1
|
Wragg KM, Worley MJ, Deng JC, Salmon M, Goldstein DR. Deficiency in the mitophagy mediator Parkin accelerates murine skin allograft rejection. Am J Transplant 2024; 24:2174-2186. [PMID: 39142471 PMCID: PMC11588513 DOI: 10.1016/j.ajt.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Alterations in mitochondrial function and associated quality control programs, including mitochondrial-specific autophagy, termed mitophagy, are gaining increasing recognition in the context of disease. However, the role of mitophagy in organ transplant rejection remains poorly understood. Using mice deficient in Parkin, a ubiquitin ligase that tags damaged or dysfunctional mitochondria for autophagic clearance, we assessed the impact of Parkin-dependent mitophagy on skin-graft rejection. We observed accelerated graft loss in Parkin-deficient mice across multiple skin graft models. Immune cell distributions posttransplant were largely unperturbed compared to wild-type; however, the CD8+ T cells of Parkin-deficient mice expressed more T-bet, IFNγ, and Ki67, indicating greater priming toward effector function. This was accompanied by increased circulating levels of IL-12p70 in Parkin-deficient mice. Using a mixed leukocyte reaction, we demonstrated that naïve Parkin-deficient CD4+ and CD8+ T cells exhibit enhanced activation marker expression and proliferative responses to alloantigen, which were attenuated with administration of a pharmacological mitophagy inducer (p62-mediated mitophagy inducer), known to increase mitophagy in the absence of a functional PINK1-Parkin pathway. These findings indicate a role for Parkin-dependent mitophagy in curtailing skin-graft rejection.
Collapse
Affiliation(s)
- Kathleen M Wragg
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew J Worley
- Pulmonary Division, University of Michigan, Ann Arbor, Michigan, USA
| | - Jane C Deng
- Pulmonary Division, University of Michigan, Ann Arbor, Michigan, USA; Veterans Affairs Ann Arbor, Ann Arbor, Michigan, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, USA; Frankel Cardiovascular Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA.
| | - Daniel R Goldstein
- Frankel Cardiovascular Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA; Department of Medicine, Cardiology Division, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Landoni JC, Kleele T, Winter J, Stepp W, Manley S. Mitochondrial Structure, Dynamics, and Physiology: Light Microscopy to Disentangle the Network. Annu Rev Cell Dev Biol 2024; 40:219-240. [PMID: 38976811 DOI: 10.1146/annurev-cellbio-111822-114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.
Collapse
Affiliation(s)
- Juan C Landoni
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Tatjana Kleele
- Institute of Biochemistry, Swiss Federal Institute of Technology Zürich (ETH), Zürich, Switzerland;
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Julius Winter
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Willi Stepp
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Suliana Manley
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| |
Collapse
|
3
|
Wai T. Is mitochondrial morphology important for cellular physiology? Trends Endocrinol Metab 2024; 35:854-871. [PMID: 38866638 DOI: 10.1016/j.tem.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
Mitochondria are double membrane-bound organelles the network morphology of which in cells is shaped by opposing events of fusion and fission executed by dynamin-like GTPases. Mutations in these genes can perturb the form and functions of mitochondria in cell and animal models of mitochondrial diseases. An expanding array of chemical, mechanical, and genetic stressors can converge on mitochondrial-shaping proteins and disrupt mitochondrial morphology. In recent years, studies aimed at disentangling the multiple roles of mitochondrial-shaping proteins beyond fission or fusion have provided insights into the homeostatic relevance of mitochondrial morphology. Here, I review the pleiotropy of mitochondrial fusion and fission proteins with the aim of understanding whether mitochondrial morphology is important for cell and tissue physiology.
Collapse
Affiliation(s)
- Timothy Wai
- Institut Pasteur, Mitochondrial Biology, CNRS UMR 3691, Université Paris Cité, Paris, France.
| |
Collapse
|
4
|
Yazicioglu YF, Mitchell RJ, Clarke AJ. Mitochondrial control of lymphocyte homeostasis. Semin Cell Dev Biol 2024; 161-162:42-53. [PMID: 38608498 DOI: 10.1016/j.semcdb.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.
Collapse
|
5
|
Gómez-Morón Á, Tsukalov I, Scagnetti C, Pertusa C, Lozano-Prieto M, Martínez-Fleta P, Requena S, Martín P, Alfranca A, Martin-Gayo E, Martin-Cofreces NB. Cytosolic protein translation regulates cell asymmetry and function in early TCR activation of human CD8 + T lymphocytes. Front Immunol 2024; 15:1411957. [PMID: 39114656 PMCID: PMC11303187 DOI: 10.3389/fimmu.2024.1411957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction CD8+ cytotoxic T lymphocytes (CTLs) are highly effective in defending against viral infections and tumours. They are activated through the recognition of peptide-MHC-I complex by the T-cell receptor (TCR) and co-stimulation. This cognate interaction promotes the organisation of intimate cell-cell connections that involve cytoskeleton rearrangement to enable effector function and clearance of the target cell. This is key for the asymmetric transport and mobilisation of lytic granules to the cell-cell contact, promoting directed secretion of lytic mediators such as granzymes and perforin. Mitochondria play a role in regulating CTL function by controlling processes such as calcium flux, providing the necessary energy through oxidative phosphorylation, and its own protein translation on 70S ribosomes. However, the effect of acute inhibition of cytosolic translation in the rapid response after TCR has not been studied in mature CTLs. Methods Here, we investigated the importance of cytosolic protein synthesis in human CTLs after early TCR activation and CD28 co-stimulation for the dynamic reorganisation of the cytoskeleton, mitochondria, and lytic granules through short-term chemical inhibition of 80S ribosomes by cycloheximide and 80S and 70S by puromycin. Results We observed that eukaryotic ribosome function is required to allow proper asymmetric reorganisation of the tubulin cytoskeleton and mitochondria and mTOR pathway activation early upon TCR activation in human primary CTLs. Discussion Cytosolic protein translation is required to increase glucose metabolism and degranulation capacity upon TCR activation and thus to regulate the full effector function of human CTLs.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Ilya Tsukalov
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Clara Pertusa
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marta Lozano-Prieto
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Martínez-Fleta
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Silvia Requena
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Martín
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Regulatory Molecules of Inflammatory Processes, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| | - Aranzazu Alfranca
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Martin-Gayo
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - Noa B Martin-Cofreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Van der Vreken A, Vanderkerken K, De Bruyne E, De Veirman K, Breckpot K, Menu E. Fueling CARs: metabolic strategies to enhance CAR T-cell therapy. Exp Hematol Oncol 2024; 13:66. [PMID: 38987856 PMCID: PMC11238373 DOI: 10.1186/s40164-024-00535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
CAR T cells are widely applied for relapsed hematological cancer patients. With six approved cell therapies, for Multiple Myeloma and other B-cell malignancies, new insights emerge. Profound evidence shows that patients who fail CAR T-cell therapy have, aside from antigen escape, a more glycolytic and weakened metabolism in their CAR T cells, accompanied by a short lifespan. Recent advances show that CAR T cells can be metabolically engineered towards oxidative phosphorylation, which increases their longevity via epigenetic and phenotypical changes. In this review we elucidate various strategies to rewire their metabolism, including the design of the CAR construct, co-stimulus choice, genetic modifications of metabolic genes, and pharmacological interventions. We discuss their potential to enhance CAR T-cell functioning and persistence through memory imprinting, thereby improving outcomes. Furthermore, we link the pharmacological treatments with their anti-cancer properties in hematological malignancies to ultimately suggest novel combination strategies.
Collapse
Affiliation(s)
- Arne Van der Vreken
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center, Team Laboratory of Cellular and Molecular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Eline Menu
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium.
| |
Collapse
|
7
|
Patwardhan RS, Gohil D, Singh B, Kumar BK, Purohit V, Thoh M, Checker R, Gardi N, Gota V, Kutala VK, Patwardhan S, Sharma D, Sandur SK. Mitochondrial-targeted curcumin inhibits T-cell activation via Nrf2 and inhibits graft-versus-host-disease in a mouse model. Phytother Res 2024; 38:1555-1573. [PMID: 38281735 DOI: 10.1002/ptr.8126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 01/30/2024]
Abstract
Anti-inflammatory and immune suppressive agents are required to moderate hyper-activation of lymphocytes under disease conditions or organ transplantation. However, selective disruption of mitochondrial redox has not been evaluated as a therapeutic strategy for suppression of T-cell-mediated pathologies. Using mitochondrial targeted curcumin (MitoC), we studied the effect of mitochondrial redox modulation on T-cell responses by flow cytometry, transmission electron microscopy, transcriptomics, and proteomics, and the role of Nrf2 was studied using Nrf2- /- mice. MitoC decreased mitochondrial TrxR activity, enhanced mitochondrial ROS (mROS) production, depleted mitochondrial glutathione, and suppressed activation-induced increase in mitochondrial biomass. This led to suppression of T-cell responses and metabolic reprogramming towards Treg differentiation. MitoC induced nuclear translocation and DNA binding of Nrf2, leading to upregulation of Nrf2-dependent genes and proteins. MitoC-mediated changes in mitochondrial redox and modulation of T-cell responses are abolished in Nrf2- /- mice. Restoration of mitochondrial thiols abrogated inhibition of T-cell responses. MitoC suppressed alloantigen-induced lymphoblast formation, inflammatory cytokines, morbidity, and mortality in acute graft-versus-host disease mice. Disruption of mitochondrial thiols but not mROS increase inculcates an Nrf2-dependent immune-suppressive disposition in T cells for the propitious treatment of graft-versus-host disease.
