1
|
Brandner S. Rodent models of tumours of the central nervous system. Mol Oncol 2024; 18:2842-2870. [PMID: 39324445 PMCID: PMC11619804 DOI: 10.1002/1878-0261.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Foundation TrustLondonUK
| |
Collapse
|
2
|
Lu H, Ai J, Zheng Y, Zhou W, Zhang L, Zhu J, Zhang H, Wang S. IGFBP2/ITGA5 promotes gefitinib resistance via activating STAT3/CXCL1 axis in non-small cell lung cancer. Cell Death Dis 2024; 15:447. [PMID: 38918360 PMCID: PMC11199710 DOI: 10.1038/s41419-024-06843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
There is a paucity of comprehensive knowledge pertaining to the underlying mechanisms leading to gefitinib resistance in individuals diagnosed NSCLC harboring EGFR-sensitive mutations who inevitably develop resistance to gefitinib treatment within six months to one year. In our preceding investigations, we have noted a marked upregulation of IGFBP2 in the neoplastic tissues of NSCLC, predominantly in the periphery of the tissue, implying its plausible significance in NSCLC. Consequently, in the current research, we delved into the matter and ascertained the molecular mechanisms that underlie the participation of IGFBP2 in the emergence of gefitinib resistance in NSCLC cells. Firstly, the expression of IGFBP2 in the bronchoalveolar lavage fluid and lung cancer tissues of 20 NSCLC patients with gefitinib tolerance was found to be significantly higher than that of non-tolerant patients. Furthermore, in vitro and in vivo experiments demonstrated that IGFBP2 plays a significant role in the acquisition of gefitinib resistance. Mechanistically, IGFBP2 can activate STAT3 to enhance the transcriptional activity of CXCL1, thereby increasing the intracellular expression level of CXCL1, which contributes to the survival of lung cancer cells in the gefitinib environment. Additionally, we identified ITGA5 as a key player in IGFBP2-mediated gefitinib resistance, but it does not function as a membrane receptor in the process of linking IGFBP2 to intracellular signaling transduction. In conclusion, this study demonstrates the promoting role and mechanism of IGFBP2 in acquired gefitinib resistance caused by non-EGFR secondary mutations, suggesting the potential of IGFBP2 as a biomarker for gefitinib resistance and a potential intervention target.
Collapse
Affiliation(s)
- Hengxiao Lu
- Department of Thoracic Surgery, Weifang People's Hospital, Shandong Second Medical University, Weifang, 261041, Shandong Province, China
| | - Jiangshan Ai
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Yingying Zheng
- Health Management Center, Weifang People's Hospital, Shandong Second Medical University, Weifang, 261041, Shandong Province, China
| | - Wolong Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Liming Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong Province, China
| | - Jiebo Zhu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Heng Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan Province, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan Province, China.
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Weifang People's Hospital, Shandong Second Medical University, Weifang, 261041, Shandong Province, China.
- Department of Scientific Research Management, Weifang People's Hospital, Shandong Second Medical University, Weifang, 261041, Shandong Province, China.
| |
Collapse
|
3
|
Kunhiraman H, McSwain L, Shahab SW, Gershon TR, MacDonald TJ, Kenney AM. IGFBP2 promotes proliferation and cell migration through STAT3 signaling in Sonic hedgehog medulloblastoma. Acta Neuropathol Commun 2023; 11:62. [PMID: 37029430 PMCID: PMC10082504 DOI: 10.1186/s40478-023-01557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/25/2023] [Indexed: 04/09/2023] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain malignancy and is divided into four molecularly distinct subgroups: WNT, Sonic Hedgehog (SHHp53mut and SHHp53wt), Group 3, and Group 4. Previous reports suggest that SHH MB features a unique tumor microenvironment compared with other MB groups. To better understand how SHH MB tumor cells interact with and potentially modify their microenvironment, we performed cytokine array analysis of culture media from freshly isolated MB patient tumor cells, spontaneous SHH MB mouse tumor cells and mouse and human MB cell lines. We found that the SHH MB cells produced elevated levels of IGFBP2 compared to non-SHH MBs. We confirmed these results using ELISA, western blotting, and immunofluorescence staining. IGFBP2 is a pleiotropic member of the IGFBP super-family with secreted and intracellular functions that can modulate tumor cell proliferation, metastasis, and drug resistance, but has been understudied in medulloblastoma. We found that IGFBP2 is required for SHH MB cell proliferation, colony formation, and cell migration, through promoting STAT3 activation and upregulation of epithelial to mesenchymal transition markers; indeed, ectopic STAT3 expression fully compensated for IGFBP2 knockdown in wound healing assays. Taken together, our findings reveal novel roles for IGFBP2 in SHH medulloblastoma growth and metastasis, which is associated with very poor prognosis, and they indicate an IGFBP2-STAT3 axis that could represent a novel therapeutic target in medulloblastoma.
Collapse
Affiliation(s)
- Haritha Kunhiraman
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Leon McSwain
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Shubin W Shahab
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Timothy R Gershon
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Anna Marie Kenney
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Shi S, Zhong J, Peng W, Yin H, Zhong D, Cui H, Sun X. System analysis based on the migration- and invasion-related gene sets identifies the infiltration-related genes of glioma. Front Oncol 2023; 13:1075716. [PMID: 37091145 PMCID: PMC10117932 DOI: 10.3389/fonc.2023.1075716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
The current database has no information on the infiltration of glioma samples. Here, we assessed the glioma samples' infiltration in The Cancer Gene Atlas (TCGA) through the single-sample Gene Set Enrichment Analysis (ssGSEA) with migration and invasion gene sets. The Weighted Gene Co-expression Network Analysis (WGCNA) and the differentially expressed genes (DEGs) were used to identify the genes most associated with infiltration. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the major biological processes and pathways. Protein-protein interaction (PPI) network analysis and the least absolute shrinkage and selection operator (LASSO) were used to screen the key genes. Furthermore, the nomograms and receiver operating characteristic (ROC) curve were used to evaluate the prognostic and predictive accuracy of this clinical model in patients in TCGA and the Chinese Glioma Genome Atlas (CGGA). The results showed that turquoise was selected as the hub module, and with the intersection of DEGs, we screened 104 common genes. Through LASSO regression, TIMP1, EMP3, IGFBP2, and the other nine genes were screened mostly in correlation with infiltration and prognosis. EMP3 was selected to be verified in vitro. These findings could help researchers better understand the infiltration of gliomas and provide novel therapeutic targets for the treatment of gliomas.
Collapse
Affiliation(s)
- Shuang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiacheng Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Haoyang Yin
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
circSMARCA5 Is an Upstream Regulator of the Expression of miR-126-3p, miR-515-5p, and Their mRNA Targets, Insulin-like Growth Factor Binding Protein 2 ( IGFBP2) and NRAS Proto-Oncogene, GTPase ( NRAS) in Glioblastoma. Int J Mol Sci 2022; 23:ijms232213676. [PMID: 36430152 PMCID: PMC9690846 DOI: 10.3390/ijms232213676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022] Open
Abstract
The involvement of non-coding RNAs (ncRNAs) in glioblastoma multiforme (GBM) pathogenesis and progression has been ascertained but their cross-talk within GBM cells remains elusive. We previously demonstrated the role of circSMARCA5 as a tumor suppressor (TS) in GBM. In this paper, we explore the involvement of circSMARCA5 in the control of microRNA (miRNA) expression in GBM. By using TaqMan® low-density arrays, the expression of 748 miRNAs was assayed in U87MG overexpressing circSMARCA5. Differentially expressed (DE) miRNAs were validated through single TaqMan® assays in: (i) U87MG overexpressing circSMARCA5; (ii) four additional GBM cell lines (A172; CAS-1; SNB-19; U251MG); (iii) thirty-eight GBM biopsies; (iv) twenty biopsies of unaffected brain parenchyma (UC). Validated targets of DE miRNAs were selected from the databases TarBase and miRTarbase, and the literature; their expression was inferred from the GBM TCGA dataset. Expression was assayed in U87MG overexpressing circSMARCA5, GBM cell lines, and biopsies through real-time PCR. TS miRNAs 126-3p and 515-5p were upregulated following circSMARCA5 overexpression in U87MG and their expression was positively correlated with that of circSMARCA5 (r-values = 0.49 and 0.50, p-values = 9 × 10-5 and 7 × 10-5, respectively) in GBM biopsies. Among targets, IGFBP2 (target of miR-126-3p) and NRAS (target of miR-515-5p) mRNAs were positively correlated (r-value = 0.46, p-value = 0.00027), while their expression was negatively correlated with that of circSMARCA5 (r-values = -0.58 and -0.30, p-values = 0 and 0.019, respectively), miR-126-3p (r-value = -0.36, p-value = 0.0066), and miR-515-5p (r-value = -0.34, p-value = 0.010), respectively. Our data identified a new GBM subnetwork controlled by circSMARCA5, which regulates downstream miRNAs 126-3p and 515-5p, and their mRNA targets IGFBP2 and NRAS.
Collapse
|
6
|
Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D, Baranowska-Bosiacka I. Epidemiology of Glioblastoma Multiforme-Literature Review. Cancers (Basel) 2022; 14:2412. [PMID: 35626018 PMCID: PMC9139611 DOI: 10.3390/cancers14102412] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive malignancies, with a median overall survival of approximately 15 months. In this review, we analyze the pathogenesis of GBM, as well as epidemiological data, by age, gender, and tumor location. The data indicate that GBM is the higher-grade primary brain tumor and is significantly more common in men. The risk of being diagnosed with glioma increases with age, and median survival remains low, despite medical advances. In addition, it is difficult to determine clearly how GBM is influenced by stimulants, certain medications (e.g., NSAIDs), cell phone use, and exposure to heavy metals.
Collapse
Affiliation(s)
- Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Anna Maria Cybulska
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska 48 St., 71-210 Szczecin, Poland
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 St., 71-281 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| |
Collapse
|
7
|
Ho KH, Shih CM, Liu AJ, Chen KC. Hypoxia-inducible lncRNA MIR210HG interacting with OCT1 is involved in glioblastoma multiforme malignancy. Cancer Sci 2021; 113:540-552. [PMID: 34897892 PMCID: PMC8819343 DOI: 10.1111/cas.15240] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/07/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
An insufficient oxygen supply within the intratumoral environment, also known as hypoxia, induces glioblastoma multiforme (GBM) invasion, stemness, and temozolomide (TMZ) drug resistance. Long noncoding (lnc)RNAs have been reported to be involved in hypoxia and GBM progression. However, their roles in hypoxic GBM malignancy are still unclear. We investigated the mechanisms of hypoxia-mediated lncRNAs in regulating GBM processes. Using The Cancer Genome Atlas (TCGA) and data mining, hypoxia-correlated lncRNAs were identified. A hypoxia-upregulated lncRNA, MIR210HG, locating in nuclear regions, predicted poor prognoses of patients and modulated hypoxia-promoted glioma stemness, TMZ resistance, and invasion. Depletion of hypoxic MIR210HG suppressed GBM and patient-derived cell growth and increased TMZ sensitivity in vitro and vivo. Using RNA sequencing and gene set enrichment analysis (GSEA), MIR210HG-upregulated genes significantly belonged to the targets of octamer transcription factor 1 (OCT1) transcription factor. The direct interaction between OCT1 and MIR210HG was also validated. Two well-established worse prognostic factors of GBM, insulin-like growth factor-binding protein 2 (IGFBP2) and fibroblast growth factor receptor 1 (FGFR1), were identified as downstream targets of OCT1 through MIR210HG mediation in hypoxia. Consequently, the lncRNA MIR210HG is upregulated by hypoxia and interacts with OCT1 for modulating hypoxic GBM, leading to poor prognoses. These findings might provide a better understanding in functions of hypoxia/MIR210HG signaling for regulating GBM malignancy.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Ahn S, Han K, Lee JE, Jeun SS, Park YM, Joo W, Yang SH. Association between height and the risk of primary brain malignancy in adults: a nationwide population-based cohort study. Neurooncol Adv 2021; 3:vdab098. [PMID: 34738083 PMCID: PMC8562729 DOI: 10.1093/noajnl/vdab098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background The association between height and the risk of developing primary brain malignancy remains unclear. We evaluated the association between height and risk of primary brain malignancy based on a nationwide population-based database of Koreans. Methods Using data from the Korean National Health Insurance System cohort, 6 833 744 people over 20 years of age that underwent regular national health examination were followed from January 2009 until the end of 2017. We documented 4771 cases of primary brain malignancy based on an ICD-10 code of C71 during the median follow-up period of 7.30 years and 49 877 983 person-years. Results When dividing the population into quartiles of height for each age group and sex, people within the highest height quartile had a significantly higher risk of brain malignancy, compared to those within the lowest height quartile (HR 1.21 CI 1.18–1.32) after adjusting for potential confounders. We also found that the risk of primary brain malignancy increased in proportion with the quartile increase in height. After analyzing subgroups based on older age (≥ 65) and sex, we found positive relationships between height and primary brain malignancy in all subgroups. Conclusions This study is the first to suggest that height is associated with an increased risk of primary brain malignancy in the East-Asian population. Further prospective and larger studies with precise designs are needed to validate our findings.
