1
|
Zhu K, Wu Q, Leng M, Wang Z, Lin W. Phylogenetic analysis of vp2 gene of the infectious bursal disease virus in South China during 2023. Front Vet Sci 2025; 12:1575407. [PMID: 40303390 PMCID: PMC12037624 DOI: 10.3389/fvets.2025.1575407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Infectious Bursal Disease (IBD) is an acute, highly infectious, immunosuppressive disease caused by the infectious bursal disease virus (IBDV). To elucidate the prevalence of IBDV in southern China, a total of 60 tissues (including spleen and bursa) suspected of IBDV infection were collected from broiler chickens in 2023. In this study, a total of 31 IBDV strains were successfully isolated. The vp2 gene sequences of these isolates were sequenced and analysed. The results showed that 8 of the isolates were identified as very virulent strains, 11 as classical strains and 12 as novel variants. The nucleotide sequence identity among the isolates ranged from 90.7 to 100%, as determined by MegAlign. Further analysis revealed that the novel mutant strains exhibited characteristic amino acid sites are 252I, 254 N, 262Y, 299S and 318D. Phylogenetic analysis of the IBDV isolates and reference strains from South China demonstrated that the novel mutant strain has diverged from previously prevalent mutant strains, such as Variant E and GLS, forming a distinct lineage. This finding implies that the high mutation rate of IBDV may compromise vaccine efficacy and pose new challenges for the prevention and control of IBDV in poultry production.
Collapse
Affiliation(s)
- Kensi Zhu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qi Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mei Leng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | | | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Zanetti FA, Fernandez I, Baquero E, Guardado-Calvo P, Ferrino-Iriarte A, Dubois S, Morel E, Alfonso V, Aguilera MO, Celayes ME, Polo LM, Suhaiman L, Galassi VV, Chiarpotti MV, Allende-Ballestero C, Rodriguez JM, Castón JR, Lijavetzky D, Taboga O, Colombo MI, Del Pópolo M, Rey FA, Delgui LR. On the role of VP3-PI3P interaction in birnavirus endosomal membrane targeting. eLife 2025; 13:RP97261. [PMID: 40047543 PMCID: PMC11884790 DOI: 10.7554/elife.97261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Birnaviruses are a group of double-stranded RNA (dsRNA) viruses infecting birds, fish, and insects. Early endosomes (EE) constitute the platform for viral replication. Here, we study the mechanism of birnaviral targeting of EE membranes. Using the Infectious Bursal Disease Virus (IBDV) as a model, we validate that the viral protein 3 (VP3) binds to phosphatidylinositol-3-phosphate (PI3P) present in EE membranes. We identify the domain of VP3 involved in PI3P-binding, named P2 and localized in the core of VP3, and establish the critical role of the arginine at position 200 (R200), conserved among all known birnaviruses. Mutating R200 abolishes viral replication. Moreover, we propose a two-stage modular mechanism for VP3 association with EE. Firstly, the carboxy-terminal region of VP3 adsorbs on the membrane, and then the VP3 core reinforces the membrane engagement by specifically binding PI3P through its P2 domain, additionally promoting PI3P accumulation.
Collapse
Affiliation(s)
- Flavia A Zanetti
- Instituto de Ciencia y Tecnología "Dr. Cesar Milstein", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Ignacio Fernandez
- Institut Pasteur, Université Paris Cité, Structural Virology UnitParisFrance
| | - Eduard Baquero
- Institut Pasteur, Université Paris Cité, Structural Virology UnitParisFrance
| | | | | | - Sarah Dubois
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants MaladesParisFrance
| | - Etienne Morel
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants MaladesParisFrance
| | - Victoria Alfonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Milton Osmar Aguilera
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
| | - María E Celayes
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
| | - Luis Mariano Polo
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
| | - Laila Suhaiman
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
| | - Vanesa V Galassi
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo)MendozaArgentina
| | - Maria V Chiarpotti
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo)MendozaArgentina
| | | | - Javier M Rodriguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC)MadridSpain
| | - Jose R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC)MadridSpain
| | - Diego Lijavetzky
- Instituto de Biología Agrícola de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
| | - Oscar Taboga
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - María I Colombo
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
| | - Mario Del Pópolo
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo)MendozaArgentina
| | - Félix A Rey
- Institut Pasteur, Université Paris Cité, Structural Virology UnitParisFrance
| | - Laura Ruth Delgui
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo)MendozaArgentina
| |
Collapse
|
3
|
Li Y, Gao P, Li C, Liu L, Xu Z, Yu Y, Ma J. Immune response of chickens with aIBDV infection by high-throughput sequencing in chickens. Microb Pathog 2025; 200:107376. [PMID: 39947357 DOI: 10.1016/j.micpath.2025.107376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Infectious bursal disease (IBD) can result in significant immunosuppression and bursal damage in 3-6 week chickens. To investigate the role of important genes from chicken during IBD virus (IBDV) infection, Jinghong laying hens were used to clarify the pathways of immune response. The transcriptional profiles of cecal tonsil of chickens were performed by high-throughput sequencing at the first day and third day post IBDV infection (dpi) and the transcriptional levels of three immunity-related genes, namely IPMK, TAB3, and ZC3H12A, were confirmed in vitro by qPCR. The results showed that 1731 differential genes were obtained in the IBDV-infected group compared to the control group at 1 dpi. Among these, genes related to 229 immune functions and 15 immune pathways were differentially expressed. 2550 differential genes were obtained at 3 dpi, and genes associated with 289 immunological functions and 14 immune pathways were found to have variable expression. According to the findings of GO and KEGG analyses, IBDV infection triggered numerous immune response processes in the cecal tonsil of chicken, including TGF pathway and MAPK pathway. QPCR results in vitro revealed that the mRNA levels of IPMK, TAB3, and ZC3H12A were decreased at 6 h, and up-regulated as time goes on to 36 h during IBDV infection in HD11 cells. In summary, the results established the groundwork for future research on the relationship between IBDV infection and host immune molecules. Further research contributes to the role of immunity-related genes during IBDV infection and provides the effective prevention and control strategy to viral infection.
Collapse
Affiliation(s)
- Yaqian Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China; Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang, 453003, Henan, China
| | - Chengfei Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China; Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang, 453003, Henan, China
| | - Liu Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China; Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang, 453003, Henan, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China; Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang, 453003, Henan, China.
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China; Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang, 453003, Henan, China.
| |
Collapse
|
4
|
Huang M, Xu M, Han J, Ke E, Niu X, Zhang Y, Wang G, Yu H, Liu R, Wang S, Liu Y, Chen Y, Han J, Wu Z, Cui H, Zhang Y, Duan Y, Gao Y, Qi X. Enhancing MyD88 oligomerization is one important mechanism by which IBDV VP2 induces inflammatory response. PLoS Pathog 2025; 21:e1012985. [PMID: 40067802 PMCID: PMC11957393 DOI: 10.1371/journal.ppat.1012985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/31/2025] [Accepted: 02/16/2025] [Indexed: 04/02/2025] Open
Abstract
The inflammatory response is an essential component of innate immunity to defense against pathogens. Infectious bursal disease (IBD) is the most important immunosuppressive disease in chickens and is caused by the infectious bursal disease virus (IBDV). Acute inflammation is a typical pathogenic process for IBD, however, the underlying mechanism is not clear. Here, we report that IBDV induces obvious inflammatory response in vivo and in vitro. Furthermore, viral VP2 is identified as an important inflammatory stimulus. It is observed that IBDV VP2 can activate NF-κB signaling pathway and then increase IL-1β production. In detail, IBDV VP2 interacts with myeloid differentiation primary response gene 88 (MyD88), potentiates the oligomerization of MyD88 and assembly of MyD88 complex, which is one important element leading to NF-κB signaling pathway activation and IL-1β production increase. More meaningfully, residues 253/284 of viral VP2 are significantly involved in IBDV-induced inflammatory response through modulating the interaction strength between VP2 and MyD88 and the following MyD88-NF-κB-IL-1β signaling pathway. This study reveals one molecular mechanism that trigger inflammation during IBDV infection, which is of great significance for a deeper understanding of the pathogenic mechanisms of IBDV.
Collapse
Affiliation(s)
- Mengmeng Huang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengmeng Xu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Jingzhe Han
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Erjing Ke
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xinxin Niu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guodong Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hangbo Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Runhang Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Jinze Han
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Ziwen Wu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yulu Duan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Reddy VRAP, Bianco C, Poulos C, Egana-Labrin SC, Brodrick AJ, Nazki S, Schock A, Broadbent AJ. Molecular characterization of reassortant infectious bursal disease virus (IBDV) strains of genogroup A3B1 detected in some areas of Britain between 2020 and 2021. Virology 2024; 600:110269. [PMID: 39437533 DOI: 10.1016/j.virol.2024.110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Infectious bursal disease virus (IBDV) causes a major immunosuppressive disease of chickens. As part of ongoing epidemiological surveillance for IBDV, the hypervariable region (HVR) of the VP2 capsid gene encoded by segment A, and a region of the VP1 polymerase gene, encoded by segment B, were sequenced from 20 IBDV-positive bursal samples obtained in 2020 and 2021, from 16 commercial British broiler farms. Birds had received a live IBDV vaccine at 17-22 days of age, and samples were obtained at 25-55 days of age. Of the 16 farms, none contained very virulent (vv) strains, one contained a classical virulent strain, two contained vaccine strains, and five contained sequences of reassortant strains with a vv segment A and a non-vv segment B belonging to genogroup A3B1. In eight of the farms, we identified the sequences of both genogroup A3B1 reassortant strains and vaccine strains in the same samples. Therefore, the majority of the farms (13/16 (81%)) contained genogroup A3B1 reassortant viruses. Of the flocks containing reassortant strains, 5/13 (38%) had HVR mutations Q219L, G254D, D279N, and N280T, consistent with a recently described Western European clade, but the rest had other mutations or no mutations, demonstrating that multiple clades were present in the samples. Taken together, vv strains were not detected, but reassortant strains predominated in the farms, which belonged to different clades, and were frequently found together with vaccine strains.
