1
|
Espinal Abreu V, Barnes R, Borra V, Schurdak J, Perez-Tilve D. Chemogenetic engagement of different GPCR signaling pathways segregates the orexigenic activity from the control of whole-body glucose metabolism by AGRP neurons. Mol Metab 2025; 91:102079. [PMID: 39643082 PMCID: PMC11699438 DOI: 10.1016/j.molmet.2024.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024] Open
Abstract
OBJECTIVE The control of energy balance involves neural circuits in the central nervous system, including AGRP neurons in the arcuate nucleus of the hypothalamus (ARC). AGRP neurons are crucial for energy balance and their increased activity during fasting is critical to promote feeding behavior. The activity of these neurons is influenced by multiple signals including those acting on G-protein coupled receptors (GPCR) activating different intracellular signaling pathways. We sought to determine whether discrete G-protein mediated signaling in AGRP neurons, promotes differential regulation of feeding and whole-body glucose homeostasis. METHODS To test the contribution of Gαq/11 or Gαs signaling, we developed congenital mouse lines expressing the different DREADD receptors (i.e., hM3q and rM3s), in AGRP neurons. Then we elicited chemogenetic activation of AGRP neurons in these mice during the postprandial state to determine the impact on feeding and glucose homeostasis. RESULTS Activation of AGRP neurons via hM3q and rM3s promoted hyperphagia. In contrast, only hM3q activation of AGRP neurons of the hypothalamic arcuate nucleus during the postprandial state enhanced whole-body glucose disposal by reducing sympathetic nervous system activity to the pancreas and liver, promoting glucose-stimulated insulin secretion, glycogen deposition and improving glucose tolerance. CONCLUSIONS These data indicate that AGRP neurons regulate food intake and glucose homeostasis through distinct GPCR-dependent signaling pathways and suggest that the transient increase in AGRP neuron activity may contribute to the beneficial effects of fasting on glycemic control.
Collapse
Affiliation(s)
- Valerie Espinal Abreu
- Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, USA
| | - Rachel Barnes
- Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, USA
| | - Vishnupriya Borra
- Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, USA
| | - Jennifer Schurdak
- Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, USA
| | - Diego Perez-Tilve
- Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, USA.
| |
Collapse
|
2
|
Rachubik P, Rogacka D, Audzeyenka I, Typiak M, Wysocka M, Szrejder M, Lesner A, Piwkowska A. Role of lysosomes in insulin signaling and glucose uptake in cultured rat podocytes. Biochem Biophys Res Commun 2023; 679:145-159. [PMID: 37696068 DOI: 10.1016/j.bbrc.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Podocytes are sensitive to insulin, which governs the functional and structural integrity of podocytes that are essential for proper function of the glomerular filtration barrier. Lysosomes are acidic organelles that are implicated in regulation of the insulin signaling pathway. Cathepsin D (CTPD) and lysosome-associated membrane protein 1 (LAMP1) are major lysosomal proteins that reflect the functional state of lysosomes. However, the effect of insulin on lysosome activity and role of lysosomes in the regulation of insulin-dependent glucose uptake in podocytes are unknown. Our studies showed that the short-term incubation of podocytes with insulin decreased LAMP1 and CTPD mRNA levels. Insulin and bafilomycin A1 reduced both the amounts of LAMP1 and CTPD proteins and activity of CTPD, which were associated with a decrease in the fluorescence intensity of lysosomes that were labeled with LysoTracker. Bafilomycin A1 inhibited insulin-dependent endocytosis of the insulin receptor and increased the amounts of the insulin receptor and glucose transporter 4 on the cell surface of podocytes. Bafilomycin A1 also inhibited insulin-dependent glucose uptake despite an increase in the amount of glucose transporter 4 in the plasma membrane of podocytes. These results suggest that lysosomes are signaling hubs that may be involved in the coupling of insulin signaling with the regulation of glucose uptake in podocytes. The dysregulation of this mechanism can lead to the dysfunction of podocytes and development of insulin resistance.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59 St, Gdansk, 80-308, Poland.
| | - Magdalena Wysocka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| |
Collapse
|
3
|
Saiz N, Velasco C, de Pedro N, Soengas JL, Isorna E. Insulin Controls Clock Gene Expression in the Liver of Goldfish Probably via Pi3k/Akt Pathway. Int J Mol Sci 2023; 24:11897. [PMID: 37569272 PMCID: PMC10418410 DOI: 10.3390/ijms241511897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
The liver circadian clock plays a pivotal role in driving metabolic rhythms, being primarily entrained by the feeding schedule, although the underlying mechanisms remain elusive. This study aimed to investigate the potential role of insulin as an intake signal mediating liver entrainment in fish. To achieve this, the expression of clock genes, which form the molecular basis of endogenous oscillators, was analyzed in goldfish liver explants treated with insulin. The presence of insulin directly increased the abundance of per1a and per2 transcripts in the liver. The dependency of protein translation for such insulin effects was evaluated using cycloheximide, which revealed that intermediate protein translation is seemingly unnecessary for the observed insulin actions. Furthermore, the putative interaction between insulin and glucocorticoid signaling in the liver was examined, with the results suggesting that both hormones exert their effects by independent mechanisms. Finally, to investigate the specific pathways involved in the insulin effects, inhibitors targeting PI3K/AKT and MEK/ERK were employed. Notably, inhibition of PI3K/AKT pathway prevented the induction of per genes by insulin, supporting its involvement in this process. Together, these findings suggest a role of insulin in fish as a key element of the multifactorial system that entrains the liver clock to the feeding schedule.
Collapse
Affiliation(s)
- Nuria Saiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (N.S.); (N.d.P.)
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain; (C.V.); (J.L.S.)
| | - Cristina Velasco
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain; (C.V.); (J.L.S.)
| | - Nuria de Pedro
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (N.S.); (N.d.P.)
| | - José Luis Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain; (C.V.); (J.L.S.)
| | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (N.S.); (N.d.P.)
| |
Collapse
|
4
|
Niranjan S, Phillips BE, Giannoukakis N. Uncoupling hepatic insulin resistance - hepatic inflammation to improve insulin sensitivity and to prevent impaired metabolism-associated fatty liver disease in type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1193373. [PMID: 37396181 PMCID: PMC10313404 DOI: 10.3389/fendo.2023.1193373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease clinically-characterized as acute and chronic hyperglycemia. It is emerging as one of the common conditions associated with incident liver disease in the US. The mechanism by which diabetes drives liver disease has become an intense topic of discussion and a highly sought-after therapeutic target. Insulin resistance (IR) appears early in the progression of type 2 diabetes (T2D), particularly in obese individuals. One of the co-morbid conditions of obesity-associated diabetes that is on the rise globally is referred to as non-alcoholic fatty liver disease (NAFLD). IR is one of a number of known and suspected mechanism that underlie the progression of NAFLD which concurrently exhibits hepatic inflammation, particularly enriched in cells of the innate arm of the immune system. In this review we focus on the known mechanisms that are suspected to play a role in the cause-effect relationship between hepatic IR and hepatic inflammation and its role in the progression of T2D-associated NAFLD. Uncoupling hepatic IR/hepatic inflammation may break an intra-hepatic vicious cycle, facilitating the attenuation or prevention of NAFLD with a concurrent restoration of physiologic glycemic control. As part of this review, we therefore also assess the potential of a number of existing and emerging therapeutic interventions that can target both conditions simultaneously as treatment options to break this cycle.
Collapse
Affiliation(s)
- Sitara Niranjan
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Brett E. Phillips
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Muzaffar H, Qamar I, Bashir M, Jabeen F, Irfan S, Anwar H. Gymnema Sylvestre Supplementation Restores Normoglycemia, Corrects Dyslipidemia, and Transcriptionally Modulates Pancreatic and Hepatic Gene Expression in Alloxan-Induced Hyperglycemic Rats. Metabolites 2023; 13:metabo13040516. [PMID: 37110174 PMCID: PMC10142569 DOI: 10.3390/metabo13040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Gymnema sylvestre is traditionally used as an herbal remedy for diabetes. The effect of Gymnema sylvestre supplementation on beta cell and hepatic activity was explored in an alloxan-induced hyperglycemic adult rat. Animals were made hyperglycemic via a single inj. (i.p) of Alloxan. Gymnema sylvestre was supplemented in diet @250 mg/kg and 500 mg/kg b.w. Animals were sacrificed, and blood and tissues (pancreas and liver) were collected for biochemical, expression, and histological analysis. Gymnema sylvestre significantly reduced blood glucose levels with a subsequent increase in plasma insulin levels in a dosage-dependent manner. Total oxidant status (TOS), malondialdehyde, LDL, VLDL, ALT, AST, triglyceride, total cholesterol, and total protein levels were reduced significantly. Significantly raised paraoxonase, arylesterase, albumin, and HDL levels were also observed in Gymnema sylvestre treated hyperglycemic rats. Increased mRNA expression of Ins-1, Ins-2, Gck, Pdx1, Mafa, and Pax6 was observed, while decreased expression of Cat, Sod1, Nrf2, and NF-kB was observed in the pancreas. However, increased mRNA expression of Gck, Irs1, SREBP1c, and Foxk1 and decreased expression of Irs2, ChREBP, Foxo1, and FoxA2 were observed in the liver. The current study indicates the potent effect of Gymnema sylvestre on the transcription modulation of the insulin gene in the alloxan-induced hyperglycemic rat model. Enhanced plasma insulin levels further help to improve hyperglycemia-induced dyslipidemia through transcriptional modulation of hepatocytes.
