1
|
Zeng Y, Shen J, Zhou X, Ouyang Z, Zhong J, Qin Y, Jin L, He X, Li L, Xie J, Liu X. Osteogenic differentiation of bone mesenchymal stem cells on linearly aligned triangular micropatterns. J Mater Chem B 2024; 12:8420-8430. [PMID: 39093007 DOI: 10.1039/d4tb01218f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mesenchymal stem cells (MSCs) hold promise for regenerative medicine, particularly for bone tissue engineering. However, directing MSC differentiation towards specific lineages, such as osteogenic, while minimizing undesired phenotypes remains a challenge. Here, we investigate the influence of micropatterns on the behavior and lineage commitment of rat bone marrow-derived MSCs (rBMSCs), focusing on osteogenic differentiation. Linearly aligned triangular micropatterns (TPs) and circular micropatterns (CPs) coated with fibronectin were fabricated to study their effects on rBMSC morphology and differentiation and the underlying mechanobiological mechanisms. TPs, especially TP15 (15 μm), induced the cell elongation and thinning, while CPs also promoted the cell stretching, as evidenced by the decreased circularity and increased aspect ratio. TP15 significantly promoted osteogenic differentiation, with increased expression of osteogenic genes (Runx2, Spp1, Alpl, Bglap, Col1a1) and decreased expression of adipogenic genes (Pparg, Cebpa, Fabp4). Conversely, CPs inhibited both osteogenic and adipogenic differentiation. Mechanistically, TP15 increased Piezo1 activity, cytoskeletal remodeling including the aggregates of F-actin and myosin filaments at the cell periphery, YAP1 nuclear translocation, and integrin upregulation. Piezo1 inhibition suppressed the osteogenic genes expression, myosin remodeling, and YAP1 nuclear translocation, indicating Piezo1-mediated the mechanotransduction in rBMSCs on TPs. TP15 also induced osteogenic differentiation of BMSCs from aging rats, with upregulated Piezo1 and nuclear translocation of YAP1. Therefore, triangular micropatterns, particularly TP15, promote osteogenesis and inhibit adipogenesis of rBMSCs through Piezo1-mediated myosin and YAP1 pathways. Our study provides novel insights into the mechanobiological mechanisms governing MSC behaviors on micropatterns, offering new strategies for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Xintong Zhou
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Zhi Ouyang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Jian Zhong
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Yixue Qin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Linlu Jin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Xueling He
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| |
Collapse
|
2
|
Iwahashi N, Ikezaki M, Komohara Y, Fujiwara Y, Noguchi T, Nishioka K, Sakai K, Nishio K, Ueda M, Ihara Y, Uchimura K, Ino K, Nishitsuji K. Cytoplasmic p53 aggregates accumulated in p53-mutated cancer correlate with poor prognosis. PNAS NEXUS 2022; 1:pgac128. [PMID: 36741442 PMCID: PMC9896898 DOI: 10.1093/pnasnexus/pgac128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
Recent studies suggested that aggregates of mutant p53 proteins may propagate and impair normal p53 functioning in recipient cells. Our previous study showed that cancer cell-derived p53 aggregates that cells internalized interfered with p53-dependent apoptosis in recipient cells. However, involvement of p53 aggregate propagation in cancer pathology has not been fully elucidated. Here, we screened patients with high-grade serous ovarian carcinoma, which is characterized by an extremely high frequency of TP53 gene mutations, to show that patients with cytoplasmic p53 deposits have a poor prognosis compared with patients with complete p53 absence or strong nuclear p53 positivity. Cytoplasmic p53 in the patients with poor prognosis consisted of protein aggregates, which suggests that p53 aggregates are oncogenic drivers. Indeed, an inhibitor of p53 aggregation restored cellular apoptosis, a proper p53 function, in p53 aggregate-bearing patient-derived tumor organoids. In cell-based assays, endogenous and exogenous mutant p53 aggregates hindered chemotherapeutic activity of cisplatin, which depends on normal p53 functions. This inhibition was reduced by blocking p53 aggregation or internalization of p53 aggregates. Our study, thus indicates the involvement of p53 aggregate transmission in poor prognosis and in chemotherapy resistance in cancers.
Collapse
Affiliation(s)
| | | | | | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tomoko Noguchi
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kaho Nishioka
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshito Ihara
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille, 59655 Villeneuve d'Ascq, France
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | | |
Collapse
|
3
|
Royer SP, Han SJ. Mechanobiology in the Comorbidities of Ehlers Danlos Syndrome. Front Cell Dev Biol 2022; 10:874840. [PMID: 35547807 PMCID: PMC9081723 DOI: 10.3389/fcell.2022.874840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Ehlers-Danlos Syndromes (EDSs) are a group of connective tissue disorders, characterized by skin stretchability, joint hypermobility and instability. Mechanically, various tissues from EDS patients exhibit lowered elastic modulus and lowered ultimate strength. This change in mechanics has been associated with EDS symptoms. However, recent evidence points toward a possibility that the comorbidities of EDS could be also associated with reduced tissue stiffness. In this review, we focus on mast cell activation syndrome and impaired wound healing, comorbidities associated with the classical type (cEDS) and the hypermobile type (hEDS), respectively, and discuss potential mechanobiological pathways involved in the comorbidities.
Collapse
Affiliation(s)
- Shaina P. Royer
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Sangyoon J. Han
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
- Department of Mechanical Engineering, Michigan Technological University, Houghton, MI, United States
- Health Research Institute, Michigan Technological University, Houghton, MI, United States
- *Correspondence: Sangyoon J. Han,
| |
Collapse
|
4
|
Mohr JD, Ramezani M, Holowka D, Baird BA. Micropatterned Ligand Arrays to Investigate Spatial Regulation of Cellular Signaling Initiated by Clustered Fc Receptors. Methods Mol Biol 2022; 2421:1-19. [PMID: 34870808 PMCID: PMC9675614 DOI: 10.1007/978-1-0716-1944-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cell surface receptors that bind the Fc segment of antibodies to initiate signaling play fundamental roles in immune responses. Multiple, diverse Fc receptors (e.g., Fc gamma, Fc-alpha, and Fc-epsilon) are expressed on different immune cells, including natural killer cells, macrophages, mast cells, and neutrophils. Fc receptors bind particular antibody isotypes (e.g., IgG, IgA, IgE, respectively) thereby sensitizing the cells to their specific antigens. Receptor clustering by antigen or other multivalent ligands induces a signaling cascade that leads to targeted secretion of chemical mediators (e.g., histamine, cytokines, and chemokines) and other cell-specific responses. Spatial targeting and compartmentalization are common mechanisms for regulating Fc receptor signaling. However, the tools for studying these dynamic interactions at cellular levels have been limited due to the nanoscale dimensions of the signaling complexes and their dispersal across the cell surface. To overcome these limitations in our model system, we use microfabricated surfaces containing spatially defined ligands to cluster and activate IgE receptors (FcεRI), which initiate allergic responses by mast cells. Micron-scale control of receptor assemblies allows investigation with conventional fluorescence microscopy of spatially regulated redistributions of intracellular signaling components. This approach in conjunction with biochemical techniques has proven valuable for investigating immune receptor signaling.