Collapse
Affiliation(s)
- Vishwanatha R A P Reddy
- School of Life Sciences, Keele University, Keele, ST5 5BG, UK; The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK.
| | - Carlo Bianco
- Animal and Plant Health Agency (APHA) Lasswade, Penicuik, Midlothian, EH26 0PZ, UK; School of Veterinary Medicine and Science, University of Nottingham Campus, Sutton Bonington, LE12 5RA, UK
| | - Christopher Poulos
- Animal and Plant Health Agency (APHA) Lasswade, Penicuik, Midlothian, EH26 0PZ, UK
| | - Sofia C Egana-Labrin
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Andrew J Brodrick
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Salik Nazki
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
| | - Alex Schock
- Animal and Plant Health Agency (APHA) Lasswade, Penicuik, Midlothian, EH26 0PZ, UK
| | - Andrew J Broadbent
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK; Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
6
|
Huang X, Li Y, Li J, Jiang Y, Cui W, Zhou H, Tang L. The long noncoding RNA loc107053557 acts as a gga-miR-3530-5p sponge to suppress the replication of vvIBDV through regulating STAT1 expression. Virulence 2024; 15:2333237. [PMID: 38528779 PMCID: PMC10984138 DOI: 10.1080/21505594.2024.2333237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/16/2024] [Indexed: 03/27/2024] Open
Abstract
Infectious bursal disease virus (IBDV) causes immunosuppression and high mortality in young chickens. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are important regulators during viral infection. However, detailed the regulatory mechanisms of lncRNA-miRNA-mRNA have not yet been described in IBDV infection. Here, we analysed the role of lncRNA53557/gga-miR-3530-5p/STAT1 axis in very virulent IBDV (vvIBDV) infection. Evidently upregulated expression of lncRNA53557 was observed in bursa of Fabricius and DT40 cells. Meanwhile, overexpression of lncRNA53557 promoted STAT1 expression and inhibited vvIBDV replication and vice versa, indicating that the upregulation of lncRNA53557 was part of the host antiviral defence. The subcellular fractionation assay confirmed that lncRNA53557 can be localized in the cytoplasm. Further, dual-luciferase reporter, RNA pulldown, FISH and RT-qPCR assays revealed that lncRNA53557 were directly bound to gga-miR-3530-5p and had a negative regulatory relationship between them. Subsequent mechanistic analysis showed that lncRNA53557 acted as a competing endogenous RNA (ceRNA) of gga-miR-3530-5p to relieve the repressive effect of gga-miR-3530-5p on its target STAT1, as well as Mx1, OASL, and ISG15, thereby suppressing vvIBDV replication. The study reveals that a network of enriched lncRNAs and lncRNA-associated ceRNA is involved in the regulation of IBDV infection, offering new insight into the mechanisms underlying IBDV-host interaction.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Yue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, P.R. China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, P.R. China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, P.R. China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, P.R. China
| |
Collapse
|
7
|
Ferrero DS, Gimenez MC, Sagar A, Rodríguez JM, Castón JR, Terebiznik MR, Bernadó P, Verdaguer N. Structure of the aminoterminal domain of the birnaviral multifunctional VP3 protein and its unexplored critical role. PNAS NEXUS 2024; 3:pgae521. [PMID: 39677362 PMCID: PMC11645250 DOI: 10.1093/pnasnexus/pgae521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024]
Abstract
To overcome their limited genetic capacity, numerous viruses encode multifunctional proteins. The birnavirus VP3 protein plays key roles during infection, including scaffolding of the viral capsid during morphogenesis, recruitment, and regulation of the viral RNA polymerase, shielding of the double-stranded RNA genome and targeting of host endosomes for genome replication, and immune evasion. The dimeric form of VP3 is critical for these functions. In previous work, we determined the X-ray structure of the central domains (D2-D3) of VP3 from the infectious bursal disease virus (IBDV). However, the structure and function of the IBDV VP3 N-terminal domain (D1) could not be determined at that time. Using integrated structural biology approaches and functional cell assays, here we characterize the IBDV VP3 D1 domain, unveiling its unexplored roles in virion stability and infection. The X-ray structure of D1 shows that this domain folds in four α-helices arranged in parallel dimers, which are essential for maintaining the dimeric arrangement of the full-length protein. Combining small-angle X-ray scattering analyses with molecular dynamics simulations allowed us to build a structural model for the D1-D3 domains. This model consists of an elongated structure with high flexibility in the D2-D3 connection, keeping D1 as the only driver of VP3 dimerization. Using reverse genetics tools, we show that the obliteration of D1 domain prevents the VP3 scaffold function during capsid assembly and severely impacts IBDV infection. Altogether, our study elucidates the structure of the VP3 D1 domain and reveals its role in VP3 protein dimerization and IBDV infection.
Collapse
Affiliation(s)
- Diego Sebastian Ferrero
- Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri i Reixac 15, 08028 Barcelona, Spain
| | - María Cecilia Gimenez
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4, Canada
| | - Amin Sagar
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM and CNRS, 34090 Montpellier, France
| | - Javier María Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), C Darwin, 3, 28049 Madrid, Spain
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), C Darwin, 3, 28049 Madrid, Spain
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM and CNRS, 34090 Montpellier, France
| | - Nuria Verdaguer
- Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri i Reixac 15, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Sun X, Lian Y, Tian T, Cui Z. Virus-like particle encapsulation of functional proteins: advances and applications. Theranostics 2024; 14:7604-7622. [PMID: 39659581 PMCID: PMC11626933 DOI: 10.7150/thno.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024] Open
Abstract
Proteins face several challenges in biomedicine, including issues with antibody production, degradation by proteases, rapid clearance by the kidneys, and short half-lives. To address these problems, various nano delivery systems have been developed, with virus-like particles (VLPs) emerging as a leading solution. VLPs, which are self-assembled protein complexes, offer effective encapsulation and transport of proteins. They provide enhanced stability, extended circulation time, preserved biological activity, improved targeting for therapies or imaging, and reduced side effects due to minimized systemic exposure. This review explores various methods for encapsulating proteins within VLPs. It assesses the benefits and limitations of each method and their applications in imaging, therapeutic enzyme delivery, vaccines, immunotherapy, nanoreactors, and biosensors. Future advancements in VLPs will depend on improving packaging methods, controlling protein loading, optimizing assembly techniques, and enhancing capsid design. The review also discusses current challenges and proposes solutions to advance the use of VLPs in various applications.
Collapse
Affiliation(s)
- Xianxun Sun
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Yindong Lian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tao Tian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
9
|
Liang Z, Leng M, Lian J, Chen Y, Wu Q, Chen F, Wang Z, Lin W. Novel variant infectious bursal disease virus diminishes FAdV-4 vaccination and enhances pathogenicity of FAdV-4. Vet Microbiol 2024; 292:110053. [PMID: 38502979 DOI: 10.1016/j.vetmic.2024.110053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Infectious bursal disease virus (IBDV) caused an acute and highly contagious infectious disease characterized by severe immunosuppression, causing considerable economic losses to the poultry industry globally. Although this disease was well-controlled under the widely use of commercial vaccines in the past decades, the novel variant IBDV strains emerged recently because of the highly immunized-selection pressure in the field, posting new threats to poultry industry. Here, we reported novel variant IBDV is responsible for a disease outbreak, and assessed the epidemic and pathogenicity of IBDV in this study. Moreover, we constructed a challenge model using Fowl adenovirus serotype 4 (FAdV-4) to study on the immunosuppressive effect. Our findings underscore the importance of IBDV surveillance, and provide evidence for understanding the pathogenicity of IBDV.
Collapse
Affiliation(s)
- Zhishan Liang
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Mei Leng
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jiamin Lian
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yazheng Chen
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qi Wu
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Feng Chen
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhanxin Wang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, Guangdong 527400, PR China.
| | - Wencheng Lin
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
10
|
Niu X, Han J, Huang M, Wang G, Zhang Y, Zhang W, Yu H, Xu M, Li K, Gao L, Wang S, Chen Y, Cui H, Zhang Y, Liu C, Wang X, Gao Y, Qi X. Infectious bursal disease virus VP5 triggers host shutoff in a transcription-dependent manner. mBio 2024; 15:e0343323. [PMID: 38289089 PMCID: PMC10936426 DOI: 10.1128/mbio.03433-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 03/14/2024] Open
Abstract
Viruses have evolved intricate mechanisms to evade host antiviral responses and exploit cellular resources by manipulating the expression profile of host genes. During infection, viruses encode proteins with shutoff activity to globally inhibit host protein synthesis, which is an effective strategy for immune evasion. In this study, compelling evidence shows that infectious bursal disease virus (IBDV) infection triggers the suppression of host protein synthesis. Furthermore, using both in vitro and in vivo viral infection models, we have identified that IBDV specifically impedes the transcription of host genes via the shutoff activity of viral VP5, simultaneously conferring advantages to IBDV infection in these circumstances. The proposed mechanism suggests that VP5 competitively binds to RanBP1, disrupting the RanGDP/GTP gradient. This disruption interferes with cellular nucleocytoplasmic transport, impairing the nuclear import of proteins bearing nuclear localization signals. The nuclear transport of pivotal transcriptional regulatory factors, such as p65 and IFN regulatory factor 7, is also compromised, leading to the inhibition of pro-inflammatory cytokines and interferon expression. This newly discovered strategy employed by IBDV enables them to manipulate host gene expression, providing novel insights into how viruses evade host immune responses and establish infections.IMPORTANCEViruses manipulate host processes at various levels to regulate or evade both innate and adaptive immune responses, promoting self-survival and efficient transmission. The "host shutoff," a global suppression of host gene expression mediated by various viruses, is considered a critical mechanism for evading immunity. In this study, we have validated the presence of host shutoff during infectious bursal disease virus (IBDV) infection and additionally uncovered that the viral protein VP5 plays a pivotal role in inhibiting the overall synthesis of host proteins, including cytokines, through a transcription-dependent pathway. VP5 competitively binds with RanBP1, leading to disruption of the Ran protein cycle and consequently interfering with nucleocytoplasmic transport, which ultimately results in the suppression of host gene transcription. These findings unveil a novel strategy employed by IBDV to evade host innate immunity and rapidly establish infection. This study also suggests a novel supplement to understanding the pathway through which viruses inhibit host protein synthesis.
Collapse
Affiliation(s)
- Xinxin Niu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinze Han
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengmeng Huang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guodong Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenying Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hangbo Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengmeng Xu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Shahsavandi S, Ebrahimi MM, Nazari A, Khalili I. Effects of ultra-filtration purification of infectious bursal disease virus on immune responses and cytokine activation in specific pathogen free chickens. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:49-55. [PMID: 38464605 PMCID: PMC10921136 DOI: 10.30466/vrf.2023.2009350.3978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/05/2023] [Indexed: 03/12/2024]
Abstract
Purification is an important step in the production of viral vaccines that strongly affects product recovery and subsequent immune responses. The present study was carried out with the aim of improving the purification of infectious bursal disease virus (IBDV) by the tangential flow filtration (TFF) method. Then, the effect of the purified virus on the induction of immune responses against IBDV in specific pathogen free (SPF) chickens was investigated. The IBD07IR strain was propagated in embryonated SPF eggs. The virus was purified using a 100 kDa cassette. The quality of the recovered viruses was evaluated by titration. A total number of 60 SPF chickens were randomly divided into three groups (n = 20) and received the concentrated viral antigen, commercial live IBDV vaccine and phosphate-buffered saline at the age of 3 weeks by eye drop method. The bursa of Fabricius was examined histopathologically for possible changes. Sera were collected at 1-week intervals from day 0 until the end of 6 weeks after vaccination. The IBDV-specific antibody levels, induction of cell-mediated immunity and mRNA expression levels of cytokines were evaluated. The results showed that despite a relative raise in virus titer from 7.66 to 8.17 embryo infectious dose (EID)50 mL-1 following purification, both the purified IBDV and commercial vaccine are able to induce strong immune responses against the virus. Within a context of egg-based IBDV vaccine production, a single-step TFF can be applied for the relatively purification. This platform requires a further study in the selection of multiple membranes to optimize the operating conditions and final product.
