1
|
Herrera-Rivero M, Garvert L, Horn K, Löbner M, Weitzel EC, Stoll M, Lichtner P, Teismann H, Teumer A, Van der Auwera S, Völzke H, Völker U, Andlauer TFM, Meinert S, Heilmann-Heimbach S, Forstner AJ, Streit F, Witt SH, Kircher T, Dannlowski U, Scholz M, Riedel-Heller SG, Grabe HJ, Baune BT, Berger K. A meta-analysis of genome-wide studies of resilience in the German population. Mol Psychiatry 2025; 30:497-505. [PMID: 39112778 PMCID: PMC11746137 DOI: 10.1038/s41380-024-02688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 01/22/2025]
Abstract
Resilience is the capacity to adapt to stressful life events. As such, this trait is associated with physical and mental functions and conditions. Here, we aimed to identify the genetic factors contributing to shape resilience. We performed variant- and gene-based meta-analyses of genome-wide association studies from six German cohorts (N = 15822) using the 11-item version of the Resilience Scale (RS-11) as outcome measure. Variant- and gene-level results were combined to explore the biological context using network analysis. In addition, we conducted tests of correlation between RS-11 and the polygenic scores (PGSs) for 12 personality and mental health traits in one of these cohorts (PROCAM-2, N = 3879). The variant-based analysis found no signals associated with resilience at the genome-wide level (p < 5 × 10-8), but suggested five genomic loci (p < 1 × 10-5). The gene-based analysis identified three genes (ROBO1, CIB3 and LYPD4) associated with resilience at genome-wide level (p < 2.48 × 10-6) and 32 potential candidates (p < 1 × 10-4). Network analysis revealed enrichment of biological pathways related to neuronal proliferation and differentiation, synaptic organization, immune responses and vascular homeostasis. We also found significant correlations (FDR < 0.05) between RS-11 and the PGSs for neuroticism and general happiness. Overall, our observations suggest low heritability of resilience. Large, international efforts will be required to uncover the genetic factors that contribute to shape trait resilience. Nevertheless, as the largest investigation of the genetics of resilience in general population to date, our study already offers valuable insights into the biology potentially underlying resilience and resilience's relationship with other personality traits and mental health.
Collapse
Affiliation(s)
- Marisol Herrera-Rivero
- Department of Psychiatry, University of Münster, Münster, Germany.
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany.
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Münster, Germany.
| | - Linda Garvert
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Margrit Löbner
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Elena Caroline Weitzel
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
- Department of Biochemistry, Genetic Epidemiology and Statistical Genetics, Maastricht University, Maastricht, Netherlands
| | - Peter Lichtner
- Core Facility Genomics, Helmholtz Centre Munich, Munich, Germany
| | - Henning Teismann
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Till F M Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Ulm, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Ulm, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Steffi G Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Sun M, Huang X, Ruan X, Shang X, Zhang M, Liu L, Wang P, An P, Lin Y, Yang J, Xue Y. Cpeb4-mediated Dclk2 promotes neuronal pyroptosis induced by chronic cerebral ischemia through phosphorylation of Ehf. J Cereb Blood Flow Metab 2024; 44:1655-1673. [PMID: 38513137 PMCID: PMC11418732 DOI: 10.1177/0271678x241240590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Chronic cerebral ischemia (CCI) is a clinical syndrome characterised by brain dysfunction due to decreased chronic cerebral perfusion. CCI initiates several inflammatory pathways, including pyroptosis. RNA-binding proteins (RBPs) play important roles in CCI. This study aimed to explore whether the interaction between RBP-Cpeb4 and Dclk2 affected Ehf phosphorylation to regulate neuronal pyroptosis. HT22 cells and mice were used to construct oxygen glucose deprivation (OGD)/CCI models. We found that Cpeb4 and Dclk2 were upregulated in OGD-treated HT22 cells and CCI-induced hippocampal CA1 tissues. Cpeb4 upregulated Dclk2 expression by increasing Dclk2 mRNA stability. Knockdown of Cpeb4 or Dclk2 inhibited neuronal pyroptosis in OGD-treated HT22 cells and CCI-induced hippocampal CA1 tissues. By binding to the promoter regions of Caspase1 and Caspase3, the transcription factor Ehf reduced their promoter activities and inhibited the transcription. Dclk2 phosphorylated Ehf and changed its nucleoplasmic distribution, resulting in the exit of p-Ehf from the nucleus and decreased Ehf levels. It promoted the expression of Caspase1 and Caspase3 and stimulated neuronal pyroptosis of HT22 cells induced by OGD. Cpeb4/Dclk2/Ehf pathway plays an important role in the regulation of cerebral ischemia-induced neuronal pyroptosis.
Collapse
Affiliation(s)
- Miao Sun
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Xin Huang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengyang Zhang
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Ping An
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Yang Lin
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Jin Yang
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
3
|
Cheng J, Tang YC, Dong Y, Qin RL, Dong ZQ. Doublecortin-like kinase 3 (DCLK3) is associated with bad clinical outcome of patients with gastric cancer and regulates the ferroptosis and mitochondria function in vitro and in vivo. Ir J Med Sci 2024; 193:35-43. [PMID: 37340227 DOI: 10.1007/s11845-023-03430-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Doublecortin-like kinase 3 (DCLK3), a member of tubulin superfamily, has been proved to be closely associated with the pathogenesis of numerous human tumors. However, the expression pattern and regulatory mechanisms of DCLK3 in gastric cancer (GC) remain unknown. MATERIALS AND METHODS DCLK3 expression in GC cells was assessed by RT-qPCR and western blotting. The correlation between DCLK3 levels and the overall survival of GC patients was assessed via TCGA, ACLBI, and Kaplan-Meier plotter databases. Additionally, key proteins (TCF4) involved in the regulation of DCLK3 on GC progression were screened by ACLBI database. Cell proliferation, ferroptotic cell death, and oxidative stress markers were measured by EdU staining, immunofluorescence, ELISA, and western blotting assays. RESULTS DCLK3 was upregulated in GC, and high DCLK3 expression was significantly associated with poor survival of GC patients. Here, DCLK3 knockdown reduced GC cell proliferation, induced ferroptotic cell death, and exacerbated oxidative stress level. Logistic regression analysis showed that TCF4 was an independent prognostic indicator of GC. Mechanistically, DCLK3 promoted TCF4 expression and subsequently upregulated the expression of TCF4 downstream target genes (c-Myc and Cyclin D1). Furthermore, DCLK3 overexpression enhanced GC cell proliferation, but mitigating ferroptotic cell death and oxidative stress. The regulatory mechanism may involve the upregulation of TCF4, c-Myc, and cyclin D1. CONCLUSIONS Our research suggests that DCLK3 modulates the levels of iron and reactive oxygen and may involve regulation of TCF4 pathway, thereby promoting the GC cell growth, indicating that DCLK3 may use as a prognostic marker and therapeutic target for GC patients.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Pharmacy, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, No. 41 Linyin Road, Kundulun District, Baotou, 014010, Inner Mongolia, China
| | - Yu C Tang
- Department of Pharmacy, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, No. 41 Linyin Road, Kundulun District, Baotou, 014010, Inner Mongolia, China
| | - Yuan Dong
- Department of Pharmacy, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, No. 41 Linyin Road, Kundulun District, Baotou, 014010, Inner Mongolia, China
| | - Rui L Qin
- Department of Cardiac Function, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, Baotou, Inner Mongolia, China
| | - Zhi Q Dong
- Department of Pharmacy, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, No. 41 Linyin Road, Kundulun District, Baotou, 014010, Inner Mongolia, China.
| |
Collapse
|
4
|
He Y, Dai X, Li S, Zhang X, Gong K, Song K, Shi J. Doublecortin-like kinase 2 promotes breast cancer cell invasion and metastasis. Clin Transl Oncol 2023; 25:1102-1113. [PMID: 36477947 DOI: 10.1007/s12094-022-03018-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Doublecortin-like kinase 2 (DCLK2) is a microtubule-associated protein kinase that participates in neural development and maturation; however, whether it is involved in tumour progression remains unclear. METHODS DCLK2 overexpression and knockdown clones were established by lentivirus transfection. Western blot, PCR assays and bioinformatics analyses were conducted to observe the expression of DCLK2. CCK8, colony formation, scratch migration and Transwell assays were used to detect cell proliferation, migration and invasion, respectively. Tumour metastasis was evaluated in vivo using a tail vein metastasis model. Bioinformatics analyses were performed to analyse the expression correlation between DCLK2 and TCF4, or EMT markers in breast cancer. RESULTS Our data indicate that DCLK2 is highly expressed in breast cancer cells and is associated with poor prognosis. Silencing DCLK2 does not affect the proliferation rate of tumour cells, but significantly suppresses migration and invasion as well as lung metastasis processes. Overexpression of DCLK2 can enhance the migratory and invasive abilities of normal breast epithelial cells. Moreover, TCF4/β-catenin inhibitor LF3 downregulates the expression of DCLK2 and inhibits the migration and invasion of breast cancer cells. Furthermore, we found that the downregulation of DCLK2 blocks the epithelial-mesenchymal transition (EMT) process. CONCLUSION Our study indicates that DCLK2 plays an important role in EMT, cell invasion and metastasis, suggesting that DCLK2 is a potential target for the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Yanling He
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xiaoqin Dai
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shengnan Li
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Guangzhou F.Q. PATHOTECH Co., Ltd, Guangzhou, Guangdong, China
| | - Xinyuan Zhang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Kunxiang Gong
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Kai Song
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jian Shi
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Carli ALE, Hardy JM, Hoblos H, Ernst M, Lucet IS, Buchert M. Structure-Guided Prediction of the Functional Impact of DCLK1 Mutations on Tumorigenesis. Biomedicines 2023; 11:biomedicines11030990. [PMID: 36979969 PMCID: PMC10046695 DOI: 10.3390/biomedicines11030990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Doublecortin-like kinase 1 (DCLK1) is a functional serine/threonine (S/T)-kinase and a member of the doublecortin family of proteins which are characterized by their ability to bind to microtubules (MTs). DCLK1 is a proposed cancer driver gene, and its upregulation is associated with poor overall survival in several solid cancer types. However, how DCLK1 associates with MTs and how its kinase function contributes to pro-tumorigenic processes is poorly understood. This review builds on structural models to propose not only the specific functions of the domains but also attempts to predict the impact of individual somatic missense mutations on DCLK1 functions. Somatic missense mutations in DCLK1 are most frequently located within the N-terminal MT binding region and likely impact on the ability of DCLK1 to bind to αβ-tubulin and to polymerize and stabilize MTs. Moreover, the MT binding affinity of DCLK1 is negatively regulated by its auto-phosphorylation, and therefore mutations that affect kinase activity are predicted to indirectly alter MT dynamics. The emerging picture portrays DCLK1 as an MT-associated protein whose interactions with tubulin heterodimers and MTs are tightly controlled processes which, when disrupted, may confer pro-tumorigenic properties.