Collapse
|
5
|
Lipid-based and protein-based interactions synergize transmembrane signaling stimulated by antigen clustering of IgE receptors. Proc Natl Acad Sci U S A 2021; 118:2026583118. [PMID: 34433665 DOI: 10.1073/pnas.2026583118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Antigen (Ag) crosslinking of immunoglobulin E-receptor (IgE-FcεRI) complexes in mast cells stimulates transmembrane (TM) signaling, requiring phosphorylation of the clustered FcεRI by lipid-anchored Lyn tyrosine kinase. Previous studies showed that this stimulated coupling between Lyn and FcεRI occurs in liquid ordered (Lo)-like nanodomains of the plasma membrane and that Lyn binds directly to cytosolic segments of FcεRI that it initially phosphorylates for amplified activity. Net phosphorylation above a nonfunctional threshold is achieved in the stimulated state but not in the resting state, and current evidence supports the hypothesis that this relies on Ag crosslinking to disrupt a balance between Lyn and tyrosine phosphatase activities. However, the structural interactions that underlie the stimulation process remain poorly defined. This study evaluates the relative contributions and functional importance of different types of interactions leading to suprathreshold phosphorylation of Ag-crosslinked IgE-FcεRI in live rat basophilic leukemia mast cells. Our high-precision diffusion measurements by imaging fluorescence correlation spectroscopy on multiple structural variants of Lyn and other lipid-anchored probes confirm subtle, stimulated stabilization of the Lo-like nanodomains in the membrane inner leaflet and concomitant sharpening of segregation from liquid disordered (Ld)-like regions. With other structural variants, we determine that lipid-based interactions are essential for access by Lyn, leading to phosphorylation of and protein-based binding to clustered FcεRI. By contrast, TM tyrosine phosphatase, PTPα, is excluded from these regions due to its Ld-preference and steric exclusion of TM segments. Overall, we establish a synergy of lipid-based, protein-based, and steric interactions underlying functional TM signaling in mast cells.
Collapse
|
6
|
Filho EGF, da Silva EZM, Ong HL, Swaim WD, Ambudkar IS, Oliver C, Jamur MC. RACK1 plays a critical role in mast cell secretion and Ca2+ mobilization by modulating F-actin dynamics. J Cell Sci 2021; 134:263932. [PMID: 34550354 DOI: 10.1242/jcs.252585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Although RACK1 is known to act as a signaling hub in immune cells, its presence and role in mast cells (MCs) is undetermined. MC activation via antigen stimulation results in mediator release and is preceded by cytoskeleton reorganization and Ca2+ mobilization. In this study, we found that RACK1 was distributed throughout the MC cytoplasm both in vivo and in vitro. After RACK1 knockdown (KD), MCs were rounded, and the cortical F-actin was fragmented. Following antigen stimulation, in RACK1 KD MCs, there was a reduction in cortical F-actin, an increase in monomeric G-actin and a failure to organize F-actin. RACK1 KD also increased and accelerated degranulation. CD63+ secretory granules were localized in F-actin-free cortical regions in non-stimulated RACK1 KD MCs. Additionally, RACK1 KD increased antigen-stimulated Ca2+ mobilization, but attenuated antigen-stimulated depletion of ER Ca2+ stores and thapsigargin-induced Ca2+ entry. Following MC activation there was also an increase in interaction of RACK1 with Orai1 Ca2+-channels, β-actin and the actin-binding proteins vinculin and MyoVa. These results show that RACK1 is a critical regulator of actin dynamics, affecting mediator secretion and Ca2+ signaling in MCs. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Edismauro G Freitas Filho
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Elaine Z M da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Hwei Ling Ong
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - William D Swaim
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Indu S Ambudkar
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| |
Collapse
|
7
|
Singla RK, Sultana A, Alam MS, Shen B. Regulation of Pain Genes-Capsaicin vs Resiniferatoxin: Reassessment of Transcriptomic Data. Front Pharmacol 2020; 11:551786. [PMID: 33192502 PMCID: PMC7658921 DOI: 10.3389/fphar.2020.551786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/11/2020] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence has shown a strong association between neuropathic pain and chronic diseases. In recent years, the treatment of neuropathic pain has attracted more attention. Natural products, such as capsaicin and resiniferatoxin, have been well utilized to treat this disease. In this study, we aim to compare the regulatory effects of capsaicin and resiniferatoxin on pain-related genes as well as on genes with no direct association with pain. Public transcriptomic and microarray data on gene expression in the dorsal root ganglia and genes associated with TRPV1 (+) neurons were obtained from the GEO database and then analyzed. Differentially expressed genes were selected for further functional analysis, including pathway enrichment, protein-protein interaction, and regulatory network analysis. Pain-associated genes were extracted with the reference of two pain gene databases and the effects of these two natural drugs on the pain-associated genes were measured. The results of our research indicate that as compared to capsaicin, resiniferatoxin (RTX) regulates more non pain-associated genes and has a negative impact on beneficial genes (off-targets) which are supposed to alleviate nociception and hypersensitivity by themselves. So, based on this study, we may conclude that capsaicin may be less potent when compared to RTX, but it will elicit considerably less adverse effects too. Thereby confirming that capsaicin could be used for the efficient alleviation of neuropathic pain with possibly fewer side effects.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Adiba Sultana
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Md Shahin Alam
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Gupta A, Muralidharan S, Torta F, Wenk MR, Wohland T. Long acyl chain ceramides govern cholesterol and cytoskeleton dependence of membrane outer leaflet dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183153. [PMID: 31857071 DOI: 10.1016/j.bbamem.2019.183153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
The spatiotemporal dynamics of the plasma membrane is a consequence of fine-tuned interactions between membrane components. However, the precise identity of molecular factors that maintain this delicate balance, which is lost even in cell membrane derived mimics, remains elusive. Here, we use two cell lines, CHO-K1 and RBL-2H3, which show differences in outer membrane organization, dynamics, and cytoskeleton coupling, to investigate the underlying factors. To our surprise, knock-down of the cytoskeleton-interacting Immunoglobulin E receptor, which is abundant in RBL-2H3 but not in CHO-K1 cells, is not responsible for lipid confinement or cytoskeleton coupling. A subsequent lipidomic analysis of the two cell membranes revealed differences in total membrane ceramide content (C16 to C24). Analysis of the dynamics and organization of ceramide treated live cell membranes by imaging fluorescence correlation spectroscopy demonstrates that C24 and C16 saturated ceramides uniquely alter membrane dynamics by promoting the formation of cholesterol-independent domains and by elevating the inter-leaflet coupling.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore
| | - Sneha Muralidharan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| | - Federico Torta
- Department of Biochemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Markus R Wenk
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; Department of Biochemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
9
|
Shiki A, Inoh Y, Yokawa S, Furuno T. Inhibition of degranulation in mast cells attached to a hydrogel through defective microtubule tracts. Exp Cell Res 2019; 381:248-255. [PMID: 31112735 DOI: 10.1016/j.yexcr.2019.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
Abstract
Mast cells (MCs) are important effectors of the immediate allergic response. MCs are distributed throughout various tissues and organs, and adhere to extracellular matrix (ECM) with broad stiffness in the body. Here we compared cellular responses following antigen stimulation in MCs on glass-base dishes with and without a hydrogel. We found that an antigen-induced increase in intracellular Ca2+ concentration was suppressed slightly in cells on hydrogel-coated dishes compared with those on non-coated dishes, whereas their subsequent degranulation was largely inhibited in cells adherent to the hydrogel. Focusing on focal adhesions (FAs), vinculin was distributed in a dot-like manner at the bottom of resting cells on non-coated dishes but not on hydrogel-coated dishes. According to antigen stimulation, phosphorylation of focal adhesion kinase and additive vinculin accumulation to FAs were promoted in cells on non-coated dishes, but were diminished on hydrogel-coated dishes. Moreover, microtubule reorganization and acetylation (which have important roles in MC degranulation) were also suppressed in activated MCs adherent to the hydrogel. These findings suggest that adhesion to a hydrogel led to failure of composition of functional FAs and microtubule tracts, which resulted in suppression of MC degranulation following antigen stimulation.