Collapse
Affiliation(s)
- Shahla Shahsavandi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Mohammad Majid Ebrahimi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Ali Nazari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Iraj Khalili
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| |
Collapse
|
12
|
Yvon M, German TL, Ullman DE, Dasgupta R, Parker MH, Ben-Mahmoud S, Verdin E, Gognalons P, Ancelin A, Laï Kee Him J, Girard J, Vernerey MS, Fernandez E, Filloux D, Roumagnac P, Bron P, Michalakis Y, Blanc S. The genome of a bunyavirus cannot be defined at the level of the viral particle but only at the scale of the viral population. Proc Natl Acad Sci U S A 2023; 120:e2309412120. [PMID: 37983500 PMCID: PMC10691328 DOI: 10.1073/pnas.2309412120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023] Open
Abstract
Bunyaviruses are enveloped negative or ambisense single-stranded RNA viruses with a genome divided into several segments. The canonical view depicts each viral particle packaging one copy of each genomic segment in one polarity named the viral strand. Several opposing observations revealed nonequal ratios of the segments, uneven number of segments per virion, and even packaging of viral complementary strands. Unfortunately, these observations result from studies often addressing other questions, on distinct viral species, and not using accurate quantitative methods. Hence, what RNA segments and strands are packaged as the genome of any bunyavirus remains largely ambiguous. We addressed this issue by first investigating the virion size distribution and RNA content in populations of the tomato spotted wilt virus (TSWV) using microscopy and tomography. These revealed heterogeneity in viral particle volume and amount of RNA content, with a surprising lack of correlation between the two. Then, the ratios of all genomic segments and strands were established using RNA sequencing and qRT-PCR. Within virions, both plus and minus strands (but no mRNA) are packaged for each of the three L, M, and S segments, in reproducible nonequimolar proportions determined by those in total cell extracts. These results show that virions differ in their genomic content but together build up a highly reproducible genetic composition of the viral population. This resembles the genome formula described for multipartite viruses, with which some species of the order Bunyavirales may share some aspects of the way of life, particularly emerging properties at a supravirion scale.
Collapse
Affiliation(s)
- Michel Yvon
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| | - Thomas L. German
- Department of Entomology, University of Wisconsin, Wisconsin53706, Madison
| | - Diane E. Ullman
- Department of Entomology and Nematology, University of California, California95616, Davis
| | - Ranjit Dasgupta
- Department of Entomology, University of Wisconsin, Wisconsin53706, Madison
| | - Maxwell H. Parker
- Department of Entomology, University of Wisconsin, Wisconsin53706, Madison
| | - Sulley Ben-Mahmoud
- Department of Entomology and Nematology, University of California, California95616, Davis
| | - Eric Verdin
- Pathologie végétale, INRAE, Avignon84143, France
| | | | - Aurélie Ancelin
- CBS, Univ Montpellier, CNRS, INSERM, Montpellier34090, France
| | | | - Justine Girard
- CBS, Univ Montpellier, CNRS, INSERM, Montpellier34090, France
| | | | - Emmanuel Fernandez
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| | - Denis Filloux
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| | - Philippe Roumagnac
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| | - Patrick Bron
- CBS, Univ Montpellier, CNRS, INSERM, Montpellier34090, France
| | | | - Stéphane Blanc
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| |
Collapse
|
13
|
Soleymani S, Janati-Fard F, Housaindokht MR. Designing a bioadjuvant candidate vaccine targeting infectious bursal disease virus (IBDV) using viral VP2 fusion and chicken IL-2 antigenic epitope: A bioinformatics approach. Comput Biol Med 2023; 163:107087. [PMID: 37321098 DOI: 10.1016/j.compbiomed.2023.107087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
Infectious Bursal Disease (IBD) is a common and contagious viral infection that significantly affects the poultry industry. This severely suppresses the immune system in chickens, thereby threating their health and well-being. Vaccination is the most effective strategy for preventing and controlling this infectious agent. The development of VP2-based DNA vaccines combined with biological adjuvants has recently received considerable attention due to their effectiveness in eliciting both humoral and cellular immune responses. In this study, we applied bioinformatics tools to design a fused bioadjuvant candidate vaccine from the full-length sequence of the VP2 protein of IBDV isolated in Iran using the antigenic epitope of chicken IL-2 (chiIL-2). Furthermore, to improve the antigenic epitope presentation and to maintain the three-dimensional structure of the chimeric gene construct, the P2A linker (L) was used to fuse the two fragments. Our in-silico analysis for the design of a candidate vaccine indicates that a continuous sequence of amino acid residues ranging from 105 to 129 in chiIL-2 is proposed as a B cell epitope by epitope prediction servers. The final 3D structure of the VP2-L-chiIL-2105-129 was subjected to physicochemical property determination, molecular dynamic simulation, and antigenic site determination. The results of these analyses led to the development of a stable candidate vaccine that is non-allergenic and has the potential for antigenic surface display potential and adjuvant activity. Finally, it is necessary to investigate the immune response induced by our proposed vaccine in avian hosts. Notably, increasing the immunogenicity of DNA vaccines can be achieved by combining antigenic proteins with molecular adjuvants using the principle of rational vaccine design.
Collapse
Affiliation(s)
- Safoura Soleymani
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Fatemeh Janati-Fard
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Reza Housaindokht
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
14
|
Frontini-López YR, Rivera L, Pocognoni CA, Roldán JS, Colombo MI, Uhart M, Delgui LR. Infectious Bursal Disease Virus Assembly Causes Endoplasmic Reticulum Stress and Lipid Droplet Accumulation. Viruses 2023; 15:1295. [PMID: 37376595 DOI: 10.3390/v15061295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Gumboro illness is caused by the highly contagious immunosuppressive infectious bursal disease virus (IBDV), which affects the poultry industry globally. We have previously shown that IBDV hijacks the endocytic pathway to construct viral replication complexes on endosomes linked to the Golgi complex (GC). Then, analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b, the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), and its substrate, the small GTPase ADP-ribosylation factor 1 (ARF1), for IBDV replication. In the current work, we focused on elucidating the IBDV assembly sites. We show that viral assembly occurs within single-membrane compartments closely associated with endoplasmic reticulum (ER) membranes, though we failed to elucidate the exact nature of the virus-wrapping membranes. Additionally, we show that IBDV infection promotes the stress of the ER, characterized by an accumulation of the chaperone binding protein (BiP) and lipid droplets (LDs) in the host cells. Overall, our results represent further original data showing the interplay between IBDV and the secretory pathway, making a substantial contribution to the field of birnaviruses-host cell interactions.
Collapse
Affiliation(s)
- Yesica R Frontini-López
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
| | - Lautaro Rivera
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
| | - Cristian A Pocognoni
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Julieta S Roldán
- Instituto de Virología e Innovaciones Tecnológicas, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham 1686, Argentina
| | - María I Colombo
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Marina Uhart
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
| | - Laura R Delgui
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| |
Collapse
|
15
|
Brodrick AJ, Broadbent AJ. The Formation and Function of Birnaviridae Virus Factories. Int J Mol Sci 2023; 24:ijms24108471. [PMID: 37239817 DOI: 10.3390/ijms24108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The use of infectious bursal disease virus (IBDV) reverse genetics to engineer tagged reporter viruses has revealed that the virus factories (VFs) of the Birnaviridae family are biomolecular condensates that show properties consistent with liquid-liquid phase separation (LLPS). Although the VFs are not bound by membranes, it is currently thought that viral protein 3 (VP3) initially nucleates the formation of the VF on the cytoplasmic leaflet of early endosomal membranes, and likely drives LLPS. In addition to VP3, IBDV VFs contain VP1 (the viral polymerase) and the dsRNA genome, and they are the sites of de novo viral RNA synthesis. Cellular proteins are also recruited to the VFs, which are likely to provide an optimal environment for viral replication; the VFs grow due to the synthesis of the viral components, the recruitment of other proteins, and the coalescence of multiple VFs in the cytoplasm. Here, we review what is currently known about the formation, properties, composition, and processes of these structures. Many open questions remain regarding the biophysical nature of the VFs, as well as the roles they play in replication, translation, virion assembly, viral genome partitioning, and in modulating cellular processes.
Collapse
Affiliation(s)
- Andrew J Brodrick
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD 20742, USA
| | - Andrew J Broadbent
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD 20742, USA
| |
Collapse
|
16
|
Saeki K, Sasaki A. Cell-to-cell transmission promotes the emergence of double-drug resistance. Virus Evol 2023; 9:vead017. [PMID: 37744652 PMCID: PMC10517696 DOI: 10.1093/ve/vead017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/13/2023] [Accepted: 03/08/2023] [Indexed: 09/26/2023] Open
Abstract
The use of multiple antivirals in a single patient increases the risk of emergence of multidrug-resistant viruses, posing a public health challenge and limiting management options. Cell-to-cell viral transmission allows a pair of viruses that are each resistant to a single drug to persist for a prolonged period of passages although neither can survive alone under double-drug treatment. This pair should then persist until they accumulate a second mutation to generate resistance to both drugs. Accordingly, we here propose a hypothesis that viruses have a much higher probability of developing double-drug resistance when they are transmitted via a cell-to-cell mode than when they are transmitted via a cell-free mode through released virions. By using a stochastic model describing the changes in the frequencies of viral genotypes over successive infections, we analytically demonstrate that the emergence probability of double resistance is approximately the square of the number of viral genomes that establish infection times greater in cell-to-cell transmission than in cell-free transmission. Our study suggests the importance of inhibiting cell-to-cell transmission during multidrug treatment.
Collapse
Affiliation(s)
- Koichi Saeki
- Department of Computational Biology and Medical Sciences, Graduate School for Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0885, Japan
| | - Akira Sasaki
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
- Evolution and Ecology Program, International Institute for Applied Systems Analysis, Laxenburg A-2361, Austria
| |
Collapse
|
17
|
Shirogane Y, Harada H, Hirai Y, Takemoto R, Suzuki T, Hashiguchi T, Yanagi Y. Collective fusion activity determines neurotropism of an en bloc transmitted enveloped virus. SCIENCE ADVANCES 2023; 9:eadf3731. [PMID: 36706187 PMCID: PMC9882980 DOI: 10.1126/sciadv.adf3731] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 06/09/2023]
Abstract
Measles virus (MeV), which is usually non-neurotropic, sometimes persists in the brain and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection, serving as a model for persistent viral infections. The persisting MeVs have hyperfusogenic mutant fusion (F) proteins that likely enable cell-cell fusion at synapses and "en bloc transmission" between neurons. We here show that during persistence, F protein fusogenicity is generally enhanced by cumulative mutations, yet mutations paradoxically reducing the fusogenicity may be selected alongside the wild-type (non-neurotropic) MeV genome. A mutant F protein having SSPE-derived substitutions exhibits lower fusogenicity than the hyperfusogenic F protein containing some of those substitutions, but by the wild-type F protein coexpression, the fusogenicity of the former F protein is enhanced, while that of the latter is nearly abolished. These findings advance the understanding of the long-term process of MeV neuropathogenicity and provide critical insight into the genotype-phenotype relationships of en bloc transmitted viruses.
