1
|
Ware-Gilmore F, Jones MJ, Mejia AJ, Dennington NL, Audsley MD, Hall MD, Sgrò CM, Buckley T, Anand GS, Jose J, McGraw EA. Evolution and adaptation of dengue virus in response to high-temperature passaging in mosquito cells. Virus Evol 2025; 11:veaf016. [PMID: 40330315 PMCID: PMC12054504 DOI: 10.1093/ve/veaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/14/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
The incidence of arboviral diseases like dengue, chikungunya, and yellow fever continues to rise in association with the expanding geographic ranges of their vectors, Aedes aegypti and Aedes albopictus. The distribution of these vectors is believed to be driven in part by climate change and increasing urbanization. Arboviruses navigate a wide range of temperatures as they transition from ectothermic vectors (from 15°C to 35°C) to humans (37°C) and back again, but the role that temperature plays in driving the evolution of arboviruses remains largely unknown. Here, we passaged replicate dengue serotype-2 virus populations 10 times at either 26°C (Low) or 37°C (High) in C6/36 Aedes albopictus cells to explore the differences in adaptation to these thermal environments. We then deep-sequenced the resulting passaged dengue virus populations and tested their replicative fitness in an all-cross temperature regime. We also assessed the ability of the passaged viruses to replicate in the insect vector. While viruses from both thermal regimes accumulated substitutions, only those reared in the 37°C treatments exhibited nonsynonymous changes, including several in the E, or envelope protein, and multiple non-structural genes. Passaging at the higher temperature also led to reduced replicative ability at 26°C in both cells and mosquitoes. One of the mutations in the E gene involved the loss of a glycosylation site previously shown to reduce infectivity in the vector. These findings suggest that viruses selected for growth at higher ambient temperatures may experience tradeoffs between thermostability and replication in the vector. Such associations might also have implications for the suitability of virus transmission under a changing climate.
Collapse
Affiliation(s)
- Fhallon Ware-Gilmore
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew J Jones
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Austin J Mejia
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nina L Dennington
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle D Audsley
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Theresa Buckley
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ganesh S Anand
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joyce Jose
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth A McGraw
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Tian D, Ye RZ, Li YY, Wang N, Gao WY, Wang BH, Lin ZT, Zhu WJ, Wang QS, Liu YT, Wei H, Wang YF, Sun Y, Shi XY, Jia N, Jiang JF, Cui XM, Cao WC, Liu ZH. Virome specific to tick genus with distinct ecogeographical distribution. MICROBIOME 2025; 13:57. [PMID: 40022268 PMCID: PMC11869668 DOI: 10.1186/s40168-025-02061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/09/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND The emergence of tick-borne pathogens poses a serious threat to both human and animal health. There remains controversy about virome diversity in relation to tick genus and ecogeographical factors. RESULTS We conducted the meta‑transcriptomic sequencing of 155 pools of ticks encompassing 7 species of 3 genera collected from diverse geographical fauna of Ningxia Province, China. Two species of Dermacentor genus were distributed in the predominantly grassland areas of the central and eastern regions, with the lowest viral diversity. Two species of Hyalomma ticks were found in the predominantly desert areas of the northern regions, with intermediate viral diversity. Three species of Haemaphysalis ticks were concentrated in the predominantly forested areas of the southern regions, exhibiting the highest viral diversity. We assembled 348 viral genomes of 63 species in 14 orders, including 26 novel viruses. The identified viruses were clearly specific to tick genus: 22 virus species were exclusive to Dermacentor, 12 to Hyalomma, and 27 to Haemaphysalis. CONCLUSIONS The associations between tick genera and geographical distribution, viral richness, and composition provide new insights into tick-virus interactions, offering clues to identify high-risk regions for different tick-borne viruses. Video Abstract.
Collapse
Affiliation(s)
- Di Tian
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Run-Ze Ye
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yu-Yu Li
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ning Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Bai-Hui Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhe-Tao Lin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Wen-Jie Zhu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Qiu-Shi Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ya-Ting Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Hua Wei
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yi-Fei Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Xiao-Yu Shi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wu-Chun Cao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China.
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| | - Zhi-Hong Liu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.
| |
Collapse
|
3
|
Wang X‘M, Muller J, McDowell M, Rasmussen DA. Quantifying the strength of viral fitness trade-offs between hosts: a meta-analysis of pleiotropic fitness effects. Evol Lett 2024; 8:851-865. [PMID: 39677573 PMCID: PMC11637551 DOI: 10.1093/evlett/qrae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 12/17/2024] Open
Abstract
The range of hosts a given virus can infect is widely presumed to be limited by fitness trade-offs between alternative hosts. These fitness trade-offs may arise naturally due to antagonistic pleiotropy if mutations that increase fitness in one host tend to decrease fitness in alternate hosts. Yet there is also growing recognition that positive pleiotropy may be more common than previously appreciated. With positive pleiotropy, mutations have concordant fitness effects such that a beneficial mutation can simultaneously increase fitness in different hosts, providing a genetic mechanism by which selection can overcome fitness trade-offs. How readily evolution can overcome fitness trade-offs therefore depends on the overall distribution of mutational fitness effects between hosts, including the relative frequency of antagonistic versus positive pleiotropy. We therefore conducted a systematic meta-analysis of the pleiotropic fitness effects of viral mutations reported in different hosts. Our analysis indicates that while both antagonistic and positive pleiotropy are common, fitness effects are overall positively correlated between hosts and unconditionally beneficial mutations are not uncommon. Moreover, the relative frequency of antagonistic versus positive pleiotropy may simply reflect the underlying frequency of beneficial and deleterious mutations in individual hosts. Given a mutation is beneficial in one host, the probability that it is deleterious in another host is roughly equal to the probability that any mutation is deleterious, suggesting there is no natural tendency toward antagonistic pleiotropy. The widespread prevalence of positive pleiotropy suggests that many fitness trade-offs may be readily overcome by evolution given the right selection pressures.
Collapse
Affiliation(s)
- Xuechun ‘May’ Wang
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Julia Muller
- Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Mya McDowell
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
4
|
Battini L, Thannickal SA, Cibello MT, Bollini M, Stapleford KA, Álvarez DE. Evolution of antiviral resistance captures a transient interdomain functional interaction between chikungunya virus envelope glycoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623010. [PMID: 39605706 PMCID: PMC11601244 DOI: 10.1101/2024.11.11.623010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Envelope proteins drive virus and host-cell membrane fusion to achieve virus entry. Fusogenic proteins are classified into structural classes that function with remarkable mechanistic similarities. Fusion proceeds through coordinated movements of protein domains in a sequence of orchestrated steps. Structures for the initial and final conformations are available for several fusogens, but folding intermediates have largely remained unresolved and interdependency between regions that drive conformational rearrangements is not well understood. Chikungunya virus (CHIKV) particles display heterodimers of envelope proteins E1 and E2 associated as trimeric spikes that respond to acidic pH to trigger fusion. We have followed experimental evolution of CHIKV under the selective pressure of a novel small-molecule entry inhibitor. Mutations arising from selection mapped to two residues located in distal domains of E2 and E1 heterodimer and spikes. Here, we pinpointed the antiviral mode of action to inhibition of fusion. Phenotypic characterization of recombinant viruses indicated that the selected mutations confer a fitness advantage under antiviral pressure, and that the double-mutant virus overcame antiviral inhibition of fusion while single-mutants were sensitive. Further supporting a functional connection between residues, the double-mutant virus displayed a higher pH-threshold for fusion than single-mutant viruses. Finally, mutations implied distinct outcomes of replication and spreading in mice, and infection rates in mosquitoes underscoring the fine-tuning of envelope protein function as a determinant for establishment of infection. Together with molecular dynamics simulations that indicate a link between these two residues in the modulation of the heterodimer conformational rearrangement, our approach captured an otherwise unresolved interaction.
Collapse
Affiliation(s)
- Leandro Battini
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín B1650, Argentina
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBON), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Sara A Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Malena Tejerina Cibello
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín B1650, Argentina
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBON), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Kenneth A Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Diego E Álvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín B1650, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín
| |
Collapse
|
5
|
Comas-Garcia M. How structural biology has changed our understanding of icosahedral viruses. J Virol 2024; 98:e0111123. [PMID: 39291975 PMCID: PMC11495149 DOI: 10.1128/jvi.01111-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Cryo-electron microscopy and tomography have allowed us to unveil the remarkable structure of icosahedral viruses. However, in the past few years, the idea that these viruses must have perfectly symmetric virions, but in some cases, it might not be true. This has opened the door to challenging paradigms in structural virology and raised new questions about the biological implications of "unusual" or "defective" symmetries and structures. Also, the continual improvement of these technologies, coupled with more rigorous sample purification protocols, improvements in data processing, and the use of artificial intelligence, has allowed solving the structure of sub-viral particles in highly heterogeneous samples and finding novel symmetries or structural defects. In this review, I initially analyzed the case of the symmetry and composition of hepatitis B virus-produced spherical sub-viral particles. Then, I focused on Alphaviruses as an example of "imperfect" icosahedrons and analyzed how structural biology has changed our understanding of the Alphavirus assembly and some biological implications arising from these discoveries.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Science Department, Autonomous University of San Luis Potosi, San Luis Potosí, Mexico
- High-Resolution Microscopy Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Translational and Molecular Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosí, Mexico
| |
Collapse
|
6
|
Quek S, Hadermann A, Wu Y, De Coninck L, Hegde S, Boucher JR, Cresswell J, Foreman E, Steven A, LaCourse EJ, Ward SA, Wanji S, Hughes GL, Patterson EI, Wagstaff SC, Turner JD, Parry RH, Kohl A, Heinz E, Otabil KB, Matthijnssens J, Colebunders R, Taylor MJ. Diverse RNA viruses of parasitic nematodes can elicit antibody responses in vertebrate hosts. Nat Microbiol 2024; 9:2488-2505. [PMID: 39232205 PMCID: PMC11445058 DOI: 10.1038/s41564-024-01796-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 07/25/2024] [Indexed: 09/06/2024]
Abstract
Parasitic nematodes have an intimate, chronic and lifelong exposure to vertebrate tissues. Here we mined 41 published parasitic nematode transcriptomes from vertebrate hosts and identified 91 RNA viruses across 13 virus orders from 24 families in ~70% (28 out of 41) of parasitic nematode species, which include only 5 previously reported viruses. We observe widespread distribution of virus-nematode associations across multiple continents, suggesting an ancestral acquisition event and host-virus co-evolution. Characterization of viruses of Brugia malayi (BMRV1) and Onchocerca volvulus (OVRV1) shows that these viruses are abundant in reproductive tissues of adult parasites. Importantly, the presence of BMRV1 RNA in B. malayi parasites mounts an RNA interference response against BMRV1 suggesting active viral replication. Finally, BMRV1 and OVRV1 were found to elicit antibody responses in serum samples from infected jirds and infected or exposed humans, indicating direct exposure to the immune system.