Collapse
Affiliation(s)
- Annalisa L E Carli
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joshua M Hardy
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hanadi Hoblos
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthias Ernst
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Isabelle S Lucet
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Buchert
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
6
|
Sun S, Wang H. Clocking Epilepsies: A Chronomodulated Strategy-Based Therapy for Rhythmic Seizures. Int J Mol Sci 2023; 24:4223. [PMID: 36835631 PMCID: PMC9962262 DOI: 10.3390/ijms24044223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by hypersynchronous recurrent neuronal activities and seizures, as well as loss of muscular control and sometimes awareness. Clinically, seizures have been reported to display daily variations. Conversely, circadian misalignment and circadian clock gene variants contribute to epileptic pathogenesis. Elucidation of the genetic bases of epilepsy is of great importance because the genetic variability of the patients affects the efficacies of antiepileptic drugs (AEDs). For this narrative review, we compiled 661 epilepsy-related genes from the PHGKB and OMIM databases and classified them into 3 groups: driver genes, passenger genes, and undetermined genes. We discuss the potential roles of some epilepsy driver genes based on GO and KEGG analyses, the circadian rhythmicity of human and animal epilepsies, and the mutual effects between epilepsy and sleep. We review the advantages and challenges of rodents and zebrafish as animal models for epileptic studies. Finally, we posit chronomodulated strategy-based chronotherapy for rhythmic epilepsies, integrating several lines of investigation for unraveling circadian mechanisms underpinning epileptogenesis, chronopharmacokinetic and chronopharmacodynamic examinations of AEDs, as well as mathematical/computational modeling to help develop time-of-day-specific AED dosing schedules for rhythmic epilepsy patients.
Collapse
Affiliation(s)
- Sha Sun
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Marshall GF, Gonzalez-Sulser A, Abbott CM. Modelling epilepsy in the mouse: challenges and solutions. Dis Model Mech 2021; 14:dmm.047449. [PMID: 33619078 PMCID: PMC7938804 DOI: 10.1242/dmm.047449] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In most mouse models of disease, the outward manifestation of a disorder can be measured easily, can be assessed with a trivial test such as hind limb clasping, or can even be observed simply by comparing the gross morphological characteristics of mutant and wild-type littermates. But what if we are trying to model a disorder with a phenotype that appears only sporadically and briefly, like epileptic seizures? The purpose of this Review is to highlight the challenges of modelling epilepsy, in which the most obvious manifestation of the disorder, seizures, occurs only intermittently, possibly very rarely and often at times when the mice are not under direct observation. Over time, researchers have developed a number of ways in which to overcome these challenges, each with their own advantages and disadvantages. In this Review, we describe the genetics of epilepsy and the ways in which genetically altered mouse models have been used. We also discuss the use of induced models in which seizures are brought about by artificial stimulation to the brain of wild-type animals, and conclude with the ways these different approaches could be used to develop a wider range of anti-seizure medications that could benefit larger patient populations. Summary: This Review discusses the challenges of modelling epilepsy in mice, a condition in which the outward manifestation of the disorder appears only sporadically, and reviews possible solutions encompassing both genetic and induced models.
Collapse
Affiliation(s)
- Grant F Marshall
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Discovery Brain Sciences, 1 George Square, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK .,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
8
|
Song J, Merrill RA, Usachev AY, Strack S. The X-linked intellectual disability gene product and E3 ubiquitin ligase KLHL15 degrades doublecortin proteins to constrain neuronal dendritogenesis. J Biol Chem 2020; 296:100082. [PMID: 33199366 PMCID: PMC7948412 DOI: 10.1074/jbc.ra120.016210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Proper brain development and function requires finely controlled mechanisms for protein turnover, and disruption of genes involved in proteostasis is a common cause of neurodevelopmental disorders. Kelch-like 15 (KLHL15) is a substrate adaptor for cullin3-containing E3 ubiquitin ligases, and KLHL15 gene mutations were recently described as a cause of severe X-linked intellectual disability. Here, we used a bioinformatics approach to identify a family of neuronal microtubule-associated proteins as KLHL15 substrates, which are themselves critical for early brain development. We biochemically validated doublecortin (DCX), also an X-linked disease protein, and doublecortin-like kinase 1 and 2 as bona fide KLHL15 interactors and mapped KLHL15 interaction regions to their tandem DCX domains. Shared with two previously identified KLHL15 substrates, a FRY tripeptide at the C-terminal edge of the second DCX domain is necessary for KLHL15-mediated ubiquitination of DCX and doublecortin-like kinase 1 and 2 and subsequent proteasomal degradation. Conversely, silencing endogenous KLHL15 markedly stabilizes these DCX domain-containing proteins and prolongs their half-life. Functionally, overexpression of KLHL15 in the presence of WT DCX reduces dendritic complexity of cultured hippocampal neurons, whereas neurons expressing FRY-mutant DCX are resistant to KLHL15. Collectively, our findings highlight the critical importance of the E3 ubiquitin ligase adaptor KLHL15 in proteostasis of neuronal microtubule-associated proteins and identify a regulatory network important for development of the mammalian nervous system.
Collapse
Affiliation(s)
- Jianing Song
- Department of Neuroscience and Pharmacology and the Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology and the Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Andrew Y Usachev
- Department of Neuroscience and Pharmacology and the Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology and the Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
9
|
Bowers M, Liang T, Gonzalez-Bohorquez D, Zocher S, Jaeger BN, Kovacs WJ, Röhrl C, Cramb KML, Winterer J, Kruse M, Dimitrieva S, Overall RW, Wegleiter T, Najmabadi H, Semenkovich CF, Kempermann G, Földy C, Jessberger S. FASN-Dependent Lipid Metabolism Links Neurogenic Stem/Progenitor Cell Activity to Learning and Memory Deficits. Cell Stem Cell 2020; 27:98-109.e11. [PMID: 32386572 DOI: 10.1016/j.stem.2020.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 01/08/2023]
Abstract
Altered neural stem/progenitor cell (NSPC) activity and neurodevelopmental defects are linked to intellectual disability. However, it remains unclear whether altered metabolism, a key regulator of NSPC activity, disrupts human neurogenesis and potentially contributes to cognitive defects. We investigated links between lipid metabolism and cognitive function in mice and human embryonic stem cells (hESCs) expressing mutant fatty acid synthase (FASN; R1819W), a metabolic regulator of rodent NSPC activity recently identified in humans with intellectual disability. Mice homozygous for the FASN R1812W variant have impaired adult hippocampal NSPC activity and cognitive defects because of lipid accumulation in NSPCs and subsequent lipogenic ER stress. Homozygous FASN R1819W hESC-derived NSPCs show reduced rates of proliferation in embryonic 2D cultures and 3D forebrain regionalized organoids, consistent with a developmental phenotype. These data from adult mouse models and in vitro models of human brain development suggest that altered lipid metabolism contributes to intellectual disability.
Collapse
Affiliation(s)
- Megan Bowers
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich 8057, Switzerland
| | - Tong Liang
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich 8057, Switzerland
| | - Daniel Gonzalez-Bohorquez
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich 8057, Switzerland
| | - Sara Zocher
- German Center for Neurodegenerative Diseases (DZNE) Dresden and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden 01307, Germany
| | - Baptiste N Jaeger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich 8057, Switzerland
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8093, Switzerland
| | - Clemens Röhrl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Kaitlyn M L Cramb
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich 8057, Switzerland
| | - Jochen Winterer
- Laboratory of Neural Connectivity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich 8057, Switzerland
| | - Merit Kruse
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich 8057, Switzerland
| | - Slavica Dimitrieva
- Functional Genomics Center Zurich, University and ETH Zurich, Zurich 8057, Switzerland
| | - Rupert W Overall
- German Center for Neurodegenerative Diseases (DZNE) Dresden and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden 01307, Germany
| | - Thomas Wegleiter
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich 8057, Switzerland
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation, Teheran 1985713834, Iran
| | - Clay F Semenkovich
- Washington University School of Medicine, Division of Endocrinology, Metabolism & Lipid Research, St. Louis, MO 63110, USA
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden 01307, Germany
| | - Csaba Földy
- Laboratory of Neural Connectivity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich 8057, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich 8057, Switzerland.
| |
Collapse
|
10
|
Galvan L, Francelle L, Gaillard MC, de Longprez L, Carrillo-de Sauvage MA, Liot G, Cambon K, Stimmer L, Luccantoni S, Flament J, Valette J, de Chaldée M, Auregan G, Guillermier M, Joséphine C, Petit F, Jan C, Jarrige M, Dufour N, Bonvento G, Humbert S, Saudou F, Hantraye P, Merienne K, Bemelmans AP, Perrier AL, Déglon N, Brouillet E. The striatal kinase DCLK3 produces neuroprotection against mutant huntingtin. Brain 2019. [PMID: 29534157 PMCID: PMC5917821 DOI: 10.1093/brain/awy057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The neurobiological functions of a number of kinases expressed in the brain are unknown. Here, we report new findings on DCLK3 (doublecortin like kinase 3), which is preferentially expressed in neurons in the striatum and dentate gyrus. Its function has never been investigated. DCLK3 expression is markedly reduced in Huntington's disease. Recent data obtained in studies related to cancer suggest DCLK3 could have an anti-apoptotic effect. Thus, we hypothesized that early loss of DCLK3 in Huntington's disease may render striatal neurons more susceptible to mutant huntingtin (mHtt). We discovered that DCLK3 silencing in the striatum of mice exacerbated the toxicity of an N-terminal fragment of mHtt. Conversely, overexpression of DCLK3 reduced neurodegeneration produced by mHtt. DCLK3 also produced beneficial effects on motor symptoms in a knock-in mouse model of Huntington's disease. Using different mutants of DCLK3, we found that the kinase activity of the protein plays a key role in neuroprotection. To investigate the potential mechanisms underlying DCLK3 effects, we studied the transcriptional changes produced by the kinase domain in human striatal neurons in culture. Results show that DCLK3 regulates in a kinase-dependent manner the expression of many genes involved in transcription regulation and nucleosome/chromatin remodelling. Consistent with this, histological evaluation showed DCLK3 is present in the nucleus of striatal neurons and, protein-protein interaction experiments suggested that the kinase domain interacts with zinc finger proteins, including the transcriptional activator adaptor TADA3, a core component of the Spt-ada-Gcn5 acetyltransferase (SAGA) complex which links histone acetylation to the transcription machinery. Our novel findings suggest that the presence of DCLK3 in striatal neurons may play a key role in transcription regulation and chromatin remodelling in these brain cells, and show that reduced expression of the kinase in Huntington's disease could render the striatum highly vulnerable to neurodegeneration.
