1
|
Patel N, Deprato A, Qian T, Adan A, Akgün M, Anderson A, Brickstock A, Eathorne A, Garud A, Haldar P, Jindal A, Jindal SK, Kerget B, Moitra S, Mukherjee R, Semprini A, Turner AM, Murgia N, Lacy P, Moitra S. Association between higher morning preference and better health-related quality of life in asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100456. [PMID: 40236314 PMCID: PMC11999264 DOI: 10.1016/j.jacig.2025.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/20/2025] [Accepted: 02/18/2025] [Indexed: 04/17/2025]
Abstract
Background Circadian preference for eveningness has been linked to a higher risk of asthma and allergies, but its association with health-related quality of life (HRQL) in asthma has not been studied yet. Objective We aimed to investigate the associations between individual circadian preference and HRQL in asthma. Methods Among 691 adult asthma patients from Canada, India, New Zealand, and the United Kingdom, a digital questionnaire was administered to capture demographic information, social and psychologic attributes, comorbidities, and medication adherence. Circadian preference and HRQL were assessed by the reduced version of the morningness-eveningness questionnaire (rMEQ) and the short form of the chronic respiratory questionnaire, respectively. We analyzed the association between chronotype and HRQL using mixed-effect linear regression models. Results Of all participants, 59% were female with a mean (standard deviation) age of 49 (17) years. Median (interquartile range) rMEQ total score was 17 (14-19). Mean (standard deviation) dyspnea, fatigue, emotional function, and mastery scores were 5.94 (1.2), 4.38 (1.3), 5.05 (1.3), and 1.96 (1.1), respectively. In regression analysis, a higher rMEQ total score (higher morningness) was associated with less fatigue (β = 0.06; 95% confidence interval, 0.04 to 0.09) and better emotional function (β = 0.03; 95% confidence interval, 0.004 to 0.06), and these associations were mediated by less anxiety, depression, and alcohol abuse, and better sleep quality. Conclusion Morning orientation is associated with better HRQL in patients with asthma. The results suggest that working with patients to promote schedules and habits related to morningness may be beneficial.
Collapse
Affiliation(s)
- Neel Patel
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Alberta Respiratory Centre and Division of Pulmonary Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Andy Deprato
- Alberta Respiratory Centre and Division of Pulmonary Medicine, University of Alberta, Edmonton, Alberta, Canada
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Tina Qian
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Respiratory Centre and Division of Pulmonary Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ana Adan
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Metin Akgün
- Department of Chest Diseases, Ataturk University, Erzurum, Turkey
- Department of Pulmonary Medicine, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | | | - Amanda Brickstock
- Department of Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Allie Eathorne
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Arundhati Garud
- Bagchi School of Public Health, Ahmedabad University, Ahmedabad, India
- Office of the Dean of Students, Ahmedabad University, Ahmedabad, India
| | - Prasun Haldar
- Department of Medical Laboratory Technology, Supreme Institute of Management and Technology, Mankundu, India
| | | | | | - Bugra Kerget
- Department of Chest Diseases, Ataturk University, Erzurum, Turkey
| | - Saibal Moitra
- Department of Allergy, Immunology, and Pulmonary Medicine, Apollo Gleneagles Hospital, Kolkata, India
| | - Rahul Mukherjee
- Department of Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Alex Semprini
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Alice M. Turner
- Department of Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Nicola Murgia
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Paige Lacy
- Alberta Respiratory Centre and Division of Pulmonary Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Subhabrata Moitra
- Alberta Respiratory Centre and Division of Pulmonary Medicine, University of Alberta, Edmonton, Alberta, Canada
- Bagchi School of Public Health, Ahmedabad University, Ahmedabad, India
| |
Collapse
|
2
|
Liao G, Diekman CO, Bose A. Dynamics of phase tumbling and the reentrainment of circadian oscillators. Math Biosci 2025; 381:109381. [PMID: 39929435 DOI: 10.1016/j.mbs.2025.109381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/17/2025]
Abstract
Circadian clocks are comprised of networks of cellular oscillators that synchronize to produce endogenous daily rhythms in gene expression and protein abundance. These clocks have evolved to align the physiology and behavior of organisms to the 24-h environmental cycles arising from Earth's rotation. Rapid travel across time zones causes misalignment between an organism's circadian rhythms and its environment, leading to sleep problems and other jet lag symptoms until the circadian system entrains to the external cycles of the new time zone. Experimental and modeling work has shown that phase tumbling, defined as desynchronizing networks of circadian oscillators prior to an abrupt phase shift of the light-dark cycle, can speed up the process of reentrainment. Here, we use a mathematical model of circadian oscillators and 2-D entrainment maps to analyze the conditions under which phase tumbling has a positive, neutral, or negative effect on reentrainment time. We find that whether or not phase tumbling is beneficial depends on the size of the external phase shift and the location of the perturbed oscillator with respect to the fixed points and invariant manifolds of the entrainment map.
Collapse
Affiliation(s)
- Guangyuan Liao
- Key Laboratory of Intelligent Analysis and Decision on Complex Systems, School of Science, Chongqing University of Posts and Telecommunications, Chongwen Road, Nan'an, 400065, Chongqing, China.
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, United States of America.
| | - Amitabha Bose
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, United States of America.
| |
Collapse
|
3
|
Nakazawa K, Matsuo M, Kikuchi Y, Nakajima Y, Numano R. Melanopsin DNA aptamers can regulate input signals of mammalian circadian rhythms by altering the phase of the molecular clock. Front Neurosci 2024; 18:1186677. [PMID: 38694901 PMCID: PMC11062245 DOI: 10.3389/fnins.2024.1186677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
DNA aptamers can bind specifically to biomolecules to modify their function, potentially making them ideal oligonucleotide therapeutics. Herein, we screened for DNA aptamer of melanopsin (OPN4), a blue-light photopigment in the retina, which plays a key role using light signals to reset the phase of circadian rhythms in the central clock. Firstly, 15 DNA aptamers of melanopsin (Melapts) were identified following eight rounds of Cell-SELEX using cells expressing melanopsin on the cell membrane. Subsequent functional analysis of each Melapt was performed in a fibroblast cell line stably expressing both Period2:ELuc and melanopsin by determining the degree to which they reset the phase of mammalian circadian rhythms in response to blue-light stimulation. Period2 rhythmic expression over a 24-h period was monitored in Period2:ELuc stable cell line fibroblasts expressing melanopsin. At subjective dawn, four Melapts were observed to advance phase by >1.5 h, while seven Melapts delayed phase by >2 h. Some Melapts caused a phase shift of approximately 2 h, even in the absence of photostimulation, presumably because Melapts can only partially affect input signaling for phase shift. Additionally, some Melaps were able to induce phase shifts in Per1::luc transgenic (Tg) mice, suggesting that these DNA aptamers may have the capacity to affect melanopsin in vivo. In summary, Melapts can successfully regulate the input signal and shifting phase (both phase advance and phase delay) of mammalian circadian rhythms in vitro and in vivo.
Collapse
Affiliation(s)
- Kazuo Nakazawa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- TechnoPro, Inc., Tokyo, Japan
| | - Minako Matsuo
- Institute for Research on Next-Generation Semiconductor and Sensing Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yo Kikuchi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Institute for Research on Next-Generation Semiconductor and Sensing Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yoshihiro Nakajima
- Health and Medical Research, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| | - Rika Numano
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Institute for Research on Next-Generation Semiconductor and Sensing Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
4
|
Engin A. Misalignment of Circadian Rhythms in Diet-Induced Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:27-71. [PMID: 39287848 DOI: 10.1007/978-3-031-63657-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
5
|
Zhang T, Liu Y, Yang L. Amplitude response and singularity behavior of circadian clock to external stimuli. NPJ Syst Biol Appl 2023; 9:39. [PMID: 37573374 PMCID: PMC10423250 DOI: 10.1038/s41540-023-00300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023] Open
Abstract
Amplitude changes caused by environmental cues are universal in the circadian clock and associated with various diseases. Singularity behavior, characterized by the disruption of circadian rhythms due to critical stimuli, has been observed across various species. Several mathematical models of the circadian clock have replicated this phenomenon. A comprehensive understanding of the amplitude response remains elusive due to experimental limitations. In this study, we address this question by utilizing a simple normal form model that accurately fits previous experimental data, thereby presenting a general mechanism. We employ a geometric framework to illustrate the dynamics in different stimuli of light-induced transcription (LIT) and light-induced degradation (LID), highlighting the core role of invisible instability in amplitude response. Our model systematically elucidates how stimulus mode, phase, and strength determine amplitude responses. The results show that external stimuli induce alterations in both the amplitudes of individual oscillators and the synchronization among oscillators, collectively influencing the overall amplitude response. While experimental methods impose constraints resulting in limited outcomes under specific conditions, our model provides a comprehensive and three-dimensional mechanistic explanation. A comparison with existing experimental findings demonstrates the consistency of our proposed mechanism. Considering the response direction, the framework enables the identification of phases that lead to increased circadian amplitude. Based on this mechanism derived from the framework, stimulus strategies for resetting circadian rhythms with reduced side effects could be designed. Our results demonstrate that the framework has great potential for understanding and applying stimulus responses in the circadian clock and other limit cycle oscillations.