Collapse
Affiliation(s)
- Humaira Muzaffar
- Department of Physiology, Govt. College University Faisalabad, Faisalabad 38000, Pakistan
| | - Iqra Qamar
- Department of Physiology, Govt. College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Bashir
- Department of Physiology, Govt. College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Govt. College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shahzad Irfan
- Department of Physiology, Govt. College University Faisalabad, Faisalabad 38000, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Govt. College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
6
|
Rodrigues JS, Faria-Pereira A, Camões SP, Serras AS, Morais VA, Ruas JL, Miranda JP. Improving human mesenchymal stem cell-derived hepatic cell energy metabolism by manipulating glucose homeostasis and glucocorticoid signaling. Front Endocrinol (Lausanne) 2022; 13:1043543. [PMID: 36714559 PMCID: PMC9880320 DOI: 10.3389/fendo.2022.1043543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/24/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION The development of reliable hepatic in vitro models may provide insights into disease mechanisms, linking hepatocyte dysmetabolism and related pathologies. However, several of the existing models depend on using high concentrations of hepatocyte differentiation-promoting compounds, namely glucose, insulin, and dexamethasone, which is among the reasons that have hampered their use for modeling metabolism-related diseases. This work focused on modulating glucose homeostasis and glucocorticoid concentration to improve the suitability of a mesenchymal stem-cell (MSC)-derived hepatocyte-like cell (HLC) human model for studying hepatic insulin action and disease modeling. METHODS We have investigated the role of insulin, glucose and dexamethasone on mitochondrial function, insulin signaling and carbohydrate metabolism, namely AKT phosphorylation, glycogen storage ability, glycolysis and gluconeogenesis, as well as fatty acid oxidation and bile acid metabolism gene expression in HLCs. In addition, we evaluated cell morphological features, albumin and urea production, the presence of hepatic-specific markers, biotransformation ability and mitochondrial function. RESULTS Using glucose, insulin and dexamethasone levels close to physiological concentrations improved insulin responsiveness in HLCs, as demonstrated by AKT phosphorylation, upregulation of glycolysis and downregulation of Irs2 and gluconeogenesis and fatty acid oxidation pathways. Ammonia detoxification, EROD and UGT activities and sensitivity to paracetamol cytotoxicity were also enhanced under more physiologically relevant conditions. CONCLUSION HLCs kept under reduced concentrations of glucose, insulin and dexamethasone presented an improved hepatic phenotype and insulin sensitivity demonstrating superior potential as an in vitro platform for modeling energy metabolism-related disorders, namely for the investigation of the insulin signaling pathway.
Collapse
Affiliation(s)
- Joana Saraiva Rodrigues
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Faria-Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio Póvoas Camões
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Sofia Serras
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Vanessa Alexandra Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Lira Ruas
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Joana Paiva Miranda
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Joana Paiva Miranda,
| |
Collapse
|
7
|
Cen HH, Hussein B, Botezelli JD, Wang S, Zhang JA, Noursadeghi N, Jessen N, Rodrigues B, Timmons JA, Johnson JD. Human and mouse muscle transcriptomic analyses identify insulin receptor mRNA downregulation in hyperinsulinemia-associated insulin resistance. FASEB J 2022; 36:e22088. [PMID: 34921686 PMCID: PMC9255858 DOI: 10.1096/fj.202100497rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Hyperinsulinemia is commonly viewed as a compensatory response to insulin resistance, yet studies have demonstrated that chronically elevated insulin may also drive insulin resistance. The molecular mechanisms underpinning this potentially cyclic process remain poorly defined, especially on a transcriptome-wide level. Transcriptomic meta-analysis in >450 human samples demonstrated that fasting insulin reliably and negatively correlated with INSR mRNA in skeletal muscle. To establish causality and study the direct effects of prolonged exposure to excess insulin in muscle cells, we incubated C2C12 myotubes with elevated insulin for 16 h, followed by 6 h of serum starvation, and established that acute AKT and ERK signaling were attenuated in this model of in vitro hyperinsulinemia. Global RNA-sequencing of cells both before and after nutrient withdrawal highlighted genes in the insulin receptor (INSR) signaling, FOXO signaling, and glucose metabolism pathways indicative of 'hyperinsulinemia' and 'starvation' programs. Consistently, we observed that hyperinsulinemia led to a substantial reduction in Insr gene expression, and subsequently a reduced surface INSR and total INSR protein, both in vitro and in vivo. Bioinformatic modeling combined with RNAi identified SIN3A as a negative regulator of Insr mRNA (and JUND, MAX, and MXI as positive regulators of Irs2 mRNA). Together, our analysis identifies mechanisms which may explain the cyclic processes underlying hyperinsulinemia-induced insulin resistance in muscle, a process directly relevant to the etiology and disease progression of type 2 diabetes.
Collapse
Affiliation(s)
- Haoning Howard Cen
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - José Diego Botezelli
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Su Wang
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiashuo Aaron Zhang
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nilou Noursadeghi
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James A Timmons
- Augur Precision Medicine LTD, Stirling University Innovation Park, Stirling, Scotland.,William Harvey Research Institute, Queen Mary University of London, London, UK
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Role of Insulin Resistance in MAFLD. Int J Mol Sci 2021; 22:ijms22084156. [PMID: 33923817 PMCID: PMC8072900 DOI: 10.3390/ijms22084156] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Many studies have reported that metabolic dysfunction is closely involved in the complex mechanism underlying the development of non-alcoholic fatty liver disease (NAFLD), which has prompted a movement to consider renaming NAFLD as metabolic dysfunction-associated fatty liver disease (MAFLD). Metabolic dysfunction in this context encompasses obesity, type 2 diabetes mellitus, hypertension, dyslipidemia, and metabolic syndrome, with insulin resistance as the common underlying pathophysiology. Imbalance between energy intake and expenditure results in insulin resistance in various tissues and alteration of the gut microbiota, resulting in fat accumulation in the liver. The role of genetics has also been revealed in hepatic fat accumulation and fibrosis. In the process of fat accumulation in the liver, intracellular damage as well as hepatic insulin resistance further potentiates inflammation, fibrosis, and carcinogenesis. Increased lipogenic substrate supply from other tissues, hepatic zonation of Irs1, and other factors, including ER stress, play crucial roles in increased hepatic de novo lipogenesis in MAFLD with hepatic insulin resistance. Herein, we provide an overview of the factors contributing to and the role of systemic and local insulin resistance in the development and progression of MAFLD.
Collapse
|
9
|
Corral-Jara KF, Cantini L, Poupin N, Ye T, Rigaudière JP, Vincent SDS, Pinel A, Morio B, Capel F. An Integrated Analysis of miRNA and Gene Expression Changes in Response to an Obesogenic Diet to Explore the Impact of Transgenerational Supplementation with Omega 3 Fatty Acids. Nutrients 2020; 12:E3864. [PMID: 33348802 PMCID: PMC7765958 DOI: 10.3390/nu12123864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
Insulin resistance decreases the ability of insulin to inhibit hepatic gluconeogenesis, a key step in the development of metabolic syndrome. Metabolic alterations, fat accumulation, and fibrosis in the liver are closely related and contribute to the progression of comorbidities, such as hypertension, type 2 diabetes, or cancer. Omega 3 (n-3) polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), were identified as potent positive regulators of insulin sensitivity in vitro and in animal models. In the current study, we explored the effects of a transgenerational supplementation with EPA in mice exposed to an obesogenic diet on the regulation of microRNAs (miRNAs) and gene expression in the liver using high-throughput techniques. We implemented a comprehensive molecular systems biology approach, combining statistical tools, such as MicroRNA Master Regulator Analysis pipeline and Boolean modeling to integrate these biochemical processes. We demonstrated that EPA mediated molecular adaptations, leading to the inhibition of miR-34a-5p, a negative regulator of Irs2 as a master regulatory event leading to the inhibition of gluconeogenesis by insulin during the fasting-feeding transition. Omics data integration provided greater biological insight and a better understanding of the relationships between biological variables. Such an approach may be useful for deriving innovative data-driven hypotheses and for the discovery of molecular-biochemical mechanistic links.
Collapse
Affiliation(s)
- Karla Fabiola Corral-Jara
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (J.P.R.); (S.D.S.V.); (A.P.)
| | - Laura Cantini
- Computational Systems Biology Team, Institut de Biologie de l’Ecole Normale Supérieure, CNRS, INSERM, Ecole Normale Supérieure, Université PSL, 75005 Paris, France;
| | - Nathalie Poupin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France;
| | - Tao Ye
- GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries/BP 10142/, 67404 Illkirch, France;
| | - Jean Paul Rigaudière
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (J.P.R.); (S.D.S.V.); (A.P.)
| | - Sarah De Saint Vincent
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (J.P.R.); (S.D.S.V.); (A.P.)
| | - Alexandre Pinel
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (J.P.R.); (S.D.S.V.); (A.P.)
| | - Béatrice Morio
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69310 Pierre Bénite, France;
| | - Frédéric Capel
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (J.P.R.); (S.D.S.V.); (A.P.)
| |
Collapse
|
10
|
Penniman CM, Suarez Beltran PA, Bhardwaj G, Junck TL, Jena J, Poro K, Hirshman MF, Goodyear LJ, O'Neill BT. Loss of FoxOs in muscle reveals sex-based differences in insulin sensitivity but mitigates diet-induced obesity. Mol Metab 2019; 30:203-220. [PMID: 31767172 PMCID: PMC6819874 DOI: 10.1016/j.molmet.2019.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Gender influences obesity-related complications, including diabetes. Females are more protected from insulin resistance after diet-induced obesity, which may be related to fat accumulation and muscle insulin sensitivity. FoxOs regulate muscle atrophy and are targets of insulin action, but their role in muscle insulin sensitivity and mitochondrial metabolism is unknown. METHODS We measured muscle insulin signaling, mitochondrial energetics, and metabolic responses to a high-fat diet (HFD) in male and female muscle-specific FoxO1/3/4 triple knock-out (TKO) mice. RESULTS In male TKO muscle, insulin-stimulated AKT activation was decreased. AKT2 protein and mRNA levels were reduced and insulin receptor protein and IRS-2 mRNA decreased. These changes contributed to decreased insulin-stimulated glucose uptake in glycolytic muscle in males. In contrast, female TKOs maintain normal insulin-mediated AKT phosphorylation, normal AKT2 levels, and normal glucose uptake in glycolytic muscle. When challenged with a HFD, fat gain was attenuated in both male and female TKO mice, and associated with decreased glucose levels, improved glucose homeostasis, and reduced muscle triglyceride accumulation. Furthermore, female TKO mice showed increased energy expenditure, relative to controls, due to increased lean mass and maintenance of mitochondrial function in muscle. CONCLUSIONS FoxO deletion in muscle uncovers sexually dimorphic regulation of AKT2, which impairs insulin signaling in male mice, but not females. However, loss of FoxOs in muscle from both males and females also leads to muscle hypertrophy and increases in metabolic rate. These factors mitigate fat gain and attenuate metabolic abnormalities in response to a HFD.
