1
|
Li Z, Zhang J, Yin J, Ma W, Liao H, Ling L, Zou Q, Cao Y, Song Y, Zheng G, Hu X, Yang G, Li N. Targeting MYOF suppresses pancreatic ductal adenocarcinoma progression by inhibiting ILF3-LCN2 signaling through disrupting OTUB1-mediated deubiquitination of ILF3. Redox Biol 2025; 84:103665. [PMID: 40381229 DOI: 10.1016/j.redox.2025.103665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still a highly aggressive and fatal disease. The molecular mechanisms for PDAC progression are still not fully understood. Here, we demonstrated the overexpression of MYOF in PDAC in multiple sample sets, which is significantly associated with poor outcome of PDAC patients. MYOF knockout suppresses PDAC progression in vitro and in vivo. MYOF knockout exerts its effects by promoting ferroptosis via downregulating LCN2 expression. Ectopic LCN2 expression overcame the effects of MYOF knockout in PDAC cells. Mechanistically, MYOF respectively recruits OTUB1 and ILF3 to enhance their interaction and relieves ILF3 protein ubiquitination and degradtion. MYOF maintains ILF3 protein stability, thereby enhances ILF3 interacting with and improving LCN2 mRNA stability. Moreover, we screened and identified natural compound Picroside II potentially targets MYOF to suppress PDAC progression. These findings uncover the biological roles and mechanisms of MYOF and preliminarily indicate the potential of targeting MYOF in PDAC progression, highlighting a novel therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Zhihui Li
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Jianlei Zhang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Jiang Yin
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Wen Ma
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Hongfan Liao
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Lv Ling
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Qingfeng Zou
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Yabing Cao
- Kiang Wu Hospital, Macao Special Administrative Region of China
| | - Ying Song
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Guopei Zheng
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Xiaoye Hu
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China.
| | - Guohua Yang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China.
| | - Nan Li
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China.
| |
Collapse
|
2
|
Sun H, Liang Z, Zang Y, Liu S, Liu H, Li M. Transcriptome Analysis Reveals Possible Antitumor Mechanism of Intracellular Polysaccharide From Phaeodactylum tricornutum on Cervical Cancer HeLa Cells. Chem Biodivers 2025:e202402779. [PMID: 40251892 DOI: 10.1002/cbdv.202402779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Seaweed polysaccharide, a naturally occurring, non-toxic antitumor substance, has emerged as a significant focus of research. In this study, intracellular polysaccharides from Phaeodactylum tricornutum (PRP) were isolated and purified to investigate their antitumor effects and underlying mechanisms. The inhibitory effects of various purified polysaccharide fractions on cervical cancer cells were evaluated, and their antitumor mechanisms were elucidated through transcriptome analysis. The results demonstrated that all four purified polysaccharide fractions from P. tricornutum inhibited HeLa cell proliferation, reduced cell viability, and altered cell morphology. According to the cell counting kit-8 (CCK-8) assay, PRP4 exhibited the most potent inhibitory effect among the four fractions. Transcriptome analysis revealed 806 differentially expressed genes (DEGs) in the PRP4-treated group compared to the control, comprising 570 up-regulated and 236 down-regulated genes. Gene function enrichment analysis indicated that DEGs were significantly enriched in apoptosis- and tumor-related biological processes, implicating multiple cancer- and apoptosis-associated signaling pathways. A protein-protein interaction (PPI) network identified 10 DEGs as hub genes, namely TLR4, interleukin-1β (IL1B), heme oxygenase-1 (HMOX1), EDN1, PTGS2, MMP9, CXCL8, TGFB1, connective tissue growth factor (CTGF), and SERPINE1. These findings suggest that PRP4 holds promise as a therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Han Sun
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine and Biotechnology, Guangxi Minzu University, Nanning, China
- Huangshan Vocational and Technical College, Huangshan City, China
| | - Zhongwen Liang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Ying Zang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Song Liu
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongquan Liu
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Mei Li
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
3
|
Song X, Xu S, Song D, Wang J, Bai B, An Y, Yang B, Wang S, Zhao Q, Yu P. TGFB1/CXCL5 axis regulation by LCN2 overexpression: a promising strategy to inhibit colorectal cancer metastasis and enhance prognosis. Front Immunol 2025; 16:1548635. [PMID: 40313933 PMCID: PMC12043584 DOI: 10.3389/fimmu.2025.1548635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Background Distant metastasis remains a major reason for the high recurrence and mortality of colorectal cancer (CRC). However, the underlying molecular mechanisms driving metastasis in CRC remain poorly understood. In this study, we investigated the mechanisms underlying the inhibitory effects of lipocalin-2 (LCN2) on CRC metastasis. Methods We assessed the expression and clinical significance of LCN2 in human CRC specimens and CRC cell lines using, immunohistochemistry, and western blot analyses. We evaluated the migratory and invasive capabilities of CRC cells influenced by LCN2 using in vitro transwell assays and in vivo lung metastatic models. RNA sequencing and proteome analysis were employed to identify potential downstream targets of LCN2. Rescue experiments were conducted to further elucidate the potential mechanisms of LCN2 and its downstream effectors in CRC. Results LCN2 exhibited high expression levels in human CRC tissues and an inverse correlation with N classification, advanced AJCC stages, and shorter overall survival. LCN2 expression independently predicted a more favorable outcome for CRC patients. Upregulation of LCN2 effectively suppressed CRC cell metastasis both in vitro and in vivo. Mechanistically, Transforming growth factor beta 1 (TGFB1) and C-X-C motif chemokine ligand 5 (CXCL5) were identified as downstream effectors of LCN2, with LCN2 inhibiting CRC metastasis through repression of the TGFB1/CXCL5 axis. Furthermore, either TGF-βR1 inhibitor SB431542 or CXCR2 antagonist SB225002 treatment moderately decreased the migratory and invasive capabilities of DLD-1-LV-shLCN2 cells, whereas the combination treatment of the two agents dramatically decreased the migratory and invasive capabilities of DLD-1-LV-shLCN2 cells. Conclusions This study underscores LCN2 as an independent protective factor and prognostic biomarker for CRC patients. Combined treatment with the SB431542 and the SB225002 significantly attenuated LCN2-related CRC metastasis. Targeting the LCN2/TGFB1/CXCL5 axis emerges as a promising therapeutic strategy for managing LCN2-related metastatic CRC.
Collapse
Affiliation(s)
- Xiaotian Song
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Shuai Xu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Dan Song
- Department of Gastrointestinal Surgery, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Bin Bai
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Bin Yang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Shiqi Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Qingchuan Zhao
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Pengfei Yu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
4
|
Ayaz D, Diniz G, Pulular AG, Solakoğlu Kahraman D, Varol U, Özkavruk Eliyatkın N, Sayhan S, Kayapınar AK. The Prognostic Role of Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury Molecule-1 Expressions in Gastric Carcinomas. Curr Oncol 2025; 32:190. [PMID: 40277747 PMCID: PMC12026346 DOI: 10.3390/curroncol32040190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Background: The survival rate among stomach adenocarcinoma patients is exceedingly low. NGAL (neutrophil gelatinase-associated lipocalin) has pivotal roles in cell proliferation, immunity, and tumorigenesis. KIM-1 (Kidney Injury Molecule-1), also referred to as TIM-1 and HAVcr-1, is a transmembrane glycoprotein located in healthy immune cells and epithelial cells, and its upregulated form is generally found in several human cancers. Aim: The aim of this study was to investigate the prognostic significance of the expression of KIM-1 and NGAL in stomach cancers and identify NGAL-positive inflammatory cells in the tumor microenvironment. Materials and Methods: We immunohistochemically evaluated the expression of NGAL and KIM1 in 172 cases of stomach adenocarcinomas. Result: The mean age of the patients was 64.07 ± 12.35 years, and the mean and median follow-up period were 25.5 and 20.3 months, respectively. The expression rates of KIM-1 and NGAL in tumor cells were identical at 31.4% (n = 54). In 27 of these cases, both proteins were present. Among the deceased patients, the rate of simultaneous KIM-1 and NGAL positivity was relatively higher (p = 0.041). NGAL-positive inflammatory cells were observed in 13.4% of cases, with no significant correlation between these cells and survival times (p = 0.497). However, there was a negative correlation between survival times and KIM-1 (p = 0.037) and NGAL (p = 0.016) expressions in tumor cells. Conclusions: The present study has shown that KIM-1- and NGAL-positive tumor cells are influential in gastric tumorigenesis. Given the progress in anti-KIM-1 therapy, the presence of KIM-1 expression could contribute to the development of new treatment options for aggressive gastric cancer. However, these discoveries need to be validated in larger-scale studies.
Collapse
Affiliation(s)
- Duygu Ayaz
- Department of Pathology, İzmir Faculty of Medicine, University of Health Sciences Turkey, İzmir Tepecik Education and Research Hospital, İzmir 35020, Turkey; (D.S.K.); (S.S.)
| | - Gülden Diniz
- Department of Pathology, İzmir Democracy University, Buca Seyfi Demirsoy Hospital, İzmir 35390, Turkey; (G.D.); (A.G.P.)
| | - Ayşe Gül Pulular
- Department of Pathology, İzmir Democracy University, Buca Seyfi Demirsoy Hospital, İzmir 35390, Turkey; (G.D.); (A.G.P.)
| | - Dudu Solakoğlu Kahraman
- Department of Pathology, İzmir Faculty of Medicine, University of Health Sciences Turkey, İzmir Tepecik Education and Research Hospital, İzmir 35020, Turkey; (D.S.K.); (S.S.)
| | - Umut Varol
- Department of Medical Oncology, İzmir Democracy University, Buca Seyfi Demirsoy Hospital, İzmir 35390, Turkey;
| | - Nuket Özkavruk Eliyatkın
- Department of Pathology, Izmir Katip Çelebi University, Atatürk Education and Research Hospital, İzmir 35360, Turkey;
| | - Sevil Sayhan
- Department of Pathology, İzmir Faculty of Medicine, University of Health Sciences Turkey, İzmir Tepecik Education and Research Hospital, İzmir 35020, Turkey; (D.S.K.); (S.S.)
| | - Ali Kemal Kayapınar
- Department of General Surgery, University of Health Sciences Turkey, Izmir City Hospital, İzmir 35540, Turkey;
| |
Collapse
|
5
|
HUANG BAOXING, JIA ZICHANG, FU CHENCHEN, CHEN MOXIAN, SU ZEZHUO, CHEN YUNSHENG. Oncogenic and tumor-suppressive roles of Lipocalin 2 (LCN2) in tumor progression. Oncol Res 2025; 33:567-575. [PMID: 40109857 PMCID: PMC11915076 DOI: 10.32604/or.2024.051672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/17/2024] [Indexed: 03/22/2025] Open
Abstract
Lipocalin-2 (LCN2) is a member of the lipocalin superfamily with multiple functions and can participate in the transport of a variety of small lipophilic ligands in vivo. LCN2 is significantly expressed in various tumors and plays an important role in regulating tumor cell proliferation, invasion, and metastasis. The specific actions of LCN2 in tumors may vary depending on the particular type of cancer involved. In this review, we provide an extensive overview of the transcriptional and post-transcriptional regulation of LCN2 in health and disease. Furthermore, we summarize the impact of LCN2 dysregulation in a broad range of tumors. Lastly, we examine the mechanisms of action of LCN2 during tumorigenesis, progression, and metastasis. Understanding the complex relationships between LCN2 and tumor development, progression, and metastasis is vital for advancing our knowledge of cancer biology, developing biomarkers for diagnosis and clinical decision-making, and creating therapeutic strategies to improve the management of patients with cancer.
Collapse
Affiliation(s)
- BAOXING HUANG
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, 518038, China
| | - ZICHANG JIA
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, 518038, China
| | - CHENCHEN FU
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - MOXIAN CHEN
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - ZEZHUO SU
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - YUNSHENG CHEN
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, 518038, China
| |
Collapse
|
6
|
Thergarajan P, O'Brien TJ, Jones NC, Ali I. Ligand-receptor interactions: A key to understanding microglia and astrocyte roles in epilepsy. Epilepsy Behav 2025; 163:110219. [PMID: 39693861 DOI: 10.1016/j.yebeh.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Epilepsy continues to pose significant social and economic challenges on a global scale. Existing therapeutic approaches predominantly revolve around neurocentric mechanisms, and fail to control seizures in approximately one-third of patients. This underscores the pressing need for novel and complementary treatment approaches to address this gap. An increasing body of literature points to a role for glial cells, including microglia and astrocytes, in the pathogenesis of epilepsy. Notably, microglial cells, which serve as pivotal inflammatory mediators within the epileptic brain, have received increasing attention over recent years. These immune cells react to epileptogenic insults, regulate neuronal processes, and play diverse roles during the process of epilepsy development. Additionally, astrocytes, another integral non-neuronal brain cells, have garnered increasing recognition for their dynamic contributions to the pathophysiology of epilepsy. Their complex interactions with neurons and other glial cells involve modulating synaptic activity and neuronal excitability, thereby influencing the aberrant networks formed during epileptogenesis. This review explores the alterations in microglial and astrocytic function and their mechanisms of communication following an epileptogenic insult, examining their contribution to epilepsy development. By comprehensively studying these mechanisms, potential avenues could emerge for refining therapeutic strategies and ameliorating the impact of this complex neurological disease.
