Taha Y. Taha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Umaporn Limothai
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Daniel D. Loeb
- McArdle Laboratory for Cancer Research, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PAP); (AM)
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PAP); (AM)
| |
Collapse
|
21
|
Kato M. New insights into IFN-γ in rheumatoid arthritis: role in the era of JAK inhibitors. Immunol Med 2020; 43:72-78. [PMID: 32338187 DOI: 10.1080/25785826.2020.1751908] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023] Open
Abstract
The treatment of rheumatoid arthritis (RA) is now entering a new era, the era of Janus kinase (JAK) inhibitors. JAK inhibitors target multiple cytokines including IL-6 and exhibit a beneficial treatment effect in patients with RA and inadequate response to conventional synthetic or biologic disease-modifying anti-rheumatic drugs. Since the treatment effect of JAK inhibitors is promising even for patients refractory to anti-IL-6 therapy, it needs to be considered how multiple cytokines play roles in the pathogenesis of RA. It is also worth noting that an increased risk of herpes zoster is specifically related to the use of JAK inhibitors. Among cytokines targeted by JAK inhibitors, the current review focuses on IFN-γ, particularly on its role in synovial biology, autoimmunity, bone metabolism, pain, and varicella zoster virus infection. Recent studies provided new insights into IFN-γ in the pathogenesis of RA, which may account for the efficacy of JAK inhibitors.
Collapse
Affiliation(s)
- Masaru Kato
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Zeng X, Baba T, Hamanishi J, Matsumura N, Kharma B, Mise Y, Abiko K, Yamaguchi K, Horikawa N, Hunstman DG, Mulati K, Kitamura S, Taki M, Murakami R, Hosoe Y, Mandai M. Phosphorylation of STAT1 serine 727 enhances platinum resistance in uterine serous carcinoma. Int J Cancer 2019; 145:1635-1647. [PMID: 31228268 DOI: 10.1002/ijc.32501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/12/2019] [Accepted: 05/24/2019] [Indexed: 11/07/2022]
Abstract
Uterine serous carcinoma (USC) is a highly aggressive histological subtype of endometrial cancers harboring highly metastatic and chemoresistant features. Our previous study showed that STAT1 is highly expressed in USC and acts as a key molecule that is positively correlated with tumor progression, but it remains unclear whether STAT1 is relevant to the malicious chemorefractory nature of USC. In the present study, we investigated the regulatory role of STAT1 toward platinum-cytotoxicity in USC. STAT1 suppression sensitized USC cells to increase cisplatin-mediated apoptosis (p < 0.001). Furthermore, phosphorylation of STAT1 was prominently observed on serine-727 (pSTAT1-Ser727), but not on tyrosine-701, in the nucleus of USC cells treated with cisplatin. Mechanistically, the inhibition of pSTAT1-Ser727 by dominant-negative plasmid elevated cisplatin-mediated apoptosis by increasing intracellular accumulation of cisplatin through upregulation of CTR1 expression. TBB has an inhibitory effect on casein kinase 2 (CK2), which phosphorylate STAT1 at serine residues. Sequential treatment with TBB and cisplatin on USC cells greatly reduced nuclear pSTAT1-Ser727, enhanced intracellular accumulation of cisplatin, and subsequently increased apoptosis. Tumor load was significantly reduced by combination therapy of TBB and cisplatin in in vivo xenograft models (p < 0.001). Our results collectively suggest that pSTAT1-Ser727 may play a key role in platinum resistance as well as tumor progression in USC. Thus, targeting the STAT1 pathway via CK2 inhibitor can be a novel method for attenuating the chemorefractory nature of USC.
Collapse
Affiliation(s)
- Xiang Zeng
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Budiman Kharma
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuka Mise
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Horikawa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - David G Hunstman
- Department of Pathology and Laboratory Medicine, University of British Columbia, British Columbia Cancer Agency, Vancouver, BC, Canada.,Genetic Pathology Evaluation Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Kumuluzi Mulati
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sachiko Kitamura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
23
|
Saleiro D, Platanias LC. Interferon signaling in cancer. Non-canonical pathways and control of intracellular immune checkpoints. Semin Immunol 2019; 43:101299. [PMID: 31771762 PMCID: PMC8177745 DOI: 10.1016/j.smim.2019.101299] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 01/01/2023]
Abstract
The interferons (IFNs) are cytokines with important antineoplastic and immune modulatory effects. These cytokines have been conserved through evolution as important elements of the immune surveillance against cancer. Despite this, defining their precise and specific roles in the generation of antitumor responses remains challenging. Emerging evidence suggests the existence of previously unknown roles for IFNs in the control of the immune response against cancer that may redefine our understanding on how these cytokines function. Beyond the engagement of classical JAK-STAT signaling pathways that promote transcription and expression of gene products, the IFNs engage multiple other signaling cascades to generate products that mediate biological responses and outcomes. There is recent emerging evidence indicating that IFNs control the expression of both traditional immune checkpoints like the PD-L1/PD1 axis, but also less well understood "intracellular" immune checkpoints whose targeting may define new approaches for the treatment of malignancies.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA; Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA.
