1
|
Marastoni D, Colato E, Foschi M, Tamanti A, Ziccardi S, Eccher C, Crescenzo F, Bajrami A, Schiavi GM, Camera V, Anni D, Virla F, Guandalini M, Turano E, Pizzini FB, Montemezzi S, Bonetti B, Howell O, Magliozzi R, Nicholas RS, Scalfari A, Granziera C, Kappos L, Calabrese M. Intrathecal Inflammatory Profile and Gray Matter Damage Predict Progression Independent of Relapse Activity in Early Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200399. [PMID: 40311103 PMCID: PMC12056761 DOI: 10.1212/nxi.0000000000200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND AND OBJECTIVES The objective of this study was to determine, at the time of diagnosis, a CSF and MRI profile of intrathecal compartmentalized inflammation predictive of progression independent of relapse activity (PIRA) in early relapsing-remitting multiple sclerosis (RRMS). METHODS This five-year prospective study included 80 treatment-naïve patients with RRMS enrolled at time of diagnosis. All patients underwent a lumbar puncture, regular neurologic evaluations including an Expanded Disability Status Scale (EDSS) assessment every 6 months, and an annual 3T brain MRI. PIRA was defined as having a confirmed disability progression independent of relapse activity. CSF levels of 68 inflammatory molecules were evaluated in combination with white matter and cortical lesion number (CLn) and volume, and regional gray matter thickness and volume. RESULTS During the follow-up, 23 patients with RRMS (28.8%) experienced PIRA. At diagnosis, participants with PIRA were older (44.0 ± 10.7 vs 37.4 ± 12.4, p = 0.017) and with more disability (median EDSS score [interquartile range] of 3 [range 2-4] for PIRA vs 1.5 [range 1-2] for no PIRA group, p < 0.001). Random forest selected LIGHT, CXCL13, sTNFR1, sTNFR2, CCL7, MIF, sIL6Rbeta, IL35, CCL2, and IFNβ as the CSF markers best associated with PIRA. sTNFR1 (hazard ratio [HR] 10.11 [2.61-39.10], p = 0.001), sTNFR2 (HR 5.05 [1.63-15.64], p = 0.005), and LIGHT (HR 1.79 [1.11-2.88], p = 0.018) were predictors of PIRA at regression analysis. Baseline thalamus volume (HR 0.98 [0.97-0.99], p = 0.005), middle frontal gyrus thickness (HR 0.05 [0.01-0.72], p = 0.028), and CLn (HR 1.15 [1.05-1.25], p = 0.003) were MRI predictors of PIRA. DISCUSSION A specific intrathecal inflammatory profile associated with TNF superfamily markers, CLn, and atrophy of several cortical and deep gray matter regions, assessed at time of diagnosis, is predictive of PIRA in early MS.
Collapse
Affiliation(s)
- Damiano Marastoni
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | - Elisa Colato
- Neurology B, Department of Neurosciences, University of Verona, Italy
- MS Centre, Department of Anatomy and Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matteo Foschi
- Department of Neuroscience, Multiple Sclerosis Center, Neurology Unit, S.Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Agnese Tamanti
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | - Stefano Ziccardi
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | - Chiara Eccher
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | | | - Albulena Bajrami
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | | | - Valentina Camera
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | - Daniela Anni
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | - Federica Virla
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | | | - Ermanna Turano
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | | | - Stefania Montemezzi
- Radiology Unit, Department of Pathology and Diagnostics, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Bruno Bonetti
- Neurology A, Azienda Ospedaliera Universitaria Integrata di Verona, Italy
| | - Owain Howell
- Institute of Life Sciences, Swansea University, United Kingdom
| | - Roberta Magliozzi
- Neurology B, Department of Neurosciences, University of Verona, Italy
- Centre for Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College London, United Kingdom; and
| | - Richard S Nicholas
- Centre for Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College London, United Kingdom; and
| | - Antonio Scalfari
- Centre for Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College London, United Kingdom; and
| | - Cristina Granziera
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital and University of Basel, Switzerland
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital and University of Basel, Switzerland
| | | |
Collapse
|
2
|
Huang Z, Liu D, Zhang Y, Lu W, Hu L, Zhang J, Xie L, Chen S. PITX1 as a grading, prognostic and tumor-infiltrating immune cells marker for chondrosarcoma: a public database-based immunoassay and tissue sample analysis. Front Oncol 2025; 15:1477649. [PMID: 40342824 PMCID: PMC12060168 DOI: 10.3389/fonc.2025.1477649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/24/2025] [Indexed: 05/11/2025] Open
Abstract