Collapse
Affiliation(s)
- Shannon Quek
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Amber Hadermann
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Yang Wu
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Lander De Coninck
- Laboratory of Viral Metagenomics, Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Shrilakshmi Hegde
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jordan R Boucher
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jessica Cresswell
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ella Foreman
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Andrew Steven
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - E James LaCourse
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen A Ward
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Samuel Wanji
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Grant L Hughes
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Edward I Patterson
- Department of Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Simon C Wagstaff
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Joseph D Turner
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Rhys H Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Alain Kohl
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Kenneth Bentum Otabil
- Consortium for Neglected Tropical Diseases and One Health, Department of Biological Sciences, University of Energy and Natural Resources, Sunyani, Ghana
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | | - Mark J Taylor
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
7
|
Miranda-López A, González-Ortega O, Govea-Alonso DO, Betancourt-Mendiola L, Comas-García M, Rosales-Mendoza S. Rational design and production of a chimeric antigen targeting Zika virus that induces neutralizing antibodies in mice. Vaccine 2024; 42:3674-3683. [PMID: 38749821 DOI: 10.1016/j.vaccine.2024.04.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
The Zika virus (ZIKV) is considered a public health problem worldwide due to its association with the development of microcephaly and the Guillain-Barré syndrome. Currently, there is no specific treatment or vaccine approved to combat this disease, and thus, developing safe and effective vaccines is a relevant goal. In this study, a multi-epitope protein called rpZDIII was designed based on a series of ZIKV antigenic sequences, a bacterial carrier, and linkers. The analysis of the predicted 3D structure of the rpZDIII chimeric antigen was performed on the AlphaFold 2 server, and it was produced in E. coli and purified from inclusion bodies, followed by solubilization and refolding processes. The yield achieved for rpZDIII was 11 mg/L in terms of pure soluble recombinant protein per liter of fermentation. rpZDIII was deemed immunogenic since it induced serum IgG and IgM responses in mice upon subcutaneous immunization in a three-dose scheme. Moreover, sera from mice immunized with rpZDIII showed neutralizing activity against ZIKV. Therefore, this study reveals rpZDIII as a promising immunogen for the development of a rationally designed multi-epitope vaccine against ZIKV, and completion of its preclinical evaluation is guaranteed.
Collapse
Affiliation(s)
- Arleth Miranda-López
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, México
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, México; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210 México
| | - Dania O Govea-Alonso
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210 México
| | - Lourdes Betancourt-Mendiola
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, México; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210 México
| | - Mauricio Comas-García
- Sección de Microscopía de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, México; Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis, S.L.P., San Luis Potosí 78210, México.
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, México; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210 México.
| |
Collapse
|
8
|
Prat M, Jeanneau M, Rakotoarivony I, Duhayon M, Simonin Y, Savini G, Labbé P, Alout H. Virulence and transmission vary between Usutu virus lineages in Culex pipiens. PLoS Negl Trop Dis 2024; 18:e0012295. [PMID: 38935783 PMCID: PMC11236178 DOI: 10.1371/journal.pntd.0012295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/10/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Usutu virus (USUV) is a zoonotic arbovirus infecting mainly wild birds. It is transmitted by ornithophilic mosquitoes, mainly of the genus Culex from birds to birds and to several vertebrate dead-end hosts. Several USUV lineages, differing in their virulence have emerged in the last decades and now co-circulate in Europe, impacting human populations. However, their relative transmission and effects on their mosquito vectors is still not known. We thus compared the vector competence and survival of Culex pipiens mosquitoes experimentally infected with two distinct USUV lineages, EU2 and EU3, that are known to differ in their virulence and replication in vertebrate hosts. Infection rate was variable among blood feeding assays but variations between EU2 and EU3 lineages were consistent suggesting that Culex pipiens was equally susceptible to infection by both lineages. However, EU3 viral load increased with viral titer in the blood meal while EU2 viral load was high at all titers which suggest a greater replication of EU2 than EU3 in mosquito. While their relative transmission efficiencies are similar, at least at low blood meal titer, positive correlation between transmission and blood meal titer was observed for EU3 only. Contrary to published results in vertebrates, EU3 induced a higher mortality to mosquitoes (i.e. virulence) than EU2 whatever the blood meal titer. Therefore, we found evidence of lineage-specific differences in vectorial capacity and virulence to both the vector and vertebrate host which lead to balanced propagation of both viral lineages. These results highlight the need to decipher the interactions between vectors, vertebrate hosts, and the diversity of arbovirus lineages to fully understand transmission dynamics.
Collapse
Affiliation(s)
- Maxime Prat
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier-CNRS-IRD, Montpellier, France
- UMR ASTRE, Univ Montpellier, INRAE-CIRAD, Montpellier, France
| | | | | | - Maxime Duhayon
- UMR ASTRE, Univ Montpellier, INRAE-CIRAD, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, Université de Montpellier-INSERM-EFS, Montpellier, France
| | - Giovanni Savini
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", Teramo, Italy
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier-CNRS-IRD, Montpellier, France
| | - Haoues Alout
- UMR ASTRE, Univ Montpellier, INRAE-CIRAD, Montpellier, France
| |
Collapse
|
9
|
da Costa Castilho M, de Filippis AMB, Machado LC, de Lima Calvanti TYV, Lima MC, Fonseca V, Giovanetti M, Docena C, Neto AM, Bôtto-Menezes CHA, Kara EO, de La Barrera R, Modjarrad K, Giozza SP, Pereira GF, Alcantara LCJ, Broutet NJN, Calvet GA, Wallau GL, Franca RFO. Evidence of Zika Virus Reinfection by Genome Diversity and Antibody Response Analysis, Brazil. Emerg Infect Dis 2024; 30:310-320. [PMID: 38270216 PMCID: PMC10826783 DOI: 10.3201/eid3002.230122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
We generated 238 Zika virus (ZIKV) genomes from 135 persons in Brazil who had samples collected over 1 year to evaluate virus persistence. Phylogenetic inference clustered the genomes together with previously reported ZIKV strains from northern Brazil, showing that ZIKV has been remained relatively stable over time. Temporal phylogenetic analysis revealed limited within-host diversity among most ZIKV-persistent infected associated samples. However, we detected unusual virus temporal diversity from >5 persons, uncovering the existence of divergent genomes within the same patient. All those patients showed an increase in neutralizing antibody levels, followed by a decline at the convalescent phase of ZIKV infection. Of interest, in 3 of those patients, titers of neutralizing antibodies increased again after 6 months of ZIKV infection, concomitantly with real-time reverse transcription PCR re-positivity, supporting ZIKV reinfection events. Altogether, our findings provide evidence for the existence of ZIKV reinfection events.
Collapse
|
10
|
Rozo-Lopez P, Drolet BS. Culicoides-Specific Fitness Increase of Vesicular Stomatitis Virus in Insect-to-Insect Infections. INSECTS 2024; 15:34. [PMID: 38249040 PMCID: PMC10816812 DOI: 10.3390/insects15010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Vesicular stomatitis virus (VSV) is an arthropod-borne virus affecting livestock. In the United States, sporadic outbreaks result in significant economic losses. During epizootics, Culicoides biting midges are biological vectors and key to the geographic expansion of outbreaks. Additionally, Culicoides may play a role in VSV overwintering because females and males are capable of highly efficient venereal transmission, despite their relatively low virus titers. We hypothesized that VSV propagated within a midge has increased fitness for subsequent midge infections. To evaluate the potential host-specific fitness increase, we propagated three viral isolates of VSV in porcine skin fibroblasts and Culicoides cell lines. We then evaluated the viral infection dynamics of the different cell-source groups in Culicoides sonorensis. Our results indicate that both mammalian- and insect-derived VSV replicate well in midges inoculated via intrathoracic injection, thereby bypassing the midgut barriers. However, when the virus was required to infect and escape the midgut barrier to disseminate after oral acquisition, the insect-derived viruses had significantly higher titers, infection, and dissemination rates than mammalian-derived viruses. Our research suggests that VSV replication in Culicoides cells increases viral fitness, facilitating midge-to-midge transmission and subsequent replication, and further highlights the significance of Culicoides midges in VSV maintenance and transmission dynamics.
Collapse
Affiliation(s)
- Paula Rozo-Lopez
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Manhattan, KS 66502, USA
| |
Collapse
|
11
|
Lewis J, Gallichotte EN, Randall J, Glass A, Foy BD, Ebel GD, Kading RC. Intrinsic factors driving mosquito vector competence and viral evolution: a review. Front Cell Infect Microbiol 2023; 13:1330600. [PMID: 38188633 PMCID: PMC10771300 DOI: 10.3389/fcimb.2023.1330600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term "vector competence" describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.
Collapse
Affiliation(s)
- Juliette Lewis
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily N. Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jenna Randall
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Arielle Glass
- Department of Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Brian D. Foy
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebekah C. Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
12
|
Fitzmeyer EA, Gallichotte EN, Weger-Lucarelli J, Kapuscinski ML, Abdo Z, Pyron K, Young MC, Ebel GD. Loss of West Nile virus genetic diversity during mosquito infection due to species-dependent population bottlenecks. iScience 2023; 26:107711. [PMID: 37701570 PMCID: PMC10494182 DOI: 10.1016/j.isci.2023.107711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Vector competence (VC) refers to the efficiency of pathogen transmission by vectors. Each step in the infection of a mosquito vector constitutes a barrier to transmission that may impose bottlenecks on virus populations. West Nile virus (WNV) is maintained by multiple mosquito species with varying VC. However, the extent to which bottlenecks and VC are linked is poorly understood. Similarly, quantitative analyses of mosquito-imposed bottlenecks on virus populations are limited. We used molecularly barcoded WNV to quantify tissue-associated population bottlenecks in three variably competent WNV vectors. Our results confirm strong population bottlenecks during mosquito infection that are capable of dramatically reshaping virus population structure in a non-selective manner. In addition, we found that mosquitoes with differing VC uniquely shape WNV population structure: highly competent vectors are more likely to contribute to the maintenance of rare viral genotypes. These findings have important implications for arbovirus emergence and evolution.
Collapse
Affiliation(s)
- Emily A. Fitzmeyer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Marylee L. Kapuscinski
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kyra Pyron
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael C. Young
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Lambrechts L. Does arbovirus emergence in humans require adaptation to domestic mosquitoes? Curr Opin Virol 2023; 60:101315. [PMID: 36996522 DOI: 10.1016/j.coviro.2023.101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
In the last few decades, several mosquito-borne arboviruses of zoonotic origin have established large-scale epidemic transmission cycles in the human population. It is often considered that arbovirus emergence is driven by adaptive evolution, such as virus adaptation for transmission by 'domestic' mosquito vector species that live in close association with humans. Here, I argue that although arbovirus adaptation to domestic mosquito vectors has been observed for several emerging arboviruses, it was generally not directly responsible for their initial emergence. Secondary adaptation to domestic mosquitoes often amplified epidemic transmission, however, this was more likely a consequence than a cause of arbovirus emergence. Considering that emerging arboviruses are generally 'preadapted' for transmission by domestic mosquito vectors may help to enhance preparedness toward future arbovirus emergence events.