Collapse
Affiliation(s)
- Christie M Penniman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Pablo A Suarez Beltran
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Gourav Bhardwaj
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Taylor L Junck
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jayashree Jena
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kennedy Poro
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian T O'Neill
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
11
|
Zhang K, Guo X, Yan H, Wu Y, Pan Q, Shen JZ, Li X, Chen Y, Li L, Qi Y, Xu Z, Xie W, Zhang W, Threadgill D, He L, Villarreal D, Sun Y, White MF, Zheng H, Guo S. Phosphorylation of Forkhead Protein FoxO1 at S253 Regulates Glucose Homeostasis in Mice. Endocrinology 2019; 160:1333-1347. [PMID: 30951171 PMCID: PMC6482038 DOI: 10.1210/en.2018-00853] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023]
Abstract
The transcription factor forkhead box O1 (FoxO1) is a key mediator in the insulin signaling pathway and controls multiple physiological functions, including hepatic glucose production (HGP) and pancreatic β-cell function. We previously demonstrated that S256 in human FOXO1 (FOXO1-S256), equivalent to S253 in mouse FoxO1 (FoxO1-S253), is a key phosphorylation site mediating the effect of insulin as a target of protein kinase B on suppression of FOXO1 activity and expression of target genes responsible for gluconeogenesis. Here, we investigated the role of FoxO1-S253 phosphorylation in control of glucose homeostasis in vivo by generating global FoxO1-S253A/A knockin mice, in which FoxO1-S253 alleles were replaced with alanine (A substitution) blocking FoxO1-S253 phosphorylation. FoxO1-S253A/A mice displayed mild increases in feeding blood glucose and insulin levels but decreases in fasting blood glucose and glucagon concentrations, as well as a reduction in the ratio of pancreatic α-cells/β-cells per islet. FoxO1-S253A/A mice exhibited a slight increase in energy expenditure but barely altered food intake and glucose uptake among tissues. Further analyses revealed that FoxO1-S253A/A enhances FoxO1 nuclear localization and promotes the effect of glucagon on HGP. We conclude that dephosphorylation of S253 in FoxO1 may reflect a molecular basis of pancreatic plasticity during the development of insulin resistance.
Collapse
Affiliation(s)
- Kebin Zhang
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Xiaoqin Guo
- Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hui Yan
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Yuxin Wu
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
- Queens University Belfast School of Biological Sciences, Belfast, United Kingdom
| | - Quan Pan
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - James Zheng Shen
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Xiaopeng Li
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Yunmei Chen
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Ling Li
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Yajuan Qi
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Zihui Xu
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Wei Xie
- Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Weiping Zhang
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - David Threadgill
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Ling He
- Division of Endocrinology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Daniel Villarreal
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Yuxiang Sun
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Morris F White
- Division of Endocrinology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Hongting Zheng
- Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shaodong Guo
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
- Correspondence: Shaodong Guo, PhD, Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, 123A Cater-Mattil Hall, College Station, Texas 77843. E-mail:
| |
Collapse
|
12
|
Downregulation of macrophage Irs2 by hyperinsulinemia impairs IL-4-indeuced M2a-subtype macrophage activation in obesity. Nat Commun 2018; 9:4863. [PMID: 30451856 PMCID: PMC6242852 DOI: 10.1038/s41467-018-07358-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
M2a-subtype macrophage activation is known to be impaired in obesity, although the underlying mechanisms remain poorly understood. Herein, we demonstrate that, the IL-4/Irs2/Akt pathway is selectively impaired, along with decreased macrophage Irs2 expression, although IL-4/STAT6 pathway is maintained. Indeed, myeloid cell-specific Irs2-deficient mice show impairment of IL-4-induced M2a-subtype macrophage activation, as a result of stabilization of the FoxO1/HDAC3/NCoR1 corepressor complex, resulting in insulin resistance under the HF diet condition. Moreover, the reduction of macrophage Irs2 expression is mediated by hyperinsulinemia via the insulin receptor (IR). In myeloid cell-specific IR-deficient mice, the IL-4/Irs2 pathway is preserved in the macrophages, which results in a reduced degree of insulin resistance, because of the lack of IR-mediated downregulation of Irs2. We conclude that downregulation of Irs2 in macrophages caused by hyperinsulinemia is responsible for systemic insulin resistance via impairment of M2a-subtype macrophage activation in obesity. Obesity is associated with low-grade chronic inflammation. Here the authors show that the activation of anti-inflammatory M2a-subtype macrophages requires the IL4/Irs2/Akt pathway. Due to decreased Irs2 expression this pathway is impaired in obese mice thus leading to a defect in M2a activation.
Collapse
|
13
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1700] [Impact Index Per Article: 242.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
14
|
Pridans C, Sauter KA, Irvine KM, Davis GM, Lefevre L, Raper A, Rojo R, Nirmal AJ, Beard P, Cheeseman M, Hume DA. Macrophage colony-stimulating factor increases hepatic macrophage content, liver growth, and lipid accumulation in neonatal rats. Am J Physiol Gastrointest Liver Physiol 2018; 314:G388-G398. [PMID: 29351395 PMCID: PMC5899243 DOI: 10.1152/ajpgi.00343.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Signaling via the colony-stimulating factor 1 receptor (CSF1R) controls the survival, differentiation, and proliferation of macrophages. Mutations in CSF1 or CSF1R in mice and rats have pleiotropic effects on postnatal somatic growth. We tested the possible application of pig CSF1-Fc fusion protein as a therapy for low birth weight (LBW) at term, using a model based on maternal dexamethasone treatment in rats. Neonatal CSF1-Fc treatment did not alter somatic growth and did not increase the blood monocyte count. Instead, there was a substantial increase in the size of liver in both control and LBW rats, and the treatment greatly exacerbated lipid droplet accumulation seen in the dexamethasone LBW model. These effects were reversed upon cessation of treatment. Transcriptional profiling of the livers supported histochemical evidence of a large increase in macrophages with a resident Kupffer cell phenotype and revealed increased expression of many genes implicated in lipid droplet formation. There was no further increase in hepatocyte proliferation over the already high rates in neonatal liver. In conclusion, treatment of neonatal rats with CSF1-Fc caused an increase in liver size and hepatic lipid accumulation, due to Kupffer cell expansion and/or activation rather than hepatocyte proliferation. Increased liver macrophage numbers and expression of endocytic receptors could mitigate defective clearance functions in neonates. NEW & NOTEWORTHY This study is based on extensive studies in mice and pigs of the role of CSF1/CSF1R in macrophage development and postnatal growth. We extended the study to neonatal rats as a possible therapy for low birth weight. Unlike our previous studies in mice and pigs, there was no increase in hepatocyte proliferation and no increase in monocyte numbers. Instead, neonatal rats treated with CSF1 displayed reversible hepatic steatosis and Kupffer cell expansion.
Collapse
Affiliation(s)
- Clare Pridans
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom,2Medical Research Council Centre for Inflammation Research, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Kristin A. Sauter
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M. Irvine
- 3Mater Research-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Gemma M. Davis
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucas Lefevre
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Raper
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rocio Rojo
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ajit J. Nirmal
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippa Beard
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom,4The Pirbright Institute, Surrey, United Kingdom
| | - Michael Cheeseman
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Hume
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom,2Medical Research Council Centre for Inflammation Research, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom,3Mater Research-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
15
|
Ma H, Wang P, Jin D, Jia T, Mao H, Zhang J, Zhao S. The hepatic ectonucleotide pyrophosphatase/phosphodiesterase 1 gene mRNA abundance is reduced by insulin and induced by dexamethasone. ACTA ACUST UNITED AC 2018. [PMID: 29513794 PMCID: PMC5856437 DOI: 10.1590/1414-431x20176980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hormones regulate hepatic gene expressions to maintain metabolic homeostasis. Ectonucleotide pyrophosphatase/phosphodiesterase 1 has been thought to interfere with insulin signaling. To determine its potential role in the regulation of metabolism, we analyzed its gene (Enpp1) expression in the liver of rats experiencing fasting and refeeding cycles, and in primary rat hepatocytes and human hepatoma HepG2 cells treated with insulin and dexamethasone using northern blot and real-time PCR techniques. Hepatic Enpp1 expression was induced by fasting and reduced by refeeding in the rat liver. In primary rat hepatocytes and HepG2 hepatoma cells, insulin reduced Enpp1 mRNA abundance, whereas dexamethasone induced it. Dexamethasone disrupted the insulin-reduced Enpp1 expression in primary hepatocytes. This is in contrast to the responses of the expression of the cytosolic form of phosphoenolpyruvate carboxykinase gene to the same hormones, where insulin reduced it significantly in the process. In addition, the dexamethasone-induced Enpp1 gene expression was attenuated in the presence of 8-Br-cAMP. In conclusion, we demonstrated for the first time that hepatic Enpp1 is regulated in the cycle of fasting and refeeding, a process that might be attributed to insulin-reduced Enpp1 expression. This insulin-reduced Enpp1 expression might play a role in the development of complications in diabetic patients.
Collapse
Affiliation(s)
- Huiwen Ma
- Yantai Center for Animal Disease Control, Yantai, Shandong, China
| | - Ping Wang
- Department of Anesthesiology, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Dan Jin
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ting Jia
- Department of Endocrinology, Wuhan Central Hospital, Wuhan, Hubei, China
| | - Hong Mao
- Department of Endocrinology, Wuhan Central Hospital, Wuhan, Hubei, China
| | - Jiandi Zhang
- Yantai Zestern Biotechnique Co. Ltd., Yantai, Shandong, China
| | - Shi Zhao
- Department of Endocrinology, Wuhan Central Hospital, Wuhan, Hubei, China
| |
Collapse
|
16
|
van Doeselaar S, Burgering BMT. FOXOs Maintaining the Equilibrium for Better or for Worse. Curr Top Dev Biol 2018; 127:49-103. [PMID: 29433740 DOI: 10.1016/bs.ctdb.2017.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A paradigm shift is emerging within the FOXO field and accumulating evidence indicates that we need to reappreciate the role of FOXOs, at least in cancer development. Here, we discuss the possibility that FOXOs are both tumor suppressors as well as promoters of tumor progression. This is mostly dependent on the biological context. Critical to this dichotomous role is the notion that FOXOs are central in preserving cellular homeostasis in redox control, genomic stability, and protein turnover. From this perspective, a paradoxical role in both suppressing and enhancing tumor progression can be reconciled. As many small molecules targeting the PI3K pathway are developed by big pharmaceutical companies and/or are in clinical trial, we will discuss what the consequences may be for the context-dependent role of FOXOs in tumor development in treatment options based on active PI3K signaling in tumors.