Collapse
Affiliation(s)
- Yuta Shirogane
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Hidetaka Harada
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yuichi Hirai
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Ryuichi Takemoto
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Yanagi
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
18
|
Lin MH, Li D, Tang B, Li L, Suhrbier A, Harrich D. Defective Interfering Particles with Broad-Acting Antiviral Activity for Dengue, Zika, Yellow Fever, Respiratory Syncytial and SARS-CoV-2 Virus Infection. Microbiol Spectr 2022; 10:e0394922. [PMID: 36445148 PMCID: PMC9769664 DOI: 10.1128/spectrum.03949-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
More than 100 arboviruses, almost all of which have an RNA genome, cause disease in humans. RNA viruses are causing unprecedented health system challenges worldwide, many with little or no specific therapies or vaccines available. Certain species of mosquito can carry dengue virus (DENV), Zika virus (ZIKV) and yellow fever virus (YFV), where co-infection of these viruses has occurred. Here, we found that purified synthetic defective interfering particles (DIPs) derived from DENV type 2 (DENV-2) strongly suppressed replication of the aforementioned viruses, respiratory syncytial virus (RSV) and also the novel emerging virus SARS-CoV-2 in human cells. DENV DIPs produced in bioreactors, purified by column chromatography, and concentrated are virus-like particles that are about half the diameter of a typical DENV particle, but with similar ratios of the viral structural proteins envelope and capsid. Overall, DIP-treated cells inhibited DENV, ZIKV, YFV, RSV, and SARS-CoV-2 by at least 98% by mechanisms which included interferon (IFN)-dependent cellular antiviral responses. IMPORTANCE DIPs are spontaneously derived virus mutants with deletions in genes that block viral replication. DIPs play important roles in modulation of viral disease, innate immune responses, virus persistence and virus evolution. Here, we investigated the antiviral activity of highly purified synthetic DIPs derived from DENV, which were produced in bioreactors. DENV DIPs purified by column chromatography strongly inhibited five different RNA viruses, including DENV, ZIKV, YFV, RSV, and SARS-CoV-2 in human cells. DENV DIPs inhibited virus replication via delivery of a small, noninfectious viral RNA that activated cellular innate immunity, resulting in robust type 1 interferon responses. The work here presents a pathway for DIP production which is adaptable to Good Manufacturing Practice, so that their preclinical testing should be suitable for evaluation in subjects.
Collapse
Affiliation(s)
- Min-Hsuan Lin
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Dongsheng Li
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Bing Tang
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St. Lucia, Queensland, Australia
| | - Andreas Suhrbier
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland, Australia
| | - David Harrich
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
McNeale D, Dashti N, Cheah LC, Sainsbury F. Protein cargo encapsulation by
virus‐like
particles: Strategies and applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1869. [PMID: 36345849 DOI: 10.1002/wnan.1869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Viruses and the recombinant protein cages assembled from their structural proteins, known as virus-like particles (VLPs), have gained wide interest as tools in biotechnology and nanotechnology. Detailed structural information and their amenability to genetic and chemical modification make them attractive systems for further engineering. This review describes the range of non-enveloped viruses that have been co-opted for heterologous protein cargo encapsulation and the strategies that have been developed to drive encapsulation. Spherical capsids of a range of sizes have been used as platforms for protein cargo encapsulation. Various approaches, based on native and non-native interactions between the cargo proteins and inner surface of VLP capsids, have been devised to drive encapsulation. Here, we outline the evolution of these approaches, discussing their benefits and limitations. Like the viruses from which they are derived, VLPs are of interest in both biomedical and materials applications. The encapsulation of protein cargo inside VLPs leads to numerous uses in both fundamental and applied biocatalysis and biomedicine, some of which are discussed herein. The applied science of protein-encapsulating VLPs is emerging as a research field with great potential. Developments in loading control, higher order assembly, and capsid optimization are poised to realize this potential in the near future. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery Griffith University Nathan Queensland Australia
| | - Noor Dashti
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland Australia
| | - Li Chen Cheah
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery Griffith University Nathan Queensland Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland Australia
| |
Collapse
|
20
|
Segredo-Otero E, Sanjuán R. Cooperative Virus-Virus Interactions: An Evolutionary Perspective. BIODESIGN RESEARCH 2022; 2022:9819272. [PMID: 37850129 PMCID: PMC10521650 DOI: 10.34133/2022/9819272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/21/2022] [Indexed: 10/19/2023] Open
Abstract
Despite extensive evidence of virus-virus interactions, not much is known about their biological significance. Importantly, virus-virus interactions could have evolved as a form of cooperation or simply be a by-product of other processes. Here, we review and discuss different types of virus-virus interactions from the point of view of social evolution, which provides a well-established framework for interpreting the fitness costs and benefits of such traits. We also classify interactions according to their mechanisms of action and speculate on their evolutionary implications. As in any other biological system, the evolutionary stability of viral cooperation critically requires cheaters to be excluded from cooperative interactions. We discuss how cheater viruses exploit cooperative traits and how viral populations are able to counteract this maladaptive process.
Collapse
Affiliation(s)
- Ernesto Segredo-Otero
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| |
Collapse
|
21
|
Characterization and pathogenicity of infectious bursal disease virus in southern China. Poult Sci 2022; 101:102018. [PMID: 35952600 PMCID: PMC9372626 DOI: 10.1016/j.psj.2022.102018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
|
22
|
Birnaviridae Virus Factories Show Features of Liquid-Liquid Phase Separation and Are Distinct from Paracrystalline Arrays of Virions Observed by Electron Microscopy. J Virol 2022; 96:e0202421. [PMID: 35138130 PMCID: PMC8941928 DOI: 10.1128/jvi.02024-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To gain more information about the nature of Birnaviridae virus factories (VFs), we used a recombinant infectious bursal disease virus (IBDV) expressing split-GFP11 tagged to the polymerase (VP1) that we have previously shown is a marker for VFs in infected cells expressing GFP1-10. We found that VFs colocalized with 5-ethynyl uridine in the presence of actinomycin, demonstrating they contained newly synthesized viral RNA, and VFs were visible in infected cells that were fixed and permeabilized with digitonin, demonstrating that they were not membrane bound. Fluorescence recovery after photobleaching (FRAP) a region of interest within the VFs occurred rapidly, recovering from approximately 25% to 87% the original intensity over 146 s, and VFs were dissolved by 1,6-hexanediol treatment, demonstrating they showed properties consistent with liquid-liquid phase separation. There was a lower colocalization of the VF GFP signal with the capsid protein VP2 (Manders' coefficient [MC] 0.6), compared to VP3 (MC, 0.9), which prompted us to investigate the VF ultrastructure by transmission electron microscopy (TEM). In infected cells, paracrystalline arrays (PAs) of virions were observed in the cytoplasm, as well as discrete electron dense regions. Using correlative light and electron microscopy (CLEM), we observed that the electron dense regions correlated with the GFP signal of the VFs, which were distinct from the PAs. In summary, Birnaviridae VFs contain newly synthesized viral RNA, are not bound by a membrane, show properties consistent with liquid-liquid phase separation, and are distinct from the PAs observed by TEM. IMPORTANCE Members of the Birnaviridae infect birds, fish and insects, and are responsible for diseases of significant economic importance to the poultry industry and aquaculture. Despite their importance, how they replicate in cells remains poorly understood. Here, we show that the Birnaviridae virus factories are not membrane bound, demonstrate properties consistent with liquid-liquid phase separation, and are distinct from the paracrystalline arrays of virions observed by transmission electron microscopy, enhancing our fundamental knowledge of virus replication that could be used to develop strategies to control disease, or optimize their therapeutic application.
Collapse
|
23
|
Abstract
Birnaviruses are members of the Birnaviridae family, responsible for major economic losses to poultry and aquaculture. The family is composed of non-enveloped viruses with a segmented double-stranded RNA (dsRNA) genome. Infectious bursal disease virus (IBDV), the prototypic family member, is the etiological agent of Gumboro disease, a highly contagious immunosuppressive disease in the poultry industry worldwide. We previously demonstrated that IBDV hijacks the endocytic pathway for establishing the viral replication complexes on endosomes associated with the Golgi complex (GC). In this work, we report that IBDV reorganizes the GC to localize the endosome-associated replication complexes without affecting its secretory functionality. Analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b for viral replication. Rab1b comprises a key regulator of GC transport and we demonstrate that transfecting the negative mutant Rab1b N121I or knocking down Rab1b expression by RNA interference significantly reduces the yield of infectious viral progeny. Furthermore, we showed that the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), which activates the small GTPase ADP-ribosylation factor 1 (ARF1), is required for IBDV replication since inhibiting its activity by treatment with brefeldin A (BFA) or Golgicide A (GCA) significantly reduces the yield of infectious viral progeny. Finally, we show that ARF1 dominant negative-mutant T31N over-expression hampered the IBDV infection. Taken together, these results demonstrate that IBDV requires the function of the Rab1b-GBF1-ARF1 axis to promote its replication, making a substantial contribution to the field of birnaviruses-host cell interactions. IMPORTANCE Birnaviruses are unconventional members of the dsRNA viruses, being the lack of a transcriptionally active core the main differential feature. This structural trait, among others that resemble the plus single-stranded (+ssRNA) viruses features, suggests that birnaviruses might follow a different replication program from that conducted by prototypical dsRNA members and have argued the hypothesis that birnaviruses could be evolutionary links between +ssRNA and dsRNA viruses. Here, we present original data showing the IBDV-induced GC reorganization and the crosstalk between IBDV and the Rab1b-GBF1-ARF1 mediated intracellular trafficking pathway. The replication of several +ssRNA viruses depends on the cellular protein GBF1, but its role in the replication process is not clear. Thus, our findings make a substantial contribution to the field of birnaviruses-host cells and provide further evidence supporting the proposed evolutionary connection role of birnaviruses, an aspect which we consider especially relevant for researchers working in the virology field.