Collapse
|
14
|
Wang H, Liu S, Lv Y, Wei W. Codon usage bias of Venezuelan equine encephalitis virus and its host adaption. Virus Res 2023; 328:199081. [PMID: 36854361 DOI: 10.1016/j.virusres.2023.199081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/14/2022] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an emerging zoonotic virus in the alphavirus genus. It can be transmitted to humans due to spillover from equid-mosquito cycles. The symptoms caused by VEEV include fever, headache, myalgia, nausea, and vomiting. It can also cause encephalitis in severe cases. The evolutionary features of VEEV are largely unknown. In this study, we comprehensively analyzed the codon usage pattern of VEEV by computing a variety of indicators, such as effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), on 130 VEEV coding sequences retrieved from GenBank. The results showed that the codon usage bias of VEEV is relatively low. ENc-GC3s plot, neutrality plot, and CAI-ENc correlation analyses supported that translational selection plays an important role in shaping the codon usage pattern of VEEV whereas the mutation pressure has a minor influence. Analysis of RSCU values showed that most of the preferred codons in VEEV are C/G-ended. Analysis of dinucleotide composition found that all CG- and UA-containing codons are not preferentially used. Phylogenetic analysis showed that VEEV isolates can be clustered into three genera and evolutionary force affects the codon usage pattern. Furthermore, a correspondence analysis (COA) showed that aromaticity and hydrophobicity as well as geographical distribution also have certain effects on the codon usage variation of VEEV, suggesting the possible involvement of translational selection. Overall, the codon usage of VEEV is comparatively slight and translational selection might be the main factor that shapes the codon usage pattern of VEEV. This study will promote our understanding about the evolution of VEEV and its host adaption, and might provide some clues for preventing the cross-species transmission of VEEV.
Collapse
Affiliation(s)
- Hongju Wang
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shijie Liu
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Yao Lv
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
15
|
García-Romero C, Carrillo Bilbao GA, Navarro JC, Martin-Solano S, Saegerman C. Arboviruses in Mammals in the Neotropics: A Systematic Review to Strengthen Epidemiological Monitoring Strategies and Conservation Medicine. Viruses 2023; 15:417. [PMID: 36851630 PMCID: PMC9962704 DOI: 10.3390/v15020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) are a diverse group of ribonucleic acid (RNA) viruses, with the exception of African swine fever virus, that are transmitted by hematophagous arthropods to a vertebrate host. They are the important cause of many diseases due to their ability to spread in different environments and their diversity of vectors. Currently, there is no information on the geographical distribution of the diseases because the routes of transmission and the mammals (wild or domestic) that act as potential hosts are poorly documented or unknown. We conducted a systematic review from 1967 to 2021 to identify the diversity of arboviruses, the areas, and taxonomic groups that have been monitored, the prevalence of positive records, and the associated risk factors. We identified forty-three arboviruses in nine mammalian orders distributed in eleven countries. In Brazil, the order primates harbor the highest number of arbovirus records. The three most recorded arboviruses were Venezuelan equine encephalitis, Saint Louis encephalitis and West Nile virus. Serum is the most used sample to obtain arbovirus records. Deforestation is identified as the main risk factor for arbovirus transmission between different species and environments (an odds ratio of 1.46 with a 95% confidence interval: 1.34-1.59). The results show an increase in the sampling effort over the years in the neotropical region. Despite the importance of arboviruses for public health, little is known about the interaction of arboviruses, their hosts, and vectors, as some countries and mammalian orders have not yet been monitored. Long-term and constant monitoring allows focusing research on the analysis of the interrelationships and characteristics of each component animal, human, and their environment to understand the dynamics of the diseases and guide epidemiological surveillance and vector control programs. The biodiversity of the Neotropics should be considered to support epidemiological monitoring strategies.
Collapse
Affiliation(s)
- Cinthya García-Romero
- Maestría en Biodiversidad y Cambio Climático, Facultad de Ciencias del Medio Ambiente, Universidad Tecnológica Indoamérica, Quito 170521, Ecuador
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Gabriel Alberto Carrillo Bilbao
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiege), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
- Facultad de Filosofía, Letras y Ciencias de la Educación, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Juan-Carlos Navarro
- Grupo de Investigación en Enfermedades Emergentes, Ecoepidemiología y Biodiversidad, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170521, Ecuador
| | - Sarah Martin-Solano
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, P.O. Box 171-5-231B, Sangolquí 171103, Ecuador
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiege), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
16
|
Metavirome of 31 tick species provides a compendium of 1,801 RNA virus genomes. Nat Microbiol 2023; 8:162-173. [PMID: 36604510 PMCID: PMC9816062 DOI: 10.1038/s41564-022-01275-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023]
Abstract
The increasing prevalence and expanding distribution of tick-borne viruses globally have raised health concerns, but the full repertoire of the tick virome has not been assessed. We sequenced the meta-transcriptomes of 31 different tick species in the Ixodidae and Argasidae families from across mainland China, and identified 724 RNA viruses with distinctive virome compositions among genera. A total of 1,801 assembled and complete or nearly complete viral genomes revealed an extensive diversity of genome architectures of tick-associated viruses, highlighting ticks as a reservoir of RNA viruses. We examined the phylogenies of different virus families to investigate virome evolution and found that the most diverse tick-associated viruses are positive-strand RNA virus families that demonstrate more ancient divergence than other arboviruses. Tick-specific viruses are often associated with only a few tick species, whereas virus clades that can infect vertebrates are found in a wider range of tick species. We hypothesize that tick viruses can exhibit both 'specialist' and 'generalist' evolutionary trends. We hope that our virome dataset will enable much-needed research on vertebrate-pathogenic tick-associated viruses.
Collapse
|
17
|
Rodríguez‐Pastor R, Shafran Y, Knossow N, Gutiérrez R, Harrus S, Zaman L, Lenski RE, Barrick JE, Hawlena H. A road map for in vivo evolution experiments with blood-borne parasitic microbes. Mol Ecol Resour 2022; 22:2843-2859. [PMID: 35599628 PMCID: PMC9796859 DOI: 10.1111/1755-0998.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/14/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023]
Abstract
Laboratory experiments in which blood-borne parasitic microbes evolve in their animal hosts offer an opportunity to study parasite evolution and adaptation in real time and under natural settings. The main challenge of these experiments is to establish a protocol that is both practical over multiple passages and accurately reflects natural transmission scenarios and mechanisms. We provide a guide to the steps that should be considered when designing such a protocol, and we demonstrate its use via a case study. We highlight the importance of choosing suitable ancestral genotypes, treatments, number of replicates per treatment, types of negative controls, dependent variables, covariates, and the timing of checkpoints for the experimental design. We also recommend specific preliminary experiments to determine effective methods for parasite quantification, transmission, and preservation. Although these methodological considerations are technical, they also often have conceptual implications. To this end, we encourage other researchers to design and conduct in vivo evolution experiments with blood-borne parasitic microbes, despite the challenges that the work entails.
Collapse
Affiliation(s)
- Ruth Rodríguez‐Pastor
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Yarden Shafran
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Nadav Knossow
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Ricardo Gutiérrez
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental SciencesThe Hebrew University of JerusalemRehovotIsrael
| | - Shimon Harrus
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental SciencesThe Hebrew University of JerusalemRehovotIsrael
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, The Center for the Study of Complex Systems (CSCS)University of MichiganAnn ArborMichiganUSA
| | - Richard E. Lenski
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
| | - Jeffrey E. Barrick
- Department of Molecular BiosciencesThe University of Texas AustinAustinTexasUSA
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| |
Collapse
|
18
|
Comparison of Endemic and Epidemic Vesicular Stomatitis Virus Lineages in Culicoides sonorensis Midges. Viruses 2022; 14:v14061221. [PMID: 35746691 PMCID: PMC9230599 DOI: 10.3390/v14061221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Vesicular stomatitis virus (VSV) primarily infects livestock and is transmitted by direct contact and vectored by Culicoides midges (Diptera: Ceratopogonidae). Endemic to Central and South America, specific VSV lineages spread northward out of endemic regions of Mexico and into the U.S. sporadically every five to ten years. In 2012, a monophyletic epidemic lineage 1.1 successfully spread northward into the U.S. In contrast, the closest endemic ancestor, lineage 1.2, remained circulating exclusively in endemic regions in Mexico. It is not clear what roles virus-animal interactions and/or virus-vector interactions play in the ability of specific viral lineages to escape endemic regions in Mexico and successfully cause outbreaks in the U.S., nor the genetic basis for such incursions. Whole-genome sequencing of epidemic VSV 1.1 and endemic VSV 1.2 revealed significant differences in just seven amino acids. Previous studies in swine showed that VSV 1.1 was more virulent than VSV 1.2. Here, we compared the efficiency of these two viral lineages to infect the vector Culicoides sonorensis (Wirth and Jones) and disseminate to salivary glands for subsequent transmission. Our results showed that midges orally infected with the epidemic VSV 1.1 lineage had significantly higher infection dissemination rates compared to those infected with the endemic VSV 1.2 lineage. Thus, in addition to affecting virus-animal interactions, as seen with higher virulence in pigs, small genetic changes may also affect virus-vector interactions, contributing to the ability of specific viral lineages to escape endemic regions via vector-borne transmission.
Collapse
|
19
|
Abstract
Arboviruses are medically important arthropod-borne viruses that cause a range of diseases in humans from febrile illness to arthritis, encephalitis and hemorrhagic fever. Given their transmission cycles, these viruses face the challenge of replicating in evolutionarily divergent organisms that can include ticks, flies, mosquitoes, birds, rodents, reptiles and primates. Furthermore, their cell attachment receptor utilization may be affected by the opposing needs for generating high and sustained serum viremia in vertebrates such that virus particles are efficiently collected during a hematophagous arthropod blood meal but they must also bind sufficiently to cellular structures on divergent organisms such that productive infection can be initiated and viremia generated. Sulfated polysaccharides of the glycosaminoglycan (GAG) groups, primarily heparan sulfate (HS), have been identified as cell attachment moieties for many arboviruses. Original identification of GAG binding as a phenotype of arboviruses appeared to involve this attribute arising solely as a consequence of adaptation of virus isolates to growth in cell culture. However, more recently, naturally circulating strains of at least one arbovirus, eastern equine encephalitis, have been shown to bind HS efficiently and the GAG binding phenotype continues to be associated with arbovirus infection in published studies. If GAGs are attachment receptors for many naturally circulating arboviruses, this could lead to development of broad-spectrum antiviral therapies through blocking of the virus-GAG interaction. This review summarizes the available data for GAG/HS binding as a phenotype of naturally circulating arbovirus strains emphasizing the importance of avoiding tissue culture amplification and artifactual phenotypes during their isolation.
Collapse
Affiliation(s)
- Maria D H Alcorn
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William B Klimstra
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
20
|
Investigation of Biological Factors Contributing to Individual Variation in Viral Titer after Oral Infection of Aedes aegypti Mosquitoes by Sindbis Virus. Viruses 2022; 14:v14010131. [PMID: 35062335 PMCID: PMC8780610 DOI: 10.3390/v14010131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/21/2022] Open
Abstract
The mechanisms involved in determining arbovirus vector competence, or the ability of an arbovirus to infect and be transmitted by an arthropod vector, are still incompletely understood. It is well known that vector competence for a particular arbovirus can vary widely among different populations of a mosquito species, which is generally attributed to genetic differences between populations. What is less understood is the considerable variability (up to several logs) that is routinely observed in the virus titer between individual mosquitoes in a single experiment, even in mosquitoes from highly inbred lines. This extreme degree of variation in the virus titer between individual mosquitoes has been largely ignored in past studies. We investigated which biological factors can affect titer variation between individual mosquitoes of a laboratory strain of Aedes aegypti, the Orlando strain, after Sindbis virus infection. Greater titer variation was observed after oral versus intrathoracic infection, suggesting that the midgut barrier contributes to titer variability. Among the other factors tested, only the length of the incubation period affected the degree of titer variability, while virus strain, mosquito strain, mosquito age, mosquito weight, amount of blood ingested, and virus concentration in the blood meal had no discernible effect. We also observed differences in culture adaptability and in the ability to orally infect mosquitoes between virus populations obtained from low and high titer mosquitoes, suggesting that founder effects may affect the virus titer in individual mosquitoes, although other explanations also remain possible.
