1
|
Hansen M, Lange KK, Stausholm MB, Dela F. Are Individuals With Type 2 Diabetes Metabolically Inflexible? A Systematic Review and Meta-Analysis. Endocrinol Diabetes Metab 2025; 8:e70044. [PMID: 40318136 PMCID: PMC12048703 DOI: 10.1002/edm2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 05/07/2025] Open
Abstract
AIM Type 2 diabetes (T2D) is characterised by insulin resistance and possibly by impaired metabolic flexibility, the latter referring to the body's ability to switch between fuel sources. This review systematically examines metabolic flexibility, measured by changes in the respiratory exchange ratio (ΔRER) during hyperinsulinaemic clamps, across lean, overweight/obese, and T2D populations. METHODS A comprehensive search of PubMed identified 65 studies meeting the inclusion criteria, with 35 using a ~40 mU/m2/min insulin infusion rate for accurate comparisons. These studies included 985 participants: 256 lean, 497 overweight/obese, and 232 T2D individuals. The differences in ΔRER between the three groups were meta-analysed. RESULTS Basal RER values did not significantly differ across groups, but insulin-stimulated ΔRER was higher in lean individuals compared to overweight/obese and T2D groups (ΔRER values 0.10, 0.07 and 0.07, respectively; p = 0.037) indicating greater metabolic flexibility in the lean group. However, high statistical heterogeneity in the ΔRER within-group results (I2 values: 92.3%-94.5%) suggests considerable variability among studies. A meta-regression analysis accounting for age, sex, and BMI indicated that only BMI was significantly associated with ΔRER. Factors contributing to the remaining heterogeneity likely include differences in participant characteristics (e.g., glycaemic control) and study design. CONCLUSIONS The review highlights the need for standardised data presentation in metabolic studies. Overall, metabolic flexibility appears more influenced by overweight status than T2D per se, challenging the notion of a distinct metabolic inflexibility threshold for T2D.
Collapse
Affiliation(s)
- Maria Hansen
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kristine Kjær Lange
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Martin Bjørn Stausholm
- Department of Physical and Occupational TherapyCopenhagen University Hospital, Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Global Public Health and Primary CareUniversity of BergenBergenNorway
| | - Flemming Dela
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Laboratory of Sports and Nutrition ResearchRiga Stradins UniversityRigaLatvia
| |
Collapse
|
2
|
Sen A, Thakur S, Rawat P, Jaswal K, Dehury B, Mondal P. Hepatic ChREBP reciprocally modulates systemic insulin sensitivity in NAFLD. J Biol Chem 2025:108556. [PMID: 40311678 DOI: 10.1016/j.jbc.2025.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
The relation between hepatic ChREBP level and insulin sensitivity remains equivocal. Our study, however, provides compelling evidence that ChREBP depletion can significantly enhance insulin sensitivity in high-fat and sucrose-fed (HFSD)mice. We have identified that transcriptional induction of hepatic PTEN is driven by ChREBP. Mechanistically, two critical stimuli are elicited in the hepatic ChREBP knockdown condition. The PTEN level is reduced for one stimulus, thereby promoting hepatic insulin sensitivity. The second stimulus, where reduced hepatic PTEN leads to the enhanced release of FGF21, spreads systemic insulin sensitivity. These findings identify hepatic ChREBP as a critical modulator of systemic insulin signaling and suggest that ChREBP downregulation may lead to protection against insulin resistance. Building on this, our molecular dynamics simulation analysis has led to the discovery of a small molecule, Quercetin, that sequesters ChREBP in the cytosol. We report that Quercetin treatment can sequester ChREBP in the cytosol and abrogate HFSD-mediated ChREBP nuclear translocation, thereby mimicking the insulin-sensitizing abilities of the hepatic ChREBP knockdown condition. These findings have significant therapeutic implications, suggesting that liver-selective downregulation of ChREBP could protect against systemic insulin resistance that frequently develops early in the pathogenesis of NAFLD and T2DM.
Collapse
Affiliation(s)
- Aniket Sen
- School of Biosciences and Bioengineering, IIT Mandi, Mandi, India
| | - Shilpa Thakur
- School of Biosciences and Bioengineering, IIT Mandi, Mandi, India
| | - Priya Rawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| | - Kajal Jaswal
- School of Biosciences and Bioengineering, IIT Mandi, Mandi, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal-576104, India
| | - Prosenjit Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India.
| |
Collapse
|
3
|
Rahim M, Bednarski TK, Hasenour CM, Banerjee DR, Trenary I, Young JD. Simultaneous in vivo multi-organ fluxomics reveals divergent metabolic adaptations in liver, heart, and skeletal muscle during obesity. Cell Rep 2025; 44:115591. [PMID: 40244853 DOI: 10.1016/j.celrep.2025.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/23/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
We present an isotope-based metabolic flux analysis (MFA) approach to simultaneously quantify metabolic fluxes in the liver, heart, and skeletal muscle of individual mice. The platform was scaled to examine metabolic flux adaptations in age-matched cohorts of mice exhibiting varying levels of chronic obesity. We found that severe obesity increases hepatic gluconeogenesis and citric acid cycle flux, accompanied by elevated glucose oxidation in the heart that compensates for impaired fatty acid oxidation. In contrast, skeletal muscle fluxes exhibit an overall reduction in substrate oxidation. These findings demonstrate the dichotomy in fuel utilization between cardiac and skeletal muscle during worsening metabolic disease and demonstrate the divergent effects of obesity on metabolic fluxes in different organs. This multi-tissue MFA technology can be extended to address important questions about in vivo regulation of metabolism and its dysregulation in disease, which cannot be fully answered through studies of single organs or isolated cells/tissues.
Collapse
Affiliation(s)
- Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Tomasz K Bednarski
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Clinton M Hasenour
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Deveena R Banerjee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Jahangiri M, Shahrbanian S, Gharakhanlou R. High intensity interval training alters gene expression linked to mitochondrial biogenesis and dynamics in high fat diet fed rats. Sci Rep 2025; 15:5442. [PMID: 39952980 PMCID: PMC11828894 DOI: 10.1038/s41598-025-86767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
A High-Fat Diet (HFD) leads to disruption of mitochondrial biogenesis and dynamics. Exercise training, especially High-Intensity Interval Training (HIIT) increases mitochondrial biogenesis and dynamics. The present study aimed to investigate the effect of a period of HIIT with and without HFD consumption on the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1-α), Mitofusins-2 (Mfn2), Optic atrophy-1 (Opa1), Dynamin-related protein-1 (Drp1) and mitochondrial Fission protein-1 (Fis1) genes as indicators of mitochondrial biogenesis and dynamics function in the soleus muscle of male Wistar rats. Twenty-four healthy male Wistar rats were randomly divided into four groups: (1) Control, (2) Control + HIIT, (3) HFD, and (4) HFD + HIIT. The HIIT training protocol lasted for 10 weeks with a frequency of 3 sessions per week. The Real-Time Quantitative Reverse Transcription PCR method was used to investigate the gene expression. One-way ANOVA and Fisher's post-hoc analyses were used to examine group differences. HFD consumption caused an increase in weight (P < 0.05), the expression of Drp1 and Fis1 genes (P < 0.001), and a decreased expression of Pgc1-α, Mfn2, and Opa1 genes (P < 0.001). HIIT training increased the expression of PGC1-α (P = 0.009), Mfn2 (P < 0.004), and Opa1 (P < 0.011) genes, while it decreased the expression of Drp1 (P = 0.003) and Fis1 genes (P = 0.027). These findings suggest that HIIT can counteract the negative effects of HFD on mitochondrial function by modulating gene expression related to mitochondrial biogenesis and dynamics.
Collapse
Affiliation(s)
- Mohammad Jahangiri
- Department of Sport Science, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Shahnaz Shahrbanian
- Department of Sport Science, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran.
| | - Reza Gharakhanlou
- Department of Sport Science, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Fornelli C, Sofia Cento A, Nevi L, Mastrocola R, Ferreira Alves G, Caretti G, Collino M, Penna F. The BET inhibitor JQ1 targets fat metabolism and counteracts obesity. J Adv Res 2025; 68:403-413. [PMID: 38365172 PMCID: PMC11785562 DOI: 10.1016/j.jare.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/03/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
INTRODUCTION Obesity, one of the most frequent health problems in the adult population, is a condition characterized by excessive white adipose tissue accumulation and accompanied by the increased risk to develop other disorders such as type II diabetes, cardiovascular disorders, physical disability, frailty and sarcopenia. Total fat mass frequently increases during aging, often coexisting with sarcopenia, thus resulting in an emerging condition defined sarcopenic obesity (SO). Our previous data demonstrated the relevant role of the bromo and extra-terminal domain (BET) proteins inhibitor JQ1 in attenuating inflammation and fibrosis in sarcopenic mice. Moreover, we preliminarily observed that JQ1 administration markedly reduces white adipose tissue mass, suggesting a potential role of BET proteins on visceral fat deposition during aging. OBJECTIVES Starting from those observations, the aim of this study was to investigate the ability of JQ1 to reduce adiposity in a chronic diet-induced obesity (DIO) mouse model mimicking the human metabolic syndrome. METHODS Male C57BL/6J mice were divided in subgroups, either fed a standard diet or a high fat diet for 22 or 12 weeks, treated over the last 14 days with JQ1 or with vehicle. RESULTS The results showed that JQ1 administration reduces fat mass, preserving skeletal muscle mass and function. A direct JQ1 lipolytic effect was demonstrated on mature adipocyte cultures. JQ1-mediated loss of adipose tissue mass was not associated with systemic inflammation or with lipid accumulation in muscle and liver. JQ1 administration did not impinge on skeletal muscle metabolism and oxidative capability, as shown by the lack of significant impact on mitochondrial mass and biogenesis. CONCLUSION In conclusion, the current data highlight a potential benefit of JQ1 administration to counteract obesity, suggesting epigenetic modulation as a prospective target in the treatment of obesity and sarcopenic obesity, despite the underlying multiorgan molecular mechanism is still not completely elucidated.
Collapse
Affiliation(s)
- Claudia Fornelli
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Alessia Sofia Cento
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Lorenzo Nevi
- Department of Biosciences, University of Milano, Milan, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | | | | | - Massimo Collino
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Turin, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.
| |
Collapse
|
6
|
Godfrey H, Shoveller AK, Kelly J, Kostiuk D, Saunders Blades J, Verbrugghe A. Isoenergetic reduction of dietary macronutrients modulates respiratory quotients and heat increment of feeding but not energy expenditure in cats. J Anim Sci 2025; 103:skaf081. [PMID: 40079272 PMCID: PMC12056936 DOI: 10.1093/jas/skaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/11/2025] [Indexed: 03/15/2025] Open
Abstract
Indirect calorimetry can provide insights into the metabolic processes occurring in cats through substrate utilization and energy expenditure (EE). Additionally, the influence of dietary macronutrients on the heat increment of feeding (HIF) in cats remains unexplored. As such, this proof of principle study aimed to test the short-term effects of 3 test diets formulated for adult maintenance according to AAFCO by comparatively reducing protein, fat, or carbohydrates, to create a low-protein (LP; protein 28%ME, fat 40%ME, nitrogen-free extract (NFE) 28%ME), low-fat (LF; protein 40%ME, fat 27%ME, NFE 27%ME), and a low-carbohydrate (LC; protein 35%ME, fat 40%ME, NFE 20%ME) diet on respiratory quotients (RQ), EE, and HIF in cats. Adult (3.4 ± 0.1 yr of age), male, neutered cats (n = 12) were assigned to 1 of 3 groups and offered each diet at an amount to maintain body weight (BW) for 2 wk in a 3 × 3 Latin square design. The cats BW ranged from 3.94 to 6.33 kg (mean ± SEM BW of 5.08 ± 0.28 kg) and body condition score (BCS) ranged from 4/9 to 7/9 (mean ± SEM BCS of 5.58 ± 0.38). At the end of each test period, 22-h indirect calorimetry was performed to determine RQ, EE, and HIF. Daily food intake was greater for cats consuming the LF diet (61.6 ± 1.0 g/d) compared to the LP (58.3 ± 1.0 g/d) and LC (57.7 ± 1.0 g/d) diets (P < 0.0001), though energy intake was similar between diets (223.8 ± 2.2, 227.9 ± 2.0, and 228.4 ± 2.0 kcal/d) (P = 0.1191). In the fasted, immediate postprandial (0 to 120 min), and postabsorptive (0 to 1,200 min) states, cats fed LC had a lower RQ compared to LF (P = 0.0154, P = 0.0346, and P = 0.0407, respectively), indicating greater fat oxidation when consuming LC. No differences were observed between the LP diet and the LF and LC diets for RQ (P > 0.05). For all cats regardless of diet, the RQ increased from the immediate postprandial to postabsorptive state (P < 0.0001) as expected. Following feeding, EE increased for all cats regardless of diet (P < 0.0001). No diet effect was observed for EE in the fasted, immediate postprandial, or postabsorptive states. Diet did not affect HIF in the immediate postprandial state; however, the LP diet had a lower HIF compared to the LF diet over the entire post-feeding state when using the National Research Council ME equation, though the HIF was similar between the LC diet to the LP and LF diets (P = 0.0360). Future research should explore the long-term effects of low levels of dietary macronutrients in cat foods and their role in energy metabolism under various energy balance conditions.