Collapse
Affiliation(s)
- Atsushi Shiki
- School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Yoshikazu Inoh
- School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Satoru Yokawa
- School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Tadahide Furuno
- School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan.
| |
Collapse
|
10
|
Platelet Proteomic Analysis Revealed Differential Pattern of Cytoskeletal- and Immune-Related Proteins at Early Stages of Alzheimer’s Disease. Mol Neurobiol 2018; 55:8815-8825. [DOI: 10.1007/s12035-018-1039-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/23/2018] [Indexed: 12/15/2022]
|
11
|
Biswas KH, Zhongwen C, Dubey AK, Oh D, Groves JT. Multicomponent Supported Membrane Microarray for Monitoring Spatially Resolved Cellular Signaling Reactions. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kabir H. Biswas
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
| | - Chen Zhongwen
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
| | - Alok Kumar Dubey
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
| | - Dongmyung Oh
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
| | - Jay T. Groves
- Department of Chemistry; University of California; Berkeley CA 94720 USA
| |
Collapse
|
12
|
Lohrer MF, Hanna DM, Liu Y, Wang KH, Liu FT, Laurence TA, Liu GY. Applying Pattern Recognition to High-Resolution Images to Determine Cellular Signaling Status. IEEE Trans Nanobioscience 2017; 16:438-446. [PMID: 28644811 PMCID: PMC5633003 DOI: 10.1109/tnb.2017.2717871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two frequently used tools to acquire high- resolution images of cells are scanning electron microscopy (SEM) and atomic force microscopy (AFM). The former provides a nanometer resolution view of cellular features rapidly and with high throughput, while the latter enables visualizing hydrated and living cells. In current practice, these images are viewed by eye to determine cellular status, e.g., activated versus resting. Automatic and quantitative data analysis is lacking. This paper develops an algorithm of pattern recognition that works very effectively for AFM and SEM images. Using rat basophilic leukemia cells, our approach creates a support vector machine to automatically classify resting and activated cells. Ten-fold cross-validation with cells that are known to be activated or resting gives a good estimate of the generalized classification results. The pattern recognition of AFM images achieves 100% accuracy, while SEM reaches 95.4% for our images as well as images published in prior literature. This outcome suggests that our methodology could become an important and frequently used tool for researchers utilizing AFM and SEM for structural characterization as well as determining cellular signaling status and function.
Collapse
Affiliation(s)
- Michael F. Lohrer
- Department of Electrical and Computer Engineering, Oakland University, Rochester MI 48309, USA
| | - Darrin M. Hanna
- Department of Electrical and Computer Engineering, Oakland University, Rochester MI 48309, USA
| | - Yang Liu
- Department of chemistry, University of California, Davis, CA 95616 USA
| | - Kang-Hsin Wang
- Department of chemistry, University of California, Davis, CA 95616 USA
| | - Fu-Tong Liu
- Department of Dermatology, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Ted A. Laurence
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Gang-Yu Liu
- Department of chemistry, University of California, Davis, CA 95616 USA
| |
Collapse
|
13
|
Wakefield DL, Holowka D, Baird B. The FcεRI Signaling Cascade and Integrin Trafficking Converge at Patterned Ligand Surfaces. Mol Biol Cell 2017; 28:mbc.E17-03-0208. [PMID: 28794269 PMCID: PMC5687038 DOI: 10.1091/mbc.e17-03-0208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
We examined the spatial targeting of early and downstream signaling mediated by the IgE receptor (FcεRI) in RBL mast cells utilizing surface-patterned 2,4 dinitrophenyl (DNP) ligands. Micron-sized features of DNP are presented as densely immobilized conjugates of bovine serum albumin (DNP-BSA) or mobile in a supported lipid bilayer (DNP-SLB). Although soluble anti-DNP IgE binds uniformly across features for both pattern types, IgE bound to FcεRI on cells shows distinctive distributions: uniform for DNP-SLB and edge-concentrated for DNP-BSA. These distributions of IgE-FcεRI propagate to the spatial recruitment of early signaling proteins, including spleen tyrosine kinase (Syk), linker for activation of T cells (LAT), and activated phospholipase C gamma 1 (PLCγ1), which all localize with engaged receptors. We found stimulated polymerization of F-actin is not required for Syk recruitment but is progressively involved in the recruitment of LAT and PLCγ1. We further found β1- and β3-integrins colocalize with IgE-FcεRI at patterned ligand surfaces as cells spread. This recruitment corresponds to directed exocytosis of recycling endosomes (REs) containing these integrins and their fibronectin ligand. Together, our results show targeting of signaling components, including integrins, to regions of clustered IgE-FcεRI in processes that depend on stimulated actin polymerization and outward trafficking of REs.
Collapse
Affiliation(s)
- Devin L Wakefield
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
- Current address: Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, California, 91010
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
14
|
Abstract
Phagocytes recognize and eliminate pathogens, alert other tissues of impending threats, and provide a link between innate and adaptive immunity. They also maintain tissue homeostasis, consuming dead cells without causing alarm. The receptor engagement, signal transduction, and cytoskeletal rearrangements underlying phagocytosis are paradigmatic of other immune responses and bear similarities to macropinocytosis and cell migration. We discuss how the glycocalyx restricts access to phagocytic receptors, the processes that enable receptor engagement and clustering, and the remodeling of the actin cytoskeleton that controls the mobility of membrane proteins and lipids and provides the mechanical force propelling the phagocyte membrane toward and around the phagocytic prey.
Collapse
Affiliation(s)
- Philip P Ostrowski
- Program in Cell Biology, Peter Gilgan Centre for Research & Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research & Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 290 Victoria Street, Toronto, ON M5C 1N8, Canada.
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research & Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
15
|
Ang WG, Church AM, Kulis M, Choi HW, Burks AW, Abraham SN. Mast cell desensitization inhibits calcium flux and aberrantly remodels actin. J Clin Invest 2016; 126:4103-4118. [PMID: 27669462 PMCID: PMC5096925 DOI: 10.1172/jci87492] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/16/2016] [Indexed: 11/17/2022] Open
Abstract
Rush desensitization (DS) is a widely used and effective clinical strategy for the rapid inhibition of IgE-mediated anaphylactic responses. However, the cellular targets and underlying mechanisms behind this process remain unclear. Recent studies have implicated mast cells (MCs) as the primary target cells for DS. Here, we developed a murine model of passive anaphylaxis with demonstrated MC involvement and an in vitro assay to evaluate the effect of DS on MCs. In contrast with previous reports, we determined that functional IgE remains on the cell surface of desensitized MCs following DS. Despite notable reductions in MC degranulation following DS, the high-affinity IgE receptor FcεRI was still capable of transducing signals in desensitized MCs. Additionally, we found that displacement of the actin cytoskeleton and its continued association with FcεRI impede the capacity of desensitized MCs to evoke the calcium response that is essential for MC degranulation. Together, these findings suggest that reduced degranulation responses in desensitized MCs arise from aberrant actin remodeling, providing insights that may lead to improvement of DS treatments for anaphylactic responses.
