1
|
Park J, Kim J, Shin B, Schöler HR, Kim J, Kim KP. Inducing Pluripotency in Somatic Cells: Historical Perspective and Recent Advances. Int J Stem Cells 2024; 17:363-373. [PMID: 38281813 PMCID: PMC11612216 DOI: 10.15283/ijsc23148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Inducing pluripotency in somatic cells is mediated by the Yamanaka factors Oct4, Sox2, Klf4, and c-Myc. The resulting induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine by virtue of their ability to differentiate into different types of functional cells. Specifically, iPSCs derived directly from patients offer a powerful platform for creating in vitro disease models. This facilitates elucidation of pathological mechanisms underlying human diseases and development of new therapeutic agents mitigating disease phenotypes. Furthermore, genetically and phenotypically corrected patient-derived iPSCs by gene-editing technology or the supply of specific pharmaceutical agents can be used for preclinical and clinical trials to investigate their therapeutic potential. Despite great advances in developing reprogramming methods, the efficiency of iPSC generation remains still low and varies between donor cell types, hampering the potential application of iPSC technology. This paper reviews histological timeline showing important discoveries that have led to iPSC generation and discusses recent advances in iPSC technology by highlighting donor cell types employed for iPSC generation.
Collapse
Affiliation(s)
- Junmyeong Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jueun Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Borami Shin
- Department of General Pediatrics, University of Children’s Hospital Münster, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- The Center for Cardiovascular Regeneration and Immunology, TRON-Translational Oncology, The University Medical Center of The Johannes Gutenberg-University Mainz gGmbH, Mainz, Germany
| | - Kee-Pyo Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Mousavi Mirkalaei S, Farivar S. Systematic optimization of culture media for maintenance of human induced pluripotent stem cells using the response surface methodology. Heliyon 2024; 10:e32558. [PMID: 38975108 PMCID: PMC11226774 DOI: 10.1016/j.heliyon.2024.e32558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The application of human induced pluripotent stem cells (hiPSCs) provides tremendous opportunities in cell therapy. However, culturing these cells faces many practical challenges, including costs associated with cell culture media and the optimization of cell culture conditions. Providing an optimized culture platform for hiPSCs to maintain pluripotency and self-renewal and generate cost-effective and robust therapeutics is an immediate requirement. This study used the design of experiments and the response surface methodology, a powerful statistical tool, to generate empirical models for predicting the optimal culture conditions of the hiPSCs. Pluripotency and cell proliferation were applied as read-outs to determine the optimal concentration of basic fibroblast growth factor (bFGF) and cell density. One model was defined to predict pluripotency and cell proliferation in terms of the predictor variables of the bFGF concentration and cell seeding density. Predicted culture conditions to maximize maintaining cell pluripotency were successfully validated. The present study's findings provide a novel approach that can potentially allow controllable hiPSC culture routine in translational research.
Collapse
Affiliation(s)
- Seyedmilad Mousavi Mirkalaei
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shirin Farivar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Katayama T, Chigi Y, Okamura D. The ensured proliferative capacity of myoblast in serum-reduced conditions with Methyl-β-cyclodextrin. Front Cell Dev Biol 2023; 11:1193634. [PMID: 37250904 PMCID: PMC10213241 DOI: 10.3389/fcell.2023.1193634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
To produce muscle fibers for cultured meat on a large scale, it is important to expand myoblasts in a serum-reduced or serum-free medium to avoid cost, ethical, and environmental issues. Myoblasts such as C2C12 cells differentiate quickly into myotubes and lose their ability to proliferate when the serum-rich medium is replaced with a serum-reduced medium. This study demonstrates that Methyl-β-cyclodextrin (MβCD), a starch-derived agent that depletes cholesterol, can inhibit further differentiation of myoblasts at the MyoD-positive stage by reducing plasma membrane cholesterol on C2C12 cells and primary cultured chick muscle cells. Furthermore, MβCD efficiently blocks cholesterol-dependent apoptotic cell death of myoblasts, which is one of the mechanisms by which it inhibits the differentiation of C2C12 myoblast cells, as dead cells of myoblast are necessary for the fusion of adjacent myoblasts during the differentiation process into myotubes. Importantly, MβCD maintains the proliferative capacity of myoblasts only under differentiation conditions with a serum-reduced medium, suggesting that its mitogenic effect is due to its inhibitory effect on myoblast differentiation into myotube. In conclusion, this study provides significant insights into ensuring the proliferative capacity of myoblasts in a future serum-free condition for cultured meat production.
Collapse
Affiliation(s)
- Tomoka Katayama
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yuta Chigi
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Daiji Okamura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| |
Collapse
|
4
|
Hua Y, Yoshimochi K, Li J, Takekita K, Shimotsuma M, Li L, Qu X, Zhang J, Sawa Y, Liu L, Miyagawa S. Development and evaluation of a novel xeno-free culture medium for human-induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:223. [PMID: 35658933 PMCID: PMC9166585 DOI: 10.1186/s13287-022-02879-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human-induced pluripotent stem cells (hiPSCs) are considered an ideal resource for regenerative medicine because of their ease of access and infinite expansion ability. To satisfy the sizable requirement for clinical applications of hiPSCs, large-scale, expansion-oriented, xeno-free, and cost-effective media are critical. Although several xeno-free media for hiPSCs have been generated over the past decades, few of them are suitable for scalable expansion of cultured hiPSCs because of their modest potential for proliferation and high cost. METHODS In this study, we developed a xeno-free ON2/AscleStem PSC medium (ON2) and cultured 253G1 hiPSCs on different matrices, including iMatrix-511 and gelatin nanofiber (GNF) in ON2. Over 20 passages, we evaluated cell proliferation by doubling times; pluripotency by flow cytometry, immunofluorescence staining and qRT-PCR; and differentiation ability by three germ layer differentiation in vitro and teratoma formation in severe combined immunodeficiency mice, followed by histological analysis. In addition, we compared the maintenance effect of ON2 on hiPSCs with StemFit® AK02 (AK02N) and Essential 8™ (E8). Besides 253G1 hiPSCs, we cultivated different hiPSC lines, including Ff-l01 hiPSCs, ATCC® ACS-1020™ hiPSCs, and Down's syndrome patient-specific ATCC® ACS-1003™ hiPSCs in ON2. RESULTS We found that 253G1 hiPSCs in ON2 demonstrated normal morphology and karyotype and high self-renewal and differentiation abilities on the tested matrices for over 20 passages. Moreover, 253G1 hiPSCs kept on GNF showed higher growth and stemness, as verified by the shorter doubling time and higher expression levels of pluripotent markers. Compared to AK02N and E8 media, 253G1 hiPSCs grown in ON2 showed higher pluripotency, as demonstrated by the increased expression level of pluripotent factors. In addition, all hiPSC lines cultivated in ON2 were able to grow for at least 10 passages with compact clonal morphology and were positive for all detected pluripotent markers. CONCLUSIONS Our xeno-free ON2 was compatible with various matrices and ideal for long-term expansion and maintenance of not only healthy-derived hiPSCs but also patient-specific hiPSCs. This highly efficient medium enabled the rapid expansion of hiPSCs in a reliable and cost-effective manner and could act as a promising tool for disease modeling and large-scale production for regenerative medicine in the future.
Collapse
Affiliation(s)
- Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Kenji Yoshimochi
- NACALAI TESQUE, INC. Research and Development Department, Kyoto, 604-0855, Japan
| | - Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.,Division of Cardiovascular Surgery, Department of Design for Tissue Regeneration, Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Kazuhiro Takekita
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Motoshi Shimotsuma
- NACALAI TESQUE, INC. Research and Development Department, Kyoto, 604-0855, Japan
| | - Lingjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Xiang Qu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | | | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan. .,Division of Cardiovascular Surgery, Department of Design for Tissue Regeneration, Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Luo X, Geng D, Zhang Q, Ye T, Zhang Y, Li Z, Huang Y, Xiang Q. Recombinant expression a novel fibronectin-collage fusion peptide modulating stem cell stemness via integrin β3. Appl Microbiol Biotechnol 2022; 106:3765-3776. [PMID: 35590080 PMCID: PMC9151557 DOI: 10.1007/s00253-022-11965-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/29/2022]
Abstract
Abstract Constructing bionic extracellular matrix (ECM) is an attractive proposition for tissue engineering and clinical regeneration therapy involving the stemness of stem cells. Here, a novel recombinant protein fibronectin-collagen peptide (FCP) was designed to modulate the function of ECM expressed by Picha. pastoris strain X33. This FCP promotes cell migration and adhesion and maintains rBMSC stemness by binding integrin β3. Its effects were blocked by both integrin β3 siRNA and the integrin β3 inhibitor Cilengitide. A template-independent ab initio prediction modeling approach is the best approach to construct a stable FCP protein model, which predicts the binding sites between FCP and integrin β3. FCP may be used in the in vitro culture and clinical regeneration of stem cells that highly express integrin β3, such as hematopoietic stem cells. The study provides information on the molecular structure of FCP and its bioactivity, which can be used to design new compounds. Key points • Design a novel recombinant fibronectin-collagen peptide biomimetic ECM. • FCP promotes cell adhesion, migration, and proliferation. • Predicted and verified FCP structure and affinity with integrin β3. • FCP binds integrin β3 to maintain rBMSC stemness. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11965-4.