Collapse
Affiliation(s)
- Hannah Godfrey
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Anna Kate Shoveller
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Janelle Kelly
- Champion Petfoods Holdings, Morinville, Alberta, Canada T8R 1K7
| | - Darcia Kostiuk
- Champion Petfoods Holdings, Morinville, Alberta, Canada T8R 1K7
| | | | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
7
|
Pesta D, Anadol-Schmitz E, Sarabhai T, Op den Kamp Y, Gancheva S, Trinks N, Zaharia OP, Mastrototaro L, Lyu K, Habets I, Op den Kamp-Bruls YMH, Dewidar B, Weiss J, Schrauwen-Hinderling V, Zhang D, Gaspar RC, Strassburger K, Kupriyanova Y, Al-Hasani H, Szendroedi J, Schrauwen P, Phielix E, Shulman GI, Roden M. Determinants of increased muscle insulin sensitivity of exercise-trained versus sedentary normal weight and overweight individuals. SCIENCE ADVANCES 2025; 11:eadr8849. [PMID: 39742483 PMCID: PMC11691647 DOI: 10.1126/sciadv.adr8849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals. This observational study found that ATHL show higher insulin sensitivity, muscle mitochondrial content, and capacity, but lower activation of novel protein kinase C (nPKC) isoforms, despite higher diacylglycerol concentrations. Notably, sedentary but insulin sensitive OVWE feature lower plasma membrane-to-mitochondria sn-1,2-diacylglycerol ratios. In ATHL, calpain-2, which cleaves nPKC, negatively associates with PKCε activation and positively with insulin sensitivity along with higher GLUT4 and hexokinase II content. These findings contribute to explaining the athletes' paradox by demonstrating lower nPKC activation, increased calpain, and mitochondrial partitioning of bioactive diacylglycerols, the latter further identifying an obesity subtype with increased insulin sensitivity (NCT03314714).
Collapse
Affiliation(s)
- Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Evrim Anadol-Schmitz
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Theresia Sarabhai
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Yvo Op den Kamp
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivo Habets
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Yvonne M. H. Op den Kamp-Bruls
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Klaus Strassburger
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Leiden University Medical Center, Clinical Epidemiology, Leiden, Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Agrawal OD, Kulkarni YA. Terminalia catappa aqueous extract reduces hyperglycaemia and oxidative stress in diabetic-hypercholesterolemic rats. J Ayurveda Integr Med 2025; 16:101025. [PMID: 39827649 PMCID: PMC11787580 DOI: 10.1016/j.jaim.2024.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Terminalia catappa is an important medicinal plant. Plants from the genus Terminalia have been reported for antidiabetic effects. OBJECTIVE To study effect of Terminalia catappa leaves aqueous extract in type 2 diabetic rats. MATERIALS AND METHODS High-fat diet (HFD) and a low dose of streptozotocin (35 mg/kg, i.p.) were used for inducing type 2 diabetes in rats; streptozotocin was injected after two weeks of dietary modification with HFD. HFD was continued throughout the study. Doses of 500 and 1000 mg/kg of aqueous extract of Terminalia catappa were used as a treatment for six weeks. At the end of the study, biochemical and oxidative stress parameters were estimated. Histopathology and immunohistochemistry of pancreatic tissue were performed. RESULTS Significant decrease (p < 0.01, p < 0.001) was observed in glucose levels of diabetic animals treated with T. catappa extract at both dose levels when compared with diabetic control group. Treatment with aqueous extract reduced cholesterol levels significantly (p < 0.05). After receiving 1000 mg/kg of extract, the triglyceride level was significantly lowered (p < 0.01) in the diabetic rats. Extract treatment enhanced the insulin sensitivity index (ISI), while insulin levels and HOMA-IR were markedly reduced. Treatment with 1000 mg/kg of extract significantly enhanced the levels of GSH and catalase. Histopathological analysis of the pancreas showed that damage caused by hyperglycemia was prevented in the extract-treated groups. Pancreatic tissue showed an increased expression of SIRT1 in extract-treated animals. CONCLUSION The current study's findings prove that the extract has remarkable antidiabetic effects.
Collapse
Affiliation(s)
- Ojaskumar D Agrawal
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India; Vivekanand Education Society's College of Pharmacy, Chembur (E), University of Mumbai, Mumbai 400 074, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India.
| |
Collapse
|
9
|
Den Hartogh DJ, MacPherson REK, Tsiani E. Muscle cell palmitate-induced insulin resistance, JNK, IKK/NF-κB, and STAT3 activation are attenuated by carnosic and rosmarinic acid. Appl Physiol Nutr Metab 2025; 50:1-14. [PMID: 39805098 DOI: 10.1139/apnm-2024-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The worldwide epidemic of obesity has drastically worsened with the increase in more sedentary lifestyles and increased consumption of fatty foods. Increased blood free fatty acids, often observed in obesity, lead to impaired insulin action, and promote the development of insulin resistance and type 2 diabetes mellitus. c-Jun N-terminal kinase (JNK), inhibitor of kappa B (IκB) kinase (IKK)-nuclear factor-kappa B (NF-κB), and signal transducer and activator of transcription 3 (STAT3) are known to be involved in skeletal muscle insulin resistance. We reported previously that carnosic acid (CA) and rosmarinic acid (RA) attenuated the palmitate-induced skeletal muscle insulin resistance, an effect that was associated with increased AMPK activation and reduced mammalian target of rapamycin-p70S6K signaling. In the present study, we examined the effects of CA and RA on JNK, IKK-NF-κB, and STAT3. Exposure of cells to palmitate increased the phosphorylation/activation of JNK, IKKα/β, IκBα, NF-κBp65, and STAT3. Importantly, CA and RA attenuated the deleterious effects of palmitate. Our data indicate that CA and RA have the potential to counteract the palmitate-induced skeletal muscle cell insulin resistance by modulating JNK, IKK-NF-κB, and STAT3 signaling.
Collapse
Affiliation(s)
- Danja J Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
10
|
Zhao Z, Chen Q, Xiang X, Dai W, Fang W, Cui K, Li B, Liu Q, Liu Y, Shen Y, Li Y, Xu W, Mai K, Ai Q. Tip60-mediated Rheb acetylation links palmitic acid with mTORC1 activation and insulin resistance. J Cell Biol 2024; 223:e202309090. [PMID: 39422647 PMCID: PMC11489267 DOI: 10.1083/jcb.202309090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Excess dietary intake of saturated fatty acids (SFAs) induces glucose intolerance and metabolic disorders. In contrast, unsaturated fatty acids (UFAs) elicit beneficial effects on insulin sensitivity. However, it remains elusive how SFAs and UFAs signal differentially toward insulin signaling to influence glucose homeostasis. Here, using a croaker model, we report that dietary palmitic acid (PA), but not oleic acid or linoleic acid, leads to dysregulation of mTORC1, which provokes systemic insulin resistance. Mechanistically, we show that PA profoundly elevates acetyl-CoA derived from mitochondrial fatty acid β oxidation to intensify Tip60-mediated Rheb acetylation, which triggers mTORC1 activation by promoting the interaction between Rheb and FKBPs. Subsequently, hyperactivation of mTORC1 enhances IRS1 serine phosphorylation and inhibits TFEB-mediated IRS1 transcription, inducing impairment of insulin signaling. Collectively, our results reveal a conserved molecular insight into the mechanism by which Tip60-mediated Rheb acetylation induces mTORC1 activation and insulin resistance under the PA condition, which may provide therapeutic avenues to intervene in the development of T2D.
Collapse
Affiliation(s)
- Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Weiwei Dai
- Department of Biological Science, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Baolin Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yanan Shen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Hunter‐Manseau F, Cormier SB, Strang R, Pichaud N. Fasting as a precursor to high-fat diet enhances mitochondrial resilience in Drosophila melanogaster. INSECT SCIENCE 2024; 31:1770-1788. [PMID: 38514255 PMCID: PMC11632299 DOI: 10.1111/1744-7917.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
Changes in diet type and nutrient availability can impose significant environmental stress on organisms, potentially compromising physiological functions and reproductive success. In nature, dramatic fluctuations in dietary resources are often observed and adjustments to restore cellular homeostasis are crucial to survive this type of stress. In this study, we exposed male Drosophila melanogaster to two modulated dietary treatments: one without a fasting period before exposure to a high-fat diet and the other with a 24-h fasting period. We then investigated mitochondrial metabolism and molecular responses to these treatments. Exposure to a high-fat diet without a preceding fasting period resulted in disrupted mitochondrial respiration, notably at the level of complex I. On the other hand, a short fasting period before the high-fat diet maintained mitochondrial respiration. Generally, transcript abundance of genes associated with mitophagy, heat-shock proteins, mitochondrial biogenesis, and nutrient sensing pathways increased either slightly or significantly following a fasting period and remained stable when flies were subsequently put on a high-fat diet, whereas a drastic decrease of almost all transcript abundances was observed for all these pathways when flies were exposed directly to a high-fat diet. Moreover, mitochondrial enzymatic activities showed less variation after the fasting period than the treatment without a fasting period. Overall, our study sheds light on the mechanistic protective effects of fasting prior to a high-fat diet and highlights the metabolic flexibility of Drosophila mitochondria in response to abrupt dietary changes and have implication for adaptation of species to their changing environment.
Collapse
Affiliation(s)
- Florence Hunter‐Manseau
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Simon B. Cormier
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Rebekah Strang
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Nicolas Pichaud
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| |
Collapse
|
12
|
Yang C, Dwan C, Wimmer BC, Wilson R, Johnson L, Caruso V. Fucoidan from Undaria pinnatifida Enhances Exercise Performance and Increases the Abundance of Beneficial Gut Bacteria in Mice. Mar Drugs 2024; 22:485. [PMID: 39590765 PMCID: PMC11595500 DOI: 10.3390/md22110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Fucoidans, known for their diverse biological properties such as anti-inflammatory, antiviral, antitumor, and immune stimulatory effects, have recently gained attention for their potential benefits in exercise endurance, muscle mass, and anti-fatigue. However, the mechanisms by which fucoidans enhance exercise performance are still unclear. To investigate these effects, we administered 400 mg/kg/day of fucoidan extract derived from Undaria pinnatifida to 64 C57BL/6J mice over 10 weeks. We evaluated changes in running activity, mitochondrial-related gene expression in skeletal muscle, and alterations in the intestinal microbiome. Our results showed that fucoidan supplementation significantly increased daily running distance and muscle mass by 25.5% and 10.4%, respectively, in mice on a standard chow diet, and with more modest effects observed in those on a high-fat diet (HFD). Additionally, fucoidan supplementation led to a significant increase in beneficial gut bacteria, including Bacteroides/Prevotella, Akkermansia muciniphila, and Lactobacillus, along with a notable reduction in the Firmicutes/Bacteroidetes ratio, indicating improved gut microbiome health. Mechanistically, fucoidan supplementation upregulated the mRNA expression of key genes related to mitochondrial biogenesis and oxidative capacity, such as COX4, MYH1, PGC-1α, PPAR-γ, and IGF1, in both standard chow and HFD-fed mice. Our findings suggest that fucoidan supplementation enhances exercise performance, improves muscle function, and positively modulates the gut microbiome in mice, regardless of diet. These effects may be attributed to fucoidans' potential prebiotic role, promoting the abundance of beneficial gut bacteria and contributing to enhanced exercise performance, increased muscle strength, and improved recovery.