| |
Collapse
|
24
|
Geng S, Zhang Y, Lee C, Li L. Novel reprogramming of neutrophils modulates inflammation resolution during atherosclerosis. SCIENCE ADVANCES 2019; 5:eaav2309. [PMID: 30775441 PMCID: PMC6365109 DOI: 10.1126/sciadv.aav2309] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/21/2018] [Indexed: 05/04/2023]
Abstract
Nonresolving inflammation perpetuated by innate leukocytes is involved in the pathogenesis of unstable atherosclerosis. However, the role and regulation of neutrophils related to nonresolving inflammation and atherosclerosis are poorly understood. We report herein that chronic subclinical endotoxemia, a risk factor for atherosclerosis, skewed neutrophils into a nonresolving inflammatory state with elevated levels of inflammatory mediators (Dectin-1, MMP9, and LTB4) and reduced levels of homeostatic mediators (LRRC32, TGFβ, and FPN). The polarization of neutrophils was due to ROS-mediated activation of oxCAMKII, caused by altered peroxisome homeostasis and reduced lysosome fusion. Application of 4-phenylbutyrate (4-PBA) enhanced peroxisome homeostasis of neutrophils, reduced oxCAMKII, and rebalanced the expression profiles of pro- and anti-inflammatory mediators. Adoptive transfer of neutrophils programmed by subclinical endotoxemia rendered exacerbated atherosclerosis. In contrast, transfer of ex vivo programmed neutrophils by 4-PBA reduced the pathogenesis of atherosclerosis. Our data define novel neutrophil dynamics associated with the progression and regression of atherosclerosis.
Collapse
|
25
|
Kim JY, Kim JY, Kim JH, Jung H, Lee WT, Lee JE. Restorative Mechanism of Neural Progenitor Cells Overexpressing Arginine Decarboxylase Genes Following Ischemic Injury. Exp Neurobiol 2019; 28:85-103. [PMID: 30853827 PMCID: PMC6401554 DOI: 10.5607/en.2019.28.1.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Cell replacement therapy using neural progenitor cells (NPCs) following ischemic stroke is a promising potential therapeutic strategy, but lacks efficacy for human central nervous system (CNS) therapeutics. In a previous in vitro study, we reported that the overexpression of human arginine decarboxylase (ADC) genes by a retroviral plasmid vector promoted the neuronal differentiation of mouse NPCs. In the present study, we focused on the cellular mechanism underlying cell proliferation and differentiation following ischemic injury, and the therapeutic feasibility of NPCs overexpressing ADC genes (ADC-NPCs) following ischemic stroke. To mimic cerebral ischemia in vitro , we subjected the NPCs to oxygen-glucose deprivation (OGD). The overexpressing ADC-NPCs were differentiated by neural lineage, which was related to excessive intracellular calcium-mediated cell cycle arrest and phosphorylation in the ERK1/2, CREB, and STAT1 signaling cascade following ischemic injury. Moreover, the ADC-NPCs were able to resist mitochondrial membrane potential collapse in the increasingly excessive intracellular calcium environment. Subsequently, transplanted ADC-NPCs suppressed infarct volume, and promoted neural differentiation, synapse formation, and motor behavior performance in an in vivo tMCAO rat model. The results suggest that ADC-NPCs are potentially useful for cell replacement therapy following ischemic stroke.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Hosung Jung
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
26
|
Vargas-Hernández A, Forbes LR. JAK/STAT proteins and their biological impact on NK cell development and function. Mol Immunol 2019; 115:21-30. [PMID: 30704805 DOI: 10.1016/j.molimm.2018.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 02/07/2023]
Abstract
NK cells are important early effectors in the innate immune response to a variety of viral infections and for elimination of tumor cells. The JAK/STAT signaling cascade is critical for NK cell development, maturation, survival, and proliferation, therefore, it is important to understand the role of this pathway in NK cell biology. Many cytokines can activate multiple JAK/STAT protein family members, creating a severe phenotype when mutations impair their function or expression. Here we discuss the impact of defective JAK/STAT signaling pathways on NK cell development, activation and cytotoxicity.
Collapse
Affiliation(s)
- Alexander Vargas-Hernández
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, TX, USA
| | - Lisa R Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, TX, USA.
| |
Collapse
|
27
|
Tang M, Tian L, Luo G, Yu X. Interferon-Gamma-Mediated Osteoimmunology. Front Immunol 2018; 9:1508. [PMID: 30008722 PMCID: PMC6033972 DOI: 10.3389/fimmu.2018.01508] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/18/2018] [Indexed: 02/05/2023] Open
Abstract
Osteoimmunology is the interdiscipline that focuses on the relationship between the skeletal and immune systems. They are interconnected by shared signal pathways and cytokines. Interferon-gamma (IFN-γ) plays important roles in immune responses and bone metabolism. IFN-γ enhances macrophage activation and antigen presentation. It regulates antiviral and antibacterial immunity as well as signal transduction. IFN-γ can promote osteoblast differentiation and inhibit bone marrow adipocyte formation. IFN-γ plays dual role in osteoclasts depending on its stage. Furthermore, IFN-γ is an important pathogenetic factor in some immune-mediated bone diseases including rheumatoid arthritis, postmenopausal osteoporosis, and acquired immunodeficiency syndrome. This review will discuss the contradictory findings of IFN-γ in osteoimmunology and its clinical application potential.