Collapse
Affiliation(s)
- Xin Luo
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Dezhi Geng
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Qirong Zhang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Tao Ye
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Yifan Zhang
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Ziyi Li
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China.
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Zhou P, Qin L, Ge Z, Xie B, Huang H, He F, Ma S, Ren L, Shi J, Pei S, Dong G, Qi Y, Lan F. Design of chemically defined synthetic substrate surfaces for the in vitro maintenance of human pluripotent stem cells: A review. J Biomed Mater Res B Appl Biomater 2022; 110:1968-1990. [PMID: 35226397 DOI: 10.1002/jbm.b.35034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Abstract
Human pluripotent stem cells (hPSCs) have the potential of long-term self-renewal and differentiation into nearly all cell types in vitro. Prior to the downstream applications, the design of chemically defined synthetic substrates for the large-scale proliferation of quality-controlled hPSCs is critical. Although great achievements have been made, Matrigel and recombinant proteins are still widely used in the fundamental research and clinical applications. Therefore, much effort is still needed to improve the performance of synthetic substrates in the culture of hPSCs, realizing their commercial applications. In this review, we summarized the design of reported synthetic substrates and especially their limitations in terms of cell culture. Moreover, much attention was paid to the development of promising peptide displaying surfaces. Besides, the biophysical regulation of synthetic substrate surfaces as well as the three-dimensional culture systems were described.
Collapse
Affiliation(s)
- Ping Zhou
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Liying Qin
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhangjie Ge
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Biyao Xie
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Fei He
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Shengqin Ma
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lina Ren
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- Department of Laboratory Animal Centre, Changzhi Medical College, Changzhi, China
| | - Suying Pei
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Genxi Dong
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yongmei Qi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Shenzhen, China
| |
Collapse
|
7
|
Zhang W, Shen J, Zhang S, Liu X, Pan S, Li Y, Zhang L, He L, Niu Y. Silencing integrin α6 enhances the pluripotency-differentiation transition in human dental pulp stem cells. Oral Dis 2021; 28:711-722. [PMID: 33404136 DOI: 10.1111/odi.13771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Although integrins have been shown to be associated with proliferation and differentiation in some stem cells, the regulatory effect of integrin α6 (ITGα6) on the human dental pulp stem cells (hDPSCs) has not been reported. Here, we detected the roles of ITGα6 in hDPSCs. MATERIALS AND METHODS Attached to Cytodex 3 microcarriers, hDPSCs grown under stimulated microgravity (SMG) or conventional culture conditions were measured the proliferation and different gene expression. Further, ITGα6 was silenced in hDPSCs, and its effect on proliferation, differentiation, and cytoskeletal organization was analyzed. RESULTS SMG conditions increased the number of Ki67-positive hDPSCs and progression into S phase of cell cycle. WB analysis showed the expression of ITGα6 was upregulated in hDPSCs under SMG conditions. Knockdown of ITGα6 decreased the expression of stemness markers, CD105 and STRO-1 in hDPSCs, but promoted the osteogenic and odontogenic differentiation by increased ALP expression and Alizarin Red nodules. Moreover, RNA-seq demonstrated that RHO/ROCK signaling pathway upregulated silencing ITGα6-hDPSCs. Treatment with Y-27632 inhibited the effect of ITGα6 depletion on hDPSCs stemness, rearranged the cytoskeleton, promoted the pluripotency, proliferation ability, and inhibited the differentiation. CONCLUSION ITGα6 promotes hDPSCs stemness via inhibiting RHO/ROCK and restoring cytoskeleton.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Jingling Shen
- Institute of Life Science, Wenzhou University, Wenzhou, China
| | - Shuang Zhang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Xu Liu
- Department of Stomatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Pan
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Yanping Li
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Lin Zhang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Lina He
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Yumei Niu
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Sun W, Zhang S, Zhou T, Shan Y, Gao F, Zhang Y, Zhang D, Xiong Y, Mai Y, Fan K, Davidson AJ, Pan G, Zhang X. Human Urinal Cell Reprogramming: Synthetic 3D Peptide Hydrogels Enhance Induced Pluripotent Stem Cell Population Homogeneity. ACS Biomater Sci Eng 2020; 6:6263-6275. [PMID: 33449655 DOI: 10.1021/acsbiomaterials.0c00667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs), which have promising potential applications in regenerative medicine. However, the challenges of successful applications of human iPSCs for medical purposes are the low generation efficiency, heterogeneous colonies, and exposure to the animal-derived product Matrigel. We aimed to investigate whether human urinal cells could be efficiently reprogrammed into iPSCs in three-dimensional Puramatrix (3D-PM) compared to two-dimensional Matrigel (2D-MG) and to understand how this 3D hydrogel environment affects the reprogramming process. Human urinal cells were successfully reprogrammed into iPSCs in the defined synthetic animal-free 3D-PM. Interestingly, although the colony efficiency in 3D-PM was similar to that in 2D-MG (∼0.05%), the reprogrammed colonies in 3D-PM contained an iPSC population with significantly higher homogeneity, as evidenced by the pluripotent-like morphology and expression of markers. This was further confirmed by transcriptome profile analysis in bulk cells and at the single cell level. Moreover, the homogeneity of the iPSC population in 3D-PM colonies was correlated with the downregulation of integrin β1 (ITGB1) and phosphorylated focal adhesion kinase (FAK). Collectively, 3D-PM provides an alternative approach for obtaining iPSCs with enhanced homogeneity. This work also unveiled the regulation of human somatic cell reprogramming via the extracellular microenvironment.
Collapse
Affiliation(s)
- Wei Sun
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Sheng Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Fenglin Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Ying Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Di Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yucui Xiong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuanbang Mai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ke Fan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
9
|
Khalil AS, Xie AW, Johnson HJ, Murphy WL. Sustained release and protein stabilization reduce the growth factor dosage required for human pluripotent stem cell expansion. Biomaterials 2020; 248:120007. [PMID: 32302801 PMCID: PMC8445021 DOI: 10.1016/j.biomaterials.2020.120007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/24/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
Translation of human pluripotent stem cell (hPSC)-derived therapies to the clinic demands scalable, cost-effective methods for cell expansion. Culture media currently used for hPSC expansion rely on high concentrations and frequent supplementation of recombinant growth factors due to their short half-life at physiological temperatures. Here, we developed a biomaterial strategy using mineral-coated microparticles (MCMs) to sustain delivery of basic fibroblast growth factor (bFGF), a thermolabile protein critical for hPSC pluripotency and proliferation. We show that the MCMs stabilize bFGF against thermally induced activity loss and provide more efficient sustained release of active growth factor compared to polymeric carriers commonly used for growth factor delivery. Using a statistically driven optimization approach called Design of Experiments, we generated a bFGF-loaded MCM formulation that supported hPSC expansion over 25 passages without the need for additional bFGF supplementation to the media, resulting in greater than 80% reduction in bFGF usage compared to standard approaches. This materials-based strategy to stabilize and sustain delivery of a thermolabile growth factor has broad potential to reduce costs associated with recombinant protein supplements in scalable biomanufacturing of emerging cell therapies.
Collapse
Affiliation(s)
- Andrew S Khalil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Angela W Xie
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hunter J Johnson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
10
|
Low-oxygen and knock-out serum maintain stemness in human retinal progenitor cells. Mol Biol Rep 2020; 47:1613-1623. [DOI: 10.1007/s11033-020-05248-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
|
11
|
Liu W, Deng C, Godoy-Parejo C, Zhang Y, Chen G. Developments in cell culture systems for human pluripotent stem cells. World J Stem Cells 2019; 11:968-981. [PMID: 31768223 PMCID: PMC6851012 DOI: 10.4252/wjsc.v11.i11.968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are important resources for cell-based therapies and pharmaceutical applications. In order to realize the potential of hPSCs, it is critical to develop suitable technologies required for specific applications. Most hPSC technologies depend on cell culture, and are critically influenced by culture medium composition, extracellular matrices, handling methods, and culture platforms. This review summarizes the major technological advances in hPSC culture, and highlights the opportunities and challenges in future therapeutic applications.
Collapse
Affiliation(s)
- Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
12
|
Dakhore S, Nayer B, Hasegawa K. Human Pluripotent Stem Cell Culture: Current Status, Challenges, and Advancement. Stem Cells Int 2018; 2018:7396905. [PMID: 30595701 PMCID: PMC6282144 DOI: 10.1155/2018/7396905] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/23/2022] Open
Abstract
Over the past two decades, human embryonic stem cells (hESCs) have gained attention due to their pluripotent and proliferative ability which enables production of almost all cell types in the human body in vitro and makes them an excellent tool to study human embryogenesis and disease, as well as for drug discovery and cell transplantation therapies. Discovery of human-induced pluripotent stem cells (hiPSCs) further expanded therapeutic applications of human pluripotent stem cells (PSCs). hPSCs provide a stable and unlimited original cell source for producing suitable cells and tissues for downstream applications. Therefore, engineering the environment in which these cells are grown, for stable and quality-controlled hPSC maintenance and production, is one of the key factors governing the success of these applications. hPSCs are maintained in a particular niche using specific cell culture components. Ideally, the culture should be free of xenobiotic components to render hPSCs suitable for therapeutic applications. Substantial efforts have been put to identify effective components, and develop culture conditions and protocols, for their large-scale expansion without compromising on quality. In this review, we discuss different media, their components and functions, including specific requirements to maintain the pluripotent and proliferative ability of hPSCs. Understanding the role of culture components would enable the development of appropriate conditions to promote large-scale, quality-controlled expansion of hPSCs thereby increasing their potential applications.