Collapse
Affiliation(s)
| | - Dievya Gohil
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Babita Singh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Binita K Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Vaitashi Purohit
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Maikho Thoh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Rahul Checker
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Nilesh Gardi
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Vikram Gota
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Vijay Kumar Kutala
- Department of Biochemistry, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, India
| | - Sejal Patwardhan
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| |
Collapse
|
8
|
Wilfahrt D, Delgoffe GM. Metabolic waypoints during T cell differentiation. Nat Immunol 2024; 25:206-217. [PMID: 38238609 DOI: 10.1038/s41590-023-01733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
This Review explores the interplay between T cell activation and cell metabolism and highlights how metabolites serve two pivotal functions in shaping the immune response. Traditionally, T cell activation has been characterized by T cell antigen receptor-major histocompatibility complex interaction (signal 1), co-stimulation (signal 2) and cytokine signaling (signal 3). However, recent research has unveiled the critical role of metabolites in this process. Firstly, metabolites act as signal propagators that aid in the transmission of core activation signals, such as specific lipid species that are crucial at the immune synapse. Secondly, metabolites also function as unique signals that influence immune differentiation pathways, such as amino acid-induced mTORC1 signaling. Metabolites also play a substantial role in epigenetic remodeling, by directly modifying histones, altering gene expression and influencing T cell behavior. This Review discusses how T cells integrate nutrient sensing with activating stimuli to shape their differentiation and sensitivity to metabolites. We underscore the integration of immunological and metabolic inputs in T cell function and suggest that metabolite availability is a fundamental determinant of adaptive immune responses.
Collapse
Affiliation(s)
- Drew Wilfahrt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center and Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Headley CA, Gautam S, Olmo‐Fontanez A, Garcia‐Vilanova A, Dwivedi V, Akhter A, Schami A, Chiem K, Ault R, Zhang H, Cai H, Whigham A, Delgado J, Hicks A, Tsao PS, Gelfond J, Martinez‐Sobrido L, Wang Y, Torrelles JB, Turner J. Extracellular Delivery of Functional Mitochondria Rescues the Dysfunction of CD4 + T Cells in Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303664. [PMID: 37990641 PMCID: PMC10837346 DOI: 10.1002/advs.202303664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/17/2023] [Indexed: 11/23/2023]
Abstract
Mitochondrial dysfunction alters cellular metabolism, increases tissue oxidative stress, and may be principal to the dysregulated signaling and function of CD4+ T lymphocytes in the elderly. In this proof of principle study, it is investigated whether the transfer of functional mitochondria into CD4+ T cells that are isolated from old mice (aged CD4+ T cells), can abrogate aging-associated mitochondrial dysfunction, and improve the aged CD4+ T cell functionality. The results show that the delivery of exogenous mitochondria to aged non-activated CD4+ T cells led to significant mitochondrial proteome alterations highlighted by improved aerobic metabolism and decreased cellular mitoROS. Additionally, mito-transferred aged CD4+ T cells showed improvements in activation-induced TCR-signaling kinetics displaying markers of activation (CD25), increased IL-2 production, enhanced proliferation ex vivo. Importantly, immune deficient mouse models (RAG-KO) showed that adoptive transfer of mito-transferred naive aged CD4+ T cells, protected recipient mice from influenza A and Mycobacterium tuberculosis infections. These findings support mitochondria as targets of therapeutic intervention in aging.
Collapse
Affiliation(s)
- Colwyn A. Headley
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOhio43201USA
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCA94305USA
| | - Shalini Gautam
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | | | | | - Varun Dwivedi
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Anwari Akhter
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Alyssa Schami
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Kevin Chiem
- Disease Intervention & Prevention ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Russell Ault
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOhio43201USA
| | - Hao Zhang
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Hong Cai
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Alison Whigham
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Jennifer Delgado
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Amberlee Hicks
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Philip S. Tsao
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCA94305USA
| | - Jonathan Gelfond
- UT‐Health San AntonioDepartment of Epidemiology & BiostatisticsSan AntonioTexas78229USA
| | - Luis Martinez‐Sobrido
- Disease Intervention & Prevention ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Yufeng Wang
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Jordi B. Torrelles
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Joanne Turner
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| |
Collapse
|
10
|
Paillon N, Ung TPL, Dogniaux S, Stringari C, Hivroz C. Label-free single-cell live imaging reveals fast metabolic switch in T lymphocytes. Mol Biol Cell 2024; 35:ar11. [PMID: 37971737 PMCID: PMC10881169 DOI: 10.1091/mbc.e23-01-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
T-cell activation induces a metabolic switch generating energy for proliferation, survival, and functions. We used noninvasive label-free two-photon fluorescence lifetime microscopy (2P-FLIM) to map the spatial and temporal dynamics of the metabolic NAD(P)H co-enzyme during T lymphocyte activation. This provides a readout of the OXPHOS and glycolysis rates at a single-cell level. Analyzes were performed in the CD4+ leukemic T cell line Jurkat, and in human CD4+ primary T cells. Cells were activated on glass surfaces coated with activating antibodies mimicking immune synapse formation. Comparing the fraction of bound NAD(P)H between resting and activated T cells, we show that T-cell activation induces a rapid switch toward glycolysis. This occurs after 10 min and remains stable for one hour. Three-dimensional analyzes revealed that the intracellular distribution of fraction of bound NAD(P)H increases at the immune synapse in activated cells. Finally, we show that fraction of bound NAD(P)H tends to negatively correlate with spreading of activated T cells, suggesting a link between actin remodeling and metabolic changes. This study highlights that 2P-FLIM measurement of fraction of bound NAD(P)H is well suited to follow a fast metabolic switch in three dimensions, in single T lymphocytes with subcellular resolution.
Collapse
Affiliation(s)
- Noémie Paillon
- Institut Curie, PSL Research University, INSERM, U932 “Integrative analysis of T cell activation” team, 75005 Paris, France
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Stéphanie Dogniaux
- Institut Curie, PSL Research University, INSERM, U932 “Integrative analysis of T cell activation” team, 75005 Paris, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM, U932 “Integrative analysis of T cell activation” team, 75005 Paris, France
| |
Collapse
|
11
|
Zukowski E, Sannella M, Rockhold JD, Kalantar GH, Yu J, SantaCruz‐Calvo S, Kuhn MK, Hah N, Ouyang L, Wang T, Murphy L, Marszalkowski H, Gibney K, Drummond MJ, Proctor EA, Hasturk H, Nikolajczyk BS, Bharath LP. STAT3 modulates CD4 + T mitochondrial dynamics and function in aging. Aging Cell 2023; 22:e13996. [PMID: 37837188 PMCID: PMC10652300 DOI: 10.1111/acel.13996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
Aging promotes numerous intracellular changes in T cells that impact their effector function. Our data show that aging promotes an increase in the localization of STAT3 to the mitochondria (mitoSTAT3), which promotes changes in mitochondrial dynamics and function and T-cell cytokine production. Mechanistically, mitoSTAT3 increased the activity of aging T-cell mitochondria by increasing complex II. Limiting mitoSTAT3 using a mitochondria-targeted STAT3 inhibitor, Mtcur-1 lowered complex II activity, prevented age-induced changes in mitochondrial dynamics and function, and reduced Th17 inflammation. Exogenous expression of a constitutively phosphorylated form of STAT3 in T cells from young adults mimicked changes in mitochondrial dynamics and function in T cells from older adults and partially recapitulated aging-related cytokine profiles. Our data show the mechanistic link among mitoSTAT3, mitochondrial dynamics, function, and T-cell cytokine production.
Collapse
Affiliation(s)
- Emelia Zukowski
- Department of Nutrition and Public HealthMerrimack CollegeNorth AndoverMassachusettsUSA
| | - Marco Sannella
- Department of Nutrition and Public HealthMerrimack CollegeNorth AndoverMassachusettsUSA
| | - Jack Donato Rockhold
- Department of Nutrition and Public HealthMerrimack CollegeNorth AndoverMassachusettsUSA
| | - Gabriella H. Kalantar
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of KentuckyLexingtonKentuckyUSA
| | - Jingting Yu
- Razavi Newman Integrative Genomics and Bioinformatics CoreThe Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Sara SantaCruz‐Calvo
- Departments of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
- Barnstable Brown Diabetes and Obesity CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Madison K. Kuhn
- Departments of Neurosurgery, Pharmacology, and Biomedical Engineering and Center for Neural EngineeringPennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Nasun Hah
- Next Generation Sequencing CoreThe Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Ling Ouyang
- Next Generation Sequencing CoreThe Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Tzu‐Wen Wang
- Next Generation Sequencing CoreThe Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Lyanne Murphy
- Department of BiologyMerrimack CollegeNorth AndoverMassachusettsUSA
| | | | - Kaleigh Gibney
- Department of Nutrition and Public HealthMerrimack CollegeNorth AndoverMassachusettsUSA
| | - Micah J. Drummond
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - Elizabeth A. Proctor
- Departments of Neurosurgery, Pharmacology, and Biomedical Engineering and Center for Neural EngineeringPennsylvania State UniversityHersheyPennsylvaniaUSA
- Department of Engineering Science & MechanicsPennsylvania State UniversityHersheyPennsylvaniaUSA
| | | | - Barbara S. Nikolajczyk
- Departments of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
- Barnstable Brown Diabetes and Obesity CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Leena P. Bharath
- Department of Nutrition and Public HealthMerrimack CollegeNorth AndoverMassachusettsUSA
| |
Collapse
|
12
|
Escrig-Larena JI, Delgado-Pulido S, Mittelbrunn M. Mitochondria during T cell aging. Semin Immunol 2023; 69:101808. [PMID: 37473558 DOI: 10.1016/j.smim.2023.101808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of aging that contributes to inflammaging. It is characterized by alterations of the mitochondrial DNA, reduced respiratory capacity, decreased mitochondrial membrane potential and increased reactive oxygen species production. These primary alterations disrupt other interconnected and important mitochondrial-related processes such as metabolism, mitochondrial dynamics and biogenesis, mitophagy, calcium homeostasis or apoptosis. In this review, we gather the current knowledge about the different mitochondrial processes which are altered during aging, with special focus on their contribution to age-associated T cell dysfunction and inflammaging.