Background Chondrosarcoma (CHS) is a rare bone cancer originating from chondrocytes, with high-grade cases associated with high mortality rates. However, the prognostic factors and therapeutic targets for CHS have not been studied. Methods Graded gene differential analysis was conducted on 97 CHS tissues to identify genes associated with CHS grading. Additionally, we performed GO and KEGG enrichment analyses of the differentially-expressed genes (DEGs), as well as GSEA analysis, differential expression analysis, survival analysis, and univariable and multifactorial COX analysis of paired-like homology structural domain transcription factor 1 (PITX1). Furthermore, our findings investigated the relationship between tumor-infiltrating immune cells (TICs) in CHS tumors using CIBERSORT to calculate proportions and differences. Our findings also explored the associations among gene expression patterns, survival prognosis, TICs, and immune checkpoints across various cancer types. Finally, immunohistochemical staining was carried out on self-collected clinical samples to assess PITX1 expression levels and correlate them with clinical information. Results Gene differential expression analysis revealed a strong correlation between PITX1 expression and tumor grade. GO, KEGG enrichment, and GSEA analysis demonstrated the association of PITX1 with cell proliferation-related processes, such as cell cycle regulation and mitosis, and differentiation-related processes, such as RNA processing. PITX1 expression was associated with tumor stage and survival outcomes. Immunoassay indicated a positive correlation between PITX1 levels and TICs, immune checkpoints, and graded TICs. Pan-cancer analysis confirmed the differential expression of the PITX1 gene across multiple cancers, impacting survival prognosis, TIC patterns, and immune checkpoint regulation. Lastly, our 75 collection of clinical patient tissue samples exhibited varying levels of PITX1 expression across different cancer grades while also demonstrating a significant association with tumor differentiation and metastasis. Conclusion PITX1 is a novel biomarker for distinguishing between high-grade and low-grade CHS, serving as a prognostic indicator for patients with this condition and presenting a promising target for immunotherapy. These findings offer innovative insights into the treatment of CHS.
Collapse
Affiliation(s)
- Zikun Huang
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Dongchen Liu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ying Zhang
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqing Lu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lan Hu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jinghao Zhang
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Lei Xie
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Sport Medicine Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shubiao Chen
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Sport Medicine Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
3
|
Kuchenreuther I, Clausen FN, Mazurie J, Paul S, Czubayko F, Mittelstädt A, Koch AK, Karabiber A, Hansen FJ, Arnold LS, Weisel N, Merkel S, Brunner M, Krautz C, Vera J, Grützmann R, Weber GF, David P. Increased Herpesvirus Entry Mediator Expression on Circulating Monocytes and Subsets Predicts Poor Outcomes in Pancreatic Ductal Adenocarcinoma Patients. Int J Mol Sci 2025; 26:2875. [PMID: 40243455 PMCID: PMC11988668 DOI: 10.3390/ijms26072875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is aggressive, with a 5-year survival rate of only 12.8%, and its increasing incidence in Western countries highlights the urgent need for better early-stage detection and treatment methods. Early diagnosis significantly improves the chances of survival, but non-specific symptoms and undetectable precursor lesions pose a major challenge. To date, there are no reliable screening tools to detect PDAC at an early stage. Herpesvirus entry mediator (HVEM) has already been proposed as a prognostic marker in numerous cancer types. Therefore, we investigated the role of HVEM in PDAC. Flow cytometry was used to analyze HVEM expression in immune cells and its inhibitory receptors (CD160 and BTLA) on T-cells, as well as its subsets in the peripheral blood of 57 diagnosed PDAC patients and 17 clinical controls. In addition, survival analyses were performed within the PDAC cohort, changes in HVEM expression were analyzed in relation to clinicopathological parameters, and a correlation analysis between HVEM expression and cytokine levels of IL-6 and IL-10 was conducted. Furthermore, HVEM expression on monocytes and their subsets was evaluated as a potential prognostic marker and compared with the prognostic utility of CA19-9. We found that HVEM expression is significantly elevated on immune cells, particularly on monocytes (p < 0.0001) and their subsets, in PDAC patients, and is associated with reduced survival (p = 0.0067) and clinicopathological features such as perineural, lymphovascular, and vascular invasion. Moreover, HVEM-expressing monocytes demonstrated superior predictive value compared to CA19-9, highlighting their potential as part of a combined screening tool for PDAC. In conclusion, HVEM on monocytes could serve as a novel prognostic marker for PDAC.