Collapse
Affiliation(s)
- Tao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Yu Liu
- School of Mathematical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ling Yang
- School of Mathematical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Muscogiuri G, Poggiogalle E, Barrea L, Tarsitano MG, Garifalos F, Liccardi A, Pugliese G, Savastano S, Colao A. Exposure to artificial light at night: A common link for obesity and cancer? Eur J Cancer 2022; 173:263-275. [PMID: 35940056 DOI: 10.1016/j.ejca.2022.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/20/2023]
Abstract
Exposure to artificial light at night (ALAN) has been associated with disruption of the circadian system, which has been pointed out to have detrimental effects on health. Exposure to outdoor ALAN is very frequent in industrialised countries due to nocturnal light pollution and the relevant involvement of the total workforce in shift work and night work. Ecological and epidemiologic studies highlight the association between exposure to ALAN and several diseases, mainly obesity and cancer. More recently, also indoor ALAN exposure has been investigated. Among several multifactorial mechanisms linking ALAN exposure and health risks, suppression of melatonin secretion plays a pivotal role leading to alterations in circadian rhythm patterns, that are detrimental in terms of appetite regulation, and dysfunctions in metabolic signalling and cell growth in cancer. In addition, gut dysbiosis, inflammation, hypovitaminosis D, imbalance in cytokine secretion and levels are responsible for the multiple relationship linking circadian dysregulation due to ALAN exposure and obesity, and cancer. Therefore, the current manuscript summarises human and basic studies pointing out the impact of ALAN exposure on health, mostly focusing on obesity and cancer. Based on extant evidence, prevention strategies for obesity and cancer should be prompted, targeting exposure to ALAN.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università Federico II, Naples, Italy; Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy.
| | - Eleonora Poggiogalle
- Department of Experimental Medicine - Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy
| | - Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università Federico II, Naples, Italy
| | - Maria G Tarsitano
- Department of Experimental Medicine - Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy
| | - Francesco Garifalos
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università Federico II, Naples, Italy
| | - Alessia Liccardi
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università Federico II, Naples, Italy
| | - Gabriella Pugliese
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università Federico II, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università Federico II, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università Federico II, Naples, Italy; Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | | |
Collapse
|
7
|
Pay ML, Kim DW, Somers DE, Kim JK, Foo M. Modelling of plant circadian clock for characterizing hypocotyl growth under different light quality conditions. IN SILICO PLANTS 2022; 4:diac001. [PMID: 35369361 PMCID: PMC8963510 DOI: 10.1093/insilicoplants/diac001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
To meet the ever-increasing global food demand, the food production rate needs to be increased significantly in the near future. Speed breeding is considered as a promising agricultural technology solution to achieve the zero-hunger vision as specified in the United Nations Sustainable Development Goal 2. In speed breeding, the photoperiod of the artificial light has been manipulated to enhance crop productivity. In particular, regulating the photoperiod of different light qualities rather than solely white light can further improve speed breading. However, identifying the optimal light quality and the associated photoperiod simultaneously remains a challenging open problem due to complex interactions between multiple photoreceptors and proteins controlling plant growth. To tackle this, we develop a first comprehensive model describing the profound effect of multiple light qualities with different photoperiods on plant growth (i.e. hypocotyl growth). The model predicts that hypocotyls elongated more under red light compared to both red and blue light. Drawing similar findings from previous related studies, we propose that this might result from the competitive binding of red and blue light receptors, primarily Phytochrome B (phyB) and Cryptochrome 1 (cry1) for the core photomorphogenic regulator, CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). This prediction is validated through an experimental study on Arabidopsis thaliana. Our work proposes a potential molecular mechanism underlying plant growth under different light qualities and ultimately suggests an optimal breeding protocol that takes into account light quality.
Collapse
Affiliation(s)
- Miao Lin Pay
- Institute for Future Transport and Cities, Coventry University, Coventry CV1 2TE, UK
| | - Dae Wook Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - David E Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Mathias Foo
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
8
|
Finger AM. In Vitro Assays for Measuring Intercellular Coupling Among Peripheral Circadian Oscillators. Methods Mol Biol 2022; 2482:153-167. [PMID: 35610425 DOI: 10.1007/978-1-0716-2249-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Circadian clocks can be found in nearly all eukaryotic organisms, as well as certain bacterial strains, including commensal microbiota. Exploring intercellular coupling among cell-autonomous circadian oscillators is crucial for understanding how cellular ensembles generate and sustain coherent circadian rhythms on the tissue level, and thus, rhythmic organ functions. Here we describe a protocol for studying intercellular coupling among peripheral circadian oscillators using three-dimensional spheroid cultures in order to measure coupling strength within peripheral clock networks. We use cell spheroids to simulate in vivo tissue integrity, as well as to increase complexity of cell-cell interactions and the abundance of potential coupling factors. Circadian rhythms are monitored using live-cell imaging of spheroids equipped with circadian reporters over several days.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Berlin, Germany.
- Freie Universität Berlin, Berlin, Germany.
- Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
9
|
Kalyesubula M, Casey TM, Reicher N, Sabastian C, Wein Y, Bar Shira E, Hoang N, George UZ, Shamay A, Plaut K, Mabjeesh SJ. Physiological state and photoperiod exposures differentially influence circadian rhythms of body temperature and prolactin and relate to changes in mammary PER1 expression in late pregnant and early lactation dairy goats. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Phillips NE, Hugues A, Yeung J, Durandau E, Nicolas D, Naef F. The circadian oscillator analysed at the single-transcript level. Mol Syst Biol 2021; 17:e10135. [PMID: 33719202 PMCID: PMC7957410 DOI: 10.15252/msb.202010135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
The circadian clock is an endogenous and self-sustained oscillator that anticipates daily environmental cycles. While rhythmic gene expression of circadian genes is well-described in populations of cells, the single-cell mRNA dynamics of multiple core clock genes remain largely unknown. Here we use single-molecule fluorescence in situ hybridisation (smFISH) at multiple time points to measure pairs of core clock transcripts, Rev-erbα (Nr1d1), Cry1 and Bmal1, in mouse fibroblasts. The mean mRNA level oscillates over 24 h for all three genes, but mRNA numbers show considerable spread between cells. We develop a probabilistic model for multivariate mRNA counts using mixtures of negative binomials, which accounts for transcriptional bursting, circadian time and cell-to-cell heterogeneity, notably in cell size. Decomposing the mRNA variability into distinct noise sources shows that clock time contributes a small fraction of the total variability in mRNA number between cells. Thus, our results highlight the intrinsic biological challenges in estimating circadian phase from single-cell mRNA counts and suggest that circadian phase in single cells is encoded post-transcriptionally.
Collapse
Affiliation(s)
- Nicholas E Phillips
- Institute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Alice Hugues
- Institute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Master de BiologieÉcole Normale Supérieure de LyonUniversité Claude Bernard Lyon IUniversité de LyonLyonFrance
| | - Jake Yeung
- Institute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Eric Durandau
- Institute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Damien Nicolas
- Institute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Felix Naef
- Institute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
11
|
Finger A, Kramer A. Mammalian circadian systems: Organization and modern life challenges. Acta Physiol (Oxf) 2021; 231:e13548. [PMID: 32846050 DOI: 10.1111/apha.13548] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Humans and other mammalian species possess an endogenous circadian clock system that has evolved in adaptation to periodically reoccurring environmental changes and drives rhythmic biological functions, as well as behavioural outputs with an approximately 24-hour period. In mammals, body clocks are hierarchically organized, encompassing a so-called pacemaker clock in the hypothalamic suprachiasmatic nucleus (SCN), non-SCN brain and peripheral clocks, as well as cell-autonomous oscillators within virtually every cell type. A functional clock machinery on the molecular level, alignment among body clocks, as well as synchronization between endogenous circadian and exogenous environmental cycles has been shown to be crucial for our health and well-being. Yet, modern life constantly poses widespread challenges to our internal clocks, for example artificial lighting, shift work and trans-meridian travel, potentially leading to circadian disruption or misalignment and the emergence of associated diseases. For instance many of us experience a mismatch between sleep timing on work and free days (social jetlag) in our everyday lives without being aware of health consequences that may arise from such chronic circadian misalignment, Hence, this review provides an overview of the organization and molecular built-up of the mammalian circadian system, its interactions with the outside world, as well as pathologies arising from circadian disruption and misalignment.
Collapse
Affiliation(s)
- Anna‐Marie Finger
- Laboratory of Chronobiology Institute for Medical immunology Charité Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| | - Achim Kramer
- Laboratory of Chronobiology Institute for Medical immunology Charité Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| |
Collapse
|
12
|
Small L, Altıntaş A, Laker RC, Ehrlich A, Pattamaprapanont P, Villarroel J, Pillon NJ, Zierath JR, Barrès R. Contraction influences Per2 gene expression in skeletal muscle through a calcium-dependent pathway. J Physiol 2020; 598:5739-5752. [PMID: 32939754 PMCID: PMC7756801 DOI: 10.1113/jp280428] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Exercising at different times of day elicits different effects on exercise performance and metabolic health. However, the specific signals driving the observed time-of-day specific effects of exercise have not been fully identified. Exercise influences the skeletal muscle circadian clock, although the relative contribution of muscle contraction and extracellular signals is unknown. Here, we show that contraction acutely increases the expression of the core circadian clock gene Period Circadian Regulator 2 (Per2) and phase-shifts Per2 rhythmicity in muscle cells. This contraction effect on core clock genes is mediated through a calcium-dependant mechanism; The results obtained in the present study suggest that a proportion of the ability of exercise to entrain the skeletal muscle clock is driven directly by muscle contraction. Contraction interventions may be used to mimic some time-of-day specific effects of exercise on metabolism and muscle performance. ABSTRACT Exercise entrains the central and peripheral circadian clocks, although the mechanism by which exercise modulates expression of skeletal muscle clock genes is unclear. The present study aimed to determine whether skeletal muscle contraction alone could directly influence circadian rhythmicity and uncover the underlying mechanism by which contraction modulates clock gene expression. We investigated the expression of core clock genes in human skeletal muscle after acute exercise, as well as following in vitro contraction in mouse soleus muscle and cultured C2C12 skeletal muscle myotubes. Additionally, we interrogated the molecular pathways by which skeletal muscle contraction could influence clock gene expression. Contraction acutely increased the expression of the core circadian clock gene Period Circadian Regulator 2 (Per2) and phase-shifted Per2 rhythmicity in C2C12 myotubes in vitro. Further investigation revealed that pharmacologically increasing cytosolic calcium concentrations by ionomycin treatment mimicked the effect of contraction on Per2 expression. Similarly, treatment with a calcium channel blocker, nifedipine, blocked the effect of electric pulse stimulation-induced contraction on Per2 expression. Increased calcium influx from contraction lead to binding of the phosphorylated form of cAMP response element-binding protein (CREB) to the Per2 promoter, suggesting a role of CREB in contraction-induced Per2 transcription. Thus, by dissociating the effect of muscle contraction alone from the whole effect of exercise, our investigations indicate that a proportion of the ability of exercise to entrain the skeletal muscle clock is driven directly by contraction.