Collapse
Affiliation(s)
- Cheng Yang
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Corinna Dwan
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, TAS 7170, Australia; (C.D.); (B.C.W.)
| | - Barbara C. Wimmer
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, TAS 7170, Australia; (C.D.); (B.C.W.)
| | - Richard Wilson
- Central Science Laboratory, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Luke Johnson
- School of Psychological Sciences, Psychology, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia;
| |
Collapse
|
13
|
Song Q, Kikumoto A, Sun S, Mochizuki S, Oda H. High fat intake aggravates hyperlipidemia and suppresses fatty liver symptoms induced by a high-sucrose diet in rats. Food Funct 2024; 15:10516-10526. [PMID: 39365248 DOI: 10.1039/d4fo00863d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Overconsumption of sucrose or fat is widely acknowledged as a prominent feature of unhealthy dietary patterns. Both factors commonly co-occur and are recognized as hallmarks of the Western diet, which is an important contributor to non-communicative diseases. In this study, we investigated the hazards of high sucrose or fat intake, either alone or in combination. Wistar rats were divided into four groups and fed a control starch diet, high-sucrose diet, high-fat diet, or high-sucrose/fat diet for 30 days. High fat intake increased body weight and visceral and subcutaneous adipose tissue weights. Both high-sucrose and -fat diets were associated with increased plasma triglyceride and glucose levels, and high sucrose also elevated plasma cholesterol levels. The combination of high sucrose and fat synergistically elevated plasma triglyceride levels. The high-sucrose diet increased liver weight and hepatic total lipid and triglyceride levels, whereas this increase was suppressed by the high-fat diet. The high sucrose increased the mRNA levels of hepatic genes involved in fatty acid synthesis and transport (ACLY, ACACA, FAS, ELOVL6, SCD1, SREBP1, and CD36), whereas the high fat suppressed the high sucrose-induced expression of these genes. We observed that high sucrose and fat contents differently exerted their effects on hyperlipidemia and fatty liver. Furthermore, high fat aggravated hyperlipidemia and suppressed fatty liver induced by high sucrose.
Collapse
Affiliation(s)
- Qi Song
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan.
| | - Akari Kikumoto
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan.
| | - Shumin Sun
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan.
| | | | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
14
|
Zhong C, Li N, Wang S, Li D, Yang Z, Du L, Huang G, Li H, Yeung WS, He S, Ma S, Wang Z, Jiang H, Zhang H, Li Z, Wen X, Xue S, Tao X, Li H, Xie D, Zhang Y, Chen Z, Wang J, Yan J, Liang Z, Zhang Z, Zhong Z, Wu Z, Wan C, Liang C, Wang L, Yu S, Ma Y, Yu Y, Li F, Chen Y, Zhang B, Lyu A, Ren F, Zhou H, Liu J, Zhang G. Targeting osteoblastic 11β-HSD1 to combat high-fat diet-induced bone loss and obesity. Nat Commun 2024; 15:8588. [PMID: 39362888 PMCID: PMC11449908 DOI: 10.1038/s41467-024-52965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
Excessive glucocorticoid (GC) action is linked to various metabolic disorders. Recent findings suggest that disrupting skeletal GC signaling prevents bone loss and alleviates metabolic disorders in high-fat diet (HFD)-fed obese mice, underpinning the neglected contribution of skeletal GC action to obesity and related bone loss. Here, we show that the elevated expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), the enzyme driving local GC activation, and GC signaling in osteoblasts, are associated with bone loss and obesity in HFD-fed male mice. Osteoblast-specific 11β-HSD1 knockout male mice exhibit resistance to HFD-induced bone loss and metabolic disorders. Mechanistically, elevated 11β-HSD1 restrains glucose uptake and osteogenic activity in osteoblast. Pharmacologically inhibiting osteoblastic 11β-HSD1 by using bone-targeted 11β-HSD1 inhibitor markedly promotes bone formation, ameliorates glucose handling and mitigated obesity in HFD-fed male mice. Taken together, our study demonstrates that osteoblastic 11β-HSD1 directly contributes to HFD-induced bone loss, glucose handling impairment and obesity.
Collapse
Affiliation(s)
- Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Nanxi Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dijie Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, College of Life Sciences, Guangxi Normal University, Gui Lin, China
| | - Zhihua Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Guangxin Huang
- Department of Joint Surgery, The Third Affiliated Hospital of Southern Medical University, The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haitian Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wing Sze Yeung
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shan He
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuting Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhuqian Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarui Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhanghao Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaoxin Wen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Song Xue
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaohui Tao
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Haorui Li
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Duoli Xie
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yihao Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zefeng Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Junqin Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianfeng Yan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhengming Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhigang Zhong
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zeting Wu
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chao Wan
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sifan Yu
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yang Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Baoting Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Hong Kong, China.
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, Australia.
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
15
|
Ponce-Balbuena D, Tyrrell DJ, Cruz-Cortés C, Guerrero-Serna G, Da Rocha AM, Herron TJ, Song J, Raza DS, Anumonwo J, Goldstein DR, Espinoza-Fonseca LM. Paradoxical SERCA dysregulation contributes to atrial fibrillation in a model of diet-induced obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606385. [PMID: 39149279 PMCID: PMC11326153 DOI: 10.1101/2024.08.02.606385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Obesity is a major risk factor for atrial fibrillation (AF) the most common serious cardiac arrhythmia, but the molecular mechanisms underlying diet-induced AF remain unclear. In this study, we subjected mice to a chronic high-fat diet and acute sympathetic activation ('two-hit' model) to study the mechanisms by which diet-induced obesity promotes AF. Surface electrocardiography revealed that diet-induced obesity and sympathetic activation synergize during intracardiac tachypacing to induce AF. At the cellular level, diet-induced obesity and acute adrenergic stimulation facilitate the formation of delayed afterdepolarizations in atrial myocytes, implicating altered Ca2+ dynamics as the underlying cause of AF. We found that diet-induced obesity does not alter the expression of major Ca2+-handling proteins in atria, including the sarcoplasmic reticulum Ca2+-ATPase (SERCA), a major component of beat-to-beat Ca2+ cycling in the heart. Paradoxically, obesity reduces phospholamban phosphorylation, suggesting decreased SERCA activity, yet atrial myocytes from obese mice showed a significantly increased Ca2+ transient amplitude and SERCA-mediated Ca2+ uptake. Adrenergic stimulation further increases the Ca2+ transient amplitude but does not affect Ca2+ reuptake in atrial myocytes from obese mice. Transcriptomics analysis showed that a high-fat diet prompts upregulation of neuronatin, a protein that has been implicated in obesity and is known to stimulate SERCA activity. We propose a mechanism in which obesity primes SERCA for paradoxical activation, and adrenergic stimulation facilitates AF conversion through a Ca2+-induced Ca2+ release gain in atrial myocytes. Overall, this study links obesity, altered Ca2+ signaling, and AF, and targeting this mechanism may prove effective for treating obesity-induced AF.
Collapse
Affiliation(s)
- Daniela Ponce-Balbuena
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| | - Daniel J. Tyrrell
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos Cruz-Cortés
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| | - Guadalupe Guerrero-Serna
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| | - Andre Monteiro Da Rocha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| | - Todd J. Herron
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| | - Jianrui Song
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danyal S. Raza
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| | - Justus Anumonwo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, MI 48109, USA
| | - L. Michel Espinoza-Fonseca
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| |
Collapse
|
16
|
Shetty S, Duesman SJ, Patel S, Huynh P, Toh P, Shroff S, Das A, Chowhan D, Keller B, Alvarez J, Fisher-Foye R, Sebra R, Beaumont K, McAlpine CS, Rajbhandari P, Rajbhandari AK. Sex-specific role of high-fat diet and stress on behavior, energy metabolism, and the ventromedial hypothalamus. Biol Sex Differ 2024; 15:55. [PMID: 39010139 PMCID: PMC11247790 DOI: 10.1186/s13293-024-00628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Scientific evidence highlights the influence of biological sex on the relationship between stress and metabolic dysfunctions. However, there is limited understanding of how diet and stress concurrently contribute to metabolic dysregulation in both males and females. Our study aimed to investigate the combined effects of high-fat diet (HFD) induced obesity and repeated stress on fear-related behaviors, metabolic, immune, and hypothalamic outcomes in male and female mice. METHODS To investigate this, we used a highly reliable rodent behavioral model that faithfully recapitulates key aspects of post-traumatic stress disorder (PTSD)-like fear. We subjected mice to footshock stressor followed by a weekly singular footshock stressor or no stressor for 14 weeks while on either an HFD or chow diet. At weeks 10 and 14 we conducted glucose tolerance and insulin sensitivity measurements. Additionally, we placed the mice in metabolic chambers to perform indirect calorimetric measurements. Finally, we collected brain and peripheral tissues for cellular analysis. RESULTS We observed that HFD-induced obesity disrupted fear memory extinction, increased glucose intolerance, and affected energy expenditure specifically in male mice. Conversely, female mice on HFD exhibited reduced respiratory exchange ratio (RER), and a significant defect in glucose tolerance only when subjected to repeated stress. Furthermore, the combination of repeated stress and HFD led to sex-specific alterations in proinflammatory markers and hematopoietic stem cells across various peripheral metabolic tissues. Single-nuclei RNA sequencing (snRNAseq) analysis of the ventromedial hypothalamus (VMH) revealed microglial activation in female mice on HFD, while male mice on HFD exhibited astrocytic activation under repeated stress. CONCLUSIONS Overall, our findings provide insights into complex interplay between repeated stress, high-fat diet regimen, and their cumulative effects on health, including their potential contribution to the development of PTSD-like stress and metabolic dysfunctions, emphasizing the need for further research to fully understand these interconnected pathways and their implications for health.
Collapse
Affiliation(s)
- Sanutha Shetty
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Samuel J Duesman
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sanil Patel
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pacific Huynh
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pamela Toh
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sanjana Shroff
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anika Das
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Excellence in Youth Education, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Disha Chowhan
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Keller
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Johana Alvarez
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel Fisher-Foye
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin Beaumont
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abha K Rajbhandari
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
17
|
Nemati M, Rostamkhani F, Karbaschi R, Zardooz H. Metabolic Responses to High-Fat Feeding and Chronic Psychological Stress Combination. Endocrinol Diabetes Metab 2024; 7:e487. [PMID: 38867382 PMCID: PMC11168916 DOI: 10.1002/edm2.487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 06/14/2024] Open
Abstract
INTRODUCTION High-fat diet (HFD) consumption and being exposed to daily psychological stress, common environmental factors in modern lifestyle, play an important role on metabolic disorders such as glucose homeostasis impairment. The aim of this study was to investigate the effects of high-fat diet (HFD) and psychological stress combination on metabolic response to chronic psychological stress in male rats. METHOD Male Wistar rats were divided into HFD, and normal diet (ND) groups and then into stress and nonstress subgroups. The diets were applied for 5 weeks, and psychological stress was induced for 7 consecutive days. Then, blood samples were taken to measure glucose, insulin, free fatty acids (FFA), and leptin and corticosterone concentrations. Subsequently, glucose-stimulated insulin release from pancreatic isolated islets was assessed. RESULTS HFD did not significantly change fasting plasma glucose, insulin and corticosterone levels, whereas increased plasma leptin (7.05 ± 0.33) and FFA (p < 0.01) levels and impaired glucose tolerance. Additionally, HFD and stress combination induced more profound glucose intolerance associated with increased plasma corticosterone (p < 0.01) and leptin (8.63 ± 0.38) levels. However, insulin secretion from isolated islets did not change in the presence of high-fat diet and/or stress. CONCLUSION HFD should be considered as an intensified factor of metabolic impairments caused by chronic psychological stress.