Collapse
Affiliation(s)
- Laurie Galvan
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Laetitia Francelle
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Lucie de Longprez
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Maria-Angeles Carrillo-de Sauvage
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Géraldine Liot
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France.,Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F38000, Grenoble, France.,INSERM U1216, F38000, Grenoble, France.,CHU de Grenoble, F38000, Grenoble, France
| | - Karine Cambon
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Lev Stimmer
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,Inserm UMS27, F-92265 Fontenay-aux-Roses, France
| | - Sophie Luccantoni
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,Inserm UMS27, F-92265 Fontenay-aux-Roses, France
| | - Julien Flament
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,Inserm UMS27, F-92265 Fontenay-aux-Roses, France
| | - Julien Valette
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Michel de Chaldée
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Gwenaelle Auregan
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Martine Guillermier
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Charlène Joséphine
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Fanny Petit
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Caroline Jan
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Margot Jarrige
- Inserm U861, I-STEM, AFM, Evry 91030 Cedex France.,UEVE U861, I-STEM, AFM Evry 91030, France
| | - Noëlle Dufour
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Gilles Bonvento
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Sandrine Humbert
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F38000, Grenoble, France.,INSERM U1216, F38000, Grenoble, France.,CHU de Grenoble, F38000, Grenoble, France
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F38000, Grenoble, France.,INSERM U1216, F38000, Grenoble, France.,CHU de Grenoble, F38000, Grenoble, France
| | - Philippe Hantraye
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Karine Merienne
- CNRS/Strasbourg University UMR 7364, Laboratory of Adaptive and Cognitive Neuroscience (LNCA), Strasbourg F-67000, France
| | - Alexis-Pierre Bemelmans
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| | - Anselme L Perrier
- Inserm U861, I-STEM, AFM, Evry 91030 Cedex France.,UEVE U861, I-STEM, AFM Evry 91030, France
| | - Nicole Déglon
- Lausanne University Medical School (CHUV), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LNCM), Lausanne, Switzerland.,Lausanne University Medical School (CHUV), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LNCM), Lausanne, Switzerland
| | - Emmanuel Brouillet
- CEA, DRF, Institut François Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265, Fontenay-aux-Roses, France
| |
Collapse
|
11
|
Stein MB, Choi KW, Jain S, Campbell-Sills L, Chen CY, Gelernter J, He F, Heeringa SG, Maihofer AX, Nievergelt C, Nock MK, Ripke S, Sun X, Kessler RC, Smoller JW, Ursano RJ. Genome-wide analyses of psychological resilience in U.S. Army soldiers. Am J Med Genet B Neuropsychiatr Genet 2019; 180:310-319. [PMID: 31081985 PMCID: PMC6551278 DOI: 10.1002/ajmg.b.32730] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022]
Abstract
Though a growing body of preclinical and translational research is illuminating a biological basis for resilience to stress, little is known about the genetic basis of psychological resilience in humans. We conducted genome-wide association studies (GWASs) of self-assessed (by questionnaire) and outcome-based (incident mental disorders from predeployment to postdeployment) resilience among European (EUR) ancestry soldiers in the Army study to assess risk and resilience in servicemembers. Self-assessed resilience (N = 11,492) was found to have significant common-variant heritability (h2 = 0.162, se = 0.050, p = 5.37 × 10-4 ), and to be significantly negatively genetically correlated with neuroticism (rg = -0.388, p = .0092). GWAS results from the EUR soldiers revealed a genome-wide significant locus on an intergenic region on Chr 4 upstream from doublecortin-like kinase 2 (DCLK2) (four single nucleotide polymorphisms (SNPs) in LD; top SNP: rs4260523 [p = 5.65 × 10-9 ] is an eQTL in frontal cortex), a member of the doublecortin family of kinases that promote survival and regeneration of injured neurons. A second gene, kelch-like family member 36 (KLHL36) was detected at gene-wise genome-wide significance [p = 1.89 × 10-6 ]. A polygenic risk score derived from the self-assessed resilience GWAS was not significantly associated with outcome-based resilience. In very preliminary results, genome-wide significant association with outcome-based resilience was found for one locus (top SNP: rs12580015 [p = 2.37 × 10-8 ]) on Chr 12 downstream from solute carrier family 15 member 5 (SLC15A5) in subjects (N = 581) exposed to the highest level of deployment stress. The further study of genetic determinants of resilience has the potential to illuminate the molecular bases of stress-related psychopathology and point to new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Murray B. Stein
- Department of Psychiatry, University of California San Diego, La Jolla, California,Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California,Psychiatry Service, VA San Diego Healthcare System, San Diego, California
| | - Karmel W. Choi
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Sonia Jain
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Laura Campbell-Sills
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Chia-Yen Chen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts,Department of Psychiatry, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, Connecticut,VA Connecticut Healthcare System, West Haven, Connecticut,Departments of Genetics and Neurobiology, Yale University, New Haven, Connecticut
| | - Feng He
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Steven G. Heeringa
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Adam X. Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Caroline Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Matthew K. Nock
- Department of Psychology, Harvard University, Cambridge, Massachusetts
| | - Stephan Ripke
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA 02114, USA,Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin 10117, Germany
| | - Xiaoying Sun
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Ronald C. Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts,Department of Psychiatry, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Robert J. Ursano
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
12
|
Kalemaki K, Konstantoudaki X, Tivodar S, Sidiropoulou K, Karagogeos D. Mice With Decreased Number of Interneurons Exhibit Aberrant Spontaneous and Oscillatory Activity in the Cortex. Front Neural Circuits 2018; 12:96. [PMID: 30429776 PMCID: PMC6220423 DOI: 10.3389/fncir.2018.00096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 11/13/2022] Open
Abstract
GABAergic (γ-aminobutyric acid) neurons are inhibitory neurons and protect neural tissue from excessive excitation. Cortical GABAergic neurons play a pivotal role for the generation of synchronized cortical network oscillations. Imbalance between excitatory and inhibitory mechanisms underlies many neuropsychiatric disorders and is correlated with abnormalities in oscillatory activity, especially in the gamma frequency range (30–80 Hz). We investigated the functional changes in cortical network activity in response to developmentally reduced inhibition in the adult mouse barrel cortex (BC). We used a mouse model that displays ∼50% fewer cortical interneurons due to the loss of Rac1 protein from Nkx2.1/Cre-expressing cells [Rac1 conditional knockout (cKO) mice], to examine how this developmental loss of cortical interneurons may affect basal synaptic transmission, synaptic plasticity, spontaneous activity, and neuronal oscillations in the adult BC. The decrease in the number of interneurons increased basal synaptic transmission, as examined by recording field excitatory postsynaptic potentials (fEPSPs) from layer II networks in the Rac1 cKO mouse cortex, decreased long-term potentiation (LTP) in response to tetanic stimulation but did not alter the pair-pulse ratio (PPR). Furthermore, under spontaneous recording conditions, Rac1 cKO brain slices exhibit enhanced sensitivity and susceptibility to emergent spontaneous activity. We also find that this developmental decrease in the number of cortical interneurons results in local neuronal networks with alterations in neuronal oscillations, exhibiting decreased power in low frequencies (delta, theta, alpha) and gamma frequency range (30–80 Hz) with an extra aberrant peak in high gamma frequency range (80–150 Hz). Therefore, our data show that disruption in GABAergic inhibition alters synaptic properties and plasticity, while it additionally disrupts the cortical neuronal synchronization in the adult BC.
Collapse
Affiliation(s)
- Katerina Kalemaki
- School of Medicine, University of Crete, Voutes University Campus, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | | | - Simona Tivodar
- School of Medicine, University of Crete, Voutes University Campus, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Kyriaki Sidiropoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.,Department of Biology, University of Crete, Voutes University Campus, Heraklion, Greece
| | - Domna Karagogeos
- School of Medicine, University of Crete, Voutes University Campus, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| |
Collapse
|
13
|
Grosenbaugh DK, Ross BM, Wagley P, Zanelli SA. The Role of Kainate Receptors in the Pathophysiology of Hypoxia-Induced Seizures in the Neonatal Mouse. Sci Rep 2018; 8:7035. [PMID: 29728616 PMCID: PMC5935682 DOI: 10.1038/s41598-018-24722-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022] Open
Abstract
Kainate receptors (KARs) are glutamate receptors with peak expression during late embryonic and early postnatal periods. Altered KAR-mediated neurotransmission and subunit expression are observed in several brain disorders, including epilepsy. Here, we examined the role of KARs in regulating seizures in neonatal C57BL/6 mice exposed to a hypoxic insult. We found that knockout of the GluK2 subunit, or blockade of KARs by UBP310 reduced seizure susceptibility during the period of reoxygenation. Following the hypoxic insult, we observed an increase in excitatory neurotransmission in hippocampal CA3 pyramidal cells, which was blocked by treatment with UBP310 prior to hypoxia. Similarly, we observed increased excitatory neurotransmission in CA3 pyramidal cells in an in vitro hippocampal slice model of hypoxic-ischemia. This increase was absent in slices from GluK2−/− mice and in slices treated with UBP310, suggesting that KARs regulate, at least in part, excitatory synaptic neurotransmission following in vivo hypoxia in neonatal mice. Data from these hypoxia models demonstrate that KARs, specifically those containing the GluK2 subunit, contribute to alterations in excitatory neurotransmission and seizure susceptibility, particularly during the reoxygenation period, in neonatal mice. Therapies targeting KARs may prove successful in treatment of neonates affected by hypoxic seizures.
Collapse
Affiliation(s)
- Denise K Grosenbaugh
- Department of Neurology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Brittany M Ross
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Pravin Wagley
- Department of Neurology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Santina A Zanelli
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, 22908, USA.