Collapse
Affiliation(s)
- Sushrut Dakhore
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), Bangalore, India
| | - Bhavana Nayer
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), Bangalore, India
| | - Kouichi Hasegawa
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), Bangalore, India
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Japan
| |
Collapse
|
13
|
Zhou P, Yin B, Zhang R, Xu Z, Liu Y, Yan Y, Zhang X, Zhang S, Li Y, Liu H, Yuan YA, Wei S. Molecular basis for RGD-containing peptides supporting adhesion and self-renewal of human pluripotent stem cells on synthetic surface. Colloids Surf B Biointerfaces 2018; 171:451-460. [DOI: 10.1016/j.colsurfb.2018.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/06/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
|
14
|
Serpooshan V, Sheibani S, Pushparaj P, Wojcik M, Jang AY, Santoso MR, Jang JH, Huang H, Safavi-Sohi R, Haghjoo N, Nejadnik H, Aghaverdi H, Vali H, Kinsella JM, Presley J, Xu K, Yang PCM, Mahmoudi M. Effect of Cell Sex on Uptake of Nanoparticles: The Overlooked Factor at the Nanobio Interface. ACS NANO 2018. [PMID: 29536733 DOI: 10.1021/acsnano.7b06212] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cellular uptake of nanoparticles (NPs) depends on the nature of the nanobio system including the solid nanocomponents ( e. g., physicochemical properties of NPs), nanobio interfaces ( e. g., protein corona composition), and the cellular characteristics ( e. g., cell type). In this study, we document the role of sex in cellular uptake of NPs as an "overlooked" factor in nanobio interface investigations. We demonstrate that cell sex leads to differences in NP uptake between male and female human amniotic stem cells (hAMSCs), with greater uptake by female cells. hAMSCs are one of the earliest sources of somatic stem cells. The experiments were replicated with primary fibroblasts isolated from the salivary gland of adult male and female donors of similar ages, and again the extent of NP uptake was altered by cell sex. However, in contrast to hAMSCs, uptake was greater in male cells. We also found out that female versus male amniotic stem cells exhibited different responses to reprogramming into induced pluripotent stem cells (iPSCs) by the Yamanaka factors. Thus, future studies should consider the effect of sex on the nanobio interactions to optimize clinical translation of NPs and iPSC biology and to help researchers to better design and produce safe and efficient therapeutic sex-specific NPs.
Collapse
Affiliation(s)
- Vahid Serpooshan
- Department of Biomedical Engineering , Georgia Institute of Technology & Emory University School of Medicine , Atlanta , Georgia 30322 , United States
- Department of Pediatrics , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Sara Sheibani
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | - Pooja Pushparaj
- Department of Bioengineering , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | - Michal Wojcik
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Albert Y Jang
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
| | - Michelle R Santoso
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
| | - Joyce H Jang
- Meakins Christie Laboratories , McGill University Health Centre and McGill University , Montreal , Quebec H4A 3J1 , Canada
| | - Haina Huang
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Reihaneh Safavi-Sohi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute , Shahid Beheshti University , Tehran 1983963113 , Iran
| | - Niloofar Haghjoo
- Institute of Biochemistry and Biophysics , University of Tehran , Tehran 14174 , Iran
| | - Hossein Nejadnik
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS) , Stanford School of Medicine , Stanford , California 94305 , United States
| | - Haniyeh Aghaverdi
- Department of Anesthesiology , Brigham & Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | | | - John Presley
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | - Ke Xu
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Division of Molecular Biophysics and Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Phillip Chung-Ming Yang
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
| | - Morteza Mahmoudi
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
- Department of Anesthesiology , Brigham & Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
15
|
Peterson SE, Garitaonandia I, Loring JF. The tumorigenic potential of pluripotent stem cells: What can we do to minimize it? Bioessays 2017; 38 Suppl 1:S86-95. [PMID: 27417126 DOI: 10.1002/bies.201670915] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cells (hPSCs) have the potential to fundamentally change the way that we go about treating and understanding human disease. Despite this extraordinary potential, these cells also have an innate capability to form tumors in immunocompromised individuals when they are introduced in their pluripotent state. Although current therapeutic strategies involve transplantation of only differentiated hPSC derivatives, there is still a concern that transplanted cell populations could contain a small percentage of cells that are not fully differentiated. In addition, these cells have been frequently reported to acquire genetic alterations that, in some cases, are associated with certain types of human cancers. Here, we try to separate the panic from reality and rationally evaluate the true tumorigenic potential of these cells. We also discuss a recent study examining the effect of culture conditions on the genetic integrity of hPSCs. Finally, we present a set of sensible guidelines for minimizing the tumorigenic potential of hPSC-derived cells. © 2016 The Authors. Inside the Cell published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Suzanne E Peterson
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA.,Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Ibon Garitaonandia
- Department of Neurogenetics, International Stem Cell Corporation, Oceanside, CA, USA
| | - Jeanne F Loring
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA.,Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
16
|
Saenz del Burgo L, Ciriza J, Acarregui A, Gurruchaga H, Blanco FJ, Orive G, Hernández RM, Pedraz JL. Hybrid Alginate–Protein-Coated Graphene Oxide Microcapsules Enhance the Functionality of Erythropoietin Secreting C2C12 Myoblasts. Mol Pharm 2017; 14:885-898. [DOI: 10.1021/acs.molpharmaceut.6b01078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Laura Saenz del Burgo
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Argia Acarregui
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Haritz Gurruchaga
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Francisco Javier Blanco
- INIBIC-Hospital Universitario La Coruña, 15006, La Coruña, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), La
Coruña, Spain
| | - Gorka Orive
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa María Hernández
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| |
Collapse
|
17
|
Zhao Z, Ma Y, Chen Z, Liu Q, Li Q, Kong D, Yuan K, Hu L, Wang T, Chen X, Peng Y, Jiang W, Yu Y, Liu X. Effects of Feeder Cells on Dopaminergic Differentiation of Human Embryonic Stem Cells. Front Cell Neurosci 2016; 10:291. [PMID: 28066186 PMCID: PMC5168467 DOI: 10.3389/fncel.2016.00291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/05/2016] [Indexed: 01/30/2023] Open
Abstract
Mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (HFFs) are used for the culture of human embryonic stem cells (hESCs). MEFs and HFFs differed in their capacity to support the proliferation and pluripotency of hESCs and could affect cardiac differentiation potential of hESCs. The aim of this study was to evaluate the effect of MEFs and HFFs feeders on dopaminergic differentiation of hESCs lines. To minimize the impact of culture condition variation, two hESCs lines were cultured on mixed feeder cells (MFCs, MEFs: HFFs = 1:1) and HFFs feeder, respectively, and then were differentiated into dopaminergic (DA) neurons under the identical protocol. Dopaminergic differentiation was evaluated by immunocytochemistry, quantitative fluorescent real-time PCR, transmission and scanning electron microscopy, and patch clamp. Our results demonstrated that these hESCs-derived neurons were genuine and functional DA neurons. However, compared to hESCs line on MFCs feeder, hESCs line on HFFs feeder had a higher proportion of tyrosine hydroxylase (TH) positive cells and expressed higher levels of FOXA2, PITX3, NURR1, and TH genes. In addition, the values of threshold intensity and threshold membrane potential of DA neurons from hESCs line on HFFs feeder were lower than those of DA neurons from hESCs line on the MFCs feeder. In conclusion, HFFs feeder not only facilitated the differentiation of hESCs cells into dopaminergic neurons, but also induced hESCs-derived DA neurons to express higher electrophysiological excitability. Therefore, feeder cells could affect not only dopaminergic differentiation potential of different hESCs lines, but also electrophysiological properties of hESCs-derived DA neurons.
Collapse
Affiliation(s)
- Zhenqiang Zhao
- Department of Neurology, Jinling Hospital, Southern Medical UniversityNanjing, China; Department of Neurology, First Affiliated Hospital, Hainan Medical UniversityHaikou, China
| | - Yanlin Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China; Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, First Affiliated Hospital, Hainan Medical UniversityHaikou, China
| | - Zhibin Chen
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Southern Medical University Nanjing, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Deyan Kong
- Department of Neurology, Jinling Hospital, Southern Medical UniversityNanjing, China; Department of Neurology, Affiliated Ruikang Hospital, Guangxi Traditional Chinese Medical UniversityNanning, China
| | - Kunxiong Yuan
- Department of Neurology, Jinling Hospital, Southern Medical UniversityNanjing, China; Department of Neurology, Central HospitalShenzhen, China
| | - Lan Hu
- Department of Laboratory Medicines, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Tan Wang
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Xiaowu Chen
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Yanan Peng
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Weimin Jiang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Southern Medical University Nanjing, China
| |
Collapse
|
18
|
Glycolytic Metabolism Plays a Functional Role in Regulating Human Pluripotent Stem Cell State. Cell Stem Cell 2016; 19:476-490. [PMID: 27618217 DOI: 10.1016/j.stem.2016.08.008] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 04/25/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
The rate of glycolytic metabolism changes during differentiation of human embryonic stem cells (hESCs) and reprogramming of somatic cells to pluripotency. However, the functional contribution of glycolytic metabolism to the pluripotent state is unclear. Here we show that naive hESCs exhibit increased glycolytic flux, MYC transcriptional activity, and nuclear N-MYC localization relative to primed hESCs. This status is consistent with the inner cell mass of human blastocysts, where MYC transcriptional activity is higher than in primed hESCs and nuclear N-MYC levels are elevated. Reduction of glycolysis decreases self-renewal of naive hESCs and feeder-free primed hESCs, but not primed hESCs grown in feeder-supported conditions. Reduction of glycolysis in feeder-free primed hESCs also enhances neural specification. These findings reveal associations between glycolytic metabolism and human naive pluripotency and differences in the metabolism of feeder-/feeder-free cultured hESCs. They may also suggest methods for regulating self-renewal and initial cell fate specification of hESCs.