Collapse
Affiliation(s)
| | | | | | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Zhang Y, Chen Y, Liu Z, Lai R. ERK is a negative feedback regulator for IFN-γ/STAT1 signaling by promoting STAT1 ubiquitination. BMC Cancer 2018; 18:613. [PMID: 29855346 PMCID: PMC5984314 DOI: 10.1186/s12885-018-4539-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 05/21/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND We recently reported that STAT1 plays a tumor suppressor role, and ERK was inversely correlation with STAT1 expression in esophageal squamous cell carcinoma (ESCC). Here, we investigated the mechanism(s) that are responsible for the ERK regulates STAT1 in ESCC. METHODS We performed the immunoprecipitation (IP) to detect the ubiquitin of STAT1 upon MEK transfection or U0126 treatment and co-IP to confirm the binding of STAT1 and ERK in ESCC cell lines. RESULTS We found evidence that the ubiquitin-proteasome pathway can efficiently degrade STAT1 in ESCC cells, as MG132 treatment rapidly and dramatically increased STAT1 expression in these cells. This process is not dependent on the phosphorylation of the two important STAT1 residues, Y701 and S727, as site-directed mutagenesis of these two sites did not affect STAT1 degradation. We also found that ERK promotes proteasome degradation of STAT1, supported by the observations that pharmacologic inhibition of ERK resulted in a substantial increase of STAT1 whereas expression of constitutively active ERK further reduced the STAT1 protein level. In addition to suppressing STAT1 expression, ERK limited STAT1 signaling by decreasing the production of IFNγ. CONCLUSION To conclude, ERK is an effective negative regulator of STAT1 signaling in ESCC, by promoting its proteasome degradation and decreasing IFNγ production. Our data further supports that targeting ERK and/or STAT1 may be useful for treating ESCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong Province China
| | - Yelong Chen
- Department of Pathology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong Province China
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, 515041 Guangdong China
| | - Zhaoyong Liu
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, 515041 Guangdong China
| | - Raymond Lai
- Department of Pathology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
29
|
Mizoguchi Y, Monji A. TRPC Channels and Brain Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 976:111-121. [DOI: 10.1007/978-94-024-1088-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
CAMK2γ antagonizes mTORC1 activation during hepatocarcinogenesis. Oncogene 2016; 36:2446-2456. [PMID: 27819676 PMCID: PMC5408319 DOI: 10.1038/onc.2016.400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly cancers that still lacks effective treatments. Dysregulation of kinase signaling has frequently been reported to contribute to HCC. In this study, we used bioinformatic approaches to identify kinases that regulate gene expression changes in human HCCs and two murine HCC models. We identified a role for calcium/calmodulin-dependent protein kinases II gamma isoform (CAMK2γ) in hepatocarcinogenesis. CAMK2γ-/- mice displayed severely enhanced chemical-induced hepatocarcinogenesis compared with wild-type controls. Mechanistically, CAMK2γ deletion potentiates hepatic activation of mechanistic target of rapamycin complex 1 (mTORC1), which results in hyperproliferation of hepatocytes. Inhibition of mTORC1 by rapamycin effectively attenuates the compensatory proliferation of hepatocytes in CAMK2γ-/- livers. We further demonstrated that CAMK2γ suppressed growth factor- or insulin-induced mTORC1 activation by inhibiting IRS1/AKT signaling. Taken together, our results reveal a novel mechanism by which CAMK2γ antagonizes mTORC1 activation during hepatocarcinogenesis.
Collapse
|
31
|
Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production. PLoS One 2016; 11:e0162497. [PMID: 27598576 PMCID: PMC5012572 DOI: 10.1371/journal.pone.0162497] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-γ (IFN γ) substantially enhanced production of reactive oxygen species (ROS) following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNγ-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology.
Collapse
|
32
|
p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1. Proc Natl Acad Sci U S A 2016; 113:E5192-201. [PMID: 27519799 DOI: 10.1073/pnas.1603435113] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes.
Collapse
|
33
|
Ampem PT, Smedlund K, Vazquez G. Pharmacological evidence for a role of the transient receptor potential canonical 3 (TRPC3) channel in endoplasmic reticulum stress-induced apoptosis of human coronary artery endothelial cells. Vascul Pharmacol 2015. [PMID: 26215710 DOI: 10.1016/j.vph.2015.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unresolved endoplasmic reticulum (ER) stress, with the subsequent persistent activation of the unfolded protein response (UPR) is a well-recognized mechanism of endothelial cell apoptosis with a major impact on the integrity of the endothelium during the course of cardiovascular diseases. As in other cell types, Ca(2+) influx into endothelial cells can promote ER stress and/or contribute to mechanisms associated with it. In previous work we showed that in human coronary artery endothelial cells (HCAECs) the Ca(2+)-permeable non-selective cation channel Transient Receptor Potential Canonical 3 (TRPC3) mediates constitutive Ca(2+) influx which is critical for operation of inflammatory signaling in these cells, through a mechanism that entails coupling of TRPC3 constitutive function to activation of Ca(2+)/calmodulin-dependent protein kinase II (CAMKII). TRPC3 has been linked to UPR signaling and apoptosis in cells other than endothelial, and CAMKII is a mediator of ER stress-induced apoptosis in various cell types, including endothelial cells. In the present work we used a pharmacological approach to examine whether in HCAECs TRPC3 and CAMKII also contribute to mechanisms of ER stress-induced apoptosis. The findings show for the first time that in HCAECs activation of the UPR and the subsequent ER stress-induced apoptosis exhibit a strong requirement for constitutive Ca(2+) influx and that TRPC3 contributes to this process. In addition, we obtained evidence indicating that, similar to its roles in non-endothelial cells, CAMKII participates in ER stress-induced apoptosis in HCAECs.