Collapse
Affiliation(s)
- Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Jung Eun Lee
- Department of Epidemiology, Branch, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong Moon Park
- Department of Epidemiology, Branch, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Wonil Joo
- Department of Neurosurgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
9
|
Wang J, Chen Y, Zeng Z, Feng R, Wang Q, Zhang Q, Sun K, Chen AF, Lu Y, Yu Y. HMGA2 contributes to vascular development and sprouting angiogenesis by promoting IGFBP2 production. Exp Cell Res 2021; 408:112831. [PMID: 34547256 DOI: 10.1016/j.yexcr.2021.112831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/28/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Angiogenesis is the process by which new blood vessels form from preexisting vessels and regulates the processes of embryonic development, wound healing and tumorigenesis. HMGA2 is involved in the occurrence of several cancers, but its biological role and the exact downstream genes involved in vascular development and sprouting angiogenesis remain largely unknown. Here, we first found that HMGA2 knockdown in zebrafish embryos resulted in defects of central artery formation. RNA sequencing revealed that IGFBP2 was significantly downregulated by interference with HMGA2, and IGFBP2 overexpression reversed the inhibition of brain vascular development caused by HMGA2 deficiency. In vitro, we further found that HMGA2 knockdown blocked the migration, tube formation and branching of HUVECs. Similarly, IGFBP2 protein overexpression attenuated the impairments induced by HMGA2 deficiency. Moreover, the promotion of angiogenesis by HMGA2 overexpression was verified in a Matrigel plug assay. We next found that HMGA2 bound directly to a region in the IGFBP2 promoter and positively regulated IGFBP2 expression. Interestingly, the mRNA expression levels of HMGA2 and IGFBP2 were increased significantly in the peripheral blood of hemangioma patients, indicating that overexpression of HMGA2 and IGFBP2 results in vessel formation, consistent with the results of the in vivo and in vitro experiments. In summary, our findings demonstrate that HMGA2 promotes central artery formation by modulating angiogenesis via IGFBP2 induction.
Collapse
Affiliation(s)
- Jing Wang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Shanghai Children Medicine Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yinghui Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Zhaoxiang Zeng
- Department of Vascular Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Rui Feng
- Department of Vascular Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Qing Wang
- Department of Traditional Chinese Medicine, Xinhua Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Qi Zhang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Kun Sun
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yanan Lu
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Yu Yu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
10
|
Iuliani M, Simonetti S, Pantano F, Ribelli G, Di Martino A, Denaro V, Vincenzi B, Russo A, Tonini G, Santini D. Antitumor Effect of Cabozantinib in Bone Metastatic Models of Renal Cell Carcinoma. BIOLOGY 2021; 10:781. [PMID: 34440012 PMCID: PMC8389553 DOI: 10.3390/biology10080781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The presence of bone metastases in renal cell carcinoma (RCC) negatively affects patients' survival. Data from clinical trials has highlighted a significant benefit of cabozantinib in bone metastatic RCC patients. Here, we evaluated the antitumor effect of cabozantinib in coculture models of renal cell carcinoma (RCC) and osteoblasts (OBs) to investigate whether and how its antiproliferative activity is influenced by OBs. METHODS Bone/RCC models were generated, coculturing green fluorescent protein (GFP)-tagged Caki-1 and 786-O cells with human primary OBs in a "cell-cell contact" system. RCC proliferation and the OB molecular profile were evaluated after the cabozantinib treatment. RESULTS The Caki-1 cell proliferation increased in the presence of OBs (p < 0.0001), while the 786-O cell growth did not change in the coculture with the OBs. The cabozantinib treatment reduced the proliferation of both the Caki-1 (p < 0.0001) and 786-O (p = 0.03) cells cocultured with OBs. Intriguingly, the inhibitory potency of cabozantinib was higher when Caki-1 cells grew in presence of OBs compared to a monoculture (p < 0.001), and this was similar in 786-O cells alone or cocultured with OBs. Moreover, the OB pretreatment with cabozantinib "indirectly" inhibited Caki-1 cell proliferation (p = 0.040) without affecting 786-O cell growth. Finally, we found that cabozantinib was able to modulate the OB gene and molecular profile inhibiting specific proliferative signals that, in turn, could affect RCC cell growth. CONCLUSIONS Overall, the "direct" effect of cabozantinib on OBs "indirectly" increased its antitumor activity in metastatic RCC Caki-1 cells but not in the primary 786-O model.
Collapse
Affiliation(s)
- Michele Iuliani
- Department of Medical Oncology, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (M.I.); (S.S.); (G.R.); (B.V.); (G.T.); (D.S.)
| | - Sonia Simonetti
- Department of Medical Oncology, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (M.I.); (S.S.); (G.R.); (B.V.); (G.T.); (D.S.)
| | - Francesco Pantano
- Department of Medical Oncology, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (M.I.); (S.S.); (G.R.); (B.V.); (G.T.); (D.S.)
| | - Giulia Ribelli
- Department of Medical Oncology, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (M.I.); (S.S.); (G.R.); (B.V.); (G.T.); (D.S.)
| | - Alberto Di Martino
- Department of Biomedical and Neurimotor Sciences (DIBINEM), 1st Orthopaedic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40126 Bologna, Italy;
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
| | - Bruno Vincenzi
- Department of Medical Oncology, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (M.I.); (S.S.); (G.R.); (B.V.); (G.T.); (D.S.)
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90133 Palermo, Italy;
| | - Giuseppe Tonini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (M.I.); (S.S.); (G.R.); (B.V.); (G.T.); (D.S.)
| | - Daniele Santini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (M.I.); (S.S.); (G.R.); (B.V.); (G.T.); (D.S.)
| |
Collapse
|
11
|
Xiao G, Zhang X, Zhang X, Chen Y, Xia Z, Cao H, Huang J, Cheng Q. Aging-related genes are potential prognostic biomarkers for patients with gliomas. Aging (Albany NY) 2021; 13:13239-13263. [PMID: 33946049 PMCID: PMC8148480 DOI: 10.18632/aging.203008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/04/2021] [Indexed: 04/25/2023]
Abstract
Aging has a significant role in the proliferation and development of cancers. This study explored the expression profiles, prognostic value, and potential roles of aging-related genes in gliomas. We designed risk score and cluster models based on aging-related genes and glioma cases using LASSO Cox regression analysis, consensus clustering analysis and univariate cox regression analyses. High risk score was related to malignant clinical features and poor prognosis based on 10 datasets, 2953 cases altogether. Genetic alterations analysis revealed that high risk scores were associated with genomic aberrations of aging-related oncogenes. GSVA analysis exhibited the potential function of the aging-related genes. More immune cell infiltration was found in high-risk group cases, and glioma patients in high-risk group may be more responsive to immunotherapy. Knock-down of CTSC, an aging-related gene, can inhibit cell cycle progression, colony formation, cell proliferation and increase cell senescence in glioma cell lines in vitro. Indeed, high expression of CTSC was associated with poor prognosis in glioma cases. In conclusion, this study revealed that aging-related genes have prognostic potential for glioma patients and further identified potential mechanisms for aging-related genes in tumorigenesis and progression in gliomas.
Collapse
Affiliation(s)
- Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
| | - Xiangyang Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
| | - Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha, Hunan, China
| | - Hui Cao
- Department of Psychiatry, The Second People’s Hospital of Hunan Province, Hunan, China
- The Hospital of Hunan University of Chinese Medicine, Hunan, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| |
Collapse
|
12
|
Luo Z, Liu W, Sun P, Wang F, Feng X. Pan-cancer analyses reveal regulation and clinical outcome association of the shelterin complex in cancer. Brief Bioinform 2021; 22:6120315. [PMID: 33497432 DOI: 10.1093/bib/bbaa441] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Shelterin, a protective complex at telomeres, plays essential roles in cancer. In addition to maintain telomere integrity, shelterin functions in various survival pathways. However, the detailed mechanisms of shelterin regulation in cancer remain elusive. Here, we perform a comprehensive analysis of shelterin in 9125 tumor samples across 33 cancer types using multi-omic data from The Cancer Genome Atlas, and validate some findings in Chinese Glioma Genome Atlas and cancer cell lines from Cancer Cell Line Encyclopedia. In the genomic landscape, we identify the amplification of TRF1 and POT1, co-amplification/deletion of TRF2-RAP1-TPP1 as the dominant alteration events. Clustering analysis based on shelterin expression reveals three cancer clusters with different degree of genome instability. To measure overall shelterin activity in cancer, we derive a shelterin score based on shelterin expression. Pathway analysis shows shelterin is positively correlated with E2F targets, while is negatively correlated with p53 pathway. Importantly, shelterin links to tumor immunity and predicts response to PD-1 blockade immune therapy. In-depth miRNA analysis reveals a miRNA-shelterin interaction network, with p53 regulated miRNAs targeting multiple shelterin components. We also identify a significant amount of lncRNAs regulating shelterin expression. In addition, we find shelterin expression could be used to predict patient survival in 24 cancer types. Finally, by mining the connective map database, we discover a number of potential drugs that might target shelterin. In summary, this study provides broad molecular signatures for further functional and therapeutic studies of shelterin, and also represents a systemic approach to characterize key protein complex in cancer.
Collapse
Affiliation(s)
- Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Weijin Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Panpan Sun
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Feng Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xuyang Feng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
13
|
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood mesenchymal tumor with two major molecular and histopathologic subtypes: fusion-positive (FP)RMS, characterized by the PAX3-FOXO1 fusion protein and largely of alveolar histology, and fusion-negative (FN)RMS, the majority of which exhibit embryonal tumor histology. Metastatic disease continues to be associated with poor overall survival despite intensive treatment strategies. Studies on RMS biology have provided some insight into autocrine as well as paracrine signaling pathways that contribute to invasion and metastatic propensity. Such pathways include those driven by the PAX3-FOXO1 fusion oncoprotein in FPRMS and signaling pathways such as IGF/RAS/MEK/ERK, PI3K/AKT/mTOR, cMET, FGFR4, and PDGFR in both FP and FNRMS. In addition, specific cytoskeletal proteins, G protein coupled receptors, Hedgehog, Notch, Wnt, Hippo, and p53 pathways play a role, as do specific microRNA. Paracrine factors, including secreted proteins and RMS-derived exosomes that carry cargo of protein and miRNA, have also recently emerged as potentially important players in RMS biology. This review summarizes the known factors contributing to RMS invasion and metastasis and their implications on identifying targets for treatment and a better understanding of metastatic RMS.