| |
Collapse
|
14
|
Mueller SH, Färber A, Prüss H, Melzer N, Golombeck KS, Kümpfel T, Thaler F, Elisak M, Lewerenz J, Kaufmann M, Sühs KW, Ringelstein M, Kellinghaus C, Bien CG, Kraft A, Zettl UK, Ehrlich S, Handreka R, Rostásy K, Then Bergh F, Faiss JH, Lieb W, Franke A, Kuhlenbäumer G, Wandinger KP, Leypoldt F. Genetic predisposition in anti-LGI1 and anti-NMDA receptor encephalitis. Ann Neurol 2018; 83:863-869. [DOI: 10.1002/ana.25216] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Affiliation(s)
| | - Anna Färber
- Neuroimmunology section, Institute of Clinical Chemistry; University Hospital Schleswig-Holstein Kiel/Lübeck; Germany
| | - Harald Prüss
- Department of Neurology; Charité Universitätsmedizin Berlin, Berlin, Germany and German Center for Neurodegenerative Diseases (DZNE) Berlin; Berlin Germany
| | - Nico Melzer
- Department of Neurology; University Hospital Münster; Germany
| | | | - Tania Kümpfel
- Department of Clinical Neuroimmunology; University of Munich; Germany
| | - Franziska Thaler
- Department of Clinical Neuroimmunology; University of Munich; Germany
| | - Martin Elisak
- Department of Neurology; Charles University; Prague Czech Republic
| | - Jan Lewerenz
- Department of Neurology; Ulm University; Germany
| | - Max Kaufmann
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS); University Medical Center Hamburg-Eppendorf; Germany
| | | | - Marius Ringelstein
- Department of Neurology; Medical Faculty, Heinrich Heine University Düsseldorf; Germany
| | | | | | - Andrea Kraft
- Department of Neurology; Martha-Maria Hospital Halle; Germany
| | - Uwe K. Zettl
- Department of Neurology; Neuroimmunological Section, University Hospital Rostock; Germany
| | - Sven Ehrlich
- Department of Neurology; Klinikum St. Georg; Wermsdorf Germany
| | - Robert Handreka
- Department of Neurology; Carl-Thiem-Klinikum Cottbus; Germany
| | - Kevin Rostásy
- Department of Pediatric Neurology; Vestische Kinder- und Jugendklinik Datteln, University Witten/Herdecke; Germany
| | | | - Jürgen H. Faiss
- Department of Neurology; Asklepios Fachklinikum Teupitz; Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Department of Neurology; Neuroimmunological Section, Christian-Albrechts-University Kiel; Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology; Christian-Albrechts-University of Kiel; Germany
| | | | - Klaus-Peter Wandinger
- Neuroimmunology section, Institute of Clinical Chemistry; University Hospital Schleswig-Holstein Kiel/Lübeck; Germany
- Department of Neurology; University of Lübeck; Lübeck Germany
| | - Frank Leypoldt
- Department of Neurology; Christian-Albrechts-University Kiel; Germany
- Neuroimmunology section, Institute of Clinical Chemistry; University Hospital Schleswig-Holstein Kiel/Lübeck; Germany
| | | |
Collapse
|
15
|
Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol 2018; 76:33-75. [DOI: 10.1016/j.semcdb.2017.09.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
16
|
Glasper ER, Hyer MM, Hunter TJ. Enduring Effects of Paternal Deprivation in California Mice ( Peromyscus californicus): Behavioral Dysfunction and Sex-Dependent Alterations in Hippocampal New Cell Survival. Front Behav Neurosci 2018; 12:20. [PMID: 29487509 PMCID: PMC5816956 DOI: 10.3389/fnbeh.2018.00020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/23/2018] [Indexed: 12/28/2022] Open
Abstract
Early-life experiences with caregivers can significantly affect offspring development in human and non-human animals. While much of our knowledge of parent-offspring relationships stem from mother-offspring interactions, increasing evidence suggests interactions with the father are equally as important and can prevent social, behavioral, and neurological impairments that may appear early in life and have enduring consequences in adulthood. In the present study, we utilized the monogamous and biparental California mouse (Peromyscus californicus). California mouse fathers provide extensive offspring care and are essential for offspring survival. Non-sibling virgin male and female mice were randomly assigned to one of two experimental groups following the birth of their first litter: (1) biparental care: mate pairs remained with their offspring until weaning; or (2) paternal deprivation (PD): paternal males were permanently removed from their home cage on postnatal day (PND) 1. We assessed neonatal mortality rates, body weight, survival of adult born cells in the dentate gyrus of the hippocampus, and anxiety-like and passive stress-coping behaviors in male and female young adult offspring. While all biparentally-reared mice survived to weaning, PD resulted in a ~35% reduction in survival of offspring. Despite this reduction in survival to weaning, biparentally-reared and PD mice did not differ in body weight at weaning or into young adulthood. A sex-dependent effect of PD was observed on new cell survival in the dentate gyrus of the hippocampus, such that PD reduced cell survival in female, but not male, mice. While PD did not alter classic measures of anxiety-like behavior during the elevated plus maze task, exploratory behavior was reduced in PD mice. This observation was irrespective of sex. Additionally, PD increased some passive stress-coping behaviors (i.e., percent time spent immobile) during the forced swim task—an effect that was also not sex-dependent. Together, these findings demonstrate that, in a species where paternal care is not only important for offspring survival, PD can also contribute to altered structural and functional neuroplasticity of the hippocampus. The mechanisms contributing to the observed sex-dependent alterations in new cell survival in the dentate gyrus should be further investigated.
Collapse
Affiliation(s)
- Erica R Glasper
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, College Park, MD, United States
| | - Molly M Hyer
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, College Park, MD, United States
| | - Terrence J Hunter
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
17
|
Ayanlaja AA, Xiong Y, Gao Y, Ji G, Tang C, Abdikani Abdullah Z, Gao D. Distinct Features of Doublecortin as a Marker of Neuronal Migration and Its Implications in Cancer Cell Mobility. Front Mol Neurosci 2017; 10:199. [PMID: 28701917 PMCID: PMC5487455 DOI: 10.3389/fnmol.2017.00199] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
Neuronal migration is a critical process in the development of the nervous system. Defects in the migration of the neurons are associated with diseases like lissencephaly, subcortical band heterotopia (SBH), and pachygyria. Doublecortin (DCX) is an essential factor in neurogenesis and mutations in this protein impairs neuronal migration leading to several pathological conditions. Although, DCX is capable of modulating and stabilizing microtubules (MTs) to ensure effective migration, the mechanisms involved in executing these functions remain poorly understood. Meanwhile, there are existing gaps regarding the processes that underlie tumor initiation and progression into cancer as well as the ability to migrate and invade normal cells. Several studies suggest that DCX is involved in cancer metastasis. Unstable interactions between DCX and MTs destabilizes cytoskeletal organization leading to disorganized movements of cells, a process which may be implicated in the uncontrolled migration of cancer cells. However, the underlying mechanism is complex and require further clarification. Therefore, exploring the importance and features known up to date about this molecule will broaden our understanding and shed light on potential therapeutic approaches for the associated neurological diseases. This review summarizes current knowledge about DCX, its features, functions, and relationships with other proteins. We also present an overview of its role in cancer cells and highlight the importance of studying its gene mutations.
Collapse
Affiliation(s)
- Abiola A Ayanlaja
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Ye Xiong
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Yue Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - GuangQuan Ji
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Chuanxi Tang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Zamzam Abdikani Abdullah
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - DianShuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| |
Collapse
|
18
|
Abstract
This study aimed to explore the role of aberrant miRNA expression in epilepsy and to identify more potential genes associated with epileptogenesis.The miRNA expression profile of GSE49850, which included 20 samples from the rat epileptic dentate gyrus at 7, 14, 30, and 90 days after electrical stimulation and 20 additional samples from sham time-matched controls, was downloaded from the Gene Expression Omnibus database. The significantly differentially expressed miRNAs were identified in stimulated samples at each time point compared to time-matched controls, respectively. The target genes of consistently differentially expressed miRNAs were screened from miRDB and microRNA.org databases, followed by Gene Ontology (GO) and pathway enrichment analysis and regulatory network construction. The overlapping target genes for consistently differentially expressed miRNAs were also identified from these 2 databases. Furthermore, the potential binding sites of miRNAs and their target genes were analyzed.Rno-miR-187-3p was consistently downregulated in stimulated groups compared with time-matched controls. The predicted target genes of rno-miR-187-3p were enriched in different GO terms and pathways. In addition, 7 overlapping target genes of rno-miR-187-3p were identified, including NFS1, PAQR4, CAND1, DCLK1, PRKAR2A, AKAP3, and KCNK10. These 7 overlapping target genes were determined to have a different number of matched binding sites with rno-miR-187-3p.Our study suggests that miR-187-3p may play an important role in epilepsy development and progression via regulating numerous target genes, such as NFS1, CAND1, DCLK1, AKAP3, and KCNK10. Determining the underlying mechanism of the role of miR-187-3p in epilepsy may make it a potential therapeutic option.
Collapse
Affiliation(s)
- Suya Zhang
- Department of Neurology, Shanghai Baoshan District Hospital of Integrated Traditional and Western Medicine
| | - Yubin Kou
- Department of General Surgery, Shuguang Hospital Baoshan Branch
| | - Chunmei Hu
- Department of Neurology, Shuguang Hospital Baoshan Branch
| | - Yan Han
- Department of Neurology, Changhai Hospital, Shanghai, China
| |
Collapse
|
19
|
Rajman M, Metge F, Fiore R, Khudayberdiev S, Aksoy-Aksel A, Bicker S, Ruedell Reschke C, Raoof R, Brennan GP, Delanty N, Farrell MA, O'Brien DF, Bauer S, Norwood B, Veno MT, Krüger M, Braun T, Kjems J, Rosenow F, Henshall DC, Dieterich C, Schratt G. A microRNA-129-5p/Rbfox crosstalk coordinates homeostatic downscaling of excitatory synapses. EMBO J 2017; 36:1770-1787. [PMID: 28487411 DOI: 10.15252/embj.201695748] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022] Open
Abstract
Synaptic downscaling is a homeostatic mechanism that allows neurons to reduce firing rates during chronically elevated network activity. Although synaptic downscaling is important in neural circuit development and epilepsy, the underlying mechanisms are poorly described. We performed small RNA profiling in picrotoxin (PTX)-treated hippocampal neurons, a model of synaptic downscaling. Thereby, we identified eight microRNAs (miRNAs) that were increased in response to PTX, including miR-129-5p, whose inhibition blocked synaptic downscaling in vitro and reduced epileptic seizure severity in vivo Using transcriptome, proteome, and bioinformatic analysis, we identified the calcium pump Atp2b4 and doublecortin (Dcx) as miR-129-5p targets. Restoring Atp2b4 and Dcx expression was sufficient to prevent synaptic downscaling in PTX-treated neurons. Furthermore, we characterized a functional crosstalk between miR-129-5p and the RNA-binding protein (RBP) Rbfox1. In the absence of PTX, Rbfox1 promoted the expression of Atp2b4 and Dcx. Upon PTX treatment, Rbfox1 expression was downregulated by miR-129-5p, thereby allowing the repression of Atp2b4 and Dcx. We therefore identified a novel activity-dependent miRNA/RBP crosstalk during synaptic scaling, with potential implications for neural network homeostasis and epileptogenesis.