Collapse
MESH Headings
- Humans
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/blood
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/blood
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/diagnosis
- Female
- Male
- Middle Aged
- Monocytes/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/blood
- Pancreatic Neoplasms/mortality
- Prognosis
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Antigens, CD/metabolism
- Receptors, Immunologic/metabolism
- Interleukin-10
- Adult
- Interleukin-6
- GPI-Linked Proteins
Collapse
Affiliation(s)
- Isabelle Kuchenreuther
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Finn-Niklas Clausen
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Johanne Mazurie
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Sushmita Paul
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.V.)
| | - Franziska Czubayko
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Anke Mittelstädt
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Ann-Kathrin Koch
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Alara Karabiber
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Frederik J. Hansen
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Lisa-Sophie Arnold
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Nadine Weisel
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Susanne Merkel
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Maximilian Brunner
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Christian Krautz
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Julio Vera
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.V.)
| | - Robert Grützmann
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Georg F. Weber
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Paul David
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
4
|
Atwell S, Cheung TC, Conner EM, Ho C, Huang J, Harryman EL, Lieu R, Lim S, Lin WW, Ruiz DI, Vendel AC, Ware CF. Quantitative detection of the HVEM-BTLA checkpoint receptor cis-complex in human lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae057. [PMID: 40073094 DOI: 10.1093/jimmun/vkae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/11/2024] [Indexed: 03/14/2025]
Abstract
The herpesvirus entry mediator (HVEM) (TNFRSF14) engagement of the checkpoint inhibitory receptor B and T lymphocyte attenuator (BTLA) limits immune responses of T and B lymphocytes. HVEM and BTLA form signaling complexes in trans and when coexpressed, complexes in cis, creating a unique immune checkpoint. The function of the HVEM-BTLA cis-complex is not well understood primarily due to a lack of reagents that specifically measure the HVEM-BTLA cis-complex. We describe here a method to generate antibodies to receptor-ligand complexes using fusion immunogens, in this case, a BTLA-HVEM fusion protein. We identified 2 closely related antibodies that specifically recognize the HVEM-BTLA complex on the cell surface. In experiments utilizing the anti-HVEM-BTLA complex-specific antibody together with subunit-specific BTLA monoclonal antibodies, we were able to determine the precise ratio of free to cis-complexed BTLA on subpopulations of human lymphocytes. This is the first direct quantification of the HVEM-BTLA cis-complex. The method described here should apply to the detection of other receptor-ligand complexes.
Collapse
Affiliation(s)
- Shane Atwell
- Biotechnology Discovery Research, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, United States
- Discovery Biology, Neurocrine Bioscience, San Diego, CA, United States
| | - Timothy C Cheung
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Elaine M Conner
- Biotechnology Discovery Research, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, United States
| | - Carolyn Ho
- Biotechnology Discovery Research, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, United States
| | - Jiawen Huang
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Erin L Harryman
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Ricky Lieu
- Biotechnology Discovery Research, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, United States
| | - Stacie Lim
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Wai W Lin
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Diana I Ruiz
- Biotechnology Discovery Research, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, United States
| | - Andrew C Vendel
- Immunology Discovery Research, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA, United States
| | - Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
5
|
Ma K, Han H, Bao Y, Chen R, Yang Y, Shao W. The Function of B and T Lymphocyte Attenuator and Its Role in Transplantation. APMIS 2025; 133:e70012. [PMID: 40040475 DOI: 10.1111/apm.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Immune checkpoints are important molecules that regulate the immune response, preventing its overactivation from causing tissue damage and autoimmune diseases. B and T lymphocyte attenuator (BTLA) plays an important role in regulating the activation and suppression of the immune response as part of a bidirectional signaling complex. The BTLA and its ligand herpesvirus entry mediator (HVEM) interaction transmits inhibitory signals that suppress the biological activity of T cells, B cells, and DCs. In addition, BTLA-HVEM can affect the induction of Treg cells, further suggesting its important role in immune regulation. Organ transplantation is the ultimate treatment option for many patients with end-stage organ failure. Transplant rejection can cause damage to the transplanted organ, which seriously affects the prognosis of patients. Therefore, we would like to explore the potential application value of the BTLA-HVEM interaction to exert an immunosuppressive function and thus attenuate transplant rejection. We first reviewed the structure and function of BTLA and HVEM, then summarized their research progress in organ transplantation, and further explored the directions of potential future applications and the challenges of current BTLA-HVEM applications.