Collapse
Affiliation(s)
- Peravina Thergarajan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| | - Nigel C Jones
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| | - Idrish Ali
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| |
Collapse
|
7
|
Ließem A, Leimer U, Germann GK, Köllensperger E. Adipokines in Breast Cancer: Decoding Genetic and Proteomic Mechanisms Underlying Migration, Invasion, and Proliferation. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:79-102. [PMID: 39882382 PMCID: PMC11776935 DOI: 10.2147/bctt.s491277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025]
Abstract
Background Adipokines, bioactive peptides secreted by adipose tissue, appear to contribute to breast cancer development and progression. While numerous studies suggest their role in promoting tumor growth, the exact mechanisms of their involvement are not yet completely understood. Methods In this project, varying concentrations of recombinant human adipokines (Leptin, Lipocalin-2, PAI-1, and Resistin) were used to study their effects on four selected breast cancer cell lines (EVSA-T, MCF-7, MDA-MB-231, and SK-Br-3). Over a five-day proliferation phase, linear growth was assessed by calculating doubling times and malignancy-associated changes in gene and protein expression were identified using quantitative TaqMan real-time PCR and multiplex protein analysis. Migration and invasion behaviors were quantified using specialized Boyden chamber assays. Results We found significant, adipokine-mediated genetic and proteomic alterations, with PCR showing an up to 6-fold increase of numerous malignancy-associated genes after adipokine-supplementation. Adipokines further altered protein secretion, such as raising the concentrations of different tumor-associated proteins up to 13-fold. Effects on proliferation varied, however, with most approaches showing significant enhancement in growth kinetics. A concentration-dependent increase in migration and invasion was generally observed, with no significant reductions in any approaches. Conclusion We could show a robust promoting effect of several adipokines on different breast cancer cells in vitro. Understanding the interaction between adipose tissue and breast cancer cells opens potential avenues for innovative breast cancer prevention and therapy strategies. Our findings indicate that antibodies against specific adipokines could become a beneficial component of clinical breast cancer treatment in the future.
Collapse
Affiliation(s)
- Anne Ließem
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| | - Uwe Leimer
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| | - Günter K Germann
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| | - Eva Köllensperger
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| |
Collapse
|
8
|
Rodríguez YM, Koomson AA, Perry RJ. Breast cancer shares many epidemiological, lifestyle, and local hormonal and metabolic underpinnings with endometrial and ovarian cancer: a narrative review. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2025; 6:8. [PMID: 39980815 PMCID: PMC11836739 DOI: 10.21037/tbcr-24-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 02/22/2025]
Abstract
Background and Objective Breast, endometrial, and ovarian cancers (OCs) are significant public health concerns. Approximately three million patients are diagnosed with one of the three tumor types annually. The three tumor types exhibit related epidemiological trends, lifestyle risk factors, and tumor-specific characteristics which may influence their incidence and outcomes. While the majority of the literature examining hormone dependence of cancer appropriately is centered around breast cancer (BC), insufficient attention has been paid to how lessons from the biology of endometrial and OC may inform what we know about the biology of BC and vice versa. This narrative review seeks to address that unmet need. Methods The construction of this narrative review involved searching PubMed in April and July 2024 for manuscripts related to breast cancer metabolism, ovarian cancer metabolism, and endometrial cancer metabolism. Only manuscripts written in English were considered. Key Content and Findings This narrative review discusses epidemiologic, systemic, and local factors that may affect breast, endometrial, and OC. Simultaneously analyzing these three tumors offers an opportunity to gain unifying insights into reproductive hormone-dependent cancer biology; unfortunately, the field lacks studies directly comparing the impact of the aforementioned factors on these three tumor types. Therefore, we are limited to comparing the impact of similar systemic factors on tumor progression in each tumor type. Conclusions There is some convergence of systemic metabolic changes, particularly with regard to factors associated with obesity, on the biology of breast, ovarian, and endometrial cancer. However, future research is needed in order to clarify the convergent-or potentially divergent-mechanism(s) by which obesity affects breast, endometrial and OC.
Collapse
Affiliation(s)
- Yanitza M Rodríguez
- Department of Cellular & Molecular Physiology, Internal Medicine (Endocrinology), and Comparative Medicine, Yale University, New Haven, CT, USA
| | - Abigail A Koomson
- Department of Cellular & Molecular Physiology, Internal Medicine (Endocrinology), and Comparative Medicine, Yale University, New Haven, CT, USA
| | - Rachel J Perry
- Department of Cellular & Molecular Physiology, Internal Medicine (Endocrinology), and Comparative Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Ni Q, Yang H, Rao H, Zhang L, Xiong M, Han X, Deng B, Wang L, Chen J, Shi Y. The role of the C5a-C5aR pathway in iron metabolism and gastric cancer progression. Front Immunol 2025; 15:1522181. [PMID: 39850877 PMCID: PMC11754390 DOI: 10.3389/fimmu.2024.1522181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Gastric cancer continues to be a leading global health concern, with current therapeutic approaches requiring significant improvement. While the disruption of iron metabolism in the advancement of gastric cancer has been well-documented, the underlying regulatory mechanisms remain largely unexplored. Additionally, the complement C5a-C5aR pathway has been identified as a crucial factor in gastric cancer development. The impact of the complement system on iron metabolism and its role in gastric cancer progression is an area warranting further investigation. Our research demonstrates that the C5a-C5aR pathway promotes gastric cancer progression by enhancing iron acquisition in tumor cells through two mechanisms. First, it drives macrophage polarization toward the M2 phenotype, which has a strong iron-release capability. Second, it increases the expression of LCN2, a high-affinity iron-binding protein critical for iron export from tumor-associated macrophages, by activating endoplasmic reticulum stress in these cells. Both mechanisms facilitate the transfer of iron from macrophages to cancer cells, thereby promoting tumor cell proliferation. This study aims to elucidate the connection between the complement C5a-C5aR pathway and iron metabolism within the tumor microenvironment. Our data suggest a pivotal role of the C5a-C5aR pathway in tumor iron management, indicating that targeting its regulatory mechanisms may pave the way for future iron-targeted therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Qinxue Ni
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Hong Yang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hang Rao
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Liyong Zhang
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Mengyuan Xiong
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Xiao Han
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Boshao Deng
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lulu Wang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Chen
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Shi
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| |
Collapse
|
10
|
Zheng N, Li X, Zhou N, Luo L. Identification of Novel LCN2 Inhibitors Based on Construction of Pharmacophore Models and Screening of Marine Compound Libraries by Fragment Design. Mar Drugs 2025; 23:24. [PMID: 39852526 PMCID: PMC11767183 DOI: 10.3390/md23010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
LCN2, a member of the lipocalin family, is associated with various tumors and inflammatory conditions. Despite the availability of known inhibitors, none have been approved for clinical use. In this study, marine compounds were screened for their ability to inhibit LCN2 using pharmacophore models. Six compounds were optimized for protein binding after being docked against the positive control Compound A. Two compounds showed promising results in ADMET screening. Molecular dynamics simulations were utilized to predict binding mechanisms, with Compound 69081_50 identified as a potential LCN2 inhibitor. MM-PBSA analysis revealed key amino acid residues that are involved in interactions, suggesting that Compound 69081_50 could be a candidate for drug development.
Collapse
Affiliation(s)
| | | | | | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, China; (N.Z.); (X.L.); (N.Z.)
| |
Collapse
|
11
|
Reddy T, Puri A, Guzman-Rojas L, Thomas C, Qian W, Zhou J, Zhao H, Mahboubi B, Oo A, Cho YJ, Kim B, Thaiparambil J, Rosato R, Martinez KO, Chervo MF, Ayerbe C, Giese N, Wink D, Lockett S, Wong S, Chang J, Krishnamurthy S, Yam C, Moulder S, Piwnica-Worms H, Meric-Bernstam F, Chang J. NOS inhibition sensitizes metaplastic breast cancer to PI3K inhibition and taxane therapy via c-JUN repression. Nat Commun 2024; 15:10737. [PMID: 39737957 PMCID: PMC11685991 DOI: 10.1038/s41467-024-54651-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane. Mechanistically, NOS blockade leads to a decrease in the S-nitrosylation of c-Jun NH2-terminal kinase (JNK)/c-Jun complex to repress its transcriptional output, leading to enhanced tumor differentiation and associated chemosensitivity. As a result, combined NOS and PI3K inhibition with taxane targets MpBC stem cells and improves survival in patient-derived xenograft models relative to single-/dual-agent therapy. Similarly, biopsies from MpBC tumors that responded to L-NMMA+taxane therapy showed a post-treatment reversal of epithelial-to-mesenchymal transition and decreased stemness. Our findings suggest that combined inhibition of iNOS and PI3K is a unique strategy to decrease chemoresistance and improve clinical outcomes in MpBC.
Collapse
Affiliation(s)
- Tejaswini Reddy
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Akshjot Puri
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | | | - Christoforos Thomas
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Wei Qian
- Houston Methodist Research Institute, Houston, TX, USA
| | - Jianying Zhou
- Houston Methodist Research Institute, Houston, TX, USA
| | - Hong Zhao
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Bijan Mahboubi
- Adams School of Dentistry, University of North Carolina, Chapel Hill, USA
| | - Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Young-Jae Cho
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | | | | | | | | | - Camila Ayerbe
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Noah Giese
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - David Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, USA
| | - Stephen Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Stephen Wong
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Jeffrey Chang
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Clinton Yam
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Jenny Chang
- Houston Methodist Research Institute, Houston, TX, USA.
- Houston Methodist Neal Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Ünüvar S, Melekoğlu R, Yüce H, Çelik NZ, Okumuş EB, Toprak S, Tanbek K, Yaşar Ş, Doğan A, Türkmen NB, Yılmaz E, Sandal S. Diagnostic utility of lipocalin 2 and metalloproteinase 9 levels in early-stage endometrial cancer. Cancer Biomark 2024; 41:18758592241290951. [PMID: 39973816 DOI: 10.1177/18758592241290951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Endometrial cancer (EC) is the fourth most common gynecologic malignancy among women. Histopathologic examination is considered gold-standard for diagnosis of EC. However, these examinations sometimes not be useful in distinguishing early stage types of EC. OBJECTIVES The current study aimed to investigate the clinicopathological significance of Lipocalin-2 (LCN2), matrix metalloproteinase-9 (MMP9), and ferritin in tumor progression. METHODS A total of 98 patients (55 women newly diagnosed with early-stage endometrial cancer [study group] and 43 women with benign endometrial pathologies [control group]) were enrolled. RESULTS There was a significant difference between diagnosis (p < 0.001), surgical procedure (p < 0.001), pathology (p = 0.002), stage (p < 0.001), lymphovascular invasion (LVI) (p = 0.002), myometrial invasion (p < 0.001), and staining intensity (p < 0.001), MMP9 (p = 0.023), LCN2 (p < 0.001), glucocorticoid (GC) (p = 0.048), tumor necrosis factor-alpha (TNF-α) (p = 0.044), menopause duration (p = 0.001), body weight (p < 0.001), and body mass index (BMI) (p < 0.001) were found to be higher, and ferritin levels (p = 0.047) were lower in the endometrial adenocarcinoma group compared to the benign endometrial pathologies. CONCLUSION LCN2, MMP9, and ferritin are practical markers in early cases of endometrial cancer. Serum LCN2 and MMP9 levels may be good clinical tools for the auxiliary diagnosis of early-stage endometrial cancer. Ferritin was also significantly sensitive. Therefore, detecting these markers together may be more beneficial for cancer diagnosis.