Collapse
|
21
|
Lucas CJ, Morrison TE. Animal models of alphavirus infection and human disease. Adv Virus Res 2022; 113:25-88. [DOI: 10.1016/bs.aivir.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Noguera P, Klinger M, Örün H, Grunow B, Del-Pozo J. Ultrastructural insights into the replication cycle of salmon pancreas disease virus (SPDV) using salmon cardiac primary cultures (SCPCs). JOURNAL OF FISH DISEASES 2021; 44:2031-2041. [PMID: 34424537 DOI: 10.1111/jfd.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Salmon pancreas disease virus (SPDV) has been affecting the salmon farming industry for over 30 years, but despite the substantial amount of studies, there are still a number of recognized knowledge gaps, for example in the transmission of the virus. In this work, an ultrastructural morphological approach was used to describe observations after infection by SPDV of an ex vivo cardiac model generated from Atlantic salmon embryos. The observations in this study and those available on previous ultrastructural work on SPDV are compared and contrasted with the current knowledge on terrestrial mammalian and insect alphaviral replication cycles, which is deeper than that of SPDV both morphologically and mechanistically. Despite their limitations, morphological descriptions remain an excellent way to generate novel hypotheses, and this has been the aim of this work. This study has used a target host, ex vivo model and resulted in some previously undescribed features, including filopodial membrane projections, cytoplasmic stress granules or putative intracytoplasmic budding. The latter suggests a new hypothesis that warrants further mechanistic research: SPDV in salmon may have retained the capacity for non-cytolytic (persistent) infections by intracellular budding, similar to that noted in arthropod vectors of other alphaviruses. In the notable absence of a known intermediate host for SPDV, the presence of this pattern suggests that both cytopathic and persistent infections may coexist in the same host. It is our hope that the ultrastructural comparison presented here stimulates new research that brings the knowledge on SPDV replication cycle up to a similar level to that of terrestrial alphaviruses.
Collapse
Affiliation(s)
| | | | - Histro Örün
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Bianka Grunow
- Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jorge Del-Pozo
- Royal Dick School of Veterinary Sciences, University of Edinburgh, Roslin, UK
| |
Collapse
|
23
|
Amicone M, Gordo I. Molecular signatures of resource competition: Clonal interference favors ecological diversification and can lead to incipient speciation. Evolution 2021; 75:2641-2657. [PMID: 34341983 PMCID: PMC9292366 DOI: 10.1111/evo.14315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/08/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Microbial ecosystems harbor an astonishing diversity that can persist for long times. To understand how such diversity is structured and maintained, ecological and evolutionary processes need to be integrated at similar timescales. Here, we study a model of resource competition that allows for evolution via de novo mutation, and focus on rapidly adapting asexual populations with large mutational inputs, as typical of many bacteria species. We characterize the adaptation and diversification of an initially maladapted population and show how the eco-evolutionary dynamics are shaped by the interaction between simultaneously emerging lineages - clonal interference. We find that in large populations, more intense clonal interference can foster diversification under sympatry, increasing the probability that phenotypically and genetically distinct clusters coexist. In smaller populations, the accumulation of deleterious and compensatory mutations can push further the diversification process and kick-start speciation. Our findings have implications beyond microbial populations, providing novel insights about the interplay between ecology and evolution in clonal populations.
Collapse
Affiliation(s)
- Massimo Amicone
- Evolutionary Biology, Instituto Gulbenkian de Ciência (IGC)OeirasPortugal
| | - Isabel Gordo
- Evolutionary Biology, Instituto Gulbenkian de Ciência (IGC)OeirasPortugal
| |
Collapse
|
24
|
Talavera-Aguilar LG, Murrieta RA, Kiem S, Cetina-Trejo RC, Baak-Baak CM, Ebel GD, Blitvich BJ, Machain-Williams C. Infection, dissemination, and transmission efficiencies of Zika virus in Aedes aegypti after serial passage in mosquito or mammalian cell lines or alternating passage in both cell types. Parasit Vectors 2021; 14:261. [PMID: 34006306 PMCID: PMC8130322 DOI: 10.1186/s13071-021-04726-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) with an urban transmission cycle that primarily involves humans and Aedes aegypti. Evidence suggests that the evolution of some arboviruses is constrained by their dependency on alternating between disparate (vertebrate and invertebrate) hosts. The goals of this study are to compare the genetic changes that occur in ZIKV after serial passaging in mosquito or vertebrate cell lines or alternate passaging in both cell types and to compare the replication, dissemination, and transmission efficiencies of the cell culture-derived viruses in Ae. aegypti. Methods An isolate of ZIKV originally acquired from a febrile patient in Yucatan, Mexico, was serially passaged six times in African green monkey kidney (Vero) cells or Aedes albopictus (C6/36) cells or both cell types by alternating passage. A colony of Ae. aegypti from Yucatan was established, and mosquitoes were challenged with the cell-adapted viruses. Midguts, Malpighian tubules, ovaries, salivary glands, wings/legs and saliva were collected at various times after challenge and tested for evidence of virus infection. Results Genome sequencing revealed the presence of two non-synonymous substitutions in the premembrane and NS1 regions of the mosquito cell-adapted virus and two non-synonymous substitutions in the capsid and NS2A regions of both the vertebrate cell-adapted and alternate-passaged viruses. Additional genetic changes were identified by intrahost variant frequency analysis. Virus maintained by continuous C6/36 cell passage was significantly more infectious in Ae. aegypti than viruses maintained by alternating passage and consecutive Vero cell passage. Conclusions Mosquito cell-adapted ZIKV displayed greater in vivo fitness in Ae. aegypti compared to the other viruses, indicating that obligate cycling between disparate hosts carries a fitness cost. These data increase our understanding of the factors that drive ZIKV adaptation and evolution and underscore the important need to consider the in vivo passage histories of flaviviruses to be evaluated in vector competence studies. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04726-1.
Collapse
Affiliation(s)
- Lourdes G Talavera-Aguilar
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, México
| | - Reyes A Murrieta
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sungmin Kiem
- Department of Infectious Diseases in Internal Medicine, Sejong Chungnam National University Hospital, School of Medicine, Chungnam National University, Sejong, Korea
| | - Rosa C Cetina-Trejo
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, México
| | - Carlos M Baak-Baak
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, México
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Carlos Machain-Williams
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, México.
| |
Collapse
|
25
|
Pontremoli C, Forni D, Clerici M, Cagliani R, Sironi M. Alternation between taxonomically divergent hosts is not the major determinant of flavivirus evolution. Virus Evol 2021; 7:veab040. [PMID: 33976907 PMCID: PMC8093920 DOI: 10.1093/ve/veab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Flaviviruses display diverse epidemiological and ecological features. Tick-borne and mosquito-borne flaviviruses (TBFV and MBFV, respectively) are important human pathogens that alternate replication in invertebrate vectors and vertebrate hosts. The Flavivirus genus also includes insect-specific viruses (ISFVs) and viruses with unknown invertebrate hosts. It is generally accepted that viruses that alternate between taxonomically different hosts evolve slowly and that the evolution of MBFVs and TBFVs is dominated by strong constraints, with limited episodes of positive selection. We exploited the availability of flavivirus genomes to test these hypotheses and to compare their rates and patterns of evolution. We estimated the substitution rates of CFAV and CxFV (two ISFVs) and, by taking into account the time-frame of measurement, compared them with those of other flaviviruses. Results indicated that CFAV and CxFV display relatively different substitution rates. However, these data, together with estimates for single-host members of the Flaviviridae family, indicated that MBFVs do not display relatively slower evolution. Conversely, TBFVs displayed some of lowest substitution rates among flaviviruses. Analysis of selective patterns over longer evolutionary time-frames confirmed that MBFVs evolve under strong purifying selection. Interestingly, TBFVs and ISFVs did not show extremely different levels of constraint, although TBFVs alternate among hosts, whereas ISFVs do not. Additional results showed that episodic positive selection drove the evolution of MBFVs, despite their high constraint. Positive selection was also detected on two branches of the TBFVs phylogeny that define the seabird clade. Thus, positive selection was much more common during the evolution of arthropod-borne flaviviruses than previously thought. Overall, our data indicate that flavivirus evolutionary patterns are complex and most likely determined by multiple factors, not limited to the alternation between taxonomically divergent hosts. The frequency of both positive and purifying selection, especially in MBFVs, suggests that a minority of sites in the viral polyprotein experience weak constraint and can evolve to generate new viral phenotypes and possibly promote adaptation to new hosts.
Collapse
Affiliation(s)
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan 20122, Italy,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan 20121, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| |
Collapse
|
26
|
Insect-Specific Flavivirus Replication in Mammalian Cells Is Inhibited by Physiological Temperature and the Zinc-Finger Antiviral Protein. Viruses 2021; 13:v13040573. [PMID: 33805437 PMCID: PMC8066048 DOI: 10.3390/v13040573] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
The genus Flavivirus contains pathogenic vertebrate-infecting flaviviruses (VIFs) and insect-specific flaviviruses (ISF). ISF transmission to vertebrates is inhibited at multiple stages of the cellular infection cycle, via yet to be elucidated specific antiviral responses. The zinc-finger antiviral protein (ZAP) in vertebrate cells can bind CpG dinucleotides in viral RNA, limiting virus replication. Interestingly, the genomes of ISFs contain more CpG dinucleotides compared to VIFs. In this study, we investigated whether ZAP prevents two recently discovered lineage II ISFs, Binjari (BinJV) and Hidden Valley viruses (HVV) from replicating in vertebrate cells. BinJV protein and dsRNA replication intermediates were readily observed in human ZAP knockout cells when cultured at 34 °C. In ZAP-expressing cells, inhibition of the interferon response via interferon response factors 3/7 did not improve BinJV protein expression, whereas treatment with kinase inhibitor C16, known to reduce ZAP’s antiviral function, did. Importantly, at 34 °C, both BinJV and HVV successfully completed the infection cycle in human ZAP knockout cells evident from infectious progeny virus in the cell culture supernatant. Therefore, we identify vertebrate ZAP as an important barrier that protects vertebrate cells from ISF infection. This provides new insights into flavivirus evolution and the mechanisms associated with host switching.
Collapse
|
27
|
Abstract
Zika virus (ZIKV) has the unusual capacity to circumvent natural alternating mosquito-human transmission and be directly transmitted human-to-human via sexual and vertical routes. The impact of direct transmission on ZIKV evolution and adaptation to vertebrate hosts is unknown. Here we show that molecularly barcoded ZIKV rapidly adapted to a mammalian host during direct transmission chains in mice, coincident with the emergence of an amino acid substitution previously shown to enhance virulence. In contrast, little to no adaptation of ZIKV to mice was observed following chains of direct transmission in mosquitoes or alternating host transmission. Detailed genetic analyses revealed that ZIKV evolution in mice was generally more convergent and subjected to more relaxed purifying selection than in mosquitoes or alternate passages. These findings suggest that prevention of direct human transmission chains may be paramount to resist gains in ZIKV virulence.Importance We used experimental evolution to model chains of direct and indirect Zika virus (ZIKV) transmission by serially passaging a synthetic swarm of molecularly barcoded ZIKV within and between mosquitoes and mice. We observed that direct mouse transmission chains facilitated a rapid increase in ZIKV replication and enhanced virulence in mice. These findings demonstrate that ZIKV is capable of rapid adaptation to a vertebrate host and indicate that direct human-to-human transmission could pose a greater threat to public health than currently realized.