Collapse
|
24
|
Yang Z, He B, Lu Z, Mi S, Jiang J, Liu Z, Tu C, Gong W. Mammalian birnaviruses identified in pigs infected by classical swine fever virus. Virus Evol 2021; 7:veab084. [PMID: 34659797 PMCID: PMC8516818 DOI: 10.1093/ve/veab084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/30/2021] [Accepted: 09/21/2021] [Indexed: 01/19/2023] Open
Abstract
Currently, the Birnaviridae family contains four genera with all members identified from birds, fishes, and insects only. The present study reports a novel birnavirus unexpectedly identified from classical swine fever virus-infected pigs by viral metagenomic analysis, which is, therefore, named as porcine birnavirus (PBRV). Follow-up reverse transcription-polymerase chain reaction (RT-PCR) screening of archived tissues of diseased pigs identified 16 PBRV strains from nine provinces/autonomous regions in China spanning 21 years (1998–2019), and the viral loads of PBRV in clinical samples were 105.08–107.95 genome copies per 0.1 g tissue, showing the replication of PBRVs in the pigs. Genome-based sequence comparison showed that PBRVs are genetically distant from existing members within the Birnaviridae family with 45.8–61.6 per cent and 46.2–63.2 per cent nucleotide sequence similarities in segments A and B, respectively, and the relatively closed viruses are avibirnavirus strains. In addition, indels of 57, 5, and 18 amino acid residues occurred in 16, 2, and 7 locations of the PBRV polyprotein and VP5 and VP1 proteins, respectively, as compared to the reference avibirnaviruses. Phylogenetic analysis showed that PBRVs formed an independent genotype separated from four other genera, which could be classified into two or three subgenotypes (PBRV-A1-2 and PBRV-B1-3) based on the nucleotide sequences of full preVP2 and VP1 genes, respectively. All results showed that PBRV represents a novel porcine virus species, which constitutes the first mammalian birnavirus taxon, thereby naming as Mambirnavirus genus is proposed.
Collapse
Affiliation(s)
- Zhe Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130122, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130122, China
| | - Zongji Lu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Shijiang Mi
- State Key Laboratory of Human and Animal Zoonotic Infectious Diseases, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Jianfeng Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Zhongdi Liu
- State Key Laboratory of Human and Animal Zoonotic Infectious Diseases, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130122, China
| | - Wenjie Gong
- State Key Laboratory of Human and Animal Zoonotic Infectious Diseases, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
25
|
RNA Origami: Packaging a Segmented Genome in Orbivirus Assembly and Replication. Viruses 2021; 13:v13091841. [PMID: 34578422 PMCID: PMC8473007 DOI: 10.3390/v13091841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Understanding how viruses with multi-segmented genomes incorporate one copy of each segment into their capsids remains an intriguing question. Here, we review our recent progress and describe the advancements made in understanding the genome packaging mechanism of a model nonenveloped virus, Bluetongue virus (BTV), with a 10-segment (S1–S10) double-strand RNA (dsRNA) genome. BTV (multiple serotypes), a member of the Orbivirus genus in the Reoviridae family, is a notable pathogen for livestock and is responsible for significant economic losses worldwide. This has enabled the creation of an extensive set of reagents and assays, including reverse genetics, cell-free RNA packaging, and bespoke bioinformatics approaches, which can be directed to address the packaging question. Our studies have shown that (i) UTRs enable the conformation of each segment necessary for the next level of RNA–RNA interaction; (ii) a specific order of intersegment interactions leads to a complex RNA network containing all the active components in sorting and packaging; (iii) networked segments are recruited into nascent assembling capsids; and (iv) select capsid proteins might be involved in the packaging process. The key features of genome packaging mechanisms for BTV and related dsRNA viruses are novel and open up new avenues of potential intervention.
Collapse
|
26
|
Wang S, Yu M, Liu A, Bao Y, Qi X, Gao L, Chen Y, Liu P, Wang Y, Xing L, Meng L, Zhang Y, Fan L, Li X, Pan Q, Zhang Y, Cui H, Li K, Liu C, He X, Gao Y, Wang X. TRIM25 inhibits infectious bursal disease virus replication by targeting VP3 for ubiquitination and degradation. PLoS Pathog 2021; 17:e1009900. [PMID: 34516573 PMCID: PMC8459960 DOI: 10.1371/journal.ppat.1009900] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/23/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022] Open
Abstract
Infectious bursal disease virus (IBDV), a double-stranded RNA virus, causes immunosuppression and high mortality in 3-6-week-old chickens. Innate immune defense is a physical barrier to restrict viral replication. After viral infection, the host shows crucial defense responses, such as stimulation of antiviral effectors to restrict viral replication. Here, we conducted RNA-seq in avian cells infected by IBDV and identified TRIM25 as a host restriction factor. Specifically, TRIM25 deficiency dramatically increased viral yields, whereas overexpression of TRIM25 significantly inhibited IBDV replication. Immunoprecipitation assays indicated that TRIM25 only interacted with VP3 among all viral proteins, mediating its K27-linked polyubiquitination and subsequent proteasomal degradation. Moreover, the Lys854 residue of VP3 was identified as the key target site for the ubiquitination catalyzed by TRIM25. The ubiquitination site destroyed enhanced the replication ability of IBDV in vitro and in vivo. These findings demonstrated that TRIM25 inhibited IBDV replication by specifically ubiquitinating and degrading the structural protein VP3.
Collapse
Affiliation(s)
- Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Mengmeng Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Aijing Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yuanling Bao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Peng Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yulong Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Lixiao Xing
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Lingzhai Meng
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yu Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Linjin Fan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xinyi Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Qing Pan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xijun He
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China.,National Poultry Laboratory Animal Resource Center, Harbin, PR China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PRChina
| |
Collapse
|
27
|
Abstract
Multipartite virus genomes are composed of several segments, each packaged in a distinct viral particle. Although this puzzling genome architecture is found in ∼17% of known viral species, its distribution among hosts or among distinct types of genome-composing nucleic acid remains poorly understood. No convincing advantage of multipartitism has been identified, yet the maintenance of genomic integrity appears problematic. Here we review recent studies shedding light on these issues. Multipartite viruses rapidly modify the copy number of each segment/gene from one host species to another, a putative benefit if host switches are common. One multipartite virus functions in a multicellular way: The segments do not all need to be present in the same cell and can functionally complement across cells, maintaining genome integrity within hosts. The genomic integrity maintenance during host-to-host transmission needs further elucidation. These features challenge several virology foundations and could apply to other multicomponent viral systems.
Collapse
Affiliation(s)
- Yannis Michalakis
- Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Montpellier, 34394 Montpellier, France;
| | - Stéphane Blanc
- Unité Mixte de Recherche-Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI), Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier SupAgro, Université Montpellier, 34398 Montpellier, France;
| |
Collapse
|
28
|
Chicken Heat Shock Protein 70 Is an Essential Host Protein for Infectious Bursal Disease Virus Infection In Vitro. Pathogens 2021; 10:pathogens10060664. [PMID: 34071696 PMCID: PMC8229272 DOI: 10.3390/pathogens10060664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bursal disease virus (IBDV) infection causes pathogenicity and mortality in chickens, leading to huge economic losses in the poultry industry worldwide. Studies of host-virus interaction can help us to better understand the viral pathogenicity. As a highly conservative host factor, heat shock protein 70 (Hsp70) is observed to be involved in numerous viral infections. However, there is little information about the role of chicken Hsp70 (cHsp70) in IBDV infection. In the present study, the increased expression of cHsp70 was observed during IBDV-infected DF-1 cells. Further studies revealed that Hsp70 had similar locations with the viral double-stranded RNA (dsRNA), and the result of pull-down assay showed the direct interaction between cHsp70 with dsRNA, viral proteins (vp)2 and 3, indicating that maybe cHsp70 participates in the formation of the replication and transcription complex. Furthermore, overexpression of cHsp70 promoted IBDV production and knockdown of cHsp70 using small interfering RNAs (siRNA) and reducedviral production, implying the necessity of cHsp70 in IBDV infection. These results reveal that cHsp70 is essential for IBDV infection in DF-1 cells, suggesting that targeting cHsp70 may be applied as an antiviral strategy.
Collapse
|
29
|
Phosphatidylinositol 3-Phosphate Mediates the Establishment of Infectious Bursal Disease Virus Replication Complexes in Association with Early Endosomes. J Virol 2021; 95:JVI.02313-20. [PMID: 33361427 DOI: 10.1128/jvi.02313-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is the archetypal member of the family Birnaviridae and the etiological agent of Gumboro disease, a highly contagious immunosuppressive infection of concern to the global poultry sector for its adverse health effects in chicks. Unlike most double-stranded RNA (dsRNA) viruses, which enclose their genomes within specialized cores throughout their viral replication cycle, birnaviruses organize their bisegmented dsRNA genome in ribonucleoprotein (RNP) structures. Recently, we demonstrated that IBDV exploits endosomal membranes for replication. The establishment of IBDV replication machinery on the cytosolic leaflet of endosomal compartments is mediated by the viral protein VP3 and its intrinsic ability to target endosomes. In this study, we identified the early endosomal phosphatidylinositol 3-phosphate [PtdIns(3)P] as a key host factor of VP3 association with endosomal membranes and consequent establishment of IBDV replication complexes in early endosomes. Indeed, our data reveal a crucial role for PtdIns(3)P in IBDV replication. Overall, our findings provide new insights into the replicative strategy of birnaviruses and strongly suggest that it resembles those of positive-strand RNA (+ssRNA) viruses, which replicate in association with host membranes. Furthermore, our findings support the role of birnaviruses as evolutionary intermediaries between +ssRNA and dsRNA viruses and, importantly, demonstrate a novel role for PtdIns(3)P in the replication of a dsRNA virus.IMPORTANCE Infectious bursal disease virus (IBDV) infects chicks and is the causative agent of Gumboro disease. During IBDV outbreaks in recent decades, the emergence of very virulent variants and the lack of effective prevention/treatment strategies to fight this disease have had devastating consequences for the poultry industry. IBDV belongs to the peculiar family Birnaviridae Unlike most dsRNA viruses, birnaviruses organize their genomes in ribonucleoprotein complexes and replicate in a core-independent manner. We recently demonstrated that IBDV exploits host cell endosomes as platforms for viral replication, a process that depends on the VP3 viral protein. In this study, we delved deeper into the molecular characterization of IBDV-endosome association and investigated the role of host cell phosphatidylinositide lipids in VP3 protein localization and IBDV infection. Together, our findings demonstrate that PtdIns(3)P serves as a scaffold for the association of VP3 to endosomes and reveal its essential role for IBDV replication.