Collapse
MESH Headings
- Humans
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Organ Transplantation
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Animals
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Kai Ma
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Heqiao Han
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Yuchen Bao
- Medical School of Tianjin University, Tianjin, China
| | - Rongtao Chen
- Medical School of Tianjin University, Tianjin, China
| | - Yixuan Yang
- Medical School of Tianjin University, Tianjin, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
- Medical School of Tianjin University, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Mkhikian H, Zhou RW, Saryan H, Sánchez CD, Balakrishnan A, Dang J, Mortales CL, Demetriou M. N-Glycan Branching Regulates BTLA Opposite to PD-1 to Limit T Cell Hyperactivity Induced by Branching Deficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1329-1337. [PMID: 39269653 DOI: 10.4049/jimmunol.2300568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
N-glycan branching is a potent and multifaceted negative regulator of proinflammatory T cell and B cell function. By promoting multivalent galectin-glycoprotein lattice formation at the cell surface, branching regulates clustering and/or endocytosis of the TCR complex (TCR+CD4/CD8), CD45, CD25, BCR, TLR2 and TLR4 to inhibit T cell and B cell activation/proliferation and proinflammatory TH1 and TH17 over TH2 and induced T regulatory cell responses. In addition, branching promotes cell surface retention of the growth inhibitory receptor CTLA-4. However, the role of N-glycan branching in regulating cell surface levels of other checkpoint receptors such as BTLA (B and T lymphocyte attenuator) and PD-1 (programmed cell death protein 1) is unknown. In this study, we report that whereas branching significantly enhances PD-1 cell surface expression by reducing loss from endocytosis, the opposite occurs with BTLA in both T cells and B cells. T cell hyperactivity induced by branching deficiency was opposed by BTLA ligation proportional to increased BTLA expression. Other members of the BTLA/HVEM (herpesvirus entry mediator) signaling axis in T cells, including HVEM, LIGHT, and CD160, are largely unaltered by branching. Thus, branching-mediated endocytosis of BTLA is opposite of branching-induced inhibition of PD-1 endocytosis. In this manner, branching deficiency-induced upregulation of BTLA appears to serve as a checkpoint to limit extreme T cell hyperactivity and proinflammatory outcomes in T cells with low branching.
Collapse
Affiliation(s)
- Haik Mkhikian
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA
| | - Raymond W Zhou
- Department of Neurology, University of California, Irvine, Irvine, CA
| | - Hayk Saryan
- Department of Neurology, University of California, Irvine, Irvine, CA
| | | | - Aswath Balakrishnan
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA
| | - Justin Dang
- Department of Neurology, University of California, Irvine, Irvine, CA
| | | | - Michael Demetriou
- Department of Neurology, University of California, Irvine, Irvine, CA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA
| |
Collapse
|
7
|
Adegoke AO, Thangavelu G, Chou TF, Petersen MI, Kakugawa K, May JF, Joannou K, Wang Q, Ellestad KK, Boon L, Bretscher PA, Cheroutre H, Kronenberg M, Baldwin TA, Anderson CC. Internal regulation between constitutively expressed T cell co-inhibitory receptors BTLA and CD5 and tolerance in recent thymic emigrants. Open Biol 2024; 14:240178. [PMID: 39471840 PMCID: PMC11521602 DOI: 10.1098/rsob.240178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 11/01/2024] Open
Abstract
Immunologic self-tolerance involves signals from co-inhibitory receptors. Several T cell co-inhibitors, including PD-1, are expressed upon activation, whereas CD5 and BTLA are expressed constitutively. The relationship between constitutively expressed co-inhibitors and when they are needed is unknown. Deletion of Btla demonstrated BTLA regulates CD5 expression. Loss of BTLA signals, but not signalling by its ligand, HVEM, leads to increased CD5 expression. Higher CD5 expression set during thymic selection is associated with increased self-recognition, suggesting that BTLA might be needed early to establish self-tolerance. We found that BTLA and PD-1 were needed post-thymic selection in recent thymic emigrants (RTE). RTE lacking BTLA caused a CD4 T cell and MHC class II dependent multi-organ autoimmune disease. Together, our findings identify a negative regulatory pathway between two constitutively expressed co-inhibitors, calibrating their expression. Expression of constitutive and induced co-inhibitory receptors is needed early to establish tolerance in the periphery for RTE.