Collapse
|
28
|
Weaver SC, Forrester NL, Liu J, Vasilakis N. Population bottlenecks and founder effects: implications for mosquito-borne arboviral emergence. Nat Rev Microbiol 2021; 19:184-195. [PMID: 33432235 PMCID: PMC7798019 DOI: 10.1038/s41579-020-00482-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 01/31/2023]
Abstract
Transmission of arthropod-borne viruses (arboviruses) involves infection and replication in both arthropod vectors and vertebrate hosts. Nearly all arboviruses are RNA viruses with high mutation frequencies, which leaves them vulnerable to genetic drift and fitness losses owing to population bottlenecks during vector infection, dissemination from the midgut to the salivary glands and transmission to the vertebrate host. However, despite these bottlenecks, they seem to avoid fitness declines that can result from Muller's ratchet. In addition, founder effects that occur during the geographic introductions of human-amplified arboviruses, including chikungunya virus and Zika virus, can affect epidemic and endemic circulation, as well as virulence. In this Review, we discuss the role of genetic drift following population bottlenecks and founder effects in arboviral evolution and spread, and the emergence of human disease.
Collapse
Affiliation(s)
- Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | - Jianying Liu
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikos Vasilakis
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
29
|
Cosseddu GM, Magwedere K, Molini U, Pinoni C, Khaiseb S, Scacchia M, Marcacci M, Capobianco Dondona A, Valleriani F, Polci A, Monaco F. Genetic Diversity of Rift Valley Fever Strains Circulating in Namibia in 2010 and 2011. Viruses 2020; 12:v12121453. [PMID: 33339456 PMCID: PMC7765780 DOI: 10.3390/v12121453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Outbreaks of Rift Valley fever (RVF) occurred in Namibia in 2010 and 2011. Complete genome characterization was obtained from virus isolates collected during disease outbreaks in southern Namibia in 2010 and from wildlife in Etosha National Park in 2011, close to the area where RVF outbreaks occurred in domestic livestock. The virus strains were sequenced using Sanger sequencing (Namibia_2010) or next generation sequencing (Namibia_2011). A sequence-independent, single-primer amplification (SISPA) protocol was used in combination with the Illumina Next 500 sequencer. Phylogenetic analysis of the sequences of the small (S), medium (M), and large (L) genome segments of RVF virus (RVFV) provided evidence that two distinct RVFV strains circulated in the country. The strain collected in Namibia in 2010 is genetically similar to RVFV strains circulating in South Africa in 2009 and 2010, confirming that the outbreaks reported in the southern part of Namibia in 2010 were caused by possible dissemination of the infection from South Africa. Isolates collected in 2011 were close to RVFV isolates from 2010 collected in humans in Sudan and which belong to the large lineage containing RVFV strains that caused an outbreak in 2006–2008 in eastern Africa. This investigation showed that the RVFV strains circulating in Namibia in 2010 and 2011 were from two different introductions and that RVFV has the ability to move across regions. This supports the need for risk-based surveillance and monitoring.
Collapse
Affiliation(s)
- Gian Mario Cosseddu
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”—IZSAM, Campo Boario, 64100 Teramo, Italy; (C.P.); (M.S.); (M.M.); (A.C.D.); (F.V.); (A.P.); (F.M.)
- Correspondence: ; Tel.: +39-0861-332280
| | - Kudakwashe Magwedere
- Central Veterinary Laboratory (CVL), 13187 Windhoek, Namibia; (K.M.); (U.M.); (S.K.)
| | - Umberto Molini
- Central Veterinary Laboratory (CVL), 13187 Windhoek, Namibia; (K.M.); (U.M.); (S.K.)
| | - Chiara Pinoni
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”—IZSAM, Campo Boario, 64100 Teramo, Italy; (C.P.); (M.S.); (M.M.); (A.C.D.); (F.V.); (A.P.); (F.M.)
| | - Sigfried Khaiseb
- Central Veterinary Laboratory (CVL), 13187 Windhoek, Namibia; (K.M.); (U.M.); (S.K.)
| | - Massimo Scacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”—IZSAM, Campo Boario, 64100 Teramo, Italy; (C.P.); (M.S.); (M.M.); (A.C.D.); (F.V.); (A.P.); (F.M.)
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”—IZSAM, Campo Boario, 64100 Teramo, Italy; (C.P.); (M.S.); (M.M.); (A.C.D.); (F.V.); (A.P.); (F.M.)
| | - Andrea Capobianco Dondona
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”—IZSAM, Campo Boario, 64100 Teramo, Italy; (C.P.); (M.S.); (M.M.); (A.C.D.); (F.V.); (A.P.); (F.M.)
| | - Fabrizia Valleriani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”—IZSAM, Campo Boario, 64100 Teramo, Italy; (C.P.); (M.S.); (M.M.); (A.C.D.); (F.V.); (A.P.); (F.M.)
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”—IZSAM, Campo Boario, 64100 Teramo, Italy; (C.P.); (M.S.); (M.M.); (A.C.D.); (F.V.); (A.P.); (F.M.)
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”—IZSAM, Campo Boario, 64100 Teramo, Italy; (C.P.); (M.S.); (M.M.); (A.C.D.); (F.V.); (A.P.); (F.M.)
| |
Collapse
|
30
|
Schuh AJ, Amman BR, Patel K, Sealy TK, Swanepoel R, Towner JS. Human-Pathogenic Kasokero Virus in Field-Collected Ticks. Emerg Infect Dis 2020; 26:2944-2950. [PMID: 33219649 PMCID: PMC7706932 DOI: 10.3201/eid2612.202411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Kasokero virus (KASV; genus Orthonairovirus) was first isolated in 1977 at Uganda Virus Research Institute from serum collected from Rousettus aegyptiacus bats captured at Kasokero Cave, Uganda. During virus characterization studies at the institute, 4 laboratory-associated infections resulted in mild to severe disease. Although orthonairoviruses are typically associated with vertebrate and tick hosts, a tick vector of KASV never has been reported. We tested 786 Ornithodoros (Reticulinasus) faini tick pools (3,930 ticks) for KASV. The ticks were collected from a large R. aegyptiacus bat roosting site in western Uganda. We detected KASV RNA in 43 tick pools and recovered 2 infectious isolates, 1 of which was derived from host blood–depleted ticks. Our findings suggest that KASV is maintained in an enzootic transmission cycle involving O. (R.) faini ticks and R. aegyptiacus bats and has the potential for incidental virus spillover to humans.
Collapse
|
31
|
Migné CV, Moutailler S, Attoui H. Strategies for Assessing Arbovirus Genetic Variability in Vectors and/or Mammals. Pathogens 2020; 9:pathogens9110915. [PMID: 33167317 PMCID: PMC7694381 DOI: 10.3390/pathogens9110915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Animal arboviruses replicate in their invertebrate vectors and vertebrate hosts. They use several strategies to ensure replication/transmission. Their high mutation rates and propensity to generate recombinants and/or genome segment reassortments help them adapt to new hosts/emerge in new geographical areas. Studying arbovirus genetic variability has been used to identify indicators which predict their potential to adapt to new hosts and/or emergence and in particular quasi-species. Multiple studies conducted with insect-borne viruses laid the foundations for the "trade-off" hypothesis (alternation of host transmission cycle constrains arbovirus evolution). It was extrapolated to tick-borne viruses, where too few studies have been conducted, even though humans faced emergence of numerous tick-borne virus during the last decades. There is a paucity of information regarding genetic variability of these viruses. In addition, insects and ticks do not have similar lifecycles/lifestyles. Indeed, tick-borne viruses are longer associated with their vectors due to tick lifespan. The objectives of this review are: (i) to describe the state of the art for all strategies developed to study genetic variability of insect-borne viruses both in vitro and in vivo and potential applications to tick-borne viruses; and (ii) to highlight the specificities of arboviruses and vectors as a complex and diverse system.
Collapse
Affiliation(s)
- Camille Victoire Migné
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France;
- UMR1161 Virologie, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France
| | - Sara Moutailler
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France;
- Correspondence: (S.M.); (H.A.); Tel.: +33-1-49-77-46-50 (S.M.); +33-1-43-96-70-07 (H.A.)
| | - Houssam Attoui
- UMR1161 Virologie, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France
- Correspondence: (S.M.); (H.A.); Tel.: +33-1-49-77-46-50 (S.M.); +33-1-43-96-70-07 (H.A.)
| |
Collapse
|
32
|
Zaid A, Burt FJ, Liu X, Poo YS, Zandi K, Suhrbier A, Weaver SC, Texeira MM, Mahalingam S. Arthritogenic alphaviruses: epidemiological and clinical perspective on emerging arboviruses. THE LANCET. INFECTIOUS DISEASES 2020; 21:e123-e133. [PMID: 33160445 DOI: 10.1016/s1473-3099(20)30491-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Mosquito-borne viruses, or arboviruses, have been part of the infectious disease landscape for centuries, and are often, but not exclusively, endemic to equatorial and subtropical regions of the world. The past two decades saw the re-emergence of arthritogenic alphaviruses, a genus of arboviruses that includes several members that cause severe arthritic disease. Recent outbreaks further highlight the substantial public health burden caused by these viruses. Arthritogenic alphaviruses are often reported in the context of focused outbreaks in specific regions (eg, Caribbean, southeast Asia, and Indian Ocean) and cause debilitating acute disease that can extend to chronic manifestations for years after infection. These viruses are classified among several antigenic complexes, span a range of hosts and mosquito vectors, and can be distributed along specific geographical locations. In this Review, we highlight key features of alphaviruses that are known to cause arthritic disease in humans and outline the present findings pertaining to classification, immunogenicity, pathogenesis, and experimental approaches aimed at limiting disease manifestations. Although the most prominent alphavirus outbreaks in the past 15 years featured chikungunya virus, and a large body of work has been dedicated to understanding chikungunya disease mechanisms, this Review will instead focus on other arthritogenic alphaviruses that have been identified globally and provide a comprehensive appraisal of present and future research directions.
Collapse
Affiliation(s)
- Ali Zaid
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Felicity J Burt
- Division of Virology, National Health Laboratory Services, Bloemfontein, South Africa; Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Xiang Liu
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Yee Suan Poo
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Keivan Zandi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Andreas Suhrbier
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Scott C Weaver
- Department of Microbiology and Immunology and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| | - Mauro M Texeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
33
|
Bellone R, Failloux AB. The Role of Temperature in Shaping Mosquito-Borne Viruses Transmission. Front Microbiol 2020; 11:584846. [PMID: 33101259 PMCID: PMC7545027 DOI: 10.3389/fmicb.2020.584846] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Mosquito-borne diseases having the greatest impact on human health are typically prevalent in the tropical belt of the world. However, these diseases are conquering temperate regions, raising the question of the role of temperature on their dynamics and expansion. Temperature is one of the most significant abiotic factors affecting, in many ways, insect vectors and the pathogens they transmit. Here, we debate the veracity of this claim by synthesizing current knowledge on the effects of temperature on arboviruses and their vectors, as well as the outcome of their interactions.