Collapse
Affiliation(s)
- Lewin Small
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rhianna C Laker
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pattarawan Pattamaprapanont
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julia Villarroel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Finger AM, Dibner C, Kramer A. Coupled network of the circadian clocks: a driving force of rhythmic physiology. FEBS Lett 2020; 594:2734-2769. [PMID: 32750151 DOI: 10.1002/1873-3468.13898] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
The circadian system is composed of coupled endogenous oscillators that allow living beings, including humans, to anticipate and adapt to daily changes in their environment. In mammals, circadian clocks form a hierarchically organized network with a 'master clock' located in the suprachiasmatic nucleus of the hypothalamus, which ensures entrainment of subsidiary oscillators to environmental cycles. Robust rhythmicity of body clocks is indispensable for temporally coordinating organ functions, and the disruption or misalignment of circadian rhythms caused for instance by modern lifestyle is strongly associated with various widespread diseases. This review aims to provide a comprehensive overview of our current knowledge about the molecular architecture and system-level organization of mammalian circadian oscillators. Furthermore, we discuss the regulatory roles of peripheral clocks for cell and organ physiology and their implication in the temporal coordination of metabolism in human health and disease. Finally, we summarize methods for assessing circadian rhythmicity in humans.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Achim Kramer
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
14
|
Ananthasubramaniam B, Schmal C, Herzel H. Amplitude Effects Allow Short Jet Lags and Large Seasonal Phase Shifts in Minimal Clock Models. J Mol Biol 2020; 432:3722-3737. [PMID: 31978397 DOI: 10.1016/j.jmb.2020.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/24/2023]
Abstract
Mathematical models of varying complexity have helped shed light on different aspects of circadian clock function. In this work, we question whether minimal clock models (Goodwin models) are sufficient to reproduce essential phenotypes of the clock: a small phase response curve (PRC), fast jet lag, and seasonal phase shifts. Instead of building a single best model, we take an approach where we study the properties of a set of models satisfying certain constraints; here, a 1h-pulse PRC with a range of 3h and clock periods between 22h and 26h is designed. Surprisingly, almost all these randomly parameterized models showed a 4h change in phase of entrainment between long and short days and jet lag durations of three to seven days in advance and delay. Moreover, intrinsic clock period influenced jet lag duration and entrainment amplitude and phase. Fast jet lag was realized in this model by means of an interesting amplitude effect: the association between clock amplitude and clock period termed "twist." This twist allows amplitude changes to speed up and slow down clocks enabling faster shifts. These findings were robust to the addition of positive feedback to the model. In summary, the known design principles of rhythm generation - negative feedback, long delay, and switch-like inhibition (we review these in detail) - are sufficient to reproduce the essential clock phenotypes. Furthermore, amplitudes play a role in determining clock properties and must be always considered, although they are difficult to measure.
Collapse
Affiliation(s)
| | - Christoph Schmal
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| |
Collapse
|
15
|
Pilorz V, Astiz M, Heinen KO, Rawashdeh O, Oster H. The Concept of Coupling in the Mammalian Circadian Clock Network. J Mol Biol 2020; 432:3618-3638. [PMID: 31926953 DOI: 10.1016/j.jmb.2019.12.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
The circadian clock network regulates daily rhythms in mammalian physiology and behavior to optimally adapt the organism to the 24-h day/night cycle. A central pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), coordinates subordinate cellular oscillators in the brain, as well as in peripheral organs to align with each other and external time. Stability and coordination of this vast network of cellular oscillators is achieved through different levels of coupling. Although coupling at the molecular level and across the SCN is well established and believed to define its function as pacemaker structure, the notion of coupling in other tissues and across the whole system is less well understood. In this review, we describe the different levels of coupling in the mammalian circadian clock system - from molecules to the whole organism. We highlight recent advances in gaining knowledge of the complex organization and function of circadian network regulation and its significance for the generation of stable but plastic intrinsic 24-h rhythms.
Collapse
Affiliation(s)
- Violetta Pilorz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Mariana Astiz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Keno Ole Heinen
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Oliver Rawashdeh
- The University of Queensland, School of Biomedical Sciences, Faculty of Medicine, St Lucia Qld, 4071, Australia
| | - Henrik Oster
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany.
| |
Collapse
|
16
|
Mure LS, Hatori M, Ruda K, Benegiamo G, Demas J, Panda S. Sustained Melanopsin Photoresponse Is Supported by Specific Roles of β-Arrestin 1 and 2 in Deactivation and Regeneration of Photopigment. Cell Rep 2019; 25:2497-2509.e4. [PMID: 30485815 PMCID: PMC6396282 DOI: 10.1016/j.celrep.2018.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/04/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are indispensable for non-image-forming visual responses that sustain under prolonged illumination. For sustained signaling of ipRGCs, the melanopsin photopigment must continuously regenerate. The underlying mechanism is unknown. We discovered that a cluster of Ser/Thr sites within the C-terminal region of mammalian melanopsin is phosphorylated after a light pulse. This forms a binding site for β-arrestin 1 (βARR1) and β-arrestin 2. β-arrestin 2 primarily regulates the deactivation of melanopsin; accordingly, βαrr2–/–mice exhibit prolonged ipRGC responses after cessation of a light pulse. β-arrestin 1 primes melanopsin for regeneration. Therefore, βαrr1–/– ipRGCs become desensitized after repeated or prolonged photostimulation. The lack of either β-arrestin atten-uates ipRGC response under prolonged illumination, suggesting that β-arrestin 2-mediated deactivation and β-arrestin 1-dependent regeneration of melanopsin function in sequence. In conclusion, we discovered a molecular mechanism by which β-arrestins regulate different aspects of melanopsin photoresponses and allow ipRGC-sustained responses under prolonged illumination. The mechanism by which melanopsin-expressing retinal ganglion cells (mRGCs) tonically respond to continuous illumination is unknown. Mure et al. show that phosphorylation-dependent binding of β-arrestin 1 and 2 coordinately deactivate and regenerate melanopsin photopigment to enable sustained firing of mRGCs in response to prolonged illumination.
Collapse
Affiliation(s)
- Ludovic S Mure
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Megumi Hatori
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Keio University School of Medicine, Tokyo, Japan
| | - Kiersten Ruda
- St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Giorgia Benegiamo
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - James Demas
- St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Satchidananda Panda
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
17
|
Sládek M, Sumová A. Modulation of NMDA-Mediated Clock Resetting in the Suprachiasmatic Nuclei of mPer2 Luc Mouse by Endocannabinoids. Front Physiol 2019; 10:361. [PMID: 30984034 PMCID: PMC6450388 DOI: 10.3389/fphys.2019.00361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/14/2019] [Indexed: 11/29/2022] Open
Abstract
Light entrains the master circadian clock in the suprachiasmatic nucleus (SCN) predominantly through glutamatergic signaling via NMDA receptors. The magnitude and the direction of resulting phase shifts depend on timing of the photic stimulus. Previous reports based on behavioral and electrophysiological data suggested that endocannabinoids (EC) might reduce the ability of the SCN clock to respond to light. However, there is little direct evidence for the involvement of EC in entrainment of the rhythmic clock gene expression in the SCN. We have used luminescence recording of cultured SCN slices from mPer2Luc mice to construct a complete phase response curve (PRC) for NMDA receptor activation. The results demonstrated that NMDA administration phase-shifts the PER2 rhythm in a time-specific manner. A stable “singularity,” in the course of which the clock seemingly stops while the overall phase is caught between delays and advances, can occur in response to NMDA at a narrow interval during the PER2 level decrease. NMDA-induced phase delays were affected neither by the agonist (WIN 55,212-2 mesylate) nor by the antagonist (rimonabant hydrochloride) of EC receptors. However, the agonist significantly reduced the NMDA-induced phase advance of the clock, while the antagonist enhanced the phase advance, causing a shift in the sensitivity window of the SCN to NMDA. The modulation of EC signaling in the SCN had no effect by itself on the phase of the PER2 rhythm. The results provide evidence for a modulatory role of EC in photic entrainment of the circadian clock in the SCN.
Collapse
Affiliation(s)
- Martin Sládek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Alena Sumová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
18
|
Rao RT, Scherholz ML, Androulakis IP. Modeling the influence of chronopharmacological administration of synthetic glucocorticoids on the hypothalamic-pituitary-adrenal axis. Chronobiol Int 2018; 35:1619-1636. [PMID: 30059634 PMCID: PMC6292202 DOI: 10.1080/07420528.2018.1498098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/18/2018] [Accepted: 07/04/2018] [Indexed: 01/18/2023]
Abstract
Natural glucocorticoids, a class of cholesterol-derived hormones, modulate an array of metabolic, anti-inflammatory, immunosuppressive and cognitive signaling. The synthesis of natural glucocorticoids, largely cortisol in humans, is regulated by the hypothalamic-pituitary-adrenal (HPA) axis and exhibits pronounced circadian variation. Considering the central regulatory function of endogenous glucocorticoids, maintenance of the circadian activity of the HPA axis is essential to host survival and chronic disruption of such activity leads to systemic complications. There is a great deal of interest in synthetic glucocorticoids due to the immunosuppressive and anti-inflammatory properties and the development of novel dosing regimens that can minimize the disruption of endogenous activity, while still maintaining the pharmacological benefits of long-term synthetic glucocorticoid therapy. Synthetic glucocorticoids are associated with an increased risk of developing the pathological disorders related to chronic suppression of cortisol rhythmicity as a result of the potent negative feedback by synthetic glucocorticoids on the HPA axis precursors. In this study, a mathematical model was developed to explore the influence of chronopharmacological dosing of exogenous glucocorticoids on the endogenous cortisol rhythm considering intra-venous and oral dosing. Chronic daily dosing resulted in modification of the circadian rhythmicity of endogenous cortisol with the amplitude and acrophase of the altered rhythm dependent on the administration time. Simulations revealed that the circadian features of the endogenous cortisol rhythm can be preserved by proper timing of administration. The response following a single dose was not indicative of the response following long-term, repeated chronopharmacological dosing of synthetic glucocorticoids. Furthermore, simulations revealed the inductive influence of long-term treatment was only associated with low to moderate doses, while high doses generally led to suppression of endogenous activity regardless of the chronopharmacological dose. Finally, chronic daily dosing was found to alter the responsiveness of the HPA axis, such that a decrease in the amplitude of the cortisol rhythm resulted in a partial loss in the time-of-day dependent response to CRH stimulation, while an increase in the amplitude was associated with a more pronounced time-of-day dependence of the response.