Collapse
|
19
|
Ahmadian Baghbaderani B, Tian X, Scotty Cadet J, Shah K, Walde A, Tran H, Kovarcik DP, Clarke D, Fellner T. A Newly Defined and Xeno-Free Culture Medium Supports Every-Other-Day Medium Replacement in the Generation and Long-Term Cultivation of Human Pluripotent Stem Cells. PLoS One 2016; 11:e0161229. [PMID: 27606941 PMCID: PMC5016087 DOI: 10.1371/journal.pone.0161229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) present an unprecedented opportunity to advance human health by offering an alternative and renewable cell resource for cellular therapeutics and regenerative medicine. The present demand for high quality hPSCs for use in both research and clinical studies underscores the need to develop technologies that will simplify the cultivation process and control variability. Here we describe the development of a robust, defined and xeno-free hPSC medium that supports reliable propagation of hPSCs and generation of human induced pluripotent stem cells (hiPSCs) from multiple somatic cell types; long-term serial subculturing of hPSCs with every-other-day (EOD) medium replacement; and banking fully characterized hPSCs. The hPSCs cultured in this medium for over 40 passages are genetically stable, retain high expression levels of the pluripotency markers TRA-1-60, TRA-1-81, Oct-3/4 and SSEA-4, and readily differentiate into ectoderm, mesoderm and endoderm. Importantly, the medium plays an integral role in establishing a cGMP-compliant process for the manufacturing of hiPSCs that can be used for generation of clinically relevant cell types for cell replacement therapy applications.
Collapse
Affiliation(s)
| | - Xinghui Tian
- Lonza Walkersville, Inc., Walkersville, MD, United States of America
| | - Jean Scotty Cadet
- Lonza Walkersville, Inc., Walkersville, MD, United States of America
| | - Kevan Shah
- Lonza Walkersville, Inc., Walkersville, MD, United States of America
| | - Amy Walde
- Lonza Walkersville, Inc., Walkersville, MD, United States of America
| | - Huan Tran
- Lonza Walkersville, Inc., Walkersville, MD, United States of America
| | - Don Paul Kovarcik
- Lonza Walkersville, Inc., Walkersville, MD, United States of America
| | - Diana Clarke
- Lonza Walkersville, Inc., Walkersville, MD, United States of America
| | - Thomas Fellner
- Lonza Walkersville, Inc., Walkersville, MD, United States of America
| |
Collapse
|
20
|
Ding S, Kingshott P, Thissen H, Pera M, Wang PY. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review. Biotechnol Bioeng 2016; 114:260-280. [DOI: 10.1002/bit.26075] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/27/2016] [Accepted: 08/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sheryl Ding
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | | | - Martin Pera
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
- CSIRO Manufacturing; Clayton Victoria Australia
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
- Graduate Institute of Nanomedicine and Medical Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
21
|
Biological Effects of Culture Substrates on Human Pluripotent Stem Cells. Stem Cells Int 2016; 2016:5380560. [PMID: 27656216 PMCID: PMC5021488 DOI: 10.1155/2016/5380560] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/04/2016] [Indexed: 01/03/2023] Open
Abstract
In recent years, as human pluripotent stem cells (hPSCs) have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM) protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK), which transmits ECM-integrin signaling to AKT (also known as protein kinase B), has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development.
Collapse
|
22
|
Zhang D, Mai Q, Li T, Huang J, Ding C, Jia M, Zhou C, Xu Y. Comparison of a xeno-free and serum-free culture system for human embryonic stem cells with conventional culture systems. Stem Cell Res Ther 2016; 7:101. [PMID: 27474011 PMCID: PMC4967296 DOI: 10.1186/s13287-016-0347-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/14/2016] [Accepted: 06/10/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Elimination of all animal components during derivation and long-term culture of human embryonic stem cells (hESCs) is necessary for future applications of hESCs in clinical cell therapy. METHODS In this study, we established the culture system of xeno-free human foreskin fibroblast feeders (XF-HFF) in combination with chemically defined medium (CDM). XF-HFF/CDM was compared with several conventional culture systems. The hESCs cultured in different media were further characterized through karyotype analysis, pluripotency gene expression, and cell differentiation ability. RESULTS The hESCs in the XF-HFF/CDM maintained their characteristics including typical morphology and stable karyotype. In addition, hESCs were characterized by fluorescent immunostaining of pluripotent markers and teratoma formation in vivo. RT-PCR analysis shown that the stem cell markers OCT3/4, hTERT, SOX2, and Nanog were present in the cell line hESC-1 grown on XF-HFF/CDM. Furthermore, the results of cell growth and expression of bFGF, Oct-4, and hTERT indicated that XF-HFF/CDM had better performance than human serum-matrix/CDM and XF-HFF/human serum. CONCLUSION The comparison of different xeno-free culture conditions will facilitate clarifying the key features of self-renewal, pluripotency, and derivation and will shed light on clinic applications of hESCs.
Collapse
Affiliation(s)
- Dan Zhang
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qingyun Mai
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Tao Li
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jia Huang
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chenhui Ding
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Mengxi Jia
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Canquan Zhou
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Yanwen Xu
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
23
|
Song W, Tung CK, Lu YC, Pardo Y, Wu M, Das M, Kao DI, Chen S, Ma M. Dynamic self-organization of microwell-aggregated cellular mixtures. SOFT MATTER 2016; 12:5739-5746. [PMID: 27275624 DOI: 10.1039/c6sm00456c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cells with different cohesive properties self-assemble in a spatiotemporal and context-dependent manner. Previous studies on cell self-organization mainly focused on the spontaneous structural development within a short period of time during which the cell numbers remained constant. However the effect of cell proliferation over time on the self-organization of cells is largely unexplored. Here, we studied the spatiotemporal dynamics of self-organization of a co-culture of MDA-MB-231 and MCF10A cells seeded in a well defined space (i.e. non-adherent microfabricated wells). When cell-growth was chemically inhibited, high cohesive MCF10A cells formed a core surrounded by low cohesive MDA-MB-231 cells on the periphery, consistent with the differential adhesion hypothesis (DAH). Interestingly, this aggregate morphology was completely inverted when the cells were free to grow. At an initial seeding ratio of 1 : 1 (MDA-MB-231 : MCF10A), the fast growing MCF10A cells segregated in the periphery while the slow growing MDA-MB-231 cells stayed in the core. Another morphology developed at an inequal seeding ratio (4 : 1), that is, the cell mixtures developed a side-by-side aggregate morphology. We conclude that the cell self-organization depends not only on the cell cohesive properties but also on the cell seeding ratio and proliferation. Furthermore, by taking advantage of the cell self-organization, we purified human embryonic stem cells-derived pancreatic progenitors (hESCs-PPs) from co-cultured feeder cells without using any additional tools or labels.
Collapse
Affiliation(s)
- Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Chih-Kuan Tung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA. and Department of Physics, North Carolina A&T State University, Greensboro, North Carolina 27411, USA
| | - Yen-Chun Lu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Yehudah Pardo
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Der-I Kao
- Department of Surgery, Weill Medical College of Cornell University, New York City, New York 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Medical College of Cornell University, New York City, New York 10065, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
24
|
Zhou P, Wu F, Zhou T, Cai X, Zhang S, Zhang X, Li Q, Li Y, Zheng Y, Wang M, Lan F, Pan G, Pei D, Wei S. Simple and versatile synthetic polydopamine-based surface supports reprogramming of human somatic cells and long-term self-renewal of human pluripotent stem cells under defined conditions. Biomaterials 2016; 87:1-17. [PMID: 26897536 DOI: 10.1016/j.biomaterials.2016.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 01/03/2023]
Abstract
Human pluripotent stem cells (hPSCs) possess great value in the aspect of cellular therapies due to its self-renewal and potential to differentiate into all somatic cell types. A few defined synthetic surfaces such as polymers and adhesive biological materials conjugated substrata were established for the self-renewal of hPSCs. However, none of them was effective in the generation of human induced pluripotent stem cells (hiPSCs) and long-term maintenance of multiple hPSCs, and most of them required complicated manufacturing processes. Polydopamine has good biocompatibility, is able to form a stable film on nearly all solid substrates surface, and can immobilize adhesive biomolecules. In this manuscript, a polydopamine-mediated surface was developed, which not only supported the reprogramming of human somatic cells into hiPSCs under defined conditions, but also sustained the growth of hiPSCs on diverse substrates. Moreover, the proliferation and pluripotency of hPSCs cultured on the surface were comparable to Matrigel for more than 20 passages. Besides, hPSCs were able to differentiate to cardiomyocytes and neural cells on the surface. This polydopamine-based synthetic surface represents a chemically-defined surface extensively applicable both for fundamental research and cell therapies of hPSCs.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Fujian Wu
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Tiancheng Zhou
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiujuan Cai
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Siqi Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiaohong Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Qiuhong Li
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yongliang Li
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Yunfei Zheng
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Mengke Wang
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Feng Lan
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Guangjin Pan
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
25
|
Correia C, Koshkin A, Carido M, Espinha N, Šarić T, Lima PA, Serra M, Alves PM. Effective Hypothermic Storage of Human Pluripotent Stem Cell-Derived Cardiomyocytes Compatible With Global Distribution of Cells for Clinical Applications and Toxicology Testing. Stem Cells Transl Med 2016; 5:658-69. [PMID: 27025693 DOI: 10.5966/sctm.2015-0238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/13/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. SIGNIFICANCE The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs.