Collapse
Affiliation(s)
- Songül Ünüvar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İnönü University, Malatya, Türkiye
| | - Rauf Melekoğlu
- Department of Obstetrics and Gynecology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Hande Yüce
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İnönü University, Malatya, Türkiye
| | - Nesibe Zeyveli Çelik
- Department of Obstetrics and Gynecology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Ezgi Bulut Okumuş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Serhat Toprak
- Department of Pathology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Kevser Tanbek
- Department of Physiology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Şeyma Yaşar
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Neşe Başak Türkmen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İnönü University, Malatya, Türkiye
| | - Ercan Yılmaz
- Department of Obstetrics and Gynecology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Süleyman Sandal
- Department of Physiology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| |
Collapse
|
13
|
He Y, Cheng S, Yang L, Ding L, Chen Y, Lu J, Zheng R. Associations between plasma markers and symptoms of anxiety and depression in patients with breast cancer. BMC Psychiatry 2024; 24:678. [PMID: 39394561 PMCID: PMC11468209 DOI: 10.1186/s12888-024-06143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND AND PURPOSE Among patients with solid tumors, those with breast cancer (BC) experience the most severe psychological issues, exhibiting a high global prevalence of depression that negatively impacts prognosis. Depression can be easily missed, and clinical markers for its diagnosis are lacking. Therefore, this study in order to investigate the diagnostic markers for BC patients with depression and anxiety and explore the specific changes of metabolism. METHOD AND RESULTS Thirty-eight BC patients and thirty-six matched healthy controls were included in the study. The anxiety and depression symptoms of the participants were evaluated by the 17-item Hamilton Depression Scale (HAMD-17) and Hamilton Anxiety Scale (HAMA). Plasma levels of glial fibrillary acidic protein (GFAP) and lipocalin-2 (LCN2) were evaluated using enzyme linked immunosorbent assay, and plasma lactate levels and metabolic characteristics were analyzed. CONCLUSION This study revealed that GFAP and LCN2 may be good diagnostic markers for anxiety or depression in patients with BC and that plasma lactate levels are also a good diagnostic marker for anxiety. In addition, specific changes in metabolism in patients with BC were preliminarily explored.
Collapse
Affiliation(s)
- Yibo He
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Shangping Cheng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingrong Yang
- Department of Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Lingyu Ding
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Yidan Chen
- Department of Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Jing Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, China.
| | - Ruzhen Zheng
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China.
| |
Collapse
|
14
|
Roy R, Man E, Aldakhlallah R, Gonzalez K, Merritt L, Daisy C, Lombardo M, Yordanova V, Sun L, Isaac B, Rockowitz S, Lotz M, Pories S, Moses MA. Mammary adipocytes promote breast tumor cell invasion and angiogenesis in the context of menopause and obesity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167325. [PMID: 38925485 DOI: 10.1016/j.bbadis.2024.167325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The mechanism(s) underlying obesity-related postmenopausal (PM) breast cancer (BC) are not clearly understood. We hypothesized that the increased local presence of 'obese' mammary adipocytes within the BC microenvironment promotes the acquisition of an invasive and angiogenic BC cell phenotype and accelerates tumor proliferation and progression. BC cells, treated with primary mammary adipocyte secretome from premenopausal (Pre-M) and PM obese women (ObAdCM; obese adipocyte conditioned-media) upregulated the expression of several pro-tumorigenic factors including VEGF, lipocalin-2 and IL-6. Both Pre-M and PM ObAdCM stimulated endothelial cell recruitment and proliferation and significantly stimulated BC cell proliferation, migration and invasion. IL-6 and LCN2 induced STAT3/Akt signaling in BC cells and STAT3 inhibition abrogated the ObAdCM-stimulated BC cell proliferation and migration. Expression of proangiogenic regulators including VEGF, NRP1, NRP2, IL8RB, TGFβ2, and TSP-1 were found to be differentially regulated in mammary adipocytes from obese PM women. Comparative RNAseq indicated an upregulation of PI3K/Akt signaling, ECM-receptor interactions and lipid/fatty acid metabolism in PM versus Pre-M mammary adipocytes. Our results demonstrate that irrespective of menopausal status, cross-talk between obese mammary adipocytes and BC cells promotes tumor aggressiveness and suggest that targeting the LCN2/IL-6/STAT3 signaling axis may be a useful strategy in obesity-driven breast tumorigenesis.
Collapse
Affiliation(s)
- Roopali Roy
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA.
| | - Emily Man
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Rama Aldakhlallah
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | | | - Lauren Merritt
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Cassandra Daisy
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Michael Lombardo
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | | | - Liang Sun
- Research Computing and Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Biju Isaac
- Research Computing and Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Shira Rockowitz
- Research Computing and Information Technology, Boston Children's Hospital, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Margaret Lotz
- Hoffman Breast Center, Mount Auburn Hospital, Cambridge, MA, USA
| | - Susan Pories
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA; Hoffman Breast Center, Mount Auburn Hospital, Cambridge, MA, USA
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
Martiniakova M, Mondockova V, Kovacova V, Babikova M, Zemanova N, Biro R, Penzes N, Omelka R. Interrelationships among metabolic syndrome, bone-derived cytokines, and the most common metabolic syndrome-related diseases negatively affecting bone quality. Diabetol Metab Syndr 2024; 16:217. [PMID: 39238022 PMCID: PMC11378428 DOI: 10.1186/s13098-024-01440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Metabolic syndrome (MetS), as a set of medical conditions including hyperglycemia, hypertension, abdominal obesity, and dyslipidemia, represents a highly prevalent disease cluster worldwide. The individual components of MetS together increase the risk of MetS-related disorders. Recent research has demonstrated that bone, as an endocrine organ, releases several systemic cytokines (osteokines), including fibroblast growth factor 23 (FGF23), lipocalin 2 (LCN2), and sclerostin (SCL). This review not only summarizes current knowledge about MetS, osteokines and the most common MetS-related diseases with a detrimental impact on bone quality (type 2 diabetes mellitus: T2DM; cardiovascular diseases: CVDs; osteoporosis: OP), but also provides new interpretations of the relationships between osteokines and individual components of MetS, as well as between osteokines and MetS-related diseases mentioned above. In this context, particular emphasis was given on available clinical studies. According to the latest knowledge, FGF23 may become a useful biomarker for obesity, T2DM, and CVDs, as FGF23 levels were increased in patients suffering from these diseases. LCN2 could serve as an indicator of obesity, dyslipidemia, T2DM, and CVDs. The levels of LCN2 positively correlated with obesity indicators, triglycerides, and negatively correlated with high-density lipoprotein (HDL) cholesterol. Furthermore, subjects with T2DM and CVDs had higher LCN2 levels. SCL may act as a potential biomarker predicting the incidence of MetS including all its components, T2DM, CVDs, and OP. Elevated SCL levels were noted in individuals with T2DM, CVDs and reduced in patients with OP. The aforementioned bone-derived cytokines have the potential to serve as promising predictors and prospective treatment targets for MetS and MetS-related diseases negatively affecting bone quality.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
16
|
Tsai CY, Lee CL, Wu JCC. Astrocyte-secreted lipocalin-2 elicits bioenergetic failure-induced neuronal death that is causally related to high fatality in a mouse model of hepatic encephalopathy. Neurochem Int 2024; 178:105800. [PMID: 38964718 DOI: 10.1016/j.neuint.2024.105800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Hepatic encephalopathy (HE) is a neurological complication arising from acute liver failure with poor prognosis and high mortality; the underlying cellular mechanisms are still wanting. We previously found that neuronal death caused by mitochondrial dysfunction in rostral ventrolateral medulla (RVLM), which leads to baroreflex dysregulation, is related to high fatality in an animal model of HE. Lipocalin-2 (Lcn2) is a secreted glycoprotein mainly released by astrocytes in the brain. We noted the presence of Lcn2 receptor (Lcn2R) in RVLM neurons and a parallel increase of Lcn2 gene in astrocytes purified from RVLM during experimental HE. Therefore, our guiding hypothesis is that Lcn2 secreted by reactive astrocytes in RVLM may underpin high fatality during HE by eliciting bioenergetic failure-induced neuronal death in this neural substrate. In this study, we first established the role of astrocyte-secreted Lcn2 in a liver toxin model of HE induced by azoxymethane (100 μg/g, ip) in C57BL/6 mice, followed by mechanistic studies in primary astrocyte and neuron cultures prepared from postnatal day 1 mouse pups. In animal study, immunoneutralization of Lcn2 reduced apoptotic cell death in RVLM, reversed defunct baroreflex-mediated vasomotor tone and prolonged survival during experimental HE. In our primary cell culture experiments, Lcn2 produced by cultured astrocytes and released into the astrocyte-conditioned medium significantly reduced cell viability of cultured neurons. Recombinant Lcn2 protein reduced cell viability, mitochondrial ATP (mitoATP) production, and pyruvate dehydrogenase (PDH) activity but enhanced the expression of pyruvate dehydrogenase kinase (PDK) 1, PDK3 and phospho-PDHA1 (inactive PDH) through MAPK/ERK pathway in cultured neurons, with all cellular actions reversed by Lcn2R knockdown. Our results suggest that astrocyte-secreted Lcn2 upregulates PDKs through MAPK/ERK pathway, which leads to reduced PDH activity and mitoATP production; the reinforced neuronal death in RVLM is causally related to baroreflex dysregulation that underlies high fatality associated with HE.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Chin-Lai Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jacqueline C C Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Vahed SZ, Khatibi SMH, Saadat YR, Emdadi M, Khodaei B, Alishani MM, Boostani F, Dizaj SM, Pirmoradi S. Introducing effective genes in lymph node metastasis of breast cancer patients using SHAP values based on the mRNA expression data. PLoS One 2024; 19:e0308531. [PMID: 39150915 PMCID: PMC11329117 DOI: 10.1371/journal.pone.0308531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024] Open
Abstract
OBJECTIVE Breast cancer, a global concern predominantly impacting women, poses a significant threat when not identified early. While survival rates for breast cancer patients are typically favorable, the emergence of regional metastases markedly diminishes survival prospects. Detecting metastases and comprehending their molecular underpinnings are crucial for tailoring effective treatments and improving patient survival outcomes. METHODS Various artificial intelligence methods and techniques were employed in this study to achieve accurate outcomes. Initially, the data was organized and underwent hold-out cross-validation, data cleaning, and normalization. Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. Finally, the selected features were considered, and the SHAP algorithm was utilized to identify the most significant features for enhancing the decoding of dominant molecular mechanisms in lymph node metastases. RESULTS In this study, five main steps were followed for the analysis of mRNA expression data: reading, preprocessing, feature selection, classification, and SHAP algorithm. The RF classifier utilized the candidate mRNAs to differentiate between negative and positive categories with an accuracy of 61% and an AUC of 0.6. During the SHAP process, intriguing relationships between the selected mRNAs and positive/negative lymph node status were discovered. The results indicate that GDF5, BAHCC1, LCN2, FGF14-AS2, and IDH2 are among the top five most impactful mRNAs based on their SHAP values. CONCLUSION The prominent identified mRNAs including GDF5, BAHCC1, LCN2, FGF14-AS2, and IDH2, are implicated in lymph node metastasis. This study holds promise in elucidating a thorough insight into key candidate genes that could significantly impact the early detection and tailored therapeutic strategies for lymph node metastasis in patients with breast cancer.