Collapse
|
30
|
Fan L, Wang Y, Jiang N, Gao L, Li K, Gao Y, Cui H, Pan Q, Liu C, Zhang Y, Wang X, Qi X. A reassortment vaccine candidate of the novel variant infectious bursal disease virus. Vet Microbiol 2020; 251:108905. [PMID: 33186757 DOI: 10.1016/j.vetmic.2020.108905] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/18/2020] [Indexed: 01/07/2023]
Abstract
Infectious bursal disease (IBD), caused by infectious bursal disease virus (IBDV), is the most important immunosuppressive disease threatening the poultry industry worldwide. Recently, the novel variant IBDV has been emerging in large-scale in Asia including China and is becoming a new threat to the healthy development of the poultry industry, but no ideal vaccine is available. Therefore, it is necessary and urgent to develop a new vaccine against the novel variant IBDV. In this study, based on the skeleton of an attenuated vaccine strain Gt, a reassortment virus strain rGtVarVP2 was constructed for the first time, which could express the main protective antigen VP2 of the novel variant IBDV and replicate well in cell culture. Subsequently, the safety and effectiveness of rGtVarVP2 were further evaluated using animal experiments. The rGtVarVP2 is nonpathogenic to specific-pathogen-free (SPF) chicken. The immunization of rGtVarVP2 could induce the specific neutralizing antibodies against the novel variant IBDV. The challenge protection tests further confirmed the effectiveness of the IBDV reassortment virus rGtVarVP2. No atrophy and obvious lesions were observed in the immunization group while the bursae of non-immunization control group were severely destroyed after challenge, which showed that rGtVarVP2 could provide complete protection against the novel variant IBDV. These data indicate that the vaccine candidate (rGtVarVP2 strain) is safe and effective, which is of great significance for comprehensive control of IBD and healthy breeding.
Collapse
Affiliation(s)
- Linjin Fan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yulong Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Nan Jiang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Qing Pan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou 225009, PR China.
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.
| |
Collapse
|
31
|
Mata CP, Rodríguez JM, Suzuki N, Castón JR. Structure and assembly of double-stranded RNA mycoviruses. Adv Virus Res 2020; 108:213-247. [PMID: 33837717 DOI: 10.1016/bs.aivir.2020.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycoviruses are a diverse group that includes ssRNA, dsRNA, and ssDNA viruses, with or without a protein capsid, as well as with a complex envelope. Most mycoviruses are transmitted by cytoplasmic interchange and are thought to lack an extracellular phase in their infection cycle. Structural analysis has focused on dsRNA mycoviruses, which usually package their genome in a 120-subunit T=1 icosahedral capsid, with a capsid protein (CP) dimer as the asymmetric unit. The atomic structure is available for four dsRNA mycovirus from different families: Saccharomyces cerevisiae virus L-A (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). Their capsids show structural variations of the same framework, with asymmetric or symmetric CP dimers respectively for ScV-L-A and PsV-F, dimers of similar domains of a single CP for PcV, or of two different proteins for RnQV1. The CP dimer is the building block, and assembly proceeds through dimers of dimers or pentamers of dimers, in which the genome is packed as ssRNA by interaction with CP and/or viral polymerase. These capsids remain structurally undisturbed throughout the viral cycle. The T=1 capsid participates in RNA synthesis, organizing the viral polymerase (1-2 copies) and a single loosely packaged genome segment. It also acts as a molecular sieve, to allow the passage of viral transcripts and nucleotides, but to prevent triggering of host defense mechanisms. Due to the close mycovirus-host relationship, CP evolved to allocate peptide insertions with enzyme activity, as reflected in a rough outer capsid surface.
Collapse
Affiliation(s)
- Carlos P Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Javier M Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
32
|
Yang H, Ye C. Reverse genetics approaches for live-attenuated vaccine development of infectious bursal disease virus. Curr Opin Virol 2020; 44:139-144. [PMID: 32892072 DOI: 10.1016/j.coviro.2020.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 02/02/2023]
Abstract
Infectious bursal disease (IBD), which is caused by infectious bursal disease virus (IBDV) infection, leads to severe immunosuppression in young chickens and results in significant economic losses in the poultry industry. To date, vaccination with live-attenuated vaccine (LAV) is a convenient method to provide effective protection against IBDV infection. Classical attenuated viruses are usually obtained by either passaging virus in cultured cells or natural isolation. However, these empiric attenuation methods, which are time-consuming and not guaranteed, are not reliable for emergent antigenic variant and very virulent IBDV strains. The reverse genetics (RG) system opens a new avenue for the development of IBDV LAV. In this review, we summarize the current knowledge on the biological characteristics of IBDV structure and genome organization, as well as the established RG systems. We also describe the details for the strategies used to develop IBDV LAV based on the RG systems.
Collapse
Affiliation(s)
- Hui Yang
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, 666 Wusu Street, Hangzhou, Zhejiang 311300, China
| | - Chengjin Ye
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, 666 Wusu Street, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
33
|
Discrete Virus Factories Form in the Cytoplasm of Cells Coinfected with Two Replication-Competent Tagged Reporter Birnaviruses That Subsequently Coalesce over Time. J Virol 2020; 94:JVI.02107-19. [PMID: 32321810 PMCID: PMC7307154 DOI: 10.1128/jvi.02107-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
The Birnaviridae family, responsible for major economic losses to poultry and aquaculture, is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome that replicate in discrete cytoplasmic virus factories (VFs). Reassortment is common; however, the underlying mechanism remains unknown given that VFs may act as a barrier to genome mixing. In order to provide new information on VF trafficking during dsRNA virus coinfection, we rescued two recombinant infectious bursal disease viruses (IBDVs) of strain PBG98 containing either a split GFP11 or a tetracysteine (TC) tag fused to the VP1 polymerase (PBG98-VP1-GFP11 and PBG98-VP1-TC). DF-1 cells transfected with GFP1-10 prior to PBG98-VP1-GFP11 infection or stained with a biarsenical derivative of the red fluorophore resorufin (ReAsH) following PBG98-VP1-TC infection, had green or red foci in the cytoplasm, respectively, that colocalized with VP3 and dsRNA, consistent with VFs. The average number of VFs decreased from a mean of 60 to 5 per cell between 10 and 24 h postinfection (hpi) (P < 0.0001), while the average area increased from 1.24 to 45.01 μm2 (P < 0.0001), and live cell imaging revealed that the VFs were highly dynamic structures that coalesced in the cytoplasm. Small VFs moved faster than large (average 0.57 μm/s at 16 hpi compared to 0.22 μm/s at 22 hpi), and VF coalescence was dependent on an intact microtubule network and actin cytoskeleton. During coinfection with PBG98-VP1-GFP11 and PBG98-VP1-TC viruses, discrete VFs initially formed from each input virus that subsequently coalesced 10 to 16 hpi, and we speculate that Birnaviridae reassortment requires VF coalescence.IMPORTANCE Reassortment is common in viruses with segmented double-stranded RNA (dsRNA) genomes. However, these viruses typically replicate within discrete cytoplasmic virus factories (VFs) that may represent a barrier to genome mixing. We generated the first replication competent tagged reporter birnaviruses, infectious bursal disease viruses (IBDVs) containing a split GFP11 or tetracysteine (TC) tag and used the viruses to track the location and movement of IBDV VFs, in order to better understand the intracellular dynamics of VFs during a coinfection. Discrete VFs initially formed from each virus that subsequently coalesced from 10 h postinfection. We hypothesize that VF coalescence is required for the reassortment of the Birnaviridae This study provides new information that adds to our understanding of dsRNA virus VF trafficking.
Collapse
|
34
|
Katsiani A, Stainton D, Lamour K, Tzanetakis IE. The population structure of Rose rosette virus in the USA. J Gen Virol 2020; 101:676-684. [PMID: 32375952 DOI: 10.1099/jgv.0.001418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rose rosette virus (RRV) (genus Emaravirus) is the causal agent of the homonymous disease, the most destructive malady of roses in the USA. Although the importance of the disease is recognized, little sequence information and no full genomes are available for RRV, a multi-segmented RNA virus. To better understand the population structure of the virus we implemented a Hi-Plex PCR amplicon high-throughput sequencing approach to sequence all 7 segments and to quantify polymorphisms in 91 RRV isolates collected from 16 states in the USA. Analysis revealed insertion/deletion (indel) polymorphisms primarily in the 5' and 3' non-coding, but also within coding regions, including some resulting in changes of protein length. Phylogenetic analysis showed little geographical structuring, suggesting that topography does not have a strong influence on virus evolution. Overall, the virus populations were homogeneous, possibly because of regular movement of plants, the recent emergence of RRV and/or because the virus is under strong purification selection to preserve its integrity and biological functions.
Collapse
Affiliation(s)
- Asimina Katsiani
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville AR 72701, USA
| | - Daisy Stainton
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville AR 72701, USA
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville AR 72701, USA
| |
Collapse
|
35
|
Orakpoghenor O, Oladele SB, Abdu PA. Infectious Bursal Disease: Transmission, Pathogenesis, Pathology and Control - An Overview. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1716652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Sunday B. Oladele
- Department of Veterinary Pathology, Ahmadu Bello University, Zaria, Nigeria
| | - Paul A. Abdu
- Department of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
36
|
Rapid Generation of Attenuated Infectious Bursal Disease Virus from Dual-Promoter Plasmids by Reduction of Viral Ribonucleoprotein Activity. J Virol 2020; 94:JVI.01569-19. [PMID: 31915284 DOI: 10.1128/jvi.01569-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/29/2019] [Indexed: 01/02/2023] Open
Abstract
Infectious bursal disease virus (IBDV) of the Birnaviridae family leads to immunosuppression of young chickens by destroying B cells in the bursa of Fabricius (BFs). Given the increasing number of variant IBDV strains, we urgently require a method to produce attenuated virus for vaccine development. To accomplish this goal, the dual-promoter plasmids in which the RNA polymerase II and RNA polymerase I (Pol I) promoters were placed upstream of the IBDV genomic sequence, which was followed by mouse Pol I terminator and a synthetic polyadenylation signal, were developed for rapid generation of IBDV. This approach did not require trans-supplementation of plasmids for the expression of VP1 and VP3, the main components of IBDV ribonucleoprotein (RNP). Based on the finding in this study that the IBDV RNP activity was partially retained by VP1-FLAG, we successfully rescued the replication-competent IBDV/1FLAG expressing VP1-FLAG. Compared with its parental counterpart, IBDV/1FLAG formed smaller size plaques in cultured cells and induced the same 100% immune protection in vivo However, neither retarded development nor severe BFs lesion was observed in the IBDV/1FLAG-inoculated chickens. Collectively, this is the first report that viral RNP activity was affected by the addition of an epitope tag on the componential viral proteins. Furthermore, this work demonstrates the rapid generation of attenuated IBDV from dual-promoter plasmids via reducing viral RNP activity by a fused FLAG tag on the C terminus of VP1. This would be a convenient strategy to attenuate epidemic variant IBDV strains for rapid and efficient vaccine development.IMPORTANCE Immunosuppression in chickens as a result of infectious bursal disease virus (IBDV) infection leads to significant economic losses in the poultry industry worldwide every year. Currently, vaccination is still the best way to prevent the prevalence of IBDV. However, with the occurrence of increasing numbers of variant IBDV strains, it is challenging to develop antigen-matched live attenuated vaccine. Here, we first developed a dual-promoter reverse-genetic system for the rapid generation of IBDV. Using this system, the attenuated IBDV/1FLAG expressing VP1-FLAG, which displays the decreased viral RNP activity, was rescued. Moreover, IBDV/1FLAG inoculation induced a similar level of neutralizing antibodies to that of its parental counterpart, protecting chickens against lethal challenge. Our study, for the first time, describes a dual-promoter reverse-genetic approach for the rapid generation of attenuated IBDV while maintaining entire parental antigenicity, suggesting a potential new method to attenuate epidemic variant IBDV strains for vaccine development.