Collapse
Affiliation(s)
- Cláudia Correia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Alexey Koshkin
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Madalena Carido
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Nuno Espinha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Pedro A Lima
- Nova Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Margarida Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Paula M Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
26
|
Villa-Diaz LG, Kim JK, Laperle A, Palecek SP, Krebsbach PH. Inhibition of Focal Adhesion Kinase Signaling by Integrin α6β1 Supports Human Pluripotent Stem Cell Self-Renewal. Stem Cells 2016; 34:1753-64. [PMID: 26930028 DOI: 10.1002/stem.2349] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Self-renewal of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs)-known as pluripotent stem cells (PSC)-is influenced by culture conditions, including the substrate on which they are grown. However, details of the molecular mechanisms interconnecting the substrate and self-renewal of these cells remain unclear. We describe a signaling pathway in hPSCs linking self-renewal and expression of pluripotency transcription factors to integrin α6β1 and inactivation of focal adhesion kinase (FAK). Disruption of this pathway results in hPSC differentiation. In hPSCs, α6β1 is the dominant integrin and FAK is not phosphorylated at Y397, and thus, it is inactive. During differentiation, integrin α6 levels diminish and Y397 FAK is phosphorylated and activated. During reprogramming of fibroblasts into iPSCs, integrin α6 is upregulated and FAK is inactivated. Knockdown of integrin α6 and activation of β1 integrin lead to FAK phosphorylation and reduction of Nanog, Oct4, and Sox2, suggesting that integrin α6 functions in inactivation of integrin β1 and FAK signaling and prevention of hPSC differentiation. The N-terminal domain of FAK, where Y397 is localized, is in the nuclei of hPSCs interacting with Oct4 and Sox2, and this immunolocalization is regulated by Oct4. hPSCs remodel the extracellular microenvironment and deposit laminin α5, the primary ligand of integrin α6β1. Knockdown of laminin α5 resulted in reduction of integrin α6 expression, phosphorylation of FAK and decreased Oct4. In conclusion, hPSCs promote the expression of integrin α6β1, and nuclear localization and inactivation of FAK to supports stem cell self-renewal. Stem Cells 2016;34:1753-1764.
Collapse
Affiliation(s)
- Luis G Villa-Diaz
- Department of Biologic & Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Jin Koo Kim
- Department of Biologic & Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Alex Laperle
- Department of Biomedical Engineering, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Sean P Palecek
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Paul H Krebsbach
- Department of Biologic & Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Long-term, feeder-free maintenance of human embryonic stem cells by mussel-inspired adhesive heparin and collagen type I. Acta Biomater 2016; 32:138-148. [PMID: 26773463 DOI: 10.1016/j.actbio.2016.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 12/31/2022]
Abstract
For practical applications of human embryonic stem cells (hESCs) in regenerative medicine, hESCs should be cultured on a large scale, and at the same time their properties have to be maintained in a controllable manner. Here, we report a chemically defined, scalable culture platform involving co-immobilization of heparin-catechol (HepC) and collagen type-1 (Col) for the long-term maintenance (>18 passages) of hESCs in a feeder-free condition. This platform utilizes a wet-adhesive, mussel-inspired heparin-catechol conjugate as a key component. We hypothesized that the heparin's affinity toward a wide range of proteins, might support undifferentiated in vitro growth of hESC. In fact, on the HepC-coated substrate, most hESC clumps were adhered (∼78% at passage 2 (P2)) and expressed pluripotency markers (Fig. 2). Although HepC alone wasn't able to support long-term maintenance of hESCs in a feeder-free system due to decrease in the adhesion rate of hESCs on HepC coating (∼ 44% at P4) during the repeated passaging processes, we found that when collagen type I was co-immobilized in the process of HepC coating, the long-term maintenance (passage 18 or more) of hESCs could be achieved with 100% adhesion efficiency (Fig. 4). One remarkable observation is that hESCs on collagen type-I underwent spontaneous differentiation after P6 (Fig. 3), which implied co-immobilized HepC played a role to suppress differentiation of hESCs. This study suggests that unlike the previous studies using proteins, peptides, or synthetic polymers, a polysaccharide, heparin, can be used as a cost-effective component for chemically defined, feeder-free culture of hESC. STATEMENT OF SIGNIFICANCE Towards practical applications of human embryonic stem cells (hESCs) in regenerative medicine, hESCs should be cultured on a large scale, and their pluripotent property has to be maintained in a controllable manner. To address these issues, studies that develop chemically defined culture substrates have been explored to replace the widely used, complex, and undefined culture materials represented by Matrigel. Most reports have focused on utilizing proteins, peptides and/or synthetic polymers. However, there have not yet been studies on using polysaccharides as two-dimensional coating materials to potentially replace Matrigel coating. Here, we report that heparin is an effective polysaccharide for the feeder-free, two dimensional culture of hESCs. Our study implies that use of polysaccharides or a polysaccharide/ECM combination can be a new, alternative design principle for hESC culture systems.
Collapse
|
28
|
Abstract
Stem cells have the ability to self-renew and differentiate into specialized cell types, and, in the human body, they reside in specialized microenvironments called "stem cell niches." Although several niches have been described and studied in vivo, their functional replication in vitro is still incomplete. The in vitro culture of pluripotent stem cells may represent one of the most advanced examples in the effort to create an artificial or synthetic stem cell niche. A focus has been placed on the development of human stem cell microenvironments due to their significant clinical implications, in addition to the potential differences between animal and human cells. In this concise review we describe the advances in human pluripotent stem cell culture, and explore the idea that the knowledge gained from this model could be replicated to create synthetic niches for other human stem cell populations, which have proven difficult to maintain in vitro.
Collapse
|
29
|
Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges. Stem Cell Rev Rep 2015; 11:96-109. [PMID: 25077810 DOI: 10.1007/s12015-014-9544-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment, growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds.
Collapse
|
30
|
Nagaoka M, Kobayashi M, Kawai C, Mallanna SK, Duncan SA. Design of a Vitronectin-Based Recombinant Protein as a Defined Substrate for Differentiation of Human Pluripotent Stem Cells into Hepatocyte-Like Cells. PLoS One 2015; 10:e0136350. [PMID: 26308339 PMCID: PMC4550348 DOI: 10.1371/journal.pone.0136350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/01/2015] [Indexed: 01/05/2023] Open
Abstract
Maintenance and differentiation of human pluripotent stem cells (hPSCs) usually requires culture on a substrate for cell adhesion. A commonly used substratum is Matrigel purified from Engelbreth—Holm—Swarm sarcoma cells, and consists of a complex mixture of extracellular matrix proteins, proteoglycans, and growth factors. Several studies have successfully induced differentiation of hepatocyte-like cells from hPSCs. However, most of these studies have used Matrigel as a cell adhesion substrate, which is not a defined culture condition. In an attempt to generate a substratum that supports undifferentiated properties and differentiation into hepatic lineage cells, we designed novel substrates consisting of vitronectin fragments fused to the IgG Fc domain. hPSCs adhered to these substrates via interactions between integrins and the RGD (Arg-Gly-Asp) motif, and the cells maintained their undifferentiated phenotypes. Using a previously established differentiation protocol, hPSCs were efficiently differentiated into mesendodermal and hepatic lineage cells on a vitronectin fragment-containing substrate. We found that full-length vitronectin did not support stable cell adhesion during the specification stage. Furthermore, the vitronectin fragment with the minimal RGD-containing domain was sufficient for differentiation of human induced pluripotent stem cells into hepatic lineage cells under completely defined conditions that facilitate the clinical application of cells differentiated from hPSCs.
Collapse
Affiliation(s)
- Masato Nagaoka
- Tenure-track Program for Innovative Research, University of Fukui, Yoshida-gun, Fukui, Japan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Motohiro Kobayashi
- Division of Tumor Pathology, Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Chie Kawai
- Tenure-track Program for Innovative Research, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Sunil K. Mallanna
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Stephen A. Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
31
|
Krivega M, Essahib W, Van de Velde H. WNT3 and membrane-associated β-catenin regulate trophectoderm lineage differentiation in human blastocysts. Mol Hum Reprod 2015; 21:711-22. [DOI: 10.1093/molehr/gav036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022] Open
|
32
|
Huang B, Ning S, Zhuang L, Jiang C, Cui Y, Fan G, Qin L, Liu J. Ethanol Inactivated Mouse Embryonic Fibroblasts Maintain the Self-Renew and Proliferation of Human Embryonic Stem Cells. PLoS One 2015; 10:e0130332. [PMID: 26091287 PMCID: PMC4474813 DOI: 10.1371/journal.pone.0130332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/18/2015] [Indexed: 11/21/2022] Open
Abstract
Conventionally, mouse embryonic fibroblasts (MEFs) inactivated by mitomycin C or irradiation were applied to support the self-renew and proliferation of human embryonic stem cells (hESCs). To avoid the disadvangtages of mitomycin C and irradiation, here MEFs were treated by ethanol (ET). Our data showed that 10% ET-inactivated MEFs (eiMEFs) could well maintain the self-renew and proliferation of hESCs. hESCs grown on eiMEFs expressed stem cell markers of NANOG, octamer-binding protein 4 (OCT4), stage-specific embryonic antigen-4 (SSEA4) and tumour related antigen-1-81 (TRA-1-81), meanwhile maintained normal karyotype after long time culture. Also, hESCs cocultured with eiMEFs were able to form embryoid body (EB) in vitro and develop teratoma in vivo. Moreover, eiMEFs could keep their nutrient functions after long time cryopreservation. Our results indicate that the application of eiMEF in hESCs culture is safe, economical and convenient, thus is a better choice.