Collapse
Affiliation(s)
| | - Seyed Mahdi Hosseiniyan Khatibi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Rahat Breath and Sleep Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Manijeh Emdadi
- Department of Computer Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran
| | - Bahareh Khodaei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Matin Alishani
- Department of Computer Science, Faculty of Information Technology, University of Shahid Madani of Tabriz, Tabriz, Iran
| | - Farnaz Boostani
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Pirmoradi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Liu Y, Jiang Y, Qiu P, Ma T, Bai Y, Bu J, Hu Y, Jin M, Zhu T, Gu X. RGS10 deficiency facilitates distant metastasis by inducing epithelial-mesenchymal transition in breast cancer. eLife 2024; 13:RP97327. [PMID: 39145770 PMCID: PMC11326775 DOI: 10.7554/elife.97327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Distant metastasis is the major cause of death in patients with breast cancer. Epithelial-mesenchymal transition (EMT) contributes to breast cancer metastasis. Regulator of G protein-signaling (RGS) proteins modulates metastasis in various cancers. This study identified a novel role for RGS10 in EMT and metastasis in breast cancer. RGS10 protein levels were significantly lower in breast cancer tissues compared to normal breast tissues, and deficiency in RGS10 protein predicted a worse prognosis in patients with breast cancer. RGS10 protein levels were lower in the highly aggressive cell line MDA-MB-231 than in the poorly aggressive, less invasive cell lines MCF7 and SKBR3. Silencing RGS10 in SKBR3 cells enhanced EMT and caused SKBR3 cell migration and invasion. The ability of RGS10 to suppress EMT and metastasis in breast cancer was dependent on lipocalin-2 and MIR539-5p. These findings identify RGS10 as a tumor suppressor, prognostic biomarker, and potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Bai
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yueting Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Jin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tong Zhu
- Breast Surgery of Panjin Central Hospital, Panjin, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Zhao Y, Tang X, Lei T, Fu D, Zhang H. Lipocalin-2 promotes breast cancer brain metastasis by enhancing tumor invasion and modulating brain microenvironment. Front Oncol 2024; 14:1448089. [PMID: 39188682 PMCID: PMC11345181 DOI: 10.3389/fonc.2024.1448089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Breast cancer is the leading cancer diagnosed in women globally, with brain metastasis emerging as a major cause of death, particularly in human epidermal growth factor receptor 2 positive and triple-negative breast cancer subtypes. Comprehensive understanding of the molecular foundations of central nervous system metastases is imperative for the evolution of efficacious treatment strategies. Lipocalin-2 (LCN2), a secreted iron transport protein with multiple functions, has been linked to the progression of breast cancer brain metastasis (BCBM). In primary tumors, LCN2 promotes the proliferation and angiogenesis of breast cancer cells, triggers the epithelial-mesenchymal transition, interacts with matrix metalloproteinase-9, thereby facilitating the reorganization of the extracellular matrix and enhancing cancer cell invasion and migration. In brain microenvironment, LCN2 undermines the blood-brain barrier and facilitates tumor seeding in the brain by modulating the behavior of key cellular components. In summary, this review meticulously examines the fuel role of LCN2 in BCBM cascade, and investigates the potential mechanisms involved. It highlights the potential of LCN2 as both a therapeutic target and biomarker, indicating that interventions targeting LCN2 may offer improved outcomes for patients afflicted with BCBM.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiaogen Tang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Tingting Lei
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Dongwei Fu
- Department of Oncology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Hongyi Zhang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Kakkat S, Suman P, Turbat- Herrera EA, Singh S, Chakroborty D, Sarkar C. Exploring the multifaceted role of obesity in breast cancer progression. Front Cell Dev Biol 2024; 12:1408844. [PMID: 39040042 PMCID: PMC11260727 DOI: 10.3389/fcell.2024.1408844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Obesity is a multifaceted metabolic disorder characterized by excessive accumulation of adipose tissue. It is a well-established risk factor for the development and progression of breast cancer. Adipose tissue, which was once regarded solely as a passive energy storage depot, is now acknowledged as an active endocrine organ producing a plethora of bioactive molecules known as adipokines that contribute to the elevation of proinflammatory cytokines and estrogen production due to enhanced aromatase activity. In the context of breast cancer, the crosstalk between adipocytes and cancer cells within the adipose microenvironment exerts profound effects on tumor initiation, progression, and therapeutic resistance. Moreover, adipocytes can engage in direct interactions with breast cancer cells through physical contact and paracrine signaling, thereby facilitating cancer cell survival and invasion. This review endeavors to summarize the current understanding of the intricate interplay between adipocyte-associated factors and breast cancer progression. Furthermore, by discussing the different aspects of breast cancer that can be adversely affected by obesity, this review aims to shed light on potential avenues for new and novel therapeutic interventions.
Collapse
Affiliation(s)
- Sooraj Kakkat
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Prabhat Suman
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Elba A. Turbat- Herrera
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
21
|
Huang SW, Lim SK, Yu YA, Pan YC, Lien WJ, Mou CY, Hu CMJ, Mou KY. Overcoming the nutritional immunity by engineering iron-scavenging bacteria for cancer therapy. eLife 2024; 12:RP90798. [PMID: 38747577 PMCID: PMC11095936 DOI: 10.7554/elife.90798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Certain bacteria demonstrate the ability to target and colonize the tumor microenvironment, a characteristic that positions them as innovative carriers for delivering various therapeutic agents in cancer therapy. Nevertheless, our understanding of how bacteria adapt their physiological condition to the tumor microenvironment remains elusive. In this work, we employed liquid chromatography-tandem mass spectrometry to examine the proteome of E. coli colonized in murine tumors. Compared to E. coli cultivated in the rich medium, we found that E. coli colonized in tumors notably upregulated the processes related to ferric ions, including the enterobactin biosynthesis and iron homeostasis. This finding indicated that the tumor is an iron-deficient environment to E. coli. We also found that the colonization of E. coli in the tumor led to an increased expression of lipocalin 2 (LCN2), a host protein that can sequester the enterobactin. We therefore engineered E. coli in order to evade the nutritional immunity provided by LCN2. By introducing the IroA cluster, the E. coli synthesizes the glycosylated enterobactin, which creates steric hindrance to avoid the LCN2 sequestration. The IroA-E. coli showed enhanced resistance to LCN2 and significantly improved the anti-tumor activity in mice. Moreover, the mice cured by the IroA-E. coli treatment became resistant to the tumor re-challenge, indicating the establishment of immunological memory. Overall, our study underscores the crucial role of bacteria's ability to acquire ferric ions within the tumor microenvironment for effective cancer therapy.
Collapse
Affiliation(s)
- Sin-Wei Huang
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - See-Khai Lim
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Yao-An Yu
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Yi-Chung Pan
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Wan-Ju Lien
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan UniversityTaipeiTaiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Kurt Yun Mou
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| |
Collapse
|
22
|
Sturniolo I, Váróczy C, Regdon Z, Mázló A, Muzsai S, Bácsi A, Intili G, Hegedűs C, Boothby MR, Holechek J, Ferraris D, Schüler H, Virág L. PARP14 Contributes to the Development of the Tumor-Associated Macrophage Phenotype. Int J Mol Sci 2024; 25:3601. [PMID: 38612413 PMCID: PMC11011797 DOI: 10.3390/ijms25073601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Cancers reprogram macrophages (MΦs) to a tumor-growth-promoting TAM (tumor-associated MΦ) phenotype that is similar to the anti-inflammatory M2 phenotype. Poly(ADP-ribose) polymerase (PARP) enzymes regulate various aspects of MΦ biology, but their role in the development of TAM phenotype has not yet been investigated. Here, we show that the multispectral PARP inhibitor (PARPi) PJ34 and the PARP14 specific inhibitor MCD113 suppress the expression of M2 marker genes in IL-4-polarized primary murine MΦs, in THP-1 monocytic human MΦs, and in primary human monocyte-derived MΦs. MΦs isolated from PARP14 knockout mice showed a limited ability to differentiate to M2 cells. In a murine model of TAM polarization (4T1 breast carcinoma cell supernatant transfer to primary MΦs) and in a human TAM model (spheroids formed from JIMT-1 breast carcinoma cells and THP-1-MΦs), both PARPis and the PARP14 KO phenotype caused weaker TAM polarization. Increased JIMT-1 cell apoptosis in co-culture spheroids treated with PARPis suggested reduced functional TAM reprogramming. Protein profiling arrays identified lipocalin-2, macrophage migration inhibitory factor, and plasminogen activator inhibitor-1 as potential (ADP-ribosyl)ation-dependent mediators of TAM differentiation. Our data suggest that PARP14 inhibition might be a viable anticancer strategy with a potential to boost anticancer immune responses by reprogramming TAMs.
Collapse
Affiliation(s)
- Isotta Sturniolo
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csongor Váróczy
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- National Academy of Scientist Education, 4032 Debrecen, Hungary
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
| | - Szabolcs Muzsai
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
- HUN-REN-DE Allergology Research Group, 4032 Debrecen, Hungary
| | - Giorgia Intili
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy;
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
| | - Mark R. Boothby
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37235, USA;
| | | | - Dana Ferraris
- Department of Chemistry, McDaniel College, Westminster, MD 21157, USA;
| | - Herwig Schüler
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 22100 Lund, Sweden;
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
23
|
Shi C, Wang C, Fu Z, Liu J, Zhou Y, Cheng B, Zhang C, Li S, Zhang Y. Lipocalin 2 (LCN2) confers acquired resistance to almonertinib in NSCLC through LCN2-MMP-9 signaling pathway. Pharmacol Res 2024; 201:107088. [PMID: 38295916 DOI: 10.1016/j.phrs.2024.107088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Almonertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is highly selective for EGFR-activating mutations as well as the EGFR T790M mutation in patients with advanced non-small cell lung cancer (NSCLC). However, the development of resistance inevitably occurs and poses a major obstacle to the clinical efficacy of almonertinib. Therefore, a clear understanding of the mechanism is of great significance to overcome drug resistance to almonertinib in the future. In this study, NCI-H1975 cell lines resistant to almonertinib (NCI-H1975 AR) were developed by concentration-increasing induction and were employed for clarification of underlying mechanisms of acquired resistance. Through RNA-seq analysis, the HIF-1 and TGF-β signaling pathways were significantly enriched by gene set enrichment analysis. Lipocalin-2 (LCN2), as the core node in these two signaling pathways, were found to be positively correlated to almonertinib-resistance in NSCLC cells. The function of LCN2 in the drug resistance of almonertinib was investigated through knockdown and overexpression assays in vitro and in vivo. Moreover, matrix metalloproteinases-9 (MMP-9) was further identified as a critical downstream effector of LCN2 signaling, which is regulated via the LCN2-MMP-9 axis. Pharmacological inhibition of MMP-9 could overcome resistance to almonertinib, as evidenced in both in vitro and in vivo models. Our findings suggest that LCN2 was a crucial regulator for conferring almonertinib-resistance in NSCLC and demonstrate the potential utility of targeting the LCN2-MMP-9 axis for clinical treatment of almonertinib-resistant lung adenocarcinoma.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Cong Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinmei Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanfeng Zhou
- Department of Preclinical Translational Science, Shanghai Hansoh Biomedical Co.,Ltd., Shanghai 201203. China
| | - Bao Cheng
- Department of Chemistry, Shanghai Hansoh Biomedical Co., Ltd, Shanghai 201203, China
| | - Cong Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China.
| |
Collapse
|
24
|
Baugh AG, Gonzalez E, Narumi VH, Kreger J, Liu Y, Rafie C, Castanon S, Jang J, Kagohara LT, Anastasiadou DP, Leatherman J, Armstrong TD, Chan I, Karagiannis GS, Jaffee EM, MacLean A, Roussos Torres ET. Mimicking the breast metastatic microenvironment: characterization of a novel syngeneic model of HER2 + breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577282. [PMID: 38352476 PMCID: PMC10862766 DOI: 10.1101/2024.01.25.577282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Preclinical murine models in which primary tumors spontaneously metastasize to distant organs are valuable tools to study metastatic progression and novel cancer treatment combinations. Here, we characterize a novel syngeneic murine breast tumor cell line, NT2.5-lung metastasis (-LM), that provides a model of spontaneously metastatic neu-expressing breast cancer with quicker onset of widespread metastases after orthotopic mammary implantation in immune-competent NeuN mice. Within one week of orthotopic implantation of NT2.5-LM in NeuN mice, distant metastases can be observed in the lungs. Within four weeks, metastases are also observed in the bones, spleen, colon, and liver. Metastases are rapidly growing, proliferative, and responsive to HER2-directed therapy. We demonstrate altered expression of markers of epithelial-to-mesenchymal transition (EMT) and enrichment in EMT-regulating pathways, suggestive of their enhanced metastatic potential. The new NT2.5-LM model provides more rapid and spontaneous development of widespread metastases. Besides investigating mechanisms of metastatic progression, this new model may be used for the rationalized development of novel therapeutic interventions and assessment of therapeutic responses targeting distant visceral metastases.
Collapse
Affiliation(s)
- Aaron G. Baugh
- Department of Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edgar Gonzalez
- Department of Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Valerie H. Narumi
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jesse Kreger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Yingtong Liu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Christine Rafie
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sofi Castanon
- Department of Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julie Jang
- Department of Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Luciane T. Kagohara
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Dimitra P. Anastasiadou
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment & Metastasis Program, Montefiore-Einstein Cancer Center, Bronx, NY, USA
| | - James Leatherman
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Todd D. Armstrong
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Isaac Chan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - George S. Karagiannis
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment & Metastasis Program, Montefiore-Einstein Cancer Center, Bronx, NY, USA
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elizabeth M. Jaffee
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Adam MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Evanthia T. Roussos Torres
- Department of Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Ekemen S, Bilir E, Soultan HEA, Zafar S, Demir F, Tabandeh B, Toprak S, Yapicier O, Coban C. The Programmed Cell Death Ligand 1 and Lipocalin 2 Expressions in Primary Breast Cancer and Their Associations with Molecular Subtypes and Prognostic Factors. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:1-13. [PMID: 38192518 PMCID: PMC10771776 DOI: 10.2147/bctt.s444077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Purpose Breast cancers exhibit molecular heterogeneity, leading to diverse clinical outcomes and therapeutic responses. Immune checkpoint inhibitors targeting PD-L1 have shown promise in various malignancies, including breast cancer. Lipocalin 2 (LCN2) has also been associated with tumor aggressiveness and prognostic potential in breast cancers. However, the expression of PD-L1 and LCN2 in breast cancer subtypes and their prognostic implications remains poorly investigated. Methods A retrospective analysis of 89 primary breast cancer cases was conducted to assess PD-L1 and LCN2 expressions using immunohistochemistry. Cases were classified into four different molecular subtypes based on ER, PR, HER2, and Ki-67 status. Associations between PD-L1 and LCN2 expressions and various prognostic factors were examined. Results Although low expression of LCN2 (Allred score of <3) was observed even in normal breast tissue, LCN2 expression with increasing Allred score (≥3) positively correlated with the histological grade, high Ki-67 proliferation index, and ER/PR negativity. Significant elevations of LCN2 and PD-L1 expressions were observed in triple-negative and HER2-positive breast cancers. Conclusion The results of the study highlight the association of LCN2 with known prognostic factors and molecular subtypes. To identify potential immunotherapy recipients, it would be useful to evaluate LCN2 as well as PD-L1 immune targets in different subgroups of breast cancer patients. Further studies with larger patient numbers are warranted to validate these observations and establish standardized scoring criteria for LCN2 expression assessment.