Collapse
|
14
|
Liu X, Chen S, Zhang L. Downregulated microRNA-130b-5p prevents lipid accumulation and insulin resistance in a murine model of nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 2020; 319:E34-E42. [PMID: 32228319 DOI: 10.1152/ajpendo.00528.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) amplifies the risk of various liver diseases, ranging from simple steatosis to nonalcoholic steatohepatitis, fibrosis, and cirrhosis, and ultimately hepatocellular carcinoma. Accumulating evidence suggests the involvement of aberrant microRNAs (miRNAs or miRs) in the activation of cellular stress, inflammation, and fibrogenesis in hepatic cells at different stages of NAFLD and liver fibrosis. Here, we explored the potential role of miR-130b-5p in the pathogenesis of NAFLD, including lipid accumulation and insulin resistance, as well as the underlying mechanism. Initially, the expression of miR-130b-5p and insulin-like growth factor binding protein 2 (IGFBP2) was examined in the established high-fat diet-induced NAFLD mouse models. Then, the interaction between miR-130b-5p and IGFBP2 was validated using dual luciferase reporter assay. The effects of miR-130b-5p and IGFBP2 on lipid accumulation and insulin resistance, as well as the AKT pathway-related proteins, were evaluated using gain or loss-of-function approaches. miR-130b-5p was upregulated, and IGFBP2 was downregulated in liver tissues of NAFLD mice. miR-130b-5p targeted IGFBP2 and downregulated its expression. MiR-130b-5p inhibition or IGFBP2 overexpression reduced the expression of SREBP-1, LXRα, ChREBP, stearoyl CoA desaturase 1, acetyl CoA carboxylase 1, and fatty acid synthase, and levels of fasting blood glucose, fasting insulin, and homeostasis model assessment-insulin resistance, while increasing the ratio of p-AKT/AKT in NAFLD mice. Overall, downregulation of miR-130b-5p can prevent hepatic lipid accumulation and insulin resistance in NAFLD by activating IGFBP2-dependent AKT pathway, highlighting the potential use of anti-miR-130b-5p as therapeutic approaches for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Shuhong Chen
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Lanju Zhang
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| |
Collapse
|
15
|
Ma Y, Cui D, Zhang Y, Han CC, Wei W. Insulin-Like Growth Factor Binding Protein-2 Promotes Proliferation and Predicts Poor Prognosis in Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:5083-5092. [PMID: 32606730 PMCID: PMC7292487 DOI: 10.2147/ott.s249527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 01/16/2023] Open
Abstract
Background Insulin-like growth factor binding protein-2 (IGFBP2) levels are significantly increased in the plasma of hepatocellular carcinoma (HCC) patients. However, the correlation between IGFBP2 levels and clinical parameters and the exact role of IGFBP2 in HCC are unclear. In this study, we identified the role and potential molecular mechanisms of IGFBP2 in HCC. Materials and Methods ELISA assays were used to detect plasma IGFBP2 levels in HCC patients and healthy controls, and the correlations with patients’ clinicopathological data were analyzed. The CCK8 assay was used to explore cell proliferation. Luciferase reporter, co-immunoprecipitation, and immunofluorescence assays were used to demonstrate the molecular mechanism of IGFBP2 in HCC. Results Plasma IGFBP2 levels were determined blindly in 37 HCC patients and 37 matched healthy controls. The mean plasma IGFBP2 concentrations in HCC patients were higher than in healthy controls, and IGFBP2 levels in HCC were positively correlated with the degree of differentiation, tumor size, metastasis, and portal venous invasion. Exogenous IGFBP2 activated integrin β1 and thus induced the combination and colocalization of activated integrin β1 and p-FAK, which promoted the phosphorylation of FAK, Erk, and Elk1, eventually inducing EGR1-mediated proliferation of the HCC cell lines HepG2 and HCCLM3. Meanwhile, neutralization of integrin β1 inhibited IGFBP2-induced FAK, Erk, Elk1, and EGR1 activation. Conclusion Taken together, these results indicated that exogenous IGFBP2 promoted the integrin β1/FAK/Erk/Elk1/EGR1 pathway, which stimulated the proliferation of HCC cells. Plasma IGFBP2 could be a novel prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Yang Ma
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| | - Dongqian Cui
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| | - Chen-Chen Han
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
16
|
IGFBP2: integrative hub of developmental and oncogenic signaling network. Oncogene 2020; 39:2243-2257. [PMID: 31925333 DOI: 10.1038/s41388-020-1154-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 01/08/2023]
Abstract
Insulin-like growth factor (IGF) binding protein 2 (IGFBP2) was discovered and identified as an IGF system regulator, controlling the distribution, function, and activity of IGFs in the pericellular space. IGFBP2 is a developmentally regulated gene that is highly expressed in embryonic and fetal tissues and markedly decreases after birth. Studies over the last decades have shown that in solid tumors, IGFBP2 is upregulated and promotes several key oncogenic processes, such as epithelial-to-mesenchymal transition, cellular migration, invasion, angiogenesis, stemness, transcriptional activation, and epigenetic programming via signaling that is often independent of IGFs. Growing evidence indicates that aberrant expression of IGFBP2 in cancer acts as a hub of an oncogenic network, integrating multiple cancer signaling pathways and serving as a potential therapeutic target for cancer treatment.
Collapse
|
17
|
Liu Y, Song C, Shen F, Zhang J, Song SW. IGFBP2 promotes immunosuppression associated with its mesenchymal induction and FcγRIIB phosphorylation in glioblastoma. PLoS One 2019; 14:e0222999. [PMID: 31560714 PMCID: PMC6764691 DOI: 10.1371/journal.pone.0222999] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 11/19/2022] Open
Abstract
Immunotherapy shows a promise for treating glioblastoma (GBM), the most malignant and immunosuppressive glioma. The mesenchymal phenotype of cancer cells was frequently reported to be associated with their induction of immunosuppression within the cancer microenvironment. Overexpressed insulin-like growth factor binding protein 2 (IGFBP2) promotes GBM cell migration and invasion, and contributes to glioma progression and cancer recurrence and poor survival in GBM. However, whether IGFBP2 can induce immunosuppression in GBM was not reported yet. Thus, the study applied a syngeneic mouse GBM model, human GBM samples, and cancer-immune cell co-culture experiments to investigate the effect of IGFBP2 on GBM exposed immune cells and its association with the mesenchymal induction. We found that IGFBP2 promoted the mesenchymal feature of GBM cells. The inhibition of IGFBP2 relieved immunosuppression by increasing CD8+ T and CD19+ B cells and decreasing CD163+ M2 macrophages. Further, the IGFBP2-promoted immunosuppression was associated with its induction of the mesenchymal feature of GBM cells and the inhibitory phosphorylated FcγRIIB of GBM exposed immune cells. Blocking IGFBP2 suppressed tumor growth and improved survival of tumor bearing mice in the mouse GBM model. These findings support the notion that targeting the IGFBP2 may present an effective immunotherapeutic strategy for mesenchymal GBMs.
Collapse
Affiliation(s)
- Yunmian Liu
- Center for Brain Disorders Research, Capital Medical University, Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Beijing, People's Republic of China
| | - Chunyan Song
- Center for Brain Disorders Research, Capital Medical University, Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Beijing, People's Republic of China
| | - Faping Shen
- Center for Brain Disorders Research, Capital Medical University, Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Beijing, People's Republic of China
| | - Jing Zhang
- Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, United States of America
| | - Sonya Wei Song
- Center for Brain Disorders Research, Capital Medical University, Beijing Institute for Brain Disorders, Beijing Neurosurgical Institute, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
18
|
Dong J, Zeng Y, Zhang P, Li C, Chen Y, Li Y, Wang K. Serum IGFBP2 Level Is a New Candidate Biomarker of Severe Malnutrition in Advanced Lung Cancer. Nutr Cancer 2019; 72:858-863. [PMID: 32286106 DOI: 10.1080/01635581.2019.1656755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objectives: This study aimed to analyze and evaluate serum insulin-like growth factor-binding protein 2 (IGFBP2) levels as a new biomarker of severe malnutrition in patients with advanced lung cancer.Design and methods: This prospective study involved 59 patients with advanced lung cancer. We detected serum IGFBP2 level by using enzyme-linked immunosorbent assay and analyzed its relationship to clinical characteristics, nutritional status, Glasgow prognostic score (GPS), and survival. Serum albumin and C-reactive protein (CRP) levels were measured, and nutritional status was assessed using Patient-Generated Subjective Global Assessment (PG-SGA). The best cutoff point value for serum IGFBP2 level was established using receiver operating characteristic analysis. Kaplan-Meier method was utilized to analyze the survival curves.Results: Serum IGFBP2 levels were elevated in patients with advanced lung cancer and severe malnutrition. The best cutoff value for serum IGFBP2 level was determined at 363 ng/ml, which could diagnose severe malnutrition with 73.3% sensitivity and 70.5% specificity and was found to be related to albumin, CRP, and GPS. Patients whose serum IGFBP2 levels were higher than 363 ng/ml had poor survival outcome.Conclusion: This study demonstrates the remarkably association between higher serum level of IGFBP2 and severe malnutrition, albumin, CRP, GPS, and survival. Hence, serum IGFBP2 level can be used as a potential biomarker for diagnosis of severe malnutrition in patients with advanced lung cancer.
Collapse
Affiliation(s)
- Jie Dong
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yaqi Zeng
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ping Zhang
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chunlei Li
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yajun Chen
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yueying Li
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kun Wang
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
19
|
Tan MSY, Sandanaraj E, Chong YK, Lim SW, Koh LWH, Ng WH, Tan NS, Tan P, Ang BT, Tang C. A STAT3-based gene signature stratifies glioma patients for targeted therapy. Nat Commun 2019; 10:3601. [PMID: 31399589 PMCID: PMC6689009 DOI: 10.1038/s41467-019-11614-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
Intratumoral heterogeneity is a hallmark of glioblastoma (GBM) tumors, thought to negatively influence therapeutic outcome. Previous studies showed that mesenchymal tumors have a worse outcome than the proneural subtype. Here we focus on STAT3 as its activation precedes the proneural-mesenchymal transition. We first establish a STAT3 gene signature that stratifies GBM patients into STAT3-high and -low cohorts. STAT3 inhibitor treatment selectively mitigates STAT3-high cell viability and tumorigenicity in orthotopic mouse xenograft models. We show the mechanism underlying resistance in STAT3-low cells by combining STAT3 signature analysis with kinome screen data on STAT3 inhibitor-treated cells. This allows us to draw connections between kinases affected by STAT3 inhibitors, their associated transcription factors and target genes. We demonstrate that dual inhibition of IGF-1R and STAT3 sensitizes STAT3-low cells and improves survival in mice. Our study underscores the importance of serially profiling tumors so as to accurately target individuals who may demonstrate molecular subtype switching.
Collapse
Affiliation(s)
- Melanie Si Yan Tan
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Edwin Sandanaraj
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuk Kien Chong
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - See Wee Lim
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Lynnette Wei Hsien Koh
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wai Hoe Ng
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Singapore
| | - Patrick Tan
- Duke-National University of Singapore Medical School, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Beng Ti Ang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore. .,Duke-National University of Singapore Medical School, Singapore, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Carol Tang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore. .,Duke-National University of Singapore Medical School, Singapore, Singapore. .,Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore.
| |
Collapse
|
20
|
Expanding the scope of candidate prognostic marker IGFBP2 in glioblastoma. Biosci Rep 2019; 39:BSR20190770. [PMID: 31296788 PMCID: PMC6639463 DOI: 10.1042/bsr20190770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/10/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma is the most common malignant brain tumor in adults. Unfortunately, it has a very poor prognosis and no cure. In a recent paper by Yuan et al. (Bioscience Reports (2019), DOI:10.1042/BSR20190045) RNAscope was used to detect insulin-like growth factor binding protein 2 (IGFBP2) mRNA in glioblastoma biopsies. The study revealed that patients with high levels of IGFBP2 mRNA had shorter survival and that IGFBP2 transcript level was an independent prognostic factor. It is also of value to determine the prognostic effect of IGFBP2 on established biomarkers such as isocitrate dehydrogenase (IDH1) mutations or telomerase reverse transcriptase (TERT) promoter mutation. In the present study, the combination of having a TERT promoter mutation, and at the same time a high level of IGFBP2 mRNA, was associated with very poor survival rates. It was concluded that IGFBP2 predicts the survival of the patients with TERT promoter mutation. This finding may have important implications for glioblastoma prognosis. IGFBP2 re-emerges as a candidate biomarker and potential therapeutic target in glioma. Further research into its functional roles during glioma progression may provide additional insights into this deadly disease.