Collapse
Affiliation(s)
- Rohit T. Rao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Megerle L. Scherholz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Ioannis P. Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
- Department of Biomedical Engineering, Rutgers The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854
- Correspondence: I.P. Androulakis, 599 Taylor Road, Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08854, , tel: 848-445-6561, fax: 732-445-3753
| |
Collapse
|
19
|
Noguchi T, Harrison EM, Sun J, May D, Ng A, Welsh DK, Gorman MR. Circadian rhythm bifurcation induces flexible phase resetting by reducing circadian amplitude. Eur J Neurosci 2018; 51:2329-2342. [PMID: 30044021 DOI: 10.1111/ejn.14086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/21/2018] [Accepted: 07/04/2018] [Indexed: 11/29/2022]
Abstract
Shift-work and jet-lag-related disorders are caused by the limited flexibility of the suprachiasmatic nucleus (SCN), a master circadian clock in the hypothalamus, to adjust to new light-dark (LD) cycles. Recent findings confirmed here establish that behavioral jet lag after simulated time-zone travel is virtually eliminated following bifurcated circadian entrainment under a novel and atypical 24-h light:dark:light:dark (LDLD) cycle. To investigate the mechanisms of this fast resetting, we examined the oscillatory stability of the SCN and peripheral tissues in LDLD-bifurcated mice employing the dissection procedure as a perturbing resetting stimulus. SCN, lung, liver, and adrenal tissue were extracted at times throughout the day from female and male PER2::Luciferase knock-in mice entrained to either LDLD or a normal LD cycle. Except for adrenals, the phase of the cultured explants was more strongly set by dissection under LDLD than under normal LD. Acute bioluminescence levels of SCN explants indicate that the rhythm amplitude of PER2 is reduced and phase is altered in LDLD. Real-time quantitative PCR suggests that amplitude and rhythmicity of canonical clock genes in the lung, liver, and kidney are also significantly reduced in LDLD in vivo. Furthermore, spatiotemporal patterns of PER2 peak time in cultured SCN were altered in LDLD. These results suggest that altered gene expression patterns in the SCN caused by bifurcation likely result in fast resetting of behavior and cultured explants, consistent with previously reported mathematical models. Thus, non-invasive, simple light manipulations can make circadian rhythms more adaptable to abrupt shifts in the environmental LD cycle.
Collapse
Affiliation(s)
- Takako Noguchi
- Center for Circadian Biology, UCSD, La Jolla, California
| | - Elizabeth M Harrison
- Center for Circadian Biology, UCSD, La Jolla, California.,Department of Psychology, UCSD, La Jolla, California
| | - Jonathan Sun
- Center for Circadian Biology, UCSD, La Jolla, California.,Department of Psychology, UCSD, La Jolla, California
| | - Deborah May
- Center for Circadian Biology, UCSD, La Jolla, California.,Department of Psychology, UCSD, La Jolla, California
| | - Alan Ng
- Center for Circadian Biology, UCSD, La Jolla, California.,Department of Biology, UCSD, La Jolla, California
| | - David K Welsh
- Center for Circadian Biology, UCSD, La Jolla, California.,Department of Psychiatry, UCSD, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Michael R Gorman
- Center for Circadian Biology, UCSD, La Jolla, California.,Department of Psychology, UCSD, La Jolla, California
| |
Collapse
|
20
|
Tapia M, Wulff-Zottele C, De Gregorio N, Lang M, Varela H, Josefa Serón-Ferré M, Vivaldi EA, Araneda OF, Silva-Urra J, Gunga HC, Behn C. Melatonin Relations With Respiratory Quotient Weaken on Acute Exposure to High Altitude. Front Physiol 2018; 9:798. [PMID: 30008674 PMCID: PMC6034204 DOI: 10.3389/fphys.2018.00798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/07/2018] [Indexed: 12/17/2022] Open
Abstract
High altitude (HA) exposure may affect human health and performance by involving the body timing system. Daily variations of melatonin may disrupt by HA exposure, thereby possibly affecting its relations with a metabolic parameter like the respiratory quotient (RQ). Sea level (SL) volunteers (7 women and 7 men, 21.0 ± 2.04 y) were examined for daily changes in salivary melatonin concentration (SMC). Sampling was successively done at SL (Antofagasta, Chile) and, on acute HA exposure, at nearby Caspana (3,270 m asl). Saliva was collected in special vials (Salimetrics Oral Swab, United Kingdom) at sunny noon (SMCD) and in the absence of blue light at midnight (SMCN). The samples were obtained after rinsing the mouth with tap water and were analyzed for SMC by immunoassay (ELISA kit; IBL International, Germany). RQ measurements (n = 12) were realized with a portable breath to breath metabolic system (OxiconTM Mobile, Germany), between 8:00 PM and 10:00 PM, once at either location. At SL, SMCD, and SMCN values (mean ± SD) were, respectively, 2.14 ± 1.30 and 11.6 ± 13.9 pg/ml (p < 0.05). Corresponding values at HA were 8.83 ± 12.6 and 13.7 ± 16.7 pg/ml (n.s.). RQ was 0.78 ± 0.07 and 0.89 ± 0.08, respectively, at SL and HA (p < 0.05). Differences between SMCN and SMCD (SMCN-SMCD) strongly correlate with the corresponding RQ values at SL (r = -0.74) and less tight at HA (r = -0.37). Similarly, mean daily SMC values (SMC) tightly correlate with RQ at SL (r = -0.79) and weaker at HA (r = -0.31). SMCN-SMCD, as well as, SMC values at SL, on the other hand, respectively, correlate with the corresponding values at HA (r = 0.71 and r = 0.85). Acute exposure to HA appears to loosen relations of SMC with RQ. A personal profile in daily SMC variation, on the other hand, tends to be conserved at HA.
Collapse
Affiliation(s)
- Marcelo Tapia
- Owl Capacitaciones y Asesorías SpA, Antofagasta, Chile
| | | | - Nicole De Gregorio
- Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Morin Lang
- Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Héctor Varela
- Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | | | - Ennio A Vivaldi
- Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Oscar F Araneda
- Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Juan Silva-Urra
- Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Hanns-Christian Gunga
- Center for Space Medicine and Extreme Environments, Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claus Behn
- Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
21
|
Abraham U, Schlichting JK, Kramer A, Herzel H. Quantitative analysis of circadian single cell oscillations in response to temperature. PLoS One 2018; 13:e0190004. [PMID: 29293562 PMCID: PMC5749732 DOI: 10.1371/journal.pone.0190004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/06/2017] [Indexed: 11/18/2022] Open
Abstract
Body temperature rhythms synchronize circadian oscillations in different tissues, depending on the degree of cellular coupling: the responsiveness to temperature is higher when single circadian oscillators are uncoupled. So far, the role of coupling in temperature responsiveness has only been studied in organotypic tissue slices of the central circadian pacemaker, because it has been assumed that peripheral target organs behave like uncoupled multicellular oscillators. Since recent studies indicate that some peripheral tissues may exhibit cellular coupling as well, we asked whether peripheral network dynamics also influence temperature responsiveness. Using a novel technique for long-term, high-resolution bioluminescence imaging of primary cultured cells, exposed to repeated temperature cycles, we were able to quantitatively measure period, phase, and amplitude of central (suprachiasmatic nuclei neuron dispersals) and peripheral (mouse ear fibroblasts) single cell oscillations in response to temperature. Employing temperature cycles of different lengths, and different cell densities, we found that some circadian characteristics appear cell-autonomous, e.g. period responses, while others seem to depend on the quality/degree of cellular communication, e.g. phase relationships, robustness of the oscillation, and amplitude. Overall, our findings indicate a strong dependence on the cell's ability for intercellular communication, which is not only true for neuronal pacemakers, but, importantly, also for cells in peripheral tissues. Hence, they stress the importance of comparative studies that evaluate the degree of coupling in a given tissue, before it may be used effectively as a target for meaningful circadian manipulation.
Collapse
Affiliation(s)
- Ute Abraham
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Achim Kramer
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt-University, Berlin, Germany
| |
Collapse
|
22
|
Gan S, O'Shea EK. An Unstable Singularity Underlies Stochastic Phasing of the Circadian Clock in Individual Cyanobacterial Cells. Mol Cell 2017; 67:659-672.e12. [PMID: 28803778 DOI: 10.1016/j.molcel.2017.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/18/2017] [Accepted: 07/12/2017] [Indexed: 11/19/2022]
Abstract
The endogenous circadian clock synchronizes with environmental time by appropriately resetting its phase in response to external cues. Of note, some resetting stimuli induce attenuated oscillations of clock output, which has been observed at the population-level in several organisms and in studies of individual humans. To investigate what is happening in individual cellular clocks, we studied the unicellular cyanobacterium S. elongatus. By measuring its phase-resetting responses to temperature changes, we found that population-level arrhythmicity occurs when certain perturbations cause stochastic phases of oscillations in individual cells. Combining modeling with experiments, we related stochastic phasing to the dynamical structure of the cyanobacterial clock as an oscillator and explored the physiological relevance of the oscillator structure for accurately timed rhythmicity in changing environmental conditions. Our findings and approach can be applied to other biological oscillators.