Collapse
Affiliation(s)
- Rachel Bellone
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
34
|
The Genetic Diversification of a Single Bluetongue Virus Strain Using an In Vitro Model of Alternating-Host Transmission. Viruses 2020; 12:v12091038. [PMID: 32961886 PMCID: PMC7551957 DOI: 10.3390/v12091038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Bluetongue virus (BTV) is an arbovirus that has been associated with dramatic epizootics in both wild and domestic ruminants in recent decades. As a segmented, double-stranded RNA virus, BTV can evolve via several mechanisms due to its genomic structure. However, the effect of BTV’s alternating-host transmission cycle on the virus’s genetic diversification remains poorly understood. Whole genome sequencing approaches offer a platform for investigating the effect of host-alternation across all ten segments of BTV’s genome. To understand the role of alternating hosts in BTV’s genetic diversification, a field isolate was passaged under three different conditions: (i) serial passages in Culicoides sonorensis cells, (ii) serial passages in bovine pulmonary artery endothelial cells, or (iii) alternating passages between insect and bovine cells. Aliquots of virus were sequenced, and single nucleotide variants were identified. Measures of viral population genetics were used to quantify the genetic diversification that occurred. Two consensus variants in segments 5 and 10 occurred in virus from all three conditions. While variants arose across all passages, measures of genetic diversity remained largely similar across cell culture conditions. Despite passage in a relaxed in vitro system, we found that this BTV isolate exhibited genetic stability across passages and conditions. Our findings underscore the valuable role that whole genome sequencing may play in improving understanding of viral evolution and highlight the genetic stability of BTV.
Collapse
|
35
|
Clark JJ, Gilray J, Orton RJ, Baird M, Wilkie G, Filipe ADS, Johnson N, McInnes CJ, Kohl A, Biek R. Population genomics of louping ill virus provide new insights into the evolution of tick-borne flaviviruses. PLoS Negl Trop Dis 2020; 14:e0008133. [PMID: 32925939 PMCID: PMC7515184 DOI: 10.1371/journal.pntd.0008133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/24/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The emergence and spread of tick-borne arboviruses pose an increased challenge to human and animal health. In Europe this is demonstrated by the increasingly wide distribution of tick-borne encephalitis virus (TBEV, Flavivirus, Flaviviridae), which has recently been found in the United Kingdom (UK). However, much less is known about other tick-borne flaviviruses (TBFV), such as the closely related louping ill virus (LIV), an animal pathogen which is endemic to the UK and Ireland, but which has been detected in other parts of Europe including Scandinavia and Russia. The emergence and potential spatial overlap of these viruses necessitates improved understanding of LIV genomic diversity, geographic spread and evolutionary history. We sequenced a virus archive composed of 22 LIV isolates which had been sampled throughout the UK over a period of over 80 years. Combining this dataset with published virus sequences, we detected no sign of recombination and found low diversity and limited evidence for positive selection in the LIV genome. Phylogenetic analysis provided evidence of geographic clustering as well as long-distance movement, including movement events that appear recent. However, despite genomic data and an 80-year time span, we found that the data contained insufficient temporal signal to reliably estimate a molecular clock rate for LIV. Additional analyses revealed that this also applied to TBEV, albeit to a lesser extent, pointing to a general problem with phylogenetic dating for TBFV. The 22 LIV genomes generated during this study provide a more reliable LIV phylogeny, improving our knowledge of the evolution of tick-borne flaviviruses. Our inability to estimate a molecular clock rate for both LIV and TBEV suggests that temporal calibration of tick-borne flavivirus evolution should be interpreted with caution and highlight a unique aspect of these viruses which may be explained by their reliance on tick vectors. Tick-borne pathogens represent a major emerging threat to public health and in recent years have been expanding into new areas. LIV is a neglected virus endemic to the UK and Ireland (though it has been detected in Scandinavia and Russia) which is closely related to the major human pathogen TBEV, but predominantly causes disease in sheep and grouse. The recent detection of TBEV in the UK, which has also emerged elsewhere in Europe, requires more detailed understanding of the spread and sequence diversity of LIV. This could be important for diagnosis and vaccination, but also to improve our understanding of the evolution and emergence of these tick-borne viruses. Here we describe the sequencing of 22 LIV isolates which have been sampled from several host species across the past century. We have utilised this dataset to investigate the evolutionary pressures that LIV is subjected to and have explored the evolution of LIV using phylogenetic analysis. Crucially we were unable to estimate a reliable molecular clock rate for LIV and found that this problem also extends to a larger phylogeny of TBEV sequences. This work highlights a previously unknown caveat of tick-borne flavivirus evolutionary analysis which may be important for understanding the evolution of these important pathogens.
Collapse
Affiliation(s)
- Jordan J. Clark
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Moredun Research Institute, Edinburgh, United Kingdom
- * E-mail: (JC); (RB)
| | - Janice Gilray
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Margaret Baird
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Gavin Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- Faculty of Health and Medical Science, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine - University of Glasgow, Glasgow, United Kingdom
- * E-mail: (JC); (RB)
| |
Collapse
|
36
|
Elrefaey AME, Abdelnabi R, Rosales Rosas AL, Wang L, Basu S, Delang L. Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses 2020; 12:E964. [PMID: 32878245 PMCID: PMC7552076 DOI: 10.3390/v12090964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Arthropod-borne viruses contribute significantly to global mortality and morbidity in humans and animals. These viruses are mainly transmitted between susceptible vertebrate hosts by hematophagous arthropod vectors, especially mosquitoes. Recently, there has been substantial attention for a novel group of viruses, referred to as insect-specific viruses (ISVs) which are exclusively maintained in mosquito populations. Recent discoveries of novel insect-specific viruses over the past years generated a great interest not only in their potential use as vaccine and diagnostic platforms but also as novel biological control agents due to their ability to modulate arbovirus transmission. While arboviruses infect both vertebrate and invertebrate hosts, the replication of insect-specific viruses is restricted in vertebrates at multiple stages of virus replication. The vertebrate restriction factors include the genetic elements of ISVs (structural and non-structural genes and the untranslated terminal regions), vertebrate host factors (agonists and antagonists), and the temperature-dependent microenvironment. A better understanding of these bottlenecks is thus warranted. In this review, we explore these factors and the complex interplay between ISVs and their hosts contributing to this host restriction phenomenon.
Collapse
Affiliation(s)
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Ana Lucia Rosales Rosas
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Sanjay Basu
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK;
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| |
Collapse
|
37
|
Differential Growth Characteristics of Crimean-Congo Hemorrhagic Fever Virus in Kidney Cells of Human and Bovine Origin. Viruses 2020; 12:v12060685. [PMID: 32630501 PMCID: PMC7354505 DOI: 10.3390/v12060685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) causes a lethal tick-borne zoonotic disease with severe clinical manifestation in humans but does not produce symptomatic disease in wild or domestic animals. The factors contributing to differential outcomes of infection between species are not yet understood. Since CCHFV is known to have tropism to kidney tissue and cattle play an important role as an amplifying host for CCHFV, in this study, we assessed in vitro cell susceptibility to CCHFV infection in immortalized and primary kidney and adrenal gland cell lines of human and bovine origin. Based on our indirect fluorescent focus assay (IFFA), we suggest a cell-to-cell CCHF viral spread process in bovine kidney cells but not in human cells. Over the course of seven days post-infection (dpi), infected bovine kidney cells are found in restricted islet-like areas. In contrast, three dpi infected human kidney or adrenal cells were noted in areas distant from one another yet progressed to up to 100% infection of the monolayer. Pronounced CCHFV replication, measured by quantitative real-time RT-PCR (qRT-PCR) of both intra- and extracellular viral RNA, was documented only in human kidney cells, supporting restrictive infection in cells of bovine origin. To further investigate the differences, lactate dehydrogenase activity and cytopathic effects were measured at different time points in all mentioned cells. In vitro assays indicated that CCHFV infection affects human and bovine kidney cells differently, where human cell lines seem to be markedly permissive. This is the initial reporting of CCHFV susceptibility and replication patterns in bovine cells and the first report to compare human and animal cell permissiveness in vitro. Further investigations will help to understand the impact of different cell types of various origins on the virus–host interaction.
Collapse
|
38
|
Surveillance of Zika virus in field-caught Aedes aegypti and Aedes albopictus suggests important role of male mosquitoes in viral populations maintenance in Medellín, Colombia. INFECTION GENETICS AND EVOLUTION 2020; 85:104434. [PMID: 32580028 DOI: 10.1016/j.meegid.2020.104434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
Due to the rapid spread of Zika virus (ZIKV) infection after its emergence in the Americas in 2015 and its relationship with birth defects, it became declared a Public Health Emergency of International Concern (WHO). The main mechanism by which this virus circulates in nature is horizontal transmission between vectors and humans. However, it has been suggested that vertical transmission (parent to offspring infection) or venereal mosquito-mosquito transmission may have an important role in viral populations maintenance during inter-epidemic periods. In this study we evaluate the presence of ZIKV in males and females of Aedes aegypti and Ae. albopictus in Medellín, Colombia, throughout the post-epidemic period of 2017 and 2018. A total of 7986 mosquitoes Aedes sp. resting within houses were captured and grouped in 2768 pools; 146 of these were RT-PCR positive for ZIKV, of which 38 (26%) were male mosquito pools (36 of Ae. aegypti and 2 of Ae. albopictus). The partial NS5 gene was sequenced in all ZIKV PCR-positive pools to confirm the ZIKV presence throughout spatial and temporal sampling. The results suggest a vector role of ZIKV by Ae. Albopictus; and because it is well known that male mosquitoes are not hematophagous, the high rate detection of ZIKV in male Aedes mosquitoes pools supports the existence of vertical or venereal transmission in Medellín, which can contribute to ZIKV maintenance during low transmission periods. This study provides a better understanding of the population dynamics of ZIKV in an endemic region during an inter-epidemic period and supports alternative transmission pathways as a mechanism to maintain endemism of this arbovirus.
Collapse
|
39
|
Kumar R, Shrivastava T, Samal S, Ahmed S, Parray HA. Antibody-based therapeutic interventions: possible strategy to counter chikungunya viral infection. Appl Microbiol Biotechnol 2020; 104:3209-3228. [PMID: 32076776 PMCID: PMC7223553 DOI: 10.1007/s00253-020-10437-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Chikungunya virus (CHIKV), a mosquito-transmitted disease that belongs to the genus Alphaviruses, has been emerged as an epidemic threat over the last two decades, and the recent co-emergence of this virus along with other circulating arboviruses and comorbidities has influenced atypical mortality rate up to 10%. Genetic variation in the virus has resulted in its adaptability towards the new vector Aedes albopictus other than Aedes aegypti, which has widen the horizon of distribution towards non-tropical and non-endemic areas. As of now, no licensed vaccines or therapies are available against CHIKV; the treatment regimens for CHIKV are mostly symptomatic, based on the clinical manifestations. Development of small molecule drugs and neutralizing antibodies are potential alternatives of worth investigating until an efficient or safe vaccine is approved. Neutralizing antibodies play an important role in antiviral immunity, and their presence is a hallmark of viral infection. In this review, we describe prospects for effective vaccines and highlight importance of neutralizing antibody-based therapeutic and prophylactic applications to combat CHIKV infections. We further discuss about the progress made towards CHIKV therapeutic interventions as well as challenges and limitation associated with the vaccine development. Furthermore this review describes the lesson learned from chikungunya natural infection, which could help in better understanding for future development of antibody-based therapeutic measures.
Collapse
Affiliation(s)
- Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India.