Collapse
Affiliation(s)
- Marzieh Nemati
- Department of Physiology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Endocrinology and Metabolism Research CenterShiraz University of Medical ScienceShirazIran
| | - Fatemeh Rostamkhani
- Department of Biology, College of Basic Sciences, Yadegar‐e‐Imam Khomeini (RAH) BranchIslamic Azad UniversityTehranIran
| | - Roxana Karbaschi
- Faculty of Nursing and MidwiferyShahid Beheshti University of Medical SciencesTehranIran
| | - Homeira Zardooz
- Department of Physiology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Neurophysiology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
18
|
Zeng X, Sun J, Li F, Peng L, Zhang C, Jiang X, Zha L, Rathinasabapathy A, Ren J, Yu Z, Wang L, Liu X. Beclin 1 Haploinsufficiency Ameliorates High-Fat Diet-Induced Myocardial Injury via Inhibiting Alternative Mitophagy. Antioxid Redox Signal 2024; 40:906-925. [PMID: 38251672 PMCID: PMC11554424 DOI: 10.1089/ars.2023.0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024]
Affiliation(s)
- Xiaofang Zeng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Sun
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Famei Li
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Liming Peng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Chenglong Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Jiang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lihuang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Anandharajan Rathinasabapathy
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xiangwei Liu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Mok K, Poolsawat T, Somnuk S, Wanikorn B, Patumcharoenpol P, Nitisinprasert S, Vongsangnak W, Nakphaichit M. Preliminary characterization of gut mycobiome enterotypes reveals the correlation trends between host metabolic parameter and diet: a case study in the Thai Cohort. Sci Rep 2024; 14:5805. [PMID: 38461361 PMCID: PMC10924899 DOI: 10.1038/s41598-024-56585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/08/2024] [Indexed: 03/11/2024] Open
Abstract
The association between the gut mycobiome and its potential influence on host metabolism in the Thai Cohort was assessed. Two distinct predominant enterotypes, Saccharomyces (Sa) and Aspergillus/Penicillium (Ap/Pe) showed differences in gut mycobiota diversity and composition. Notably, the Sa enterotype exhibited lower evenness and richness, likely due to the prevalence of Saccharomyces, while both enterotypes displayed unique metabolic behaviors related to nutrient metabolism and body composition. Fiber consumption was positively correlated with adverse body composition and fasting glucose levels in individuals with the Sa enterotype, whereas in the Ap/Pe enterotype it was positively correlated with fat and protein intake. The metabolic functional analysis revealed the Sa enterotype associated with carbohydrate metabolism, while the Ap/Pe enterotype involved in lipid metabolism. Very interestingly, the genes involved in the pentose and glucuronate interconversion pathway, such as polygalacturonase and L-arabinose-isomerase, were enriched in the Sa enterotype signifying a metabolic capacity for complex carbohydrate degradation and utilization of less common sugars as energy sources. These findings highlight the interplay between gut mycobiome composition, dietary habits, and metabolic outcomes within the Thai cohort studies.
Collapse
Affiliation(s)
- Kevin Mok
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Thitirat Poolsawat
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
- Specialized Research Unit: Functional Food and Human Health Laboratory, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Surasawadee Somnuk
- Department of Sports and Health Sciences, Faculty of Sport Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Bandhita Wanikorn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
- Specialized Research Unit: Functional Food and Human Health Laboratory, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Preecha Patumcharoenpol
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand.
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
20
|
Mthembu SXH, Mazibuko-Mbeje SE, Ziqubu K, Muvhulawa N, Marcheggiani F, Cirilli I, Nkambule BB, Muller CJF, Basson AK, Tiano L, Dludla PV. Potential regulatory role of PGC-1α within the skeletal muscle during metabolic adaptations in response to high-fat diet feeding in animal models. Pflugers Arch 2024; 476:283-293. [PMID: 38044359 PMCID: PMC10847180 DOI: 10.1007/s00424-023-02890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
High-fat diet (HFD) feeding in rodents has become an essential tool to critically analyze and study the pathological effects of obesity, including mitochondrial dysfunction and insulin resistance. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) regulates cellular energy metabolism to influence insulin sensitivity, beyond its active role in stimulating mitochondrial biogenesis to facilitate skeletal muscle adaptations in response to HFD feeding. Here, some of the major electronic databases like PubMed, Embase, and Web of Science were accessed to update and critically discuss information on the potential role of PGC-1α during metabolic adaptations within the skeletal muscle in response to HFD feeding in rodents. In fact, available evidence suggests that partial exposure to HFD feeding (potentially during the early stages of disease development) is associated with impaired metabolic adaptations within the skeletal muscle, including mitochondrial dysfunction and reduced insulin sensitivity. In terms of implicated molecular mechanisms, these negative effects are partially associated with reduced activity of PGC-1α, together with the phosphorylation of protein kinase B and altered expression of genes involving nuclear respiratory factor 1 and mitochondrial transcription factor A within the skeletal muscle. Notably, metabolic abnormalities observed with chronic exposure to HFD (likely during the late stages of disease development) may potentially occur independently of PGC-1α regulation within the muscle of rodents. Summarized evidence suggests the causal relationship between PGC-1α regulation and effective modulations of mitochondrial biogenesis and metabolic flexibility during the different stages of disease development. It further indicates that prominent interventions like caloric restriction and physical exercise may affect PGC-1α regulation during effective modulation of metabolic processes.
Collapse
Affiliation(s)
- Sinenhlanhla X H Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Sithandiwe E Mazibuko-Mbeje
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Ndivhuwo Muvhulawa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Ilenia Cirilli
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
- Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa.
- Cochrane South Africa, South African Medical Research Council, Tygerberg, 7505, South Africa.
| |
Collapse
|
21
|
Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, Ghavami S. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol 2024; 99:24-44. [PMID: 38309540 DOI: 10.1016/j.semcancer.2024.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
22
|
Tincknell JB, Kugler BA, Spicuzza H, Berger N, Yan H, You T, Zou K. High-intensity interval training attenuates impairment in regulatory protein machinery of mitochondrial quality control in skeletal muscle of diet-induced obese mice. Appl Physiol Nutr Metab 2024; 49:236-249. [PMID: 37852013 DOI: 10.1139/apnm-2023-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Mitochondrial quality control processes are essential in governing mitochondrial integrity and function. The purpose of the study was to examine the effects of 10 weeks of high-intensity interval training (HIIT) on the regulatory protein machinery of skeletal muscle mitochondrial quality control and whole-body glucose homeostasis in diet-induced obese mice. Male C57BL/6 mice were assigned to low-fat diet (LFD) or high-fat diet (HFD) group. After 10 weeks, HFD-fed mice were divided into sedentary and HIIT (HFD + HIIT) groups for another 10 weeks (n = 9/group). Graded exercise test, glucose and insulin tolerance tests, mitochondrial respiration, and protein markers of mitochondrial quality control processes were determined. HFD-fed mice exhibited lower ADP-stimulated mitochondrial respiration (p < 0.05). However, 10 weeks of HIIT prevented this impairment (p < 0.05). Importantly, the ratio of Drp1(Ser616) over Drp1(Ser637) phosphorylation, an indicator of mitochondrial fission, was significantly higher in HFD-fed mice (p < 0.05), but such increase was attenuated in HFD-HIIT compared to HFD (-35.7%, p < 0.05). Regarding autophagy, skeletal muscle p62 content was lower in the HFD group than the LFD group (-35.1%, p < 0.05); however, such reduction was disappeared in the HFD + HIIT group. In addition, LC3B II/I ratio was higher in the HFD group than the LFD group (15.5%, p < 0.05) but was ameliorated in the HFD + HIIT group (-29.9%, p < 0.05). Overall, our study demonstrated that 10 weeks of HIIT was effective in improving skeletal muscle mitochondrial respiration and the regulatory protein machinery of mitochondrial quality control in diet-induced obese mice through the alterations of mitochondrial fission protein Drp1 phosphorylations and p62/LC3B-mediated regulatory machinery of autophagy.
Collapse
Affiliation(s)
- James B Tincknell
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Benjamin A Kugler
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Haley Spicuzza
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Nicolas Berger
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Huimin Yan
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Tongjian You
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kai Zou
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
23
|
Nakanishi R, Tanaka M, Nisa BU, Shimizu S, Hirabayashi T, Tanaka M, Maeshige N, Roy RR, Fujino H. Alternating current electromagnetic field exposure lessens intramyocellular lipid accumulation due to high-fat feeding via enhanced lipid metabolism in mice. PLoS One 2023; 18:e0289086. [PMID: 38011220 PMCID: PMC10681264 DOI: 10.1371/journal.pone.0289086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/11/2023] [Indexed: 11/29/2023] Open
Abstract
Long-term high-fat feeding results in intramyocellular lipid accumulation, leading to insulin resistance. Intramyocellular lipid accumulation is related to an energy imbalance between excess fat intake and fatty acid consumption. Alternating current electromagnetic field exposure has been shown to enhance mitochondrial metabolism in the liver and sperm. Therefore, we hypothesized that alternating current electromagnetic field exposure would ameliorate high-fat diet-induced intramyocellular lipid accumulation via activation of fatty acid consumption. C57BL/6J mice were either fed a normal diet (ND), a normal diet and exposed to an alternating current electromagnetic field (ND+EMF), a high-fat diet (HFD), or a high-fat diet and exposed to an alternating current electromagnetic field (HFD+EMF). Electromagnetic field exposure was administered 8 hrs/day for 16 weeks using an alternating current electromagnetic field device (max.180 mT, Hokoen, Utatsu, Japan). Tibialis anterior muscles were collected for measurement of intramyocellular lipids, AMPK phosphorylation, FAT/CD-36, and carnitine palmitoyltransferase (CPT)-1b protein expression levels. Intramyocellular lipid levels were lower in the HFD + EMF than in the HFD group. The levels of AMPK phosphorylation, FAT/CD-36, and CPT-1b protein levels were higher in the HFD + EMF than in the HFD group. These results indicate that alternating current electromagnetic field exposure decreases intramyocellular lipid accumulation via increased fat consumption.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Physical Therapy, Kobe International University, Kobe, Japan
| | - Masayuki Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Physical Therapy, Okayama Healthcare Professional University, Okayama, Japan
| | - Badur un Nisa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Sayaka Shimizu
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Minoru Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Roland R. Roy
- Brain Research Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
24
|
Shetty S, Duesman SJ, Patel S, Huyhn P, Shroff S, Das A, Chowhan D, Sebra R, Beaumont K, McAlpine CS, Rajbhandari P, Rajbhandari AK. Sexually dimorphic role of diet and stress on behavior, energy metabolism, and the ventromedial hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567534. [PMID: 38014350 PMCID: PMC10680837 DOI: 10.1101/2023.11.17.567534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Scientific evidence underscores the influence of biological sex on the interplay between stress and metabolic dysfunctions. However, there is limited understanding of how diet and stress jointly contribute to metabolic dysregulation in both males and females. To address this gap, our study aimed to investigate the combined effects of a high-fat diet (HFD) and repeated footshock stress on fear-related behaviors and metabolic outcomes in male and female mice. Using a robust rodent model that recapitulates key aspects of post-traumatic stress disorder (PTSD), we subjected mice to footshock stressor followed by weekly reminder footshock stressor or no stressor for 14 weeks while on either an HFD or chow diet. Our findings revealed that HFD impaired fear memory extinction in male mice that received initial stressor but not in female mice. Blood glucose levels were influenced by both diet and sex, with HFD-fed female mice displaying elevated levels that returned to baseline in the absence of stress, a pattern not observed in male mice. Male mice on HFD exhibited higher energy expenditure, while HFD-fed female mice showed a decreased respiratory exchange ratio (RER). Sex-specific alterations in pro-inflammatory markers and abundance of hematopoietic stem cells were observed in chronically stressed mice on an HFD in different peripheral tissues, indicating the manifestation of distinct comorbid disorders. Single-nuclei RNA sequencing of the ventromedial hypothalamus from stressed mice on an HFD provided insights into sex-specific glial cell activation and cell-type-specific transcriptomic changes. In conclusion, our study offers a comprehensive understanding of the intricate interactions between stress, diet, sex, and various physiological and behavioral outcomes, shedding light on a potential brain region coordinating these interactions.