Collapse
Affiliation(s)
- Prince T Ampem
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Health Science Campus, 3000 Transverse Dr., Toledo, OH 43614, USA
| | - Kathryn Smedlund
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Health Science Campus, 3000 Transverse Dr., Toledo, OH 43614, USA
| | - Guillermo Vazquez
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Health Science Campus, 3000 Transverse Dr., Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Health Science Campus, 3000 Transverse Dr., Toledo, OH 43614, USA.
| |
Collapse
|
34
|
Fish EN, Platanias LC. Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol Cancer Res 2014; 12:1691-703. [PMID: 25217450 DOI: 10.1158/1541-7786.mcr-14-0450] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IFNs are cytokines with important antiproliferative activity and exhibit key roles in immune surveillance against malignancies. Early work initiated over three decades ago led to the discovery of IFN receptor activated Jak-Stat pathways and provided important insights into mechanisms for transcriptional activation of IFN-stimulated genes (ISG) that mediate IFN biologic responses. Since then, additional evidence has established critical roles for other receptor-activated signaling pathways in the induction of IFN activities. These include MAPK pathways, mTOR cascades, and PKC pathways. In addition, specific miRNAs appear to play a significant role in the regulation of IFN signaling responses. This review focuses on the emerging evidence for a model in which IFNs share signaling elements and pathways with growth factors and tumorigenic signals but engage them in a distinctive manner to mediate antiproliferative and antiviral responses.
Collapse
Affiliation(s)
- Eleanor N Fish
- Toronto General Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown VA Medical Center, Chicago, Illinois.
| |
Collapse
|
35
|
Bezbradica JS, Rosenstein RK, DeMarco RA, Brodsky I, Medzhitov R. A role for the ITAM signaling module in specifying cytokine-receptor functions. Nat Immunol 2014; 15:333-42. [PMID: 24608040 PMCID: PMC4137873 DOI: 10.1038/ni.2845] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 02/11/2014] [Indexed: 12/12/2022]
Abstract
Diverse cellular responses to external cues are controlled by a small number of signal-transduction pathways, but how the specificity of functional outcomes is achieved remains unclear. Here we describe a mechanism for signal integration based on the functional coupling of two distinct signaling pathways widely used in leukocytes: the ITAM pathway and the Jak-STAT pathway. Through the use of the receptor for interferon-γ (IFN-γR) and the ITAM adaptor Fcγ as an example, we found that IFN-γ modified responses of the phagocytic antibody receptor FcγRI (CD64) to specify cell-autonomous antimicrobial functions. Unexpectedly, we also found that in peritoneal macrophages, IFN-γR itself required tonic signaling from Fcγ through the kinase PI(3)K for the induction of a subset of IFN-γ-specific antimicrobial functions. Our findings may be generalizable to other ITAM and Jak-STAT signaling pathways and may help explain signal integration by those pathways.
Collapse
Affiliation(s)
- Jelena S Bezbradica
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rachel K Rosenstein
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Igor Brodsky
- 1] Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Present address: Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
36
|
Putz EM, Gotthardt D, Hoermann G, Csiszar A, Wirth S, Berger A, Straka E, Rigler D, Wallner B, Jamieson AM, Pickl WF, Zebedin-Brandl EM, Müller M, Decker T, Sexl V. CDK8-mediated STAT1-S727 phosphorylation restrains NK cell cytotoxicity and tumor surveillance. Cell Rep 2013; 4:437-44. [PMID: 23933255 PMCID: PMC3748339 DOI: 10.1016/j.celrep.2013.07.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 02/06/2013] [Accepted: 07/11/2013] [Indexed: 12/17/2022] Open
Abstract
The transcription factor STAT1 is important in natural killer (NK) cells, which provide immediate defense against tumor and virally infected cells. We show that mutation of a single phosphorylation site (Stat1-S727A) enhances NK cell cytotoxicity against a range of tumor cells, accompanied by increased expression of perforin and granzyme B. Stat1-S727A mice display significantly delayed disease onset in NK cell-surveilled tumor models including melanoma, leukemia, and metastasizing breast cancer. Constitutive phosphorylation of S727 depends on cyclin-dependent kinase 8 (CDK8). Inhibition of CDK8-mediated STAT1-S727 phosphorylation may thus represent a therapeutic strategy for stimulating NK cell-mediated tumor surveillance.