Collapse
Affiliation(s)
- Sabina van Doeselaar
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 2018; 19:31-44. [PMID: 28974775 PMCID: PMC5894887 DOI: 10.1038/nrm.2017.89] [Citation(s) in RCA: 475] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanism of insulin action is a central theme in biology and medicine. In addition to the rather rare condition of insulin deficiency caused by autoimmune destruction of pancreatic β-cells, genetic and acquired abnormalities of insulin action underlie the far more common conditions of type 2 diabetes, obesity and insulin resistance. The latter predisposes to diseases ranging from hypertension to Alzheimer disease and cancer. Hence, understanding the biochemical and cellular properties of insulin receptor signalling is arguably a priority in biomedical research. In the past decade, major progress has led to the delineation of mechanisms of glucose transport, lipid synthesis, storage and mobilization. In addition to direct effects of insulin on signalling kinases and metabolic enzymes, the discovery of mechanisms of insulin-regulated gene transcription has led to a reassessment of the general principles of insulin action. These advances will accelerate the discovery of new treatment modalities for diabetes.
Collapse
Affiliation(s)
- Rebecca A Haeusler
- Columbia University College of Physicians and Surgeons, Department of Pathology and Cell Biology, New York, New York 10032, USA
| | - Timothy E McGraw
- Weill Cornell Medicine, Departments of Biochemistry and Cardiothoracic Surgery, New York, New York 10065, USA
| | - Domenico Accili
- Columbia University College of Physicians & Surgeons, Department of Medicine, New York, New York 10032, USA
| |
Collapse
|
18
|
Jin B, Wang W, Bai W, Zhang J, Wang K, Qin L. The effects of estradiol valerate and remifemin on liver lipid metabolism. Acta Histochem 2017; 119:610-619. [PMID: 28705489 DOI: 10.1016/j.acthis.2017.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
To investigate the lipid metabolism dysregulation in the liver of ovariectomized (OVX) rats and effects of estradiol valerate (E) and remifemin (ICR) thereon, forty female Sprague-Dawley rats were randomly divided into sham-operated (SHAM), OVX, OVX+E, and OVX+ICR group. After 4 weeks' E or ICR treatment, serum estrogen, cholesterol, and triglyceride levels; lipid droplets in hepatocytes; hepatocyte morphology; and the expression of estrogen receptor α (ERα), liver X receptor (LXR), and sterol regulatory element binding proteins (SREBPs) in the liver of the rats were assessed. OVX rats had significantly decreased serum estrogen levels, which significantly increased after treatment with E but not with ICR. Serum triglyceride levels and the amount of lipid droplets in hepatocytes increased after ovariectomy, and significantly decreased after E treatment. In addition, ICR treatment markedly increased serum triglyceride levels and lipid droplet size. No significant differences in the serum cholesterol levels were observed among the four groups. After ovariectomy, hepatocyte mitochondria became hypertrophic and misformed, which were reversed with E or ICR treatment. ICR-treated rats also showed endoplasmic reticulum disorganization. After ovariectomy, ERα and LXR levels significantly decreased while SREBP expression increased. E treatment increased ERα and LXR levels while ICR treatment only increased LXR expression. E treatment decreased SREBP-1c levels, whereas SREBP-1c levels increased with ICR treatment. Treatment with E significantly reversed the ovariectomy-induced dysregulation of hepatocyte lipid metabolism, which was, however, exacerbated with ICR treatment. The effects of E and ICR on hepatocyte lipid metabolism may involve the regulation of LXR and SREBP-1c.
Collapse
|
19
|
Imbalanced Insulin Actions in Obesity and Type 2 Diabetes: Key Mouse Models of Insulin Signaling Pathway. Cell Metab 2017; 25:797-810. [PMID: 28380373 DOI: 10.1016/j.cmet.2017.03.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/06/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
Abstract
Since the discovery of the tyrosine kinase activity of the insulin receptor (IR), researchers have been engaged in intensive efforts to resolve physiological functions of IR and its major downstream targets, insulin receptor substrate 1 (Irs1) and Irs2. Studies conducted using systemic and tissue-specific gene-knockout mice of IR, Irs1, and Irs2 have revealed the physiological roles of these molecules in each tissue and interactions among multiple tissues. In obesity and type 2 diabetes, selective downregulation of Irs2 and its downstream actions to cause reduced insulin actions was associated with increased insulin actions through Irs1 in variety tissues. Thus, we propose the novel concept of "organ- and pathway-specific imbalanced insulin action" in obesity and type 2 diabetes, which includes and extends "selective insulin resistance." This Review focuses on recent progress in understanding insulin signaling and insulin resistance using key mouse models for elucidating pathophysiology of human obesity and type 2 diabetes.
Collapse
|
20
|
Kumazoe M, Nakamura Y, Yamashita M, Suzuki T, Takamatsu K, Huang Y, Bae J, Yamashita S, Murata M, Yamada S, Shinoda Y, Yamaguchi W, Toyoda Y, Tachibana H. Green Tea Polyphenol Epigallocatechin-3-gallate Suppresses Toll-like Receptor 4 Expression via Up-regulation of E3 Ubiquitin-protein Ligase RNF216. J Biol Chem 2017; 292:4077-4088. [PMID: 28154178 DOI: 10.1074/jbc.m116.755959] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/18/2017] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 4 (TLR4) plays an essential role in innate immunity through inflammatory cytokine induction. Recent studies demonstrated that the abnormal activation of TLR4 has a pivotal role in obesity-induced inflammation, which is associated with several diseases, including hyperinsulinemia, hypertriglyceridemia, and cardiovascular disease. Here we demonstrate that (-)-epigallocatechin-3-O-gallate, a natural agonist of the 67-kDa laminin receptor (67LR), suppressed TLR4 expression through E3 ubiquitin-protein ring finger protein 216 (RNF216) up-regulation. Our data indicate cyclic GMP mediates 67LR agonist-dependent RNF216 up-regulation. Moreover, we show that the highly absorbent 67LR agonist (-)-epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3″Me) significantly attenuated TLR4 expression in the adipose tissue. EGCG3″Me completely inhibited the high-fat/high-sucrose (HF/HS)-induced up-regulation of tumor necrosis factor α in adipose tissue and serum monocyte chemoattractant protein-1 increase. Furthermore, this agonist intake prevented HF/HS-induced hyperinsulinemia and hypertriglyceridemia. Taken together, 67LR presents an attractive target for the relief of obesity-induced inflammation.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581 and
| | - Yuki Nakamura
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581 and
| | - Mai Yamashita
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581 and
| | - Takashi Suzuki
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581 and
| | - Kanako Takamatsu
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581 and
| | - Yuhui Huang
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581 and
| | - Jaehoon Bae
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581 and
| | - Shuya Yamashita
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581 and
| | - Motoki Murata
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581 and
| | - Shuhei Yamada
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581 and
| | - Yuki Shinoda
- the Products Research & Development Laboratory, Asahi Soft Drinks Co., Ltd., Ibaraki 302-0106, Japan
| | - Wataru Yamaguchi
- the Products Research & Development Laboratory, Asahi Soft Drinks Co., Ltd., Ibaraki 302-0106, Japan
| | - Yui Toyoda
- the Products Research & Development Laboratory, Asahi Soft Drinks Co., Ltd., Ibaraki 302-0106, Japan
| | - Hirofumi Tachibana
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581 and
| |
Collapse
|
21
|
Kubota N, Kubota T, Kajiwara E, Iwamura T, Kumagai H, Watanabe T, Inoue M, Takamoto I, Sasako T, Kumagai K, Kohjima M, Nakamuta M, Moroi M, Sugi K, Noda T, Terauchi Y, Ueki K, Kadowaki T. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity. Nat Commun 2016; 7:12977. [PMID: 27708333 PMCID: PMC5059684 DOI: 10.1038/ncomms12977] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022] Open
Abstract
Hepatic insulin signalling involves insulin receptor substrates (Irs) 1/2, and is normally associated with the inhibition of gluconeogenesis and activation of lipogenesis. In diabetes and obesity, insulin no longer suppresses hepatic gluconeogenesis, while continuing to activate lipogenesis, a state referred to as 'selective insulin resistance'. Here, we show that 'selective insulin resistance' is caused by the differential expression of Irs1 and Irs2 in different zones of the liver. We demonstrate that hepatic Irs2-knockout mice develop 'selective insulin resistance', whereas mice lacking in Irs1, or both Irs1 and Irs2, develop 'total insulin resistance'. In obese diabetic mice, Irs1/2-mediated insulin signalling is impaired in the periportal zone, which is the primary site of gluconeogenesis, but enhanced in the perivenous zone, which is the primary site of lipogenesis. While hyperinsulinaemia reduces Irs2 expression in both the periportal and perivenous zones, Irs1 expression, which is predominantly in the perivenous zone, remains mostly unaffected. These data suggest that 'selective insulin resistance' is induced by the differential distribution, and alterations of hepatic Irs1 and Irs2 expression.
Collapse
Affiliation(s)
- Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Department of Clinical Nutrition Therapy, The University of Tokyo, Tokyo 113-8655, Japan.,Clinical Nutrition Program, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 162-8636, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Clinical Nutrition Program, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 162-8636, Japan.,Division of Cardiovascular Medicine, Toho University, Ohashi Hospital, Tokyo 153-8515, Japan
| | - Eiji Kajiwara
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomokatsu Iwamura
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroki Kumagai
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Taku Watanabe
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Hokkaido 060-8648, Japan
| | - Mariko Inoue
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Clinical Nutrition Program, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 162-8636, Japan
| | - Iseki Takamoto
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Clinical Nutrition Program, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 162-8636, Japan
| | - Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | | | - Motoyuki Kohjima
- Department of Gastroenterology, Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Makoto Nakamuta
- Department of Gastroenterology, Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Masao Moroi
- Division of Cardiovascular Medicine, Toho University, Ohashi Hospital, Tokyo 153-8515, Japan
| | - Kaoru Sugi
- Division of Cardiovascular Medicine, Toho University, Ohashi Hospital, Tokyo 153-8515, Japan
| | - Tetsuo Noda
- Department of Cell Biology, Japanese Foundation for Cancer Research-Cancer Institute, Tokyo 135-8550, Japan
| | - Yasuo Terauchi
- Department of Diabetes and Endocrinology, Yokohama City University, School of Medicine, Kanagawa 236-0004, Japan
| | - Kohjiro Ueki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
22
|
Audzeyenka I, Rogacka D, Piwkowska A, Rychlowski M, Bierla JB, Czarnowska E, Angielski S, Jankowski M. Reactive oxygen species are involved in insulin-dependent regulation of autophagy in primary rat podocytes. Int J Biochem Cell Biol 2016; 75:23-33. [DOI: 10.1016/j.biocel.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/10/2016] [Accepted: 03/25/2016] [Indexed: 01/09/2023]
|
23
|
Duodenal-jejunal exclusion improves insulin resistance in type 2 diabetic rats by upregulating the hepatic insulin signaling pathway. Nutrition 2015; 31:733-9. [DOI: 10.1016/j.nut.2014.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 09/14/2014] [Accepted: 10/22/2014] [Indexed: 12/19/2022]
|
24
|
Preserved Na/HCO3 cotransporter sensitivity to insulin may promote hypertension in metabolic syndrome. Kidney Int 2014; 87:535-42. [PMID: 25354240 DOI: 10.1038/ki.2014.351] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 01/01/2023]
Abstract
Hyperinsulinemia can contribute to hypertension through effects on sodium transport. To test whether the stimulatory effect of insulin on renal proximal tubule sodium transport is preserved in insulin resistance, we compared the effects of insulin on abdominal adipocytes and proximal tubules in rats and humans. Insulin markedly stimulated the sodium-bicarbonate cotransporter (NBCe1) activity in isolated proximal tubules through the phosphoinositide 3-kinase (PI3-K) pathway. Gene silencing in rats showed that while insulin receptor substrate (IRS)1 mediates the insulin effect on glucose uptake into adipocytes, IRS2 mediates the insulin effect on proximal tubule transport. The stimulatory effect of insulin on glucose uptake into adipocytes was severely reduced, but its stimulatory effect on NBCe1 activity was completely preserved in insulin-resistant Otsuka Long-Evans Tokushima Fatty (OLETF) rats and patients with insulin resistance. Despite widespread reduction of IRS1 and IRS2 expression in insulin-sensitive tissues, IRS2 expression in the kidney cortex was exceptionally preserved in both OLETF rats and patients with insulin resistance. Unlike liver, acute insulin injection failed to change the expression levels of IRS2 and sterol regulatory element-binding protein 1 in rat kidney cortex, indicating that regulatory mechanisms of IRS2 expression are distinct in liver and kidney. Thus, preserved stimulation of proximal tubule transport through the insulin/IRS2/PI3-K pathway may play an important role in the pathogenesis of hypertension associated with metabolic syndrome.