Collapse
Affiliation(s)
- Sanutha Shetty
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Samuel J. Duesman
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Sanil Patel
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Pacific Huyhn
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Sanjana Shroff
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anika Das
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
- Center for Excellence in Youth Education, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Disha Chowhan
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin Beaumont
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S. McAlpine
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Prashant Rajbhandari
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, New York 10029
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Senior authors
| | - Abha K. Rajbhandari
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
- Senior authors
| |
Collapse
|
25
|
Lv W, Song J, Nowshin Raka R, Sun J, Shi G, Wu H, Xiao J, Xu D. Effects of food emulsifiers on high fat-diet-induced obesity, intestinal inflammation, changes in bile acid profile, and liver dysfunction. Food Res Int 2023; 173:113302. [PMID: 37803614 DOI: 10.1016/j.foodres.2023.113302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Obesity has become one of the most prevalent health concerns of our time. A long-term high-fat diet is closely related to obesity. Food emulsifiers are incorporated into high-fat foods to enhance the texture and stability. Whether food emulsifiers exacerbate obesity and metabolic disorders induced by a high-fat diet remains unclear. This study aimed to investigate the effects of polysorbate-80 (P80) and polyglycerol polyricinoleate (PGPR) on lipid metabolism, bile acid profile, and gut microbiota in normal and high-fat-diet-induced obesity in mice. The results of this study showed that P80 and PGPR had little effect on body weight but significantly increased epididymal-fat weight, total energy intake, and blood lipid levels. P80 and PGPR stimulated colon inflammation and improved the expression of inflammatory factors in the colon and liver significantly. P80 and PGPR changed the bile acid profile. However, P80 and PGPR did not aggravate inflammation, obesity and alter bile acid profile by altering the composition of the gut microbiota. The results of this study provide an experimental reference for the rational use of food additives and the adjustment of dietary structure, which are important and have application value.
Collapse
Affiliation(s)
- Wenwen Lv
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Jingyi Song
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Rifat Nowshin Raka
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Jinlong Sun
- Department of Stomatology, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Guizhi Shi
- Laboratory Animal Center of the Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Wu
- Beijing Technology and Business University, Beijing 100048, China
| | - Junsong Xiao
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China.
| | - Duoxia Xu
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| |
Collapse
|
26
|
Jhuo JY, Tong ZJ, Ku PH, Cheng HW, Wang HT. Acrolein induces mitochondrial dysfunction and insulin resistance in muscle and adipose tissues in vitro and in vivo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122380. [PMID: 37625774 DOI: 10.1016/j.envpol.2023.122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023]
Abstract
Type 2 diabetes mellitus (DM) is a common chronic condition characterized by persistent hyperglycemia and is associated with insulin resistance (IR) in critical glucose-consuming tissues, including skeletal muscle and adipose tissue. Oxidative stress and mitochondrial dysfunction are known to play key roles in IR. Acrolein is a reactive aldehyde found in the diet and environment that is generated as a fatty acid product through the glucose autooxidation process under hyperglycemic conditions. Our previous studies have shown that acrolein impairs insulin sensitivity in normal and diabetic mice, and this effect can be reversed by scavenging acrolein. This study demonstrated that acrolein increased oxidative stress and inhibited mitochondrial respiration in differentiated C2C12 myotubes and differentiated 3T3-L1 adipocytes. As a result, insulin signaling pathways were inhibited, leading to reduced glucose uptake. Treatment with acrolein scavengers, N-acetylcysteine, or carnosine ameliorated mitochondrial dysfunction and inhibited insulin signaling. Additionally, an increase in acrolein expression correlated with mitochondrial dysfunction in the muscle and adipose tissues of diabetic mice. These findings suggest that acrolein-induced mitochondrial dysfunction contributes to IR, and scavenging acrolein is a potential therapeutic approach for treating IR.
Collapse
Affiliation(s)
- Jia-Yu Jhuo
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Zhen-Jie Tong
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Pei-Hsuan Ku
- Department of Life Sciences and the Institute of Genome Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Hsiao-Wei Cheng
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Hsiang-Tsui Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC; Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC; Doctor Degree Program in Toxicology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
27
|
Batterson PM, McGowan EM, Borowik AK, Kinter MT, Miller BF, Newsom SA, Robinson MM. High-fat diet increases electron transfer flavoprotein synthesis and lipid respiration in skeletal muscle during exercise training in female mice. Physiol Rep 2023; 11:e15840. [PMID: 37857571 PMCID: PMC10587055 DOI: 10.14814/phy2.15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
High-fat diet (HFD) and exercise remodel skeletal muscle mitochondria. The electron transfer flavoproteins (ETF) transfer reducing equivalents from β-oxidation into the electron transfer system. Exercise may stimulate the synthesis of ETF proteins to increase lipid respiration. We determined mitochondrial remodeling for lipid respiration through ETF in the context of higher mitochondrial abundance/capacity seen in female mice. We hypothesized HFD would be a greater stimulus than exercise to remodel ETF and lipid pathways through increased protein synthesis alongside increased lipid respiration. Female C57BL/6J mice (n = 15 per group) consumed HFD or low-fat diet (LFD) for 4 weeks then remained sedentary (SED) or completed 8 weeks of treadmill training (EX). We determined mitochondrial lipid respiration, RNA abundance, individual protein synthesis, and abundance for ETFα, ETFβ, and ETF dehydrogenase (ETFDH). HFD increased absolute and relative lipid respiration (p = 0.018 and p = 0.034) and RNA abundance for ETFα (p = 0.026), ETFβ (p = 0.003), and ETFDH (p = 0.0003). HFD increased synthesis for ETFα and ETFDH (p = 0.0007 and p = 0.002). EX increased synthesis of ETFβ and ETFDH (p = 0.008 and p = 0.006). Higher synthesis rates of ETF were not always reflected in greater protein abundance. Greater synthesis of ETF during HFD indicates mitochondrial remodeling which may contribute higher mitochondrial lipid respiration through enhanced ETF function.
Collapse
Affiliation(s)
- Philip M. Batterson
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| | - Erin M. McGowan
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| | - Agnieszka K. Borowik
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Michael T. Kinter
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Benjamin F. Miller
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma City VAOklahoma CityOklahomaUSA
| | - Sean A. Newsom
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| | - Matthew M. Robinson
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
28
|
Shively CA, Frye BM, Negrey JD, Johnson CSC, Sutphen CL, Molina AJA, Yadav H, Snyder-Mackler N, Register TC. The interactive effects of psychosocial stress and diet composition on health in primates. Neurosci Biobehav Rev 2023; 152:105320. [PMID: 37453725 PMCID: PMC10424262 DOI: 10.1016/j.neubiorev.2023.105320] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Social disadvantage and diet composition independently impact myriad dimensions of health. They are closely entwined, as social disadvantage often yields poor diet quality, and may interact to fuel differential health outcomes. This paper reviews effects of psychosocial stress and diet composition on health in nonhuman primates and their implications for aging and human health. We examined the effects of social subordination stress and Mediterranean versus Western diet on multiple systems. We report that psychosocial stress and Western diet have independent and additive adverse effects on hypothalamic-pituitary-adrenal and autonomic nervous system reactivity to psychological stressors, brain structure, and ovarian function. Compared to the Mediterranean diet, the Western diet resulted in accelerated aging, nonalcoholic fatty liver disease, insulin resistance, gut microbial changes associated with increased disease risk, neuroinflammation, neuroanatomical perturbations, anxiety, and social isolation. This comprehensive, multisystem investigation lays the foundation for future investigations of the mechanistic underpinnings of psychosocial stress and diet effects on health, and advances the promise of the Mediterranean diet as a therapeutic intervention on psychosocial stress.
Collapse
Affiliation(s)
- Carol A Shively
- Department of Pathology, Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Brett M Frye
- Department of Pathology, Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Biology, Emory and Henry College, Emory, VA, USA
| | - Jacob D Negrey
- Department of Pathology, Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Courtney L Sutphen
- Department of Pathology, Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Hariom Yadav
- Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA; School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Thomas C Register
- Department of Pathology, Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
29
|
West S, Monteyne AJ, van der Heijden I, Stephens FB, Wall BT. Nutritional Considerations for the Vegan Athlete. Adv Nutr 2023; 14:774-795. [PMID: 37127187 PMCID: PMC10334161 DOI: 10.1016/j.advnut.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023] Open
Abstract
Accepting a continued rise in the prevalence of vegan-type diets in the general population is also likely to occur in athletic populations, it is of importance to assess the potential impact on athletic performance, adaptation, and recovery. Nutritional consideration for the athlete requires optimization of energy, macronutrient, and micronutrient intakes, and potentially the judicious selection of dietary supplements, all specified to meet the individual athlete's training and performance goals. The purpose of this review is to assess whether adopting a vegan diet is likely to impinge on such optimal nutrition and, where so, consider evidence based yet practical and pragmatic nutritional recommendations. Current evidence does not support that a vegan-type diet will enhance performance, adaptation, or recovery in athletes, but equally suggests that an athlete can follow a (more) vegan diet without detriment. A clear caveat, however, is that vegan diets consumed spontaneously may induce suboptimal intakes of key nutrients, most notably quantity and/or quality of dietary protein and specific micronutrients (eg, iron, calcium, vitamin B12, and vitamin D). As such, optimal vegan sports nutrition requires (more) careful consideration, evaluation, and planning. Individual/seasonal goals, training modalities, athlete type, and sensory/cultural/ethical preferences, among other factors, should all be considered when planning and adopting a vegan diet.
Collapse
Affiliation(s)
- Sam West
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Ino van der Heijden
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
30
|
Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Tornero-Aguilera JF. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023; 15:2749. [PMID: 37375654 PMCID: PMC10302286 DOI: 10.3390/nu15122749] [Citation(s) in RCA: 200] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The Western diet is a modern dietary pattern characterized by high intakes of pre-packaged foods, refined grains, red meat, processed meat, high-sugar drinks, candy, sweets, fried foods, conventionally raised animal products, high-fat dairy products, and high-fructose products. The present review aims to describe the effect of the Western pattern diet on the metabolism, inflammation, and antioxidant status; the impact on gut microbiota and mitochondrial fitness; the effect of on cardiovascular health, mental health, and cancer; and the sanitary cost of the Western diet. To achieve this goal, a consensus critical review was conducted using primary sources, such as scientific articles, and secondary sources, including bibliographic indexes, databases, and web pages. Scopus, Embase, Science Direct, Sports Discuss, ResearchGate, and the Web of Science were used to complete the assignment. MeSH-compliant keywords such "Western diet", "inflammation", "metabolic health", "metabolic fitness", "heart disease", "cancer", "oxidative stress", "mental health", and "metabolism" were used. The following exclusion criteria were applied: (i) studies with inappropriate or irrelevant topics, not germane to the review's primary focus; (ii) Ph.D. dissertations, proceedings of conferences, and unpublished studies. This information will allow for a better comprehension of this nutritional behavior and its effect on an individual's metabolism and health, as well as the impact on national sanitary systems. Finally, practical applications derived from this information are made.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
31
|
Rivera CN, Hinkle JS, Watne RM, Macgowan TC, Wommack AJ, Vaughan RA. PPAR β/ δ Agonism with GW501516 Increases Myotube PGC-1 α Content and Reduces BCAA Media Content Independent of Changes in BCAA Catabolic Enzyme Expression. PPAR Res 2023; 2023:4779199. [PMID: 37325367 PMCID: PMC10264138 DOI: 10.1155/2023/4779199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Background Type 2 diabetes is characterized by reduced insulin sensitivity, elevated blood metabolites, and reduced mitochondrial metabolism with reduced expression of genes governing metabolism such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). PGC-1α regulates the expression of branched-chain amino acid (BCAA) metabolism, and thus, increased circulating BCAA in diabetics may be partially explained by reduced PGC-1α expression. PGC-1α functions in-part through interactions with peroxisome proliferator-activated receptor β/δ (PPARβ/δ). The present report examined the effects of the PPARβ/δ agonism on cell metabolism and related gene/protein expression of cultured myotubes, with a primary emphasis on determining the effects of GW on BCAA disposal and catabolic enzyme expression. Methods C2C12 myotubes were treated with GW501516 (GW) for up to 24 hours. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Metabolic gene and protein expression were assessed via quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. Media BCAA content was assessed via liquid chromatography-mass spectrometry (LC/MS). Results GW significantly increased PGC-1α protein expression, mitochondrial content, and mitochondrial function. GW also significantly reduced BCAA content within culture media following 24-hour treatment; however, expression of BCAA catabolic enzymes/transporter was unchanged. Conclusion These data confirm the ability of GW to increase muscle PGC-1α content and decrease BCAA media content without affecting BCAA catabolic enzymes/transporter. These findings suggest heightened BCAA uptake (and possibly metabolism) may occur without substantial changes in the protein levels of related cell machinery.