Collapse
Affiliation(s)
- Jose Ignacio Escrig-Larena
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sandra Delgado-Pulido
- Departamento de Biología Molecular, Facultad de Ciencias (UAM), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
13
|
Gómez-Morón Á, Requena S, Pertusa C, Lozano-Prieto M, Calzada-Fraile D, Scagnetti C, Sánchez-García I, Calero-García AA, Izquierdo M, Martín-Cófreces NB. End-binding protein 1 regulates the metabolic fate of CD4 + T lymphoblasts and Jurkat T cells and the organization of the mitochondrial network. Front Immunol 2023; 14:1197289. [PMID: 37520527 PMCID: PMC10374013 DOI: 10.3389/fimmu.2023.1197289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
The organization of the mitochondrial network is relevant for the metabolic fate of T cells and their ability to respond to TCR stimulation. This arrangement depends on cytoskeleton dynamics in response to TCR and CD28 activation, which allows the polarization of the mitochondria through their change in shape, and their movement along the microtubules towards the immune synapse. This work focus on the role of End-binding protein 1 (EB1), a protein that regulates tubulin polymerization and has been previously identified as a regulator of intracellular transport of CD3-enriched vesicles. EB1-interferred cells showed defective intracellular organization and metabolic strength in activated T cells, pointing to a relevant connection of the cytoskeleton and metabolism in response to TCR stimulation, which leads to increased AICD. By unifying the organization of the tubulin cytoskeleton and mitochondria during CD4+ T cell activation, this work highlights the importance of this connection for critical cell asymmetry together with metabolic functions such as glycolysis, mitochondria respiration, and cell viability.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Immunology, Oftalmology and Otorrinolaryngology Dept., School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Silvia Requena
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Clara Pertusa
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Marta Lozano-Prieto
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Diego Calzada-Fraile
- Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III (CNIC), Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Madrid, Spain
| | - Inés Sánchez-García
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | | | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Noa B Martín-Cófreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III (CNIC), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
14
|
Bode K, Hauri-Hohl M, Jaquet V, Weyd H. Unlocking the power of NOX2: A comprehensive review on its role in immune regulation. Redox Biol 2023; 64:102795. [PMID: 37379662 DOI: 10.1016/j.redox.2023.102795] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Reactive oxygen species (ROS) are a family of highly reactive molecules with numerous, often pleiotropic functions within the cell and the organism. Due to their potential to destroy biological structures such as membranes, enzymes and organelles, ROS have long been recognized as harmful yet unavoidable by-products of cellular metabolism leading to "oxidative stress" unless counterbalanced by cellular anti-oxidative defense mechanisms. Phagocytes utilize this destructive potential of ROS released in high amounts to defend against invading pathogens. In contrast, a regulated and fine-tuned release of "signaling ROS" (sROS) provides essential intracellular second messengers to modulate central aspects of immunity, including antigen presentation, activation of antigen presenting cells (APC) as well as the APC:T cell interaction during T cell activation. This regulated release of sROS is foremost attributed to the specialized enzyme NADPH-oxidase (NOX) 2 expressed mainly in myeloid cells such as neutrophils, macrophages and dendritic cells (DC). NOX-2-derived sROS are primarily involved in immune regulation and mediate protection against autoimmunity as well as maintenance of self-tolerance. Consequently, deficiencies in NOX2 not only result in primary immune-deficiencies such as Chronic Granulomatous Disease (CGD) but also lead to auto-inflammatory diseases and autoimmunity. A comprehensive understanding of NOX2 activation and regulation will be key for successful pharmaceutical interventions of such ROS-related diseases in the future. In this review, we summarize recent progress regarding immune regulation by NOX2-derived ROS and the consequences of its deregulation on the development of immune disorders.
Collapse
Affiliation(s)
- Kevin Bode
- Section for Islet Cell & Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Mathias Hauri-Hohl
- Division of Stem Cell Transplantation, University Children's Hospital Zurich - Eleonore Foundation & Children`s Research Center (CRC), Zurich, Switzerland
| | - Vincent Jaquet
- Department of Pathology & Immunology, Centre Médical Universitaire, Rue Michel Servet 1, 1211, Genève 4, Switzerland
| | - Heiko Weyd
- Clinical Cooperation Unit Applied Tumor Immunity D120, German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Turner JA, Fredrickson MA, D'Antonio M, Katsnelson E, MacBeth M, Van Gulick R, Chimed TS, McCarter M, D'Alessandro A, Robinson WA, Couts KL, Pelanda R, Klarquist J, Tobin RP, Torres RM. Lysophosphatidic acid modulates CD8 T cell immunosurveillance and metabolism to impair anti-tumor immunity. Nat Commun 2023; 14:3214. [PMID: 37270644 PMCID: PMC10239450 DOI: 10.1038/s41467-023-38933-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/19/2023] [Indexed: 06/05/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid which increases in concentration locally and systemically across different cancer types. Yet, the exact mechanism(s) of how LPA affects CD8 T cell immunosurveillance during tumor progression remain unknown. We show LPA receptor (LPAR) signaling by CD8 T cells promotes tolerogenic states via metabolic reprogramming and potentiating exhaustive-like differentiation to modulate anti-tumor immunity. We found LPA levels predict response to immunotherapy and Lpar5 signaling promotes cellular states associated with exhausted phenotypes on CD8 T cells. Importantly, we show that Lpar5 regulates CD8 T cell respiration, proton leak, and reactive oxygen species. Together, our findings reveal that LPA serves as a lipid-regulated immune checkpoint by modulating metabolic efficiency through LPAR5 signaling on CD8 T cells. Our study offers key insights into the mechanisms governing adaptive anti-tumor immunity and demonstrates LPA could be exploited as a T cell directed therapy to improve dysfunctional anti-tumor immunity.
Collapse
Affiliation(s)
- Jacqueline A Turner
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Malia A Fredrickson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Marc D'Antonio
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Katsnelson
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Morgan MacBeth
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Robert Van Gulick
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Tugs-Saikhan Chimed
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Martin McCarter
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - William A Robinson
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Kasey L Couts
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Jared Klarquist
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Richard P Tobin
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
16
|
Acharya TK, Kumar S, Rokade TP, Chang YT, Goswami C. TRPV4 regulates mitochondrial Ca 2+-status and physiology in primary murine T cells based on their immunological state. Life Sci 2023; 318:121493. [PMID: 36764606 DOI: 10.1016/j.lfs.2023.121493] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
T cell activation process is critically affected by temperature and intracellular Ca2+-signalling. Yet, the nature and the key molecules involved in such complex Ca2+-signalling is poorly understood. It is mostly assumed that ion channels present in the plasma membrane primarily regulate the cytosolic Ca2+-levels exclusively. TRPV4 is a non-selective Ca2+ channel which can be activated at physiological temperature. TRPV4 is involved in several physiological, pathophysiological process as well as different forms of pain. Here we demonstrate that TRPV4 is endogenously expressed in T cell and is present in the mitochondria of T cells. TRPV4 activation increases mitochondrial Ca2+-levels, and alters mitochondrial temperature as well as specific metabolisms. The TRPV4-dependent increment in the mitochondrial Ca2+ is context-dependent and not just passively due to the increment in the cytosolic Ca2+. Our work also indicates that mitochondrial Ca2+-level correlates positively with a series of essential factors, such as mitochondrial membrane potential, mitochondrial ATP production and negatively correlates with certain factors such as mitochondrial temperature. We propose that TRPV4-mediated mitochondrial Ca2+-signalling and other metabolisms has implications in the immune activation process including immune synapse formation. Our data also endorse the re-evaluation of Ca2+-signalling in T cell, especially in the light of mitochondrial Ca2+-buffering and in higher body temperature, such as in case of fever. Presence of TRPV4 in the mitochondria of T cell is relevant for proper and optimum immune response and may provide evolutionary adaptive benefit. These findings may also have broad implications in different pathophysiological process, neuro-immune cross-talks, and channelopathies involving TRPV4.
Collapse
Affiliation(s)
- Tusar Kanta Acharya
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Shamit Kumar
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Tejas Pravin Rokade
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea; Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chandan Goswami
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
17
|
Wang Y, Gao S, Xu Y, Tang Z, Liu S. A mitochondrial function-related LncRNA signature predicts prognosis and immune microenvironment for breast cancer. Sci Rep 2023; 13:3918. [PMID: 36890266 PMCID: PMC9995529 DOI: 10.1038/s41598-023-30927-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
Mitochondrial function, as the core of the cell's energy metabolism, is firmly connected to cancer metabolism and growth. However, the involvement of long noncoding RNAs (lncRNAs) related to mitochondrial function in breast cancer (BRCA) has not been thoroughly investigated. As a result, the objective of this research was to dissect the prognostic implication of mitochondrial function-related lncRNAs and their link to the immunological microenvironment in BRCA. The Cancer Genome Atlas (TCGA) database was used to acquire clinicopathological and transcriptome information for BRCA samples. Mitochondrial function-related lncRNAs were recognized by coexpression analysis of 944 mitochondrial function-related mRNAs obtained from the MitoMiner 4.0 database. A novel prognostic signature was built in the training cohort using integrated analysis of mitochondrial function-related lncRNA and the corresponding clinical information through univariate analysis, lasso regression, and stepwise multivariate Cox regression analysis. The prognostic worth was judged in the training cohort and validated in the test cohort. In addition, functional enrichment and immune microenvironment analyses were performed to explore the risk score on the basis of the prognostic signature. An 8-mitochondrial function-related lncRNA signature was generated by integrated analysis. Individuals within the higher-risk category had a worse overall survival rate (OS) (training cohort: P < 0.001; validation cohort: P < 0.001; whole cohort: P < 0.001). The risk score was identified as an independent risk factor by multivariate Cox regression analysis (training cohort: HR 1.441, 95% CI 1.229-1.689, P < 0.001; validation cohort: HR 1.343, 95% CI 1.166-1.548, P < 0.001; whole cohort: HR 1.241, 95% CI 1.156-1.333, P < 0.001). Following that, the predictive accuracy of the model was confirmed by the ROC curves. In addition, nomograms were generated, and the calibration curves revealed that the model had excellent prediction accuracy for 3- and 5-year OS. Besides, the higher-risk BRCA individuals have relatively decreased amounts of infiltration of tumor-killing immune cells, lower levels of immune checkpoint molecules, and immune function. We constructed and verified a novel mitochondrial function-related lncRNA signature that might accurately predict the outcome of BRCA, play an essential role in immunotherapy, and might be exploited as a therapeutic target for precise BRCA therapy.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shun Gao
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingkun Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenrong Tang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Automated analysis of mitochondrial dimensions in mesenchymal stem cells: Current methods and future perspectives. Heliyon 2023; 9:e12987. [PMID: 36711314 PMCID: PMC9873686 DOI: 10.1016/j.heliyon.2023.e12987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
As centre of energy production and key regulators of metabolic and cellular signaling pathways, the integrity of mitochondria is essential for mesenchymal stem cell function in tissue regeneration. Alterations in the size, shape and structural organization of mitochondria are correlated with the physiological state of the cell and its environment and could be used as diagnostic biomarkers. Therefore, high-throughput experimental and computational techniques are crucial to ensure adequate correlations between mitochondrial function and disease phenotypes. The emerge of microfluidic technologies can address the shortcomings of traditional methods to determine mitochondrial dimensions for diagnostic and therapeutic use. This review discusses optical detection methods compatible with microfluidics to measure mitochondrial dynamics and their potential for clinical stem cell research targeting mitochondrial dysfunction.