Collapse
|
21
|
Derakhshani M, Abbaszadeh H, Movassaghpour AA, Mehdizadeh A, Ebrahimi-Warkiani M, Yousefi M. Strategies for elevating hematopoietic stem cells expansion and engraftment capacity. Life Sci 2019; 232:116598. [PMID: 31247209 DOI: 10.1016/j.lfs.2019.116598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are a rare cell population in adult bone marrow, mobilized peripheral blood, and umbilical cord blood possessing self-renewal and differentiation capability into a full spectrum of blood cells. Bone marrow HSC transplantation has been considered as an ideal option for certain disorders treatment including hematologic diseases, leukemia, immunodeficiency, bone marrow failure syndrome, genetic defects such as thalassemia, sickle cell anemia, autoimmune disease, and certain solid cancers. Ex vivo proliferation of these cells prior to transplantation has been proposed as a potential solution against limited number of stem cells. In such culture process, MSCs have also been shown to exhibit high capacity for secretion of soluble mediators contributing to the principle biological and therapeutic activities of HSCs. In addition, endothelial cells have been introduced to bridge the blood and sub tissues in the bone marrow, as well as, HSCs regeneration induction and survival. Cell culture in the laboratory environment requires cell growth strict control to protect against contamination, symmetrical cell division and optimal conditions for maximum yield. In this regard, microfluidic systems provide culture and analysis capabilities in micro volume scales. Moreover, two-dimensional cultures cannot fully demonstrate extracellular matrix found in different tissues and organs as an abstract representation of three dimensional cell structure. Microfluidic systems can also strongly describe the effects of physical factors such as temperature and pressure on cell behavior.
Collapse
Affiliation(s)
- Mehdi Derakhshani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Abbaszadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ebrahimi-Warkiani
- School of Biomedical Engineering, University Technology of Sydney, Sydney, New South Wales, 2007, Australia
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Vastrad C, Vastrad B. Investigation into the underlying molecular mechanisms of non-small cell lung cancer using bioinformatics analysis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Liu Y, Li F, Yang YT, Xu XD, Chen JS, Chen TL, Chen HJ, Zhu YB, Lin JY, Li Y, Xie XM, Sun XL, Ke YQ. IGFBP2 promotes vasculogenic mimicry formation via regulating CD144 and MMP2 expression in glioma. Oncogene 2018; 38:1815-1831. [PMID: 30368528 DOI: 10.1038/s41388-018-0525-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/21/2018] [Accepted: 09/10/2018] [Indexed: 01/03/2023]
Abstract
Vasculogenic mimicry (VM) refers to the fluid-conducting channels formed by aggressive tumor cells rather than endothelial cells (EC) with elevated expression of genes associated with vascularization. VM has been considered as one of the reasons that glioblastoma becomes resistant to anti-VEGF therapy. However, the molecular basis underlying VM formation remains unclear. Here we report that the insulin-like growth factor-binding protein 2 (IGFBP2) acts as a potent factor to enhance VM formation in glioma. Evidence showed that elevated IGFBP2 expression was positively related with VM formation in patients with glioma. Enforced expression of IGFBP2 increased network formation of glioma cells in vitro by activating CD144 and MMP2 (Matrix Metalloproteinase 2). U251 cells with stable knockdown of IGFBP2 led to decreased VM formation and tumor progression in orthotopic mouse model. Mechanistically, IGFBP2 interacts with integrin α5 and β1 subunits and augments CD144 expression in a FAK/ERK pathway-dependent manner. Luciferase reporter and ChIP assay suggested that IGFBP2 activated the transcription factor SP1, which could bind to CD144 promoter. Thus, IGFBP2 acts as a stimulator of VM formation in glioma cells via enhancing CD144 and MMP2 expression.
Collapse
Affiliation(s)
- Y Liu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - F Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Y T Yang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - X D Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - J S Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - T L Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - H J Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Y B Zhu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - J Y Lin
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Y Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - X M Xie
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - X L Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China. .,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China. .,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China.
| | - Y Q Ke
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China. .,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China. .,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China.
| |
Collapse
|
24
|
Shen F, Song C, Liu Y, Zhang J, Wei Song S. IGFBP2 promotes neural stem cell maintenance and proliferation differentially associated with glioblastoma subtypes. Brain Res 2018; 1704:174-186. [PMID: 30347220 DOI: 10.1016/j.brainres.2018.10.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022]
Abstract
Neural stem cells (NSCs) give rise to the central nervous system (CNS) and persist in certain areas of adult brains for replenishing damaged differentiated cells. The loss of the balance between NSC self-renewal and differentiation could lead to tumor formation such as the occurrence of glioblastoma (GBM), the most common and deadly human brain tumor, which could be derived from neural stem or stem-like cells. Early studies showed that insulin-like growth factor binding protein 2 (IGFBP2) mRNA levels were maintained high during the fetal brain development but decreased in the adult brains. We previously reported that IGFBP2 was frequently overexpressed in GBMs, which was correlated with GBM recurrence and poor survival and promoted glioma progression. However, the role of IGFBP2 in the CNS was not investigated yet, whose understanding will help elucidate IGFBP2 functions in GBM. In the study, we identify IGFBP2 as a critical molecule for mouse NSC maintenance. IGFBP2 is highly expressed in NSCs, and its expression exhibits an apical-basal pattern in the neural tube with a higher apical level and decreased with NSC differentiation during the CNS development. IGFBP2 promotes NSC self-renewal and proliferation but inhibits its differentiation to neurons and astrocytes. The knockdown of IGFBP2 significantly affected the expression of cell cycle, Notch pathway, and neural stemness and differentiation genes in NSCs. Further, the expression of IGFBP2-regulated cell cycle genes is significantly correlated with IGFBP2 expression in non-Mesenchymal GBM subtypes including Classical, Proneural, and Neural subtypes and of its Notch pathway genes differentially associated in the four GBM subtypes, altogether suggesting its critical and similar functions in NSCs and GBM cells.
Collapse
Affiliation(s)
- Faping Shen
- Center for Brain Disorders Research, Capital Medical University, Beijing Institute for Brain Disorders, 10 Xitoutiao, Youanmen, Beijing 100069, China; Daqing Oil Field General Hospital, No. 9, Middle Kang Street, Saertu District, Daqing 163000, Heilongjiang, China; Beijing Neurosurgical Institute, Capital Medical University, No. 6, Tiantan Xili, Dongcheng District, Beijing 100050, China.
| | - Chunyan Song
- Center for Brain Disorders Research, Capital Medical University, Beijing Institute for Brain Disorders, 10 Xitoutiao, Youanmen, Beijing 100069, China; Beijing Neurosurgical Institute, Capital Medical University, No. 6, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Yunmian Liu
- Center for Brain Disorders Research, Capital Medical University, Beijing Institute for Brain Disorders, 10 Xitoutiao, Youanmen, Beijing 100069, China; Beijing Neurosurgical Institute, Capital Medical University, No. 6, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Jing Zhang
- Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Sonya Wei Song
- Center for Brain Disorders Research, Capital Medical University, Beijing Institute for Brain Disorders, 10 Xitoutiao, Youanmen, Beijing 100069, China; Beijing Neurosurgical Institute, Capital Medical University, No. 6, Tiantan Xili, Dongcheng District, Beijing 100050, China.
| |
Collapse
|
25
|
Ask TF, Lugo RG, Sütterlin S. The Neuro-Immuno-Senescence Integrative Model (NISIM) on the Negative Association Between Parasympathetic Activity and Cellular Senescence. Front Neurosci 2018; 12:726. [PMID: 30369866 PMCID: PMC6194361 DOI: 10.3389/fnins.2018.00726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022] Open
Abstract
There is evidence that accumulated senescent cells drive age-related pathologies, but the antecedents to the cellular stressors that induce senescence remain poorly understood. Previous research suggests that there is a relationship between shorter telomere length, an antecedent to cellular senescence, and psychological stress. Existing models do not sufficiently account for the specific pathways from which psychological stress regulation is converted into production of reactive oxygen species. We propose the neuro-immuno-senescence integrative model (NISIM) suggesting how vagally mediated heart rate variability (HRV) might be related to cellular senescence. Prefrontally modulated, and vagally mediated cortical influences on the autonomic nervous system, expressed as HRV, affects the immune system by adrenergic stimulation and cholinergic inhibition of cytokine production in macrophages and neutrophils. Previous findings indicate that low HRV is associated with increased production of the pro-inflammatory cytokines IL-6 and TNF-α. IL-6 and TNF-α can activate the NFκB pathway, increasing production of reactive oxygen species that can cause DNA damage. Vagally mediated HRV has been related to an individual's ability to regulate stress, and is lower in people with shorter telomeres. Based on these previous findings, the NISIM suggest that the main pathway from psychological stress to individual differences in oxidative telomere damage originates in the neuroanatomical components that modulate HRV, and culminates in the cytokine-induced activation of NFκB. Accumulated senescent cells in the brain is hypothesized to promote age-related neurodegenerative disease, and previous reports suggest an association between low HRV and onset of Alzheimer's and Parkinson's disease. Accumulating senescent cells in peripheral tissues secreting senescence-associated secretory phenotype factors can alter tissue structure and function which can induce cancer and promote tumor growth and metastasis in old age, and previous research suggested that ability to regulate psychological stress has a negative association with cancer onset. We therefore conclude that the NISIM can account for a large proportion of the individual differences in the psychological stress-related antecedents to cellular senescence, and suggest that it can be useful in providing a dynamic framework for understanding the pathways by which psychological stress induce pathologies in old age.
Collapse
Affiliation(s)
- Torvald F. Ask
- Research Group on Cognition, Health, and Performance, Institute of Psychology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Ricardo G. Lugo
- Research Group on Cognition, Health, and Performance, Institute of Psychology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Stefan Sütterlin
- Faculty of Health and Welfare Sciences, Østfold University College, Halden, Norway
- Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
26
|
Wiedmann MKH, Brunborg C, Di Ieva A, Lindemann K, Johannesen TB, Vatten L, Helseth E, Zwart JA. The impact of body mass index and height on the risk for glioblastoma and other glioma subgroups: a large prospective cohort study. Neuro Oncol 2018; 19:976-985. [PMID: 28040713 DOI: 10.1093/neuonc/now272] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Glioma comprises a heterogeneous group of mostly malignant brain tumors, whereof glioblastoma (GBM) represents the largest and most lethal subgroup. Body height and body mass index (BMI) are risk factors for other cancers, but no previous study has examined anthropometric data in relation to different glioma subgroups. Methods This prospective cohort study includes 1.8 million Norwegian women and men between ages 14 and 80 years at baseline. Body weight and height were measured, and incident cases of glioma were identified by linkage to the National Cancer Registry. Cox regression analyses were performed to evaluate risk for different glioma subgroups in relation to anthropometric measures. Results During 54 million person-years of follow-up, 4,382 gliomas were identified. Overweight and obesity were not associated with risk for any glioma subgroup. Height was positively associated with risk for GBM and all other gliomas (hazard ratio [HR] per 10 cm increase: 1.24; 95% confidence interval [CI], 1.17-1.31 and 1.18; 95% CI, 1.09-1.29) but not with the proxy for isocitrate dehydrogenase (IDH)-mutant glioma (HR, 1.09; 95% CI, 0.98-1.21). In further subgroup analyses, the effect of height on glioma risk varied significantly with positive associations for oligoastrocytoma (HR, 1.74; 95% CI, 1.20-2.53) and malignant glioma not otherwise specified (NOS) (HR, 1.42; 95% CI, 1.16-1.76, but not with diffuse astrocytoma (WHO grades II and III) or oligodendroglioma. Conclusion This epidemiologic study consolidates height as a risk factor for GBM and other gliomas. It further indicates that this association is not universal for gliomas but may differ between different glioma subgroups.