Collapse
Affiliation(s)
- Eva Maria Putz
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tan X, Alrashdan YA, Alkhouri H, Oliver BGG, Armour CL, Hughes JM. Airway smooth muscle CXCR3 ligand production: regulation by JAK-STAT1 and intracellular Ca²⁺. Am J Physiol Lung Cell Mol Physiol 2013; 304:L790-802. [PMID: 23564506 DOI: 10.1152/ajplung.00356.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In asthma, airway smooth muscle (ASM) chemokine (C-X-C motif) receptor 3 (CXCR3) ligand production may attract mast cells or T lymphocytes to the ASM, where they can modulate ASM functions. In ASM cells (ASMCs) from people with or without asthma, we aimed to investigate JAK-STAT1, JNK, and Ca²⁺ involvement in chemokine (C-X-C motif) ligand (CXCL)10 and CXCL11 production stimulated by interferon-γ, IL-1β, and TNF-α combined (cytomix). Confluent, growth-arrested ASMC were treated with inhibitors for pan-JAK (pyridone-6), JAK2 (AG-490), JNK (SP-600125), or the sarco(endo)plasmic reticulum Ca²⁺ATPase (SERCA) pump (thapsigargin), Ca²⁺ chelator (BAPTA-AM), or vehicle before and during cytomix stimulation for up to 24 h. Signaling protein activation as well as CXCL10/CXCL11 mRNA and protein production were examined using immunoblot analysis, real-time PCR, and ELISA, respectively. Cytomix-induced STAT1 activation was lower and CXCR3 ligand mRNA production was more sensitive to pyridone-6 and AG-490 in asthmatic than nonasthmatic ASMCs, but CXCL10/CXCL11 release was inhibited by the same proportion. Neither agent caused additional inhibition of release when used in combination with the JNK inhibitor SP-600125. Conversely, p65 NF-κB activation was higher in asthmatic than nonasthmatic ASMCs. BAPTA-AM abolished early CXCL10/CXCL11 mRNA production, whereas thapsigargin reduced it in asthmatic cells and inhibited CXCL10/CXCL11 release by both ASMC types. Despite these inhibitory effects, neither Ca²⁺ agent affected early activation of STAT1, JNK, or p65 NF-κB. In conclusion, intracellular Ca²⁺ regulated CXCL10/CXCL11 production but not early activation of the signaling molecules involved. In asthma, reduced ASM STAT1-JNK activation, increased NF-κB activation, and altered Ca²⁺ handling may contribute to rapid CXCR3 ligand production and enhanced inflammatory cell recruitment.
Collapse
Affiliation(s)
- X Tan
- Faculty of Pharmacy, The University of Sydney, Camperdown, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Tsao CW, Lin CF, Wu HT, Ma CT, Huang WC, Hsieh CY, Choi PC, Young KC. Glycogen synthase kinase-3β is critical for Interferon-α-induced serotonin uptake in human Jurkat T cells. J Cell Physiol 2012; 227:2556-66. [DOI: 10.1002/jcp.22994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Eastabrook GDM, Hu Y, Tan R, Dutz JP, Maccalman CD, von Dadelszen P. Decidual NK cell-derived conditioned medium (dNK-CM) mediates VEGF-C secretion in extravillous cytotrophoblasts. Am J Reprod Immunol 2012; 67:101-11. [PMID: 21999474 DOI: 10.1111/j.1600-0897.2011.01075.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PROBLEM The regulatory mechanisms involved in VEGF-C secretion by trophoblasts during placentation are poorly understood. We investigated whether or not decidual natural killer cell conditioned medium (dNK-CM) stimulated VEGF-C secretion in the extravillous cytotrophoblast (EVT) cell line HTR8/SVneo. METHOD OF STUDY The effects of dNK-CM and recombinant IFN-γ on VEGF-C induction by HTR8/SVneo were studied in the absence or presence of IFN-γ or its receptor blocking antibodies, p38 inhibitor (SB202190), JAK inhibitor (JAK inhibitor-1, JI-1), and on STAT1 knockdown HTR8/SVneo. VEGF-C was quantified by ELISA. FACS was used to investigate the phosphorylations of Tyr701 or Ser727 of STAT1 on stimulated HTR8/SVneo. RESULTS dNK-CM facilitated VEGF-C secretion by HTR8/SVneo. IFN-γ and IFN-γR1 or IFN-γR2 blocking antibodies reduced both dNK-CM- and IFN-γ-induced VEGF-C secretion. Phosphorylations on Tyr701 or Ser727 of STAT1 were elevated upon stimulation. Secretion of VEGF-C was reduced by treatment with SB202190, JI-1, or STAT1 knockdown by siRNA. CONCLUSION VEGF-C production by trophoblasts is regulated by soluble factors secreted by dNK through p38 and JAK-STAT1 pathways.
Collapse
Affiliation(s)
- Genevieve D M Eastabrook
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
40
|
Su HC, Ma CT, Lin CF, Wu HT, Chuang YH, Chen LJ, Tsao CW. The acid sphingomyelinase inhibitors block interferon-α-induced serotonin uptake via a COX-2/Akt/ERK/STAT-dependent pathway in T cells. Int Immunopharmacol 2011; 11:1823-31. [DOI: 10.1016/j.intimp.2011.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/30/2011] [Accepted: 07/15/2011] [Indexed: 12/29/2022]
|
41
|
Vázquez N, Schmeisser H, Dolan MA, Bekisz J, Zoon KC, Wahl SM. Structural variants of IFNα preferentially promote antiviral functions. Blood 2011; 118:2567-77. [PMID: 21757613 PMCID: PMC3167361 DOI: 10.1182/blood-2010-12-325027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 06/25/2011] [Indexed: 12/22/2022] Open
Abstract
IFNα, a cytokine with multiple functions in innate and adaptive immunity and a potent inhibitor of HIV, exerts antiviral activity, in part, by enhancing apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3 (APOBEC3) family members. Although IFNα therapy is associated with reduced viral burden, this cytokine also mediates immune dysfunction and toxicities. Through detailed mapping of IFNα receptor binding sites, we generated IFNα hybrids and mutants and determined that structural changes in the C-helix alter the ability of IFN to limit retroviral activity. Selective IFNα constructs differentially block HIV replication and their directional magnitude of inhibition correlates with APOBEC3 levels. Importantly, certain mutants exhibited reduced toxicity as reflected by induced indoleamine 2,3-dioxygenase (IDO), suggesting discreet and shared intracellular signaling pathways. Defining IFN structure and function relative to APOBEC and other antiviral genes may enable design of novel IFN-related molecules preserving beneficial antiviral roles while minimizing negative effects.