Collapse
|
19
|
Han S, Georgiev P, Ringel AE, Sharpe AH, Haigis MC. Age-associated remodeling of T cell immunity and metabolism. Cell Metab 2023; 35:36-55. [PMID: 36473467 PMCID: PMC10799654 DOI: 10.1016/j.cmet.2022.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Aging results in remodeling of T cell immunity and is associated with poor clinical outcomes in age-related diseases such as cancer. Among the hallmarks of aging, changes in host and cellular metabolism critically affect the development, maintenance, and function of T cells. Although metabolic perturbations impact anti-tumor T cell responses, the link between age-associated metabolic dysfunction and anti-tumor immunity remains unclear. In this review, we summarize recent advances in our understanding of aged T cell metabolism, with a focus on the bioenergetic and immunologic features of T cell subsets unique to the aging process. We also survey insights into mechanisms of metabolic T cell dysfunction in aging and discuss the impacts of aging on the efficacy of cancer immunotherapy. As the average life expectancy continues to increase, understanding the interplay between age-related metabolic reprogramming and maladaptive T cell immunity will be instrumental for the development of therapeutic strategies for older patients.
Collapse
Affiliation(s)
- SeongJun Han
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alison E Ringel
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Shi L, Lim JY, Kam LC. Substrate stiffness enhances human regulatory T cell induction and metabolism. Biomaterials 2023; 292:121928. [PMID: 36455488 PMCID: PMC9772289 DOI: 10.1016/j.biomaterials.2022.121928] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Regulatory T cells (Tregs) provide an essential tolerance mechanism to suppress the immune response. Induced Tregs hold the potential to treat autoimmune diseases in adoptive therapy and can be produced with stimulating signals to CD3 and CD28 in presence of the cytokine TGF-β and IL-2. This report examines the modulation of human Treg induction by leveraging the ability of T cells to sense the mechanical stiffness of an activating substrate. Treg induction on polyacrylamide gels (PA-gels) was sensitive to the substrate's elastic modulus, increasing with greater material stiffness. Single-cell RNA-Seq analysis revealed that Treg induction on stiffer substrates involved greater use of oxidative phosphorylation (OXPHOS). Inhibition of ATP synthase significantly reduced the rate of Treg induction and abrogated the difference among gels while activation of AMPK (AMP-activated protein kinase) increased Treg induction on the softer sample but not on the harder sample. Treg induction is thus mechanosensitive and OXPHOS-dependent, providing new strategies for improving the production of these cells for cellular immunotherapy.
Collapse
Affiliation(s)
- Lingting Shi
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY, 10027, USA
| | - Jee Yoon Lim
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY, 10027, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY, 10027, USA.
| |
Collapse
|
21
|
Emrich SM, Yoast RE, Fike AJ, Bricker KN, Xin P, Zhang X, Rahman ZSM, Trebak M. The mitochondrial sodium/calcium exchanger NCLX (Slc8b1) in B lymphocytes. Cell Calcium 2022; 108:102667. [PMID: 36308855 DOI: 10.1016/j.ceca.2022.102667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/20/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023]
Abstract
Antigen receptor stimulation triggers cytosolic Ca2+ signals, which activate transcriptional and metabolic programs critical for immune function. B-cell receptor (BCR) engagement causes rapid cytosolic Ca2+ rise through the ubiquitous store-operated calcium entry (SOCE) pathway. Slc8b1, which encodes the mitochondrial Na+/Ca2+ exchanger (NCLX), extrudes Ca2+ out of the mitochondria and maintains optimal SOCE activity. Inhibition of NCLX in DT40 and A20 B lymphocyte lines was recently shown to impair cytosolic Ca2+ transients in response to antigen-receptor stimulation, however the downstream functional consequences of this impairment remain unclear. Here, we generated Slc8b1 knockout A20 B-cell lines using CRISPR/Cas9 technology and B-cell specific Slc8b1 knockout mice. Surprisingly, while loss of Slc8b1 in B lymphocytes led to reduction in SOCE, it had a marginal effect on mitochondrial Ca2+ extrusion, suggesting that NCLX is not the major mitochondrial Ca2+ extrusion mechanism in B cells. Furthermore, endoplasmic reticulum (ER) Ca2+ content and rates of ER depletion and refilling remained unaltered in Slc8b1 knockout B cells. Slc8b1 deficiency increased mitochondrial production of oxidants, reduced mitochondrial bioenergetics and altered mitochondrial ultrastructure. B-cell specific Slc8b1 knockout mice showed reduced germinal center B cell responses following foreign antigen and pathogen driven immune responses. Our studies provide novel insights into the function of Slc8b1 in germinal center B cells and its contribution to B-cell signaling and effector function.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Adam J Fike
- Department of Microbiology and Immunology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Kristen N Bricker
- Department of Microbiology and Immunology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ping Xin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA.
| |
Collapse
|
22
|
Zhang L, Zhang W, Li Z, Lin S, Zheng T, Hao B, Hou Y, Zhang Y, Wang K, Qin C, Yue L, Jin J, Li M, Fan L. Mitochondria dysfunction in CD8+ T cells as an important contributing factor for cancer development and a potential target for cancer treatment: a review. J Exp Clin Cancer Res 2022; 41:227. [PMID: 35864520 PMCID: PMC9306053 DOI: 10.1186/s13046-022-02439-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022] Open
Abstract
CD8+ T cells play a central role in anti-tumor immunity. Naïve CD8+ T cells are active upon tumor antigen stimulation, and then differentiate into functional cells and migrate towards the tumor sites. Activated CD8+ T cells can directly destroy tumor cells by releasing perforin and granzymes and inducing apoptosis mediated by the death ligand/death receptor. They also secrete cytokines to regulate the immune system against tumor cells. Mitochondria are the central hub of metabolism and signaling, required for polarization, and migration of CD8+ T cells. Many studies have demonstrated that mitochondrial dysfunction impairs the anti-tumor activity of CD8+ T cells through various pathways. Mitochondrial energy metabolism maladjustment will cause a cellular energy crisis in CD8+ T cells. Abnormally high levels of mitochondrial reactive oxygen species will damage the integrity and architecture of biofilms of CD8+ T cells. Disordered mitochondrial dynamics will affect the mitochondrial number and localization within cells, further affecting the function of CD8+ T cells. Increased mitochondria-mediated intrinsic apoptosis will decrease the lifespan and quantity of CD8+ T cells. Excessively low mitochondrial membrane potential will cause the release of cytochrome c and apoptosis of CD8+ T cells, while excessively high will exacerbate oxidative stress. Dysregulation of mitochondrial Ca2+ signaling will affect various physiological pathways in CD8+ T cells. To some extent, mitochondrial abnormality in CD8+ T cells contributes to cancer development. So far, targeting mitochondrial energy metabolism, mitochondrial dynamics, mitochondria-mediated cell apoptosis, and other mitochondrial physiological processes to rebuild the anti-tumor function of CD8+ T cells has proved effective in some cancer models. Thus, mitochondria in CD8+ T cells may be a potential and powerful target for cancer treatment in the future.
Collapse
|
23
|
Solomon T, Rajendran M, Rostovtseva T, Hool L. How cytoskeletal proteins regulate mitochondrial energetics in cell physiology and diseases. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210324. [PMID: 36189806 PMCID: PMC9527905 DOI: 10.1098/rstb.2021.0324] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mitochondria are ubiquitous organelles that play a pivotal role in the supply of energy through the production of adenosine triphosphate in all eukaryotic cells. The importance of mitochondria in cells is demonstrated in the poor survival outcomes observed in patients with defects in mitochondrial gene or RNA expression. Studies have identified that mitochondria are influenced by the cell's cytoskeletal environment. This is evident in pathological conditions such as cardiomyopathy where the cytoskeleton is in disarray and leads to alterations in mitochondrial oxygen consumption and electron transport. In cancer, reorganization of the actin cytoskeleton is critical for trans-differentiation of epithelial-like cells into motile mesenchymal-like cells that promotes cancer progression. The cytoskeleton is critical to the shape and elongation of neurons, facilitating communication during development and nerve signalling. Although it is recognized that cytoskeletal proteins physically tether mitochondria, it is not well understood how cytoskeletal proteins alter mitochondrial function. Since end-stage disease frequently involves poor energy production, understanding the role of the cytoskeleton in the progression of chronic pathology may enable the development of therapeutics to improve energy production and consumption and slow disease progression. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Tanya Solomon
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Megha Rajendran
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tatiana Rostovtseva
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Livia Hool
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Lee H, Jeon JH, Lee YJ, Kim MJ, Kwon WH, Chanda D, Thoudam T, Pagire HS, Pagire SH, Ahn JH, Harris RA, Kim ES, Lee IK. Inhibition of Pyruvate Dehydrogenase Kinase 4 in CD4 + T Cells Ameliorates Intestinal Inflammation. Cell Mol Gastroenterol Hepatol 2022; 15:439-461. [PMID: 36229019 PMCID: PMC9791136 DOI: 10.1016/j.jcmgh.2022.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Despite recent evidence supporting the metabolic plasticity of CD4+ T cells, it is uncertain whether the metabolic checkpoint pyruvate dehydrogenase kinase (PDK) in T cells plays a role in the pathogenesis of colitis. METHODS To investigate the role of PDK4 in colitis, we used dextran sulfate sodium (DSS)-induced colitis and T-cell transfer colitis models based on mice with constitutive knockout (KO) or CD4+ T-cell-specific KO of PDK4 (Pdk4fl/flCD4Cre). The effect of PDK4 deletion on T-cell activation was also studied in vitro. Furthermore, we examined the effects of a pharmacologic inhibitor of PDK4 on colitis. RESULTS Expression of PDK4 increased during colitis development in a DSS-induced colitis model. Phosphorylated PDHE1α, a substrate of PDK4, accumulated in CD4+ T cells in the lamina propria of patients with inflammatory bowel disease. Both constitutive KO and CD4+ T-cell-specific deletion of PDK4 delayed DSS-induced colitis. Adoptive transfer of PDK4-deficient CD4+ T cells attenuated murine colitis, and PDK4 deficiency resulted in decreased activation of CD4+ T cells and attenuated aerobic glycolysis. Mechanistically, there were fewer endoplasmic reticulum-mitochondria contact sites, which are responsible for interorganelle calcium transfer, in PDK4-deficient CD4+ T cells. Consistent with this, GM-10395, a novel inhibitor of PDK4, suppressed T-cell activation by reducing endoplasmic reticulum-mitochondria calcium transfer, thereby ameliorating murine colitis. CONCLUSIONS PDK4 deletion from CD4+ T cells mitigates colitis by metabolic and calcium signaling modulation, suggesting PDK4 as a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Yu-Jeong Lee
- Cell & Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Jin Kim
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Woong Hee Kwon
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Dipanjan Chanda
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Haushabhau S. Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Suvarna H. Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Robert A. Harris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea,Correspondence Address correspondence to: Eun Soo Kim, MD, PhD, Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, Republic of Korea 41944. fax: +82-53-200-5879.