Collapse
Affiliation(s)
- Markus K H Wiedmann
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway; Neurosurgery Unit, Faculty of Medicine and Health Sciences, Macquarie University, Sydney,Australia; Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney,Australia; NHMRC Clinical Trials Centre, Sydney,Australia; Department of Gynecological Cancer, Oslo University Hospital (Norwegian Radium Hospital), Oslo, Norway; The Cancer Registry of Norway, Oslo, Norway; Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway; FORMI and Department of Neurology, Oslo University Hospital (Ulleval),Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Cathrine Brunborg
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway; Neurosurgery Unit, Faculty of Medicine and Health Sciences, Macquarie University, Sydney,Australia; Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney,Australia; NHMRC Clinical Trials Centre, Sydney,Australia; Department of Gynecological Cancer, Oslo University Hospital (Norwegian Radium Hospital), Oslo, Norway; The Cancer Registry of Norway, Oslo, Norway; Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway; FORMI and Department of Neurology, Oslo University Hospital (Ulleval),Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Antonio Di Ieva
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway; Neurosurgery Unit, Faculty of Medicine and Health Sciences, Macquarie University, Sydney,Australia; Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney,Australia; NHMRC Clinical Trials Centre, Sydney,Australia; Department of Gynecological Cancer, Oslo University Hospital (Norwegian Radium Hospital), Oslo, Norway; The Cancer Registry of Norway, Oslo, Norway; Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway; FORMI and Department of Neurology, Oslo University Hospital (Ulleval),Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristina Lindemann
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway; Neurosurgery Unit, Faculty of Medicine and Health Sciences, Macquarie University, Sydney,Australia; Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney,Australia; NHMRC Clinical Trials Centre, Sydney,Australia; Department of Gynecological Cancer, Oslo University Hospital (Norwegian Radium Hospital), Oslo, Norway; The Cancer Registry of Norway, Oslo, Norway; Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway; FORMI and Department of Neurology, Oslo University Hospital (Ulleval),Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tom B Johannesen
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway; Neurosurgery Unit, Faculty of Medicine and Health Sciences, Macquarie University, Sydney,Australia; Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney,Australia; NHMRC Clinical Trials Centre, Sydney,Australia; Department of Gynecological Cancer, Oslo University Hospital (Norwegian Radium Hospital), Oslo, Norway; The Cancer Registry of Norway, Oslo, Norway; Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway; FORMI and Department of Neurology, Oslo University Hospital (Ulleval),Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lars Vatten
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway; Neurosurgery Unit, Faculty of Medicine and Health Sciences, Macquarie University, Sydney,Australia; Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney,Australia; NHMRC Clinical Trials Centre, Sydney,Australia; Department of Gynecological Cancer, Oslo University Hospital (Norwegian Radium Hospital), Oslo, Norway; The Cancer Registry of Norway, Oslo, Norway; Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway; FORMI and Department of Neurology, Oslo University Hospital (Ulleval),Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Eirik Helseth
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway; Neurosurgery Unit, Faculty of Medicine and Health Sciences, Macquarie University, Sydney,Australia; Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney,Australia; NHMRC Clinical Trials Centre, Sydney,Australia; Department of Gynecological Cancer, Oslo University Hospital (Norwegian Radium Hospital), Oslo, Norway; The Cancer Registry of Norway, Oslo, Norway; Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway; FORMI and Department of Neurology, Oslo University Hospital (Ulleval),Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - John A Zwart
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway; Neurosurgery Unit, Faculty of Medicine and Health Sciences, Macquarie University, Sydney,Australia; Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney,Australia; NHMRC Clinical Trials Centre, Sydney,Australia; Department of Gynecological Cancer, Oslo University Hospital (Norwegian Radium Hospital), Oslo, Norway; The Cancer Registry of Norway, Oslo, Norway; Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway; FORMI and Department of Neurology, Oslo University Hospital (Ulleval),Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Huang LE, Cohen AL, Colman H, Jensen RL, Fults DW, Couldwell WT. IGFBP2 expression predicts IDH-mutant glioma patient survival. Oncotarget 2018; 8:191-202. [PMID: 27852048 PMCID: PMC5352106 DOI: 10.18632/oncotarget.13329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/18/2022] Open
Abstract
Mutations of the isocitrate dehydrogenase (IDH) 1 and 2 genes occur in ~80% of lower-grade (WHO grade II and grade III) gliomas. Mutant IDH produces (R)-2-hydroxyglutarate, which induces DNA hypermethylation and presumably drives tumorigenesis. Interestingly, IDH mutations are associated with improved survival in glioma patients, but the underlying mechanism for the difference in survival remains unclear. Through comparative analyses of 286 cases of IDH-wildtype and IDH-mutant lower-grade glioma from a TCGA data set, we report that IDH-mutant gliomas have increased expression of tumor-suppressor genes (NF1, PTEN, and PIK3R1) and decreased expression of oncogenes(AKT2, ARAF, ERBB2, FGFR3, and PDGFRB) and glioma progression genes (FOXM1, IGFBP2, and WWTR1) compared with IDH-wildtype gliomas. Furthermore, each of these genes is prognostic in overall gliomas; however, within the IDH-mutant group, none remains prognostic except IGFBP2 (encodinginsulin-like growth factor binding protein 2). Through validation in an independent cohort, we show that patients with low IGFBP2 expressiondisplay a clear advantage in overall and disease-free survival, whereas those with high IGFBP2 expressionhave worse median survival than IDH-wildtype patients. These observations hold true across different histological and molecular subtypes of lower-grade glioma. We propose therefore that an unexpected biological consequence of IDH mutations in glioma is to ameliorate patient survival by promoting tumor-suppressor signaling while inhibiting that of oncogenes, particularly IGFBP2.
Collapse
Affiliation(s)
- Lin Eric Huang
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA.,Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Adam L Cohen
- Division of Oncology, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Howard Colman
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA
| | - Randy L Jensen
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA.,Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Daniel W Fults
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA.,Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - William T Couldwell
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA
| |
Collapse
|
28
|
Ji P, Zhou X, Liu Q, Fuller GN, Phillips LM, Zhang W. Driver or passenger effects of augmented c-Myc and Cdc20 in gliomagenesis. Oncotarget 2018; 7:23521-9. [PMID: 26993778 PMCID: PMC5029644 DOI: 10.18632/oncotarget.8080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/25/2016] [Indexed: 11/25/2022] Open
Abstract
Purpose Cdc20 and c-Myc are commonly overexpressed in a broad spectrum of cancers, including glioblastoma (GBM). Despite this clear association, whether c-Myc and Cdc20 overexpression is a driver or passenger event in gliomagenesis remains unclear. Results Both c-Myc and Cdc20 induced the proliferation of primary glial progenitor cells. c-Myc also promoted the formation of soft agar anchorage-independent colonies. In the RCAS/Ntv-a glia-specific transgenic mouse model, c-Myc increased the GBM incidence from 19.1% to 47.4% by 12 weeks of age when combined with kRas and Akt3 in Ntv-a INK4a-ARF (also known as CDKN2A)-null mice. In contrast, Cdc20 decreased the GBM incidence from 19.1% to 9.1%. Moreover, cell differentiation was modulated by c-Myc in kRas/Akt3-induced GBM on the basis of Nestin/GFAP expression (glial progenitor cell differentiation), while Cdc20 had no effect on primary glial progenitor cell differentiation. Materials and Methods We used glial progenitor cells from Ntv-a newborn mice to evaluate the role of c-Myc and Cdc20 in the proliferation and transformation of GBM in vitro and in vivo. We further determined whether c-Myc and Cdc20 have a driver or passenger role in GBM development using kRas/Akt3 signals in a RCAS/Ntv-a mouse model. Conclusions These results suggest that the driver or passenger of oncogene signaling is dependent on cellular status. c-Myc is a driver when combined with kRas/Akt3 oncogenic signals in gliomagenesis, whereas Cdc20 overexpression is a passenger. Inhibition of cell differentiation of c-Myc may be a target for anti-glioma therapy.
Collapse
Affiliation(s)
- Ping Ji
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Current affiliation: Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinhui Zhou
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qun Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Neurosurgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lynette M Phillips
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
29
|
Peng T, Zhou L, Qi H, Wang G, Luan Y, Zuo L. MiR-592 functions as a tumor suppressor in glioma by targeting IGFBP2. Tumour Biol 2017; 39:1010428317719273. [PMID: 28718372 DOI: 10.1177/1010428317719273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A growing body of evidence suggests that microRNA-592 is involved in tumor initiation and development in several types of human cancers. However, the biological functions and molecular mechanism of microRNA-592 in glioma remain unclear. In this study, we explored the potential role of microRNA-592 in glioma as well as the possible molecular mechanisms. Our results proved that microRNA-592 expression was significantly downregulated in glioma tissues and cell lines (p < 0.01). Functional assays revealed that overexpression of microRNA-592 dramatically reduced the cell proliferation, migration, and invasion and induced cell arrest at G1/G0 phase in vitro. Mechanistic investigations defined insulin-like growth factor binding protein 2 as a direct and functional downstream target of microRNA-592, which was involved in the microRNA-592-mediated tumor-suppressive effects in glioma cells. Moreover, the in vivo study showed that microRNA-592 overexpression produced the smaller tumor volume and weight in nude mice. In summary, these results elucidated the function of microRNA-592 in glioma progression and suggested a promising application of it in glioma treatment.
Collapse
Affiliation(s)
- Tao Peng
- 1 Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| | - Lixiang Zhou
- 1 Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| | - Hui Qi
- 2 Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Guangming Wang
- 1 Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yongxin Luan
- 1 Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| | - Ling Zuo
- 2 Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
30
|
Lee IH, Huang SS, Chuang CY, Liao KH, Chang LH, Chuang CC, Su YS, Lin HJ, Hsieh JY, Su SH, Lee OKS, Kuo HC. Delayed epidural transplantation of human induced pluripotent stem cell-derived neural progenitors enhances functional recovery after stroke. Sci Rep 2017; 7:1943. [PMID: 28512358 PMCID: PMC5434043 DOI: 10.1038/s41598-017-02137-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/07/2017] [Indexed: 12/23/2022] Open
Abstract
Induced pluripotent stem cell-derived neural progenitor cells (iPSC-NPCs) are a promising source of tailor-made cell therapy for neurological diseases. However, major obstacles to clinical use still exist. To circumvent complications related to intracerebral administration, we implanted human iPSC-NPCs epidurally over the peri-infarct cortex 7 days after permanent middle cerebral artery occlusion in adult rats. Compared to controls, cell-treated rats showed significant improvements in paretic forelimb usage and grip strength from 10 days post-transplantation (dpt) onwards, as well as reductions in lesion volumes, inflammatory infiltration and astrogliosis at 21 dpt. Few iPSC-NPCs migrated into rat peri-infarct cortices and exhibited poor survival in tissue. To examine the paracrine therapeutic mechanisms of epidural iPSC-NPC grafts, we used transmembrane co-cultures of human iPSC-NPCs with rat cortical cells subjected to oxygen-glucose deprivation. Compared to other human stem cells, iPSC-NPCs were superior at promoting neuronal survival and outgrowth, and mitigating astrogliosis. Using comparative whole-genome microarrays and cytokine neutralization, we identified a neurorestorative secretome from iPSC-NPCs, and neutralizing enriched cytokines abolished neuroprotective effects in co-cultures. This proof-of-concept study demonstrates a relatively safe, yet effective epidural route for delivering human iPSC-NPCs, which acts predominately through discrete paracrine effects to promote functional recovery after stroke.
Collapse
Affiliation(s)
- I-Hui Lee
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ching-Yu Chuang
- Stem Cell Program, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ko-Hsun Liao
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Hsin Chang
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Chi Chuang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Shih Su
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Jui Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Jui-Yu Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Han Su
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Orthopaedic Surgery, Taipei City Hospital, Taipei, Taiwan
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Chih Kuo
- Stem Cell Program, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
31
|
Shin M, Kang HS, Park JH, Bae JH, Song DK, Im SS. Recent Insights into Insulin-Like Growth Factor Binding Protein 2 Transcriptional Regulation. Endocrinol Metab (Seoul) 2017; 32:11-17. [PMID: 28116872 PMCID: PMC5368109 DOI: 10.3803/enm.2017.32.1.11] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 01/31/2023] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) are major regulators of insulin-like growth factor bioavailability and activity in metabolic signaling. Seven IGFBP family isoforms have been identified. Recent studies have shown that IGFBPs play a pivotal role in metabolic signaling and disease, including the pathogenesis of obesity, diabetes, and cancer. Although many studies have documented the various roles played by IGFBPs, transcriptional regulation of IGFBPs is not well understood. In this review, we focus on the regulatory mechanisms of IGFBP gene expression, and we summarize the findings of transcription factor activity in the IGFBP promoter region.