Collapse
Affiliation(s)
- Suheyla Ekemen
- Vocational School of Health Services, Acibadem University, Istanbul, Turkey
- Division of Malaria Immunology, Department of Microbiology and Immunology, Institute of Medical Science (IMSUT), the University of Tokyo, Tokyo, Japan
| | - Ebru Bilir
- Residency Program, Bahcesehir University School of Medicine, Istanbul, Turkey
| | | | - Sadia Zafar
- Residency Program, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Figen Demir
- Department of Public Health, Acibadem University School of Medicine, Istanbul, Turkey
| | - Babek Tabandeh
- Department of General Surgery, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Sadik Toprak
- Department of Forensic Medicine, Istanbul University School of Medicine, Istanbul, Turkey
| | - Ozlem Yapicier
- Department of Pathology, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, Institute of Medical Science (IMSUT), the University of Tokyo, Tokyo, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
- International Vaccine Design Center, Institute of Medical Science (IMSUT), the University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
He J, Lei Y, Li X, Wu B, Tang Y. Exploring the prognostic value of S100A11 and its association with immune infiltration in breast cancer. Sci Rep 2023; 13:22922. [PMID: 38129538 PMCID: PMC10739898 DOI: 10.1038/s41598-023-50160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Breast cancer (BC) is a severe danger to women's lives and health globally. S100A11 is aberrantly expressed in many carcinomas and serves a crucial function in cancer development. However, the role of S100A11 in BC is unclear. In this study, we utilized multiple databases and online tools, including the TCGA database, cBioPortal, and STRING, to evaluate the significance of S100A11 in BC prognosis and immune infiltration. We found that S100A11 was considerably more abundant in BC tissues. Survival analysis indicated that individuals with S100A11 high expression of BC had shorter overall survival. Multivariate Cox regression analysis revealed that high S100A11 expression independently influenced the poor outcome of patients with BC (HR = 1.738, 95%CI 1.197-2.524). Our nomogram incorporating five factors, including S100A11, age, clinical stage, N, and M, was developed to anticipate the survival probability in BC prognosis. The model demonstrated good consistency and accuracy. Furthermore, the mutation rete of S100A11 was 14%. Survival analysis suggested that breast cancer patients with S100A11 mutation had a worse prognosis. KEGG pathway enrichment analysis revealed that S100A11 may be mainly involved in the IL-17 signaling pathway. Finally, we discovered a correlation between S100A11 expression and immune cell infiltration on BC. S100A11 expression was positively associated with 17 immune checkpoint-related genes. In conclusion, this study indicates that S100A11 may contribute to a worse prognosis for BC and potentially has a significant impact through its influence on immune cell infiltration and the IL-17 signaling pathway.
Collapse
Affiliation(s)
- Junfang He
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yuxi Lei
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiabin Li
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, 646000, Sichuan, China
| | - Bin Wu
- Departments of Breast Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yan Tang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Institute of Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
27
|
Akrida I, Papadaki H. Adipokines and epithelial-mesenchymal transition (EMT) in cancer. Mol Cell Biochem 2023; 478:2419-2433. [PMID: 36715963 DOI: 10.1007/s11010-023-04670-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Obesity is a significant risk factor for cancer development. Within the tumor microenvironment, adipocytes interact with cancer cells, immune cells, fibroblasts and endothelial cells, and orchestrate several signaling pathways by secreting bioactive molecules, including adipokines. Adipokines or adipocytokines are produced predominantly by adipocytes and function as autocrine, paracrine and endocrine mediators. Adipokines can exert pro- and anti-inflammatory functions, and they play a pivotal role in the state of chronic low-grade inflammation that characterizes obesity. Epithelial-mesenchymal transition (EMT), a complex biological process whereby epithelial cells acquire the invasive, migratory mesenchymal phenotype is well-known to be implicated in cancer progression and metastasis. Emerging evidence suggests that there is a link between adipokines and EMT. This may contribute to the correlation that has been documented between obesity and cancer progression. This review summarizes the existing body of evidence supporting an association between the process of EMT in cancer and the adipokines leptin, adiponectin, resistin, visfatin/NAMPT, lipocalin-2/NGAL, as well as other newly discovered adipokines including chemerin, nesfatin-1/nucleobindin-2, AZGP1, SFRP5 and FABP4.
Collapse
Affiliation(s)
- Ioanna Akrida
- Department of General Surgery, University General Hospital of Patras, Rion, Greece.
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece.
- Department of Surgery, Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504, Rion, Greece.
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece
| |
Collapse
|
28
|
Živalj M, Van Ginderachter JA, Stijlemans B. Lipocalin-2: A Nurturer of Tumor Progression and a Novel Candidate for Targeted Cancer Therapy. Cancers (Basel) 2023; 15:5159. [PMID: 37958332 PMCID: PMC10648573 DOI: 10.3390/cancers15215159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Within the tumor microenvironment (TME) exists a complex signaling network between cancer cells and stromal cells, which determines the fate of tumor progression. Hence, interfering with this signaling network forms the basis for cancer therapy. Yet, many types of cancer, in particular, solid tumors, are refractory to the currently used treatments, so there is an urgent need for novel molecular targets that could improve current anti-cancer therapeutic strategies. Lipocalin-2 (Lcn-2), a secreted siderophore-binding glycoprotein that regulates iron homeostasis, is highly upregulated in various cancer types. Due to its pleiotropic role in the crosstalk between cancer cells and stromal cells, favoring tumor progression, it could be considered as a novel biomarker for prognostic and therapeutic purposes. However, the exact signaling route by which Lcn-2 promotes tumorigenesis remains unknown, and Lcn-2-targeting moieties are largely uninvestigated. This review will (i) provide an overview on the role of Lcn-2 in orchestrating the TME at the level of iron homeostasis, macrophage polarization, extracellular matrix remodeling, and cell migration and survival, and (ii) discuss the potential of Lcn-2 as a promising novel drug target that should be pursued in future translational research.
Collapse
Affiliation(s)
- Maida Živalj
- Brussels Center for Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Jo A. Van Ginderachter
- Brussels Center for Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Benoit Stijlemans
- Brussels Center for Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| |
Collapse
|
29
|
Zhong J, Zong S, Wang J, Feng M, Wang J, Zhang H, Xiong L. Role of neutrophils on cancer cells and other immune cells in the tumor microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119493. [PMID: 37201766 DOI: 10.1016/j.bbamcr.2023.119493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
The notion that neutrophils only perform a specific set of single functions in the body has changed with the advancement of research methods. As the most abundant myeloid cells in human blood, neutrophils are currently emerging as important regulators of cancer. Given the duality of neutrophils, neutrophil-based tumor therapy has been clinically carried out in recent years and has made some progress. But due to the complexity of the tumor microenvironment, the therapeutic effect is still not satisfactory. Therefore, in this review, we discuss the direct interaction of neutrophils with the five most common cancer cells and other immune cells in the tumor microenvironment. Also, this review covered current limitations, potential future possibilities, and therapeutic approaches targeting neutrophil function in cancer therapy.
Collapse
Affiliation(s)
- Junpei Zhong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China
| | - Siwen Zong
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jiayang Wang
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Mingrui Feng
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Wang
- Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Fujian province university, Xiamen 361023, China
| | - Hongyan Zhang
- Department of Burn, The First Affiliated Hospital, Nanchang University, Nanchang 330066, China.
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China; Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Fujian province university, Xiamen 361023, China.
| |
Collapse
|
30
|
David TI, Pestov NB, Korneenko TV, Barlev NA. Non-Immunoglobulin Synthetic Binding Proteins for Oncology. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1232-1247. [PMID: 37770391 DOI: 10.1134/s0006297923090043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/30/2023]
Abstract
Extensive application of technologies like phage display in screening peptide and protein combinatorial libraries has not only facilitated creation of new recombinant antibodies but has also significantly enriched repertoire of the protein binders that have polypeptide scaffolds without homology to immunoglobulins. These innovative synthetic binding protein (SBP) platforms have grown in number and now encompass monobodies/adnectins, DARPins, lipocalins/anticalins, and a variety of miniproteins such as affibodies and knottins, among others. They serve as versatile modules for developing complex affinity tools that hold promise in both diagnostic and therapeutic settings. An optimal scaffold typically has low molecular weight, minimal immunogenicity, and demonstrates resistance against various challenging conditions, including proteolysis - making it potentially suitable for peroral administration. Retaining functionality under reducing intracellular milieu is also advantageous. However, paramount to its functionality is the scaffold's ability to tolerate mutations across numerous positions, allowing for the formation of a sufficiently large target binding region. This is achieved through the library construction, screening, and subsequent expression in an appropriate system. Scaffolds that exhibit high thermodynamic stability are especially coveted by the developers of new SBPs. These are steadily making their way into clinical settings, notably as antagonists of oncoproteins in signaling pathways. This review surveys the diverse landscape of SBPs, placing particular emphasis on the inhibitors targeting the oncoprotein KRAS, and highlights groundbreaking opportunities for SBPs in oncology.
Collapse
Affiliation(s)
- Temitope I David
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Nikolay B Pestov
- Institute of Biomedical Chemistry, Moscow, 119121, Russia.
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Tatyana V Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Nikolai A Barlev
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia
- Institute of Cytology Russian Academy of Sciences, St.-Petersburg, 194064, Russia
- School of Medicine, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
31
|
Mehta KJ. Iron-Related Genes and Proteins in Mesenchymal Stem Cell Detection and Therapy. Stem Cell Rev Rep 2023; 19:1773-1784. [PMID: 37269528 PMCID: PMC10238768 DOI: 10.1007/s12015-023-10569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are located in various tissues of the body. These cells exhibit regenerative and reparative properties, which makes them highly valuable for cell-based therapy. Despite this, majority of MSC-related studies remain to be translated for regular clinical use. This is partly because there are methodical challenges in pre-administration MSC labelling, post-administration detection and tracking of cells, and in retention of maximal therapeutic potential in-vivo. This calls for exploration of alternative or adjunctive approaches that would enable better detection of transplanted MSCs via non-invasive methods and enhance MSC therapeutic potential in-vivo. Interestingly, these attributes have been demonstrated by some iron-related genes and proteins.Accordingly, this unique forward-looking article integrates the apparently distinct fields of iron metabolism and MSC biology, and reviews the utility of iron-related genes and iron-related proteins in facilitating MSC detection and therapy, respectively. Effects of genetic overexpression of the iron-related proteins ferritin, transferrin receptor-1 and MagA in MSCs and their utilisation as reporter genes for improving MSC detection in-vivo are critically evaluated. In addition, the beneficial effects of the iron chelator deferoxamine and the iron-related proteins haem oxygenase-1, lipocalin-2, lactoferrin, bone morphogenetic protein-2 and hepcidin in enhancing MSC therapeutics are highlighted with the consequent intracellular alterations in MSCs. This review aims to inform both regenerative and translational medicine. It can aid in formulating better methodical approaches that will improve, complement, or provide alternatives to the current pre-transplantation MSC labelling procedures, and enhance MSC detection or augment the post-transplantation MSC therapeutic potential.