Collapse
|
37
|
Chicken eEF1α is a Critical Factor for the Polymerase Complex Activity of Very Virulent Infectious Bursal Disease Virus. Viruses 2020; 12:v12020249. [PMID: 32102240 PMCID: PMC7077273 DOI: 10.3390/v12020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Infectious bursal disease (IBD) is an immunosuppressive, highly contagious, and lethal disease of young chickens caused by IBD virus (IBDV). It results in huge economic loss to the poultry industry worldwide. Infection caused by very virulent IBDV (vvIBDV) strains results in high mortality in young chicken flocks. However, the replication characteristics of vvIBDV are not well studied. Publications have shown that virus protein 3 (VP3) binds to VP1 and viral double-stranded RNA, and together they form a ribonucleoprotein complex that plays a key role in virus replication. In this study, vvIBDV VP3 was used to identify host proteins potentially involved in modulating vvIBDV replication. Chicken eukaryotic translation elongation factor 1α (cheEF1α) was chosen to further investigate effects on vvIBDV replication. By small interfering RNA-mediated cheEF1α knockdown, we demonstrated the possibility of significantly reducing viral polymerase activity, with a subsequent reduction in virus yields. Conversely, over-expression of cheEF1α significantly increased viral polymerase activity and virus replication. Further study confirmed that cheEF1α interacted only with vvIBDV VP3 but not with attenuated IBDV (aIBDV) VP3. Furthermore, the amino acids at the N- and C-termini were important in the interaction between vvIBDV VP3 and cheEF1α. Domain III was essential for interactions between cheEF1α and vvIBDV VP3. In summary, cheEF1α enhances vvIBDV replication by promoting the activity of virus polymerase. Our study indicates cheEF1α is a potential target for limiting vvIBDV infection.
Collapse
|
38
|
The Infectious Pancreatic Necrosis Virus (IPNV) and its Virulence Determinants: What is Known and What Should be Known. Pathogens 2020; 9:pathogens9020094. [PMID: 32033004 PMCID: PMC7168660 DOI: 10.3390/pathogens9020094] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/25/2020] [Accepted: 01/31/2020] [Indexed: 12/30/2022] Open
Abstract
Infectious pancreatic necrosis (IPN) is a disease of great concern in aquaculture, mainly among salmonid farmers, since losses in salmonid fish—mostly very young rainbow trout (Salmo gairdnery) fry and Atlantic salmon (Salmo salar) post-smolt—frequently reach 80–90% of stocks. The virus causing the typical signs of the IPN disease in salmonids, named infectious pancreatic necrosis virus (IPNV), has also been isolated from other fish species either suffering related diseases (then named IPNV-like virus) or asymptomatic; the general term aquabirnavirus is used to encompass all these viruses. Aquabirnaviruses are non-enveloped, icosahedral bisegmented dsRNA viruses, whose genome codifies five viral proteins, three of which are structural, and one of them is an RNA-dependent RNA polymerase. Due to the great importance of the disease, there have been great efforts to find a way to predict the level of virulence of IPNV isolates. The viral genome and proteins have been the main focus of research. However, to date such a reliable magic marker has not been discovered. This review describes the processes followed for decades in the attempts to discover the viral determinants of virulence, and to help the reader understand how viral components can be involved in virulence modulation in vitro and in vivo. There is also a brief description of the disease, of host defenses, and of the molecular structure and function of the virus and its viral components.
Collapse
|
39
|
Andreu-Moreno I, Sanjuán R. Collective Viral Spread Mediated by Virion Aggregates Promotes the Evolution of Defective Interfering Particles. mBio 2020; 11:e02156-19. [PMID: 31911487 PMCID: PMC6946798 DOI: 10.1128/mbio.02156-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/18/2019] [Indexed: 01/30/2023] Open
Abstract
A growing number of studies report that viruses can spread in groups in so-called collective infectious units. By increasing the cellular multiplicity of infection, collective dispersal may allow for social-like interactions, such as cooperation or cheating. Yet, little is known about how such interactions evolve. In previous work with vesicular stomatitis virus, we showed that virion aggregation accelerates early infection stages in most cell types, providing a short-term fitness benefit to the virus. Here, we examine the effects of virion aggregation over several infection cycles. Flow cytometry, deep sequencing, infectivity assays, reverse transcription-quantitative PCR, and electron microscopy revealed that virion aggregation rapidly promotes the emergence of defective interfering particles. Therefore, virion aggregation provides immediate fitness benefits to the virus but incurs fitness costs after a few viral generations. This suggests that an optimal strategy for the virus is to undergo virion aggregation only episodically, for instance, during interhost transmission.IMPORTANCE Recent insights have revealed that viruses use a highly diverse set of strategies to release multiple viral genomes into the same target cells, allowing the emergence of beneficial, but also detrimental, interactions among viruses inside infected cells. This has prompted interest among microbial ecologists and evolutionary biologists in studying how collective dispersal impacts the outcome of viral infections. Here, we have used vesicular stomatitis virus as a model system to study the evolutionary implications of collective dissemination mediated by viral aggregates, since this virus can spontaneously aggregate in the presence of saliva. We find that saliva-driven aggregation has a dual effect on viral fitness; whereas aggregation tends to increase infectivity in the very short term, virion aggregates are highly susceptible to invasion by noncooperative defective variants after a few viral generations.
Collapse
Affiliation(s)
- Iván Andreu-Moreno
- Institute for Integrative Systems Biology (ISysBio), Universitat de Valencia, Valencia, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (ISysBio), Universitat de Valencia, Valencia, Spain
| |
Collapse
|
40
|
Novel variants of infectious bursal disease virus can severely damage the bursa of fabricius of immunized chickens. Vet Microbiol 2019; 240:108507. [PMID: 31902511 DOI: 10.1016/j.vetmic.2019.108507] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022]
Abstract
In recent years, atypical infectious bursal disease (IBD) with severe immunosuppression has brought new threats to the poultry industry and has caused considerable economic losses. Novel variant infectious bursal disease virus (IBDV) has been identified as the etiological pathogen and for unknown reasons is widespread in poultry on many chicken farms in China that have been immunized with vaccines against very virulent IBDV (vvIBDV). Using immunoprotection experiments in specific-pathogen-free chickens, we first verified that novel variant IBDV could severely damage the bursa of Fabricius of the important immune organ of immunized chicken in the presence of antibodies induced by three types of vvIBDV vaccines, which is a primary reason for the current epidemic of atypical IBD. Monoclonal antibody reactivity patterns and cross-neutralization assays further confirmed the obvious antigenic mismatch between novel variant IBDV and vvIBDV. Sequence analysis of the genome of novel variant IBDV (SHG19 strain) was performed and the key amino acid residues that might be involved in antigenicity and virulence differences of novel variant IBDV compared to vvIBDV were further analyzed. This study not only determined the primary reason for the atypical IBD epidemic, but also remind us of the urgency for developing new vaccines against novel variant IBDV.
Collapse
|
41
|
The effect of genetic complementation on the fitness and diversity of viruses spreading as collective infectious units. Virus Res 2019; 267:41-48. [PMID: 31077765 DOI: 10.1016/j.virusres.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022]
Abstract
Viruses can spread collectively using different types of structures such as extracellular vesicles, virion aggregates, polyploid capsids, occlusion bodies, and even cells that accumulate virions at their surface, such as bacteria and dendritic cells. Despite the mounting evidence for collective spread, its implications for viral fitness and diversity remain poorly understood. It has been postulated that, by increasing the cellular multiplicity of infection, collective spread could enable mutually beneficial interactions among different viral genetic variants. One such interaction is genetic complementation, whereby deleterious mutations carried by different genomes are compensated. Here, we used simulations to evaluate whether complementation is likely to increase the fitness of viruses spreading collectively. We show that complementation among co-spreading viruses initially buffers the deleterious effects of mutations, but has no positive effect on mean population fitness over the long term, and even promotes error catastrophe at high mutation rates. Additionally, we found that collective spread increases the risk of invasion by social cheaters such as defective interfering particles. We also show that mutation accumulation depends on the type of collective infectious units considered. Co-spreading viral genomes produced in the same cell (e.g. extracellular vesicles, polyploid capsids, occlusion bodies) should exhibit higher genetic relatedness than groups formed extracellularly by viruses released from different cells (aggregates, binding to bacterial or dendritic cell surfaces), and we found that increased relatedness limits the adverse effects of complementation as well cheater invasion risk. Finally, we found that the costs of complementation can be offset by recombination. Based on our results, we suggest that alternative factors promoting collective spread should be considered.
Collapse
|
42
|
Kanai Y, Kawagishi T, Sakai Y, Nouda R, Shimojima M, Saijo M, Matsuura Y, Kobayashi T. Cell-cell fusion induced by reovirus FAST proteins enhances replication and pathogenicity of non-enveloped dsRNA viruses. PLoS Pathog 2019; 15:e1007675. [PMID: 31022290 PMCID: PMC6504114 DOI: 10.1371/journal.ppat.1007675] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/07/2019] [Accepted: 03/03/2019] [Indexed: 12/13/2022] Open
Abstract
Fusogenic reoviruses encode fusion-associated small transmembrane (FAST) protein, which induces cell-cell fusion. FAST protein is the only known fusogenic protein in non-enveloped viruses, and its role in virus replication is not yet known. We generated replication-competent, FAST protein-deficient pteropine orthoreovirus and demonstrated that FAST protein was not essential for viral replication, but enhanced viral replication in the early phase of infection. Addition of recombinant FAST protein enhanced replication of FAST-deficient virus and other non-fusogenic viruses in a fusion-dependent and FAST-species-independent manner. In a mouse model, replication and pathogenicity of FAST-deficient virus were severely impaired relative to wild-type virus, indicating that FAST protein is a major determinant of the high pathogenicity of fusogenic reovirus. FAST-deficient virus also conferred effective protection against challenge with lethal homologous virus strains in mice. Our results demonstrate a novel role of a viral fusogenic protein and the existence of a cell-cell fusion-dependent replication system in non-enveloped viruses.