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea,In-Kyu Lee, MD, PhD, Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, Republic of Korea 41944.
| |
Collapse
|
25
|
P2 Receptors: Novel Disease Markers and Metabolic Checkpoints in Immune Cells. Biomolecules 2022; 12:biom12070983. [PMID: 35883539 PMCID: PMC9313346 DOI: 10.3390/biom12070983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Extracellular ATP (eATP) and P2 receptors are novel emerging regulators of T-lymphocyte responses. Cellular ATP is released via multiple pathways and accumulates at sites of tissue damage and inflammation. P2 receptor expression and function are affected by numerous single nucleotide polymorphisms (SNPs) associated with diverse disease conditions. Stimulation by released nucleotides (purinergic signalling) modulates several T-lymphocyte functions, among which energy metabolism. Energy metabolism, whether oxidative or glycolytic, in turn deeply affects T-cell activation, differentiation and effector responses. Specific P2R subtypes, among which the P2X7 receptor (P2X7R), are either up- or down-regulated during T-cell activation and differentiation; thus, they can be considered indexes of activation/quiescence, reporters of T-cell metabolic status and, in principle, markers of immune-mediated disease conditions.
Collapse
|
26
|
Harbauer AB, Schneider A, Wohlleber D. Analysis of Mitochondria by Single-Organelle Resolution. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:1-16. [PMID: 35303775 DOI: 10.1146/annurev-anchem-061020-111722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cellular organelles are highly specialized compartments with distinct functions. With the increasing resolution of detection methods, it is becoming clearer that same organelles may have different functions or properties not only within different cell populations of a tissue but also within the same cell. Dysfunction or altered function affects the organelle itself and may also lead to malignancies or undesirable cell death. To understand cellular function or dysfunction, it is therefore necessary to analyze cellular components at the single-organelle level. Here, we review the recent advances in analyzing cellular function at single-organelle resolution using high-parameter flow cytometry or multicolor confocal microscopy. We focus on the analysis of mitochondria, as they are organelles at the crossroads of various cellular signaling pathways and functions. However, most of the applied methods/technologies are transferable to any other organelle, such as the endoplasmic reticulum, lysosomes, or peroxisomes.
Collapse
Affiliation(s)
- Angelika B Harbauer
- Max Planck Institute of Neurobiology, Martinsried, Germany;
- Institute of Neuronal Cell Biology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Annika Schneider
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany; ,
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany; ,
| |
Collapse
|
27
|
Song J, Yi X, Gao R, Sun L, Wu Z, Zhang S, Huang L, Han C, Ma J. Impact of Drp1-Mediated Mitochondrial Dynamics on T Cell Immune Modulation. Front Immunol 2022; 13:873834. [PMID: 35432303 PMCID: PMC9008543 DOI: 10.3389/fimmu.2022.873834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, various breakthroughs have been made in tumor immunotherapy that have contributed to prolonging the survival of tumor patients. However, only a subset of patients respond to immunotherapy, which limits its use. One reason for this is that the tumor microenvironment (TME) hinders the migration and infiltration of T cells and affects their continuous functioning, resulting in an exhausted phenotype. Therefore, clarifying the mechanism by which T cells become exhausted is of significance for improving the efficacy of immunotherapy. Several recent studies have shown that mitochondrial dynamics play an important role in the immune surveillance function of T cells. Dynamin-related protein 1 (Drp1) is a key protein that mediates mitochondrial fission and maintains the mitochondrial dynamic network. Drp1 regulates various activities of T cells in vivo by mediating the activation of a series of pathways. In addition, abnormal mitochondrial dynamics were observed in exhausted T cells in the TME. As a potential target for immunotherapy, in this review, we describe in detail how Drp1 regulates various physiological functions of T cells and induces changes in mitochondrial dynamics in the TME, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Jun Song
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaofang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruolin Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhixuan Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Letian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chengbo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jietao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Huang Y, Si X, Shao M, Teng X, Xiao G, Huang H. Rewiring mitochondrial metabolism to counteract exhaustion of CAR-T cells. J Hematol Oncol 2022; 15:38. [PMID: 35346311 PMCID: PMC8960222 DOI: 10.1186/s13045-022-01255-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Short persistence and early exhaustion of T cells are major limits to the efficacy and broad application of immunotherapy. Exhausted T and chimeric antigen receptor (CAR)-T cells upregulate expression of genes associated with terminated T cell differentiation, aerobic glycolysis and apoptosis. Among cell exhaustion characteristics, impaired mitochondrial function and dynamics are considered hallmarks. Here, we review the mitochondrial characteristics of exhausted T cells and particularly discuss different aspects of mitochondrial metabolism and plasticity. Furthermore, we propose a novel strategy of rewiring mitochondrial metabolism to emancipate T cells from exhaustion and of targeting mitochondrial plasticity to boost CAR-T cell therapy efficacy.
Collapse
Affiliation(s)
- Yue Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xiaohui Si
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mi Shao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Gang Xiao
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China. .,Institute of Immunology, Zhejiang University, Hangzhou, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
29
|
Cassioli C, Baldari CT. Lymphocyte Polarization During Immune Synapse Assembly: Centrosomal Actin Joins the Game. Front Immunol 2022; 13:830835. [PMID: 35222415 PMCID: PMC8873515 DOI: 10.3389/fimmu.2022.830835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Interactions among immune cells are essential for the development of adaptive immune responses. The immunological synapse (IS) provides a specialized platform for integration of signals and intercellular communication between T lymphocytes and antigen presenting cells (APCs). In the T cell the reorganization of surface molecules at the synaptic interface is initiated by T cell receptor binding to a cognate peptide-major histocompatibility complex on the APC surface and is accompanied by a polarized remodelling of the cytoskeleton and centrosome reorientation to a subsynaptic position. Although there is a general agreement on polarizing signals and mechanisms driving centrosome reorientation during IS assembly, the primary events that prepare for centrosome repositioning remain largely unexplored. It has been recently shown that in resting lymphocytes a local polymerization of filamentous actin (F-actin) at the centrosome contributes to anchoring this organelle to the nucleus. During early stages of IS formation centrosomal F-actin undergoes depletion, allowing for centrosome detachment from the nucleus and its polarization towards the synaptic membrane. We recently demonstrated that in CD4+ T cells the reduction in centrosomal F-actin relies on the activity of a centrosome-associated proteasome and implicated the ciliopathy-related Bardet-Biedl syndrome 1 protein in the dynein-dependent recruitment of the proteasome 19S regulatory subunit to the centrosome. In this short review we will feature our recent findings that collectively provide a new function for BBS proteins and the proteasome in actin dynamics, centrosome polarization and T cell activation.
Collapse
|
30
|
Madan S, Uttekar B, Chowdhary S, Rikhy R. Mitochondria Lead the Way: Mitochondrial Dynamics and Function in Cellular Movements in Development and Disease. Front Cell Dev Biol 2022; 9:781933. [PMID: 35186947 PMCID: PMC8848284 DOI: 10.3389/fcell.2021.781933] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
The dynamics, distribution and activity of subcellular organelles are integral to regulating cell shape changes during various physiological processes such as epithelial cell formation, cell migration and morphogenesis. Mitochondria are famously known as the powerhouse of the cell and play an important role in buffering calcium, releasing reactive oxygen species and key metabolites for various activities in a eukaryotic cell. Mitochondrial dynamics and morphology changes regulate these functions and their regulation is, in turn, crucial for various morphogenetic processes. In this review, we evaluate recent literature which highlights the role of mitochondrial morphology and activity during cell shape changes in epithelial cell formation, cell division, cell migration and tissue morphogenesis during organism development and in disease. In general, we find that mitochondrial shape is regulated for their distribution or translocation to the sites of active cell shape dynamics or morphogenesis. Often, key metabolites released locally and molecules buffered by mitochondria play crucial roles in regulating signaling pathways that motivate changes in cell shape, mitochondrial shape and mitochondrial activity. We conclude that mechanistic analysis of interactions between mitochondrial morphology, activity, signaling pathways and cell shape changes across the various cell and animal-based model systems holds the key to deciphering the common principles for this interaction.