Collapse
Affiliation(s)
- Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
32
|
Romejko K, Markowska M, Niemczyk S. The Review of Current Knowledge on Neutrophil Gelatinase-Associated Lipocalin (NGAL). Int J Mol Sci 2023; 24:10470. [PMID: 37445650 DOI: 10.3390/ijms241310470] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a 25-kDa protein that is secreted mostly by immune cells such as neutrophils, macrophages, and dendritic cells. Its production is stimulated in response to inflammation. The concentrations of NGAL can be measured in plasma, urine, and biological fluids such as peritoneal effluent. NGAL is known mainly as a biomarker of acute kidney injury and is released after tubular damage and during renal regeneration processes. NGAL is also elevated in chronic kidney disease and dialysis patients. It may play a role as a predictor of the progression of renal function decreases with complications and mortality due to kidney failure. NGAL is also useful in the diagnostic processes of cardiovascular diseases. It is highly expressed in injured heart tissue and atherosclerostic plaque; its serum concentrations correlate with the severity of heart failure and coronary artery disease. NGAL increases inflammatory states and its levels rise in arterial hypertension, obesity, diabetes, and metabolic complications such as insulin resistance, and is also involved in carcinogenesis. In this review, we present the current knowledge on NGAL and its involvement in different pathologies, especially its role in renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Katarzyna Romejko
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| | - Magdalena Markowska
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| | - Stanisław Niemczyk
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| |
Collapse
|
33
|
Barer L, Schröder SK, Weiskirchen R, Bacharach E, Ehrlich M. Lipocalin-2 regulates the expression of interferon-stimulated genes and the susceptibility of prostate cancer cells to oncolytic virus infection. Eur J Cell Biol 2023; 102:151328. [PMID: 37321037 DOI: 10.1016/j.ejcb.2023.151328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Lipocalin-2 (LCN2) performs pleiotropic and tumor context-dependent functions in cancers of diverse etiologies. In prostate cancer (PCa) cells, LCN2 regulates distinct phenotypic features, including cytoskeleton organization and expression of inflammation mediators. Oncolytic virotherapy uses oncolytic viruses (OVs) to kill cancer cells and induce anti-tumor immunity. A main source of specificity of OVs towards tumor cells stems from cancer-induced defects in interferon (IFN)-based cell autonomous immune responses. However, the molecular underpinnings of such defects in PCa cells are only partially understood. Moreover, LCN2 effects on IFN responses of PCa cells and their susceptibility to OVs are unknown. To examine these issues, we queried gene expression databases for genes coexpressed with LCN2, revealing co-expression of IFN-stimulated genes (ISGs) and LCN2. Analysis of human PCa cells revealed correlated expression of LCN2 and subsets of IFNs and ISGs. CRISPR/Cas9-mediated stable knockout of LCN2 in PC3 cells or transient overexpression of LCN2 in LNCaP cells revealed LCN2-mediated regulation of IFNE (and IFNL1) expression, activation of JAK/STAT pathway, and expression of selected ISGs. Accordingly, and dependent on a functional JAK/STAT pathway, LCN2 reduced the susceptibility of PCa cells to infection with the IFN-sensitive OV, EHDV-TAU. In PC3 cells, LCN2 knockout increased phosphorylation of eukaryotic initiation factor 2α (p-eIF2α). Inhibition of PKR-like ER kinase (PERK) in PC3-LCN2-KO cells reduced p-eIF2α while increasing constitutive IFNE expression, phosphorylation of STAT1, and ISG expression; and decreasing EHDV-TAU infection. Together, these data propose that LCN2 regulates PCa susceptibility to OVs through attenuation of PERK activity and increased IFN and ISG expression.
Collapse
Affiliation(s)
- Lilach Barer
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Sarah K Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany.
| | - Eran Bacharach
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel.
| | - Marcelo Ehrlich
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel.
| |
Collapse
|
34
|
Liu Y, Smith MR, Wang Y, D'Agostino R, Ruiz J, Lycan T, Kucera GL, Miller LD, Li W, Chan MD, Farris M, Su J, Song Q, Zhao D, Chandrasekaran A, Xing F. c-Met Mediated Cytokine Network Promotes Brain Metastasis of Breast Cancer by Remodeling Neutrophil Activities. Cancers (Basel) 2023; 15:cancers15092626. [PMID: 37174093 PMCID: PMC10177081 DOI: 10.3390/cancers15092626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The brain is one of the most common metastatic sites among breast cancer patients, especially in those who have Her2-positive or triple-negative tumors. The brain microenvironment has been considered immune privileged, and the exact mechanisms of how immune cells in the brain microenvironment contribute to brain metastasis remain elusive. In this study, we found that neutrophils are recruited and influenced by c-Met high brain metastatic cells in the metastatic sites, and depletion of neutrophils significantly suppressed brain metastasis in animal models. Overexpression of c-Met in tumor cells enhances the secretion of a group of cytokines, including CXCL1/2, G-CSF, and GM-CSF, which play critical roles in neutrophil attraction, granulopoiesis, and homeostasis. Meanwhile, our transcriptomic analysis demonstrated that conditioned media from c-Met high cells significantly induced the secretion of lipocalin 2 (LCN2) from neutrophils, which in turn promotes the self-renewal of cancer stem cells. Our study unveiled the molecular and pathogenic mechanisms of how crosstalk between innate immune cells and tumor cells facilitates tumor progression in the brain, which provides novel therapeutic targets for treating brain metastasis.
Collapse
Affiliation(s)
- Yin Liu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Margaret R Smith
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Yuezhu Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ralph D'Agostino
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jimmy Ruiz
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas Lycan
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gregory L Kucera
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Wencheng Li
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Michael Farris
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jing Su
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 47405, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Dawen Zhao
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Arvind Chandrasekaran
- Bioinspired Microengineering Laboratory (BIOME), Department of Chemical, Biological and Bioengineering, NC A&T State University, Greensboro, NC 27411, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
35
|
Su W, Li W, Zhang Y, Wang K, Chen M, Chen X, Li D, Zhang P, Yu D. Screening and identification of the core immune-related genes and immune cell infiltration in severe burns and sepsis. J Cell Mol Med 2023. [PMID: 37060578 DOI: 10.1111/jcmm.17749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023] Open
Abstract
Severe burns often have a high mortality rate due to sepsis, but the genetic and immune crosstalk between them remains unclear. In the present study, the GSE77791 and GSE95233 datasets were analysed to identify immune-related differentially expressed genes (DEGs) involved in disease progression in both burns and sepsis. Subsequently, weighted gene coexpression network analysis (WGCNA), gene enrichment analysis, protein-protein interaction (PPI) network construction, immune cell infiltration analysis, core gene identification, coexpression network analysis and clinical correlation analysis were performed. A total of 282 common DEGs associated with burns and sepsis were identified. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified the following enriched pathways in burns and sepsis: metabolic pathways; complement and coagulation cascades; legionellosis; starch and sucrose metabolism; and ferroptosis. Finally, six core DEGs were identified, namely, IL10, RETN, THBS1, FGF13, LCN2 and MMP9. Correlation analysis showed that some core DEGs were significantly associated with simultaneous dysregulation of immune cells. Of these, RETN upregulation was associated with a worse prognosis. The immune-related genes and dysregulated immune cells in severe burns and sepsis provide potential research directions for diagnosis and treatment.
Collapse
Affiliation(s)
- Wenxing Su
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Wei Li
- Department of Urology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuanyuan Zhang
- Department of Medical Laboratory, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Kuan Wang
- Department of Cosmetic Plastic and Burns Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Maolin Chen
- Department of Cosmetic Plastic and Burns Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoming Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Dazhuang Li
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ping Zhang
- Department of Cosmetic Plastic and Burns Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| |
Collapse
|
36
|
D’Agosto S, Fiorini E, Pezzini F, Delfino P, Simbolo M, Vicentini C, Andreani S, Capelli P, Rusev B, Lawlor RT, Bassi C, Landoni L, Pea A, Luchini C, Scarpa A, Corbo V. Long-term organoid culture of a small intestinal neuroendocrine tumor. Front Endocrinol (Lausanne) 2023; 14:999792. [PMID: 37082125 PMCID: PMC10112019 DOI: 10.3389/fendo.2023.999792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/02/2023] [Indexed: 04/22/2023] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare and highly heterogeneous neoplasms whose incidence has markedly increased over the last decades. A grading system based on the tumor cells' proliferation index predicts high-risk for G3 NETs. However, low-to-intermediate grade (G1/G2) NETs have an unpredictable clinical course that varies from indolent to highly malignant. Cultures of human cancer cells enable to perform functional perturbation analyses that are instrumental to enhance our understanding of cancer biology. To date, no tractable and reliable long-term culture of G1/G2 NET has been reported to permit disease modeling and pharmacological screens. Here, we report of the first long-term culture of a G2 metastatic small intestinal NET that preserves the main genetic drivers of the tumor and retains expression patterns of the endocrine cell lineage. Replicating the tissue, this long-term culture showed a low proliferation index, and yet it could be propagated continuously without dramatic changes in the karyotype. The model was readily available for pharmacological screens using targeted agents and as expected, showed low tumorigenic capacity in vivo. Overall, this is the first long-term culture of NETs to faithfully recapitulate many aspects of the original neuroendocrine tumor.
Collapse
Affiliation(s)
- Sabrina D’Agosto
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Elena Fiorini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Pezzini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Caterina Vicentini
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Silvia Andreani
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Paola Capelli
- Azienda Ospedaliera Integrata dell’Università di Verona, Verona, Italy
| | - Borislav Rusev
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Rita T. Lawlor
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Claudio Bassi
- Pancreas Institute, Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Landoni
- Pancreas Institute, Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Antonio Pea
- Pancreas Institute, Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| |
Collapse
|
37
|
Jo D, Jung YS, Song J. Lipocalin-2 Secreted by the Liver Regulates Neuronal Cell Function Through AKT-Dependent Signaling in Hepatic Encephalopathy Mouse Model. Clin Nutr Res 2023; 12:154-167. [PMID: 37214781 PMCID: PMC10193436 DOI: 10.7762/cnr.2023.12.2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
Hepatic encephalopathy (HE) associated with liver failure is accompanied by hyperammonemia, severe inflammation, depression, anxiety, and memory deficits as well as liver injury. Recent studies have focused on the liver-brain-inflammation axis to identify a therapeutic solution for patients with HE. Lipocalin-2 is an inflammation-related glycoprotein that is secreted by various organs and is involved in cellular mechanisms including iron homeostasis, glucose metabolism, cell death, neurite outgrowth, and neurogenesis. In this study, we investigated that the roles of lipocalin-2 both in the brain cortex of mice with HE and in Neuro-2a (N2A) cells. We detected elevated levels of lipocalin-2 both in the plasma and liver in a bile duct ligation mouse model of HE. We confirmed changes in cytokine expression, such as interleukin-1β, cyclooxygenase 2 expression, and iron metabolism related to gene expression through AKT-mediated signaling both in the brain cortex of mice with HE and N2A cells. Our data showed negative effects of hepatic lipocalin-2 on cell survival, iron homeostasis, and neurite outgrowth in N2A cells. Thus, we suggest that regulation of lipocalin-2 in the brain in HE may be a critical therapeutic approach to alleviate neuropathological problems focused on the liver-brain axis.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| |
Collapse
|
38
|
Deng M, Aberle MR, van Bijnen AAJHM, van der Kroft G, Lenaerts K, Neumann UP, Wiltberger G, Schaap FG, Olde Damink SWM, Rensen SS. Lipocalin-2 and neutrophil activation in pancreatic cancer cachexia. Front Immunol 2023; 14:1159411. [PMID: 37006254 PMCID: PMC10057111 DOI: 10.3389/fimmu.2023.1159411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundCancer cachexia is a multifactorial syndrome characterized by body weight loss and systemic inflammation. The characterization of the inflammatory response in patients with cachexia is still limited. Lipocalin-2, a protein abundant in neutrophils, has recently been implicated in appetite suppression in preclinical models of pancreatic cancer cachexia. We hypothesized that lipocalin-2 levels could be associated with neutrophil activation and nutritional status of pancreatic ductal adenocarcinoma (PDAC) patients.MethodsPlasma levels of neutrophil activation markers calprotectin, myeloperoxidase, elastase, and bactericidal/permeability-increasing protein (BPI) were compared between non-cachectic PDAC patients (n=13) and cachectic PDAC patients with high (≥26.9 ng/mL, n=34) or low (<26.9 ng/mL, n=34) circulating lipocalin-2 levels. Patients’ nutritional status was assessed by the patient-generated subjective global assessment (PG-SGA) and through body composition analysis using CT-scan slices at the L3 level.ResultsCirculating lipocalin-2 levels did not differ between cachectic and non-cachectic PDAC patients (median 26.7 (IQR 19.7-34.8) vs. 24.8 (16.6-29.4) ng/mL, p=0.141). Cachectic patients with high systemic lipocalin-2 levels had higher concentrations of calprotectin, myeloperoxidase, and elastase than non-cachectic patients or cachectic patients with low lipocalin-2 levels (calprotectin: 542.3 (355.8-724.9) vs. 457.5 (213.3-606.9), p=0.448 vs. 366.5 (294.5-478.5) ng/mL, p=0.009; myeloperoxidase: 30.3 (22.1-37.9) vs. 16.3 (12.0-27.5), p=0.021 vs. 20.2 (15.0-29.2) ng/mL, p=0.011; elastase: 137.1 (90.8-253.2) vs. 97.2 (28.8-215.7), p=0.410 vs. 95.0 (72.2-113.6) ng/mL, p=0.006; respectively). The CRP/albumin ratio was also higher in cachectic patients with high lipocalin-2 levels (2.3 (1.3-6.0) as compared to non-cachectic patients (1.0 (0.7-4.2), p=0.041). Lipocalin-2 concentrations correlated with those of calprotectin (rs=0.36, p<0.001), myeloperoxidase (rs=0.48, p<0.001), elastase (rs=0.50, p<0.001), and BPI (rs=0.22, p=0.048). Whereas no significant correlations with weight loss, BMI, or L3 skeletal muscle index were observed, lipocalin-2 concentrations were associated with subcutaneous adipose tissue index (rs=-0.25, p=0.034). Moreover, lipocalin-2 tended to be elevated in severely malnourished patients compared with well-nourished patients (27.2 (20.3-37.2) vs. 19.9 (13.4-26.4) ng/mL, p=0.058).ConclusionsThese data suggest that lipocalin-2 levels are associated with neutrophil activation in patients with pancreatic cancer cachexia and that it may contribute to their poor nutritional status.