Collapse
Affiliation(s)
- Siting Gan
- Howard Hughes Medical Institute, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Systems Biology Ph.D. Program, Harvard University, Cambridge, MA 02138, USA
| | - Erin K O'Shea
- Howard Hughes Medical Institute, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
23
|
Bailes HJ, Milosavljevic N, Zhuang LY, Gerrard EJ, Nishiguchi T, Ozawa T, Lucas RJ. Optogenetic interrogation reveals separable G-protein-dependent and -independent signalling linking G-protein-coupled receptors to the circadian oscillator. BMC Biol 2017; 15:40. [PMID: 28506231 PMCID: PMC5430609 DOI: 10.1186/s12915-017-0380-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endogenous circadian oscillators distributed across the mammalian body are synchronised among themselves and with external time via a variety of signalling molecules, some of which interact with G-protein-coupled receptors (GPCRs). GPCRs can regulate cell physiology via pathways originating with heterotrimeric G-proteins or β-arrestins. We applied an optogenetic approach to determine the contribution of these two signalling modes on circadian phase. RESULTS We employed a photopigment (JellyOp) that activates Gαs signalling with better selectivity and higher sensitivity than available alternatives, and a point mutant of this pigment (F112A) biased towards β-arrestin signalling. When expressed in fibroblasts, both native JellyOp and the F112A arrestin-biased mutant drove light-dependent phase resetting in the circadian clock. Shifts induced by the two opsins differed in their circadian phase dependence and the degree to which they were associated with clock gene induction. CONCLUSIONS Our data imply separable G-protein and arrestin inputs to the mammalian circadian clock and establish a pair of optogenetic tools suitable for manipulating Gαs- and β-arrestin-biased signalling in live cells.
Collapse
Affiliation(s)
- Helena J Bailes
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Nina Milosavljevic
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - Ling-Yu Zhuang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Elliot J Gerrard
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Takeaki Ozawa
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Robert J Lucas
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Ikarashi R, Akechi H, Kanda Y, Ahmad A, Takeuchi K, Morioka E, Sugiyama T, Ebisawa T, Ikeda M, Ikeda M. Regulation of molecular clock oscillations and phagocytic activity via muscarinic Ca 2+ signaling in human retinal pigment epithelial cells. Sci Rep 2017; 7:44175. [PMID: 28276525 PMCID: PMC5343479 DOI: 10.1038/srep44175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Vertebrate eyes are known to contain circadian clocks, however, the intracellular mechanisms regulating the retinal clockwork remain largely unknown. To address this, we generated a cell line (hRPE-YC) from human retinal pigmental epithelium, which stably co-expressed reporters for molecular clock oscillations (Bmal1-luciferase) and intracellular Ca2+ concentrations (YC3.6). The hRPE-YC cells demonstrated circadian rhythms in Bmal1 transcription. Also, these cells represented circadian rhythms in Ca2+-spiking frequencies, which were canceled by dominant-negative Bmal1 transfections. The muscarinic agonist carbachol, but not photic stimulation, phase-shifted Bmal1 transcriptional rhythms with a type-1 phase response curve. This is consistent with significant M3 muscarinic receptor expression and little photo-sensor (Cry2 and Opn4) expression in these cells. Moreover, forskolin phase-shifted Bmal1 transcriptional rhythm with a type-0 phase response curve, in accordance with long-lasting CREB phosphorylation levels after forskolin exposure. Interestingly, the hRPE-YC cells demonstrated apparent circadian rhythms in phagocytic activities, which were abolished by carbachol or dominant-negative Bmal1 transfection. Because phagocytosis in RPE cells determines photoreceptor disc shedding, molecular clock oscillations and cytosolic Ca2+ signaling may be the driving forces for disc-shedding rhythms known in various vertebrates. In conclusion, the present study provides a cellular model to understand molecular and intracellular signaling mechanisms underlying human retinal circadian clocks.
Collapse
Affiliation(s)
- Rina Ikarashi
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Honami Akechi
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Yuzuki Kanda
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Alsawaf Ahmad
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Kouhei Takeuchi
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Eri Morioka
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Takashi Sugiyama
- Advanced Core Technology Department, Research and Development Division, Olympus Co. Ltd., 2-3 Kuboyama, Hachioji, Tokyo 192-8512, Japan
| | - Takashi Ebisawa
- Department of Psychiatry, Tokyo Metropolitan Police Hospital, 4-22-1 Nakano, Nakano-ku, Tokyo 164-8541, Japan
| | - Masaaki Ikeda
- Department of Physiology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan.,Molecular Clock Project, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka city, Saitama, 350-1241, Japan
| | - Masayuki Ikeda
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan.,Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| |
Collapse
|
25
|
Liu F, Chang HC. Physiological links of circadian clock and biological clock of aging. Protein Cell 2017; 8:477-488. [PMID: 28108951 PMCID: PMC5498335 DOI: 10.1007/s13238-016-0366-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Circadian rhythms orchestrate biochemical and physiological processes in living organisms to respond the day/night cycle. In mammals, nearly all cells hold self-sustained circadian clocks meanwhile couple the intrinsic rhythms to systemic changes in a hierarchical manner. The suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master pacemaker to initiate daily synchronization according to the photoperiod, in turn determines the phase of peripheral cellular clocks through a variety of signaling relays, including endocrine rhythms and metabolic cycles. With aging, circadian desynchrony occurs at the expense of peripheral metabolic pathologies and central neurodegenerative disorders with sleep symptoms, and genetic ablation of circadian genes in model organisms resembled the aging-related features. Notably, a number of studies have linked longevity nutrient sensing pathways in modulating circadian clocks. Therapeutic strategies that bridge the nutrient sensing pathways and circadian clock might be rational designs to defy aging.
Collapse
Affiliation(s)
- Fang Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hung-Chun Chang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
26
|
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
27
|
Bedont JL, LeGates TA, Buhr E, Bathini A, Ling JP, Bell B, Wu MN, Wong PC, Van Gelder RN, Mongrain V, Hattar S, Blackshaw S. An LHX1-Regulated Transcriptional Network Controls Sleep/Wake Coupling and Thermal Resistance of the Central Circadian Clockworks. Curr Biol 2016; 27:128-136. [PMID: 28017605 DOI: 10.1016/j.cub.2016.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/03/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the central circadian clock in mammals. It is entrained by light but resistant to temperature shifts that entrain peripheral clocks [1-5]. The SCN expresses many functionally important neuropeptides, including vasoactive intestinal peptide (VIP), which drives light entrainment, synchrony, and amplitude of SCN cellular clocks and organizes circadian behavior [5-16]. The transcription factor LHX1 drives SCN Vip expression, and cellular desynchrony in Lhx1-deficient SCN largely results from Vip loss [17, 18]. LHX1 regulates many genes other than Vip, yet activity rhythms in Lhx1-deficient mice are similar to Vip-/- mice under light-dark cycles and only somewhat worse in constant conditions. We suspected that LHX1 targets other than Vip have circadian functions overlooked in previous studies. In this study, we compared circadian sleep and temperature rhythms of Lhx1- and Vip-deficient mice and found loss of acute light control of sleep in Lhx1 but not Vip mutants. We also found loss of circadian resistance to fever in Lhx1 but not Vip mice, which was partially recapitulated by heat application to cultured Lhx1-deficient SCN. Having identified VIP-independent functions of LHX1, we mapped the VIP-independent transcriptional network downstream of LHX1 and a largely separable VIP-dependent transcriptional network. The VIP-independent network does not affect core clock amplitude and synchrony, unlike the VIP-dependent network. These studies identify Lhx1 as the first gene required for temperature resistance of the SCN clockworks and demonstrate that acute light control of sleep is routed through the SCN and its immediate output regions.
Collapse
Affiliation(s)
- Joseph L Bedont
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tara A LeGates
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ethan Buhr
- Department of Ophthalmology, University of Washington, Seattle, WA 98104, USA
| | - Abhijith Bathini
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan P Ling
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Benjamin Bell
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mark N Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Philip C Wong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Valerie Mongrain
- Department of Neuroscience, Université de Montreal, Montreal, QC H3C 3J7, Canada
| | - Samer Hattar
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
28
|
Abstract
The mammalian circadian clock is a complex multi-scale, multivariable biological control system. In the past two decades, methods from systems engineering have led to numerous insights into the architecture and functionality of this system. In this review, we examine the mammalian circadian system through a process systems lens. We present a mathematical framework for examining the cellular circadian oscillator, and show recent extensions for understanding population-scale dynamics. We provide an overview of the routes by which the circadian system can be systemically manipulated, and present in silico proof of concept results for phase resetting of the clock via model predictive control.
Collapse
|
29
|
Mure LS, Hatori M, Zhu Q, Demas J, Kim IM, Nayak SK, Panda S. Melanopsin-Encoded Response Properties of Intrinsically Photosensitive Retinal Ganglion Cells. Neuron 2016; 90:1016-27. [PMID: 27181062 DOI: 10.1016/j.neuron.2016.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/17/2016] [Accepted: 04/06/2016] [Indexed: 11/16/2022]
Abstract
Melanopsin photopigment expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs) plays a crucial role in the adaptation of mammals to their ambient light environment through both image-forming and non-image-forming visual responses. The ipRGCs are structurally and functionally distinct from classical rod/cone photoreceptors and have unique properties, including single-photon response, long response latency, photon integration over time, and slow deactivation. We discovered that amino acid sequence features of melanopsin protein contribute to the functional properties of the ipRGCs. Phosphorylation of a cluster of Ser/Thr residues in the C-terminal cytoplasmic region of melanopsin contributes to deactivation, which in turn determines response latency and threshold sensitivity of the ipRGCs. The poorly conserved region distal to the phosphorylation cluster inhibits phosphorylation's functional role, thereby constituting a unique delayed deactivation mechanism. Concerted action of both regions sustains responses to dim light, allows for the integration of light over time, and results in precise signal duration.
Collapse
Affiliation(s)
- Ludovic S Mure
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Megumi Hatori
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Quansheng Zhu
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - James Demas
- St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Irene M Kim
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Surendra K Nayak
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Satchidananda Panda
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Abstract
Using real-time imaging of circadian gene expression, a new study reveals how a light pulse briefly desynchronizes clock neurons in the fly brain before they settle into a new, synchronized daily rhythm.