Collapse
|
25
|
Liver Med23 ablation improves glucose and lipid metabolism through modulating FOXO1 activity. Cell Res 2014; 24:1250-65. [PMID: 25223702 PMCID: PMC4185346 DOI: 10.1038/cr.2014.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/03/2014] [Accepted: 07/27/2014] [Indexed: 12/23/2022] Open
Abstract
Mediator complex is a molecular hub integrating signaling, transcription factors, and RNA polymerase II (RNAPII) machinery. Mediator MED23 is involved in adipogenesis and smooth muscle cell differentiation, suggesting its role in energy homeostasis. Here, through the generation and analysis of a liver-specific Med23-knockout mouse, we found that liver Med23 deletion improved glucose and lipid metabolism, as well as insulin responsiveness, and prevented diet-induced obesity. Remarkably, acute hepatic Med23 knockdown in db/db mice significantly improved the lipid profile and glucose tolerance. Mechanistically, MED23 participates in gluconeogenesis and cholesterol synthesis through modulating the transcriptional activity of FOXO1, a key metabolic transcription factor. Indeed, hepatic Med23 deletion impaired the Mediator and RNAPII recruitment and attenuated the expression of FOXO1 target genes. Moreover, this functional interaction between FOXO1 and MED23 is evolutionarily conserved, as the in vivo activities of dFOXO in larval fat body and in adult wing can be partially blocked by Med23 knockdown in Drosophila. Collectively, our data revealed Mediator MED23 as a novel regulator for energy homeostasis, suggesting potential therapeutic strategies against metabolic diseases.
Collapse
|
26
|
Systematic modeling for the insulin signaling network mediated by IRS1 and IRS2. J Theor Biol 2014; 355:40-52. [DOI: 10.1016/j.jtbi.2014.03.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 02/26/2014] [Accepted: 03/19/2014] [Indexed: 01/08/2023]
|
27
|
Roles of renal proximal tubule transport in acid/base balance and blood pressure regulation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:504808. [PMID: 24982885 PMCID: PMC4058521 DOI: 10.1155/2014/504808] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 02/06/2023]
Abstract
Sodium-coupled bicarbonate absorption from renal proximal tubules (PTs) plays a pivotal role in the maintenance of systemic acid/base balance. Indeed, mutations in the Na+-HCO3− cotransporter NBCe1, which mediates a majority of bicarbonate exit from PTs, cause severe proximal renal tubular acidosis associated with ocular and other extrarenal abnormalities. Sodium transport in PTs also plays an important role in the regulation of blood pressure. For example, PT transport stimulation by insulin may be involved in the pathogenesis of hypertension associated with insulin resistance. Type 1 angiotensin (Ang) II receptors in PT are critical for blood pressure homeostasis. Paradoxically, the effects of Ang II on PT transport are known to be biphasic. Unlike in other species, however, Ang II is recently shown to dose-dependently stimulate human PT transport via nitric oxide/cGMP/ERK pathway, which may represent a novel therapeutic target in human hypertension. In this paper, we will review the physiological and pathophysiological roles of PT transport.
Collapse
|
28
|
Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 2014; 220:T1-T23. [PMID: 24281010 PMCID: PMC4087161 DOI: 10.1530/joe-13-0327] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin resistance is a major underlying mechanism responsible for the 'metabolic syndrome', which is also known as insulin resistance syndrome. The incidence of the metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. The metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies have demonstrated that insulin and its signaling cascade normally control cell growth, metabolism, and survival through the activation of MAPKs and activation of phosphatidylinositide-3-kinase (PI3K), in which the activation of PI3K associated with insulin receptor substrate 1 (IRS1) and IRS2 and subsequent Akt→Foxo1 phosphorylation cascade has a central role in the control of nutrient homeostasis and organ survival. The inactivation of Akt and activation of Foxo1, through the suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and overnutrition, may act as the underlying mechanisms for the metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will probably provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the features of the metabolic syndrome. Emphasis is placed on the role of IRS1, IRS2, and associated signaling pathways that are coupled to Akt and the forkhead/winged helix transcription factor Foxo1.
Collapse
Affiliation(s)
- Shaodong Guo
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Scott & White, Central Texas Veterans Health Care System, 1901 South 1st Street, Bldg. 205, Temple, Texas 76504, USA
| |
Collapse
|
29
|
Zerzaihi O, Chriett S, Vidal H, Pirola L. Insulin-dependent transcriptional control in L6 rat myotubes is associated with modulation of histone acetylation and accumulation of the histone variant H2A.Z in the proximity of the transcriptional start site. Biochem Cell Biol 2013; 92:61-7. [PMID: 24471919 DOI: 10.1139/bcb-2013-0071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Besides its direct metabolic effects, insulin induces transcriptional alterations in its target tissues. However, whether such changes are accompanied by epigenetic changes on the chromatin template encompassing insulin responsive genes is unclear. Here, mRNA levels of insulin-responsive genes hexokinase 2 (Hk2), insulin receptor substrate (Irs2), and the PI3K subunit p85β (Pik3r2) were compared in control versus insulin-stimulated L6 myotubes. Chromatin immunoprecipitation (ChIP) was performed with antibodies directed to histone H2A, histone variant H2A.Z, acetylated histone H3 on lysines 9/14, and acetylated H2A.Z. Insulin induced a more than 2-fold Hk2 mRNA increase, while Irs2 and Pik3r2 were downregulated. ChIP to H2A and H2A.Z showed higher H2A.Z accumulation around the transcriptional start site (TSS) of these insulin-modulated genes, while H2A.Z accumulation was lower distally to the TSS in the Hk2 promoter. H2A.Z levels and H3K9/14 acetylation correlated on several loci along the Hk2 gene, and H3K9/14 as well as H2A.Z acetylation was enhanced by insulin treatment. On the contrary, reduced H3K9/14 acetylation was observed in insulin-repressed Irs2 and Pik3r2, and recovery of acetylation by treatment with the histone deacetylase inhibitor trichostatin A reverted insulin-induced Irs2 downregulation. The chromatin regions encompassing selected insulin-responsive genes are thus featured by accumulation of H2A.Z around the TSS. H2A.Z accumulation facilitates insulin-dependent modulation of pharmacologically treatable H3K9/14 and H2A.Z acetylations. Indeed, inhibition of histone deacetylases by TSA treatment reverted insulin induced Irs2 gene downregulation. Dysregulated histone acetylation may thus be potentially targeted with histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Ouafa Zerzaihi
- Carmen (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, Lyon-1 University, South Lyon Medical Faculty, 165 Ch. du Grand Revoyet - BP12, 69921 Oullins, France
| | | | | | | |
Collapse
|
30
|
Kubota T, Kubota N, Kadowaki T. The role of endothelial insulin signaling in the regulation of glucose metabolism. Rev Endocr Metab Disord 2013; 14:207-16. [PMID: 23589150 DOI: 10.1007/s11154-013-9242-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The skeletal muscle is one of the major target organs of insulin and plays an essential role in insulin-induced glucose uptake. Some evidence indicates that insulin delivery to skeletal muscle interstitium through the endothelial cells is the rate-limiting step in insulin-stimulated glucose uptake. Researchers have also found that this process is impaired by insulin resistance in type 2 diabetes and obesity. A recent study of ours demonstrated that insulin signaling in the endothelial cells plays a pivotal role in the regulation of glucose uptake by the skeletal muscle. Specifically, impaired insulin signaling in the endothelial cells, with reduction of insulin-induced eNOS phosphorylation, causes attenuation of the insulin-induced capillary recruitment and insulin delivery, which, in turn reduces glucose uptake by the skeletal muscle in high-fat diet-fed mice. Moreover, restoration of the insulin-induced eNOS phosphorylation in the endothelial cells completely reverses the reduction in the capillary recruitment and insulin delivery, and as a result, significantly restores glucose uptake by the skeletal muscle. In the present review, we describe the recent progress in research on the physiological and pathophysiological roles of endothelial insulin signaling in the regulation of insulin-induced glucose uptake by the skeletal muscle.