Collapse
Affiliation(s)
- Marek Rajman
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Franziska Metge
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Department of Internal Medicine III, German Center for Cardiovascular Research (DZHK), University Hospital Heidelberg, Heidelberg, Germany
| | - Roberto Fiore
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Sharof Khudayberdiev
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Ayla Aksoy-Aksel
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Silvia Bicker
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | | - Rana Raoof
- Physiology & Medical Physics Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gary P Brennan
- Physiology & Medical Physics Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | - Sebastian Bauer
- Epilepsiezentrum Frankfurt Rhein-Main, Neurozentrum, Goethe-Universität Frankfurt, Frankfurt, Germany.,Epilepsiezentrum Hessen - Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Braxton Norwood
- Epilepsiezentrum Frankfurt Rhein-Main, Neurozentrum, Goethe-Universität Frankfurt, Frankfurt, Germany.,Epilepsiezentrum Hessen - Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Morten T Veno
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Marcus Krüger
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Felix Rosenow
- Epilepsiezentrum Frankfurt Rhein-Main, Neurozentrum, Goethe-Universität Frankfurt, Frankfurt, Germany.,Epilepsiezentrum Hessen - Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - David C Henshall
- Physiology & Medical Physics Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Department of Internal Medicine III, German Center for Cardiovascular Research (DZHK), University Hospital Heidelberg, Heidelberg, Germany
| | - Gerhard Schratt
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
20
|
REST corepressors RCOR1 and RCOR2 and the repressor INSM1 regulate the proliferation-differentiation balance in the developing brain. Proc Natl Acad Sci U S A 2017; 114:E406-E415. [PMID: 28049845 DOI: 10.1073/pnas.1620230114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcriptional events that lead to the cessation of neural proliferation, and therefore enable the production of proper numbers of differentiated neurons and glia, are still largely uncharacterized. Here, we report that the transcription factor Insulinoma-associated 1 (INSM1) forms complexes with RE1 Silencing Transcription factor (REST) corepressors RCOR1 and RCOR2 in progenitors in embryonic mouse brain. Mice lacking both RCOR1 and RCOR2 in developing brain die perinatally and generate an abnormally high number of neural progenitors at the expense of differentiated neurons and oligodendrocyte precursor cells. In addition, Rcor1/2 deletion detrimentally affects complex morphological processes such as closure of the interganglionic sulcus. We find that INSM1, a transcription factor that induces cell-cycle arrest, is coexpressed with RCOR1/2 in a subset of neural progenitors and forms complexes with RCOR1/2 in embryonic brain. Further, the Insm1-/- mouse phenocopies predominant brain phenotypes of the Rcor1/2 knockout. A large number of genes are concordantly misregulated in both knockout genotypes, and a majority of the down-regulated genes are targets of REST. Rest transcripts are up-regulated in both knockouts, and reducing transcripts to control levels in the Rcor1/2 knockout partially rescues the defect in interganglionic sulcus closure. Our findings indicate that an INSM1/RCOR1/2 complex controls the balance of proliferation and differentiation during brain development.
Collapse
|
21
|
Yap CC, Digilio L, McMahon L, Roszkowska M, Bott CJ, Kruczek K, Winckler B. Different Doublecortin (DCX) Patient Alleles Show Distinct Phenotypes in Cultured Neurons: EVIDENCE FOR DIVERGENT LOSS-OF-FUNCTION AND "OFF-PATHWAY" CELLULAR MECHANISMS. J Biol Chem 2016; 291:26613-26626. [PMID: 27799303 DOI: 10.1074/jbc.m116.760777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/28/2016] [Indexed: 11/06/2022] Open
Abstract
Doublecortin on the X-chromosome (DCX) is a neuronal microtubule-binding protein with a multitude of roles in neurodevelopment. In humans, DCX is a major genetic locus for X-linked lissencephaly. The best studied defects are in neuronal migration during corticogenesis and in the hippocampus, as well as axon and dendrite growth defects. Much effort has been directed at understanding the molecular and cellular bases of DCX-linked lissencephaly. The focus has been in particular on defects in microtubule assembly and bundling, using knock-out mice and expression of WT and mutant Dcx in non-neuronal cells. Dcx also binds other proteins besides microtubules, such as spinophilin (abbreviated spn; gene name Ppp1r9b protein phosphatase 1 regulatory subunit 9b) and the clathrin adaptors AP-1 and AP-2. Even though many non-sense and missense mutations of Dcx are known, their molecular and cellular defects are still only incompletely understood. It is also largely unknown how neurons are affected by expression of DCX patient alleles. We have now characterized several patient DCX alleles (DCX-R89G, DCX-R59H, DCX-246X, DCX-272X, and DCX-303X) using a gain-of-function dendrite growth assay in cultured rat neurons in combination with the determination of molecular binding activities and subcellular localization in non-neuronal and neuronal cells. First, we find that several mutants (Dcx-R89G and Dcx-272X) were loss-of-function alleles (as had been postulated) but surprisingly acted via different cellular mechanisms. Second, one allele (Dcx-R59H) formed cytoplasmic aggregates, which contained Hspa1B (heat shock protein 1B hsp70) and ubiquitinated proteins, trapped other cytoskeletal proteins, including spinophilin, and led to increased autophagy. This allele could thus be categorized as "off-pathway"/possibly neomorph. Our findings thus suggested that distinct DCX alleles caused dysfunction by different mechanisms.
Collapse
Affiliation(s)
- Chan Choo Yap
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Laura Digilio
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Lloyd McMahon
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Matylda Roszkowska
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Christopher J Bott
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Kamil Kruczek
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Bettina Winckler
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
22
|
Konstantoudaki X, Chalkiadaki K, Tivodar S, Karagogeos D, Sidiropoulou K. Impaired synaptic plasticity in the prefrontal cortex of mice with developmentally decreased number of interneurons. Neuroscience 2016; 322:333-45. [DOI: 10.1016/j.neuroscience.2016.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 01/14/2023]
|
23
|
BACE1 Physiological Functions May Limit Its Use as Therapeutic Target for Alzheimer's Disease. Trends Neurosci 2016; 39:158-169. [DOI: 10.1016/j.tins.2016.01.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 01/21/2023]
|
24
|
Peeters K, Bervoets S, Chamova T, Litvinenko I, De Vriendt E, Bichev S, Kancheva D, Mitev V, Kennerson M, Timmerman V, De Jonghe P, Tournev I, MacMillan J, Jordanova A. Novel mutations in the DYNC1H1 tail domain refine the genetic and clinical spectrum of dyneinopathies. Hum Mutat 2015; 36:287-91. [PMID: 25512093 DOI: 10.1002/humu.22744] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/02/2014] [Indexed: 12/23/2022]
Abstract
The heavy chain 1 of cytoplasmic dynein (DYNC1H1) is responsible for movement of the motor complex along microtubules and recruitment of dynein components. Mutations in DYNC1H1 are associated with spinal muscular atrophy (SMA), hereditary motor and sensory neuropathy (HMSN), cortical malformations, or a combination of these. Combining linkage analysis and whole-exome sequencing, we identified a novel dominant defect in the DYNC1H1 tail domain (c.1792C>T, p.Arg598Cys) causing axonal HMSN. Mutation analysis of the tail region in 355 patients identified a de novo mutation (c.791G>T, p.Arg264Leu) in an isolated SMA patient. Her phenotype was more severe than previously described, characterized by multiple congenital contractures and delayed motor milestones, without brain malformations. The mutations in DYNC1H1 increase the interaction with its adaptor BICD2. This relates to previous studies on BICD2 mutations causing a highly similar phenotype. Our findings broaden the genetic heterogeneity and refine the clinical spectrum of DYNC1H1, and have implications for molecular diagnostics of motor neuron diseases.
Collapse
Affiliation(s)
- Kristien Peeters
- Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wakil SM, Ram R, Muiya NP, Mehta M, Andres E, Mazhar N, Baz B, Hagos S, Alshahid M, Meyer BF, Morahan G, Dzimiri N. A genome-wide association study reveals susceptibility loci for myocardial infarction/coronary artery disease in Saudi Arabs. Atherosclerosis 2015; 245:62-70. [PMID: 26708285 DOI: 10.1016/j.atherosclerosis.2015.11.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiple loci have been identified for coronary artery disease (CAD) by genome-wide association studies (GWAS), but no such studies on CAD incidence has been reported yet for any Middle Eastern population. METHODS In this study, we performed a GWAS for CAD and myocardial infarction (MI) incidence in 5668 Saudis of Arab descent using the Affymetrix Axiom Genotyping platform. RESULTS We describe SNPs at 16 loci that showed significant (P < 5 × 10(-8)) or suggestive GWAS association (P < 1 × 10(-5)) with CAD or MI, in the ethnic Saudi Arab population. Among the four variants reaching GWAS significance in the present study, the rs10738607_G [0.78(0.71-0.85); p = 2.17E-08] in CDNK2A/B gene was associated with CAD. Two other SNPs on the same gene, rs10757274_G [0.79(0.73-0.86); p = 2.98E-08] and rs1333045_C [0.79(0.73-0.86); p = 1.15E-08] as well as the rs9982601_T [1.38(1.23-1.55); p = 3.49E-08] on KCNE2 were associated with MI. These variants have been previously described in other populations. Several SNPs, including the rs7421388 (PLCL1) and rs12541758 (TRPA1) displaying a suggestive GWAS association (P < 1 × 10(-5)) with CAD as well as rs41411047 (RNF13), rs32793 (PDZD2) and rs4739066 (YTHDF3), similarly showing weak association with MI, were confirmed in an independent dataset. Furthermore, our estimation of heritability of CAD and MI based on observed genome-wide sharing in unrelated Saudi Arabs was approximately 33% and 44%, respectively. CONCLUSIONS Our study has identified susceptibility variants for CAD/MI in ethnic Arabs. These findings provide further insights into pathways contributing to the susceptibility for CAD and will enable more comprehensive genetic studies of these diseases in Middle East populations.
Collapse
Affiliation(s)
- Salma M Wakil
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ramesh Ram
- Harry Perkins Institute of Medical Research, University of Western Australia, Australia
| | - Nzioka P Muiya
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Munish Mehta
- Harry Perkins Institute of Medical Research, University of Western Australia, Australia
| | - Editha Andres
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nejat Mazhar
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Batoul Baz
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Samya Hagos
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maie Alshahid
- King Faisal Heart Institute, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Brian F Meyer
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Grant Morahan
- Harry Perkins Institute of Medical Research, University of Western Australia, Australia
| | - Nduna Dzimiri
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
26
|
Nawabi H, Belin S, Cartoni R, Williams PR, Wang C, Latremolière A, Wang X, Zhu J, Taub DG, Fu X, Yu B, Gu X, Woolf CJ, Liu JS, Gabel CV, Steen JA, He Z. Doublecortin-Like Kinases Promote Neuronal Survival and Induce Growth Cone Reformation via Distinct Mechanisms. Neuron 2015; 88:704-19. [PMID: 26526391 PMCID: PMC10069300 DOI: 10.1016/j.neuron.2015.10.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 06/04/2015] [Accepted: 09/30/2015] [Indexed: 01/15/2023]
Abstract
After axotomy, neuronal survival and growth cone re-formation are required for axon regeneration. We discovered that doublecortin-like kinases (DCLKs), members of the doublecortin (DCX) family expressed in adult retinal ganglion cells (RGCs), play critical roles in both processes, through distinct mechanisms. Overexpression of DCLK2 accelerated growth cone re-formation in vitro and enhanced the initiation and elongation of axon re-growth after optic nerve injury. These effects depended on both the microtubule (MT)-binding domain and the serine-proline-rich (S/P-rich) region of DCXs in-cis in the same molecules. While the MT-binding domain is known to stabilize MT structures, we show that the S/P-rich region prevents F-actin destabilization in injured axon stumps. Additionally, while DCXs synergize with mTOR to stimulate axon regeneration, alone they can promote neuronal survival possibly by regulating the retrograde propagation of injury signals. Multifunctional DCXs thus represent potential targets for promoting both survival and regeneration of injured neurons.