Collapse
|
31
|
Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 2022; 55:14-30. [PMID: 35021054 PMCID: PMC8842882 DOI: 10.1016/j.immuni.2021.12.012] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
Abstract
Adaptive immune responses mediated by T cells and B cells are crucial for protective immunity against pathogens and tumors. Differentiation and function of immune cells require dynamic reprogramming of cellular metabolism. Metabolic inputs, pathways, and enzymes display remarkable flexibility and heterogeneity, especially in vivo. How metabolic plasticity and adaptation dictate functional specialization of immune cells is fundamental to our understanding and therapeutic modulation of the immune system. Extensive progress has been made in characterizing the effects of metabolic networks on immune cell fate and function in discrete microenvironments or immunological contexts. In this review, we summarize how rewiring of cellular metabolism determines the outcome of adaptive immunity in vivo, with a focus on how metabolites, nutrients, and driver genes in immunometabolism instruct cellular programming and immune responses during infection, inflammation, and cancer in mice and humans. Understanding context-dependent metabolic remodeling will manifest legitimate opportunities for therapeutic intervention of human disease.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
32
|
Wu H, Brand B, Eckstein M, Hochrein SM, Shumanska M, Dudek J, Nickel A, Maack C, Bogeski I, Vaeth M. Genetic Ablation of the Mitochondrial Calcium Uniporter (MCU) Does not Impair T Cell-Mediated Immunity In Vivo. Front Pharmacol 2022; 12:734078. [PMID: 34987384 PMCID: PMC8721163 DOI: 10.3389/fphar.2021.734078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
T cell activation and differentiation is associated with metabolic reprogramming to cope with the increased bioenergetic demand and to provide metabolic intermediates for the biosynthesis of building blocks. Antigen receptor stimulation not only promotes the metabolic switch of lymphocytes but also triggers the uptake of calcium (Ca2+) from the cytosol into the mitochondrial matrix. Whether mitochondrial Ca2+ influx through the mitochondrial Ca2+ uniporter (MCU) controls T cell metabolism and effector function remained, however, enigmatic. Using mice with T cell-specific deletion of MCU, we here show that genetic inactivation of mitochondrial Ca2+ uptake increased cytosolic Ca2+ levels following antigen receptor stimulation and store-operated Ca2+ entry (SOCE). However, ablation of MCU and the elevation of cytosolic Ca2+ did not affect mitochondrial respiration, differentiation and effector function of inflammatory and regulatory T cell subsets in vitro and in animal models of T cell-mediated autoimmunity and viral infection. These data suggest that MCU-mediated mitochondrial Ca2+ uptake is largely dispensable for murine T cell function. Our study has also important technical implications. Previous studies relied mostly on pharmacological inhibition or transient knockdown of mitochondrial Ca2+ uptake, but our results using mice with genetic deletion of MCU did not recapitulate these findings. The discrepancy of our study to previous reports hint at compensatory mechanisms in MCU-deficient mice and/or off-target effects of current MCU inhibitors.
Collapse
Affiliation(s)
- Hao Wu
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Benjamin Brand
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Miriam Eckstein
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sophia M Hochrein
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Magdalena Shumanska
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
33
|
SantaCruz-Calvo S, Bharath L, Pugh G, SantaCruz-Calvo L, Lenin RR, Lutshumba J, Liu R, Bachstetter AD, Zhu B, Nikolajczyk BS. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat Rev Endocrinol 2022; 18:23-42. [PMID: 34703027 PMCID: PMC11005058 DOI: 10.1038/s41574-021-00575-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are increasing in prevalence owing to decreases in physical activity levels and a shift to diets that include addictive and/or high-calorie foods. These changes are associated with the adoption of modern lifestyles and the presence of an obesogenic environment, which have resulted in alterations to metabolism, adaptive immunity and endocrine regulation. The size and quality of adipose tissue depots in obesity, including the adipose tissue immune compartment, are critical determinants of overall health. In obesity, chronic low-grade inflammation can occur in adipose tissue that can progress to systemic inflammation; this inflammation contributes to the development of insulin resistance, T2DM and other comorbidities. An improved understanding of adaptive immune cell dysregulation that occurs during obesity and its associated metabolic comorbidities, with an appreciation of sex differences, will be critical for repurposing or developing immunomodulatory therapies to treat obesity and/or T2DM-associated inflammation. This Review critically discusses how activation and metabolic reprogramming of lymphocytes, that is, T cells and B cells, triggers the onset, development and progression of obesity and T2DM. We also consider the role of immunity in under-appreciated comorbidities of obesity and/or T2DM, such as oral cavity inflammation, neuroinflammation in Alzheimer disease and gut microbiome dysbiosis. Finally, we discuss previous clinical trials of anti-inflammatory medications in T2DM and consider the path forward.
Collapse
Affiliation(s)
- Sara SantaCruz-Calvo
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA.
| | - Leena Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, USA
| | - Gabriella Pugh
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Lucia SantaCruz-Calvo
- Department of Chemistry and Food Technology, Technical University of Madrid, Madrid, Spain
| | - Raji Rajesh Lenin
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Jenny Lutshumba
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Beibei Zhu
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
34
|
Otano I, Azpilikueta A, Glez-Vaz J, Alvarez M, Medina-Echeverz J, Cortés-Domínguez I, Ortiz-de-Solorzano C, Ellmark P, Fritzell S, Hernandez-Hoyos G, Nelson MH, Ochoa MC, Bolaños E, Cuculescu D, Jaúregui P, Sanchez-Gregorio S, Etxeberria I, Rodriguez-Ruiz ME, Sanmamed MF, Teijeira Á, Berraondo P, Melero I. CD137 (4-1BB) costimulation of CD8 + T cells is more potent when provided in cis than in trans with respect to CD3-TCR stimulation. Nat Commun 2021; 12:7296. [PMID: 34911975 PMCID: PMC8674279 DOI: 10.1038/s41467-021-27613-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
CD137 (4-1BB; TNFSR9) is an activation-induced surface receptor that through costimulation effects provide antigen-primed T cells with augmented survival, proliferation and effector functions as well as metabolic advantages. These immunobiological mechanisms are being utilised for cancer immunotherapy with agonist CD137-binding and crosslinking-inducing agents that elicit CD137 intracellular signaling. In this study, side-by-side comparisons show that provision of CD137 costimulation in-cis with regard to the TCR-CD3-ligating cell is superior to that provided in-trans in terms of T cell activation, proliferation, survival, cytokine secretion and mitochondrial fitness in mouse and human. Cis ligation of CD137 relative to the TCR-CD3 complex results in more intense canonical and non-canonical NF-κB signaling and provides a more robust induction of cell cycle and DNA damage repair gene expression programs. Here we report that the superiority of cis versus trans CD137-costimulation is readily observed in vivo and is relevant for understanding the immunotherapeutic effects of CAR T cells and CD137 agonistic therapies currently undergoing clinical trials, which may provide costimulation either in cis or in trans.
Collapse
Affiliation(s)
- Itziar Otano
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre/ Spanish National Cancer Research Center (CNIO), Madrid, Spain.
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain.
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | | | - Ivan Cortés-Domínguez
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Program of Solid Tumours, Cima Universidad de Navarra, Pamplona, Spain
| | - Carlos Ortiz-de-Solorzano
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Program of Solid Tumours, Cima Universidad de Navarra, Pamplona, Spain
| | - Peter Ellmark
- Alligator Bioscience, Lund, Sweden
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | | | | | - María Carmen Ochoa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Elixabet Bolaños
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Doina Cuculescu
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Patricia Jaúregui
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sandra Sanchez-Gregorio
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - María E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Radiation Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre/ Spanish National Cancer Research Center (CNIO), Madrid, Spain.
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain.
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
35
|
Davis LC, Morgan AJ, Galione A. Acidic Ca 2+ stores and immune-cell function. Cell Calcium 2021; 101:102516. [PMID: 34922066 DOI: 10.1016/j.ceca.2021.102516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022]
Abstract
Acidic organelles act as intracellular Ca2+ stores; they actively sequester Ca2+ in their lumina and release it to the cytosol upon activation of endo-lysosomal Ca2+ channels. Recent data suggest important roles of endo-lysosomal Ca2+ channels, the Two-Pore Channels (TPCs) and the TRPML channels (mucolipins), in different aspects of immune-cell function, particularly impacting membrane trafficking, vesicle fusion/fission and secretion. Remarkably, different channels on the same acidic vesicles can couple to different downstream physiology. Endo-lysosomal Ca2+ stores can act under different modalities, be they acting alone (via local Ca2+ nanodomains around TPCs/TRPMLs) or in conjunction with the ER Ca2+ store (to either promote or suppress global ER Ca2+ release). These different modalities impinge upon functions as broad as phagocytosis, cell-killing, anaphylaxis, immune memory, thrombostasis, and chemotaxis.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
36
|
ROS Pleiotropy in Melanoma and Local Therapy with Physical Modalities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6816214. [PMID: 34777692 PMCID: PMC8580636 DOI: 10.1155/2021/6816214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Metabolic energy production naturally generates unwanted products such as reactive oxygen species (ROS), causing oxidative damage. Oxidative damage has been linked to several pathologies, including diabetes, premature aging, neurodegenerative diseases, and cancer. ROS were therefore originally anticipated as an imperative evil, a product of an imperfect system. More recently, however, the role of ROS in signaling and tumor treatment is increasingly acknowledged. This review addresses the main types, sources, and pathways of ROS in melanoma by linking their pleiotropic roles in antioxidant and oxidant regulation, hypoxia, metabolism, and cell death. In addition, the implications of ROS in various physical therapy modalities targeting melanoma, such as radiotherapy, electrochemotherapy, hyperthermia, photodynamic therapy, and medical gas plasma, are also discussed. By including ROS in the main picture of melanoma skin cancer and as an integral part of cancer therapies, a greater understanding of melanoma cell biology is presented, which ultimately may elucidate additional clues on targeting therapy resistance of this most deadly form of skin cancer.
Collapse
|
37
|
Ding X, Yan D, Zhang X, Liu B, Zhu G. Metabolomics Analysis of the Effect of GAT-2 Deficiency on Th1 Cells in Mice. J Proteome Res 2021; 20:5054-5063. [PMID: 34647753 DOI: 10.1021/acs.jproteome.1c00601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The classic neurotransmitter γ-aminobutyric acid (GABA) has been shown to shape the activation and function of immune cells. There are four high-affinity GABA transporters (GATs, including GAT-1, GAT-2, GAT-3, and GAT-4) responsible for the transmembrane transport of GABA in mice. To explore the effect of GAT-2 on type 1 helper T (Th1) cells, naïve CD4+ T cells were isolated from splenocytes of GAT-2 knockout (KO) and wild-type (WT) mice and cultured for Th1 cell differentiation, and then, metabolomics analysis of Th1 cells was performed via gas chromatography coupled to time-of-flight mass spectrometry added with multivariate analyses. Based on the variable importance projection value > 1 and P < 0.05, a total of nine differentially expressed metabolites (DEMs) were identified between WT and KO. Then, DEMs were mapped to the KEGG database, and five metabolic pathways were significantly enriched, including the cysteine and methionine metabolism, the riboflavin metabolism, the purine metabolism, the glycerolipid metabolism, and the glycerophospholipid metabolism. Collectively, our metabolomics analysis revealed that deficiency of GAT-2 influenced the metabolomics profile of Th1 cells, which will provide insights into T cell response to GAT-2 deficiency in mice. Data are available via MetaboLights with identifier MTBLS3358.