Collapse
Affiliation(s)
- Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | |
Collapse
|
31
|
Roncero I, Alvarez E, Acosta C, Sanz C, Barrio P, Hurtado-Carneiro V, Burks D, Blázquez E. Insulin-receptor substrate-2 (irs-2) is required for maintaining glucokinase and glucokinase regulatory protein expression in mouse liver. PLoS One 2013; 8:e58797. [PMID: 23560040 PMCID: PMC3613347 DOI: 10.1371/journal.pone.0058797] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/06/2013] [Indexed: 12/02/2022] Open
Abstract
Insulin receptor substrate (IRS) proteins play important roles in hepatic nutrient homeostasis. Since glucokinase (GK) and glucokinase regulatory protein (GKRP) function as key glucose sensors, we have investigated the expression of GK and GKRP in liver of Irs-2 deficient mice and Irs2(−/−) mice where Irs2 was reintroduced specifically into pancreatic β-cells [RIP-Irs-2/IRS-2(−/−)]. We observed that liver GK activity was significantly lower (p<0.0001) in IRS-2(−/−) mice. However, in RIP-Irs-2/IRS-2(−/−) mice, GK activity was similar to the values observed in wild-type animals. GK activity in hypothalamus was not altered in IRS-2(−/−) mice. GK and GKRP mRNA levels in liver of IRS-2(−/−) were significantly lower, whereas in RIP-Irs-2/IRS-2(−/−) mice, both GK and GKRP mRNAs levels were comparable to wild-type animals. At the protein level, the liver content of GK was reduced in IRS-2(−/−) mice as compared with controls, although GKRP levels were similar between these experimental models. Both GK and GKRP levels were lower in RIP-Irs-2/IRS-2(−/−) mice. These results suggest that IRS-2 signalling is important for maintaining the activity of liver GK. Moreover, the differences between liver and brain GK may be explained by the fact that expression of hepatic, but not brain, GK is controlled by insulin. GK activity was restored by the β-cell compensation in the RIP-Irs-2/IRS-2 mice. Interestingly, GK and GKRP protein expression remained low in RIP-Irs-2/IRS-2(−/−) mice, perhaps reflecting different mRNA half-lives or alterations in the process of translation and post-translational regulation.
Collapse
Affiliation(s)
- Isabel Roncero
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Elvira Alvarez
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Carlos Acosta
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmen Sanz
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Pedro Barrio
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Veronica Hurtado-Carneiro
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Deborah Burks
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Enrique Blázquez
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- * E-mail:
| |
Collapse
|
32
|
Nakamura A, Tajima K, Zolzaya K, Sato K, Inoue R, Yoneda M, Fujita K, Nozaki Y, Kubota KC, Haga H, Kubota N, Nagashima Y, Nakajima A, Maeda S, Kadowaki T, Terauchi Y. Protection from non-alcoholic steatohepatitis and liver tumourigenesis in high fat-fed insulin receptor substrate-1-knockout mice despite insulin resistance. Diabetologia 2012; 55:3382-91. [PMID: 22955994 DOI: 10.1007/s00125-012-2703-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/27/2012] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS Epidemiological studies have revealed that obesity and diabetes mellitus are independent risk factors for the development of non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma. However, the debate continues on whether insulin resistance as such is directly associated with NASH and liver tumourigenesis. Here, we investigated the incidence of NASH and liver tumourigenesis in Irs1 ( -/- ) mice subjected to a long-term high-fat (HF) diet. Our hypothesis was that hepatic steatosis, rather than insulin resistance may be related to the pathophysiology of these conditions. METHODS Mice (8 weeks old, C57Bl/6J) were given free access to standard chow (SC) or an HF diet. The development of NASH and liver tumourigenesis was evaluated after mice had been on the above-mentioned diets for 60 weeks. Similarly, Irs1 ( -/- ) mice were also subjected to an HF diet for 60 weeks. RESULTS Long-term HF diet loading, which causes obesity and insulin resistance, was sufficient to induce NASH and liver tumourigenesis in the C57Bl/6J mice. Obesity and insulin resistance were reduced by switching mice from the HF diet to SC, which also protected these mice against the development of NASH and liver tumourigenesis. However, compared with wild-type mice fed the HF diet, Irs1 ( -/- ) mice fed the HF diet were dramatically protected against NASH and liver tumourigenesis despite the presence of severe insulin resistance and marked postprandial hyperglycaemia. CONCLUSIONS/INTERPRETATION IRS-1 inhibition might protect against HF diet-induced NASH and liver tumourigenesis, despite the presence of insulin resistance.
Collapse
Affiliation(s)
- A Nakamura
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Increased insulin receptor substrate 2 expression is associated with steatohepatitis and altered lipid metabolism in obese subjects. Int J Obes (Lond) 2012; 37:986-92. [DOI: 10.1038/ijo.2012.181] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/27/2012] [Accepted: 10/07/2012] [Indexed: 01/01/2023]
|
34
|
Wu X, Williams KJ. NOX4 pathway as a source of selective insulin resistance and responsiveness. Arterioscler Thromb Vasc Biol 2012; 32:1236-45. [PMID: 22328777 DOI: 10.1161/atvbaha.111.244525] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Type 2 diabetes mellitus and related syndromes exhibit a deadly triad of dyslipoproteinemia, which leads to atherosclerosis; hyperglycemia, which causes microvascular disease; and hypertension. These features share a common, but unexplained, origin-namely, pathway-selective insulin resistance and responsiveness. Here, we undertook a comprehensive characterization of pathway-selective insulin resistance and responsiveness in liver and hepatocytes by examining 18 downstream targets of the insulin receptor, surveying the AKT, ERK, and NAD(P)H oxidase 4 pathways. METHODS AND RESULTS Injection of insulin into hyperphagic, obese type 2 diabetic db/db mice failed to inactivate hepatic protein tyrosine phosphatase gene family members, a crucial action of NAD(P)H oxidase 4 previously thought to be required for all signaling through AKT and ERK. Insulin-stimulated type 2 diabetic livers unexpectedly produced an unusual form of AKT that was phosphorylated at Thr308 (pT308), with only weak insulin-stimulated phosphorylation at Ser473. Remarkably, knockdown or inhibition of NAD(P)H oxidase 4 in cultured hepatocytes recapitulated the entire complicated pattern of pathway-selective insulin resistance and responsiveness seen in vivo-namely, monophosphorylated pT308-AKT, impaired insulin-stimulated pathways for lowering plasma lipids and glucose, but continued lipogenic pathways and robust ERK activation. CONCLUSIONS Functional disturbance of a single molecule, NAD(P)H oxidase 4, is sufficient to induce the key harmful features of deranged insulin signaling in type 2 diabetes mellitus, obesity, and other conditions associated with hyperinsulinemia and pathway-selective insulin resistance and responsiveness.
Collapse
Affiliation(s)
- Xiangdong Wu
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
35
|
Sunahara KKS, Sannomiya P, Martins JO. Briefs on Insulin and Innate Immune Response. Cell Physiol Biochem 2012; 29:1-8. [DOI: 10.1159/000337579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2011] [Indexed: 01/04/2023] Open
|
36
|
D’Cruz SC, Jubendradass R, Mathur PP. Bisphenol A Induces Oxidative Stress and Decreases Levels of Insulin Receptor Substrate 2 and Glucose Transporter 8 in Rat Testis. Reprod Sci 2011; 19:163-72. [DOI: 10.1177/1933719111415547] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shereen C. D’Cruz
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - R. Jubendradass
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Premendu P. Mathur
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
37
|
Tsunekawa S, Demozay D, Briaud I, McCuaig J, Accili D, Stein R, Rhodes CJ. FoxO feedback control of basal IRS-2 expression in pancreatic β-cells is distinct from that in hepatocytes. Diabetes 2011; 60:2883-91. [PMID: 21933986 PMCID: PMC3198101 DOI: 10.2337/db11-0340] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Appropriate regulation of insulin receptor substrate 2 (IRS-2) expression in pancreatic β-cells is essential to adequately compensate for insulin resistance. In liver, basal IRS-2 expression is controlled via a temporal negative feedback of sterol regulatory element-binding protein 1 (SREBP-1) to antagonize transcription factors forkhead box class O (FoxO)1/FoxO3a at an insulin response element (IRE) on the IRS-2 promoter. The purpose of the study was to examine if a similar mechanism controlled IRS-2 expression in β-cells. RESEARCH DESIGN AND METHODS IRS-2 mRNA and protein expression, as well as IRS-2 gene promoter activity, were examined in isolated rat islets. Specific transcription factor association with the IRE on the IRS-2 promoter was examined by chromatin immunoprecipitation (ChIP) assay, and their nuclear translocation was examined by immunofluorescence. A direct in vivo effect of insulin on control of IRS-2 expression in liver and pancreatic islets was also investigated. RESULTS In IRS-2 promoter-reporter assays conducted in isolated islets, removal of the IRE decreased basal IRS-2 promoter activity in β-cells up to 80%. Activation of IRS signaling in isolated rat islets by insulin/IGF-I (used as an experimental in vitro tool) or downstream constitutive activation of protein kinase B (PKB) significantly decreased IRS-2 expression. In contrast, inhibition of phosphatidylinositol 3-kinase (PI3K) or PKB significantly increased IRS-2 levels in β-cells. ChIP assays indicated that transcription factors FoxO1 and FoxO3a associated with the IRE on the IRS-2 promoter in β-cells in a PI3K/PKB-dependent manner, whereas others, such as SREBP-1, the transcription factor binding to immunoglobulin heavy chain enhancer 3', and the aryl hydrocarbon receptor nuclear translocator (ARNT), did not. However, only FoxO3a, not FoxO1, was capable of driving IRS-2 promoter activity via the IRE in β-cells. In vivo studies showed insulin was able to suppress IRS-2 expression via activation of SREBP-1 in the liver, but this mechanism was not apparent in pancreatic islets from the same animal. CONCLUSIONS The molecular mechanism for feedback control of IRS signaling to decrease IRS-2 expression in liver and β-cells is quite distinct, with a predominant role played by FoxO3a in β-cells.