Collapse
Affiliation(s)
- W.X. Gladys Ang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Alison M. Church
- GlaxoSmithKline, Rare Diseases Unit, Research Triangle Park, North Carolina, USA
| | - Mike Kulis
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - A. Wesley Burks
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Soman N. Abraham
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pathology and
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Program in Emerging Infectious Diseases, Duke–National University of Singapore, Singapore
| |
Collapse
|
16
|
Freeman SA, Goyette J, Furuya W, Woods EC, Bertozzi CR, Bergmeier W, Hinz B, van der Merwe PA, Das R, Grinstein S. Integrins Form an Expanding Diffusional Barrier that Coordinates Phagocytosis. Cell 2016; 164:128-140. [PMID: 26771488 DOI: 10.1016/j.cell.2015.11.048] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/07/2015] [Accepted: 11/14/2015] [Indexed: 01/12/2023]
Abstract
Phagocytosis is initiated by lateral clustering of receptors, which in turn activates Src-family kinases (SFKs). Activation of SFKs requires depletion of tyrosine phosphatases from the area of particle engagement. We investigated how the major phosphatase CD45 is excluded from contact sites, using single-molecule tracking. The mobility of CD45 increased markedly upon engagement of Fcγ receptors. While individual CD45 molecules moved randomly, they were displaced from the advancing phagocytic cup by an expanding diffusional barrier. By micropatterning IgG, the ligand of Fcγ receptors, we found that the barrier extended well beyond the perimeter of the receptor-ligand engagement zone. Second messengers generated by Fcγ receptors activated integrins, which formed an actin-tethered diffusion barrier that excluded CD45. The expanding integrin wave facilitates the zippering of Fcγ receptors onto the target and integrates the information from sparse receptor-ligand complexes, coordinating the progression and ultimate closure of the phagocytic cup.
Collapse
Affiliation(s)
- Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jesse Goyette
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Wendy Furuya
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Elliot C Woods
- Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-4401, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-4401, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599-7260, USA
| | - Boris Hinz
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | | | - Raibatak Das
- Department of Integrative Biology, University of Colorado, Denver, CO 80217-3364, USA
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Keenan Research Centre, St. Michael's Hospital, Toronto, ON M5S 1T8, Canada.
| |
Collapse
|
17
|
Han SY, Choi YJ, Kang MK, Park JHY, Kang YH. Resveratrol Suppresses Cytokine Production Linked to FcεRI-MAPK Activation in IgE-Antigen Complex-Exposed Basophilic Mast Cells and Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 43:1605-23. [DOI: 10.1142/s0192415x15500913] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A complicated interplay between resident mast cells and other recruited inflammatory cells contributes to the development and progression of allergic inflammation entailing the promotion of T helper 2 (Th2) cytokine responses. The current study examined whether resveratrol suppressed the production of inflammatory Th2 cytokines in cultured rat basophilic leukemia RBL-2H3 cells. Cells pre-treated with resveratrol nontoxic at 1–25[Formula: see text][Formula: see text]M were sensitized with anti-dinitrophenyl (anti-DNP), and subsequently stimulated by dinitrophenyl–human serum albumin (DNP–HSA) antigen. Resveratrol dose-dependently diminished the secretion of interleukin (IL)-3, IL-4, IL-13 as well as tumor necrosis factor (TNF)-[Formula: see text] by the antigen stimulation from sensitized cells. It was found that resveratrol mitigated the phosphorylation of p38 MAPK, ERK, and JNK elevated in mast cells exposed to Fc epsilon receptor I (Fc[Formula: see text]RI)-mediated immunoglobulin E (IgE)-antigen complex. The Fc[Formula: see text]RI aggregation was highly enhanced on the surface of mast cells following the HSA stimulation, which was retarded by treatment with 1–25[Formula: see text][Formula: see text]M resveratrol. The IgE-receptor engagement rapidly induced tyrosine phosphorylation of c-Src-related focal adhesion protein paxillin involved in the cytoskeleton rearrangement. The Fc[Formula: see text]RI-mediated rapid activation of c-Src and paxillin was attenuated in a dose-dependent manner. In addition, the paxillin activation entailed p38 MAPK and ERK-responsive signaling, but the JNK activation was less involved. Consistently, oral administration of resveratrol reduced the tissue level of phosphorylated paxillin in the dorsal skin of DNP–HSA-challenged mice. The other tyrosine kinase Tyk2-STAT1 signaling was activated in the dorsal epidermis of antigen-exposed mice, which was associated with allergic inflammation. These results showed that resveratrol inhibited Th2 cytokines- and paxillin-linked allergic responses dependent upon MAPK signaling. Therefore, resveratrol may possess the therapeutic potential of targeting mast cells in preventing the development of allergic inflammation.
Collapse
Affiliation(s)
- Seon-Young Han
- Department of Food Science and Nutrition, Hallym University Chuncheon, Kangwon-do 200-702, Republic of Korea
| | - Yean-Jung Choi
- Department of Food Science and Nutrition, Hallym University Chuncheon, Kangwon-do 200-702, Republic of Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition, Hallym University Chuncheon, Kangwon-do 200-702, Republic of Korea
| | - Jung Han Yoon Park
- Department of Food Science and Nutrition, Hallym University Chuncheon, Kangwon-do 200-702, Republic of Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University Chuncheon, Kangwon-do 200-702, Republic of Korea
| |
Collapse
|
18
|
Wedeking T, Löchte S, Birkholz O, Wallenstein A, Trahe J, Klingauf J, Piehler J, You C. Spatiotemporally Controlled Reorganization of Signaling Complexes in the Plasma Membrane of Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5912-5918. [PMID: 26421417 DOI: 10.1002/smll.201502132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/18/2015] [Indexed: 06/05/2023]
Abstract
Triggered immobilization of proteins in the plasma membrane of living cells into functional micropatterns is established by using an adaptor protein, which is comprised of an antiGFP nanobody fused to the HaloTag protein. Efficient in situ reorganization of the type I interferon receptor subunits as well as intact, fully functional signaling complexes in living cells are achieved by this method.
Collapse
Affiliation(s)
- Tim Wedeking
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Sara Löchte
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Oliver Birkholz
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Alexander Wallenstein
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Julia Trahe
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, Münster, 48149, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, 48149, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, Münster, 48149, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, 48149, Germany
| | - Jacob Piehler
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Changjiang You
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| |
Collapse
|
19
|
Sánchez MF, Dodes Traian MM, Levi V, Carrer DC. One-Photon Lithography for High-Quality Lipid Bilayer Micropatterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11943-11950. [PMID: 26452154 DOI: 10.1021/acs.langmuir.5b02934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A relevant question in cell biology with broad implications in biomedicine is how the organization and dynamics of interacting membranes modulate signaling cascades that involve cell-cell contact. The functionalization of surfaces with supported lipid bilayers containing tethered proteins is a particularly useful method to present ligands with membrane-like mobility to cells. Here, we present a method to generate micrometer-sized patches of lipid bilayers decorated with proteins. The method uses an economic microcontact printing technique based on one-photon lithography that can be easily implemented in a commercial laser scanning microscope. We verified that both proteins and lipids freely diffuse within the patterned bilayer, as assessed by z-scan fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. These results suggest that the supported lipid bilayer patterns constitute an optimal system to explore processes involving direct interactions between cells. We also illustrate possible applications of this method by exploring the interaction of cells expressing the Fas receptor and patterns of lipid bilayers containing an agonist antibody against Fas.