Collapse
Affiliation(s)
- Boxian Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210038, China
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Song Ning
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Lili Zhuang
- Department of Pediatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | - Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, 90095, United States of America
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jiayin Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210038, China
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
33
|
Akutsu H, Machida M, Kanzaki S, Sugawara T, Ohkura T, Nakamura N, Yamazaki-Inoue M, Miura T, Vemuri MC, Rao MS, Miyado K, Umezawa A. Xenogeneic-free defined conditions for derivation and expansion of human embryonic stem cells with mesenchymal stem cells. Regen Ther 2015; 1:18-29. [PMID: 31245438 PMCID: PMC6581821 DOI: 10.1016/j.reth.2014.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 12/17/2014] [Accepted: 12/28/2014] [Indexed: 12/25/2022] Open
Abstract
The potential applications of human embryonic stem cells (hESCs) in regenerative medicine and developmental research have made stem cell biology one of the most fascinating and rapidly expanding fields of biomedicine. The first clinical trial of hESCs in humans has begun, and the field of stem cell therapy has just entered a new era. Here, we report seven hESC lines (SEES-1, -2, -3, -4, -5, -6, and -7). Four of them were derived and maintained on irradiated human mesenchymal stem cells (hMSCs) grown in xenogeneic-free defined media and substrate. Xenogeneic-free hMSCs isolated from the subcutaneous tissue of extra fingers from individuals with polydactyly showed appropriate potentials as feeder layers in the pluripotency and growth of hESCs. In this report, we describe a comprehensive characterization of these newly derived SEES cell lines. In addition, we developed a scalable culture system for hESCs having high biological safety by using gamma-irradiated serum replacement and pharmaceutical-grade recombinant basic fibroblast growth factor (bFGF, also known as trafermin). This is first report describing the maintenance of hESC pluripotency using pharmaceutical-grade human recombinant bFGF (trafermin) and gamma-irradiated serum replacement. Our defined medium system provides a path to scalability in Good Manufacturing Practice (GMP) settings for the generation of clinically relevant cell types from pluripotent cells for therapeutic applications.
Collapse
Affiliation(s)
- Hidenori Akutsu
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Masakazu Machida
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Seiichi Kanzaki
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Tohru Sugawara
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takashi Ohkura
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Naoko Nakamura
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Mayu Yamazaki-Inoue
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takumi Miura
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Mohan C. Vemuri
- Thermo Fisher Scientific, 7335 Executive Way, Frederick, MD 21702, USA
| | - Mahendra S. Rao
- Center for Regenerative Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenji Miyado
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Corresponding author. Tel.: +81 3 5494 7047; fax: +81 3 5494 7048.
| |
Collapse
|
34
|
Turner J, Quek LE, Titmarsh D, Krömer JO, Kao LP, Nielsen L, Wolvetang E, Cooper-White J. Metabolic profiling and flux analysis of MEL-2 human embryonic stem cells during exponential growth at physiological and atmospheric oxygen concentrations. PLoS One 2014; 9:e112757. [PMID: 25412279 PMCID: PMC4239018 DOI: 10.1371/journal.pone.0112757] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022] Open
Abstract
As human embryonic stem cells (hESCs) steadily progress towards regenerative medicine applications there is an increasing emphasis on the development of bioreactor platforms that enable expansion of these cells to clinically relevant numbers. Surprisingly little is known about the metabolic requirements of hESCs, precluding the rational design and optimisation of such platforms. In this study, we undertook an in-depth characterisation of MEL-2 hESC metabolic behaviour during the exponential growth phase, combining metabolic profiling and flux analysis tools at physiological (hypoxic) and atmospheric (normoxic) oxygen concentrations. To overcome variability in growth profiles and the problem of closing mass balances in a complex environment, we developed protocols to accurately measure uptake and production rates of metabolites, cell density, growth rate and biomass composition, and designed a metabolic flux analysis model for estimating internal rates. hESCs are commonly considered to be highly glycolytic with inactive or immature mitochondria, however, whilst the results of this study confirmed that glycolysis is indeed highly active, we show that at least in MEL-2 hESC, it is supported by the use of oxidative phosphorylation within the mitochondria utilising carbon sources, such as glutamine to maximise ATP production. Under both conditions, glycolysis was disconnected from the mitochondria with all of the glucose being converted to lactate. No difference in the growth rates of cells cultured under physiological or atmospheric oxygen concentrations was observed nor did this cause differences in fluxes through the majority of the internal metabolic pathways associated with biogenesis. These results suggest that hESCs display the conventional Warburg effect, with high aerobic activity despite high lactate production, challenging the idea of an anaerobic metabolism with low mitochondrial activity. The results of this study provide new insight that can be used in rational bioreactor design and in the development of novel culture media for hESC maintenance and expansion.
Collapse
Affiliation(s)
- Jennifer Turner
- Tissue Engineering and Microfluidics Laboratory, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
- Stem Cell Engineering Group, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Lake-Ee Quek
- Centre for Systems and Synthetic Biotechnology, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Drew Titmarsh
- Tissue Engineering and Microfluidics Laboratory, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
- Stem Cell Engineering Group, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Jens O. Krömer
- Centre for Systems and Synthetic Biotechnology, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
- Metabolomics Australia, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Li-Pin Kao
- Stem Cell Engineering Group, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Lars Nielsen
- Centre for Systems and Synthetic Biotechnology, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
- Metabolomics Australia, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Ernst Wolvetang
- Stem Cell Engineering Group, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
- * E-mail: (EW); (JCW)
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
- * E-mail: (EW); (JCW)
| |
Collapse
|
35
|
Blagodatski A, Poteryaev D, Katanaev VL. Targeting the Wnt pathways for therapies. MOLECULAR AND CELLULAR THERAPIES 2014; 2:28. [PMID: 26056595 PMCID: PMC4452063 DOI: 10.1186/2052-8426-2-28] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/05/2014] [Indexed: 12/16/2022]
Abstract
The Wnt/β-catenin signaling pathway is crucial in animal development from sponges to humans. Its activity in the adulthood is less general, with exceptions having huge medical importance. Namely, improper activation of this pathway is carcinogenic in many tissues, most notably in the colon, liver and the breast. On the other hand, the Wnt/β-catenin signaling must be re-activated in cases of tissue damage, and insufficient activation results in regeneration failure and degeneration. These both medically important implications are unified by the emerging importance of this signaling pathway in the control of proliferation of various types of stem cells, crucial for tissue regeneration and, in case of cancer stem cells – cancer progression and relapse. This article aims at briefly reviewing the current state of knowledge in the field of Wnt signaling, followed by a detailed discussion of current medical developments targeting distinct branches of the Wnt pathway for anti-cancer and pro-regeneration therapies.
Collapse
Affiliation(s)
- Artem Blagodatski
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russian Federation
| | | | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Blagodatski A, Poteryaev D, Katanaev VL. Targeting the Wnt pathways for therapies. MOLECULAR AND CELLULAR THERAPIES 2014; 2:28. [PMID: 26056595 PMCID: PMC4452063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/05/2014] [Indexed: 11/21/2023]
Abstract
The Wnt/β-catenin signaling pathway is crucial in animal development from sponges to humans. Its activity in the adulthood is less general, with exceptions having huge medical importance. Namely, improper activation of this pathway is carcinogenic in many tissues, most notably in the colon, liver and the breast. On the other hand, the Wnt/β-catenin signaling must be re-activated in cases of tissue damage, and insufficient activation results in regeneration failure and degeneration. These both medically important implications are unified by the emerging importance of this signaling pathway in the control of proliferation of various types of stem cells, crucial for tissue regeneration and, in case of cancer stem cells - cancer progression and relapse. This article aims at briefly reviewing the current state of knowledge in the field of Wnt signaling, followed by a detailed discussion of current medical developments targeting distinct branches of the Wnt pathway for anti-cancer and pro-regeneration therapies.