Collapse
Affiliation(s)
- Shin Tsunekawa
- Kovler Diabetes Center, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Damien Demozay
- Kovler Diabetes Center, Department of Medicine, University of Chicago, Chicago, Illinois
| | | | - Jill McCuaig
- Kovler Diabetes Center, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Domenico Accili
- Naomi Berrie Diabetes Center and Department of Medicine, Columbia University, New York City, New York
| | - Roland Stein
- Departments of Molecular Physiology and Biophysics and Cell Biology and Development, Vanderbilt University, Nashville, Tennessee
| | - Christopher J. Rhodes
- Kovler Diabetes Center, Department of Medicine, University of Chicago, Chicago, Illinois
- Corresponding author: Christopher J. Rhodes,
| |
Collapse
|
38
|
Shin HJ, Park YH, Kim SU, Moon HB, Park DS, Han YH, Lee CH, Lee DS, Song IS, Lee DH, Kim M, Kim NS, Kim DG, Kim JM, Kim SK, Kim YN, Kim SS, Choi CS, Kim YB, Yu DY. Hepatitis B virus X protein regulates hepatic glucose homeostasis via activation of inducible nitric oxide synthase. J Biol Chem 2011; 286:29872-81. [PMID: 21690090 PMCID: PMC3191028 DOI: 10.1074/jbc.m111.259978] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/13/2011] [Indexed: 12/25/2022] Open
Abstract
Dysregulation of liver functions leads to insulin resistance causing type 2 diabetes mellitus and is often found in chronic liver diseases. However, the mechanisms of hepatic dysfunction leading to hepatic metabolic disorder are still poorly understood in chronic liver diseases. The current work investigated the role of hepatitis B virus X protein (HBx) in regulating glucose metabolism. We studied HBx-overexpressing (HBxTg) mice and HBxTg mice lacking inducible nitric oxide synthase (iNOS). Here we show that gene expressions of the key gluconeogenic enzymes were significantly increased in HepG2 cells expressing HBx (HepG2-HBx) and in non-tumor liver tissues of hepatitis B virus patients with high levels of HBx expression. In the liver of HBxTg mice, the expressions of gluconeogenic genes were also elevated, leading to hyperglycemia by increasing hepatic glucose production. However, this effect was insufficient to cause systemic insulin resistance. Importantly, the actions of HBx on hepatic glucose metabolism are thought to be mediated via iNOS signaling, as evidenced by the fact that deficiency of iNOS restored HBx-induced hyperglycemia by suppressing the gene expression of gluconeogenic enzymes. Treatment of HepG2-HBx cells with nitric oxide (NO) caused a significant increase in the expression of gluconeogenic genes, but JNK1 inhibition was completely normalized. Furthermore, hyperactivation of JNK1 in the liver of HBxTg mice was also suppressed in the absence of iNOS, indicating the critical role for JNK in the mutual regulation of HBx- and iNOS-mediated glucose metabolism. These findings establish a novel mechanism of HBx-driven hepatic metabolic disorder that is modulated by iNOS-mediated activation of JNK.
Collapse
Affiliation(s)
- Hye-Jun Shin
- From the Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
- the College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Young-Ho Park
- From the Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
- the Department of Functional Genomics, University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Sun-Uk Kim
- From the Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Hyung-Bae Moon
- the Department of Pathology and Institute of Medical Science, Wonkwang University College of Medicine, Iksan 570-749, Republic of Korea
| | - Do Sim Park
- the Department of Pathology and Institute of Medical Science, Wonkwang University College of Medicine, Iksan 570-749, Republic of Korea
| | - Ying-Hao Han
- From the Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Chul-Ho Lee
- From the Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Dong-Seok Lee
- From the Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
- the College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - In-Sung Song
- the Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Dae Ho Lee
- the Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Minhye Kim
- the Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Nam-Soon Kim
- the Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Dae-Ghon Kim
- the Department of Internal Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561-756, Republic of Korea
| | - Jin-Man Kim
- the College of Medicine, Chungnam National University, Daejeon 305-764, Republic of Korea, and
| | - Sang-Keun Kim
- the College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Yo Na Kim
- the Lee Gil Ya Cancer and Diabetes Institute and
| | - Su Sung Kim
- the Lee Gil Ya Cancer and Diabetes Institute and
| | - Cheol Soo Choi
- the Lee Gil Ya Cancer and Diabetes Institute and
- Division of Endocrinology Gil Medical Center, Gachon University of Medicine and Science, Incheon 406-840, Republic of Korea
| | - Young-Bum Kim
- the Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Dae-Yeul Yu
- From the Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
- the Department of Functional Genomics, University of Science and Technology, Daejeon 305-333, Republic of Korea
| |
Collapse
|
39
|
Kloet DEA, Burgering BMT. The PKB/FOXO switch in aging and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1926-37. [PMID: 21539865 DOI: 10.1016/j.bbamcr.2011.04.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/01/2011] [Accepted: 04/13/2011] [Indexed: 12/23/2022]
Abstract
Aging is characterized by the general decline in tissue and body function and the increased susceptibility to age-related pathologies, such as cancer. To maintain optimal tissue and body function, organisms have developed complex mechanisms for tissue homeostasis. Importantly, it is becoming apparent that these same mechanisms when deregulated also result in the development of age-related disease. The build in fail safe mechanisms of homeostasis, which prevent skewing toward disease, themselves contribute to aspects of aging. Thus, longevity is limited by an intrinsic trade-off between optimal tissue function and disease. Consequently, aging and age-related diseases, such as cancer and diabetes are driven by the same genetic determinants. Illustrative in this respect is the insulin/IGF-1 signaling pathway acting through PI3K/PKB and FOXO. Loss of PKB signaling contributes to diabetes, whereas gain of function of PKB drives cancer. Enhanced FOXO activity, at least in model organism contributes to extended lifespan and acts as a tumor suppressive mechanism. Here, we focus on the linkage between PKB and FOXO as a central switch in contributing to tissue homeostasis and age-related diseases in particular cancer. This article is part of a Special Issue entitled: P13K-AKT-FoxO axis in cancer and aging.
Collapse
Affiliation(s)
- David E A Kloet
- Medical Cancer Research, University Medical Center Utrecht, The Netherlands
| | | |
Collapse
|
40
|
Ferré P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 2010; 12 Suppl 2:83-92. [PMID: 21029304 DOI: 10.1111/j.1463-1326.2010.01275.x] [Citation(s) in RCA: 534] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Steatosis is an accumulation of triglycerides in the liver. Although an excessive availability of plasma fatty acids is an important determinant of steatosis, lipid synthesis from glucose (lipogenesis) is now also considered as an important contributing factor. Lipogenesis is an insulin- and glucose-dependent process that is under the control of specific transcription factors, sterol regulatory element binding protein 1c (SREBP-1c), activated by insulin and carbohydrate response element binding protein (ChREBP) activated by glucose. Insulin induces the maturation of SREBP-1c by a proteolytic mechanism initiated in the endoplasmic reticulum (ER). SREBP-1c in turn activates glycolytic gene expression, allowing glucose metabolism, and lipogenic genes in conjunction with ChREBP. Lipogenesis activation in the liver of obese markedly insulin-resistant steatotic rodents is then paradoxical. Recent data suggest that the activation of SREBP-1c and thus of lipogenesis is secondary in the steatotic liver to an ER stress. The ER stress activates the cleavage of SREBP-1c independent of insulin, thus explaining the paradoxical stimulation of lipogenesis in an insulin-resistant liver. Inhibition of the ER stress in obese rodents decreases SREBP-1c activation and lipogenesis and improves markedly hepatic steatosis and insulin sensitivity. ER is thus a new partner in steatosis and metabolic syndrome which is worth considering as a potential therapeutic target.
Collapse
Affiliation(s)
- P Ferré
- INSERM, UMR-S 872, Centre de Recherches des Cordeliers and Université Pierre et Marie Curie-Paris, Paris, France
| | | |
Collapse
|
41
|
Yang X, Nath A, Opperman MJ, Chan C. The double-stranded RNA-dependent protein kinase differentially regulates insulin receptor substrates 1 and 2 in HepG2 cells. Mol Biol Cell 2010; 21:3449-58. [PMID: 20685959 PMCID: PMC2947480 DOI: 10.1091/mbc.e10-06-0481] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The RNA-dependent protein kinase (PKR), initially known as a virus infection response protein, is found to differentially regulate two major players in the insulin signaling pathway, IRS1 and IRS2. PKR up-regulates the inhibitory phosphorylation of IRS1 and the expression of IRS2 at the transcriptional level. Initially identified to be activated upon virus infection, the double-stranded RNA–dependent protein kinase (PKR) is best known for triggering cell defense responses by phosphorylating eIF-2α, thus suppressing RNA translation. We as well as others showed that the phosphorylation of PKR is down-regulated by insulin. In the present study, we further uncovered a novel function of PKR in regulating the IRS proteins. We found that PKR up-regulates the inhibitory phosphorylation of IRS1 at Ser312, which suppresses the tyrosine phosphorylation of IRS1. This effect of PKR on the phosphorylation of IRS1 is mediated by two other protein kinases, JNK and IKK. In contrast, PKR regulates IRS2, another major IRS family protein in the liver, at the transcriptional rather than the posttranslational level, and this effect is mediated by the transcription factor, FoxO1, which has been previously shown to be regulated by insulin and plays a significant role in glucose homeostasis and energy metabolism. In summary, we found for the first time that initially known as a virus infection response gene, PKR regulates the upstream central transmitters of insulin signaling, IRS1 and IRS2, through different mechanisms.
Collapse
Affiliation(s)
- Xuerui Yang
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
42
|
Mardilovich K, Shaw LM. Hypoxia regulates insulin receptor substrate-2 expression to promote breast carcinoma cell survival and invasion. Cancer Res 2009; 69:8894-901. [PMID: 19920186 DOI: 10.1158/0008-5472.can-09-1152] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin receptor substrate-2 (IRS-2) belongs to the IRS family of adaptor proteins that function as signaling intermediates for growth factor, cytokine, and integrin receptors, many of which have been implicated in cancer. Although the IRS proteins share significant homology, distinct functions have been attributed to each family member in both normal and tumor cells. In cancer, IRS-2 is positively associated with aggressive tumor behavior. In the current study, we show that IRS-2 expression, but not IRS-1 expression, is positively regulated by hypoxia, which selects for tumor cells with increased metastatic potential. We identify IRS-2 as a novel hypoxia-responsive gene and establish that IRS-2 gene transcription increases in a hypoxia-inducible factor-dependent manner in hypoxic environments. IRS-2 is active to mediate insulin-like growth factor I-dependent signals in hypoxia, and enhanced activation of Akt in hypoxia is dependent on IRS-2 expression. Functionally, the elevated expression of IRS-2 facilitates breast carcinoma cell survival and invasion in hypoxia. Collectively, our results reveal a novel mechanism by which IRS-2 contributes to the aggressive behavior of hypoxic tumor cells.
Collapse
Affiliation(s)
- Katerina Mardilovich
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusett 01605, USA
| | | |
Collapse
|
43
|
Mardilovich K, Pankratz SL, Shaw LM. Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun Signal 2009; 7:14. [PMID: 19534786 PMCID: PMC2709114 DOI: 10.1186/1478-811x-7-14] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 06/17/2009] [Indexed: 12/13/2022] Open
Abstract
The Insulin Receptor Substrate (IRS) proteins are cytoplasmic adaptor proteins that function as essential signaling intermediates downstream of activated cell surface receptors, many of which have been implicated in cancer. The IRS proteins do not contain any intrinsic kinase activity, but rather serve as scaffolds to organize signaling complexes and initiate intracellular signaling pathways. As common intermediates of multiple receptors that can influence tumor progression, the IRS proteins are positioned to play a pivotal role in regulating the response of tumor cells to many different microenvironmental stimuli. Limited studies on IRS expression in human tumors and studies on IRS function in human tumor cell lines and in mouse models have provided clues to the potential function of these adaptor proteins in human cancer. A general theme arises from these studies; IRS-1 and IRS-4 are most often associated with tumor growth and proliferation and IRS-2 is most often associated with tumor motility and invasion. In this review, we discuss the mechanisms by which IRS expression and function are regulated and how the IRS proteins contribute to tumor initiation and progression.