Collapse
Affiliation(s)
- Minsang Shin
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hye Suk Kang
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea
| | - Jae Hyung Park
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea
| | - Jae Hoon Bae
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea
| | - Dae Kyu Song
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea
| | - Seung Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea.
| |
Collapse
|
32
|
Hur H, Yu EJ, Ham IH, Jin HJ, Lee D. Preoperative serum levels of insulin-like growth factor-binding protein 2 predict prognosis of gastric cancer patients. Oncotarget 2017; 8:10994-11003. [PMID: 28036255 PMCID: PMC5355240 DOI: 10.18632/oncotarget.14202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/20/2016] [Indexed: 01/26/2023] Open
Abstract
It has been reported that serum insulin-like growth factor-binding protein 2 (IGFBP2) levels are elevated in various types of cancers. However, the clinicopathologic and prognostic implications of circulating IGFBP2 have never been investigated in gastric cancer. We tested IGFBP2 levels in the sera of 118 gastric cancer patients and 34 healthy controls using enzyme-linked immunosorbent assay (ELISA). The mean serum IGFBP2 level was significantly elevated in the gastric cancer patients compared to controls (805.23 ± 590.56 ng/ml vs. 459.61 ± 277.01 ng/ml; P < 0.001). Serum IGFBP2 levels were significantly higher in larger (> 6 cm) tumors (956.8 ± 734.0 ng/ml vs. 548.6 ± 364.0 ng/ml; P = 0.007) and in higher (T3/4) T stages (854.8 ± 621.4 ng/ml vs. 546.5 ± 315.1 ng/ml; P = 0.037). Multivariate Cox analysis showed that higher serum IGFBP2 level (> 400.01 ng/ml) was an independent prognostic factor predicting worse overall survival in patients with gastric cancer (hazard ratio (HR): 3.749, P = 0.034). When we divided patients into four groups based on blood IGFBP2 levels, survival was stratified. The HRs for death in the 3rd and 4th quartiles of serum IGFBP2 levels in comparison to that in the 1st quartile were 2.527 (P = 0.043) and 3.092 (P = 0.012). In conclusion, circulating IGFBP2 has potential as a biomarker predicting prognosis for gastric cancer patients.
Collapse
Affiliation(s)
- Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Brain Korea 21 Plus Research Center for Biomedical Sciences, Ajou University, Suwon, Republic of Korea
| | - Eun Ji Yu
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Brain Korea 21 Plus Research Center for Biomedical Sciences, Ajou University, Suwon, Republic of Korea
| | - Hye-Jin Jin
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Brain Korea 21 Plus Research Center for Biomedical Sciences, Ajou University, Suwon, Republic of Korea
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
33
|
The CHAC1-inhibited Notch3 pathway is involved in temozolomide-induced glioma cytotoxicity. Neuropharmacology 2016; 116:300-314. [PMID: 27986595 DOI: 10.1016/j.neuropharm.2016.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/21/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022]
Abstract
Glioblastoma multiforme (GBM) is the high-grade primary glioma in adults. Temozolomide (TMZ), an alkylating agent of the imidazotetrazine series, is a first-line chemotherapeutic drug for clinical therapy. However, the expense of TMZ therapy and increasing drug resistance to TMZ decreases its therapeutic effects. Therefore, our aim was to investigate the detailed molecular mechanisms of TMZ-mediated cytotoxicity to enhance the efficacy of TMZ in clinical GBM therapy. First, TMZ-mediated gene expression profiles and networks in U87-MG cells were identified by transcriptome microarray and bioinformatic analyses. Cation transport regulator-like protein 1 (CHAC1) was the most highly TMZ-upregulated gene. Overexpression and knockdown of CHAC1 expression significantly influenced TMZ-mediated cell viability, apoptosis, caspase-3 activation, and poly(ADP ribose) polymerase (PARP) degradation. The c-Jun N-terminal kinase (JNK)1/c-JUN pathway was identified to participate in TMZ-upregulated CHAC1 expression via transcriptional control. Furthermore, CHAC1 levels were significantly decreased in GBM cell lines, TCGA array data, and tumor tissues. Overexpression of CHAC1 enhanced glioma apoptotic death via caspase-3/9 activation, PARP degradation, autophagy formation, reactive oxygen species generation, increased intracellular calcium, and loss of the mitochondria membrane potential. Finally, we also identified that TMZ significantly reduced Notch3 levels, which are upregulated in gliomas. TMZ also induced CHAC1 to bind to the Notch3 protein and inhibit Notch3 activation, resulting in attenuation of Notch3-mediated downstream signaling pathways. These results emphasize that CHAC1-inhibited Notch3 signaling can influence TMZ-mediated cytotoxicity. Our findings may provide novel therapeutic strategies for future glioblastoma therapy.
Collapse
|
34
|
Gao S, Sun Y, Zhang X, Hu L, Liu Y, Chua CY, Phillips LM, Ren H, Fleming JB, Wang H, Chiao PJ, Hao J, Zhang W. IGFBP2 Activates the NF-κB Pathway to Drive Epithelial-Mesenchymal Transition and Invasive Character in Pancreatic Ductal Adenocarcinoma. Cancer Res 2016; 76:6543-6554. [PMID: 27659045 DOI: 10.1158/0008-5472.can-16-0438] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 08/27/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022]
Abstract
The molecular basis underlying the particularly aggressive nature of pancreatic ductal adenocarcinoma (PDAC) still remains unclear. Here we report evidence that the insulin-like growth factor-binding protein IGFBP2 acts as a potent oncogene to drive its extremely malignant character. We found that elevated IGFBP2 expression in primary tumors was associated with lymph node metastasis and shorter survival in patients with PDAC. Enforced expression of IGFBP2 promoted invasion and metastasis of PDAC cells in vitro and in vivo by inducing NF-κB-dependent epithelial-mesenchymal transition (EMT). Mechanistic investigations revealed that IGFBP2 induced the nuclear translocation and phosphorylation of the p65 NF-κB subunit through the PI3K/Akt/IKKβ pathway. Conversely, enforced expression of PTEN blunted this signaling pathway and restored an epithelial phenotype to PDAC cells in the presence of overexpressed IGFBP2. Overall, our results identify IGFBP2 as a pivotal regulator of an EMT axis in PDAC, the activation of which is sufficient to confer the characteristically aggressive clinical features of this disease. Cancer Res; 76(22); 6543-54. ©2016 AACR.
Collapse
Affiliation(s)
- Song Gao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Limei Hu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuexin Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Corrine Yingxuan Chua
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lynette M Phillips
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - He Ren
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jihui Hao
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China.
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| |
Collapse
|
35
|
Chen PH, Chang CK, Shih CM, Cheng CH, Lin CW, Lee CC, Liu AJ, Ho KH, Chen KC. The miR-204-3p-targeted IGFBP2 pathway is involved in xanthohumol-induced glioma cell apoptotic death. Neuropharmacology 2016; 110:362-375. [PMID: 27487563 DOI: 10.1016/j.neuropharm.2016.07.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 02/07/2023]
Abstract
Xanthohumol (XN), a prenylated chalcone extracted from hop plant Humulus lupulus L. (Cannabaceae), has potential for cancer therapy, including gliomas. Micro (mi)RNAs are small noncoding RNAs that control gene expression. Several miRNAs have been identified to participate in regulating glioma development. However, no studies have demonstrated whether miRNA is involved in XN cytotoxicity resulting in glioma cell death. This study investigated the effects of XN-mediated miRNA expression in activating apoptotic pathways in glioblastoma U87 MG cells. First, we found that XN significantly reduced cell viability and induced apoptosis via pro-caspase-3/8 cleavage and poly(ADP ribose) polymerase (PARP) degradation. We also identified that pro-caspase-9 cleavage, Bcl2 family expression changes, mitochondrial dysfunction, and intracellular ROS generation also participated in XN-induced glioma cell death. With a microarray analysis, miR-204-3p was identified as the most upregulated miRNA induced by XN cytotoxicity. The extracellular signal-regulated kinase (ERK)/c-Fos pathway was validated to participate in XN-upregulated miR-204-3p expression. With a promoter assay and ChIP analysis, we found that c-Fos dose-dependently bound to the miR-204-3p gene promoter region. Furthermore, miR-204-3p levels decreased in several glioma cell lines compared to astrocytes. Overexpression of miR-204-3p enhanced glioma cell apoptosis. IGFBP2, an upregulated regulator of glioma proliferation, was validated by a TCGA analysis as a direct target gene of miR-204-3p. XN's inhibition of the IGFBP2/AKT/Bcl2 pathway via miR-204-3p targeting played a critical role in mediating glioma cell death. These results emphasized that the XN-mediated miR-204-3p network may provide novel therapeutic strategies for future glioblastoma therapy and drug development.
Collapse
Affiliation(s)
- Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Kuei Chang
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Cheng Lee
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Kuo-Hao Ho
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
36
|
Myers AL, Lin L, Nancarrow DJ, Wang Z, Ferrer-Torres D, Thomas DG, Orringer MB, Lin J, Reddy RM, Beer DG, Chang AC. IGFBP2 modulates the chemoresistant phenotype in esophageal adenocarcinoma. Oncotarget 2016; 6:25897-916. [PMID: 26317790 PMCID: PMC4694874 DOI: 10.18632/oncotarget.4532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) patients commonly present with advanced stage disease and demonstrate resistance to therapy, with response rates below 40%. Understanding the molecular mechanisms of resistance is crucial for improvement of clinical outcomes. IGFBP2 is a member of the IGFBP family of proteins that has been reported to modulate both IGF and integrin signaling and is a mediator of cell growth, invasion and resistance in other tumor types. In this study, high IGFBP2 expression was observed in a subset of primary EACs and was found to be significantly higher in patients with shorter disease-free intervals as well as in treatment-resistant EACs as compared to chemonaive EACs. Modulation of IGFBP2 expression in EAC cell lines promoted cell proliferation, migration and invasion, implicating a role in the metastatic potential of these cells. Additionally, knockdown of IGFBP2 sensitized EAC cells to cisplatin in a serum-dependent manner. Further in vitro exploration into this chemosensitization implicated both the AKT and ERK pathways. Silencing of IGFBP2 enhanced IGF1-induced immediate activation of AKT and reduced cisplatin-induced ERK activation. Addition of MEK1/2 (selumetinib or trametinib) or AKT (AKT Inhibitor VIII) inhibitors enhanced siIGFBP2-induced sensitization of EAC cells to cisplatin. These results suggest that targeted inhibition of IGFBP2 alone or together with either the MAPK or PI3K/AKT signaling pathway in IGFBP2-overexpressing EAC tumors may be an effective approach for sensitizing resistant EACs to standard neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Amy L Myers
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lin Lin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Zhuwen Wang
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Dafydd G Thomas
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mark B Orringer
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jules Lin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - David G Beer
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Andrew C Chang
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Yang SD, Jang SS, Han JA, Park HS, Kim JI. Estimation of Prognostic Marker Genes by Public Microarray Data in Patients with Ovarian Serous Cystadenocarcinoma. Yonsei Med J 2016; 57:872-8. [PMID: 27189279 PMCID: PMC4951462 DOI: 10.3349/ymj.2016.57.4.872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/03/2015] [Accepted: 10/08/2015] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Lymphatic invasion (LI) is regarded as a predictor of the aggressiveness of ovarian cancer (OC). However, LI is not always the major determinant of long-term patient survival. To establish proper diagnosis and treatment for OC, we analyzed differentially expressed genes (DEGs) for patients with serous epithelial OC, with or without LI, who did or did not survive for 5 years. MATERIALS AND METHODS Gene expression data from 63 patients with OC and LI, and 35 patients with OC but without LI, were investigated using an Affymetrix Human Genome U133 Array and analyzed using The Cancer Genome Atlas (TCGA) database. Among these 98 patients, 16 survived for 5 years or more. DEGs were identified using the Bioconductor R package, and their functions were analyzed using the DAVID web tool. RESULTS We found 55 significant DEGs (p<0.01) from the patients with LI and 20 highly significant DEGs (p<0.001) from those without it. Pathway analysis showed that DEGs associated with carbohydrate metabolism or with renal cell carcinoma pathways were enriched in the patients with and without LI, respectively. Using the top five prognostic marker genes, we generated survival scores that could be used to predict the 5-year survival of patients with OC without LI. CONCLUSION The DEGs identified in this study could be used to elucidate the mechanism of tumor progression and to guide the prognosis and treatment of patients with serous OC but without LI.