Collapse
Affiliation(s)
- Xueyan Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Dong Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaojie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Baobao Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
38
|
Kuwabara T, Ishikawa F, Ikeda M, Ide T, Kohwi-Shigematsu T, Tanaka Y, Kondo M. SATB1-dependent mitochondrial ROS production controls TCR signaling in CD4 T cells. Life Sci Alliance 2021; 4:4/11/e202101093. [PMID: 34583974 PMCID: PMC8500228 DOI: 10.26508/lsa.202101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022] Open
Abstract
SATB1 regulates mitochondrial function and reactive oxygen species (ROS) production through the expression of mitochondrial transcription factor A. SATB1-mediated ROS production is necessary for TCR stimulation and T-cell function. Special AT-rich sequence binding protein-1 (SATB1) is localized to the nucleus and remodels chromatin structure in T cells. SATB1-deficient CD4 T cells cannot respond to TCR stimulation; however, the cause of this unresponsiveness is to be clarified. Here, we demonstrate that SATB1 is indispensable to proper mitochondrial functioning and necessary for the activation of signal cascades via the TCR in CD4 T cells. Naïve SATB1-deficient CD4 T cells contain fewer mitochondria than WT T cells, as the former do not express mitochondrial transcription factor A (TFAM). Impaired mitochondrial function in SATB1-deficient T cells subverts mitochondrial ROS production and SHP-1 inactivation by constitutive oxidization. Ectopic TFAM expression increases mitochondrial mass and mitochondrial ROS production and rescues defects in the antigen-specific response in the SATB1-deficient T cells. Thus, SATB1 is vital for maintaining mitochondrial mass and function by regulating TFAM expression, which is necessary for TCR signaling.
Collapse
Affiliation(s)
- Taku Kuwabara
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo, Japan
| | - Fumio Ishikawa
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo, Japan.,Faculty of Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Terumi Kohwi-Shigematsu
- Department of Orofacial Science, University of California San Francisco School of Dentistry, San Francisco, CA, USA
| | - Yuriko Tanaka
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo, Japan
| | - Motonari Kondo
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Holthaus L, Sharma V, Brandt D, Ziegler AG, Jastroch M, Bonifacio E. Functional and metabolic fitness of human CD4 + T lymphocytes during metabolic stress. Life Sci Alliance 2021; 4:4/12/e202101013. [PMID: 34580176 PMCID: PMC8500231 DOI: 10.26508/lsa.202101013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Human T-cell activation, expansion, and effector function is grossly impaired in conditions that combine glucose deprivation and mild mitochondrial stress. Human CD4+ T cells are essential mediators of immune responses. By altering the mitochondrial and metabolic states, we defined metabolic requirements of human CD4+ T cells for in vitro activation, expansion, and effector function. T-cell activation and proliferation were reduced by inhibiting oxidative phosphorylation, whereas early cytokine production was maintained by either OXPHOS or glycolytic activity. Glucose deprivation in the presence of mild mitochondrial stress markedly reduced all three T-cell functions, contrasting the exposure to resveratrol, an antioxidant and sirtuin-1 activator, which specifically inhibited cytokine production and T-cell proliferation, but not T-cell activation. Conditions that inhibited T-cell activation were associated with the down-regulation of 2′,5′-oligoadenylate synthetase genes via interferon response pathways. Our findings indicate that T-cell function is grossly impaired by stressors combined with nutrient deprivation, suggesting that correcting nutrient availability, metabolic stress, and/or the function of T cells in these conditions will improve the efficacy of T-cell–based therapies.
Collapse
Affiliation(s)
- Lisa Holthaus
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Virag Sharma
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine of TU Dresden, Dresden, Germany
| | - Daniel Brandt
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ezio Bonifacio
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany .,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine of TU Dresden, Dresden, Germany
| |
Collapse
|
40
|
Nan J, Li J, Lin Y, Saif Ur Rahman M, Li Z, Zhu L. The interplay between mitochondria and store-operated Ca 2+ entry: Emerging insights into cardiac diseases. J Cell Mol Med 2021; 25:9496-9512. [PMID: 34564947 PMCID: PMC8505841 DOI: 10.1111/jcmm.16941] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Store‐operated Ca2+ entry (SOCE) machinery, including Orai channels, TRPCs, and STIM1, is key to cellular calcium homeostasis. The following characteristics of mitochondria are involved in the physiological and pathological regulation of cells: mitochondria mediate calcium uptake through calcium uniporters; mitochondria are regulated by mitochondrial dynamic related proteins (OPA1, MFN1/2, and DRP1) and form mitochondrial networks through continuous fission and fusion; mitochondria supply NADH to the electron transport chain through the Krebs cycle to produce ATP; under stress, mitochondria will produce excessive reactive oxygen species to regulate mitochondria‐endoplasmic reticulum interactions and the related signalling pathways. Both SOCE and mitochondria play critical roles in mediating cardiac hypertrophy, diabetic cardiomyopathy, and cardiac ischaemia‐reperfusion injury. All the mitochondrial characteristics mentioned above are determinants of SOCE activity, and vice versa. Ca2+ signalling dictates the reciprocal regulation between mitochondria and SOCE under the specific pathological conditions of cardiomyocytes. The coupling of mitochondria and SOCE is essential for various pathophysiological processes in the heart. Herein, we review the research focussing on the reciprocal regulation between mitochondria and SOCE and provide potential interplay patterns in cardiac diseases.
Collapse
Affiliation(s)
- Jinliang Nan
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| | - Jiamin Li
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| | - Yinuo Lin
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Muhammad Saif Ur Rahman
- Zhejiang University-University of Edinburgh Biomedical Institute, Haining, Zhejiang, China.,Clinical Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengzheng Li
- Department of Neurology, Research Institute of Experimental Neurobiology, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Lingjun Zhu
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| |
Collapse
|
41
|
Yoast RE, Emrich SM, Zhang X, Xin P, Arige V, Pathak T, Benson JC, Johnson MT, Abdelnaby AE, Lakomski N, Hempel N, Han JM, Dupont G, Yule DI, Sneyd J, Trebak M. The Mitochondrial Ca 2+ uniporter is a central regulator of interorganellar Ca 2+ transfer and NFAT activation. J Biol Chem 2021; 297:101174. [PMID: 34499925 PMCID: PMC8496184 DOI: 10.1016/j.jbc.2021.101174] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial Ca2+ uptake tailors the strength of stimulation of plasma membrane phospholipase C–coupled receptors to that of cellular bioenergetics. However, how Ca2+ uptake by the mitochondrial Ca2+ uniporter (MCU) shapes receptor-evoked interorganellar Ca2+ signaling is unknown. Here, we used CRISPR/Cas9 gene knockout, subcellular Ca2+ imaging, and mathematical modeling to show that MCU is a universal regulator of intracellular Ca2+ signaling across mammalian cell types. MCU activity sustains cytosolic Ca2+ signaling by preventing Ca2+-dependent inactivation of store-operated Ca2+ release–activated Ca2+ channels and by inhibiting Ca2+ extrusion. Paradoxically, MCU knockout (MCU-KO) enhanced cytosolic Ca2+ responses to store depletion. Physiological agonist stimulation in MCU-KO cells led to enhanced frequency of cytosolic Ca2+ oscillations, endoplasmic reticulum Ca2+ refilling, nuclear translocation of nuclear factor for activated T cells transcription factors, and cell proliferation, without altering inositol-1,4,5-trisphosphate receptor activity. Our data show that MCU has dual counterbalancing functions at the cytosol–mitochondria interface, whereby the cell-specific MCU-dependent cytosolic Ca2+ clearance and buffering capacity of mitochondria reciprocally regulate interorganellar Ca2+ transfer and nuclear factor for activated T cells nuclear translocation during receptor-evoked signaling. These findings highlight the critical dual function of the MCU not only in the acute Ca2+ buffering by mitochondria but also in shaping endoplasmic reticulum and cytosolic Ca2+ signals that regulate cellular transcription and function.
Collapse
Affiliation(s)
- Ryan E Yoast
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Scott M Emrich
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Ping Xin
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Trayambak Pathak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - J Cory Benson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Martin T Johnson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Ahmed Emam Abdelnaby
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Natalia Lakomski
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Nadine Hempel
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jung Min Han
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique, Université Libre de Bruxelles, Brussels, Belgium
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - James Sneyd
- Department of Mathematics, The University of Auckland, Auckland, New Zealand
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
42
|
Ivko OM, Drobintseva AO, Leont’eva DO, Kvetnoy IM, Polyakova VO, Linkova NS. Influence of AEDG and KE Peptides on Mitochondrial Staining and the Expression of Ribosomal Protein L7A with Aging of the Human Pineal Gland and Thymus Cell In Vitro. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Cervantes‐Silva MP, Cox SL, Curtis AM. Alterations in mitochondrial morphology as a key driver of immunity and host defence. EMBO Rep 2021; 22:e53086. [PMID: 34337844 PMCID: PMC8447557 DOI: 10.15252/embr.202153086] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are dynamic organelles whose architecture changes depending on the cell's energy requirements and other signalling events. These structural changes are collectively known as mitochondrial dynamics. Mitochondrial dynamics are crucial for cellular functions such as differentiation, energy production and cell death. Importantly, it has become clear in recent years that mitochondrial dynamics are a critical control point for immune cell function. Mitochondrial remodelling allows quiescent immune cells to rapidly change their metabolism and become activated, producing mediators, such as cytokines, chemokines and even metabolites to execute an effective immune response. The importance of mitochondrial dynamics in immunity is evident, as numerous pathogens have evolved mechanisms to manipulate host cell mitochondrial remodelling in order to promote their own survival. In this review, we comprehensively address the roles of mitochondrial dynamics in immune cell function, along with modulation of host cell mitochondrial morphology during viral and bacterial infections to facilitate either pathogen survival or host immunity. We also speculate on what the future may hold in terms of therapies targeting mitochondrial morphology for bacterial and viral control.