Collapse
Affiliation(s)
| | - Govindarajan Thangavelu
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - Ting-Fang Chou
- La Jolla Institute for Immunology, La Jolla, CA92037, USA
| | - Marcos I. Petersen
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi-ku, Yokohama230-0045, Japan
| | - Julia F. May
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Kevin Joannou
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Qingyang Wang
- La Jolla Institute for Immunology, La Jolla, CA92037, USA
| | - Kristofor K. Ellestad
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | | | - Peter A. Bretscher
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hilde Cheroutre
- La Jolla Institute for Immunology, La Jolla, CA92037, USA
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi-ku, Yokohama230-0045, Japan
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA92037, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA92093, USA
| | - Troy A. Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Colin C. Anderson
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Zhao W, Yao Y, Li Q, Xue Y, Gao X, Liu X, Zhang Q, Zheng J, Sun S. Molecular mechanism of co-stimulatory domains in promoting CAR-T cell anti-tumor efficacy. Biochem Pharmacol 2024; 227:116439. [PMID: 39032532 DOI: 10.1016/j.bcp.2024.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T cells have been defined as 'living drug'. Adding a co-stimulatory domain (CSD) has enhanced the anti-hematological effects of CAR-T cells, thereby elevating their viability for medicinal applications. Various CSDs have helped prepare CAR-T cells to study anti-tumor efficacy. Previous studies have described and summarized the anti-tumor efficacy of CAR-T cells obtained from different CSDs. However, the underlying molecular mechanisms by which different CSDs affect CAR-T function have been rarely reported. The role of CSDs in T cells has been significantly studied, but whether they can play a unique role as a part of the CAR structure remains undetermined. Here, we summarized the effects of CSDs on CAR-T signaling pathways based on the limited references and speculated the possible mechanism depending on the specific characteristics of CAR-T cells. This review will help understand the molecular mechanism of CSDs in CAR-T cells that exert different anti-tumor effects while providing potential guidance for further interventions to enhance anti-tumor efficacy in immunotherapy.
Collapse
Affiliation(s)
- Wanxin Zhao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qihong Li
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Xue
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoge Gao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qing Zhang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Shishuo Sun
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
9
|
Tang J, Zhang S, Jiang L, Liu J, Xu J, Jiang C, Chen Z, Zhou X, Fuller C, Huang J, Chen H, Yang G, Bai C, Yin D, Li B, Chi H. Causal relationship between immune cells and hepatocellular carcinoma: a Mendelian randomisation study. J Cancer 2024; 15:4219-4231. [PMID: 38947379 PMCID: PMC11212088 DOI: 10.7150/jca.96744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Hepatocellular carcinoma (HCC), the predominant malignancy of the digestive tract, ranks as the third most common cause of cancer-related mortality globally, significantly impeding human health and lifespan. Emerging immunotherapeutic approaches have ignited fresh optimism for patient outcomes. This investigation probes the link between 731 immune cell phenotypes and HCC through Mendelian Randomization and single-cell sequencing, aiming to unearth viable drug targets and dissect HCC's etiology. Methods: We conducted an exhaustive two-sample Mendelian Randomization analysis to ascertain the causal links between immune cell features and HCC, utilizing publicly accessible genetic datasets to explore the causal connections of 731 immune cell traits with HCC susceptibility. The integrity, diversity, and potential horizontal pleiotropy of these findings were rigorously assessed through extensive sensitivity analyses. Furthermore, single-cell sequencing was employed to penetrate the pathogenic underpinnings of HCC. Results: Establishing a significance threshold of pval_Inverse.variance.weighted at 0.05, our study pinpointed five immune characteristics potentially elevating HCC risk: B cell % CD3- lymphocyte (TBNK panel), CD25 on IgD+ (B cell panel), HVEM on TD CD4+ (Maturation stages of T cell panel), CD14 on CD14+ CD16- monocyte (Monocyte panel), CD4 on CD39+ activated Treg ( Treg panel). Conversely, various cellular phenotypes tied to BAFF-R expression emerged as protective elements. Single-cell sequencing unveiled profound immune cell phenotype interactions, highlighting marked disparities in cell communication and metabolic activities. Conclusion: Leveraging MR and scRNA-seq techniques, our study elucidates potential associations between 731 immune cell phenotypes and HCC, offering a window into the molecular interplays among cellular phenotypes, and addressing the limitations of mono-antibody therapeutic targets.