Collapse
Affiliation(s)
- Homaira Nawabi
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Stephane Belin
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Romain Cartoni
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Philip R Williams
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alban Latremolière
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Xuhua Wang
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Junjie Zhu
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Daniel G Taub
- Departments of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xiaoqin Fu
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Bin Yu
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Judy S Liu
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Christopher V Gabel
- Departments of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Judith A Steen
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Zechel S, Zajac P, Lönnerberg P, Ibáñez CF, Linnarsson S. Topographical transcriptome mapping of the mouse medial ganglionic eminence by spatially resolved RNA-seq. Genome Biol 2015; 15:486. [PMID: 25344199 PMCID: PMC4234883 DOI: 10.1186/s13059-014-0486-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cortical interneurons originating from the medial ganglionic eminence, MGE, are among the most diverse cells within the CNS. Different pools of proliferating progenitor cells are thought to exist in the ventricular zone of the MGE, but whether the underlying subventricular and mantle regions of the MGE are spatially patterned has not yet been addressed. Here, we combined laser-capture microdissection and multiplex RNA-sequencing to map the transcriptome of MGE cells at a spatial resolution of 50 μm. RESULTS Distinct groups of progenitor cells showing different stages of interneuron maturation are identified and topographically mapped based on their genome-wide transcriptional pattern. Although proliferating potential decreased rather abruptly outside the ventricular zone, a ventro-lateral gradient of increasing migratory capacity was identified, revealing heterogeneous cell populations within this neurogenic structure. CONCLUSIONS We demonstrate that spatially resolved RNA-seq is ideally suited for high resolution topographical mapping of genome-wide gene expression in heterogeneous anatomical structures such as the mammalian central nervous system.
Collapse
Affiliation(s)
- Sabrina Zechel
- Department of Neuroscience, Karolinska Institute, Stockholm SE-171 77, Sweden
| | | | | | | | | |
Collapse
|
28
|
Graser S, Mentrup B, Schneider D, Klein-Hitpass L, Jakob F, Hofmann C. Overexpression of tissue-nonspecific alkaline phosphatase increases the expression of neurogenic differentiation markers in the human SH-SY5Y neuroblastoma cell line. Bone 2015; 79:150-61. [PMID: 26032516 DOI: 10.1016/j.bone.2015.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/24/2015] [Accepted: 05/23/2015] [Indexed: 12/16/2022]
Abstract
Patients suffering from the rare hereditary disease hypophosphatasia (HPP), which is based on mutations in the ALPL gene, tend to develop central nervous system (CNS) related issues like epileptic seizures and neuropsychiatric illnesses such as anxiety and depression, in addition to well-known problems with the mineralization of bones and teeth. Analyses of the molecular role of tissue-nonspecific alkaline phosphatase (TNAP) in transgenic SH-SY5Y(TNAPhigh) neuroblastoma cells compared to SH-SY5Y(TNAPlow) cells indicate that the enzyme influences the expression levels of neuronal marker genes like RNA-binding protein, fox-1 homolog 3 (NEUN) and enolase 2, gamma neuronal (NSE) as well as microtubule-binding proteins like microtubule-associated protein 2 (MAP2) and microtubule-associated protein tau (TAU) during neurogenic differentiation. Fluorescence staining of SH-SY5Y(TNAPhigh) cells reveals TNAP localization throughout the whole length of the developed projection network and even synapsin Ι co-localization with strong TNAP signals at some spots at least at the early time points of differentiation. Additional immunocytochemical staining shows higher MAP2 expression in SH-SY5Y(TNAPhigh) cells and further a distinct up-regulation of tau and MAP2 in the course of neurogenic differentiation. Interestingly, transgenic SH-SY5Y(TNAPhigh) cells are able to develop longer cellular processes compared to control cells after stimulation with all-trans retinoic acid (RA). Current therapies for HPP prioritize improvement of the bone phenotype. Unraveling the molecular role of TNAP in extraosseous tissues, like in the CNS, will help to improve treatment strategies for HPP patients. Taking this rare disease as a model may also help to dissect TNAP's role in neurodegenerative diseases and even improve future treatment of common pathologies.
Collapse
Affiliation(s)
- Stephanie Graser
- Orthopedic Department, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Germany
| | - Birgit Mentrup
- Orthopedic Department, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Germany
| | - Doris Schneider
- Orthopedic Department, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, Faculty of Medicine, University of Duisburg-Essen, Germany
| | - Franz Jakob
- Orthopedic Department, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Germany
| | - Christine Hofmann
- Children's Hospital, Section of Pediatric Rheumatology and Osteology, University of Wuerzburg, Germany.
| |
Collapse
|
29
|
Stouffer MA, Golden JA, Francis F. Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiol Dis 2015; 92:18-45. [PMID: 26299390 DOI: 10.1016/j.nbd.2015.08.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023] Open
Abstract
A wide spectrum of focal, regional, or diffuse structural brain abnormalities, collectively known as malformations of cortical development (MCDs), frequently manifest with intellectual disability (ID), epilepsy, and/or autistic spectrum disorder (ASD). As the acronym suggests, MCDs are perturbations of the normal architecture of the cerebral cortex and hippocampus. The pathogenesis of these disorders remains incompletely understood; however, one area that has provided important insights has been the study of neuronal migration. The amalgamation of human genetics and experimental studies in animal models has led to the recognition that common genetic causes of neurodevelopmental disorders, including many severe epilepsy syndromes, are due to mutations in genes regulating the migration of newly born post-mitotic neurons. Neuronal migration genes often, though not exclusively, code for proteins involved in the function of the cytoskeleton. Other cellular processes, such as cell division and axon/dendrite formation, which similarly depend on cytoskeletal functions, may also be affected. We focus here on how the susceptibility of the highly organized neocortex and hippocampus may be due to their laminar organization, which involves the tight regulation, both temporally and spatially, of gene expression, specialized progenitor cells, the migration of neurons over large distances and a birthdate-specific layering of neurons. Perturbations in neuronal migration result in abnormal lamination, neuronal differentiation defects, abnormal cellular morphology and circuit formation. Ultimately this results in disorganized excitatory and inhibitory activity leading to the symptoms observed in individuals with these disorders.
Collapse
Affiliation(s)
- Melissa A Stouffer
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Jeffrey A Golden
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Fiona Francis
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
30
|
Hayashi K, Kubo KI, Kitazawa A, Nakajima K. Cellular dynamics of neuronal migration in the hippocampus. Front Neurosci 2015; 9:135. [PMID: 25964735 PMCID: PMC4408843 DOI: 10.3389/fnins.2015.00135] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/02/2015] [Indexed: 12/30/2022] Open
Abstract
A fine structure of the hippocampus is required for proper functions, and disruption of this formation by neuronal migration defects during development may play a role in some psychiatric illnesses. During hippocampal development in rodents, pyramidal neurons in the Ammon's horn are mostly generated in the ventricular zone (VZ), spent as multipolar cells just above the VZ, and then migrate radially toward the pial surface, ultimately settling into the hippocampal plate. Although this process is similar to that of neocortical projection neurons, these are not identical. In addition to numerous histological studies, the development of novel techniques gives a clear picture of the cellular dynamics of hippocampal neurons, as well as neocortical neurons. In this article, we provide an overview of the cellular mechanisms of rodent hippocampal neuronal migration including those of dentate granule cells, especially focusing on the differences of migration modes between hippocampal neurons and neocortical neurons. The unique migration mode of hippocampal pyramidal neurons might enable clonally related cells in the Ammon's horn to distribute in a horizontal fashion.
Collapse
Affiliation(s)
- Kanehiro Hayashi
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| | - Ayako Kitazawa
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| |
Collapse
|
31
|
Wong M, Roper SN. Genetic animal models of malformations of cortical development and epilepsy. J Neurosci Methods 2015; 260:73-82. [PMID: 25911067 DOI: 10.1016/j.jneumeth.2015.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022]
Abstract
Malformations of cortical development constitute a variety of pathological brain abnormalities that commonly cause severe, medically-refractory epilepsy, including focal lesions, such as focal cortical dysplasia, heterotopias, and tubers of tuberous sclerosis complex, and diffuse malformations, such as lissencephaly. Although some cortical malformations result from environmental insults during cortical development in utero, genetic factors are increasingly recognized as primary pathogenic factors across the entire spectrum of malformations. Genes implicated in causing different cortical malformations are involved in a variety of physiological functions, but many are focused on regulation of cell proliferation, differentiation, and neuronal migration. Advances in molecular genetic methods have allowed the engineering of increasingly sophisticated animal models of cortical malformations and associated epilepsy. These animal models have identified some common mechanistic themes shared by a number of different cortical malformations, but also revealed the diversity and complexity of cellular and molecular mechanisms that lead to the development of the pathological lesions and resulting epileptogenesis.
Collapse
Affiliation(s)
- Michael Wong
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Steven N Roper
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
32
|
Off-target effect of doublecortin family shRNA on neuronal migration associated with endogenous microRNA dysregulation. Neuron 2014; 82:1255-1262. [PMID: 24945770 DOI: 10.1016/j.neuron.2014.04.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2014] [Indexed: 12/31/2022]
Abstract
Acute gene inactivation using short hairpin RNA (shRNA, knockdown) in developing brain is a powerful technique to study genetic function; however, discrepancies between knockdown and knockout murine phenotypes have left unanswered questions. For example, doublecortin (Dcx) knockdown but not knockout shows a neocortical neuronal migration phenotype. Here we report that in utero electroporation of shRNA, but not siRNA or miRNA, to Dcx demonstrates a migration phenotype in Dcx knockouts akin to the effect in wild-type mice, suggesting shRNA-mediated off-target toxicity. This effect was not limited to Dcx, as it was observed in Dclk1 knockouts, as well as with a fraction of scrambled shRNAs, suggesting a sequence-dependent but not sequence-specific effect. Profiling RNAs from electroporated cells showed a defect in endogenous let7 miRNA levels, and disruption of let7 or Dicer recapitulated the migration defect. The results suggest that shRNA-mediated knockdown can produce untoward migration effects by altering endogenous miRNA pathways.
Collapse
|
33
|
Silva CG, Métin C, Fazeli W, Machado NJ, Darmopil S, Launay PS, Ghestem A, Nesa MP, Bassot E, Szabó E, Baqi Y, Müller CE, Tomé AR, Ivanov A, Isbrandt D, Zilberter Y, Cunha RA, Esclapez M, Bernard C. Adenosine receptor antagonists including caffeine alter fetal brain development in mice. Sci Transl Med 2014; 5:197ra104. [PMID: 23926202 DOI: 10.1126/scitranslmed.3006258] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Consumption of certain substances during pregnancy can interfere with brain development, leading to deleterious long-term neurological and cognitive impairments in offspring. To test whether modulators of adenosine receptors affect neural development, we exposed mouse dams to a subtype-selective adenosine type 2A receptor (A2AR) antagonist or to caffeine, a naturally occurring adenosine receptor antagonist, during pregnancy and lactation. We observed delayed migration and insertion of γ-aminobutyric acid (GABA) neurons into the hippocampal circuitry during the first postnatal week in offspring of dams treated with the A2AR antagonist or caffeine. This was associated with increased neuronal network excitability and increased susceptibility to seizures in response to a seizure-inducing agent. Adult offspring of mouse dams exposed to A2AR antagonists during pregnancy and lactation displayed loss of hippocampal GABA neurons and some cognitive deficits. These results demonstrate that exposure to A2AR antagonists including caffeine during pregnancy and lactation in rodents may have adverse effects on the neural development of their offspring.