Collapse
Affiliation(s)
- Nancy Vázquez
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Santos CI, Costa-Pereira AP. Signal transducers and activators of transcription-from cytokine signalling to cancer biology. Biochim Biophys Acta Rev Cancer 2011; 1816:38-49. [PMID: 21447371 DOI: 10.1016/j.bbcan.2011.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
Signal transducers and activators of transcription (STATs) are, as the name indicates, both signal transducers and transcription factors. STATs are activated by cytokines and some growth factors and thus control important biological processes. These include cell growth, cell differentiation, apoptosis and immune responses. Dysregulation of STATs, either due to constitutive activation or function impairment, can have, therefore, deleterious biological consequences. This review places particular emphasis on their structural organization, biological activities and regulatory mechanisms most commonly utilized by cells to control STAT-mediated signalling. STATs also play important roles in cancer and immune deficiencies and are thus being exploited as therapeutic targets.
Collapse
Affiliation(s)
- Cristina Isabel Santos
- Imperial College London, Faculty of Medecine, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | | |
Collapse
|
43
|
Methotrexate in atherogenesis and cholesterol metabolism. CHOLESTEROL 2011; 2011:503028. [PMID: 21490773 PMCID: PMC3070167 DOI: 10.1155/2011/503028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/11/2011] [Accepted: 01/11/2011] [Indexed: 01/28/2023]
Abstract
Methotrexate is a disease-modifying antirheumatic drug commonly used to treat inflammatory conditions such as rheumatoid arthritis which itself is linked to increased cardiovascular risk. Treatments that target inflammation may also impact the cardiovascular system. While methotrexate improves cardiovascular risk, inhibition of the cyclooxygenase (COX)-2 enzyme promotes atherosclerosis. These opposing cardiovascular influences may arise from differing effects on the expression of proteins involved in cholesterol homeostasis. These proteins, ATP-binding cassette transporter (ABC) A1 and cholesterol 27-hydroxylase, facilitate cellular cholesterol efflux and defend against cholesterol overload. Methotrexate upregulates expression of cholesterol 27-hydroxylase and ABCA1 via adenosine release, while COX-2 inhibition downregulates these proteins. Adenosine, acting through the A(2A) and A(3) receptors, may upregulate proteins involved in reverse cholesterol transport by cAMP-PKA-CREB activation and STAT inhibition, respectively. Elucidating underlying cardiovascular mechanisms of these drugs provides a framework for developing novel cardioprotective anti-inflammatory medications, such as selective A(2A) receptor agonists.
Collapse
|
44
|
Wu Y, Antony S, Juhasz A, Lu J, Ge Y, Jiang G, Roy K, Doroshow JH. Up-regulation and sustained activation of Stat1 are essential for interferon-gamma (IFN-gamma)-induced dual oxidase 2 (Duox2) and dual oxidase A2 (DuoxA2) expression in human pancreatic cancer cell lines. J Biol Chem 2011; 286:12245-56. [PMID: 21321110 DOI: 10.1074/jbc.m110.191031] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dual oxidase 2 is a member of the NADPH oxidase (Nox) gene family that plays a critical role in the biosynthesis of thyroid hormone as well as in the inflammatory response of the upper airway mucosa and in wound healing, presumably through its ability to generate reactive oxygen species, including H2O2. The recently discovered overexpression of Duox2 in gastrointestinal malignancies, as well as our limited understanding of the regulation of Duox2 expression, led us to examine the effect of cytokines and growth factors on Duox2 in human tumor cells. We found that exposure of human pancreatic cancer cells to IFN-γ (but not other agents) produced a profound up-regulation of the expression of Duox2, and its cognate maturation factor DuoxA2, but not other members of the Nox family. Furthermore, increased Duox2/DuoxA2 expression was closely associated with a significant increase in the production of both intracellular reactive oxygen species and extracellular H2O2. Examination of IFN-γ-mediated signaling events demonstrated that in addition to the canonical Jak-Stat1 pathway, IFN-γ activated the p38-MAPK pathway in pancreatic cancer cells, and both played an important role in the induction of Duox2 by IFN-γ. Duox2 up-regulation following IFN-γ exposure is also directly associated with the binding of Stat1 to elements of the Duox2 promoter. Our findings suggest that the pro-inflammatory cytokine IFN-γ initiates a Duox2-mediated reactive oxygen cascade in human pancreatic cancer cells; reactive oxygen species production in this setting could contribute to the pathophysiologic characteristics of these tumors.