Collapse
Affiliation(s)
- Artem Blagodatski
- />Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russian Federation
| | | | - Vladimir L Katanaev
- />Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Zhang W, Hu J, Ma Q, Hu S, Wang Y, Wen X, Ma Y, Xu H, Qian H, Xu W. Cryopreserved mouse fetal liver stromal cells treated with mitomycin C are able to support the growth of human embryonic stem cells. Exp Ther Med 2014; 8:935-942. [PMID: 25120627 PMCID: PMC4113635 DOI: 10.3892/etm.2014.1801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/11/2014] [Indexed: 01/02/2023] Open
Abstract
An immortalized mouse fetal liver stromal cell line, named KM3, has demonstrated the potential to support the growth and maintenance of human embryonic stem cells (hESCs). In this study, the characteristics of KM3 cells were examined following cryopreservation at -70°C and in liquid nitrogen for 15, 30 and 60 days following treatment with 10 μg/ml mitomycin C. In addition, whether the KM3 cells were suitable for use as feeder cells to support the growth of hESCs was evaluated. The inhibition of mitosis without cell death was observed when the KM3 cells were treated with 10 μg/ml mitomycin C for 2 h. The morphology of the KM3 cells cryopreserved in liquid nitrogen for 60 days was not markedly changed, and the cell survival rate was 84.60±1.14%. By contrast, the survival rate of the KM3 cells was 66.40±2.88% following cryopreservation at -70°C for 60 days; the cells readily detached, were maintained for a shorter time, and had a reduced expression level of basic fibroblast growth factor. hESCs cultured on KM3 cells cryopreserved in liquid nitrogen for 60 days showed the typical bird's nest structure, with clear boundaries and a differentiation rate of 16.33±2.08%. The differentiation rate of hESCs cultured on KM3 cells cryopreserved at -70°C for 60 days was 37.67±3.51%. These results indicate that the cryopreserved KM3 cells treated with mitomycin C may be directly used in the subculture of hESCs, and the effect is relatively good with -70°C short-term or liquid nitrogen cryopreservation.
Collapse
Affiliation(s)
- Wei Zhang
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiabo Hu
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Quanhui Ma
- Department of Clinical Laboratory, Jiangsu Provincial Hospital on Integration of Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Sanqiang Hu
- Maternal and Child Care Service Centre of Lianyungang, Lianyungang, Jiangsu 222006, P.R. China
| | - Yanyan Wang
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiangmei Wen
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China ; Department of Clinical Laboratory, Zhenjiang Centre for Disease Prevention and Control, Zhenjiang, Jiangsu 212003, P.R. China
| | - Yongbin Ma
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hong Xu
- Department of Clinical Laboratory, Zhenjiang Centre for Disease Prevention and Control, Zhenjiang, Jiangsu 212003, P.R. China
| | - Hui Qian
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenrong Xu
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
38
|
Chan YS, Göke J, Ng JH, Lu X, Gonzales KAU, Tan CP, Tng WQ, Hong ZZ, Lim YS, Ng HH. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 2014; 13:663-75. [PMID: 24315441 DOI: 10.1016/j.stem.2013.11.015] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/04/2013] [Accepted: 11/18/2013] [Indexed: 12/19/2022]
Abstract
Human embryonic stem cells (hESCs) are derived from the inner cell mass of the blastocyst. Despite sharing the common property of pluripotency, hESCs are notably distinct from epiblast cells of the preimplantation blastocyst. Here we use a combination of three small-molecule inhibitors to sustain hESCs in a LIF signaling-dependent hESC state (3iL hESCs) with elevated expression of NANOG and epiblast-enriched genes such as KLF4, DPPA3, and TBX3. Genome-wide transcriptome analysis confirms that the expression signature of 3iL hESCs shares similarities with native preimplantation epiblast cells. We also show that 3iL hESCs have a distinct epigenetic landscape, characterized by derepression of preimplantation epiblast genes. Using genome-wide binding profiles of NANOG and OCT4, we identify enhancers that contribute to rewiring of the regulatory circuitry. In summary, our study identifies a distinct hESC state with defined regulatory circuitry that will facilitate future analysis of human preimplantation embryogenesis and pluripotency.
Collapse
Affiliation(s)
- Yun-Shen Chan
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore 138672, Singapore.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee JE, Lee DR. Human embryonic stem cells: derivation, maintenance and cryopreservation. Int J Stem Cells 2014; 4:9-17. [PMID: 24298329 DOI: 10.15283/ijsc.2011.4.1.9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2011] [Indexed: 12/29/2022] Open
Abstract
Human embryonic stem cells (hESCs) are the most powerful candidate for the treatment of incurable diseases through the replacement of damaged cells and/or tissues in patients, although there are some obstacles to overcome for the clinical application of hESCs such as the assurance of guided differentiation and control of the immune response following cell therapy or tissue grafting. To obtain genetically stable hESCs and use them clinically, it is important to develop appropriate culture conditions. Additionally, the establishment of a hESC bank with a large number of hESC lines will be required for their clinical application because each hESC line is directed to have a different differentiation ability and immune characteristics such as HLA type. In this review, we describe the derivation and culture conditions of hESCs based on recent advances. Then, we will introduce several cryopreservation methods for hESCs, which is important for the development of cell bank.
Collapse
|
40
|
Efthymiou AG, Chen G, Rao M, Chen G, Boehm M. Self-renewal and cell lineage differentiation strategies in human embryonic stem cells and induced pluripotent stem cells. Expert Opin Biol Ther 2014; 14:1333-44. [PMID: 24881868 DOI: 10.1517/14712598.2014.922533] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Since the initial discoveries of human embryonic and induced pluripotent stem cells, many strategies have been developed to utilize the potential of these cells for translational research and disease modeling. The success of these aims and the development of future applications in this area will depend on the ability to generate high-quality and large numbers of differentiated cell types that genetically, epigenetically, and functionally mimic the cells found in the body. AREAS COVERED In this review, we highlight the current strategies used to maintain stem cell pluripotency (a measure of stem cell quality), as well as provide an overview of the various differentiation strategies being used to generate cells from all three germ lineages. We also discuss the particular considerations that must be addressed when utilizing these cells for translational therapy, and provide an example of a cell type currently used in clinical trials. EXPERT OPINION The major challenge in regenerative medicine and disease modeling will be in generating functional cells of sufficient quality that are physiologically and epigenetically similar to the diverse cells that they are modeled after. By meeting these criteria, these differentiated products can be successfully used in disease modeling, drug/toxicology screens, and cellular replacement therapy.
Collapse
Affiliation(s)
- Anastasia G Efthymiou
- National Institutes of Health, Center for Regenerative Medicine , Bethesda, MD , USA
| | | | | | | | | |
Collapse
|
41
|
Liu CX, Zhang RL, Gao J, Li T, Ren Z, Zhou CQ, Wen AM. Derivation of human embryonic stem cell lines without any exogenous growth factors. Mol Reprod Dev 2014; 81:470-9. [PMID: 24554631 DOI: 10.1002/mrd.22312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/11/2014] [Indexed: 01/16/2023]
Abstract
Human embryonic stem cell (hESC) lines are traditionally derived through immunosurgery. Their maintenance in culture requires the presence of mouse embryonic fibroblasts (MEFs) as feeder cells and media supplemented with basic fibroblast growth factor (bFGF) or other growth factors-both of which might introduce animal-derived culture components. The drawbacks associated with immunosurgery, MEF co-culture, and the cost of growth factors necessitate the exploration of a xeno-free method to maintain the self-renewal capacity of hESCs. Here, we describe an isolation method for the human inner cell mass (ICM), which was then cultured in the absence of exogenous growth factors and in the presence of human foreskin fibroblasts (HFFs) as feeder cells. Three hESC lines were obtained from poor-quality embryos by this near-xeno-free protocol. After culturing for more than 10 months, the hESCs retained normal morphology, expressed all expected cell surface markers, could differentiate to embryoid bodies upon culture in vitro, and formed teratomas in vivo. Furthermore, secretion of bFGF by HFFs was observed. In conclusion, this is the first study to describe an inexpensive, xeno-free culture system for the isolation and maintenance of hESCs that does not require bFGF supplementation.
Collapse
Affiliation(s)
- Cai Xia Liu
- Reproductive Medicine Center, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
42
|
De Paepe C, Krivega M, Cauffman G, Geens M, Van de Velde H. Totipotency and lineage segregation in the human embryo. ACTA ACUST UNITED AC 2014; 20:599-618. [DOI: 10.1093/molehr/gau027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Donai K, Inagaki A, So KH, Kuroda K, Sone H, Kobayashi M, Nishimori K, Fukuda T. Low-molecular-weight inhibitors of cell differentiation enable efficient growth of mouse iPS cells under feeder-free conditions. Cytotechnology 2014; 67:191-7. [PMID: 24682663 DOI: 10.1007/s10616-013-9686-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/25/2013] [Indexed: 12/31/2022] Open
Abstract
Embryonic stem cells and induced pluripotent stem (iPS) cells are usually maintained on feeder cells derived from mouse embryonic fibroblasts (MEFs). In recent years, the cell culture of iPS cells under serum- and feeder-free conditions is gaining attention in overcoming the biosafety issues for clinical applications. In this study, we report on the use of multiple small-molecular inhibitors (i.e., CHIR99021, PD0325901, and Thiazovivin) to efficiently cultivate mouse iPS cells without feeder cells in a chemically-defined and serum-free condition. In this condition, we showed that mouse iPS cells are expressing the Nanog, Oct3/4, and SSEA-1 pluripotent markers, indicating that the culture condition is optimized to maintain the pluripotent status of iPS cells. Without these small-molecular inhibitors, mouse iPS cells required the adaptation period to start the stable cell proliferation. The application of these inhibitors enabled us the shortcut culture method for the cellular adaptation. This study will be useful to efficiently establish mouse iPS cell lines without MEF-derived feeder cells.