Collapse
Affiliation(s)
- Carla G Silva
- Aix Marseille Université, INS, 13005 Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Khalil OS, Pisar M, Forrest CM, Vincenten MCJ, Darlington LG, Stone TW. Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring. Eur J Neurosci 2014; 39:1558-71. [PMID: 24646396 PMCID: PMC4368408 DOI: 10.1111/ejn.12535] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 12/13/2022]
Abstract
Glutamate receptors for N-methyl-d-aspartate (NMDA) are involved in early brain development. The kynurenine pathway of tryptophan metabolism includes the NMDA receptor agonist quinolinic acid and the antagonist kynurenic acid. We now report that prenatal inhibition of the pathway in rats with 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl]benzenesulphonamide (Ro61-8048) produces marked changes in hippocampal neuron morphology, spine density and the immunocytochemical localisation of developmental proteins in the offspring at postnatal day 60. Golgi–Cox silver staining revealed decreased overall numbers and lengths of CA1 basal dendrites and secondary basal dendrites, together with fewer basal dendritic spines and less overall dendritic complexity in the basal arbour. Fewer dendrites and less complexity were also noted in the dentate gyrus granule cells. More neurons containing the nuclear marker NeuN and the developmental protein sonic hedgehog were detected in the CA1 region and dentate gyrus. Staining for doublecortin revealed fewer newly generated granule cells bearing extended dendritic processes. The number of neuron terminals staining for vesicular glutamate transporter (VGLUT)-1 and VGLUT-2 was increased by Ro61-8048, with no change in expression of vesicular GABA transporter or its co-localisation with vesicle-associated membrane protein-1. These data support the view that constitutive kynurenine metabolism normally plays a role in early embryonic brain development, and that interfering with it has profound consequences for neuronal structure and morphology, lasting into adulthood.
Collapse
Affiliation(s)
- Omari S Khalil
- Institute of Neuroscience and Psychology, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | | | | | | |
Collapse
|
35
|
Impact of transient acute hypoxia on the developing mouse EEG. Neurobiol Dis 2014; 68:37-46. [PMID: 24636798 DOI: 10.1016/j.nbd.2014.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 11/23/2022] Open
Abstract
Hypoxemic events are common in sick preterm and term infants and represent the most common cause of seizures in the newborn period. Neonatal seizures often lack clinical correlates and are only recognized by electroencephalogram (EEG). The mechanisms leading from a hypoxic/ischemic insult to acute seizures in neonates remain poorly understood. Further, the effects of hypoxia on EEG at various developmental stages have not been fully characterized in neonatal animals, in part due to technical challenges. We evaluated the impact of hypoxia on neonatal mouse EEG to define periods of increased susceptibility to seizures during postnatal development. Hippocampal and cortical electrodes were implanted stereotaxically in C57BL/6 mice from postnatal age 3 (P3) to P15. Following recovery, EEG recordings were obtained during baseline, acute hypoxia (4% FiO2 for 4min) and reoxygenation. In baseline recordings, maturation of EEG was characterized by the appearance of a more continuous background pattern that replaced alternating high and low amplitude activity. Clinical seizures during hypoxia were observed more frequently in younger animals (100% P3-4, 87.5% P5-6, 93% P7-8, 83% P9-10, 33% P11-12, 17% P15, r(2)=0.81) and also occurred at higher FiO2 in younger animals (11.2±1.1% P3-P6 vs. 8.9±0.8% P7-12, p<0.05). Background attenuation followed the initial hypoxemic seizure; progressive return to baseline during reoxygenation was observed in survivors. Electrographic seizures without clinical manifestations were observed during reoxygenation, again more commonly in younger animals (83% P3-4, 86% P5-6, 75% P7-8, 71% P9-10, 20% P11-12, r(2)=0.82). All P15 animals died with this duration and degree of hypoxia. Post-ictal abnormalities included burst attenuation and post-anoxic myoclonus and were more commonly seen in older animals. In summary, neonatal mice exposed to brief and severe hypoxia followed by rapid reoxygenation reliably develop seizures and the response to hypoxia varies with postnatal age and maturation.
Collapse
|
36
|
Belvindrah R, Nosten-Bertrand M, Francis F. Neuronal migration and its disorders affecting the CA3 region. Front Cell Neurosci 2014; 8:63. [PMID: 24624057 PMCID: PMC3941003 DOI: 10.3389/fncel.2014.00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/13/2014] [Indexed: 11/15/2022] Open
Abstract
In this review, we focus on CA3 neuronal migration disorders in the rodent. We begin by introducing the main steps of hippocampal development, and we summarize characteristic hippocampal malformations in human. We then describe various mouse mutants showing structural hippocampal defects. Notably, genes identified in human cortical neuronal migration disorders consistently give rise to a CA3 phenotype when mutated in the mouse. We successively describe their molecular, physiological and behavioral phenotypes that together contribute to a better understanding of CA3-dependent functions. We finally discuss potential factors underlying the CA3 vulnerability revealed by these mouse mutants and that may also contribute to other human neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Richard Belvindrah
- INSERM UMR-S 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06 Paris, France ; Institut du Fer à Moulin Paris, France
| | - Marika Nosten-Bertrand
- INSERM UMR-S 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06 Paris, France ; Institut du Fer à Moulin Paris, France
| | - Fiona Francis
- INSERM UMR-S 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06 Paris, France ; Institut du Fer à Moulin Paris, France
| |
Collapse
|
37
|
Lo-Castro A, Curatolo P. Epilepsy associated with autism and attention deficit hyperactivity disorder: is there a genetic link? Brain Dev 2014; 36:185-93. [PMID: 23726375 DOI: 10.1016/j.braindev.2013.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/28/2013] [Accepted: 04/30/2013] [Indexed: 12/26/2022]
Abstract
Autism Spectrum Disorders (ASDs) and Attention Deficit and Hyperactivity Disorder (ADHD) are the most common comorbid conditions associated with childhood epilepsy. The co-occurrence of an epilepsy/autism phenotype or an epilepsy/ADHD phenotype has a complex and heterogeneous pathogenesis, resulting from several altered neurobiological mechanisms involved in early brain development, and influencing synaptic plasticity, neurotransmission and functional connectivity. Rare clinically relevant chromosomal aberrations, in addition to environmental factors, may confer an increased risk for ASDs/ADHD comorbid with epilepsy. The majority of the candidate genes are involved in synaptic formation/remodeling/maintenance (NRX1, CNTN4, DCLK2, CNTNAP2, TRIM32, ASTN2, CTNTN5, SYN1), neurotransmission (SYNGAP1, GABRG1, CHRNA7), or DNA methylation/chromatin remodeling (MBD5). Two genetic disorders, such as Tuberous sclerosis and Fragile X syndrome may serve as models for understanding the common pathogenic pathways leading to ASDs and ADHD comorbidities in children with epilepsy, offering the potential for new biologically focused treatment options.
Collapse
Affiliation(s)
- Adriana Lo-Castro
- Neuroscience Department, Pediatric Neurology and Psychiatry Unit, Tor Vergata University of Rome, Italy.
| | - Paolo Curatolo
- Neuroscience Department, Pediatric Neurology and Psychiatry Unit, Tor Vergata University of Rome, Italy
| |
Collapse
|
38
|
Michalovicz LT, Konat GW. Peripherally restricted acute phase response to a viral mimic alters hippocampal gene expression. Metab Brain Dis 2014; 29:75-86. [PMID: 24363211 PMCID: PMC4343041 DOI: 10.1007/s11011-013-9471-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/13/2013] [Indexed: 11/26/2022]
Abstract
We have previously shown that peripherally restricted acute phase response (APR) elicited by intraperitoneal (i.p.) injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), renders the brain hypersusceptible to excitotoxic insult as seen from profoundly exacerbated kainic acid (KA)-induced seizures. In the present study, we found that this hypersusceptibility was protracted for up to 72 h. RT-PCR profiling of hippocampal gene expression revealed rapid upregulation of 23 genes encoding cytokines, chemokines and chemokine receptors generally within 6 h after PIC challenge. The expression of most of these genes decreased by 24 h. However, two chemokine genes, i.e., Ccl19 and Cxcl13 genes, as well as two chemokine receptor genes, Ccr1 and Ccr7, remained upregulated for 72 h suggesting their possible involvement in the induction and sustenance of seizure hypersusceptibility. Also, 12 genes encoding proteins related to glutamatergic and GABAergic neurotransmission featured initial upregulation or downregulation followed by gradual normalization. The upregulation of the Gabrr3 gene remained upregulated at 72 h, congruent with its plausible role in the hypersusceptible phenotype. Moreover, the expression of ten microRNAs (miRs) was rapidly affected by PIC challenge, but their levels generally exhibited oscillating profiles over the time course of seizure hypersusceptibility. These results indicate that protracted seizure susceptibility following peripheral APR is associated with a robust polygenic response in the hippocampus.
Collapse
|
39
|
Forrest C, Khalil O, Pisar M, McNair K, Kornisiuk E, Snitcofsky M, Gonzalez N, Jerusalinsky D, Darlington L, Stone T. Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway. Neuroscience 2013; 254:241-59. [DOI: 10.1016/j.neuroscience.2013.09.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
|
40
|
Li G, Pleasure SJ. The development of hippocampal cellular assemblies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:165-77. [PMID: 24719288 DOI: 10.1002/wdev.127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 08/19/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022]
Abstract
The proper assembly of a cohort of distinct cell types is a prerequisite for building a functional hippocampus. In this review, we describe the major molecular events of the developmental program leading to the cellular construction of the hippocampus. Data from rodent studies are used here to elaborate on our understanding of these processes.
Collapse
Affiliation(s)
- Guangnan Li
- Department of Neurology, Programs in Neuroscience and Developmental Biology, Institute for Regenerative Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
41
|
Germain J, Bruel-Jungerman E, Grannec G, Denis C, Lepousez G, Giros B, Francis F, Nosten-Bertrand M. Doublecortin knockout mice show normal hippocampal-dependent memory despite CA3 lamination defects. PLoS One 2013; 8:e74992. [PMID: 24073232 PMCID: PMC3779246 DOI: 10.1371/journal.pone.0074992] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/12/2013] [Indexed: 11/23/2022] Open
Abstract
Mutations in the human X-linked doublecortin gene (DCX) cause major neocortical disorganization associated with severe intellectual disability and intractable epilepsy. Although Dcx knockout (KO) mice exhibit normal isocortical development and architecture, they show lamination defects of the hippocampal pyramidal cell layer largely restricted to the CA3 region. Dcx-KO mice also exhibit interneuron abnormalities. As well as the interest of testing their general neurocognitive profile, Dcx-KO mice also provide a relatively unique model to assess the effects of a disorganized CA3 region on learning and memory. Based on its prominent anatomical and physiological features, the CA3 region is believed to contribute to rapid encoding of novel information, formation and storage of arbitrary associations, novelty detection, and short-term memory. We report here that Dcx-KO adult males exhibit remarkably preserved hippocampal- and CA3-dependant cognitive processes using a large battery of classical hippocampus related tests such as the Barnes maze, contextual fear conditioning, paired associate learning and object recognition. In addition, we show that hippocampal adult neurogenesis, in terms of proliferation, survival and differentiation of granule cells, is also remarkably preserved in Dcx-KO mice. In contrast, following social deprivation, Dcx-KO mice exhibit impaired social interaction and reduced aggressive behaviors. In addition, Dcx-KO mice show reduced behavioral lateralization. The Dcx-KO model thus reinforces the association of neuropsychiatric behavioral impairments with mouse models of intellectual disability.