Collapse
Affiliation(s)
- Min Deng
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Merel R. Aberle
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Annemarie A. J. H. M. van Bijnen
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Gregory van der Kroft
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Kaatje Lenaerts
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Ulf P. Neumann
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Georg Wiltberger
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Frank G. Schaap
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Steven W. M. Olde Damink
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Sander S. Rensen
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- *Correspondence: Sander S. Rensen,
| |
Collapse
|
39
|
Verras GI, Tchabashvili L, Chlorogiannis DD, Mulita F, Argentou MI. Updated Clinical Evidence on the Role of Adipokines and Breast Cancer: A Review. Cancers (Basel) 2023; 15:1572. [PMID: 36900364 PMCID: PMC10000674 DOI: 10.3390/cancers15051572] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
With the recent leaps in medicine, the landscape of our knowledge regarding adipose tissue has changed dramatically: it is now widely regarded as a fully functional endocrine organ. In addition, evidence from observational studies has linked the pathogenesis of diseases like breast cancer with adipose tissue and mainly with the adipokines that are secreted in its microenvironment, with the catalog continuously expanding. Examples include leptin, visfatin, resistin, osteopontin, and more. This review aims to encapsulate the current clinical evidence concerning major adipokines and their link with breast cancer oncogenesis. Overall, there have been numerous meta-analyses that contribute to the current clinical evidence, however more targeted larger-scale clinical studies are still expected to solidify their clinical utility in BC prognosis and reliability as follow-up markers.
Collapse
Affiliation(s)
- Georgios-Ioannis Verras
- Breast Unit, Department of General Surgery, General University Hospital of Patras, 26504 Rio, Greece
| | - Levan Tchabashvili
- Breast Unit, Department of General Surgery, General University Hospital of Patras, 26504 Rio, Greece
| | | | - Francesk Mulita
- Breast Unit, Department of General Surgery, General University Hospital of Patras, 26504 Rio, Greece
| | - Maria-Ioanna Argentou
- Breast Unit, Department of General Surgery, General University Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
40
|
Adler O, Zait Y, Cohen N, Blazquez R, Doron H, Monteran L, Scharff Y, Shami T, Mundhe D, Glehr G, Kanner AA, Horn S, Yahalom V, Haferkamp S, Hutchinson JA, Bleckmann A, Nahary L, Benhar I, Yust Katz S, Pukrop T, Erez N. Reciprocal interactions between innate immune cells and astrocytes facilitate neuroinflammation and brain metastasis via lipocalin-2. NATURE CANCER 2023; 4:401-418. [PMID: 36797502 DOI: 10.1038/s43018-023-00519-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/17/2023] [Indexed: 04/19/2023]
Abstract
Brain metastasis still encompass very grim prognosis and therefore understanding the underlying mechanisms is an urgent need toward developing better therapeutic strategies. We uncover the intricate interactions between recruited innate immune cells and resident astrocytes in the brain metastatic niche that facilitate metastasis of melanoma and breast cancer. We show that granulocyte-derived lipocalin-2 (LCN2) induces inflammatory activation of astrocytes, leading to myeloid cell recruitment to the brain. LCN2 is central to inducing neuroinflammation as its genetic targeting or bone-marrow transplantation from LCN2-/- mice was sufficient to attenuate neuroinflammation and inhibit brain metastasis. Moreover, high LCN2 levels in patient blood and brain metastases in multiple cancer types were strongly associated with disease progression and poor survival. Our findings uncover a previously unknown mechanism, establishing a central role for the reciprocal interactions between granulocytes and astrocytes in promoting brain metastasis and implicate LCN2 as a prognostic marker and potential therapeutic target.
Collapse
Affiliation(s)
- Omer Adler
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Cohen
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raquel Blazquez
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Hila Doron
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lea Monteran
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yeela Scharff
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Shami
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dhanashree Mundhe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gunther Glehr
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Andrew A Kanner
- Department of Neurosurgery, Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Suzana Horn
- Department of Pathology, Rabin Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vered Yahalom
- Blood Services & Apheresis Institute, Rabin Medical Center and Tel Aviv University, Tel Aviv, Israel
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Annalen Bleckmann
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
- Medical Clinic A, Haematology, Haemostasiology, Oncology and Pulmonology, University Hospital Münster, Münster, Germany
- West German Cancer Center, University Hospital Münster, Münster, Germany
| | - Limor Nahary
- The Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itai Benhar
- The Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Yust Katz
- Neuro-Oncology Unit, Davidoff Cancer Center at Rabin Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
41
|
Khan A, Singh A, Singh P, Kumar R, Ojha KK, Singh VK, Srivastava A. LCN2-Fungal siderophore-iron binding and uptake leads to oxidative stress and cell death in hepatocellular carcinoma cell line HepG2. J Biomol Struct Dyn 2023; 41:12714-12733. [PMID: 36762696 DOI: 10.1080/07391102.2023.2175380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023]
Abstract
Microorganisms produce non-ribosomal peptides called siderophores for the purpose of iron acquisition. Mammalian immune system is well-known for producing small secretory proteins called lipocalins upon bacterial infection. These proteins sequester siderophores produced by invading bacterial pathogens rendering them unable to acquire iron from the host. However, this is not their sole function. In addition to transferrin and lactoferrin, lipocalins are also known to transport siderophore-bound iron to the host cells. While binding of bacterial siderophores with human lipocalin is well studied, binding of the fungal counterpart is still not confirmed and fully understood. Apart from pathogen-affected cells, developing cancerous cells also show varying expression level of different proteins including those involved in iron transport. The possibility of exogenous fungal siderophore-mediated iron transport via lipocalin and its receptor in mammalian cells has not yet been explored much. In present investigation we have checked differential expression of human lipocalin, LCN2 in hepatocellular carcinoma cell lines HepG2 as well as its normal counterpart WRL-68 and computationally determined the feasibility of LCN2 binding with fungal siderophore. Further in case of a stable complex being formed, whether this complex has the ability to transport iron through its specific receptor was assessed. Also, we have tried to explore possible mechanism of fungal-siderophore mediated oxidative stress leading to significant cell death in cancerous cells. This study will thus be useful towards finding a new way of treating hepatocellular carcinoma via inducing siderophore-mediated cell death in cancerous cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Azmi Khan
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar
| | - Ashutosh Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar
| | - Pratika Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar
| | - Rakesh Kumar
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar
| | - Krishna Kumar Ojha
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar
| | - Vijay Kumar Singh
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar
| |
Collapse
|
42
|
Choudhary BS, Chaudhary N, Shah M, Dwivedi N, P K S, Das M, Dalal SN. Lipocalin 2 inhibits actin glutathionylation to promote invasion and migration. FEBS Lett 2023; 597:1086-1097. [PMID: 36650979 DOI: 10.1002/1873-3468.14572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023]
Abstract
Invasive and metastatic tumor cells show an increase in migration and invasion, making the processes contributing to these phenotypes potential therapeutic targets. Lipocalin 2 (LCN2; also known as neutrophil gelatinase-associated lipocalin) is a putative therapeutic target in multiple tumor types and promotes invasion and migration, although the mechanisms underlying these phenotypes are unclear. The data in this report demonstrate that LCN2 promotes actin polymerization, invasion, and migration by inhibiting actin glutathionylation. LCN2 inhibits actin glutathionylation by decreasing the levels of reactive oxygen species (ROS) and by reducing intracellular iron levels. Inhibiting LCN2 function leads to increased actin glutathionylation, decreased migration, and decreased invasion. These results suggest that LCN2 is a potential therapeutic target in invasive tumors.
Collapse
Affiliation(s)
- Bhagya Shree Choudhary
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Nazia Chaudhary
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Manya Shah
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Nehanjali Dwivedi
- Molecular Immunology, Mazumdar Shaw Medical Foundation, Bommasandra, Bangalore, India
| | - Smitha P K
- Product Research Group, Mazumdar Shaw Medical Foundation, Bommasandra, Bangalore, India
| | - Manjula Das
- Molecular Immunology, Mazumdar Shaw Medical Foundation, Bommasandra, Bangalore, India
| | - Sorab Nariman Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
43
|
Martiniakova M, Mondockova V, Biro R, Kovacova V, Babikova M, Zemanova N, Ciernikova S, Omelka R. The link between bone-derived factors osteocalcin, fibroblast growth factor 23, sclerostin, lipocalin 2 and tumor bone metastasis. Front Endocrinol (Lausanne) 2023; 14:1113547. [PMID: 36926025 PMCID: PMC10012867 DOI: 10.3389/fendo.2023.1113547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
The skeleton is the third most common site of metastatic disease, which causes serious bone complications and short-term prognosis in cancer patients. Prostate and breast cancers are responsible for the majority of bone metastasis, resulting in osteolytic or osteoblastic lesions. The crosstalk between bone cells and their interactions with tumor cells are important in the development of lesions. Recently, both preclinical and clinical studies documented the clinical relevance of bone-derived factors, including osteocalcin (OC) and its undercarboxylated form (ucOC), fibroblast growth factor 23 (FGF23), sclerostin (SCL), and lipocalin 2 (LCN2) as prognostic tumor biomarkers and potential therapeutic targets in bone metastasis. Both OC and ucOC could be useful targets for the prevention of bone metastasis in breast cancer. Moreover, elevated OC level may be a metastatic marker of prostate cancer. FGF23 is particularly important for those forms of cancer that primarily affect bone and/or are characterized by bone metastasis. In other tumor entities, increased FGF23 level is enigmatic. SCL plays a significant role in the pathogenesis of both osteolytic and osteoblastic lesions, as its levels are high in metastatic breast and prostate cancers. Elevated expression levels of LCN2 have been found in aggressive subtypes of cancer. However, its role in anti-metastasis varies significantly between different cancer types. Anyway, all aforementioned bone-derived factors can be used as promising tumor biomarkers. As metastatic bone disease is generally not curable, targeting bone factors represents a new trend in the prevention of bone metastasis and patient care.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
- *Correspondence: Monika Martiniakova, ; Radoslav Omelka,
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
- *Correspondence: Monika Martiniakova, ; Radoslav Omelka,
| |
Collapse
|
44
|
Asaf S, Maqsood F, Jalil J, Sarfraz Z, Sarfraz A, Mustafa S, Ojeda IC. Lipocalin 2-not only a biomarker: a study of current literature and systematic findings of ongoing clinical trials. Immunol Res 2022; 71:287-313. [PMID: 36529828 PMCID: PMC9760530 DOI: 10.1007/s12026-022-09352-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Lipocalin 2 (Lcn2), also known as neutrophil gelatinase-associated lipocalin, is an innate immune protein encoded by the LCN2 gene. In this study, we investigated various roles and functions of Lcn2 characterized in a systems-based format and evaluated its therapeutic potentials and clinical relevance for diagnosis and prognosis. An additional systematic presentation was presented for 70 ongoing clinical trials utilizing Lcn2 in the diagnostic and prognostic setting as a key outcome measure. With trials being conducted through December 2030, Lcn2 will become all the more relevant given its associations with diseases as a prognostic biomarker. Data also suggests that it plays a role in pathological conditions. The gaps in our understanding of Lcn2, once filled, may improve the immune mediation of acute and chronic disease.
Collapse
Affiliation(s)
| | | | | | | | - Azza Sarfraz
- The Aga Khan University, Karachi, Pakistan.