Collapse
Affiliation(s)
- M Florencia Sánchez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET-Universidad Nacional de Córdoba , Friuli 2434, CC389, 5000 Córdoba, Argentina
| | - Martín M Dodes Traian
- Departamento de Química Biológica-IQUIBICEN Facultad de Ciencias Exactas, Universidad de Buenos Aires, Ciudad Universitaria , 1428 Buenos Aires, Argentina
| | - Valeria Levi
- Departamento de Química Biológica-IQUIBICEN Facultad de Ciencias Exactas, Universidad de Buenos Aires, Ciudad Universitaria , 1428 Buenos Aires, Argentina
| | - Dolores C Carrer
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET-Universidad Nacional de Córdoba , Friuli 2434, CC389, 5000 Córdoba, Argentina
| |
Collapse
|
20
|
Li JR, Ross SS, Liu Y, Liu YX, Wang KH, Chen HY, Liu FT, Laurence TA, Liu GY. Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells. ACS NANO 2015; 9:6738-6746. [PMID: 26057701 PMCID: PMC4758354 DOI: 10.1021/acsnano.5b02270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A recent finding reports that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113-128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation via FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. These results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.
Collapse
Affiliation(s)
- Jie-Ren Li
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Shailise S. Ross
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yang Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ying X. Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kang-hsin Wang
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Huan-Yuan Chen
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Fu-Tong Liu
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Ted A. Laurence
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
21
|
Abstract
Fluorescence microscopy is among the most widely utilized tools in cell and molecular biology due to its ability to noninvasively obtain time-resolved images of live cells with molecule-specific contrast. In this chapter, we describe a simple high-resolution technique, scanning angle interference microscopy (SAIM), for the imaging and localization of fluorescent molecules with nanometer precision along the optical axis. In SAIM, samples above a reflective surface are sequentially scanned with an excitation laser at varying angles of incidence. Interference patterns generated between the incident and reflected lights result in an emission intensity that depends on the height of a fluorophore above the silicon surface and the angle of the incident radiation. The measured fluorescence intensities are then fit to an optical model to localize the labeled molecules along the z-axis with 5-10 nm precision and diffraction-limited lateral resolution. SAIM is easily implemented on widely available commercial total internal reflection fluorescence microscopes, offering potential for widespread use in cell biology. Here, we describe the setup of SAIM and its application for imaging cellular structures near (<1 μm) the sample substrate.
Collapse
|
22
|
Löchte S, Waichman S, Beutel O, You C, Piehler J. Live cell micropatterning reveals the dynamics of signaling complexes at the plasma membrane. ACTA ACUST UNITED AC 2015; 207:407-18. [PMID: 25385185 PMCID: PMC4226739 DOI: 10.1083/jcb.201406032] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The use of micropatterned surfaces that bind HaloTag fusion proteins allows spatial organization of plasma membrane proteins for efficient visualization and quantification of protein–protein interactions in live cells. Interactions of proteins in the plasma membrane are notoriously challenging to study under physiological conditions. We report in this paper a generic approach for spatial organization of plasma membrane proteins into micropatterns as a tool for visualizing and quantifying interactions with extracellular, intracellular, and transmembrane proteins in live cells. Based on a protein-repellent poly(ethylene glycol) polymer brush, micropatterned surface functionalization with the HaloTag ligand for capturing HaloTag fusion proteins and RGD peptides promoting cell adhesion was devised. Efficient micropatterning of the type I interferon (IFN) receptor subunit IFNAR2 fused to the HaloTag was achieved, and highly specific IFN binding to the receptor was detected. The dynamics of this interaction could be quantified on the single molecule level, and IFN-induced receptor dimerization in micropatterns could be monitored. Assembly of active signaling complexes was confirmed by immunostaining of phosphorylated Janus family kinases, and the interaction dynamics of cytosolic effector proteins recruited to the receptor complex were unambiguously quantified by fluorescence recovery after photobleaching.
Collapse
Affiliation(s)
- Sara Löchte
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Sharon Waichman
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Oliver Beutel
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Changjiang You
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
23
|
Abstract
Our long-term efforts to elucidate receptor-mediated signalling in immune cells, particularly transmembrane signalling initiated by FcɛRI, the receptor for IgE in mast cells, led us unavoidably to contemplate the role of the heterogeneous plasma membrane. Our early investigations with fluorescence microscopy revealed co-redistribution of certain lipids and signalling components with antigen-cross-linked IgE-FcɛRI and pointed to participation of ordered membrane domains in the signalling process. With a focus on this function, we have worked along with others to develop diverse and increasingly sophisticated tools to analyse the complexity of membrane structure that facilitates regulation and targeting of signalling events. The present chapter describes how initial membrane interactions of clustered IgE-FcɛRI lead to downstream cellular responses and how biochemical information integrated with nanoscale resolution spectroscopy and imaging is providing mechanistic insights at the level of molecular complexes.
Collapse
Affiliation(s)
- David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, U.S.A
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
24
|
Singhai A, Wakefield DL, Bryant KL, Hammes SR, Holowka D, Baird B. Spatially defined EGF receptor activation reveals an F-actin-dependent phospho-Erk signaling complex. Biophys J 2014; 107:2639-51. [PMID: 25468343 DOI: 10.1016/j.bpj.2014.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/19/2014] [Accepted: 09/30/2014] [Indexed: 12/24/2022] Open
Abstract
We investigated the association of signaling proteins with epidermal growth factor (EGF) receptors (EGFR) using biotinylated EGF bound to streptavidin that is covalently coupled in an ordered array of micron-sized features on silicon surfaces. Using NIH-3T3 cells stably expressing EGFR, we observe concentration of fluorescently labeled receptors and stimulated tyrosine phosphorylation that are spatially confined to the regions of immobilized EGF and quantified by cross-correlation analysis. We observe recruitment of phosphorylated paxillin to activated EGFR at these patterned features, as well as β1-containing integrins that preferentially localize to more peripheral EGF features, as quantified by radial fluorescence analysis. In addition, we detect recruitment of EGFP-Ras, MEK, and phosphorylated Erk to patterned EGF in a process that depends on F-actin and phosphoinositides. These studies reveal and quantify the coformation of multiprotein EGFR signaling complexes at the plasma membrane in response to micropatterned growth factors.
Collapse
Affiliation(s)
- Amit Singhai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Devin L Wakefield
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Kirsten L Bryant
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | | | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
25
|
Midthun KM, Taylor PG, Newby C, Chatzichristidi M, Petrou PS, Lee JK, Kakabakos SE, Baird BA, Ober CK. Orthogonal patterning of multiple biomolecules using an organic fluorinated resist and imprint lithography. Biomacromolecules 2013; 14:993-1002. [PMID: 23439033 PMCID: PMC3672400 DOI: 10.1021/bm301783t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The ability to spatially deposit multiple biomolecules onto a single surface with high-resolution while retaining biomolecule stability and integrity is critical to the development of micro- and nanoscale biodevices. While conventional lithographic patterning methods are attractive for this application, they typically require the use of UV exposure and/or harsh solvents and imaging materials, which may be damaging to fragile biomolecules. Here, we report the development of a new patterning process based on a fluorinated patterning material that is soluble in hydrofluoroether solvents, which we show to be benign to biomolecules, including proteins and DNA. We demonstrate the implementation of these materials into an orthogonal processing system for patterning multibiomolecule arrays by imprint lithography at room temperature. We further showcase this method's capacity for fabricating patterns of receptor-specific ligands for fundamental cell studies.