Collapse
Affiliation(s)
- Cristina Mazuski
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
31
|
Nishi T, Saeki K, Obayashi K, Miyata K, Tone N, Tsujinaka H, Yamashita M, Masuda N, Mizusawa Y, Okamoto M, Hasegawa T, Maruoka S, Ueda T, Kojima M, Matsuura T, Kurumatani N, Ogata N. The effect of blue-blocking intraocular lenses on circadian biological rhythm: protocol for a randomised controlled trial (CLOCK-IOL colour study). BMJ Open 2015; 5:e007930. [PMID: 25968007 PMCID: PMC4431140 DOI: 10.1136/bmjopen-2015-007930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Blue light information plays an important role in synchronising internal biological rhythm within the external environment. Circadian misalignment is associated with the increased risk of sleep disturbance, obesity, diabetes mellitus, depression, ischaemic heart disease, stroke and cancer. Meanwhile, blue light causes photochemical damage to the retina, and may be associated with age-related macular degeneration (AMD). At present, clear intraocular lenses (IOLs) and blue-blocking IOLs are both widely used for cataract surgery; there is currently a lack of randomised controlled trials to determine whether clear or blue-blocking IOLs should be used. METHODS AND ANALYSIS This randomised controlled trial will recruit 1000 cataract patients and randomly allocate them to receive clear IOLs or blue-blocking IOLs in a ratio of 1:1. The primary outcomes are mortality and the incidence of cardiovascular disease, cancer and AMD. Secondary outcomes are fasting plasma glucose, triglycerides, cholesterol, glycated haemoglobin, sleep quality, daytime sleepiness depressive symptoms, light sensitivity, the circadian rhythm of physical activity, wrist skin temperature and urinary melatonin metabolite. Primary outcomes will be followed until 20 years after surgery, and secondary outcomes will be assessed at baseline and 1 year after surgery. ETHICS AND DISSEMINATION Ethical approval has been obtained from the Institutional Review Board of Nara Medical University (No. 13-032). The findings of this study will be communicated to healthcare professionals, participants and the public through peer-reviewed publications, scientific conferences and the University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR) home page. TRIAL REGISTRATION NUMBER UMIN000014680.
Collapse
Affiliation(s)
- Tomo Nishi
- Department of Ophthalmology, Nara Medical University School of Medicine,Nara,Japan
| | - Keigo Saeki
- Department of Community Health and Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Kenji Obayashi
- Department of Community Health and Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Kimie Miyata
- Department of Ophthalmology, Nara Medical University School of Medicine,Nara,Japan
| | - Nobuhiro Tone
- Center for Academic Industrial and Governmental Relations, Nara Medical University School of Medicine, Nara, Japan
| | - Hiroki Tsujinaka
- Department of Ophthalmology, Nara Medical University School of Medicine,Nara,Japan
| | - Mariko Yamashita
- Department of Ophthalmology, Nara Medical University School of Medicine,Nara,Japan
| | - Naonori Masuda
- Department of Ophthalmology, Nara Medical University School of Medicine,Nara,Japan
| | - Yutarou Mizusawa
- Department of Ophthalmology, Nara Medical University School of Medicine,Nara,Japan
| | - Masahiro Okamoto
- Department of Ophthalmology, Nara Medical University School of Medicine,Nara,Japan
| | - Taiji Hasegawa
- Department of Ophthalmology, Nara Medical University School of Medicine,Nara,Japan
| | - Shinji Maruoka
- Department of Ophthalmology, Nara Medical University School of Medicine,Nara,Japan
| | - Tetsuo Ueda
- Department of Ophthalmology, Nara Medical University School of Medicine,Nara,Japan
| | - Masashi Kojima
- Department of Ophthalmology, Nara Medical University School of Medicine,Nara,Japan
| | - Toyoaki Matsuura
- Department of Ophthalmology, Nara Medical University School of Medicine,Nara,Japan
| | - Norio Kurumatani
- Department of Community Health and Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Nahoko Ogata
- Department of Ophthalmology, Nara Medical University School of Medicine,Nara,Japan
| |
Collapse
|
32
|
Short-term influence of cataract surgery on circadian biological rhythm and related health outcomes (CLOCK-IOL trial): study protocol for a randomized controlled trial. Trials 2014; 15:514. [PMID: 25547247 PMCID: PMC4320588 DOI: 10.1186/1745-6215-15-514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022] Open
Abstract
Background Light information is the most important cue of circadian rhythm which synchronizes biological rhythm with external environment. Circadian misalignment of biological rhythm and external environment is associated with increased risk of depression, insomnia, obesity, diabetes, cardiovascular disease, and cancer. Increased light transmission by cataract surgery may improve circadian misalignment and related health outcomes. Although some observational studies have shown improvement of depression and insomnia after cataract surgery, randomized controlled trials are lacking. We will conduct a parallel-group, assessor-blinded, simple randomized controlled study comparing a cataract surgery group at three months after surgery with a control group to determine whether cataract surgery improves depressive symptoms, sleep quality, body mass regulation, and glucose and lipid metabolism. Methods/Design We will recruit patients who are aged 60 years and over, scheduled to receive their first cataract surgery, and have grade 2 or higher nuclear opacification as defined by the lens opacities classification system III. Exclusion criteria will be patients with major depression, severe corneal opacity, severe glaucoma, vitreous haemorrhage, proliferative diabetic retinopathy, macular oedema, age-related macular degeneration, and patients needing immediate or combined cataract surgery. After baseline participants will be randomized to two groups. Outcomes will be measured at three months after surgery among the intervention group, and three months after baseline among the control group. We will assess depressive symptoms as a primary outcome, using the short version geriatric depression scale (GDS-15). Secondary outcomes will be subjective and actigraph-measured sleep quality, sleepiness, glycated haemoglobin, fasting plasma glucose and triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, body mass index, abdominal circumference, circadian rhythms of physical activity and wrist skin temperature, and urinary melatonin metabolite. Chronotype and visual function will be assessed using the ‘morningness-eveningness’ questionnaire, the Munich chronotype questionnaire, and the National Eye Institute Visual Function Questionnaire. Discussion Although there are potential limitations due to the difference in duration from baseline survey to outcome measurements between two groups, any seasonal effect on the outcome measurement will be balanced as a result of continuous inclusion of participants through the year, and outcomes will be adjusted for day length at outcome measurements at analysis. Trial registration UMIN000014559, UMIN Clinical Trials Registry, registered on 15 July 2014.
Collapse
|
33
|
St John PC, Taylor SR, Abel JH, Doyle FJ. Amplitude metrics for cellular circadian bioluminescence reporters. Biophys J 2014; 107:2712-22. [PMID: 25468350 DOI: 10.1016/j.bpj.2014.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 01/16/2023] Open
Abstract
Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary differential equation models, and will lead to a better quantitative understanding of the factors that affect clock amplitude.
Collapse
Affiliation(s)
- Peter C St John
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California
| | | | - John H Abel
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California
| | - Francis J Doyle
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California.
| |
Collapse
|
34
|
Bieler J, Cannavo R, Gustafson K, Gobet C, Gatfield D, Naef F. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol Syst Biol 2014; 10:739. [PMID: 25028488 PMCID: PMC4299496 DOI: 10.15252/msb.20145218] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circadian cycles and cell cycles are two fundamental periodic processes with a period in the
range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we
estimated the mutual interactions between the two oscillators by time-lapse imaging of single
mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in
dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell
divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP
reporter expression. In principle, such synchrony may be caused by either unidirectional or
bidirectional coupling. While gating of cell division by the circadian cycle has been most studied,
our data combined with stochastic modeling unambiguously show that the reverse coupling is
predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations
showed that the two interacting cellular oscillators adopt a synchronized state that is highly
robust over a wide range of parameters. These findings have implications for circadian function in
proliferative tissues, including epidermis, immune cells, and cancer.
Collapse
Affiliation(s)
- Jonathan Bieler
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rosamaria Cannavo
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kyle Gustafson
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cedric Gobet
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
35
|
Bedont JL, LeGates TA, Slat EA, Byerly MS, Wang H, Hu J, Rupp AC, Qian J, Wong GW, Herzog ED, Hattar S, Blackshaw S. Lhx1 controls terminal differentiation and circadian function of the suprachiasmatic nucleus. Cell Rep 2014; 7:609-22. [PMID: 24767996 PMCID: PMC4254772 DOI: 10.1016/j.celrep.2014.03.060] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/23/2014] [Accepted: 03/21/2014] [Indexed: 12/27/2022] Open
Abstract
Vertebrate circadian rhythms are organized by the hypothalamic suprachiasmatic nucleus (SCN). Despite its physiological importance, SCN development is poorly understood. Here, we show that Lim homeodomain transcription factor 1 (Lhx1) is essential for terminal differentiation and function of the SCN. Deletion of Lhx1 in the developing SCN results in loss of SCN-enriched neuropeptides involved in synchronization and coupling to downstream oscillators, among other aspects of circadian function. Intact, albeit damped, clock gene expression rhythms persist in Lhx1-deficient SCN; however, circadian activity rhythms are highly disorganized and susceptible to surprising changes in period, phase, and consolidation following neuropeptide infusion. Our results identify a factor required for SCN terminal differentiation. In addition, our in vivo study of combinatorial SCN neuropeptide disruption uncovered synergies among SCN-enriched neuropeptides in regulating normal circadian function. These animals provide a platform for studying the central oscillator's role in physiology and cognition.
Collapse
Affiliation(s)
- Joseph L Bedont
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tara A LeGates
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Emily A Slat
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Mardi S Byerly
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hong Wang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jianfei Hu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alan C Rupp
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Samer Hattar
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
36
|
Varma V, Mukherjee N, Kannan NN, Sharma VK. Strong (type 0) phase resetting of activity-rest rhythm in fruit flies, Drosophila melanogaster, at low temperature. J Biol Rhythms 2013; 28:380-9. [PMID: 24336416 DOI: 10.1177/0748730413508922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Amplitude modulation in limit cycle models of circadian clocks has been previously formulated to explain the phenomenon of temperature compensation. These models propose that invariance of clock period (τ) with changing temperature is a result of the system traversing small or large limit cycles such that despite a decrease or an increase in the linear velocity of the clock owing to slowing down or speeding up of the underlying biochemical reactions, respectively, the angular velocity and, thus, the clock period remain constant. In addition, these models predict that phase resetting behavior of circadian clocks described by limit cycles of different amplitudes at low or high temperatures will be drastically different. More specifically, this class of models predicts that at low temperatures, circadian clocks will respond to perturbations by eliciting larger phase shifts by virtue of their smaller amplitude and vice versa. Here, we present the results of our tests of this prediction: We examined the nature of photic phase response curves (PRCs) and phase transition curves (PTCs) for the circadian clocks of 4 wild-type fruit fly Drosophila melanogaster populations at 3 different ambient temperatures (18, 25, and 29 °C). Interestingly, we observed that at the low temperature of 18 °C, fly clocks respond to light perturbations more strongly, eliciting strong (type 0) PRCs and PTCs, while at moderate (25 °C) and high (29 °C) temperatures the same stimuli evoke weak (type 1) responses. This pattern of strong and weak phase resetting at low and high temperatures, respectively, renders support for the limit cycle amplitude modulation model for temperature compensation of circadian clocks.