Collapse
Affiliation(s)
- Yongzhong Wu
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Horikawa H, Kato TA, Mizoguchi Y, Monji A, Seki Y, Ohkuri T, Gotoh L, Yonaha M, Ueda T, Hashioka S, Kanba S. Inhibitory effects of SSRIs on IFN-γ induced microglial activation through the regulation of intracellular calcium. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1306-16. [PMID: 20654672 DOI: 10.1016/j.pnpbp.2010.07.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/29/2010] [Accepted: 07/14/2010] [Indexed: 01/06/2023]
Abstract
Microglia, which are a major glial component of the central nervous system (CNS), have recently been suggested to mediate neuroinflammation through the release of pro-inflammatory cytokines and nitric oxide (NO). Microglia are also known to play a critical role as resident immunocompetent and phagocytic cells in the CNS. Immunological dysfunction has recently been demonstrated to be associated with the pathophysiology of depression. However, to date there have only been a few studies on the relationship between microglia and depression. We therefore investigated if antidepressants can inhibit microglial activation in vitro. Our results showed that the selective serotonin reuptake inhibitors (SSRIs) paroxetine and sertraline significantly inhibited the generation of NO and tumor necrosis factor (TNF)-α from interferon (IFN)-γ-activated 6-3 microglia. We further investigated the intracellular signaling mechanism underlying NO and TNF-α release from IFN-γ-activated 6-3 microglia. Our results suggest that paroxetine and sertraline may inhibit microglial activation through inhibition of IFN-γ-induced elevation of intracellular Ca(2+). Our results suggest that the inhibitory effect of paroxetine and sertraline on microglial activation may not be a prerequisite for antidepressant function, but an additional beneficial effect.
Collapse
Affiliation(s)
- Hideki Horikawa
- Department of Neuropsychiatry, Graduate School of Medicine, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka City, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Najjar I, Fagard R. STAT1 and pathogens, not a friendly relationship. Biochimie 2010; 92:425-44. [PMID: 20159032 PMCID: PMC7117016 DOI: 10.1016/j.biochi.2010.02.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 02/09/2010] [Indexed: 12/21/2022]
Abstract
STAT1 belongs to the STAT family of transcription factors, which comprises seven factors: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6. STAT1 is a 91 kDa protein originally identified as the mediator of the cellular response to interferon (IFN) α, and thereafter found to be a major component of the cellular response to IFNγ. STAT1 is, in fact, involved in the response to several cytokines and to growth factors. It is activated by cytokine receptors via kinases of the JAK family. STAT1 becomes phosphorylated and forms a dimer which enters the nucleus and triggers the transcription of its targets. Although not lethal at birth, selective gene deletion of STAT1 in mice leads to rapid death from severe infections, demonstrating its major role in the response to pathogens. Similarly, in humans who do not express STAT1, there is a lack of resistance to pathogens leading to premature death. This indicates a key, non-redundant function of STAT1 in the defence against pathogens. Thus, to successfully infect organisms, bacterial, viral or parasitic pathogens must overcome the activity of STAT1, and almost all the steps of this pathway can be blocked or inhibited by proteins produced in infected cells. Interestingly, some pathogens, like the oncogenic Epstein–Barr virus, have evolved a strategy which uses STAT1 activation.
Collapse
Affiliation(s)
- Imen Najjar
- INSERM Unité 978, SMBH, 74 rue Marcel Cachin, Bobigny-cedex 93017, France.
| | | |
Collapse
|
47
|
Mizoguchi Y, Monji A, Kato T, Seki Y, Gotoh L, Horikawa H, Suzuki SO, Iwaki T, Yonaha M, Hashioka S, Kanba S. Brain-Derived Neurotrophic Factor Induces Sustained Elevation of Intracellular Ca2+ in Rodent Microglia. THE JOURNAL OF IMMUNOLOGY 2009; 183:7778-86. [DOI: 10.4049/jimmunol.0901326] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Barnholt KE, Kota RS, Aung HH, Rutledge JC. Adenosine blocks IFN-gamma-induced phosphorylation of STAT1 on serine 727 to reduce macrophage activation. THE JOURNAL OF IMMUNOLOGY 2009; 183:6767-77. [PMID: 19846878 DOI: 10.4049/jimmunol.0900331] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Macrophages are activated by IFN-gamma, a proinflammatory and proatherogenic cytokine that mediates its downstream effects primarily through STAT1. IFN-gamma signaling induces phosphorylation of two STAT1 residues: Tyr(701) (Y701), which facilitates dimerization, nuclear translocation, and DNA binding; and Ser(727) (S727), which enables maximal STAT1 transcription activity. Immunosuppressive molecules such as adenosine in the cellular microenvironment can reduce macrophage inflammatory and atherogenic functions through receptor-mediated signaling pathways. We hypothesized that adenosine achieves these protective effects by interrupting IFN-gamma signaling in activated macrophages. This investigation demonstrates that adding adenosine to IFN-gamma-stimulated murine RAW 264.7 and human THP-1 macrophages results in unique modulation of STAT1 serine and tyrosine phosphorylation events. We show that adenosine inhibits IFN-gamma-induced STAT1 S727 phosphorylation by >30% and phosphoserine-mediated transcriptional activity by 58% but has no effect on phosphorylation of Y701 or receptor-associated JAK tyrosine kinases. Inhibition of the adenosine A(3) receptor with a subtype-specific antagonist (MRS 1191 in RAW 264.7 cells and MRS 1220 in THP-1 cells) reverses this adenosine suppressive effect on STAT1 phosphoserine status by 25-50%. Further, RAW 264.7 A(3) receptor stimulation with Cl-IB-MECA reduces IFN-gamma-induced STAT1 transcriptional activity by 45% and STAT1-dependent gene expression by up to 80%. These data suggest that A(3) receptor signaling is key to adenosine-mediated STAT1 modulation and anti-inflammatory action in IFN-gamma-activated mouse and human macrophages. Because STAT1 plays a key role in IFN-gamma-induced inflammation and foam cell transformation, a better understanding of the mechanisms underlying STAT1 deactivation by adenosine may improve preventative and therapeutic approaches to vascular disease.