Collapse
Affiliation(s)
- Kari M. Midthun
- Dept. of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Priscilla G. Taylor
- Dept. of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
- Dept. of Materials Science & Engineering, Cornell University, Ithaca, NY, USA
| | - Carol Newby
- Dept. of Materials Science & Engineering, Cornell University, Ithaca, NY, USA
| | | | - Panagiota S. Petrou
- Institute of Radioisotopes & Radiodiagnostic Products, NCSR “Demokritos”, Aghia Paraskevi, Athens, Greece
| | - Jin-Kyun Lee
- Dept. of Materials Science & Engineering, Cornell University, Ithaca, NY, USA
| | - Sotiris E. Kakabakos
- Institute of Radioisotopes & Radiodiagnostic Products, NCSR “Demokritos”, Aghia Paraskevi, Athens, Greece
| | - Barbara A. Baird
- Dept. of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Christopher K. Ober
- Dept. of Materials Science & Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
26
|
Torres AJ, Contento RL, Gordo S, Wucherpfennig KW, Love JC. Functional single-cell analysis of T-cell activation by supported lipid bilayer-tethered ligands on arrays of nanowells. LAB ON A CHIP 2013; 13:90-9. [PMID: 23070211 PMCID: PMC3522575 DOI: 10.1039/c2lc40869d] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Supported lipid bilayers are an important biomolecular tool for characterizing immunological synapses. Immobilized bilayers presenting tethered ligands on planar substrates have yielded both spatio-temporal and structural insights into how T cell receptors (TCRs) reorganize during the initial formation of synapses upon recognition of peptide antigens bound to major histocompatibility complex (MHC) molecules. The prototypical configuration of these assays, however, limits the extent to which the kinetics and structure of the supramolecular activation clusters of the synapse (that occur in seconds or minutes) can be related to subsequent complex cellular responses, such as cytokine secretion and proliferation, occurring over hours to days. Here we describe a new method that allows correlative measures of both attributes with single-cell resolution by using immobilized lipid bilayers and tethered ligands on the surface of dense arrays of subnanoliter wells. This modification allows each nanowell to function as an artificial antigen-presenting cell (APC), and the synapses formed upon contact can be imaged by fluorescence microscopy. We show that the lipid bilayers remain stable and mobile on the surface of the PDMS, and that modifying the ligands tethered to the bilayer alters the structure of the resulting synapses in expected ways. Finally, we demonstrate that this approach allows the subsequent characterization of secreted cytokines from the activated human T cell clones by microengraving in both antigen- and pan-specific manners. This new technique should allow detailed investigations on how biophysical and structural aspects of the synapse influence the activation of individual T cells and their complex functional responses.
Collapse
Affiliation(s)
- Alexis J. Torres
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Rita Lucia Contento
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Susana Gordo
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Kai W. Wucherpfennig
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
- Program in Immunology, Harvard Medical School, Boston, MA 02115
| | - J. Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
27
|
Abstract
It is increasingly recognized that cell signaling, as a chemical process, must be considered at the local, micrometer scale. Micro- and nanofabrication techniques provide access to these dimensions, with the potential to capture and manipulate the spatial complexity of intracellular signaling in experimental models. This review focuses on recent advances in adapting surface engineering for use with biomolecular systems that interface with cell signaling, particularly with respect to surfaces that interact with multiple receptor systems on individual cells. The utility of this conceptual and experimental approach is demonstrated in the context of epithelial cells and T lymphocytes, two systems whose ability to perform their physiological function is dramatically impacted by the convergence and balance of multiple signaling pathways.
Collapse
Affiliation(s)
- L.C. Kam
- Deparment of Biomedical Engineering, Columbia University, New York, NY 10027
| | - K. Shen
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114;
| | - M.L. Dustin
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
28
|
Jaqaman K, Grinstein S. Regulation from within: the cytoskeleton in transmembrane signaling. Trends Cell Biol 2012; 22:515-26. [PMID: 22917551 DOI: 10.1016/j.tcb.2012.07.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 12/16/2022]
Abstract
There is mounting evidence that the plasma membrane is highly dynamic and organized in a complex manner. The cortical cytoskeleton is proving to be a particularly important regulator of plasmalemmal organization, modulating the mobility of proteins and lipids in the membrane, facilitating their segregation, and influencing their clustering. This organization plays a critical role in receptor-mediated signaling, especially in the case of immunoreceptors, which require lateral clustering for their activation. Based on recent developments, we discuss the structures and mechanisms whereby the cortical cytoskeleton regulates membrane dynamics and organization, and how the nonuniform distribution of immunoreceptors and their self-association may affect activation and signaling.
Collapse
Affiliation(s)
- Khuloud Jaqaman
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
29
|
Veatch SL, Chiang EN, Sengupta P, Holowka DA, Baird BA. Quantitative nanoscale analysis of IgE-FcεRI clustering and coupling to early signaling proteins. J Phys Chem B 2012; 116:6923-35. [PMID: 22397623 DOI: 10.1021/jp300197p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antigen-mediated cross-linking of IgE bound to its receptor, FcεRI, initiates a transmembrane signaling cascade that results in mast cell activation in the allergic response. Using immunogold labeling of intact RBL mast cells and scanning electron microscopy (SEM), we visualize molecular reorganization of IgE-FcεRI and early signaling proteins on both leaflets of the plasma membrane, without the need for ripped off membrane sheets. As quantified by pair correlation analysis, we observe dramatic changes in the nanoscale distribution of IgE-FcεRI after binding of multivalent antigen to stimulate transmembrane signaling, and this is accompanied by similar clustering of Lyn and Syk tyrosine kinases, and adaptor protein LAT. We find that Lyn co-redistributes with IgE-FcεRI into clusters that cross-correlate throughout 20 min of stimulation. Inhibition of tyrosine kinase activity reduces the numbers of both IgE-FcεRI and Lyn in stimulated clusters. Coupling of these proteins is also decreased when membrane cholesterol is reduced either before or after antigen addition. These results provide evidence for involvement of FcεRI phosphorylation and cholesterol-dependent membrane structure in the interactions that accompany IgE-mediated activation of RBL mast cells. More generally, this SEM view of intact cell surfaces provides new insights into the nanoscale organization of receptor-mediated signaling complexes in the plasma membrane.
Collapse
Affiliation(s)
- Sarah L Veatch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | | | | | |
Collapse
|
30
|
Nanofabrication for the analysis and manipulation of membranes. Ann Biomed Eng 2011; 40:1356-66. [PMID: 22143598 DOI: 10.1007/s10439-011-0479-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/23/2011] [Indexed: 12/21/2022]
Abstract
Recent advancements and applications of nanofabrication have enabled the characterization and control of biological membranes at submicron scales. This review focuses on the application of nanofabrication towards the nanoscale observing, patterning, sorting, and concentrating membrane components. Membranes on living cells are a necessary component of many fundamental cellular processes that naturally incorporate nanoscale rearrangement of the membrane lipids and proteins. Nanofabrication has advanced these understandings, for example, by providing 30 nm resolution of membrane proteins with metal-enhanced fluorescence at the tip of a scanning probe on fixed cells. Naturally diffusing single molecules at high concentrations on live cells have been observed at 60 nm resolution by confining the fluorescence excitation light through nanoscale metallic apertures. The lateral reorganization on the plasma membrane during membrane-mediated signaling processes has been examined in response to nanoscale variations in the patterning and mobility of the signal-triggering molecules. Further, membrane components have been separated, concentrated, and extracted through on-chip electrophoretic and microfluidic methods. Nanofabrication provides numerous methods for examining and manipulating membranes for both greater understandings of membrane processes as well as for the application of membranes to other biophysical methods.