Collapse
Affiliation(s)
- Johanne Germain
- INSERM UMRS 952, Paris, France
- CNRS UMR 7224, Paris, France
- UPMC, Paris, France
- Université Paris Descartes, Paris, France
| | - Elodie Bruel-Jungerman
- UPMC, Paris, France
- INSERM UMR-S 839, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Gael Grannec
- INSERM UMRS 952, Paris, France
- CNRS UMR 7224, Paris, France
- UPMC, Paris, France
| | - Cécile Denis
- INSERM UMRS 952, Paris, France
- CNRS UMR 7224, Paris, France
- UPMC, Paris, France
| | | | - Bruno Giros
- INSERM UMRS 952, Paris, France
- CNRS UMR 7224, Paris, France
- UPMC, Paris, France
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Canada
| | - Fiona Francis
- UPMC, Paris, France
- INSERM UMR-S 839, Paris, France
- Institut du Fer à Moulin, Paris, France
| | | |
Collapse
|
42
|
Shin E, Kashiwagi Y, Kuriu T, Iwasaki H, Tanaka T, Koizumi H, Gleeson JG, Okabe S. Doublecortin-like kinase enhances dendritic remodelling and negatively regulates synapse maturation. Nat Commun 2013; 4:1440. [PMID: 23385585 PMCID: PMC4017031 DOI: 10.1038/ncomms2443] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/03/2013] [Indexed: 11/09/2022] Open
Abstract
Dendritic morphogenesis and formation of synapses at appropriate dendritic locations are essential for the establishment of proper neuronal connectivity. Recent imaging studies provide evidence for stabilization of dynamic distal branches of dendrites by the addition of new synapses. However, molecules involved in both dendritic growth and suppression of synapse maturation remain to be identified. Here we report two distinct functions of doublecortin-like kinases, chimeric proteins containing both a microtubule-binding domain and a kinase domain in postmitotic neurons. First, doublecortin-like kinases localize to the distal dendrites and promote their growth by enhancing microtubule bundling. Second, doublecortin-like kinases suppress maturation of synapses through multiple pathways, including reduction of PSD-95 by the kinase domain and suppression of spine structural maturation by the microtubule-binding domain. Thus, doublecortin-like kinases are critical regulators of dendritic development by means of their specific targeting to the distal dendrites, and their local control of dendritic growth and synapse maturation.
Collapse
Affiliation(s)
- Euikyung Shin
- Department of Cellular Neurobiology, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kremer T, Jagasia R, Herrmann A, Matile H, Borroni E, Francis F, Kuhn HG, Czech C. Analysis of adult neurogenesis: evidence for a prominent "non-neurogenic" DCX-protein pool in rodent brain. PLoS One 2013; 8:e59269. [PMID: 23690918 PMCID: PMC3653925 DOI: 10.1371/journal.pone.0059269] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
Here, we have developed a highly sensitive immunoassay for Dcx to characterize expression in brain and cerebrospinal fluid (CSF) of rodents. We demonstrate that Dcx is widely expressed during development in various brain regions and as well can be detected in cerebrospinal fluid of rats (up to 30 days postnatal). While Dcx protein level decline in adulthood and were detectable in neurogenic regions of the adult rodent brain, similar levels were also detectable in brain regions expected to bear no neurogenesis including the cerebral cortex and CA1/CA3 enriched hippocampus. We monitored DCX protein levels after paradigms to increase or severely decrease adult hippocampal neurogenesis, namely physical activity and cranial radiation, respectively. In both paradigms, Dcx protein- and mRNA-levels clearly reflected changes in neurogenesis in the hippocampus. However, basal Dcx-levels are unaffected in non-neurogenic regions (e.g. CA1/CA3 enriched hippocampus, cortex). These data suggest that there is a substantial "non-neurogenic" pool of Dcx- protein, whose regulation can be uncoupled from adult neurogenesis suggesting caution for the interpretation of such studies.
Collapse
Affiliation(s)
- Thomas Kremer
- F. Hoffmann-La Roche AG, Pharma Research & Early Development, DTA Neuroscience, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Reiner O. LIS1 and DCX: Implications for Brain Development and Human Disease in Relation to Microtubules. SCIENTIFICA 2013; 2013:393975. [PMID: 24278775 PMCID: PMC3820303 DOI: 10.1155/2013/393975] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/07/2013] [Indexed: 05/29/2023]
Abstract
Proper lamination of the cerebral cortex requires the orchestrated motility of neurons from their place of birth to their final destination. Improper neuronal migration may result in a wide range of diseases, including brain malformations, such as lissencephaly, mental retardation, schizophrenia, and autism. Ours and other studies have implicated that microtubules and microtubule-associated proteins play an important role in the regulation of neuronal polarization and neuronal migration. Here, we will review normal processes of brain development and neuronal migration, describe neuronal migration diseases, and will focus on the microtubule-associated functions of LIS1 and DCX, which participate in the regulation of neuronal migration and are involved in the human developmental brain disease, lissencephaly.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
45
|
Using C. elegans to Decipher the Cellular and Molecular Mechanisms Underlying Neurodevelopmental Disorders. Mol Neurobiol 2013; 48:465-89. [DOI: 10.1007/s12035-013-8434-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
|
46
|
Raskind WH, Peter B, Richards T, Eckert MM, Berninger VW. The genetics of reading disabilities: from phenotypes to candidate genes. Front Psychol 2013; 3:601. [PMID: 23308072 PMCID: PMC3538356 DOI: 10.3389/fpsyg.2012.00601] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/18/2012] [Indexed: 12/19/2022] Open
Abstract
This article provides an overview of (a) issues in definition and diagnosis of specific reading disabilities at the behavioral level that may occur in different constellations of developmental and phenotypic profiles (patterns); (b) rapidly expanding research on genetic heterogeneity and gene candidates for dyslexia and other reading disabilities; (c) emerging research on gene-brain relationships; and (d) current understanding of epigenetic mechanisms whereby environmental events may alter behavioral expression of genetic variations. A glossary of genetic terms (denoted by bold font) is provided for readers not familiar with the technical terms.
Collapse
Affiliation(s)
- Wendy H Raskind
- Department of Medicine, University of Washington Seattle, WA, USA ; Department of Psychiatry and Behavioral Sciences, University of Washington Seattle, WA, USA
| | | | | | | | | |
Collapse
|
47
|
Fourniol F, Perderiset M, Houdusse A, Moores C. Structural Studies of the Doublecortin Family of MAPs. Methods Cell Biol 2013; 115:27-48. [DOI: 10.1016/b978-0-12-407757-7.00003-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
LIS1 deficiency promotes dysfunctional synaptic integration of granule cells generated in the developing and adult dentate gyrus. J Neurosci 2012; 32:12862-75. [PMID: 22973010 DOI: 10.1523/jneurosci.1286-12.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Type I lissencephaly, a neuronal migration disorder characterized by cognitive disability and refractory epilepsy, is often caused by heterozygous mutations in the LIS1 gene. Histopathologies of malformation-associated epilepsies have been well described, but it remains unclear whether hyperexcitability is attributable to disruptions in neuronal organization or abnormal circuit function. Here, we examined the effect of LIS1 deficiency on excitatory synaptic function in the dentate gyrus of hippocampus, a region believed to serve critical roles in seizure generation and learning and memory. Mice with heterozygous deletion of LIS1 exhibited robust granule cell layer dispersion, and adult-born granule cells labeled with enhanced green fluorescent protein were abnormally positioned in the molecular layer, hilus, and granule cell layer. In whole-cell patch-clamp recordings, reduced LIS1 function was associated with greater excitatory synaptic input to mature granule cells that was consistent with enhanced release probability at glutamatergic synapses. Adult-born granule cells that were ectopically positioned in the molecular layer displayed a more rapid functional maturation and integration into the synaptic network compared with newborn granule cells located in the hilus or granule cell layer or in wild-type controls. In a conditional knock-out mouse, induced LIS1 deficiency in adulthood also enhanced the excitatory input to granule cells in the absence of neuronal disorganization. These findings indicate that disruption of LIS1 has direct effects on excitatory synaptic transmission independent of laminar disorganization, and the ectopic position of adult-born granule cells within a malformed dentate gyrus critically influences their functional maturation and integration.
Collapse
|
49
|
Reiner O, Gorelik A, Greenman R. Use of RNA interference by in utero electroporation to study cortical development: the example of the doublecortin superfamily. Genes (Basel) 2012; 3:759-78. [PMID: 24705084 PMCID: PMC3899981 DOI: 10.3390/genes3040759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/22/2012] [Accepted: 10/31/2012] [Indexed: 11/16/2022] Open
Abstract
The way we study cortical development has undergone a revolution in the last few years following the ability to use shRNA in the developing brain of the rodent embryo. The first gene to be knocked-down in the developing brain was doublecortin (Dcx). Here we will review knockdown experiments in the developing brain and compare them with knockout experiments, thus highlighting the advantages and disadvantages using the different systems. Our review will focus on experiments relating to the doublecortin superfamily of proteins.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Raanan Greenman
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
50
|
Doublecortin (DCX) mediates endocytosis of neurofascin independently of microtubule binding. J Neurosci 2012; 32:7439-53. [PMID: 22649224 DOI: 10.1523/jneurosci.5318-11.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Doublecortin on X chromosome (DCX) is one of two major genetic loci underlying human lissencephaly, a neurodevelopmental disorder with defects in neuronal migration and axon outgrowth. DCX is a microtubule-binding protein, and much work has focused on its microtubule-associated functions. DCX has other reported binding partners, including the cell adhesion molecule neurofascin, but the functional significance of the DCX-neurofascin interaction is not understood. Neurofascin localizes strongly to the axon initial segment in mature neurons, where it plays a role in assembling and maintaining other axon initial segment components. During development, neurofascin likely plays additional roles in axon guidance and in GABAergic synaptogenesis. We show here that DCX can modulate the surface distribution of neurofascin in developing cultured rat neurons and thereby the relative extent of accumulation between the axon initial segment and soma and dendrites. Mechanistically, DCX acts via increasing endocytosis of neurofascin from soma and dendrites. Surprisingly, DCX increases neurofascin endocytosis apparently independently of its microtubule-binding activity. We additionally show that the patient allele DCXG253D still binds microtubules but is deficient in promoting neurofascin endocytosis. We propose that DCX acts as an endocytic adaptor for neurofascin to fine-tune its surface distribution during neuronal development.
Collapse
|