Collapse
Affiliation(s)
- Vishwanath Varma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | | |
Collapse
|
37
|
Novel putative mechanisms to link circadian clocks to healthy aging. J Neural Transm (Vienna) 2013; 122 Suppl 1:S75-82. [PMID: 24297467 DOI: 10.1007/s00702-013-1128-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 11/21/2013] [Indexed: 10/26/2022]
Abstract
The circadian clock coordinates the internal physiology to increase the homeostatic capacity thereby providing both a survival advantage to the system and an optimization of energy budgeting. Multiple-oscillator circadian mechanisms are likely to play a role in regulating human health and may contribute to the aging process. Our aim is to give an overview of how the central clock in the hypothalamus and peripheral clocks relate to aging and metabolic disorders, including hyperlipidemia and hyperglycemia. In particular, we unravel novel putative mechanisms to link circadian clocks to healthy aging. This review may lead to the design of large-scale interventions to help people stay healthy as they age by adjusting daily activities, such as feeding behavior, and or adaptation to age-related changes in individual circadian rhythms.
Collapse
|
38
|
An S, Harang R, Meeker K, Granados-Fuentes D, Tsai CA, Mazuski C, Kim J, Doyle FJ, Petzold LR, Herzog ED. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony. Proc Natl Acad Sci U S A 2013; 110:E4355-61. [PMID: 24167276 PMCID: PMC3832006 DOI: 10.1073/pnas.1307088110] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light-dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or "phase tumbling", could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag.
Collapse
Affiliation(s)
- Sungwon An
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130
| | - Rich Harang
- Department of Computer Science, University of California, Santa Barbara, CA 93106-3110; and
| | - Kirsten Meeker
- Department of Computer Science, University of California, Santa Barbara, CA 93106-3110; and
| | | | - Connie A. Tsai
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130
| | - Cristina Mazuski
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130
| | - Jihee Kim
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130
| | - Francis J. Doyle
- Department of Chemical Engineering, University of California, Santa Barbara CA 93106-5080
| | - Linda R. Petzold
- Department of Computer Science, University of California, Santa Barbara, CA 93106-3110; and
| | - Erik D. Herzog
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130
| |
Collapse
|
39
|
Duhart JM, Leone MJ, Paladino N, Evans JA, Castanon-Cervantes O, Davidson AJ, Golombek DA. Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-α. THE JOURNAL OF IMMUNOLOGY 2013; 191:4656-64. [PMID: 24062487 DOI: 10.4049/jimmunol.1300450] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immune and the circadian systems interact in a bidirectional fashion. The master circadian oscillator, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, responds to peripheral and local immune stimuli, such as proinflammatory cytokines and bacterial endotoxin. Astrocytes exert several immune functions in the CNS, and there is growing evidence that points toward a role of these cells in the regulation of circadian rhythms. The aim of this work was to assess the response of SCN astrocytes to immune stimuli, particularly to the proinflammatory cytokine TNF-α. TNF-α applied to cultures of SCN astrocytes from Per2(luc) knockin mice altered both the phase and amplitude of PER2 expression rhythms, in a phase-dependent manner. Furthermore, conditioned media from SCN astrocyte cultures transiently challenged with TNF-α induced an increase in Per1 expression in NIH 3T3 cells, which was blocked by TNF-α antagonism. In addition, these conditioned media could induce phase shifts in SCN PER2 rhythms and, when administered intracerebroventricularly, induced phase delays in behavioral circadian rhythms and SCN activation in control mice, but not in TNFR-1 mutants. In summary, our results show that TNF-α modulates the molecular clock of SCN astrocytes in vitro, and also that, in response to this molecule, SCN astrocytes can modulate clock gene expression in other cells and tissues, and induce phase shifts in a circadian behavioral output in vivo. These findings suggest a role for astroglial cells in the alteration of circadian timing by immune activation.
Collapse
Affiliation(s)
- José M Duhart
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1876 Bernal, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
40
|
d'Eysmond T, De Simone A, Naef F. Analysis of precision in chemical oscillators: implications for circadian clocks. Phys Biol 2013; 10:056005. [PMID: 24043227 DOI: 10.1088/1478-3975/10/5/056005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biochemical reaction networks often exhibit spontaneous self-sustained oscillations. An example is the circadian oscillator that lies at the heart of daily rhythms in behavior and physiology in most organisms including humans. While the period of these oscillators evolved so that it resonates with the 24 h daily environmental cycles, the precision of the oscillator (quantified via the Q factor) is another relevant property of these cell-autonomous oscillators. Since this quantity can be measured in individual cells, it is of interest to better understand how this property behaves across mathematical models of these oscillators. Current theoretical schemes for computing the Q factors show limitations for both high-dimensional models and in the vicinity of Hopf bifurcations. Here, we derive low-noise approximations that lead to numerically stable schemes also in high-dimensional models. In addition, we generalize normal form reductions that are appropriate near Hopf bifurcations. Applying our approximations to two models of circadian clocks, we show that while the low-noise regime is faithfully recapitulated, increasing the level of noise leads to species-dependent precision. We emphasize that subcomponents of the oscillator gradually decouple from the core oscillator as noise increases, which allows us to identify the subnetworks responsible for robust rhythms.
Collapse
Affiliation(s)
- Thomas d'Eysmond
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | |
Collapse
|
41
|
Small-molecule antagonists of melanopsin-mediated phototransduction. Nat Chem Biol 2013; 9:630-5. [PMID: 23974117 PMCID: PMC3839535 DOI: 10.1038/nchembio.1333] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/02/2013] [Indexed: 12/13/2022]
Abstract
Melanopsin, expressed in a subset of retinal ganglion cells, mediates behavioral adaptation to ambient light and other non-image forming photic responses. This has raised the possibility that pharmacological manipulation of melanopsin can modulate several CNS responses including photophobia, sleep, circadian rhythms and neuroendocrine function. Here we describe the identification of a potent synthetic melanopsin antagonist with in vivo activity. Novel sulfonamide compounds inhibiting melanopsin (opsinamides) compete with retinal binding to melanopsin and inhibit its function without affecting rod/cone mediated responses. In vivo administration of opsinamides to mice specifically and reversibly modified melanopsin-dependent light responses including the pupillary light reflex and light aversion. The discovery of opsinamides raises the prospect of therapeutic control of the melanopsin phototransduction system to regulate light-dependent behavior and remediate pathological conditions.
Collapse
|
42
|
Abstract
Like neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in the brain, single fibroblasts can function as independent oscillators. In the SCN, synaptic and paracrine signaling among cells creates a robust, synchronized circadian oscillation, whereas there is no evidence for such integration in fibroblast cultures. However, interactions among single-cell fibroblast oscillators cannot be completely excluded, because fibroblasts were not isolated in previous work. In this study, we tested the autonomy of fibroblasts as single-cell circadian oscillators in high- and low-density culture, by single-cell imaging of cells from PER2::LUC circadian reporter mice. We found greatly reduced PER2::LUC rhythmicity in low-density cultures, which could result from lack of either constitutive or rhythmic paracrine signals from neighboring fibroblasts. To discriminate between these 2 possibilities, we mixed PER2::LUC wild-type (WT) cells with nonluminescent, nonrhythmic Bmal1-/- cells, so that density of rhythmic cells was low but overall cell density remained high. In this condition, WT cells showed clear rhythmicity similar to high-density cultures. We also mixed PER2::LUC WT cells with nonluminescent, long period Cry2-/- cells. In this condition, WT cells showed a period no different from cells cultured with rhythmic WT cells or nonrhythmic Bmal1-/- cells. In previous work, we found that low K⁺ suppresses fibroblast rhythmicity, and we and others have found that either low K⁺ or low Ca²⁺ suppresses SCN rhythmicity. Therefore, we attempted to rescue rhythmicity of low-density fibroblasts with high K⁺ (21 mM), high Ca²⁺ (3.6 mM), or conditioned medium. Conditioned medium from high-density fibroblast cultures rescued rhythmicity of low-density cultures, whereas high K⁺ or Ca²⁺ medium did not consistently rescue rhythmicity. These data suggest that fibroblasts require paracrine signals from adjacent cells for normal expression of rhythmicity, but that these signals do not have to be rhythmic, and that rhythmic signals from other cells do not affect the intrinsic periods of fibroblasts.
Collapse
Affiliation(s)
- Takako Noguchi
- Department of Psychiatry and Center for Chronobiology, University of California, San Diego, 9500 Gilman Drive MC0603, La Jolla, CA 92093-0603, USA
| | - Lexie L. Wang
- Department of Psychiatry and Center for Chronobiology, University of California, San Diego, 9500 Gilman Drive MC0603, La Jolla, CA 92093-0603, USA
| | - David K. Welsh
- Department of Psychiatry and Center for Chronobiology, University of California, San Diego, 9500 Gilman Drive MC0603, La Jolla, CA 92093-0603, USA
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
43
|
Chen H, Zhao L, Chu G, Kito G, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. FSH induces the development of circadian clockwork in rat granulosa cells via a gap junction protein Cx43-dependent pathway. Am J Physiol Endocrinol Metab 2013; 304:E566-75. [PMID: 23299500 DOI: 10.1152/ajpendo.00432.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study was designed to assess the relationship between gap junctions and the maturation of a clock system in rat granulosa cells stimulated by follicle-stimulating hormone (FSH). Immature and mature granulosa cells were prepared by puncturing the ovaries of diethylstilbestrol- and equine chorionic gonadotropin (eCG)-treated mouse Period2 (Per2)-dLuc reporter gene transgenic rats, respectively. Mature granulosa cells exposed to dexamethasone (DXM) synchronization displayed several Per2-dLuc oscillations and a rhythmic expression of clock genes. Intriguingly, we observed clear evidence that the FSH stimulation significantly increased the amplitude of Per2 oscillations in the granulosa cells, which was confirmed by the elevation of the Per2 and Rev-erbα (Nr1d1) mRNA levels. FSH also induced a major phase-advance shift of Per2 oscillations. The mature granulosa cells cultured for 2 days with FSH expressed higher mRNA levels of Per2, Rev-erbα, Bmal1 (Arnt1), Lhcgr, and connexin (Cx) 43 (Gja1) compared with the immature granulosa cells. Consistently, our immunofluorescence results revealed abundant Cx43 protein in antral follicles stimulated with eCG and weak or no fluorescence signal of Cx43 in primary and preantral follicles. Similar results were confirmed by Western blotting analysis. Two gap junction blockers, lindane and carbenoxolone (CBX), significantly decreased the amplitude of Per2 oscillations, which further adhered significant decreases in Per2 and Rev-erbα transcript levels. In addition, both lindane and CBX induced a clear phase-delay shift of Per2 oscillations. These findings suggest that FSH induces the development of the clock system by increasing the expression of Cx43.