Collapse
Affiliation(s)
- Kimberly E Barnholt
- Department of Internal Medicine, Division of Endocrinology, Clinical Nutrition, and Vascular Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
49
|
Halfter U, Derbyshire Z, Vaillancourt R. Interferon-gamma-dependent tyrosine phosphorylation of MEKK4 via Pyk2 is regulated by annexin II and SHP2 in keratinocytes. Biochem J 2009; 388:17-28. [PMID: 15601262 PMCID: PMC1186689 DOI: 10.1042/bj20041236] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IFNgamma (interferon-gamma) binding to its cognate receptor results, through JAK (Janus kinase), in direct activation of receptor-bound STAT1 (signal transducer and activator of transcription 1), although there is evidence for additional activation of a MAPK (mitogen-activated protein kinase) pathway. In the present paper, we report IFNgamma-dependent activation of the MEKK4 (MAPK/extracellular-signal-regulated kinase kinase kinase 4) pathway in HaCaT human keratinocytes. MEKK4 is tyrosine-phosphorylated and the IFNgamma-dependent phosphorylation requires intracellular calcium. Calcium-dependent phosphorylation of MEKK4 is mediated by Pyk2. Moreover, MEKK4 and Pyk2 co-localize in an IFNgamma-dependent manner in the perinuclear region. Furthermore, the calcium-binding protein, annexin II, and the calcium-regulated kinase, Pyk2, co-immunoprecipitate with MEKK4 after treatment with IFNgamma. Immunofluorescence imaging of HaCaT cells shows an IFNgamma-dependent co-localization of annexin II with Pyk2 in the perinuclear region, suggesting that annexin II mediates the calcium-dependent regulation of Pyk2. Tyrosine phosphorylation of MEKK4 correlates with its activity to phosphorylate MKK6 (MAPK kinase 6) in vitro and subsequent p38 MAPK activation in an IFNgamma-dependent manner. Additional studies demonstrate that the SH2 (Src homology 2)-domain-containing tyrosine phosphatase SHP2 co-immunoprecipitates with MEKK4 in an IFNgamma-dependent manner and co-localizes with MEKK4 after IFNgamma stimulation in the perinuclear region in HaCaT cells. Furthermore, we provide evidence that SHP2 dephosphorylates MEKK4 and Pyk2, terminating the MEKK4-dependent branch of the IFNgamma signalling pathway.
Collapse
Affiliation(s)
- Ursula M. Halfter
- Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, U.S.A
| | - Zachary E. Derbyshire
- Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, U.S.A
| | - Richard R. Vaillancourt
- Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
50
|
Deng H, Zhen HY, Zhou HY, Chen QX, Liu LJ. Role of IFN-γ-STAT1 pathway in human gastric adenocarcinoma. Shijie Huaren Xiaohua Zazhi 2009; 17:1103-1107. [DOI: 10.11569/wcjd.v17.i11.1103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate relationships among STAT1, Caspase-7 and p21waf in gastric adenocarcinoma tissue and gastric adenocarcinoma cell SGC7901, and to shed light on features of IFN-γ-STAT1 pathway in gastric adenocarcinoma.
METHODS: Gastric adenocarcinoma tissue was tested by immunohistochemical method. SGC7901 cell was treated with IFN-γ and STAT1 antisense oligonucleotides, and mRNA and protein expression was detected using RT-PCR, immunocytochemistry and image analysis methods. Apoptosis was determined by Hoechest 33258.
RESULTS: Caspase-7 was positive correlation with STAT1 and p21waf (r = 0.32, 0.22, both P < 0.05) in gastric adenocarcinoma tissue. IFN-γ promoted mRNA and protein expression of STAT1, Caspase-7 and p21waf was up-regulated in SGC7901 cell (P < 0.05). After treatment with IFN-γ along with varied concentrations of STAT1 antisense oligonucleotides, significantly lower STAT1 mRNA and protein expression was observed than IFN-γ used alone in SGC7901 cells, which showed a concentration-dependent manner (P < 0.05); significantly lower Caspase-7 and P21waf protein expression was observed than IFN-γ used alone in SGC7901 cell in a concentration-dependent manner (P < 0.05). However, mRNA expression of Caspase-7 was down-regulated first and then up-regulated, while mRNA expression of p21waf was up-regulated first and then down-regulated.
CONCLUSION: There is a IFN-γ-STAT1 pathway in gastric adenocarcinoma tissue and SGC7901 cell line. IFN-γ-STAT1 could up-regulate the expression of Caspase-7 and p21waf in gastric adenocarcinoma, but could not induce apoptosis. The downstream molecular of IFN-γ- STAT1 pathway has different expression features in mRNA and protein expression level in gastric adenocarcinoma.
Collapse
|