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
40
|
Smiley Evans T, Shi Z, Boots M, Liu W, Olival KJ, Xiao X, Vandewoude S, Brown H, Chen JL, Civitello DJ, Escobar L, Grohn Y, Li H, Lips K, Liu Q, Lu J, Martínez-López B, Shi J, Shi X, Xu B, Yuan L, Zhu G, Getz WM. Synergistic China-US Ecological Research is Essential for Global Emerging Infectious Disease Preparedness. ECOHEALTH 2020; 17:160-173. [PMID: 32016718 PMCID: PMC7088356 DOI: 10.1007/s10393-020-01471-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/03/2019] [Accepted: 12/10/2019] [Indexed: 05/14/2023]
Abstract
The risk of a zoonotic pandemic disease threatens hundreds of millions of people. Emerging infectious diseases also threaten livestock and wildlife populations around the world and can lead to devastating economic damages. China and the USA-due to their unparalleled resources, widespread engagement in activities driving emerging infectious diseases and national as well as geopolitical imperatives to contribute to global health security-play an essential role in our understanding of pandemic threats. Critical to efforts to mitigate risk is building upon existing investments in global capacity to develop training and research focused on the ecological factors driving infectious disease spillover from animals to humans. International cooperation, particularly between China and the USA, is essential to fully engage the resources and scientific strengths necessary to add this ecological emphasis to the pandemic preparedness strategy. Here, we review the world's current state of emerging infectious disease preparedness, the ecological and evolutionary knowledge needed to anticipate disease emergence, the roles that China and the USA currently play as sources and solutions to mitigating risk, and the next steps needed to better protect the global community from zoonotic disease.
Collapse
Affiliation(s)
- Tierra Smiley Evans
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Zhengli Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Michael Boots
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA.
| | - Wenjun Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Chinese Academy of Sciences, Beijing, China
| | | | - Xiangming Xiao
- Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, OK, USA
| | | | - Heidi Brown
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Ji-Long Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Luis Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Yrjo Grohn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Karen Lips
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Qiyoung Liu
- Department of Vector Biology and Control, National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiahai Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | | | - Jishu Shi
- Laboratory of Vaccine Immunology, US-China Center for Animal Health, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Xiaolu Shi
- Department of Microbiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Biao Xu
- School of Public Health, Fudan University, Shanghai, China
| | - Lihong Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wayne M Getz
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA.
- School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
41
|
Bergren NA, Haller S, Rossi SL, Seymour RL, Huang J, Miller AL, Bowen RA, Hartman DA, Brault AC, Weaver SC. "Submergence" of Western equine encephalitis virus: Evidence of positive selection argues against genetic drift and fitness reductions. PLoS Pathog 2020; 16:e1008102. [PMID: 32027727 PMCID: PMC7029877 DOI: 10.1371/journal.ppat.1008102] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/19/2020] [Accepted: 09/22/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding the circumstances under which arboviruses emerge is critical for the development of targeted control and prevention strategies. This is highlighted by the emergence of chikungunya and Zika viruses in the New World. However, to comprehensively understand the ways in which viruses emerge and persist, factors influencing reductions in virus activity must also be understood. Western equine encephalitis virus (WEEV), which declined during the late 20th century in apparent enzootic circulation as well as equine and human disease incidence, provides a unique case study on how reductions in virus activity can be understood by studying evolutionary trends and mechanisms. Previously, we showed using phylogenetics that during this period of decline, six amino acid residues appeared to be positively selected. To assess more directly the effect of these mutations, we utilized reverse genetics and competition fitness assays in the enzootic host and vector (house sparrows and Culex tarsalis mosquitoes). We observed that the mutations contemporary with reductions in WEEV circulation and disease that were non-conserved with respect to amino acid properties had a positive effect on enzootic fitness. We also assessed the effects of these mutations on virulence in the Syrian-Golden hamster model in relation to a general trend of increased virulence in older isolates. However, no change effect on virulence was observed based on these mutations. Thus, while WEEV apparently underwent positive selection for infection of enzootic hosts, residues associated with mammalian virulence were likely eliminated from the population by genetic drift or negative selection. These findings suggest that ecologic factors rather than fitness for natural transmission likely caused decreased levels of enzootic WEEV circulation during the late 20th century.
Collapse
Affiliation(s)
- Nicholas A. Bergren
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sherry Haller
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shannan L. Rossi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Robert L. Seymour
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jing Huang
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Aaron L. Miller
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Richard A. Bowen
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Daniel A. Hartman
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Aaron C. Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Scott C. Weaver
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
42
|
Domingo E. Virus population dynamics examined with experimental model systems. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153323 DOI: 10.1016/b978-0-12-816331-3.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Experimental evolution permits exploring the effect of controlled environmental variables in virus evolution. Several designs in cell culture and in vivo have established basic concepts that can assist in the interpretation of evolutionary events in the field. Important information has come from cytolytic and persistent infections in cell culture that have unveiled the power of virus-cell coevolution in virus and cell diversification. Equally informative are comparisons of the response of viral populations when subjected to different passage régimens. In particular, plaque-to-plaque transfers in cell culture have revealed unusual genotypes and phenotypes that populate minority layers of viral quasispecies. Some of these viruses display properties that contradict features established in virology textbooks. Several hypotheses and principles of population genetics have found experimental confirmation in experimental designs with viruses. The possibilities of using experimental evolution to understand virus behavior are still largely unexploited.
Collapse
|
43
|
Martinez J, Bruner-Montero G, Arunkumar R, Smith SCL, Day JP, Longdon B, Jiggins FM. Virus evolution in Wolbachia-infected Drosophila. Proc Biol Sci 2019; 286:20192117. [PMID: 31662085 PMCID: PMC6823055 DOI: 10.1098/rspb.2019.2117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022] Open
Abstract
Wolbachia, a common vertically transmitted symbiont, can protect insects against viral infection and prevent mosquitoes from transmitting viral pathogens. For this reason, Wolbachia-infected mosquitoes are being released to prevent the transmission of dengue and other arboviruses. An important question for the long-term success of these programmes is whether viruses can evolve to escape the antiviral effects of Wolbachia. We have found that Wolbachia altered the outcome of competition between strains of the DCV virus in Drosophila. However, Wolbachia still effectively blocked the virus genotypes that were favoured in the presence of the symbiont. We conclude that Wolbachia did cause an evolutionary response in viruses, but this has little or no impact on the effectiveness of virus blocking.
Collapse
Affiliation(s)
- Julien Martinez
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | - Jonathan P. Day
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ben Longdon
- Department of Genetics, University of Cambridge, Cambridge, UK
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | | |
Collapse
|
44
|
Marshall JM, Raban RR, Kandul NP, Edula JR, León TM, Akbari OS. Winning the Tug-of-War Between Effector Gene Design and Pathogen Evolution in Vector Population Replacement Strategies. Front Genet 2019; 10:1072. [PMID: 31737050 PMCID: PMC6831721 DOI: 10.3389/fgene.2019.01072] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
While efforts to control malaria with available tools have stagnated, and arbovirus outbreaks persist around the globe, the advent of clustered regularly interspaced short palindromic repeat (CRISPR)-based gene editing has provided exciting new opportunities for genetics-based strategies to control these diseases. In one such strategy, called "population replacement", mosquitoes, and other disease vectors are engineered with effector genes that render them unable to transmit pathogens. These effector genes can be linked to "gene drive" systems that can bias inheritance in their favor, providing novel opportunities to replace disease-susceptible vector populations with disease-refractory ones over the course of several generations. While promising for the control of vector-borne diseases on a wide scale, this sets up an evolutionary tug-of-war between the introduced effector genes and the pathogen. Here, we review the disease-refractory genes designed to date to target Plasmodium falciparum malaria transmitted by Anopheles gambiae, and arboviruses transmitted by Aedes aegypti, including dengue serotypes 2 and 3, chikungunya, and Zika viruses. We discuss resistance concerns for these effector genes, and genetic approaches to prevent parasite and viral escape variants. One general approach is to increase the evolutionary hurdle required for the pathogen to evolve resistance by attacking it at multiple sites in its genome and/or multiple stages of development. Another is to reduce the size of the pathogen population by other means, such as with vector control and antimalarial drugs. We discuss lessons learned from the evolution of resistance to antimalarial and antiviral drugs and implications for the management of resistance after its emergence. Finally, we discuss the target product profile for population replacement strategies for vector-borne disease control. This differs between early phase field trials and wide-scale disease control. In the latter case, the demands on effector gene efficacy are great; however, with new possibilities ushered in by CRISPR-based gene editing, and when combined with surveillance, monitoring, and rapid management of pathogen resistance, the odds are increasingly favoring effector genes in the upcoming evolutionary tug-of-war.
Collapse
Affiliation(s)
- John M. Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, United States
- Innovative Genomics Institute, Berkeley, CA, United States
| | - Robyn R. Raban
- Section of Cell and Developmental Biology, University of California, San Diego, CA, United States
| | - Nikolay P. Kandul
- Section of Cell and Developmental Biology, University of California, San Diego, CA, United States
| | - Jyotheeswara R. Edula
- Section of Cell and Developmental Biology, University of California, San Diego, CA, United States
| | - Tomás M. León
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, United States
| | - Omar S. Akbari
- Section of Cell and Developmental Biology, University of California, San Diego, CA, United States
- Tata Institute for Genetics and Society, University of California, San Diego, CA, United States
| |
Collapse
|
45
|
Azar SR, Weaver SC. Vector Competence: What Has Zika Virus Taught Us? Viruses 2019; 11:E867. [PMID: 31533267 PMCID: PMC6784050 DOI: 10.3390/v11090867] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
The unprecedented outbreak of Zika virus (ZIKV) infection in the Americas from 2015 to 2017 prompted the publication of a large body of vector competence data in a relatively short period of time. Although differences in vector competence as a result of disparities in mosquito populations and viral strains are to be expected, the limited competence of many populations of the urban mosquito vector, Aedes aegypti, from the Americas (when its susceptibility is viewed relative to other circulating/reemerging mosquito-borne viruses such as dengue (DENV), yellow fever (YFV), and chikungunya viruses (CHIKV)) has proven a paradox for the field. This has been further complicated by the lack of standardization in the methodologies utilized in laboratory vector competence experiments, precluding meta-analyses of this large data set. As the calls for the standardization of such studies continue to grow in number, it is critical to examine the elements of vector competence experimental design. Herein, we review the various techniques and considerations intrinsic to vector competence studies, with respect to contemporary findings for ZIKV, as well as historical findings for other arboviruses, and discuss potential avenues of standardization going forward.