Collapse
|
31
|
Torres AJ, Holowka D, Baird BA. Micropatterned ligand arrays to study spatial regulation in Fc receptor signaling. Methods Mol Biol 2011; 748:195-207. [PMID: 21701976 DOI: 10.1007/978-1-61779-139-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fc receptor signaling plays a fundamental role in immune responses. A plethora of Fc -receptors (e.g., Fc gamma, Fc-alpha, and Fc-epsilon) are expressed on different immune cells, including natural killer cells, macrophages, mast cells, and neutrophils. Receptor clustering and activation by multivalent ligands or opsonized particles induce a signaling cascade that leads to targeted secretion of chemical mediators (i.e., histamine, cytokines, and chemokines) and phagocytosis, among other responses. Spatial targeting and compartmentalization are common mechanisms of regulation in Fc receptor signaling. However, the tools for studying these dynamic interactions have been limited. To overcome these limitations in our model system, microfabricated surfaces containing spatially defined ligands are used to cluster- and activate IgE receptors (FcεRI), involved in allergic responses by mast cells. Micron-scale control of cell activation allows investigation of spatially regulated mechanisms for intracellular signaling with -fluorescence microscopy. This approach in conjunction with biochemical techniques has proven to be valuable for investigating immune receptor signaling.
Collapse
Affiliation(s)
- Alexis J Torres
- Department of Chemistry and Chemical Biology,Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
32
|
The Fc receptor-cytoskeleton complex from human neutrophils. J Proteomics 2011; 75:450-68. [PMID: 21911091 DOI: 10.1016/j.jprot.2011.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/12/2011] [Accepted: 08/14/2011] [Indexed: 11/23/2022]
Abstract
The Fc receptor complex and its associated phagocytic cytoskeleton machinery were captured from the surface of live cells by IgG coated microbeads and identified by mass spectrometry. The random and independently sampled intensity values of peptides were similar in the control and IgG samples. After log transformation, the parent and fragment intensity values showed a normal distribution where ≥99.9% of the data was well above the background noise. Some proteins showed significant differences in intensity between the IgG and control samples by ANOVA followed by the Tukey-Kramer honestly significant difference test. However many proteins were specific to the IgG beads or the control beads. The set of detected cytoskeleton proteins, binding proteins and enzymes detected on the IgG beads were used to predict the network of actin-associated regulatory factors. Signaling factors/proteins such as PIK3, PLC, GTPases (such CDC42, Rho GAPs/GEFs), annexins and inositol triphosphate receptors were all identified as being specific to the activated receptor complex by mass spectrometry. In addition, the tyrosine kinase Fak was detected with the IgG coated beads. Hence, an activated receptor cytoskeleton complex and its associated regulatory proteins were captured from the surface of live human primary leukocytes.
Collapse
|
33
|
Salaita K, Groves JT. Roles of the cytoskeleton in regulating EphA2 signals. Commun Integr Biol 2011; 3:454-7. [PMID: 21057639 DOI: 10.4161/cib.3.5.12418] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 05/13/2010] [Indexed: 11/19/2022] Open
Abstract
The lateral organizations of receptors in the cell membrane display a tremendous amount of complexity. In some cases, receptor functions can be attributed to specific spatial arrangements in the plasma membrane. We recently found that one member of the largest subfamily of receptor tyrosine kinases (RTKs), EphA2, is organized over micrometer length scales by the cell's own cytoskeleton, and that this can regulate receptor signaling functions. Spatial organization of the receptor was found to be highly associated with invasive character, and mechanical disruption of receptor organization altered key down-stream events in the EphA2 signaling pathway. In this Addendum article, we put forth possible models for why EphA2 and other receptors may employ mechanical and spatial inputs mediated by the cytoskeleton. We speculate that this class of input may be common, and contributes to the intricacies of cellular signaling.
Collapse
Affiliation(s)
- Khalid Salaita
- Department of Chemistry; Emory University; Atlanta, GA USA
| | | |
Collapse
|
34
|
Chiang EN, Dong R, Ober CK, Baird BA. Cellular responses to patterned poly(acrylic acid) brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7016-23. [PMID: 21557546 PMCID: PMC3274417 DOI: 10.1021/la200093e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We use patterned poly(acrylic acid) (PAA) polymer brushes to explore the effects of surface chemistry and topography on cell-surface interactions. Most past studies of surface topography effects on cell adhesion have focused on patterned feature sizes that are larger than the dimensions of a cell, and PAA brushes have been characterized as cell repellent. Here we report cell adhesion studies for RBL mast cells incubated on PAA brush surfaces patterned with a variety of different feature sizes. We find that when patterned at subcellular dimensions on silicon surfaces, PAA brushes that are 30 or 15 nm thick facilitate cell adhesion. This appears to be mediated by fibronectin, which is secreted by the cells, adsorbing to the brushes and then engaging cell-surface integrins. The result is detectable accumulation of plasma membrane within the brushes, and this involves cytoskeletal remodeling at the cell-surface interface. By decreasing brush thickness, we find that PAA can be 'tuned' to promote cell adhesion with down-modulated membrane accumulation. We exemplify the utility of patterned PAA brush arrays for spatially controlling the activation of cells by modifying brushes with ligands that specifically engage IgE bound to high-affinity receptors on mast cells.
Collapse
Affiliation(s)
- Ethan N. Chiang
- Department of Chemistry and Chemical Biology, Baker Laboratories, Cornell University, Ithaca, NY 14853
| | - Rong Dong
- Department of Chemistry and Chemical Biology, Baker Laboratories, Cornell University, Ithaca, NY 14853
| | - Christopher K. Ober
- Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, NY 14853
| | - Barbara A. Baird
- Department of Chemistry and Chemical Biology, Baker Laboratories, Cornell University, Ithaca, NY 14853
| |
Collapse
|
35
|
Biggs MJP, Richards RG, Dalby MJ. Nanotopographical modification: a regulator of cellular function through focal adhesions. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2010; 6:619-33. [PMID: 20138244 PMCID: PMC2965469 DOI: 10.1016/j.nano.2010.01.009] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 12/02/2009] [Accepted: 01/07/2010] [Indexed: 12/25/2022]
Abstract
As materials technology and the field of biomedical engineering advances, the role of cellular mechanisms, in particular adhesive interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device design has evolved from the exquisite ability of biological systems to respond to topographical features or chemical stimuli, a process that has led to the development of next-generation biomaterials for a wide variety of clinical disorders. In vitro studies have identified nanoscale features as potent modulators of cellular behavior through the onset of focal adhesion formation. The focus of this review is on the recent developments concerning the role of nanoscale structures on integrin-mediated adhesion and cellular function with an emphasis on the generation of medical constructs with regenerative applications. FROM THE CLINICAL EDITOR In this review, recent developments related to the role of nanoscale structures on integrin-mediated adhesion and cellular function is discussed, with an emphasis on regenerative applications.
Collapse
Affiliation(s)
- Manus Jonathan Paul Biggs
- Nanotechnology Center for Mechanics in Regenerative Medicine, Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
| | | | | |
Collapse
|
36
|
Yu CH, Groves JT. Engineering supported membranes for cell biology. Med Biol Eng Comput 2010; 48:955-63. [PMID: 20559751 PMCID: PMC2944960 DOI: 10.1007/s11517-010-0634-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/07/2010] [Indexed: 11/19/2022]
Abstract
Cell membranes exhibit multiple layers of complexity, ranging from their specific molecular content to their emergent mechanical properties and dynamic spatial organization. Both compositional and geometrical organizations of membrane components are known to play important roles in life processes, including signal transduction. Supported membranes, comprised of a bilayer assembly of phospholipids on the solid substrate, have been productively served as model systems to study wide range problems in cell biology. Because lateral mobility of membrane components is readily preserved, supported lipid membranes with signaling molecules can be utilized to effectively trigger various intercellular reactions. The spatial organization and mechanical deformation of supported membranes can also be manipulated by patterning underlying substrates with modern micro- and nano-fabrication techniques. This article focuses on various applications and methods to spatially patterned biomembranes by means of curvature modulations and spatial reorganizations, and utilizing them to interface with live cells. The integration of biological components into synthetic devices provides a unique approach to investigate molecular mechanisms in cell biology.