Collapse
Affiliation(s)
- Kenichiro Donai
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yan J, Gong X, Pan S, Guo X, Ren Z, Zeng Y. Expression of human transferrin can be regulated effectively by rabbit transferrin regulatory elements in transgenic mice. Biotechnol Lett 2014; 36:1209-16. [PMID: 24563315 DOI: 10.1007/s10529-014-1484-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/24/2014] [Indexed: 11/26/2022]
Abstract
Human transferrin (hTF) belongs to the iron-binding glycoprotein family. It plays an important role in iron transport throughout the body. Transgenic mice are a good model to study how to produce functional hTF on a large-scale. We have improved the expression of hTF and investigated its regulatory mechanism in transgenic mice. Three expression constructs were prepared in which hTF expression was controlled by different regulatory cassettes of rabbit transferrin (rTF). hTF was secreted into serum of transgenic mice when its expression was controlled by the rTF promoter and enhancer, whereas the rTF enhancer in tandem with the rTF promoter repressed hTF secretion into milk. A significant inverse relationship between methylation of the rTF promoter and hTF expression was observed in liver, heart, mammary gland, and muscle of transgenic mice. The highest concentration of hTF was 700 μg/ml in milk.
Collapse
Affiliation(s)
- Jingbin Yan
- Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiaotong University, 24/1400 West Beijing Road, Shanghai, 200040, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Yamasaki S, Taguchi Y, Shimamoto A, Mukasa H, Tahara H, Okamoto T. Generation of human induced pluripotent stem (Ips) cells in serum- and feeder-free defined culture and TGF-Β1 regulation of pluripotency. PLoS One 2014; 9:e87151. [PMID: 24489856 PMCID: PMC3906124 DOI: 10.1371/journal.pone.0087151] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/19/2013] [Indexed: 11/19/2022] Open
Abstract
Human Embryonic Stem cells (hESCs) and human induced Pluripotent Stem cells (hiPSCs) are commonly maintained on inactivated mouse embryonic fibroblast as feeder cells in medium supplemented with FBS or proprietary replacements. Use of culture medium containing undefined or unknown components has limited the development of applications for pluripotent cells because of the relative lack of knowledge regarding cell responses to differentiating growth factors. In addition, there is no consensus as to the optimal formulation, or the nature of the cytokine requirements of the cells to promote their self-renewal and inhibit their differentiation. In this study, we successfully generated hiPSCs from human dental pulp cells (DPCs) using Yamanaka's factors (Oct3/4, Sox2, Klf4, and c-Myc) with retroviral vectors in serum- and feeder-free defined culture conditions. These hiPSCs retained the property of self-renewal as evaluated by the expression of self-renewal marker genes and proteins, morphology, cell growth rates, and pluripotency evaluated by differentiation into derivatives of all three primary germ layers in vitro and in vivo. In this study, we found that TGF-β1 increased the expression levels of pluripotency markers in a dose-dependent manner. However, increasing doses of TGF-β1 suppressed the growth rate of hiPSCs cultured under the defined conditions. Furthermore, over short time periods the hiPSCs cultured in hESF9 or hESF9T exhibited similar morphology, but hiPSCs maintained in hESF9 could not survive beyond 30 passages. This result clearly confirmed that hiPSCs cultured in hESF9 medium absolutely required TGF-β1 to maintain pluripotency. This simple serum-free adherent monoculture system will allow us to elucidate the cell responses to growth factors under defined conditions and can eliminate the risk might be brought by undefined pathogens.
Collapse
Affiliation(s)
- Sachiko Yamasaki
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yuki Taguchi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Akira Shimamoto
- Department of Cellular and Molecular Biology, Basic Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Hanae Mukasa
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Basic Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Japan
- * E-mail:
| |
Collapse
|
46
|
Quang T, Marquez M, Blanco G, Zhao Y. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells. PLoS One 2014; 9:e86031. [PMID: 24465853 PMCID: PMC3895015 DOI: 10.1371/journal.pone.0086031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4–10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.
Collapse
Affiliation(s)
- Tara Quang
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
| | - Maribel Marquez
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
| | - Giselle Blanco
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
| | - Yuanxiang Zhao
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
|
48
|
Characterization of uniaxial stiffness of extracellular matrix embedded with magnetic beads via bio-conjugation and under the influence of an external magnetic field. J Mech Behav Biomed Mater 2013; 30:253-65. [PMID: 24342625 DOI: 10.1016/j.jmbbm.2013.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 11/21/2022]
Abstract
In this paper, we study the deformation, and experimentally quantify the change in stiffness, of an extracellular matrix (ECM) embedded with magnetic beads that are bio-conjugated with the collagen fibers and under the influence of an external magnetic field. We develop an analytical model of the viscoelastic behavior of this modified ECM, and design and implement a stretch test to quantify (based on statistically meaningful experiment data) the resulting changes in its stiffness induced by the external magnetic field. The analytical results are in close agreement with that obtained from the experiments. We discuss the implication of these results that point to the possibility of creating desired stiffness gradients in an ECM in vitro to influence cell behavior.
Collapse
|
49
|
Fan Y, Hsiung M, Cheng C, Tzanakakis ES. Facile engineering of xeno-free microcarriers for the scalable cultivation of human pluripotent stem cells in stirred suspension. Tissue Eng Part A 2013; 20:588-99. [PMID: 24098972 DOI: 10.1089/ten.tea.2013.0219] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A prerequisite for the realization of human pluripotent stem cell (hPSC) therapies is the development of bioprocesses for generating clinically relevant quantities of undifferentiated hPSCs and their derivatives under xeno-free conditions. Microcarrier stirred-suspension bioreactors are an appealing modality for the scalable expansion and directed differentiation of hPSCs. Comparative analyses of commercially available microcarriers clearly show the need for developing synthetic substrates supporting the adhesion and growth of hPSCs in three-dimensional cultures under agitation-induced shear. Moreover, the low seeding efficiencies during microcarrier loading with hPSC clusters poses a significant process bottleneck. To that end, a novel protocol was developed increasing hPSC seeding efficiency from 30% to over 80% and substantially shortening the duration of microcarrier loading. Importantly, this method was combined with the engineering of polystyrene microcarriers by surface conjugation of a vitronectin-derived peptide, which was previously shown to support the growth of human embryonic stem cells. Cells proliferated on peptide-conjugated beads in static culture but widespread detachment was observed after exposure to stirring. This prompted additional treatment of the microcarriers with a synthetic polymer commonly used to enhance cell adhesion. hPSCs were successfully cultivated on these microcarriers in stirred suspension vessels for multiple consecutive passages with attachment efficiencies close to 40%. Cultured cells exhibited on average a 24-fold increase in concentration per 6-day passage, over 85% viability, and maintained a normal karyotype and the expression of pluripotency markers such as Nanog, Oct4, and SSEA4. When subjected to spontaneous differentiation in embryoid body cultures or directed differentiation to the three embryonic germ layers, the cells adopted respective fates displaying relevant markers. Lastly, engineered microcarriers were successfully utilized for the expansion and differentiation of hPSCs to mesoderm progeny in stirred suspension vessels. Hence, we demonstrate a strategy for the facile engineering of xeno-free microcarriers for stirred-suspension cultivation of hPSCs. Our findings support the use of microcarrier bioreactors for the scalable, xeno-free propagation and differentiation of human stem cells intended for therapies.
Collapse
Affiliation(s)
- Yongjia Fan
- 1 Department of Chemical and Biological Engineering, State University of New York at Buffalo , Buffalo, New York
| | | | | | | |
Collapse
|
50
|
Lambshead JW, Meagher L, O'Brien C, Laslett AL. Defining synthetic surfaces for human pluripotent stem cell culture. CELL REGENERATION 2013; 2:7. [PMID: 25408879 PMCID: PMC4230363 DOI: 10.1186/2045-9769-2-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
Human pluripotent stem cells (hPSCs) are able to self-renew indefinitely and to differentiate into all adult cell types. hPSCs therefore show potential for application to drug screening, disease modelling and cellular therapies. In order to meet this potential, culture conditions must be developed that are consistent, defined, scalable, free of animal products and that facilitate stable self-renewal of hPSCs. Several culture surfaces have recently been reported to meet many of these criteria although none of them have been widely implemented by the stem cell community due to issues with validation, reliability and expense. Most hPSC culture surfaces have been derived from extracellular matrix proteins (ECMPs) and their cell adhesion molecule (CAM) binding motifs. Elucidating the CAM-mediated cell-surface interactions that are essential for the in vitro maintenance of pluripotency will facilitate the optimisation of hPSC culture surfaces. Reports indicate that hPSC cultures can be supported by cell-surface interactions through certain CAM subtypes but not by others. This review summarises the recent reports of defined surfaces for hPSC culture and focuses on the CAMs and ECMPs involved.
Collapse
Affiliation(s)
- Jack W Lambshead
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia ; Australian Regenerative Medicine Institute, Monash University, Kragujevac, Victoria 3800 Australia
| | - Laurence Meagher
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia
| | - Carmel O'Brien
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia ; Australian Regenerative Medicine Institute, Monash University, Kragujevac, Victoria 3800 Australia
| | - Andrew L Laslett
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia ; Australian Regenerative Medicine Institute, Monash University, Kragujevac, Victoria 3800 Australia ; Department of Zoology, University of Melbourne, Parkville, Victoria 3101 Australia
| |
Collapse
|