Collapse
Affiliation(s)
- Caroline N. Rivera
- Department of Exercise Science, High Point University, High Point, NC, USA
| | - Jason S. Hinkle
- Department of Exercise Science, High Point University, High Point, NC, USA
| | - Rachel M. Watne
- Department of Chemistry, High Point University, High Point, NC, USA
| | | | | | - Roger A. Vaughan
- Department of Exercise Science, High Point University, High Point, NC, USA
| |
Collapse
|
32
|
Luo H, Ying N, Zhao Q, Chen J, Xu H, Jiang W, Wu Y, Wu Y, Gao H, Zheng H. A novel polysaccharide from Rubus chingii Hu unripe fruits: Extraction optimization, structural characterization and amelioration of colonic inflammation and oxidative stress. Food Chem 2023; 421:136152. [PMID: 37094397 DOI: 10.1016/j.foodchem.2023.136152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/19/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Raspberry is used as a medicine food homology species and its polysaccharides are worthy being investigated and developed. In the present study, a novel polysaccharide of unripe raspberry fruits (pRCP) was extracted and characterized. The results show that pRCP was an acidic heteropolysaccharide and its Mw value was 74.86 kDa with a high homogeneity. The main chain of pRCP consisted of → 3,6)-β-Galp(1 → and → 5)-α-Araf(1→, and its side chain was composed of α-Araf(1 → linked to the C3 position of → 3,6)-β-Galp(1 →. In addition, pRCP supplementation increased the gut microbial diversity and reduced harmful bacteria including Erysipelatoclostridium and Negativibacillus in high-fat diet (HFD)-fed mice. Treatment with pRCP also alleviated HFD-induced colonic inflammation and oxidative stress in mice. These beneficial effects can be transferred to recipient mice by faecal microbiota transplantation from pRCP-treated mice. Therefore, our study suggests that pRCP could be used as a potential prebiotics to improve intestinal health by modulating the gut microbiota.
Collapse
Affiliation(s)
- Hanqi Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Na Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qihui Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Junli Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hangying Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wu Jiang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Yaozong Wu
- Jiangsu Sanshu Biotechnology Co., Ltd., Nantong 226006, China
| | - Yinliang Wu
- Jiangsu Sanshu Biotechnology Co., Ltd., Nantong 226006, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
33
|
Den Hartogh DJ, Vlavcheski F, Tsiani E. Muscle Cell Insulin Resistance Is Attenuated by Rosmarinic Acid: Elucidating the Mechanisms Involved. Int J Mol Sci 2023; 24:ijms24065094. [PMID: 36982168 PMCID: PMC10049470 DOI: 10.3390/ijms24065094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 03/30/2023] Open
Abstract
Obesity and elevated blood free fatty acid (FFA) levels lead to impaired insulin action causing insulin resistance in skeletal muscle, and contributing to the development of type 2 diabetes mellitus (T2DM). Mechanistically, insulin resistance is associated with increased serine phosphorylation of the insulin receptor substrate (IRS) mediated by serine/threonine kinases including mTOR and p70S6K. Evidence demonstrated that activation of the energy sensor AMP-activated protein kinase (AMPK) may be an attractive target to counteract insulin resistance. We reported previously that rosemary extract (RE) and the RE polyphenol carnosic acid (CA) activated AMPK and counteracted the FFA-induced insulin resistance in muscle cells. The effect of rosmarinic acid (RA), another polyphenolic constituent of RE, on FFA-induced muscle insulin resistance has never been examined and is the focus of the current study. Muscle cell (L6) exposure to FFA palmitate resulted in increased serine phosphorylation of IRS-1 and reduced insulin-mediated (i) Akt activation, (ii) GLUT4 glucose transporter translocation, and (iii) glucose uptake. Notably, RA treatment abolished these effects, and restored the insulin-stimulated glucose uptake. Palmitate treatment increased the phosphorylation/activation of mTOR and p70S6K, kinases known to be involved in insulin resistance and RA significantly reduced these effects. RA increased the phosphorylation of AMPK, even in the presence of palmitate. Our data indicate that RA has the potential to counteract the palmitate-induced insulin resistance in muscle cells, and further studies are required to explore its antidiabetic properties.
Collapse
Affiliation(s)
- Danja J Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Filip Vlavcheski
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
34
|
Kirwan JP, Heintz EC, Rebello CJ, Axelrod CL. Exercise in the Prevention and Treatment of Type 2 Diabetes. Compr Physiol 2023; 13:4559-4585. [PMID: 36815623 DOI: 10.1002/cphy.c220009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Type 2 diabetes is a systemic, multifactorial disease that is a leading cause of morbidity and mortality globally. Despite a rise in the number of available medications and treatments available for management, exercise remains a first-line prevention and intervention strategy due to established safety, efficacy, and tolerability in the general population. Herein we review the predisposing risk factors for, prevention, pathophysiology, and treatment of type 2 diabetes. We emphasize key cellular and molecular adaptive processes that provide insight into our evolving understanding of how, when, and what types of exercise may improve glycemic control. © 2023 American Physiological Society. Compr Physiol 13:1-27, 2023.
Collapse
Affiliation(s)
- John P Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth C Heintz
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Candida J Rebello
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Christopher L Axelrod
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
35
|
Reynaud O, Wang J, Ayoub MB, Leduc-Gaudet JP, Mayaki D, Dulac M, Hussain SNA, Bergeron R, Gouspillou G. The impact of high-fat feeding and parkin overexpression on skeletal muscle mass, mitochondrial respiration, and H 2O 2 emission. Am J Physiol Cell Physiol 2023; 324:C366-C376. [PMID: 36571445 DOI: 10.1152/ajpcell.00388.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obesity is a major risk factor for developing various health problems, including insulin resistance and type 2 diabetes. Although controversial, accumulation of mitochondrial dysfunction, and notably an increase in mitochondrial reactive oxygen species (ROS) production, was proposed as a key contributor leading to obesity-induced insulin resistance. Here, our goal was to investigate whether Parkin overexpression, a key regulator of the removal of dysfunctional mitochondria through mitophagy, could confer protection against obesity-induced mitochondrial dysfunction. To this end, intramuscular injections of adeno-associated viruses (AAVs) were performed to overexpress Parkin in limb muscle of 6-mo-old mice fed a control diet (CD) or a high-fat diet (HFD) for 12 wk. An AAV-expressing the green fluorescent protein (GFP) was used as control. HFD increased fat mass, altered glycemia, and resulted in insulin resistance. Parkin overexpression resulted in an increase in muscle mass in both CD and HFD mice. In CD mice, Parkin overexpression increased maximal mitochondrial respiration and lowered H2O2 emission. HFD increased mitochondrial respiration and, surprisingly, also lowered H2O2 emission. Parkin overexpression did not significantly impact mitochondrial function in HFD mice. Taken altogether, our results indicate that Parkin overexpression positively impacts muscle and mitochondrial health under basal conditions and challenges the notion that intrinsic mitochondrial dysfunction is involved in the development of insulin resistance caused by high-fat feeding.
Collapse
Affiliation(s)
- Olivier Reynaud
- Département des sciences biologiques, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada.,Département des sciences de l'activité physique, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Jennifer Wang
- Département de médecine, Faculté de médecine, Université de Laval, Quebec City, Québec, Canada
| | - Marie-Belle Ayoub
- Département des sciences de l'activité physique, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Jean-Philippe Leduc-Gaudet
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Department of Critical Care, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada.,Venetian Institute of Molecular Medicine (VIMM) and Department of Biomedical Science, University of Padova, Padova, Italy
| | - Dominique Mayaki
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Department of Critical Care, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Maude Dulac
- Département des sciences biologiques, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada.,Département des sciences de l'activité physique, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Sabah N A Hussain
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Department of Critical Care, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Raynald Bergeron
- École de kinésiologie et des sciences de l'activité physique, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Gilles Gouspillou
- Département des sciences de l'activité physique, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| |
Collapse
|
36
|
Binayi F, Moslemi M, Khodagholi F, Hedayati M, Zardooz H. Long-term high-fat diet disrupts lipid metabolism and causes inflammation in adult male rats: possible intervention of endoplasmic reticulum stress. Arch Physiol Biochem 2023; 129:204-212. [PMID: 32907408 DOI: 10.1080/13813455.2020.1808997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study investigated the effect of long-term high-fat diet (HFD) on plasma lipid profile and probability of inflammation in adult rats. After weaning, male offspring were divided into six groups based on diet type and medication. After 20 weeks of dietary intake, 4-PBA (endoplasmic reticulum (ER) stress inhibitor) was injected for three days. Then, blood samples were taken to measure plasma concentrations of low-density lipoprotein (LDL), triglyceride (TG), high-density lipoprotein (HDL), cholesterol, leptin and interleukin 1-β (IL 1-β). The HFD increased body weight and food intake and intra-abdominal fat and thymus weights, which were associated with elevated plasma leptin level. Moreover, HFD increased plasma concentrations of TG, LDL, cholesterol and IL 1-β and decreased HDL level. Injection of 4-PBA reversed the plasma parameters changes caused by HFD. It seems that long-term HFD feeding through inducing the ER stress, disrupted the lipid metabolism and resulted in inflammation.
Collapse
Affiliation(s)
- Fateme Binayi
- Department of Physiology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Moslemi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Selvais CM, Davis-López de Carrizosa MA, Nachit M, Versele R, Dubuisson N, Noel L, Gillard J, Leclercq IA, Brichard SM, Abou-Samra M. AdipoRon enhances healthspan in middle-aged obese mice: striking alleviation of myosteatosis and muscle degenerative markers. J Cachexia Sarcopenia Muscle 2023; 14:464-478. [PMID: 36513619 PMCID: PMC9891981 DOI: 10.1002/jcsm.13148] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Obesity among older adults has increased tremendously. Obesity accelerates ageing and predisposes to age-related conditions and diseases, such as loss of endurance capacity, insulin resistance and features of the metabolic syndrome. Namely, ectopic lipids play a key role in the development of nonalcoholic fatty liver disease (NAFLD) and myosteatosis, two severe burdens of ageing and metabolic diseases. Adiponectin (ApN) is a hormone, mainly secreted by adipocytes, which exerts insulin-sensitizing and fat-burning properties in several tissues including the liver and the muscle. Its overexpression also increases lifespan in mice. In this study, we investigated whether an ApN receptor agonist, AdipoRon (AR), could slow muscle dysfunction, myosteatosis and degenerative muscle markers in middle-aged obese mice. The effects on myosteatosis were compared with those on NAFLD. METHODS Three groups of mice were studied up to 62 weeks of age: One group received normal diet (ND), another, high-fat diet (HFD); and the last, HFD combined with AR given orally for almost 1 year. An additional group of young mice under an ND was used. Treadmill tests and micro-computed tomography (CT) were carried out in vivo. Histological, biochemical and molecular analyses were performed on tissues ex vivo. Bodipy staining was used to assess intramyocellular lipid (IMCL) and lipid droplet morphology. RESULTS AR did not markedly alter diet-induced obesity. Yet, this treatment rescued exercise endurance in obese mice (up to 2.4-fold, P < 0.05), an event that preceded the improvement of insulin sensitivity. Dorsal muscles and liver densities, measured by CT, were reduced in obese mice (-42% and -109%, respectively, P < 0.0001), suggesting fatty infiltration. This reduction tended to be attenuated by AR. Accordingly, AR significantly mitigated steatosis and cellular ballooning at liver histology, thereby decreasing the NALFD activity score (-30%, P < 0.05). AR also strikingly reversed IMCL accumulation either due to ageing in oxidative fibres (types 1/2a, soleus) or to HFD in glycolytic ones (types 2x/2b, extensor digitorum longus) (-50% to -85%, P < 0.05 or less). Size of subsarcolemmal lipid droplets, known to be associated with adverse metabolic outcomes, was reduced as well. Alleviation of myosteatosis resulted from improved mitochondrial function and lipid oxidation. Meanwhile, AR halved aged-related accumulation of dysfunctional proteins identified as tubular aggregates and cylindrical spirals by electron microscopy (P < 0.05). CONCLUSIONS Long-term AdipoRon treatment promotes 'healthy ageing' in obese middle-aged mice by enhancing endurance and protecting skeletal muscle and liver against the adverse metabolic and degenerative effects of ageing and caloric excess.