Collapse
Affiliation(s)
- San Duk Yang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Se Song Jang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Jeong A Han
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hyun Seok Park
- Center for Convergence Research of Advanced Technologies, Ewha Womans University, Seoul, Korea
| | - Jong Il Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
38
|
Phillips LM, Zhou X, Cogdell DE, Chua CY, Huisinga A, R Hess K, Fuller GN, Zhang W. Glioma progression is mediated by an addiction to aberrant IGFBP2 expression and can be blocked using anti-IGFBP2 strategies. J Pathol 2016; 239:355-64. [PMID: 27125842 DOI: 10.1002/path.4734] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/15/2016] [Accepted: 04/09/2016] [Indexed: 12/24/2022]
Abstract
Insulin-like growth factor binding protein 2 (IGFBP2) overexpression is common in high-grade glioma and is both a strong biomarker of aggressive behaviour and a well-documented prognostic factor. IGFBP2 is a member of the secreted IGFBP family that functions by interacting with circulating IGFs to modulate IGF-mediated signalling. This traditional view of IGFBP2 activities has been challenged by the recognition of the diverse functions and cellular locations of members of the IGFBP family. IGFBP2 has been previously established as a driver of glioma progression to a higher grade. In this study, we sought to determine whether IGFBP2-overexpressing tumours are dependent on continued oncogene expression and whether IGFBP2 is a viable therapeutic target in glioma. We took advantage of the well-characterized RCAS/Ntv-a mouse model to create a doxycycline-inducible IGFBP2 model of glioma and demonstrated that the temporal expression of IGFBP2 has dramatic impacts on tumour progression and survival. Further, we demonstrated that IGFBP2-driven tumours are dependent on the continued expression of IGFBP2, as withdrawal of this oncogenic signal led to a significant decrease in tumour progression and prolonged survival. Inhibition of IGFBP2 also impaired tumour cell spread. To assess a therapeutically relevant inhibition strategy, we evaluated a neutralizing antibody against IGFBP2 and demonstrated that it impaired downstream IGFBP2-mediated oncogenic signalling pathways. The studies presented here indicate that IGFBP2 not only is a driver of glioma progression and a prognostic factor but is also required for tumour maintenance and thus represents a viable therapeutic target in the treatment of glioma. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lynette M Phillips
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xinhui Zhou
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David E Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Corrine Yingxuan Chua
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Anouk Huisinga
- Department of Pathology, Radboud University Nijmegen Medical Centre, 6500, Nijmegen, The Netherlands
| | - Kenneth R Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.,ISB-MDA Genome Data Analysis Center, The Cancer Genome Atlas, Houston, Texas, USA
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.,ISB-MDA Genome Data Analysis Center, The Cancer Genome Atlas, Houston, Texas, USA.,Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
39
|
Abdolhoseinpour H, Mehrabi F, Shahraki K, Khoshnood RJ, Masoumi B, Yahaghi E, Goudarzi PK. Investigation of serum levels and tissue expression of two genes IGFBP-2 and IGFBP-3 act as potential biomarker for predicting the progression and survival in patients with glioblastoma multiforme. J Neurol Sci 2016; 366:202-206. [PMID: 27288807 DOI: 10.1016/j.jns.2016.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Identification of genetic copy number changes in glial tumors is of importance in the context of improved/refined diagnostic, prognostic procedures and therapeutic decision-making. Blood-derived biomarkers, therefore, would be useful as minimally invasive markers that could support diagnosis and enable monitoring of tumour growth and response to treatment. OBJECTIVE The aim of this study was to evaluate the clinical significance of IGFBP-2/3 in glioblastoma multiforme (GBM) and their value as predictors of survival. METHODS We examined the plasma levels of IGFBP-2 and IGFBP-3 using ELISA in patient suffering from GBM and controls groups. Furthermore, immunohistochemistry method was used to evaluate the expression levels of these markers. RESULTS Preoperative plasma levels of IGFBP-2 and IGFBP-3 were markedly higher in glioblastoma patients (mean±SD: 521.5±164.2ng/ml; 402.4±126ng/ml) when compared with healthy controls (301.28±73.12; 244±89.5ng/ml; p<0.001). Immunohistochemical results indicated that the median H score for glioblastoma tissues was higher when compared with normal tissues. The mean scores for IGFBP-2 expression in glioblastoma was higher than normal tissues (p<0.001). Our result showed that the median H score for glioblastoma tissues was higher when compared with normal tissue for IGFBP-3 expression. The mean scores for glioblastoma tissues was higher than normal tissues (p<0.001). We also evaluated whether plasma IGFBP-2 and IGFBP-3 levels were related to clinical features. The plasma IGFBP-2 level was strongly linked to the patient's age (R=0.769, P=0.001) that were strongly increased in patients with older age (>65), (mean±SD: 594.36±33.3ng/ml). On the other hand, plasma IGFBP-3 level was not correlated with age (P=0.462), sex (P=0.532), and tumor size (P=0.245). Our findings indicated that the tissue IGFBP-2 level was also markedly correlated with the patient's age (R=0.612, P=0.015). On the other hand, tissue IGFBP-3 expression level was not correlated with age (P=0.472), sex (P=0.512), and tumor size (P=0.241). Kaplan-Meier survival and log-rank analysis suggested that patients with high plasma level of IGFBP-2 and tissue expression of IGFBP-2 had shorter overall survival than those with low levels (log-rank test P=0.027; P<0.001). Kaplan-Meier survival and log-rank analysis suggested that patients with high plasma level of IGFBP-3 and tissue expression of IGFBP-3 had shorter overall survival than those with low levels groups (log-rank test P=0.018; P<0.001). CONCLUSION These data suggest that plasma levels and tissue levels of IGFBP-2 and IGFBP-3 may be as potential biomarkers for predicting the progression and survival in patients with GBM.
Collapse
Affiliation(s)
- Hesam Abdolhoseinpour
- Department of Neurosurgery, Bou Ali Hospital, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Mehrabi
- Department of Neurology, AJA University of Medical Sciences, Tehran, Iran
| | - Kourosh Shahraki
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Reza Jalili Khoshnood
- Department of Neurosurgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Masoumi
- Department of Emergency Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Emad Yahaghi
- Department of Molecular Biology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
40
|
Bhutia SK, Behera B, Nandini Das D, Mukhopadhyay S, Sinha N, Panda PK, Naik PP, Patra SK, Mandal M, Sarkar S, Menezes ME, Talukdar S, Maiti TK, Das SK, Sarkar D, Fisher PB. Abrus agglutinin is a potent anti-proliferative and anti-angiogenic agent in human breast cancer. Int J Cancer 2016; 139:457-66. [PMID: 26914517 DOI: 10.1002/ijc.30055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 11/11/2022]
Abstract
Abrus agglutinin (AGG), a plant lectin isolated from the seeds of Abrus precatorius, has documented antitumor and immunostimulatory effects in murine models. To examine possible antitumor activity against breast cancer, we established human breast tumor xenografts in athymic nude mice and intraperitoneally administered AGG. AGG inhibited tumor growth and angiogenesis as confirmed by monitoring the expression of Ki-67 and CD-31, respectively. In addition, TUNEL positive cells increased in breast tumors treated with AGG suggesting that AGG mediates anti-tumorigenic activity through induction of apoptosis and inhibition of angiogenesis. On a molecular level, AGG caused extrinsic apoptosis through ROS generation that was AKT-dependent in breast cancer cells, without affecting primary mammary epithelial cells, suggesting potential cancer specificity of this natural compound. In addition, using HUVECs, AGG inhibited expression of the pro-angiogenic factor IGFBP-2 in an AKT-dependent manner, reducing angiogenic phenotypes both in vitro and in vivo. Overall, the present results establish that AGG promotes both apoptosis and anti-angiogenic activities in human breast tumor cells, which might be exploited for treatment of breast and other cancers.
Collapse
Affiliation(s)
- Sujit K Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Birendra Behera
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Durgesh Nandini Das
- Department of Life Science, National Institute of Technology, Rourkela, India
| | | | - Niharika Sinha
- Department of Life Science, National Institute of Technology, Rourkela, India
| | | | | | - Samir K Patra
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Siddik Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| |
Collapse
|
41
|
Yao X, Sun S, Zhou X, Guo W, Zhang L. IGF-binding protein 2 is a candidate target of therapeutic potential in cancer. Tumour Biol 2015; 37:1451-9. [PMID: 26662106 DOI: 10.1007/s13277-015-4561-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/01/2015] [Indexed: 01/20/2023] Open
Abstract
Insulin-like growth factor (IGF)-binding protein 2(IGFBP2), a key member of IGF family, has been reported as a notable oncogene in most human epithelium cancers. Increasing evidences suggested that IGFBP2 might be a candidate target of therapuetic potential by regulating key cancer metastasis and invasion-associated signaling networks, but there is still confusion about the mechanism on how IGFBP2 takes part in these processes. In this review, we summarized the current points of view that IGFBP2 functions in signaling pathways during tumorigenesis and tumor progression and discussed its potential clinical applications as a therapeutic target.
Collapse
Affiliation(s)
- Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Shanshan Sun
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Wenyu Guo
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Lun Zhang
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China. .,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.
| |
Collapse
|
42
|
Liu Y, Hu H, Wang K, Zhang C, Wang Y, Yao K, Yang P, Han L, Kang C, Zhang W, Jiang T. Multidimensional analysis of gene expression reveals TGFB1I1-induced EMT contributes to malignant progression of astrocytomas. Oncotarget 2015; 5:12593-606. [PMID: 25333259 PMCID: PMC4350345 DOI: 10.18632/oncotarget.2518] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/24/2014] [Indexed: 11/25/2022] Open
Abstract
Malignant progression of astrocytoma is a multistep process with the integration of genetic abnormalities including grade progression and subtypes transition. Established biomarkers of astrocytomas, like IDH1 and TP53 mutation, were not associated with malignant progression. To identify new biomarker(s) contributing to malignant progression, we collected 252 samples with whole genome mRNA expression profile [34 normal brain tissue (NBT), 136 grade II astrocytoma (AII) and 82 grade III astrocytoma (AIII)]. Bioinformatics analysis revealed that EMT-associated pathways were most significantly altered along with tumor grades progress with up-regulation of 17 genes. Up-regulation of these genes was further confirmed by RNA-sequencing in 128 samples. Survival analysis revealed that high expression of these genes indicates a poor survival outcome. We focused on TGFB1I1 (TGF-β1 induced transcript 1) whose expression correlation with WHO grades was further validated by qPCR in 6 cell lines of different grades and 49 independent samples (36 AIIs and 13 AIIIs). High expression of TGFB1I1 was found associated with subtype transition and EMT pathways activation. The conclusion was confirmed using immunohistochemistry in tissue microarrays. Studies in vitro and in vivo using TGF-β1 and TGFB1I1 shRNA demonstrated that TGFB1I1 is required for TGF-β stimulated EMT that contributes to malignant progression of astrocytomas.
Collapse
Affiliation(s)
- Yanwei Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Kuanyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Kun Yao
- Department of Molecular Neuropathology, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Lei Han
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin Medical University, Tianjin, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin Medical University, Tianjin, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Wei Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China. Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China. Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China. China National Clinical Research Center for Neurological Diseases, China. Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
43
|
Moore LM, Zhang W. MIR-491: CDKN2A tumor suppressor co-pilot. Oncoscience 2015; 2:825-6. [PMID: 26682264 PMCID: PMC4671939 DOI: 10.18632/oncoscience.201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/13/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Lynette M Moore
- Department of Pathology, The University of Texas MD Anderson Cancer Center, The University of Texas Graduate School of Biomedical Sciences, and ISB-MDA Genome Data Analysis Center, The Cancer Genome Atlas, Houston, Texas, USA
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, The University of Texas Graduate School of Biomedical Sciences, and ISB-MDA Genome Data Analysis Center, The Cancer Genome Atlas, Houston, Texas, USA
| |
Collapse
|
44
|
Xie J, Zhang C. Ex vivo expansion of hematopoietic stem cells. SCIENCE CHINA-LIFE SCIENCES 2015; 58:839-53. [PMID: 26246379 DOI: 10.1007/s11427-015-4895-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 06/03/2015] [Indexed: 02/03/2023]
Abstract
Ex vivo expansion of hematopoietic stem cells (HSCs) would benefit clinical applications in several aspects, to improve patient survival, utilize cord blood stem cells for adult applications, and selectively propagate stem cell populations after genetic manipulation. In this review we summarize and discuss recent advances in the culture systems of mouse and human HSCs, which include stroma/HSC co-culture, continuous perfusion and fed-batch cultures, and those supplemented with extrinsic ligands, membrane transportable transcription factors, complement components, protein modification enzymes, metabolites, or small molecule chemicals. Some of the expansion systems have been tested in clinical trials. The optimal condition for ex vivo expansion of the primitive and functional human HSCs is still under development. An improved understanding of the mechanisms for HSC cell fate determination and the HSC culture characteristics will guide development of new strategies to overcome difficulties. In the future, development of a combination treatment regimen with agents that enhance self-renewal, block differentiation, and improve homing will be critical. Methods to enhance yields and lower cost during collection and processing should be employed. The employment of an efficient system for ex vivo expansion of HSCs will facilitate the further development of novel strategies for cell and gene therapies including genome editing.