Collapse
Affiliation(s)
- Mariana P Cervantes‐Silva
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research GroupRoyal College of Surgeons in IrelandDublinIreland
| | - Shannon L Cox
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research GroupRoyal College of Surgeons in IrelandDublinIreland
| | - Annie M Curtis
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research GroupRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
44
|
Zhao M, Quintana A, Zhang C, Andreyev AY, Kiosses W, Kuwana T, Murphy A, Hogan PG, Kronenberg M. Calcium signals regulate the functional differentiation of thymic iNKT cells. EMBO J 2021; 40:e107901. [PMID: 34169542 PMCID: PMC8365263 DOI: 10.15252/embj.2021107901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
How natural or innate-like lymphocytes generate the capacity to produce IL-4 and other cytokines characteristic of type 2 immunity remains unknown. Invariant natural killer T (iNKT) cells differentiate in the thymus into NKT1, NKT2, and NKT17 subsets, similar to mature, peripheral CD4+ T helper cells. The mechanism for this differentiation was not fully understood. Here, we show that NKT2 cells required higher and prolonged calcium (Ca2+ ) signals and continuing activity of the calcium release-activated calcium (CRAC) channel, than their NKT1 counterparts. The sustained Ca2+ entry via CRAC pathway in NKT2 cells was apparently mediated by ORAI and controlled in part by the large mitochondrial Ca2+ uptake. Unique properties of mitochondria in NKT2 cells, including high activity of oxidative phosphorylation, may regulate mitochondrial Ca2+ buffering in NKT2 cells. In addition, the low Ca2+ extrusion rate may also contribute to the higher Ca2+ level in NKT2 cells. Altogether, we identified ORAI-dependent Ca2+ signaling connected with mitochondria and cellular metabolism, as a central regulatory pathway for the differentiation of NKT2 cells.
Collapse
Affiliation(s)
- Meng Zhao
- Division of Developmental ImmunologyLa Jolla Institute for ImmunologyLa JollaCAUSA
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Ariel Quintana
- Division of Signaling and Gene ExpressionLa Jolla Institute for ImmunologyLa JollaCAUSA
- Translational Science DivisionClinical Science DepartmentMoffitt Cancer Center Magnolia CampusTampaFLUSA
| | - Chen Zhang
- Division of Signaling and Gene ExpressionLa Jolla Institute for ImmunologyLa JollaCAUSA
| | | | - William Kiosses
- Core MicroscopyLa Jolla Institute for ImmunologyLa JollaCAUSA
| | - Tomomi Kuwana
- Division of Immune RegulationLa Jolla Institute for ImmunologyLa JollaCAUSA
| | | | - Patrick G Hogan
- Division of Signaling and Gene ExpressionLa Jolla Institute for ImmunologyLa JollaCAUSA
- Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Mitchell Kronenberg
- Division of Developmental ImmunologyLa Jolla Institute for ImmunologyLa JollaCAUSA
- Division of Biological SciencesUniversity of California, San DiegoLa JollaCAUSA
| |
Collapse
|
45
|
Dupré L, Boztug K, Pfajfer L. Actin Dynamics at the T Cell Synapse as Revealed by Immune-Related Actinopathies. Front Cell Dev Biol 2021; 9:665519. [PMID: 34249918 PMCID: PMC8266300 DOI: 10.3389/fcell.2021.665519] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The actin cytoskeleton is composed of dynamic filament networks that build adaptable local architectures to sustain nearly all cellular activities in response to a myriad of stimuli. Although the function of numerous players that tune actin remodeling is known, the coordinated molecular orchestration of the actin cytoskeleton to guide cellular decisions is still ill defined. T lymphocytes provide a prototypical example of how a complex program of actin cytoskeleton remodeling sustains the spatio-temporal control of key cellular activities, namely antigen scanning and sensing, as well as polarized delivery of effector molecules, via the immunological synapse. We here review the unique knowledge on actin dynamics at the T lymphocyte synapse gained through the study of primary immunodeficiences caused by mutations in genes encoding actin regulatory proteins. Beyond the specific roles of individual actin remodelers, we further develop the view that these operate in a coordinated manner and are an integral part of multiple signaling pathways in T lymphocytes.
Collapse
Affiliation(s)
- Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
46
|
Almeida L, Dhillon-LaBrooy A, Carriche G, Berod L, Sparwasser T. CD4 + T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria. J Allergy Clin Immunol 2021; 148:16-32. [PMID: 33966898 DOI: 10.1016/j.jaci.2021.03.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
The progression through different steps of T-cell development, activation, and effector function is tightly bound to specific cellular metabolic processes. Previous studies established that T-effector cells have a metabolic bias toward aerobic glycolysis, whereas naive and regulatory T cells mainly rely on oxidative phosphorylation. More recently, the field of immunometabolism has drifted away from the notion that mitochondrial metabolism holds little importance in T-cell activation and function. Of note, T cells possess metabolic promiscuity, which allows them to adapt their nutritional requirements according to the tissue environment. Altogether, the integration of these metabolic pathways culminates in the generation of not only energy but also intermediates, which can regulate epigenetic programs, leading to changes in T-cell fate. In this review, we discuss the recent literature on how glycolysis, amino acid catabolism, and fatty acid oxidation work together with the tricarboxylic acid cycle in the mitochondrion. We also emphasize the importance of the electron transport chain for T-cell immunity. We also discuss novel findings highlighting the role of key enzymes, accessory pathways, and posttranslational protein modifications that distinctively regulate T-cell function and might represent prominent candidates for therapeutic purposes.
Collapse
Affiliation(s)
- Luís Almeida
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Ayesha Dhillon-LaBrooy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Guilhermina Carriche
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Luciana Berod
- Institute for Molecular Medicine Mainz, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
47
|
Zak A, Merino-Cortés SV, Sadoun A, Mustapha F, Babataheri A, Dogniaux S, Dupré-Crochet S, Hudik E, He HT, Barakat AI, Carrasco YR, Hamon Y, Puech PH, Hivroz C, Nüsse O, Husson J. Rapid viscoelastic changes are a hallmark of early leukocyte activation. Biophys J 2021; 120:1692-1704. [PMID: 33730552 PMCID: PMC8204340 DOI: 10.1016/j.bpj.2021.02.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/23/2020] [Accepted: 02/23/2021] [Indexed: 11/27/2022] Open
Abstract
To accomplish their critical task of removing infected cells and fighting pathogens, leukocytes activate by forming specialized interfaces with other cells. The physics of this key immunological process are poorly understood, but it is important to understand them because leukocytes have been shown to react to their mechanical environment. Using an innovative micropipette rheometer, we show in three different types of leukocytes that, when stimulated by microbeads mimicking target cells, leukocytes become up to 10 times stiffer and more viscous. These mechanical changes start within seconds after contact and evolve rapidly over minutes. Remarkably, leukocyte elastic and viscous properties evolve in parallel, preserving a well-defined ratio that constitutes a mechanical signature specific to each cell type. Our results indicate that simultaneously tracking both elastic and viscous properties during an active cell process provides a new, to our knowledge, way to investigate cell mechanical processes. Our findings also suggest that dynamic immunomechanical measurements can help discriminate between leukocyte subtypes during activation.
Collapse
Affiliation(s)
- Alexandra Zak
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | | | - Anaïs Sadoun
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France
| | - Farah Mustapha
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France; Centre Interdisciplinaire de Nanoscience de Marseille, CNRS, Aix-Marseille University, Marseille, France
| | - Avin Babataheri
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Stéphanie Dogniaux
- Integrative analysis of T cell activation team, Institut Curie-PSL Research University, INSERM U932, Paris, France
| | - Sophie Dupré-Crochet
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Elodie Hudik
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Hai-Tao He
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Yolanda R Carrasco
- B Lymphocyte Dynamics Laboratory, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Yannick Hamon
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Pierre-Henri Puech
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France
| | - Claire Hivroz
- Integrative analysis of T cell activation team, Institut Curie-PSL Research University, INSERM U932, Paris, France
| | - Oliver Nüsse
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Julien Husson
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
48
|
Metabolic Modulation of Immunity: A New Concept in Cancer Immunotherapy. Cell Rep 2021; 32:107848. [PMID: 32640218 DOI: 10.1016/j.celrep.2020.107848] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/22/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy shifted the paradigm of cancer treatment. The clinical approval of immune checkpoint blockade and adoptive cell transfer led to considerable success in several tumor types. However, for a significant number of patients, these therapies have proven ineffective. Growing evidence shows that the metabolic requirements of immune cells in the tumor microenvironment (TME) greatly influence the success of immunotherapy. It is well established that the TME influences energy consumption and metabolic reprogramming of immune cells, often inducing them to become tolerogenic and inefficient in cancer cell eradication. Increasing nutrient availability using pharmacological modulators of metabolism or antibodies targeting specific immune receptors are strategies that support energetic rewiring of immune cells and boost their anti-tumor capacity. In this review, we describe the metabolic features of the diverse immune cell types in the context of the TME and discuss how these immunomodulatory strategies could synergize with immunotherapy to circumvent its current limitations.
Collapse
|
49
|
Abstract
Recent evidence supports the notion that mitochondrial metabolism is necessary for T cell activation, proliferation, and function. Mitochondrial metabolism supports T cell anabolism by providing key metabolites for macromolecule synthesis and generating metabolites for T cell function. In this review, we focus on how mitochondrial metabolism controls conventional and regulatory T cell fates and function.
Collapse
Affiliation(s)
- Elizabeth M Steinert
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| | - Karthik Vasan
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| |
Collapse
|
50
|
Abstract
Mitochondria are multifunctional organelles that not only produce energy for the cell, but are also important for cell signalling, apoptosis and many biosynthetic pathways. In most cell types, they form highly dynamic networks that are constantly remodelled through fission and fusion events, repositioned by motor-dependent transport and degraded when they become dysfunctional. Motor proteins and their tracks are key regulators of mitochondrial homeostasis, and in this Review, we discuss the diverse functions of the three classes of motor proteins associated with mitochondria - the actin-based myosins, as well as the microtubule-based kinesins and dynein. In addition, Miro and TRAK proteins act as adaptors that link kinesin-1 and dynein, as well as myosin of class XIX (MYO19), to mitochondria and coordinate microtubule- and actin-based motor activities. Here, we highlight the roles of motor proteins and motor-linked track dynamics in the transporting and docking of mitochondria, and emphasize their adaptations in specialized cells. Finally, we discuss how motor-cargo complexes mediate changes in mitochondrial morphology through fission and fusion, and how they modulate the turnover of damaged organelles via quality control pathways, such as mitophagy. Understanding the importance of motor proteins for mitochondrial homeostasis will help to elucidate the molecular basis of a number of human diseases.
Collapse
Affiliation(s)
- Antonina J Kruppa
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|