Collapse
Affiliation(s)
- Cheng-han Yu
- Research Centre of Excellence in Mechanobiology, National University of Singapore, Singapore
| | | |
Collapse
|
37
|
Abstract
Parylene is a family of chemically vapour deposited polymer with material properties that are attractive for biomedicine and nanobiotechnology. Chemically inert parylene “peel-off” stencils have been demonstrated for micropatterning biomolecular arrays with high uniformity, precise spatial control down to nanoscale resolution. Such micropatterned surfaces are beneficial in engineering biosensors and biological microenvironments. A variety of substituted precursors enables direct coating of functionalised parylenes onto biomedical implants and microfluidics, providing a convenient method for designing biocompatible and bioactive surfaces. This article will review the emerging role and applications of parylene as a biomaterial for surface chemical modification and provide a future outlook.
Collapse
|
38
|
Reimhult E, Baumann MK, Kaufmann S, Kumar K, Spycher PR. Advances in nanopatterned and nanostructured supported lipid membranes and their applications. Biotechnol Genet Eng Rev 2010; 27:185-216. [DOI: 10.1080/02648725.2010.10648150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Zou Y, Yeh PYJ, Rossi NAA, Brooks DE, Kizhakkedathu JN. Nonbiofouling Polymer Brush with Latent Aldehyde Functionality as a Template for Protein Micropatterning. Biomacromolecules 2009; 11:284-93. [DOI: 10.1021/bm901159d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuquan Zou
- Centre for Blood Research and Department of Pathology and Laboratory of Medicine, Department of Chemistry, and Department of Mechanical Engineering, 2350 Health Sciences Mall, University of British Columbia, Vancouver, B.C.V6T 1Z3, Canada
| | - Po-Ying J. Yeh
- Centre for Blood Research and Department of Pathology and Laboratory of Medicine, Department of Chemistry, and Department of Mechanical Engineering, 2350 Health Sciences Mall, University of British Columbia, Vancouver, B.C.V6T 1Z3, Canada
| | - Nicholas A. A. Rossi
- Centre for Blood Research and Department of Pathology and Laboratory of Medicine, Department of Chemistry, and Department of Mechanical Engineering, 2350 Health Sciences Mall, University of British Columbia, Vancouver, B.C.V6T 1Z3, Canada
| | - Donald E. Brooks
- Centre for Blood Research and Department of Pathology and Laboratory of Medicine, Department of Chemistry, and Department of Mechanical Engineering, 2350 Health Sciences Mall, University of British Columbia, Vancouver, B.C.V6T 1Z3, Canada
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research and Department of Pathology and Laboratory of Medicine, Department of Chemistry, and Department of Mechanical Engineering, 2350 Health Sciences Mall, University of British Columbia, Vancouver, B.C.V6T 1Z3, Canada
| |
Collapse
|
40
|
Cohen R, Torres A, Ma HT, Holowka D, Baird B. Ca2+ waves initiate antigen-stimulated Ca2+ responses in mast cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:6478-88. [PMID: 19864608 DOI: 10.4049/jimmunol.0901615] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ca(2+) mobilization is central to many cellular processes, including stimulated exocytosis and cytokine production in mast cells. Using single cell stimulation by IgE-specific Ag and high-speed imaging of conventional or genetically encoded Ca(2+) sensors in rat basophilic leukemia and bone marrow-derived rat mast cells, we observe Ca(2+) waves that originate most frequently from the tips of extended cell protrusions, as well as Ca(2+) oscillations throughout the cell that usually follow the initiating Ca(2+) wave. In contrast, Ag conjugated to the tip of a micropipette stimulates local, repetitive Ca(2+) puffs at the region of cell contact. Initiating Ca(2+) waves are observed in most rat basophilic leukemia cells stimulated with soluble Ag and are sensitive to inhibitors of Ca(2+) release from endoplasmic reticulum stores and to extracellular Ca(2+), but they do not depend on store-operated Ca(2+) entry. Knockdown of transient receptor potential channel (TRPC)1 and TRPC3 channel proteins by short hairpin RNA reduces the sensitivity of these cells to Ag and shifts the wave initiation site from protrusions to the cell body. Our results reveal spatially encoded Ca(2+) signaling in response to immunoreceptor activation that utilizes TRPC channels to specify the initiation site of the Ca(2+) response.
Collapse
Affiliation(s)
- Roy Cohen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | | | | | | | | |
Collapse
|
41
|
Kam LC. Capturing the nanoscale complexity of cellular membranes in supported lipid bilayers. J Struct Biol 2009; 168:3-10. [PMID: 19500676 PMCID: PMC2844504 DOI: 10.1016/j.jsb.2009.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/24/2009] [Accepted: 05/27/2009] [Indexed: 11/28/2022]
Abstract
The lateral mobility of cell membranes plays an important role in cell signaling, governing the rate at which embedded proteins can interact with other biomolecules. The past two decades have seen a dramatic transformation in understanding of this environment, as the mechanisms and potential implications of nanoscale structure of these systems has become accessible to theoretical and experimental investigation. In particular, emerging micro- and nano-scale fabrication techniques have made possible the direct manipulation of model membranes at the scales relevant to these biological processes. This review focuses on recent advances in nanopatterning of supported lipid bilayers, capturing the impact of membrane nanostructure on molecular diffusion and providing a powerful platform for further investigation of the role of this spatial complexity on cell signaling.
Collapse
Affiliation(s)
- Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
42
|
Hammond S, Wagenknecht-Wiesner A, Veatch SL, Holowka D, Baird B. Roles for SH2 and SH3 domains in Lyn kinase association with activated FcepsilonRI in RBL mast cells revealed by patterned surface analysis. J Struct Biol 2009; 168:161-7. [PMID: 19427382 PMCID: PMC2767321 DOI: 10.1016/j.jsb.2009.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 11/20/2022]
Abstract
In mast cells, antigen-mediated cross-linking of IgE bound to its high-affinity surface receptor, FcepsilonRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE-FcepsilonRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells.
Collapse
Affiliation(s)
- Stephanie Hammond
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853
| | | | - Sarah L. Veatch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853
| |
Collapse
|
43
|
Abstract
The European Molecular Biology Organization (EMBO) meeting Visualizing Immune System Complexity, held in January 2009, covered multiple scales, from imaging single molecules to imaging whole animals. In addition to experimental details, there was an emphasis on modeling both for data analysis and as a predictive tool to support experimental design. Imaging technologies discussed included total internal reflection fluorescence microscopy, fluorescence correlation spectroscopy, two-photon laser scanning microscopy, and magnetic resonance imaging. The biological systems included basic aspects of adaptive and innate immunity. The type 1 diabetes model was used to illustrate how a human disease was dissected at all the scales, from single-molecule analysis of the interactions of T cell receptors with peptide-loaded major histocompatibility complexes to dynamics of immune cell infiltrates by intravital microscopy, as well as the application of imaging diagnostics in humans.
Collapse
Affiliation(s)
- Michael L Dustin
- Division of Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, New York University, New York, NY 10016, USA.
| |
Collapse
|