Collapse
Affiliation(s)
- JingJing Xie
- Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, 264003, China
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - ChengCheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
| |
Collapse
|
45
|
Lodhia KA, Tienchaiananda P, Haluska P. Understanding the Key to Targeting the IGF Axis in Cancer: A Biomarker Assessment. Front Oncol 2015. [PMID: 26217584 PMCID: PMC4495315 DOI: 10.3389/fonc.2015.00142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Type 1 insulin like growth factor receptor (IGF-1R) targeted therapies showed compelling pre-clinical evidence; however, to date, this has failed to translate into patient benefit in Phase 2/3 trials in unselected patients. This was further complicated by the toxicity, including hyperglycemia, which largely results from the overlap between IGF and insulin signaling systems and associated feedback mechanisms. This has halted the clinical development of inhibitors targeting IGF signaling, which has limited the availability of biopsy samples for correlative studies to understand biomarkers of response. Indeed, a major factor contributing to lack of clinical benefit of IGF targeting agents has been difficulty in identifying patients with tumors driven by IGF signaling due to the lack of predictive biomarkers. In this review, we will describe the IGF system, rationale for targeting IGF signaling, the potential liabilities of targeting strategies, and potential biomarkers that may improve success.
Collapse
Affiliation(s)
| | | | - Paul Haluska
- Department of Oncology, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
46
|
Bacolod MD, Das SK, Sokhi UK, Bradley S, Fenstermacher DA, Pellecchia M, Emdad L, Sarkar D, Fisher PB. Examination of Epigenetic and other Molecular Factors Associated with mda-9/Syntenin Dysregulation in Cancer Through Integrated Analyses of Public Genomic Datasets. Adv Cancer Res 2015; 127:49-121. [PMID: 26093898 DOI: 10.1016/bs.acr.2015.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
mda-9/Syntenin (melanoma differentiation-associated gene 9) is a PDZ domain containing, cancer invasion-related protein. In this study, we employed multiple integrated bioinformatic approaches to identify the probable epigenetic factors, molecular pathways, and functionalities associated with mda-9 dysregulation during cancer progression. Analyses of publicly available genomic data (e.g., expression, copy number, methylation) from TCGA, GEO, ENCODE, and Human Protein Atlas projects led to the following observations: (a) mda-9 expression correlates with both copy number and methylation level of an intronic CpG site (cg1719774) located downstream of the CpG island, (b) cg1719774 methylation is a likely prognostic marker in glioma, (c) among 22 cancer types, melanoma exhibits the highest mda-9 level, and lowest level of methylation at cg1719774, (d) cg1719774 hypomethylation is also associated with histone modifications (at the mda-9 locus) indicative of more active transcription, (e) using Gene Set Enrichment Analysis (GSEA), and the Virtual Gene Overexpression or Repression (VIGOR) analytical scheme, we were able to predict mda-9's association with extracellular matrix organization (e.g., MMPs, collagen, integrins), IGFBP2 and NF-κB signaling pathways, phospholipid metabolism, cytokines (e.g., interleukins), CTLA-4, and components of complement cascade pathways. Indeed, previous publications have shown that many of the aforementioned genes and pathways are associated with mda-9's functionality.
Collapse
Affiliation(s)
- Manny D Bacolod
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Upneet K Sokhi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Steven Bradley
- VCU Bioinformatics Program, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - David A Fenstermacher
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
47
|
Chua CY, Liu Y, Granberg KJ, Hu L, Haapasalo H, Annala MJ, Cogdell DE, Verploegen M, Moore LM, Fuller GN, Nykter M, Cavenee WK, Zhang W. IGFBP2 potentiates nuclear EGFR-STAT3 signaling. Oncogene 2015; 35:738-47. [PMID: 25893308 PMCID: PMC4615268 DOI: 10.1038/onc.2015.131] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 02/04/2023]
Abstract
Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the tumor-promoting mechanisms of IGFBP2 are poorly understood. The contributions of intracellular IGFBP2 to tumor development and progression are also unclear. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of EGFR, which subsequently activates STAT3 signaling. Furthermore, we demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 transactivation activities, via activation of the nuclear EGFR signaling pathway. Nuclear IGFBP2 directly influences the invasive and migratory capacities of human glioblastoma cells, providing a direct link between intracellular (and particularly nuclear) IGFBP2 and cancer hallmarks. These activities are also consistent with the strong association between IGFBP2 and STAT3-activated genes derived from the TCGA database for human glioma. A high level of all 3 proteins (IGFBP2, EGFR and STAT3) was strongly correlated with poorer survival in an independent patient dataset. These results identify a novel tumor-promoting function for IGFBP2 of activating EGFR/STAT3 signaling and facilitating EGFR accumulation in the nucleus, thereby deregulating EGFR signaling by 2 distinct mechanisms. As targeting EGFR in glioma has been relatively unsuccessful, this study suggests that IGFBP2 may be a novel therapeutic target.
Collapse
Affiliation(s)
- C Y Chua
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Y Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,ISB-MDA Genome Data Analysis Center, The Cancer Genome Atlas, Seattle, WA/Houston, TX, USA
| | - K J Granberg
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Signal Processing, Tampere University of Technology, Tampere, Finland.,Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - L Hu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Haapasalo
- Department of Pathology, Fimlab Laboratories and University of Tampere, Tampere, Finland
| | - M J Annala
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Signal Processing, Tampere University of Technology, Tampere, Finland.,Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - D E Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Verploegen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L M Moore
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.,ISB-MDA Genome Data Analysis Center, The Cancer Genome Atlas, Seattle, WA/Houston, TX, USA
| | - M Nykter
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - W K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - W Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.,ISB-MDA Genome Data Analysis Center, The Cancer Genome Atlas, Seattle, WA/Houston, TX, USA
| |
Collapse
|
48
|
Lin KW, Liao A, Qutub AA. Simulation predicts IGFBP2-HIF1α interaction drives glioblastoma growth. PLoS Comput Biol 2015; 11:e1004169. [PMID: 25884993 PMCID: PMC4401766 DOI: 10.1371/journal.pcbi.1004169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022] Open
Abstract
Tremendous strides have been made in improving patients’ survival from cancer with one glaring exception: brain cancer. Glioblastoma is the most common, aggressive and highly malignant type of primary brain tumor. The average overall survival remains less than 1 year. Notably, cancer patients with obesity and diabetes have worse outcomes and accelerated progression of glioblastoma. The root cause of this accelerated progression has been hypothesized to involve the insulin signaling pathway. However, while the process of invasive glioblastoma progression has been extensively studied macroscopically, it has not yet been well characterized with regards to intracellular insulin signaling. In this study we connect for the first time microscale insulin signaling activity with macroscale glioblastoma growth through the use of computational modeling. Results of the model suggest a novel observation: feedback from IGFBP2 to HIF1α is integral to the sustained growth of glioblastoma. Our study suggests that downstream signaling from IGFI to HIF1α, which has been the target of many insulin signaling drugs in clinical trials, plays a smaller role in overall tumor growth. These predictions strongly suggest redirecting the focus of glioma drug candidates on controlling the feedback between IGFBP2 and HIF1α. Current treatment for glioblastoma patients is limited to nonspecific methods: surgery followed by a combination of radio- and chemotherapy. With these methods, glioma patient survival is less than one year post-diagnosis. Targeting specific protein signaling pathways offers potentially more potent therapies. One promising potential target is the insulin signaling pathway, which is known to contribute to glioblastoma progression. However, drugs targeting this pathway have shown mixed results in clinical trials, and the detailed mechanisms of how the insulin signaling pathway promotes glioblastoma growth remain to be elucidated. Here, we developed a computational model of insulin signaling in glioblastoma in order to study this pathway’s role in tumor progression. Using the model, we systematically test contributions of different insulin signaling protein interactions on glioblastoma growth. Our model highlights a key driver for the growth of glioblastoma: IGFBP2-HIF1α feedback. This interaction provides a target that could open the door for new therapies in glioma and other solid tumors.
Collapse
Affiliation(s)
- Ka Wai Lin
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Angela Liao
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Amina A. Qutub
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Li X, Liu Y, Granberg KJ, Wang Q, Moore LM, Ji P, Gumin J, Sulman EP, Calin GA, Haapasalo H, Nykter M, Shmulevich I, Fuller GN, Lang FF, Zhang W. Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma. Oncogene 2015; 34:1619-1628. [PMID: 24747968 PMCID: PMC4205227 DOI: 10.1038/onc.2014.98] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 12/19/2022]
Abstract
MIR-491 is commonly co-deleted with its adjacent CDKN2A on chromosome 9p21.3 in glioblastoma multiforme (GBM). However, it is not known whether deletion of MIR-491 is only a passenger event or has an important role. Small-RNA sequencing of samples from GBM patients demonstrated that both mature products of MIR-491 (miR-491-5p and -3p) are downregulated in tumors compared with the normal brain. The integration of GBM data from The Cancer Genome Atlas (TCGA), miRNA target prediction and reporter assays showed that miR-491-5p directly targets EGFR, CDK6 and Bcl-xL, whereas miR-491-3p targets IGFBP2 and CDK6. Functionally, miR-491-3p inhibited glioma cell invasion; overexpression of both miR-491-5p and -3p inhibited proliferation of glioma cell lines and impaired the propagation of glioma stem cells (GSCs), thereby prolonging survival of xenograft mice. Moreover, knockdown of miR-491-5p in primary Ink4a-Arf-null mouse glial progenitor cells exacerbated cell proliferation and invasion. Therefore, MIR-491 is a tumor suppressor gene that, by utilizing both mature forms, coordinately controls the key cancer hallmarks: proliferation, invasion and stem cell propagation.
Collapse
Affiliation(s)
- Xia Li
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, China
| | - Yuexin Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kirsi J. Granberg
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
- Department of Pathology, Fimlab Laboratories and University of Tampere, Tampere, Finland
| | - Qinhao Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, China
| | - Lynette M. Moore
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Ji
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Erik P. Sulman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Non-coding RNA center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hannu Haapasalo
- Department of Pathology, Fimlab Laboratories and University of Tampere, Tampere, Finland
| | - Matti Nykter
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | | | - Gregory N. Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Non-coding RNA center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
50
|
Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression. Proc Natl Acad Sci U S A 2015; 112:3421-6. [PMID: 25737557 DOI: 10.1073/pnas.1414573112] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Akt is a robust oncogene that plays key roles in the development and progression of many cancers, including glioma. We evaluated the differential propensities of the Akt isoforms toward progression in the well-characterized RCAS/Ntv-a mouse model of PDGFB-driven low grade glioma. A constitutively active myristoylated form of Akt1 did not induce high-grade glioma (HGG). In stark contrast, Akt2 and Akt3 showed strong progression potential with 78% and 97% of tumors diagnosed as HGG, respectively. We further revealed that significant variations in polarity and hydropathy values among the Akt isoforms in both the pleckstrin homology domain (P domain) and regulatory domain (R domain) were critical in mediating glioma progression. Gene expression profiles from representative Akt-derived tumors indicated dominant and distinct roles for Akt3, consisting primarily of DNA repair pathways. TCGA data from human GBM closely reflected the DNA repair function, as Akt3 was significantly correlated with a 76-gene signature DNA repair panel. Consistently, compared with Akt1 and Akt2 overexpression models, Akt3-expressing human GBM cells had enhanced activation of DNA repair proteins, leading to increased DNA repair and subsequent resistance to radiation and temozolomide. Given the wide range of Akt3-amplified cancers, Akt3 may represent a key resistance factor.
Collapse
|