Collapse
Affiliation(s)
- Katerina Mardilovich
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
44
|
Insulin regulates cytokines and intercellular adhesion molecule-1 gene expression through nuclear factor-kappaB activation in LPS-induced acute lung injury in rats. Shock 2009; 31:404-9. [PMID: 18791499 DOI: 10.1097/shk.0b013e318186275e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diabetic patients have increased susceptibility to infection, which may be related to impaired inflammatory response observed in experimental models of diabetes, and restored by insulin treatment. The goal of this study was to investigate whether insulin regulates transcription of cytokines and intercellular adhesion molecule 1 (ICAM-1) via nuclear factor-kappaB (NF-kappaB) signaling pathway in Escherichia coli LPS-induced lung inflammation. Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and controls were instilled intratracheally with saline containing LPS (750 microg/0.4 mL) or saline only. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU, s.c.) 2 h before LPS. Analyses performed 6 h after LPS included: (a) lung and mesenteric lymph node IL-1 beta, TNF-alpha, IL-10, and ICAM-1 messenger RNA (mRNA) were quantified by real-time reverse transcriptase-polymerase chain reaction; (b) number of neutrophils in the bronchoalveolar lavage (BAL) fluid, and concentrations of IL-1 beta, TNF-alpha, and IL-10 in the BAL were determined by the enzyme-linked immunosorbent assay; and (c) activation of NF-kappaB p65 subunit and phosphorylation of I-kappaB alpha were quantified by Western blot analysis. Relative to controls, diabetic rats exhibited a reduction in lung and mesenteric lymph node IL-1 beta (40%), TNF-alpha (approximately 30%), and IL-10 (approximately 40%) mRNA levels and reduced concentrations of IL-1 beta (52%), TNF-alpha (62%), IL-10 (43%), and neutrophil counts (72%) in the BAL. Activation of NF-kappaB p65 subunit and phosphorylation of I-kappaB alpha were almost suppressed in diabetic rats. Treatment of diabetic rats with insulin completely restored mRNA and protein levels of these cytokines and potentiated lung ICAM-1 mRNA levels (30%) and number of neutrophils (72%) in the BAL. Activation of NF-kappaB p65 subunit and phosphorylation of I-kappaB alpha were partially restored by insulin treatment. In conclusion, data presented suggest that insulin regulates transcription of proinflammatory (IL-1 beta, TNF-alpha) and anti-inflammatory (IL-10) cytokines, and expression of ICAM-1 via the NF-kappaB signaling pathway.
Collapse
|
45
|
Robker RL, Akison LK, Bennett BD, Thrupp PN, Chura LR, Russell DL, Lane M, Norman RJ. Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J Clin Endocrinol Metab 2009; 94:1533-40. [PMID: 19223519 DOI: 10.1210/jc.2008-2648] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Obese women experience longer times to conception, even if they are young and cycling regularly, which is suggestive of alterations in ovarian function during the periconceptual period. OBJECTIVE This study sought to determine whether there are alterations in the preovulatory follicular environment that are likely to influence oocyte developmental competence. DESIGN, SETTING, AND PARTICIPANTS Women attending a private infertility clinic were categorized into body mass index (BMI) groups of moderate (n = 33; BMI 20-24.9 kg/m(2)), overweight (n = 31; BMI 25-29.9 kg/m(2)), and obese (n =32; BMI >or=30 kg/m(2)). INTERVENTION For each patient, follicular fluid was recovered from single follicles at oocyte retrieval, granulosa cells were pooled from multiple follicular aspirates and cumulus cells were pooled after separation from the oocytes. MAIN OUTCOME MEASURES Follicle fluid was assayed for hormones and metabolites. Granulosa and cumulus cells were analyzed for mRNA expression of insulin signaling components (IRS-2 and Glut4), glucose-regulated genes (ChREBP, ACC, and FAS) and insulin-regulated genes (SREBP-1, CD36, and SR-BI) associated with obesity/insulin resistance. RESULTS Increasing BMI was associated with increased follicular fluid insulin (P < 0.001), lactate (P = 0.01), triglycerides (P = 0.0003), and C-reactive protein (P < 0.0001) as well as decreased SHBG (P = 0.001). IRS-2, Glut4, ChREBP, and SREBP exhibited cell-type-specific expression but were not affected by BMI. CD36 and SRBI mRNA were modestly altered in granulosa cells of obese compared with moderate-weight women. CONCLUSIONS Obese women exhibit an altered ovarian follicular environment, particularly increased metabolite, C-reactive protein, and androgen activity levels, which may be associated with poorer reproductive outcomes typically observed in these patients.
Collapse
Affiliation(s)
- Rebecca L Robker
- The Robinson Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, 5005 Australia.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Kubota N, Kubota T, Itoh S, Kumagai H, Kozono H, Takamoto I, Mineyama T, Ogata H, Tokuyama K, Ohsugi M, Sasako T, Moroi M, Sugi K, Kakuta S, Iwakura Y, Noda T, Ohnishi S, Nagai R, Tobe K, Terauchi Y, Ueki K, Kadowaki T. Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metab 2008; 8:49-64. [PMID: 18590692 DOI: 10.1016/j.cmet.2008.05.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 03/28/2008] [Accepted: 05/23/2008] [Indexed: 01/04/2023]
Abstract
Insulin receptor substrate (Irs) mediates metabolic actions of insulin. Here, we show that hepatic Irs1 and Irs2 function in a distinct manner in the regulation of glucose homeostasis. The PI3K activity associated with Irs2 began to increase during fasting, reached its peak immediately after refeeding, and decreased rapidly thereafter. By contrast, the PI3K activity associated with Irs1 began to increase a few hours after refeeding and reached its peak thereafter. The data indicate that Irs2 mainly functions during fasting and immediately after refeeding, and Irs1 functions primarily after refeeding. In fact, liver-specific Irs1-knockout mice failed to exhibit insulin resistance during fasting, but showed insulin resistance after refeeding; conversely, liver-specific Irs2-knockout mice displayed insulin resistance during fasting but not after refeeding. We propose the concept of the existence of a dynamic relay between Irs1 and Irs2 in hepatic insulin signaling during fasting and feeding.
Collapse
Affiliation(s)
- Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab 2007; 6:208-16. [PMID: 17767907 DOI: 10.1016/j.cmet.2007.08.006] [Citation(s) in RCA: 500] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/12/2007] [Accepted: 08/13/2007] [Indexed: 01/30/2023]
Abstract
The hallmark of type 2 diabetes is excessive hepatic glucose production. Several transcription factors and coactivators regulate this process in cultured cells. But gene ablation experiments have yielded few clues as to the physiologic mediators of this process in vivo. We show that inactivation of the gene encoding forkhead protein Foxo1 in mouse liver results in 40% reduction of glucose levels at birth and 30% reduction in adult mice after a 48 hr fast. Gene expression and glucose clamp studies demonstrate that Foxo1 ablation impairs fasting- and cAMP-induced glycogenolysis and gluconeogenesis. Pgc1alpha is unable to induce gluconeogenesis in Foxo1-deficient hepatocytes, while the cAMP response is significantly blunted. Conversely, Foxo1 deletion in liver curtails excessive glucose production caused by generalized ablation of insulin receptors and prevents neonatal diabetes and hepatosteatosis in insulin receptor knockout mice. The data provide a unifying mechanism for regulation of hepatic glucose production by cAMP and insulin.
Collapse
Affiliation(s)
- Michihiro Matsumoto
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
49
|
Blasiole DA, Davis RA, Attie AD. The physiological and molecular regulation of lipoprotein assembly and secretion. MOLECULAR BIOSYSTEMS 2007; 3:608-19. [PMID: 17700861 DOI: 10.1039/b700706j] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triglycerides are insoluble in water and yet are transported at milligram per millilitre concentrations in the bloodstream. This is made possible by the ability of the liver and intestine to assemble lipid-protein emulsions (i.e. lipoproteins), which transport hydrophobic molecules. The assembly of triglyceride-rich lipoproteins requires the coordination of protein and lipid synthesis, which occurs on the cytoplasmic surface of the endoplasmic reticulum (ER), and their concerted assembly and translocation into the luminal ER secretory pathway as nascent lipoprotein particles. The availability of lipid substrate for triglyceride production and the machinery for lipoprotein assembly are highly sensitive to nutritional, hormonal, and genetic modulation. Disorders in lipid metabolism or an imbalance between lipogenesis and lipoprotein assembly can lead to hyperlipidemia and/or hepatic steatosis. We selectively review recently-identified machinery, such as transcription factors and nuclear hormone receptors, which provide new clues to the regulation of lipoprotein secretion.
Collapse
Affiliation(s)
- Daniel A Blasiole
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, USA
| | | | | |
Collapse
|
50
|
Mounier C, Posner BI. Transcriptional regulation by insulin: from the receptor to the gene. Can J Physiol Pharmacol 2007; 84:713-24. [PMID: 16998535 DOI: 10.1139/y05-152] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin, after binding to its receptor, regulates many cellular processes and the expression of several genes. For a subset of genes, insulin exerts a negative effect on transcription; for others, the effect is positive. Insulin controls gene transcription by modifying the binding of transcription factors on insulin-response elements or by regulating their transcriptional activities. Different insulin-signaling cascades have been characterized as mediating the insulin effect on gene transcription. In this review, we analyze recent data on the molecular mechanisms, mostly in the liver, through which insulin exerts its effect. We first focus on the key transcription factors (viz. Foxo, sterol-response-element-binding protein family (SREBP), and Sp1) involved in the regulation of gene transcription by insulin. We then present current information on the way insulin downregulates and upregulates gene transcription, using as examples of downregulation phosphoenolpyruvate carboxykinase (PEPCK) and insulin-like growth factor binding protein 1 (IGFBP-1) genes and of upregulation the fatty acid synthase and malic enzyme genes. The last part of the paper focuses on the signaling cascades activated by insulin in the liver, leading to the modulation of gene transcription.
Collapse
Affiliation(s)
- Catherine Mounier
- BioMed, Department of Biological Science, University of Quebec in Montreal, 141 President Kennedy, Montreal, QC H2X 3Y7, Canada
| | | |
Collapse
|