Collapse
Affiliation(s)
- Camille M Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - María A Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium.,Department of Physiology, Faculty of Biology, University of Seville, Seville, Spain
| | - Maxime Nachit
- Hepato-Gastroenterology Unit, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Justine Gillard
- Hepato-Gastroenterology Unit, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Isabelle A Leclercq
- Hepato-Gastroenterology Unit, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Sonia M Brichard
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| |
Collapse
|
38
|
High-fructose corn syrup intake increases hepatic mitochondrial DNA copy number and methylation in adolescent rats. Nutr Res 2023; 110:57-65. [PMID: 36682228 DOI: 10.1016/j.nutres.2022.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
High-fructose corn syrup (HFCS) is consumed worldwide. However, it has been demonstrated that an increased intake of sweetened beverages, including those sweetened using fructose, is associated with the development of childhood obesity. It is unknown why the negative effects of fructose are stronger in young persons than in elderly individuals. In recent years, mitochondria have been identified as 1 of the targets of the negative effects of fructose; they possess their own genome called mitochondrial DNA (mtDNA), which encodes genes involved in metabolic functions. We hypothesized that HFCS intake affects mtDNA in the livers of rats, and that the intensity of these effects is age-dependent. The experimental period was divided into 3 parts: childhood and adolescence (postnatal day [PD] 21-60), young adulthood (PD61-100), and adulthood (PD101-140). Rats in the different age groups were assigned to receive either water (control group [CONT]) or a 20% HFCS solution (HFCS). The hepatic mtDNA copy number of the HFCS group was higher than that of the CONT group in childhood and adolescence. In addition, the mtDNA methylation level was increased in the HFCS group in the same experimental period. No significant differences were observed between the CONT and HFCS groups during the other experimental periods. We demonstrated that HFCS has the strongest effect on mtDNA during childhood and adolescence, suggesting a need to analyze the HFCS intake of young people.
Collapse
|
39
|
Cormier RJ, Doiron JA, Touaibia M, Surette ME, Pichaud N. Time-dependent metabolome and fatty acid profile changes following a high-fat diet exposure in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103892. [PMID: 36493963 DOI: 10.1016/j.ibmb.2022.103892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
High-fat diets (HFDs) are often used to study metabolic disorders using different animal models. However, the underlying cellular mechanisms pertaining to the concurrent loss of metabolic homeostasis characteristics of these disorders are still unclear mainly because the effects of such diets are also dependent on the time frame of the experiments. Here, we used the fruit fly, Drosophila melanogaster, to investigate the metabolic dynamic effects following 0, 2, 4, 7 and 9 days of an exposure to a HFD (standard diet supplemented with 20% w/v coconut oil, rich in 12:0 and 14:0) by combining NMR metabolomics and GC-FID fatty acid profiling. Our results show that after 2 days, the ingested 12:0 and 14:0 fatty acids are used for both lipogenesis and fatty acid oxidation. After 4 days, metabolites from several different pathways are highly modulated in response to the HFD, and an accumulation of 12:0 is also observed, suggesting that the balance of lipid, amino acid and carbohydrate metabolism is profoundly perturbed at this specific time point. Following a longer exposure to the HFD (and notably after 9 days), an accumulation of many metabolites is observed indicating a clear dysfunction of the metabolic system. Overall, our study highlights the relevance of the Drosophila model to study metabolic disorders and the importance of the duration of the exposure to a HFD to study the dynamics of the fundamental mechanisms that control metabolism following exposure to dietary fats. This knowledge is crucial to understand the development and progression of metabolic diseases.
Collapse
Affiliation(s)
- Robert J Cormier
- New Brunswick Centre for Precision Medicine, Moncton, NB, E1A 3E9, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada
| | - Jeremie A Doiron
- New Brunswick Centre for Precision Medicine, Moncton, NB, E1A 3E9, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada
| | - Marc E Surette
- New Brunswick Centre for Precision Medicine, Moncton, NB, E1A 3E9, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB, E1A 3E9, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada.
| |
Collapse
|
40
|
Handy RM, Holloway GP. Insights into the development of insulin resistance: Unraveling the interaction of physical inactivity, lipid metabolism and mitochondrial biology. Front Physiol 2023; 14:1151389. [PMID: 37153211 PMCID: PMC10157178 DOI: 10.3389/fphys.2023.1151389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
While impairments in peripheral tissue insulin signalling have a well-characterized role in the development of insulin resistance and type 2 diabetes (T2D), the specific mechanisms that contribute to these impairments remain debatable. Nonetheless, a prominent hypothesis implicates the presence of a high-lipid environment, resulting in both reactive lipid accumulation and increased mitochondrial reactive oxygen species (ROS) production in the induction of peripheral tissue insulin resistance. While the etiology of insulin resistance in a high lipid environment is rapid and well documented, physical inactivity promotes insulin resistance in the absence of redox stress/lipid-mediated mechanisms, suggesting alternative mechanisms-of-action. One possible mechanism is a reduction in protein synthesis and the resultant decrease in key metabolic proteins, including canonical insulin signaling and mitochondrial proteins. While reductions in mitochondrial content associated with physical inactivity are not required for the induction of insulin resistance, this could predispose individuals to the detrimental effects of a high-lipid environment. Conversely, exercise-training induced mitochondrial biogenesis has been implicated in the protective effects of exercise. Given mitochondrial biology may represent a point of convergence linking impaired insulin sensitivity in both scenarios of chronic overfeeding and physical inactivity, this review aims to describe the interaction between mitochondrial biology, physical (in)activity and lipid metabolism within the context of insulin signalling.
Collapse
|
41
|
A Skeletal Muscle-Centric View on Time-Restricted Feeding and Obesity under Various Metabolic Challenges in Humans and Animals. Int J Mol Sci 2022; 24:ijms24010422. [PMID: 36613864 PMCID: PMC9820735 DOI: 10.3390/ijms24010422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Nearly 50% of adults will suffer from obesity in the U.S. by 2030. High obesity rates can lead to high economic and healthcare burdens in addition to elevated mortality rates and reduced health span in patients. Emerging data demonstrate that obesity is a multifactorial complex disease with various etiologies including aging, a lifestyle of chronic high-fat diets (HFD), genetic predispositions, and circadian disruption. Time-restricted feeding/eating (TRF; TRE in humans) is an intervention demonstrated by studies to show promise as an effective alternative therapy for ameliorating the effects of obesity and metabolic disease. New studies have recently suggested that TRF/TRE modulates the skeletal muscle which plays a crucial role in metabolism historically observed to be impaired under obesity. Here we discuss recent findings regarding potential mechanisms underlying TRF's modulation of skeletal muscle function, metabolism, and structure which may shed light on future research related to TRF as a solution to obesity.
Collapse
|
42
|
Delfinis LJ, Bellissimo CA, Gandhi S, DiBenedetto SN, Garibotti MC, Thuhan AK, Tsitkanou S, Rosa-Caldwell ME, Rahman FA, Cheng AJ, Wiggs MP, Schlattner U, Quadrilatero J, Greene NP, Perry CG. Muscle weakness precedes atrophy during cancer cachexia and is linked to muscle-specific mitochondrial stress. JCI Insight 2022; 7:155147. [PMID: 36346680 PMCID: PMC9869968 DOI: 10.1172/jci.insight.155147] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Muscle weakness and wasting are defining features of cancer-induced cachexia. Mitochondrial stress occurs before atrophy in certain muscles, but the possibility of heterogeneous responses between muscles and across time remains unclear. Using mice inoculated with Colon-26 cancer, we demonstrate that specific force production was reduced in quadriceps and diaphragm at 2 weeks in the absence of atrophy. At this time, pyruvate-supported mitochondrial respiration was lower in quadriceps while mitochondrial H2O2 emission was elevated in diaphragm. By 4 weeks, atrophy occurred in both muscles, but specific force production increased to control levels in quadriceps such that reductions in absolute force were due entirely to atrophy. Specific force production remained reduced in diaphragm. Mitochondrial respiration increased and H2O2 emission was unchanged in both muscles versus control while mitochondrial creatine sensitivity was reduced in quadriceps. These findings indicate muscle weakness precedes atrophy and is linked to heterogeneous mitochondrial alterations that could involve adaptive responses to metabolic stress. Eventual muscle-specific restorations in specific force and bioenergetics highlight how the effects of cancer on one muscle do not predict the response in another muscle. Exploring heterogeneous responses of muscle to cancer may reveal new mechanisms underlying distinct sensitivities, or resistance, to cancer cachexia.
Collapse
Affiliation(s)
- Luca J. Delfinis
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Catherine A. Bellissimo
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Shivam Gandhi
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Sara N. DiBenedetto
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Madison C. Garibotti
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Arshdeep K. Thuhan
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Stavroula Tsitkanou
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
| | - Megan E. Rosa-Caldwell
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
| | - Fasih A. Rahman
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Arthur J. Cheng
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Michael P. Wiggs
- Mooney Lab for Exercise, Nutrition, and Biochemistry, Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, USA
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics, University Grenoble Alpes and INSERM U1055, Grenoble, France, and Institut Universitaire de France, Paris, France
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Nicholas P. Greene
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
| | - Christopher G.R. Perry
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| |
Collapse
|
43
|
McGowan EM, Ehrlicher SE, Stierwalt HD, Robinson MM, Newsom SA. Impact of 4 weeks of western diet and aerobic exercise training on whole-body phenotype and skeletal muscle mitochondrial respiration in male and female mice. Physiol Rep 2022; 10:e15543. [PMID: 36541261 PMCID: PMC9768729 DOI: 10.14814/phy2.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
High dietary fat intake induces significant whole-body and skeletal muscle adaptations in mice, including increased capacity for fat oxidation and mitochondrial biogenesis. The impact of a diet that is high in fat and simple sugars (i.e., western diet [WD]), particularly on regulation of skeletal muscle mitochondrial function, is less understood. The purpose of the current study was to determine physiologic adaptations in mitochondrial respiratory capacity in skeletal muscle during short-term consumption of WD, including if adaptive responses to WD-feeding are modified by concurrent exercise training or may be sex-specific. Male and female C57BL/6J mice were randomized to consume low-fat diet (LFD) or WD for 4 weeks, with some WD-fed mice also performing concurrent treadmill training (WD + Ex). Group sizes were n = 4-7. Whole-body metabolism was measured using in-cage assessment of food intake and energy expenditure, DXA body composition analysis and insulin tolerance testing. High-resolution respirometry of mitochondria isolated from quadriceps muscle was used to determine skeletal muscle mitochondrial respiratory function. Male mice fed WD gained mass (p < 0.001), due to increased fat mass (p < 0.001), and displayed greater respiratory capacity for both lipid and non-lipid substrates compared with LFD mice (p < 0.05). There was no effect of concurrent treadmill training on maximal respiration (WD + Ex vs. WD). Female mice had non-significant changes in body mass and composition as a function of the interventions, and no differences in skeletal muscle mitochondrial oxidative capacity. These findings indicate 4 weeks of WD feeding can increase skeletal muscle mitochondrial oxidative capacity among male mice; whereas WD, with or without exercise, had minimal impact on mass gain and skeletal muscle respiratory capacity among female mice. The translational relevance is that mitochondrial adaptation to increases in dietary fat intake that model WD may be related to differences in weight gain among male and female mice.