Collapse
Affiliation(s)
- Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takahiro Kawagishi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
43
|
Extracellular vesicles: Vehicles of en bloc viral transmission. Virus Res 2019; 265:143-149. [PMID: 30928427 DOI: 10.1016/j.virusres.2019.03.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022]
Abstract
En Bloc transmission of viruses allow multiple genomes to collectivelly penetrate and initiate infection in the same cell, often resulting in enhanced infectivity. Given the quasispecies (mutant cloud) nature of RNA viruses and many DNA viruses, en bloc transmission of multiple genomes provides different starting points in sequence space to initiate adaptive walks, and has implications for modulation of viral fitness and for the response of viral populations to lethal mutagenesis. Mechanisms that can enable multiple viral genomes to be transported en bloc among hosts has only recently been gaining attention. A growing body of research suggests that extracellular vesicles (EV) are highly prevalent and robust vehicles for en bloc delivery of viral particles and naked infectious genomes among organisms. Both RNA and DNA viruses appear to exploit these vesicles to increase their multiplicity of infection and enhance virulence.
Collapse
|
44
|
Leeks A, Sanjuán R, West SA. The evolution of collective infectious units in viruses. Virus Res 2019; 265:94-101. [PMID: 30894320 PMCID: PMC6470120 DOI: 10.1016/j.virusres.2019.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/21/2022]
Abstract
Many viruses disperse in groups, as part of collective infectious units (CIUs). We modelled different factors that could influence the evolution of CIUs. Group infectivity benefits favoured CIUs, especially if CIUs were more efficient. Defective genomes did not favour or disfavour CIUs. Defective interfering genomes disfavoured CIUs.
Viruses frequently spread among cells or hosts in groups, with multiple viral genomes inside the same infectious unit. These collective infectious units can consist of multiple viral genomes inside the same virion, or multiple virions inside a larger structure such as a vesicle. Collective infectious units deliver multiple viral genomes to the same cell simultaneously, which can have important implications for viral pathogenesis, antiviral resistance, and social evolution. However, little is known about why some viruses transmit in collective infectious units, whereas others do not. We used a simple evolutionary approach to model the potential costs and benefits of transmitting in a collective infectious unit. We found that collective infectious units could be favoured if cells infected by multiple viral genomes were significantly more productive than cells infected by just one viral genome, and especially if there were also efficiency benefits to packaging multiple viral genomes inside the same infectious unit. We also found that if some viral sequences are defective, then collective infectious units could evolve to become very large, but that if these defective sequences interfered with wild-type virus replication, then collective infectious units were disfavoured.
Collapse
Affiliation(s)
- Asher Leeks
- University of Oxford, Department of Zoology, Zoology Research and Administration, Oxford, OX1 3SZ, United Kingdom.
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain
| | - Stuart A West
- University of Oxford, Department of Zoology, Zoology Research and Administration, Oxford, OX1 3SZ, United Kingdom
| |
Collapse
|
45
|
Shirogane Y, Watanabe S, Yanagi Y. Cooperation between different variants: A unique potential for virus evolution. Virus Res 2019; 264:68-73. [PMID: 30822430 DOI: 10.1016/j.virusres.2019.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/25/2019] [Indexed: 02/05/2023]
Abstract
RNA viruses exist as quasispecies containing many variants within their populations because of the error prone nature of viral RNA-dependent RNA polymerases. Quasispecies are not a simple collection of individual variants. Instead, internal interactions among variants provide quasispecies with unique evolvability. An example is 'cooperation' between wild-type and defective measles viruses, in which co-existence of a wild-type and a mutant genome produces a new phenotype. Such internal interactions presuppose efficient co-transmission of multiple genomes to the same cell, which is achieved by polyploid virions of some virus families or by a high multiplicity of infection. Recent studies have revealed that multiple viral genomes can also be transmitted simultaneously ('bloc transmission') by other mechanisms, strengthening the concept of internal interactions among viral quasispecies. Elucidation of the mechanisms of virus evolution, including internal interactions and bloc transmission, may provide rational strategies to solve such important problems of virus infections as drug-resistance, immune evasion, and acquisition of the new tropism and host range.
Collapse
Affiliation(s)
- Yuta Shirogane
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan.
| | - Shumpei Watanabe
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, 794-0085, Japan
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
46
|
Affiliation(s)
| | - Stéphane Blanc
- BGPI, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| |
Collapse
|
47
|
Andreu-Moreno I, Sanjuán R. Collective Infection of Cells by Viral Aggregates Promotes Early Viral Proliferation and Reveals a Cellular-Level Allee Effect. Curr Biol 2018; 28:3212-3219.e4. [PMID: 30318351 PMCID: PMC6783297 DOI: 10.1016/j.cub.2018.08.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/17/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
In addition to the conventional release of free, individual virions, virus dispersal can involve multi-virion assemblies that collectively infect cells. However, the implications of collective infection for viral fitness remain largely unexplored. Using vesicular stomatitis virus, here, we compare the fitness of free versus saliva-aggregated viral particles. We find that aggregation has a positive effect on early progeny production, conferring a fitness advantage relative to equal numbers of free particles in most cell types. The advantage of aggregation resides, at least partially, in increasing the cellular multiplicity of infection. In mouse embryonic fibroblasts, the per capita, short-term viral progeny production peaked for a dose of ca. three infectious particles per cell. This reveals an Allee effect restricting early viral proliferation at the cellular level, which should select for dispersal in groups. We find that genetic complementation between deleterious mutants is probably not the mechanism underlying the fitness advantage of collective infection. Instead, this advantage is cell type dependent and correlates with cellular permissivity to the virus, as well as with the ability of host cells to mount an antiviral innate immune response.
Collapse
Affiliation(s)
- Iván Andreu-Moreno
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, C/Catedrático Agustín Escardino 9, Paterna, València 46980, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, C/Catedrático Agustín Escardino 9, Paterna, València 46980, Spain.
| |
Collapse
|
48
|
Mertens J, Bondia P, Allende-Ballestero C, Carrascosa JL, Flors C, Castón JR. Mechanics of Virus-like Particles Labeled with Green Fluorescent Protein. Biophys J 2018; 115:1561-1568. [PMID: 30249401 DOI: 10.1016/j.bpj.2018.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
Nanoindentation with an atomic force microscope was used to investigate the mechanical properties of virus-like particles (VLPs) derived from the avian pathogen infectious bursal disease virus, in which the major capsid protein was modified by fusion with enhanced green fluorescent protein (EGFP). These VLPs assemble as ∼70-nm-diameter T = 13 icosahedral capsids with large cargo space. The effect of the insertion of heterologous proteins in the capsid was characterized in the elastic regime, revealing that EGFP-labeled chimeric VLPs are more rigid than unmodified VLPs. In addition, nanoindentation measurements beyond the elastic regime allowed the determination of brittleness and rupture force limit. EGFP incorporation results in a complex shape of the indentation curve and lower critical indentation depth of the capsid, rendering more brittle particles as compared to unlabeled VLPs. These observations suggest the presence of a complex and more constrained network of interactions between EGFP and the capsid inner shell. These results highlight the effect of fluorescent protein insertion on the mechanical properties of these capsids. Because the physical properties of the viral capsid are connected to viral infectivity and VLP transport and disassembly, our results are relevant to design improved labeling strategies for fluorescence tracking in living cells.
Collapse
Affiliation(s)
- Johann Mertens
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), Madrid, Spain
| | - Patricia Bondia
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), Madrid, Spain; Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus de Cantoblanco, Madrid, Spain
| | | | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus de Cantoblanco, Madrid, Spain
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), Madrid, Spain; Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus de Cantoblanco, Madrid, Spain.
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus de Cantoblanco, Madrid, Spain.
| |
Collapse
|
49
|
The RNA-Binding Protein of a Double-Stranded RNA Virus Acts like a Scaffold Protein. J Virol 2018; 92:JVI.00968-18. [PMID: 30021893 DOI: 10.1128/jvi.00968-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
Infectious bursal disease virus (IBDV), a nonenveloped, double-stranded RNA (dsRNA) virus with a T=13 icosahedral capsid, has a virion assembly strategy that initiates with a precursor particle based on an internal scaffold shell similar to that of tailed double-stranded DNA (dsDNA) viruses. In IBDV-infected cells, the assembly pathway results mainly in mature virions that package four dsRNA segments, although minor viral populations ranging from zero to three dsRNA segments also form. We used cryo-electron microscopy (cryo-EM), cryo-electron tomography, and atomic force microscopy to characterize these IBDV populations. The VP3 protein was found to act as a scaffold protein by building an irregular, ∼40-Å-thick internal shell without icosahedral symmetry, which facilitates formation of a precursor particle, the procapsid. Analysis of IBDV procapsid mechanical properties indicated a VP3 layer beneath the icosahedral shell, which increased the effective capsid thickness. Whereas scaffolding proteins are discharged in tailed dsDNA viruses, VP3 is a multifunctional protein. In mature virions, VP3 is bound to the dsRNA genome, which is organized as ribonucleoprotein complexes. IBDV is an amalgam of dsRNA viral ancestors and traits from dsDNA and single-stranded RNA (ssRNA) viruses.IMPORTANCE Structural analyses highlight the constraint of virus evolution to a limited number of capsid protein folds and assembly strategies that result in a functional virion. We report the cryo-EM and cryo-electron tomography structures and the results of atomic force microscopy studies of the infectious bursal disease virus (IBDV), a double-stranded RNA virus with an icosahedral capsid. We found evidence of a new inner shell that might act as an internal scaffold during IBDV assembly. The use of an internal scaffold is reminiscent of tailed dsDNA viruses, which constitute the most successful self-replicating system on Earth. The IBDV scaffold protein is multifunctional and, after capsid maturation, is genome bound to form ribonucleoprotein complexes. IBDV encompasses numerous functional and structural characteristics of RNA and DNA viruses; we suggest that IBDV is a modern descendant of ancestral viruses and comprises different features of current viral lineages.
Collapse
|
50
|
Capsid Structure of dsRNA Fungal Viruses. Viruses 2018; 10:v10090481. [PMID: 30205532 PMCID: PMC6164181 DOI: 10.3390/v10090481] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 01/27/2023] Open
Abstract
Most fungal, double-stranded (ds) RNA viruses lack an extracellular life cycle stage and are transmitted by cytoplasmic interchange. dsRNA mycovirus capsids are based on a 120-subunit T = 1 capsid, with a dimer as the asymmetric unit. These capsids, which remain structurally undisturbed throughout the viral cycle, nevertheless, are dynamic particles involved in the organization of the viral genome and the viral polymerase necessary for RNA synthesis. The atomic structure of the T = 1 capsids of four mycoviruses was resolved: the L-A virus of Saccharomyces cerevisiae (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). These capsids show structural variations of the same framework, with 60 asymmetric or symmetric homodimers for ScV-L-A and PsV-F, respectively, monomers with a duplicated similar domain for PcV, and heterodimers of two different proteins for RnQV1. Mycovirus capsid proteins (CP) share a conserved α-helical domain, although the latter may carry different peptides inserted at preferential hotspots. Insertions in the CP outer surface are likely associated with enzymatic activities. Within the capsid, fungal dsRNA viruses show a low degree of genome compaction compared to reoviruses, and contain one to two copies of the RNA-polymerase complex per virion.
Collapse
|