Collapse
Affiliation(s)
- Jingyi Tang
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital, Southwest Medical University, Sichuan, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Shengke Zhang
- Department of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Lai Jiang
- Department of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jie Liu
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital, Southwest Medical University, Sichuan, China
- Department of General Surgery, Dazhou Central Hospital, Dazhou 635000, China
| | - Jiayu Xu
- School of Science, Minzu University of China, Beijing, 100081 China
| | - Chenglu Jiang
- Department of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Zipei Chen
- Department of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Xuancheng Zhou
- Department of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Claire Fuller
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jinbang Huang
- Department of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Haiqing Chen
- Department of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens 45701, OH, USA
| | - Changsong Bai
- Department of General Surgery, Xuyong People's Hospital, Luzhou, China
| | - Defeng Yin
- Department of Emergency Medicine, The Affiliated Hospital, Southwest Medical University, 646000 Luzhou, China
- Department of Emergency Medicine, Xuyong People's Hospital, Luzhou, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital, Southwest Medical University, Sichuan, China
| | - Hao Chi
- Department of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
- Department of General Surgery, Xuyong People's Hospital, Luzhou, China
| |
Collapse
|
10
|
Gao H, Wang X, Gan H, Li M, Shi J, Guo Y. Deciphering the circulating immunological landscape of thoracic aortic aneurysm: Insights from a two-sample Mendelian randomization study. Heliyon 2024; 10:e31198. [PMID: 38803862 PMCID: PMC11128510 DOI: 10.1016/j.heliyon.2024.e31198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/27/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Background Thoracic Aortic Aneurysm (TAA) poses significant health risks due to aortic dilation. Recent evidence suggests a pivotal role for the immune-inflammatory response in the mechanism of aortic aneurysm formation. In this study, we aim to investigate the causal relationship between circulating immune cells and TAA. Methods This study employs a two-sample Mendelian Randomization (MR) approach, utilizing genome-wide association study (GWAS) summary statistics for 731 immune cell types and two TAA data from large-scale studies. Causal effects of both peripheral immune cells on TAA and TAA on peripheral immune cells are explored. To ensure more accurate results, we intersected the findings from two TAA data from large-scale studies, excluding results where the direction of the odds ratio (OR) was inconsistent. Findings The study identifies specific immune cells associated with TAA. Notably, CD45+ NKT cell (OR: 0.95, 95CI%: 0.90-0.99 in FinnGen study; OR: 0.91, 95CI%: 0.84-0.99 in CHIP + MGI study) and CD45+ HLA-DR + CD8+ T cells (OR: 0.95, 95CI%: 0.90-0.99 in FinnGen study; OR: 0.90, 95CI%: 0.82-0.99 in CHIP + MGI study) demonstrate a protective role against TAA. In addition, CD28+ CD45RA- CD8+ T cells (relative cell counts and absolute cell counts) and HVEM + CM + CD8+ T cells are adversely affected by TAA. Interpretation The findings indicate that the potential protective influence exerted by specific subsets of peripheral NKT cells and CD8+ T cells in mitigating the development of TAA, while simultaneously highlighting the reciprocal effects of TAA on peripheral Treg cells subsets and T cell subsets. The complex interaction between immune cells and TAA could provide valuable clues for earlier detection and more efficacious treatment strategies for TAA.