Collapse
Affiliation(s)
- Sasha R Azar
- Department of Microbiology and Immunology, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
| |
Collapse
|
46
|
Rusnak JM, Glass PJ, Weaver SC, Sabourin CL, Glenn AM, Klimstra W, Badorrek CS, Nasar F, Ward LA. Approach to Strain Selection and the Propagation of Viral Stocks for Venezuelan Equine Encephalitis Virus Vaccine Efficacy Testing under the Animal Rule. Viruses 2019; 11:v11090807. [PMID: 31480472 PMCID: PMC6784384 DOI: 10.3390/v11090807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
Licensure of a vaccine to protect against aerosolized Venezuelan equine encephalitis virus (VEEV) requires use of the U.S. Food and Drug Administration (FDA) Animal Rule to assess vaccine efficacy as human studies are not feasible or ethical. An approach to selecting VEEV challenge strains for use under the Animal Rule was developed, taking into account Department of Defense (DOD) vaccine requirements, FDA Animal Rule guidelines, strain availability, and lessons learned from the generation of filovirus challenge agents within the Filovirus Animal Nonclinical Group (FANG). Initial down-selection to VEEV IAB and IC epizootic varieties was based on the DOD objective for vaccine protection in a bioterrorism event. The subsequent down-selection of VEEV IAB and IC isolates was based on isolate availability, origin, virulence, culture and animal passage history, known disease progression in animal models, relevancy to human disease, and ability to generate sufficient challenge material. Methods for the propagation of viral stocks (use of uncloned (wild-type), plaque-cloned, versus cDNA-cloned virus) to minimize variability in the potency of the resulting challenge materials were also reviewed. The presented processes for VEEV strain selection and the propagation of viral stocks may serve as a template for animal model development product testing under the Animal Rule to other viral vaccine programs. This manuscript is based on the culmination of work presented at the “Alphavirus Workshop” organized and hosted by the Joint Vaccine Acquisition Program (JVAP) on 15 December 2014 at Fort Detrick, Maryland, USA.
Collapse
Affiliation(s)
- Janice M Rusnak
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager-Medical Countermeasure Systems (JMP-MCS), Joint Vaccine Acquisition Program (JVAP), 1564 Freedman Drive, Fort Detrick, MD 21702, USA.
| | - Pamela J Glass
- Department of Virology, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - Scott C Weaver
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Carol L Sabourin
- Battelle Biomedical Research Center, 1425 Plain City-Georgesville Road, West Jefferson, OH 43162, USA
| | - Andrew M Glenn
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager-Medical Countermeasure Systems (JMP-MCS), Joint Vaccine Acquisition Program (JVAP), 1564 Freedman Drive, Fort Detrick, MD 21702, USA
| | - William Klimstra
- Center for Vaccine Research, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Christopher S Badorrek
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager-Medical Countermeasure Systems (JMP-MCS), Joint Vaccine Acquisition Program (JVAP), 1564 Freedman Drive, Fort Detrick, MD 21702, USA
| | - Farooq Nasar
- Department of Virology, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - Lucy A Ward
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager-Medical Countermeasure Systems (JMP-MCS), Joint Vaccine Acquisition Program (JVAP), 1564 Freedman Drive, Fort Detrick, MD 21702, USA
| |
Collapse
|
47
|
Chikungunya Virus Vaccine Candidates with Decreased Mutational Robustness Are Attenuated In Vivo and Have Compromised Transmissibility. J Virol 2019; 93:JVI.00775-19. [PMID: 31270226 PMCID: PMC6714818 DOI: 10.1128/jvi.00775-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/11/2019] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerged arbovirus, a member of the Togaviridae family. It circulates through mosquito vectors mainly of the Aedes family and a mammalian host. CHIKV causes chikungunya fever, a mild to severe disease characterized by arthralgia, with some fatal outcomes described. In the past years, several outbreaks mainly caused by enhanced adaptation of the virus to the vector and ineffective control of the contacts between infected mosquito populations and the human host have been reported. Vaccines represent the best solution for the control of insect-borne viruses, including CHIKV, but are often unavailable. We designed live attenuated CHIKVs by applying a rational genomic design based on multiple replacements of synonymous codons. In doing so, the virus mutational robustness (capacity to maintain phenotype despite introduction of mutations to genotype) is decreased, driving the viral population toward deleterious evolutionary trajectories. When the candidate viruses were tested in the insect and mammalian hosts, we observed overall strong attenuation in both and greatly diminished signs of disease. Moreover, we found that the vaccine candidates elicited protective immunity related to the production of neutralizing antibodies after a single dose. During an experimental transmission cycle between mosquitoes and naive mice, vaccine candidates could be transmitted by mosquito bite, leading to asymptomatic infection in mice with compromised dissemination. Using deep-sequencing technology, we observed an increase in detrimental (stop) codons, which confirmed the effectiveness of this genomic design. Because the approach involves hundreds of synonymous modifications to the genome, the reversion risk is significantly reduced, rendering the viruses promising vaccine candidates.IMPORTANCE Chikungunya fever is a debilitating disease that causes severe pain to the joints, which can compromise the patient's lifestyle for several months and even in some grave cases lead to death. The etiological agent is chikungunya virus, an alphavirus transmitted by mosquito bite. Currently, there are no approved vaccines or treatments against the disease. In our research, we developed novel live attenuated vaccine candidates against chikungunya virus by applying an innovative genomic design. When tested in the insect and mammalian host, the vaccine candidates did not cause disease, elicited strong protection against further infection, and had low risk of reversion to pathogenic phenotypes.
Collapse
|
48
|
Dunbar CA, Rayaprolu V, Wang JCY, Brown CJ, Leishman E, Jones-Burrage S, Trinidad JC, Bradshaw HB, Clemmer DE, Mukhopadhyay S, Jarrold MF. Dissecting the Components of Sindbis Virus from Arthropod and Vertebrate Hosts: Implications for Infectivity Differences. ACS Infect Dis 2019; 5:892-902. [PMID: 30986033 DOI: 10.1021/acsinfecdis.8b00356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sindbis virus (SINV) is an enveloped, single-stranded RNA virus, which is transmitted via mosquitos to a wide range of vertebrate hosts. SINV produced by vertebrate, baby hamster kidney (BHK) cells is more than an order of magnitude less infectious than SINV produced from mosquito (C6/36) cells. The cause of this difference is poorly understood. In this study, charge detection mass spectrometry was used to determine the masses of intact SINV particles isolated from BHK and C6/36 cells. The measured masses are substantially different: 52.88 MDa for BHK derived SINV and 50.69 MDa for C6/36 derived. Further analysis using several mass spectrometry-based methods and biophysical approaches indicates that BHK derived SINV has a substantially higher mass than C6/36 derived because in the lipid bilayer, there is a higher portion of lipids containing long chain fatty acids. The difference in lipid composition could influence the organization of the lipid bilayer. As a result, multiple stages of the viral lifecycle may be affected including assembly and budding, particle stability during transmission, and fusion events, all of which could contribute to the differences in infectivity.
Collapse
Affiliation(s)
- Carmen A. Dunbar
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Vamseedhar Rayaprolu
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Joseph C.-Y. Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Christopher J. Brown
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, 1101 East Tenth Street, Bloomington, Indiana 47405, United States
| | - Sara Jones-Burrage
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, 1101 East Tenth Street, Bloomington, Indiana 47405, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Suchetana Mukhopadhyay
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
49
|
Koh C, Audsley MD, Di Giallonardo F, Kerton EJ, Young PR, Holmes EC, McGraw EA. Sustained Wolbachia-mediated blocking of dengue virus isolates following serial passage in Aedes aegypti cell culture. Virus Evol 2019; 5:vez012. [PMID: 31191980 PMCID: PMC6555872 DOI: 10.1093/ve/vez012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Wolbachia is an intracellular endosymbiont of insects that inhibits the replication of a range of pathogens in its arthropod hosts. The release of Wolbachia into wild populations of mosquitoes is an innovative biocontrol effort to suppress the transmission of arthropod-borne viruses (arboviruses) to humans, most notably dengue virus. The success of the Wolbachia-based approach hinges upon the stable persistence of the ‘pathogen blocking’ effect, whose mechanistic basis is poorly understood. Evidence suggests that Wolbachia may affect viral replication via a combination of competition for host resources and activation of host immunity. The evolution of resistance against Wolbachia and pathogen blocking in the mosquito or the virus could reduce the public health impact of the symbiont releases. Here, we investigate if dengue 3 virus (DENV-3) is capable of accumulating adaptive mutations that improve its replicative capacity during serial passage in Wolbachia wMel-infected cells. During the passaging regime, viral isolates in Wolbachia-infected cells exhibited greater variation in viral loads compared to controls. The viral loads of these isolates declined rapidly during passaging due to the blocking effects of Wolbachia carriage, with several being lost all together and the remainder recovering to low but stable levels. We attempted to sequence the genomes of the surviving passaged isolates but, given their low abundance, were unable to obtain sufficient depth of coverage for evolutionary analysis. In contrast, viral loads in Wolbachia-free control cells were consistently high during passaging. The surviving isolates passaged in the presence of Wolbachia exhibited a reduced ability to replicate even in Wolbachia-free cells. These experiments demonstrate the challenge for dengue in evolving resistance to Wolbachia-mediated blocking.
Collapse
Affiliation(s)
- Cassandra Koh
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Michelle D Audsley
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Francesca Di Giallonardo
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,The Kirby Institute, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Emily J Kerton
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.,Department of Entomology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
50
|
de Aguiar GPCG, Leite CMGDS, Dias B, Vasconcelos SMM, de Moraes RA, de Moraes MEA, Vallinoto ACR, Macedo DS, Cavalcanti LPDG, Miyajima F. Evidence for Host Epigenetic Signatures Arising From Arbovirus Infections: A Systematic Review. Front Immunol 2019; 10:1207. [PMID: 31214179 PMCID: PMC6554415 DOI: 10.3389/fimmu.2019.01207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/13/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Arbovirus infections have steadily become a major pandemic threat. This study aimed at investigating the existence of host epigenetic markers arising from the principal arboviruses infections impacting on human health. We set to systematically review all published evidence describing any epigenetic modifications associated with infections from arboviruses, including, but not limited to, microRNAs, DNA methylation, and histone modifications. Methods: A comprehensive search was conducted using the electronic databases PubMed, Science Direct and Cochrane Library from inception to January 4th, 2018. We included reports describing original in vivo or in vitro studies investigating epigenetic changes related to arbovirus infections in either clinical subjects or human cell lines. Studies investigating epigenetic modifications related to the virus or the arthropod vector were excluded. A narrative synthesis of the findings was conducted, contextualizing comparative evidence from in vitro and in vivo studies. Results: A total of 853 unique references were identified and screened by two independent researchers. Thirty-two studies met the inclusion criteria and were reviewed. The evidence was centered mainly on microRNA and DNA methylation signatures implicated with secondary Dengue fever. Evidence for recent epidemic threats, such as the infections by Zika or Chikungunya viruses is still scant. Conclusions: Major epigenetic alterations found on arboviruses infections were miR-146, miR-30e and the Dicer complex. However, existing studies frequently tested distinct hypotheses resulting in a heterogeneity of methodological approaches. Whilst epigenetic signatures associated with arbovirus infections have been reported, existing studies have largely focused on a small number of diseases, particularly dengue. Validation of epigenetic signatures have an untapped potential, but concerted investigations are certainly required to deliver robust candidates of clinical utility for diagnosis, staging and prognosis of specific arboviral diseases.
Collapse
Affiliation(s)
| | | | - Beatriz Dias
- Faculty of Medicine, Unichristus University Center, Fortaleza, Brazil
| | - Silvania Maria Mendes Vasconcelos
- Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Renata Amaral de Moraes
- Faculty of Medicine, Unichristus University Center, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil.,Sao Jose Hospital of Infectious Diseases, Fortaleza, Brazil
| | - Maria Elisabete Amaral de Moraes
- Postgraduate Programme in Medical and Surgical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | | | - Danielle Silveira Macedo
- Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Luciano Pamplona de Goes Cavalcanti
- Faculty of Medicine, Unichristus University Center, Fortaleza, Brazil.,Department of Community Health, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Fabio Miyajima
- Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Postgraduate Programme in Medical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Oswaldo Cruz Foundation (Fiocruz), Branch Ceara, Eusebio, Brazil
| |
Collapse
|