- Department of Pediatrics and Child Health, Aga Khan University, Stadium Road, P.O Box 3500, Karachi, 74800, Pakistan.
| | | | | |
Collapse
|
45
|
Ren X, Liang J, Zhang Y, Jiang N, Xu Y, Qiu M, Wang Y, Zhao B, Chen X. Single-cell transcriptomic analysis highlights origin and pathological process of human endometrioid endometrial carcinoma. Nat Commun 2022; 13:6300. [PMID: 36273006 PMCID: PMC9588071 DOI: 10.1038/s41467-022-33982-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 10/10/2022] [Indexed: 12/25/2022] Open
Abstract
Endometrial cancers are complex ecosystems composed of cells with distinct phenotypes, genotypes, and epigenetic states. Current models do not adequately reflect oncogenic origin and pathological progression in patients. Here we use single-cell RNA sequencing to profile cells from normal endometrium, atypical endometrial hyperplasia, and endometrioid endometrial cancer (EEC), which altogether represent the step-by-step development of endometrial cancer. We find that EEC originates from endometrial epithelial cells but not stromal cells, and unciliated glandular epithelium is the source of EEC. We also identify LCN2 + /SAA1/2 + cells as a featured subpopulation of endometrial tumorigenesis. Finally, the stromal niche and immune environment changes during EEC progression are described. This study elucidates the evolution of cell populations in EEC development at single-cell resolution, which would provide a direction to facilitate EEC research and diagnosis.
Collapse
Affiliation(s)
- Xiaojun Ren
- grid.412312.70000 0004 1755 1415Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China ,grid.412312.70000 0004 1755 1415Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jianqing Liang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Jiang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuhui Xu
- grid.412312.70000 0004 1755 1415Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China ,grid.412312.70000 0004 1755 1415Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Mengdi Qiu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqin Wang
- grid.412312.70000 0004 1755 1415Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China ,grid.412312.70000 0004 1755 1415Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Bing Zhao
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaojun Chen
- grid.412312.70000 0004 1755 1415Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China ,grid.412312.70000 0004 1755 1415Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
46
|
Roweth HG, Malloy MW, Goreczny GJ, Becker IC, Guo Q, Mittendorf EA, Italiano JE, McAllister SS, Battinelli EM. Pro-inflammatory megakaryocyte gene expression in murine models of breast cancer. SCIENCE ADVANCES 2022; 8:eabo5224. [PMID: 36223471 PMCID: PMC9555784 DOI: 10.1126/sciadv.abo5224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Despite abundant research demonstrating that platelets can promote tumor cell metastasis, whether primary tumors affect platelet-producing megakaryocytes remains understudied. In this study, we used a spontaneous murine model of breast cancer to show that tumor burden reduced megakaryocyte number and size and disrupted polyploidization. Single-cell RNA sequencing demonstrated that megakaryocytes from tumor-bearing mice exhibit a pro-inflammatory phenotype, epitomized by increased Ctsg, Lcn2, S100a8, and S100a9 transcripts. Protein S100A8/A9 and lipocalin-2 levels were also increased in platelets, suggesting that tumor-induced alterations to megakaryocytes are passed on to their platelet progeny, which promoted in vitro tumor cell invasion and tumor cell lung colonization to a greater extent than platelets from wild-type animals. Our study is the first to demonstrate breast cancer-induced alterations in megakaryocytes, leading to qualitative changes in platelet content that may feedback to promote tumor metastasis.
Collapse
Affiliation(s)
- Harvey G. Roweth
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Michael W. Malloy
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gregory J. Goreczny
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Isabelle C. Becker
- Harvard Medical School, Boston, MA 02115, USA
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Qiuchen Guo
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A. Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women’s Cancer Center, Boston, MA 02215, USA
- Ludwig Centre for Cancer Research at Harvard, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph E. Italiano
- Harvard Medical School, Boston, MA 02115, USA
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Sandra S. McAllister
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Elisabeth M. Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Verdelli A, Caproni M, Coi A, Corrà A, Degl’Innocenti D, Vasarri M, Quintarelli L, Volpi V, Cipollini EM, Barletta E. Neutrophil Gelatinase-Associated Lipocalin as Potential Predictive Biomarker of Melanoma and Non-Melanoma Skin Cancers in Psoriatic Patients: A Pilot Study. Int J Mol Sci 2022; 23:ijms232012291. [PMID: 36293148 PMCID: PMC9603947 DOI: 10.3390/ijms232012291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/15/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Background: Studies have demonstrated a higher risk of nonmelanoma skin cancers (NMSC) and a modestly increased melanoma risk in patients with psoriasis. To date, no biomarkers predictive of evolution have been identified yet. Methods: The aim of this prospective case-control study was to investigate the potential role of neutrophil gelatinase-associated lipocalin (NGAL) as a predictive biomarker of skin cancers in psoriatic patients. Patients with a diagnosis of psoriasis were enrolled, as well as healthy subjects and patients with skin cancers as controls. Plasma protein expression of NGAL, metalloproteinases (MMP)-2, and MMP-9 was performed by an enzyme-linked immunosorbent assay (ELISA). In all the patients who developed skin cancer at follow-up, NGAL, MMP-2, and MMP-9 serum levels were dosed again. Results: Plasma NGAL levels were significantly higher in psoriatic patients with NMSC than without (182.3 ± 36.6 ng/mL vs. 139.9 ± 39.3 ng/mL) (p < 0.001). Plasma NGAL levels were significantly higher (p < 0.00001) in patients with psoriasis and NMSC than in patients with skin tumors without psoriasis (182.3 vs. 122.9). Patients with psoriasis who developed NMSC at follow-up showed increased plasma MMP-9 levels. Conclusion: NGAL seems to play a role in the pathogenesis of NMSC but not melanoma in patients with psoriasis.
Collapse
Affiliation(s)
- Alice Verdelli
- Department of Health Sciences, Section of Dermatology, Rare Dermatological Unit, Azienda USL Toscana Centro, University of Florence, 50125 Florence, Italy
- Correspondence: ; Tel.: +39-055-6939664
| | - Marzia Caproni
- Department of Health Sciences, Section of Dermatology, Rare Dermatological Unit, Azienda USL Toscana Centro, University of Florence, 50125 Florence, Italy
| | - Alessio Coi
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, 56127 Pisa, Italy
| | - Alberto Corrà
- Department of Health Sciences, Section of Dermatology, University of Florence, 50125 Florence, Italy
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Lavinia Quintarelli
- Department of Health Sciences, Section of Dermatology, Rare Dermatological Unit, Azienda USL Toscana Centro, University of Florence, 50125 Florence, Italy
| | - Valter Volpi
- Department of Health Sciences, Section of Dermatology, Rare Dermatological Unit, Azienda USL Toscana Centro, University of Florence, 50125 Florence, Italy
| | - Emanuele Maria Cipollini
- Department of Health Sciences, Section of Dermatology, Rare Dermatological Unit, Azienda USL Toscana Centro, University of Florence, 50125 Florence, Italy
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
48
|
Roy R, Yang J, Shimura T, Merritt L, Alluin J, Man E, Daisy C, Aldakhlallah R, Dillon D, Pories S, Chodosh LA, Moses MA. Escape from breast tumor dormancy: The convergence of obesity and menopause. Proc Natl Acad Sci U S A 2022; 119:e2204758119. [PMID: 36191215 PMCID: PMC9564105 DOI: 10.1073/pnas.2204758119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Obesity is associated with an increased risk of, and a poor prognosis for, postmenopausal (PM) breast cancer (BC). Our goal was to determine whether diet-induced obesity (DIO) promotes 1) shorter tumor latency, 2) an escape from tumor dormancy, and 3) an acceleration of tumor growth and to elucidate the underlying mechanism(s). We have developed in vitro assays and PM breast tumor models complemented by a noninvasive imaging system to detect vascular invasion of dormant tumors and have used them to determine whether obesity promotes the escape from breast tumor dormancy and tumor growth by facilitating the switch to the vascular phenotype (SVP) in PM BC. Obese mice had significantly higher tumor frequency, higher tumor volume, and lower overall survival compared with lean mice. We demonstrate that DIO exacerbates mammary gland hyperplasia and neoplasia, reduces tumor latency, and increases tumor frequency via an earlier acquisition of the SVP. DIO establishes a local and systemic proangiogenic and inflammatory environment via the up-regulation of lipocalin-2 (LCN2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) that may promote the escape from tumor dormancy and tumor progression. In addition, we show that targeting neovascularization via a multitargeted receptor tyrosine kinase inhibitor, sunitinib, can delay the acquisition of the SVP, thereby prolonging tumor latency, reducing tumor frequency, and increasing tumor-free survival, suggesting that targeting neovascularization may be a potential therapeutic strategy in obesity-associated PM BC progression. This study establishes the link between obesity and PM BC and, for the first time to our knowledge, bridges the dysfunctional neovascularization of obesity with the earliest stages of tumor development.
Collapse
Affiliation(s)
- Roopali Roy
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115
| | - Jiang Yang
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115
| | - Takaya Shimura
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115
| | - Lauren Merritt
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Justine Alluin
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Emily Man
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Cassandra Daisy
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Rama Aldakhlallah
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Deborah Dillon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Susan Pories
- Hoffman Breast Center, Mount Auburn Hospital, Cambridge, MA 02138
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Lewis A. Chodosh
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Marsha A. Moses
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115
| |
Collapse
|
49
|
Morales-Valencia J, Lau L, Martí-Nin T, Ozerdem U, David G. Therapy-induced senescence promotes breast cancer cells plasticity by inducing Lipocalin-2 expression. Oncogene 2022; 41:4361-4370. [PMID: 35953598 PMCID: PMC9482949 DOI: 10.1038/s41388-022-02433-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 01/29/2023]
Abstract
The acquisition of novel detrimental cellular properties following exposure to cytotoxic drugs leads to aggressive and metastatic tumors that often translates into an incurable disease. While the bulk of the primary tumor is eliminated upon exposure to chemotherapeutic treatment, residual cancer cells and non-transformed cells within the host can engage a stable cell cycle exit program named senescence. Senescent cells secrete a distinct set of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP). Upon exposure to the SASP, cancer cells undergo cellular plasticity resulting in increased proliferation, migration and epithelial-to-mesenchymal transition. The molecular mechanisms by which the SASP regulates these pro-tumorigenic features are poorly understood. Here, we report that breast cancer cells exposed to the SASP strongly upregulate Lipocalin-2 (LCN2). Furthermore, we demonstrate that LCN2 is critical for SASP-induced increased migration in breast cancer cells, and its inactivation potentiates the response to chemotherapeutic treatment in mouse models of breast cancer. Finally, we show that neoadjuvant chemotherapy treatment leads to LCN2 upregulation in residual human breast tumors, and correlates with worse overall survival. These findings provide the foundation for targeting LCN2 as an adjuvant therapeutic approach to prevent the emergence of aggressive tumors following chemotherapy.
Collapse
Affiliation(s)
- Jorge Morales-Valencia
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA
- NYU Langone Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Lena Lau
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Teresa Martí-Nin
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Ugur Ozerdem
- Department of Pathology, New York University School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA.
- NYU Langone Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA.
- Department of Urology, New York University School of Medicine, NYU Langone Health, New York, NY, 10016, USA.
| |
Collapse
|
50
|
Valashedi MR, Roushandeh AM, Tomita K, Kuwahara Y, Pourmohammadi-Bejarpasi Z, Kozani PS, Sato T, Roudkenar MH. CRISPR/Cas9-mediated knockout of Lcn2 in human breast cancer cell line MDA-MB-231 ameliorates erastin-mediated ferroptosis and increases cisplatin vulnerability. Life Sci 2022; 304:120704. [PMID: 35714703 DOI: 10.1016/j.lfs.2022.120704] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 01/16/2023]
Abstract
AIMS Lipocalin 2 (Lcn2) is an antioxidant-related protein upregulated in various cellular stress conditions, especially cancer. In this study, we abrogated Lcn2 expression in MDA-MB-231 breast cancer cells using the CRISPR/Cas9 technology and evaluated its effect on cellular proliferation, migration, and ferroptotic cell death. MAIN METHODS Validated human Lcn2 CRISPR/Cas9 knockout (KO) and homology-directed repair (HDR) plasmids were co-transfected into MDA-MB-231 breast cancer cells. Lcn2 gene knockout was confirmed at the transcriptional and protein levels using reverse transcription (RT)-PCR and enzyme-linked immunosorbent assay (ELISA). Cell proliferation was measured using Cell Counting Kit-8 (CCK-8) and colony formation assays. Cytotoxicity assay was performed in the presence or absence of erastin, cisplatin (CDDP), and ferrostatin-1 using the CCK-8 method. Ferroptosis level was measured using the malondialdehyde assay lipid peroxidation kit. The migration capacity of the cells was also evaluated using the scratch assay. KEY FINDINGS Targeting Lcn2 using CRISPR/Cas9 reduced cellular proliferation and migration capability, and elevated the vulnerability of MDA-MB-231 cells to cisplatin. Furthermore, Lcn2 expression loss effectively promoted erastin-mediated ferroptosis in MDA-MB-231 cells. SIGNIFICANCE Inhibition of Lcn2 is a potentially useful strategy for sensitizing MDA-MB-231 tumor cells to ferroptotic cell death.
Collapse
Affiliation(s)
- Mehdi Rabiee Valashedi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|