Collapse
Affiliation(s)
- Erin M. McGowan
- School of Biological and Population Health Sciences, College of Public Health and Human SciencesOregon State UniversityCorvallisOregonUSA
| | - Sarah E. Ehrlicher
- School of Biological and Population Health Sciences, College of Public Health and Human SciencesOregon State UniversityCorvallisOregonUSA
| | - Harrison D. Stierwalt
- School of Biological and Population Health Sciences, College of Public Health and Human SciencesOregon State UniversityCorvallisOregonUSA
| | - Matthew M. Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human SciencesOregon State UniversityCorvallisOregonUSA
| | - Sean A. Newsom
- School of Biological and Population Health Sciences, College of Public Health and Human SciencesOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
44
|
Jia W, Wu X, Shi L. Hydrocortisone-Containing Animal-Derived Food Intake Affects Lipid Nutrients Utilization. Mol Nutr Food Res 2022; 66:e2200487. [PMID: 36261391 DOI: 10.1002/mnfr.202200487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Indexed: 01/18/2023]
Abstract
SCOPE As the tremendous increases in consumption of animal-derived food, endogenous hydrocortisone migrating along the food chain to organism arouses extensive attention. This study aims to investigate the cumulative impacts of dietary hydrocortisone intake and mechanistic understanding on metabolism of lipid nutrients. METHODS AND RESULTS A total of 120 porcine muscles samples with different concentrations of hydrocortisone are collected at three time points. An operational food chain simulation framework is constructed and 175 lipid molecules are identified by UHPLC-Q-Orbitrap HRMS. Compared to the control group, 66 lipid molecules are significantly different, including 17 triglycerides and 31 glycerophospholipids. Integrated analyses of lipidomics and proteomics indicate that hydrocortisone promotes adipose triglyceride lipase and hormone sensitive lipase activity to precondition for triglycerides hydrolysis. Quantitative lipidomics analysis shows the presence of hydrocortisone decreases the concentration of docosahexaenoic acid (3.66 ± 0.15-3.09 ± 0.12 mg kg-1 ) and eicosapentanoic acid (0.54 ± 0.09-0.48 ± 0.06 mg kg-1 ). A noteworthy increase of most saturated triglycerides concentration with the prolonging of time is observed. CONCLUSIONS Hydrocortisone originating from animal-derived food induces glycerophospholipids degradation and triglycerides hydrolysis through promoting adipose triglyceride lipase, hormone sensitive lipase, and phosphoglycerate kinase activity and further intervenes lipid nutrients utilization.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.,Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, 710021, China
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
45
|
Munier JJ, Pank JT, Severino A, Wang H, Zhang P, Vergnes L, Reue K. Simultaneous monitoring of mouse grip strength, force profile, and cumulative force profile distinguishes muscle physiology following surgical, pharmacologic and diet interventions. Sci Rep 2022; 12:16428. [PMID: 36180720 PMCID: PMC9525296 DOI: 10.1038/s41598-022-20665-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/16/2022] [Indexed: 01/04/2023] Open
Abstract
Grip strength is a valuable preclinical assay to study muscle physiology in disease and aging by directly determining changes in muscle force generation in active laboratory mice. Existing methods to statistically evaluate grip strength, however, have limitations in the power and scope of the physiological features that are assessed. We therefore designed a microcontroller whose serial measure of resistance-based force enables the simultaneous readout of (1) peak grip strength, (2) force profile (the non-linear progress of force exerted throughout a standard grip strength trial), and (3) cumulative force profile (the integral of force with respect to time of a single grip strength trial). We hypothesized that muscle pathologies of different etiologies have distinct effects on these parameters. To test this, we used our apparatus to assess the three muscle parameters in mice with impaired muscle function resulting from surgically induced peripheral pain, genetic peripheral neuropathy, adverse muscle effects induced by statin drug, and metabolic alterations induced by a high-fat diet. Both surgically induced peripheral nerve injury and statin-associated muscle damage diminished grip strength and force profile, without affecting cumulative force profile. Conversely, genetic peripheral neuropathy resulting from lipin 1 deficiency led to a marked reduction to all three parameters. A chronic high-fat diet led to reduced grip strength and force profile when normalized to body weight. In high-fat fed mice that were exerted aerobically and allowed to recover for 30 min, male mice exhibited impaired force profile parameters, which female mice were more resilient. Thus, simultaneous analysis of peak grip strength, force profile and cumulative force profile distinguishes the muscle impairments that result from distinct perturbations and may reflect distinct motor unit recruitment strategies.
Collapse
Affiliation(s)
- Joseph J Munier
- Department of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA, 90034, USA
| | - Justin T Pank
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Amie Severino
- Department of Psychiatry and Biobehavioral Disease, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Huan Wang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Peixiang Zhang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
46
|
Kilzheimer A, Hentrich T, Rotermund C, Kahle PJ, Schulze-Hentrich JM. Failure of diet-induced transcriptional adaptations in alpha-synuclein transgenic mice. Hum Mol Genet 2022; 32:450-461. [PMID: 36001352 PMCID: PMC9851747 DOI: 10.1093/hmg/ddac205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023] Open
Abstract
Nutritional influences have been discussed as potential modulators of Parkinson's disease (PD) pathology through various epidemiological and physiological studies. In animal models, a high-fat diet (HFD) with greater intake of lipid-derived calories leads to accelerated disease onset and progression. The underlying molecular mechanisms of HFD-induced aggravated pathology, however, remain largely unclear. In this study, we aimed to further illuminate the effects of a fat-enriched diet in PD by examining the brainstem and hippocampal transcriptome of alpha-synuclein transgenic mice exposed to a life-long HFD. Investigating individual transcript isoforms, differential gene expression and co-expression clusters, we observed that transcriptional differences between wild-type (WT) and transgenic animals intensified in both regions under HFD. Both brainstem and hippocampus displayed strikingly similar transcriptomic perturbation patterns. Interestingly, expression differences resulted mainly from responses in WT animals to HFD, while these genes remained largely unchanged or were even slightly oppositely regulated by diet in transgenic animals. Genes and co-expressed gene groups exhibiting this dysregulation were linked to metabolic and mitochondrial pathways. Our findings propose the failure of metabolic adaptions as the potential explanation for accelerated disease unfolding under exposure to HFD. From the identified clusters of co-expressed genes, several candidates lend themselves to further functional investigations.
Collapse
Affiliation(s)
| | | | - Carola Rotermund
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany,German Center for Neurodegenerative Diseases (DZNE), 72074 Tübingen, Germany
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany
| | - Julia M Schulze-Hentrich
- To whom correspondence should be addressed at: Calwerstr. 7, 72076 Tübingen, Germany. Tel: +49-7071-2972276; Fax: +49-7071-29-5171;
| |
Collapse
|
47
|
Localized Heat Therapy Improves Mitochondrial Respiratory Capacity but Not Fatty Acid Oxidation. Int J Mol Sci 2022; 23:ijms23158500. [PMID: 35955635 PMCID: PMC9369322 DOI: 10.3390/ijms23158500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
AIM: Mild heat stress can improve mitochondrial respiratory capacity in skeletal muscle. However, long-term heat interventions are scarce, and the effects of heat therapy need to be understood in the context of the adaptations which follow the more complex combination of stimuli from exercise training. The purpose of this work was to compare the effects of 6 weeks of localized heat therapy on human skeletal muscle mitochondria to single-leg interval training. METHODS: Thirty-five subjects were assigned to receive sham therapy, short-wave diathermy heat therapy, or single-leg interval exercise training, localized to the quadriceps muscles of the right leg. All interventions took place 3 times per week. Muscle biopsies were performed at baseline, and after 3 and 6 weeks of intervention. Mitochondrial respiratory capacity was assessed on permeabilized muscle fibers via high-resolution respirometry. RESULTS: The primary finding of this work was that heat therapy and exercise training significantly improved mitochondrial respiratory capacity by 24.8 ± 6.2% and 27.9 ± 8.7%, respectively (p < 0.05). Fatty acid oxidation and citrate synthase activity were also increased following exercise training by 29.5 ± 6.8% and 19.0 ± 7.4%, respectively (p < 0.05). However, contrary to our hypothesis, heat therapy did not increase fatty acid oxidation or citrate synthase activity. CONCLUSION: Six weeks of muscle-localized heat therapy significantly improves mitochondrial respiratory capacity, comparable to exercise training. However, unlike exercise, heat does not improve fatty acid oxidation capacity.
Collapse
|
48
|
Watanabe S, Tsujino S. Applications of Medium-Chain Triglycerides in Foods. Front Nutr 2022; 9:802805. [PMID: 35719157 PMCID: PMC9203050 DOI: 10.3389/fnut.2022.802805] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
In the 1950s, the production of processed fats and oils from coconut oil was popular in the United States. It became necessary to find uses for the medium-chain fatty acids (MCFAs) that were byproducts of the process, and a production method for medium-chain triglycerides (MCTs) was established. At the time of this development, its use as a non-fattening fat was being studied. In the early days MCFAs included fatty acids ranging from hexanoic acid (C6:0) to dodecanoic acid (C12:0), but today their compositions vary among manufacturers and there seems to be no clear definition. MCFAs are more polar than long-chain fatty acids (LCFAs) because of their shorter chain length, and their hydrolysis and absorption properties differ greatly. These differences in physical properties have led, since the 1960s, to the use of MCTs to improve various lipid absorption disorders and malnutrition. More than half a century has passed since MCTs were first used in the medical field. It has been reported that they not only have properties as an energy source, but also have various physiological effects, such as effects on fat and protein metabolism. The enhancement of fat oxidation through ingestion of MCTs has led to interest in the study of body fat reduction and improvement of endurance during exercise. Recently, MCTs have also been shown to promote protein anabolism and inhibit catabolism, and applied research has been conducted into the prevention of frailty in the elderly. In addition, a relatively large ingestion of MCTs can be partially converted into ketone bodies, which can be used as a component of "ketone diets" in the dietary treatment of patients with intractable epilepsy, or in the nutritional support of terminally ill cancer patients. The possibility of improving cognitive function in dementia patients and mild cognitive impairment is also being studied. Obesity due to over-nutrition and lack of exercise, and frailty due to under-nutrition and aging, are major health issues in today's society. MCTs have been studied in relation to these concerns. In this paper we will introduce the results of applied research into the use of MCTs by healthy subjects.
Collapse
|
49
|
Nicotinamide Riboside Supplementation to Suckling Male Mice Improves Lipid and Energy Metabolism in Skeletal Muscle and Liver in Adulthood. Nutrients 2022; 14:nu14112259. [PMID: 35684059 PMCID: PMC9182637 DOI: 10.3390/nu14112259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Nicotinamide riboside, an NAD+ precursor, has been attracting a lot of attention in recent years due to its potential benefits against multiple metabolic complications and age-related disorders related to NAD+ decline in tissues. The metabolic programming activity of NR supplementation in early-life stages is much less known. Here, we studied the long-term programming effects of mild NR supplementation during the suckling period on lipid and oxidative metabolism in skeletal muscle and liver tissues using an animal model. Suckling male mice received a daily oral dose of NR or vehicle (water) from day 2 to 20 of age, were weaned at day 21 onto a chow diet, and at day 90 were distributed to either a high-fat diet (HFD) or a normal-fat diet for 10 weeks. Compared to controls, NR-treated mice were protected against HFD-induced triacylglycerol accumulation in skeletal muscle and displayed lower triacylglycerol levels and steatosis degree in the liver and distinct capacities for fat oxidation and decreased lipogenesis in both tissues, paralleling signs of enhanced sirtuin 1 and AMP-dependent protein kinase signaling. These pre-clinical findings suggest that mild NR supplementation in early postnatal life beneficially impacts lipid and energy metabolism in skeletal muscle and liver in adulthood, serving as a potential preventive strategy against obesity-related disorders characterized by ectopic lipid accumulation.
Collapse
|
50
|
Palmer BF, Clegg DJ. Metabolic Flexibility and Its Impact on Health Outcomes. Mayo Clin Proc 2022; 97:761-776. [PMID: 35287953 DOI: 10.1016/j.mayocp.2022.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
A metabolically flexible state exists when there is a rapid switch between glucose and fatty acids during the transition between the fed and fasting state. This flexibility in fuel choice serves to prevent hyperglycemia following a meal and simultaneously ensures an adequate amount of blood glucose is available for delivery to the brain and exclusively glycolytic tissues during fasting. The modern era is characterized by chronic overnutrition in which a mixture of fuels is delivered to the mitochondria in an unabated manner thereby uncoupling the feast and famine situation. The continuous influx of fuel leads to accumulation of reducing equivalents in the mitochondria and an increase in the mitochondrial membrane potential. These changes create a microenvironment fostering the generation of reactive oxygen species and other metabolites leading to deleterious protein modification, cell injury, and ultimately clinical disease. Insulin resistance may also play a primary role in this deleterious effect. The imbalance between mitochondrial energy delivery and use is made worse with a sedentary lifestyle. Maneuvers that restore energy balance across the mitochondria activate pathways that remove or repair damaged molecules and restore the plasticity characteristic of normal energy metabolism. Readily available strategies to maintain energy balance across the mitochondria include exercise, various forms of caloric restriction, administration of sodium-glucose cotransporter-2 inhibitors, cold exposure, and hypobaric hypoxia.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|