Collapse
Affiliation(s)
- Huatao Chen
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Green JL, Bauer M, Yum KW, Li YC, Cox ML, Willert K, Wahl GM. Use of a molecular genetic platform technology to produce human Wnt proteins reveals distinct local and distal signaling abilities. PLoS One 2013; 8:e58395. [PMID: 23516471 PMCID: PMC3596392 DOI: 10.1371/journal.pone.0058395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/04/2013] [Indexed: 11/26/2022] Open
Abstract
Functional and mechanistic studies of Wnt signaling have been severely hindered by the inaccessibility of bioactive proteins. To overcome this long-standing barrier, we engineered and characterized a panel of Chinese hamster ovary (CHO) cell lines with inducible transgenes encoding tagged and un-tagged human WNT1, WNT3A, WNT5A, WNT7A, WNT11, WNT16 or the soluble Wnt antagonist Fzd8CRD, all integrated into an identical genomic locus. Using a quantitative real-time bioluminescence assay, we show that cells expressing WNT1, 3A and 7A stimulate Wnt/beta-catenin reporter activity, while the other WNT expressing cell lines interfere with this activation. Additionally, in contrast to WNT3A, WNT1 only exhibits activity when cell-associated, and thus only signals to neighboring cells. The reporter assay also revealed a rapid decline of Wnt activity at 37°C, indicating that Wnt activity is highly labile. These engineered cell lines will reduce the cost of making and purifying Wnt proteins and serve as a continuous, reliable and regulatable source of Wnts to research laboratories around the world.
Collapse
Affiliation(s)
- Jennifer L. Green
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Matthieu Bauer
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Kyu Won Yum
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Yao-Cheng Li
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Miranda L. Cox
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Karl Willert
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Geoffrey M. Wahl
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Barnea M, Sherman H, Genzer Y, Froy O. Association Between Phase Shifts, Expression Levels, and Amplitudes in Peripheral Circadian Clocks. Chronobiol Int 2013; 30:618-27. [DOI: 10.3109/07420528.2012.754456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators. J Neurosci 2013; 32:16193-202. [PMID: 23152603 DOI: 10.1523/jneurosci.3559-12.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aging produces a decline in the amplitude and precision of 24 h behavioral, endocrine, and metabolic rhythms, which are regulated in mammals by a central circadian pacemaker within the suprachiasmatic nucleus (SCN) and local oscillators in peripheral tissues. Disruption of the circadian system, as experienced during transmeridian travel, can lead to adverse health consequences, particularly in the elderly. To test the hypothesis that age-related changes in the response to simulated jet lag will reflect altered circadian function, we examined re-entrainment of central and peripheral oscillators from young and old PER2::luciferase mice. As in previous studies, locomotor activity rhythms in older mice required more days to re-entrain following a shift than younger mice. At the tissue level, effects of age on baseline entrainment were evident, with older mice displaying earlier phases for the majority of peripheral oscillators studied and later phases for cells within most SCN subregions. Following a 6 h advance of the light:dark cycle, old mice displayed slower rates of re-entrainment for peripheral tissues but a larger, more rapid SCN response compared to younger mice. Thus, aging alters the circadian timing system in a manner that differentially affects the re-entrainment responses of central and peripheral circadian clocks. This pattern of results suggests that a major consequence of aging is a decrease in pacemaker amplitude, which would slow re-entrainment of peripheral oscillators and reduce SCN resistance to external perturbation.
Collapse
|
47
|
Koizumi A, Tanaka KF, Yamanaka A. The manipulation of neural and cellular activities by ectopic expression of melanopsin. Neurosci Res 2013; 75:3-5. [DOI: 10.1016/j.neures.2012.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 12/01/2022]
|
48
|
Chen Z, Yoo SH, Takahashi JS. Small molecule modifiers of circadian clocks. Cell Mol Life Sci 2012; 70:2985-98. [PMID: 23161063 PMCID: PMC3760145 DOI: 10.1007/s00018-012-1207-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 12/11/2022]
Abstract
Circadian clocks orchestrate 24-h oscillations of essential physiological and behavioral processes in response to daily environmental changes. These clocks are remarkably precise under constant conditions yet highly responsive to resetting signals. With the molecular composition of the core oscillator largely established, recent research has increasingly focused on clock-modifying mechanisms/molecules. In particular, small molecule modifiers, intrinsic or extrinsic, are emerging as powerful tools for understanding basic clock biology as well as developing putative therapeutic agents for clock-associated diseases. In this review, we will focus on synthetic compounds capable of modifying the period, phase, or amplitude of circadian clocks, with particular emphasis on the mammalian clock. We will discuss the potential of exploiting these small molecule modifiers in both basic and translational research.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030
- To whom correspondence should be addressed: ;
| | - Seung-Hee Yoo
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390
| | - Joseph S. Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- To whom correspondence should be addressed: ;
| |
Collapse
|
49
|
Noguchi T, Wang CW, Pan H, Welsh DK. Fibroblast circadian rhythms of PER2 expression depend on membrane potential and intracellular calcium. Chronobiol Int 2012; 29:653-64. [PMID: 22734566 DOI: 10.3109/07420528.2012.679330] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus synchronizes circadian rhythms of cells and tissues throughout the body. In SCN neurons, rhythms of clock gene expression are suppressed by manipulations that hyperpolarize the plasma membrane or lower intracellular Ca(2+). However, whether clocks in other cells also depend on membrane potential and calcium is unknown. In this study, the authors investigate the effects of membrane potential and intracellular calcium on circadian rhythms in mouse primary fibroblasts. Rhythms of clock gene expression were monitored using a PER2::LUC knockin reporter. Rhythms were lost or delayed at lower (hyperpolarizing) K(+) concentrations. Bioluminescence imaging revealed that this loss of rhythmicity in cultures was due to loss of rhythmicity of single cells rather than loss of synchrony among cells. In lower Ca(2+) concentrations, rhythms were advanced or had shorter periods. Buffering intracellular Ca(2+) by the calcium chelator 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) or manipulation of inositol triphosphate (IP(3))-sensitive intracellular calcium stores by thapsigargin delayed rhythms. These results suggest that the circadian clock in fibroblasts, as in SCN neurons, is regulated by membrane potential and Ca(2+). Changes in intracellular Ca(2+) may mediate the effects of membrane potential observed in this study.
Collapse
Affiliation(s)
- Takako Noguchi
- Department of Psychiatry and Center for Chronobiology, University of California, San Diego, La Jolla, USA
| | | | | | | |
Collapse
|
50
|
Noguchi T, Ikeda M, Ohmiya Y, Nakajima Y. A dual-color luciferase assay system reveals circadian resetting of cultured fibroblasts by co-cultured adrenal glands. PLoS One 2012; 7:e37093. [PMID: 22615906 PMCID: PMC3352896 DOI: 10.1371/journal.pone.0037093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 04/17/2012] [Indexed: 11/22/2022] Open
Abstract
In mammals, circadian rhythms of various organs and tissues are synchronized by pacemaker neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus. Glucocorticoids released from the adrenal glands can synchronize circadian rhythms in other tissues. Many hormones show circadian rhythms in their plasma concentrations; however, whether organs outside the SCN can serve as master synchronizers to entrain circadian rhythms in target tissues is not well understood. To further delineate the function of the adrenal glands and the interactions of circadian rhythms in putative master synchronizing organs and their target tissues, here we report a simple co-culture system using a dual-color luciferase assay to monitor circadian rhythms separately in various explanted tissues and fibroblasts. In this system, circadian rhythms of organs and target cells were simultaneously tracked by the green-emitting beetle luciferase from Pyrearinus termitilluminans (ELuc) and the red-emitting beetle luciferase from Phrixothrix hirtus (SLR), respectively. We obtained tissues from the adrenal glands, thyroid glands, and lungs of transgenic mice that expressed ELuc under control of the promoter from a canonical clock gene, mBmal1. The tissues were co-cultured with Rat-1 fibroblasts as representative target cells expressing SLR under control of the mBmal1 promoter. Amplitudes of the circadian rhythms of Rat-1 fibroblasts were potentiated when the fibroblasts were co-cultured with adrenal gland tissue, but not when co-cultured with thyroid gland or lung tissue. The phases of Rat-1 fibroblasts were reset by application of adrenal gland tissue, whereas the phases of adrenal gland tissue were not influenced by Rat-1 fibroblasts. Furthermore, the effect of the adrenal gland tissue on the fibroblasts was blocked by application of a glucocorticoid receptor (GR) antagonist. These results demonstrate that glucocorticoids are strong circadian synchronizers for fibroblasts and that this co-culture system is a useful tool to analyze humoral communication between different tissues or cell populations.
Collapse
Affiliation(s)
- Takako Noguchi
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
| | - Masaaki Ikeda
- Molecular Clock Project, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
- Department of Physiology, Saitama Medical University, Moroyama, Saitama, Japan
| | - Yoshihiro Ohmiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yoshihiro Nakajima
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
- * E-mail:
| |
Collapse
|