Collapse
Affiliation(s)
- Haoyu Gao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hanghang Gan
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Shi
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Mélique S, Vadel A, Rouquié N, Yang C, Bories C, Cotineau C, Saoudi A, Fazilleau N, Lesourne R. THEMIS promotes T cell development and maintenance by rising the signaling threshold of the inhibitory receptor BTLA. Proc Natl Acad Sci U S A 2024; 121:e2318773121. [PMID: 38713628 PMCID: PMC11098085 DOI: 10.1073/pnas.2318773121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/12/2024] [Indexed: 05/09/2024] Open
Abstract
The current paradigm about the function of T cell immune checkpoints is that these receptors switch on inhibitory signals upon cognate ligand interaction. We here revisit this simple switch model and provide evidence that the T cell lineage protein THEMIS enhances the signaling threshold at which the immune checkpoint BTLA (B- and T-lymphocyte attenuator) represses T cell responses. THEMIS is recruited to the cytoplasmic domain of BTLA and blocks its signaling capacity by promoting/stabilizing the oxidation of the catalytic cysteine of the tyrosine phosphatase SHP-1. In contrast, THEMIS has no detectable effect on signaling pathways regulated by PD-1 (Programmed cell death protein 1), which depend mainly on the tyrosine phosphatase SHP-2. BTLA inhibitory signaling is tuned according to the THEMIS expression level, making CD8+ T cells more resistant to BTLA-mediated inhibition than CD4+ T cells. In the absence of THEMIS, the signaling capacity of BTLA is exacerbated, which results in the attenuation of signals driven by the T cell antigen receptor and by receptors for IL-2 and IL-15, consequently hampering thymocyte positive selection and peripheral CD8+ T cell maintenance. By characterizing the pivotal role of THEMIS in restricting the transmission of BTLA signals, our study suggests that immune checkpoint operability is conditioned by intracellular signal attenuators.
Collapse
Affiliation(s)
- Suzanne Mélique
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Aurélie Vadel
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Nelly Rouquié
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Cui Yang
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Cyrielle Bories
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Coline Cotineau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Abdelhadi Saoudi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Nicolas Fazilleau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Renaud Lesourne
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| |
Collapse
|
12
|
Hu X. The role of the BTLA-HVEM complex in the pathogenesis of breast cancer. Breast Cancer 2024; 31:358-370. [PMID: 38483699 DOI: 10.1007/s12282-024-01557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/17/2024] [Indexed: 04/26/2024]
Abstract
Breast cancer (BC) is widely recognized as a prevalent contributor to cancer mortality and ranks as the second most prevalent form of cancer among women across the globe. Hence, the development of innovative therapeutic strategies is imperative to effectively manage BC. The B- and T-lymphocyte attenuator (BTLA)-Herpesvirus entry mediator (HVEM) complex has garnered significant scientific interest as a crucial regulator in various immune contexts. The interaction between BTLA-HVEM ligand on the surface of T cells results in reduced cellular activation, cytokine synthesis, and proliferation. The BTLA-HVEM complex has been investigated in various cancers, yet its specific mechanisms in BC remain indeterminate. In this study, we aim to examine the function of BTLA-HVEM and provide a comprehensive overview of the existing evidence in relation to BC. The obstruction or augmentation of these pathways may potentially enhance the efficacy of BC treatment.
Collapse
Affiliation(s)
- Xue Hu
- College of Health Industry, Changchun University of Architecture and Civil Engineering, Changchun, 130000, China.
| |
Collapse
|
13
|
Tang L, Xu H, Wu T, Wu W, Lu Y, Gu J, Wang X, Zhou M, Chen Q, Sun X, Cai H. Advances in tumor microenvironment and underlying molecular mechanisms of bladder cancer: a systematic review. Discov Oncol 2024; 15:111. [PMID: 38602556 PMCID: PMC11009183 DOI: 10.1007/s12672-024-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Bladder cancer is one of the most frequent malignant tumors of the urinary system. The prevalence of bladder cancer among men and women is roughly 5:2, and both its incidence and death have been rising steadily over the past few years. At the moment, metastasis and recurrence of advanced bladder cancer-which are believed to be connected to the malfunction of multigene and multilevel cell signaling network-remain the leading causes of bladder cancer-related death. The therapeutic treatment of bladder cancer will be greatly aided by the elucidation of these mechanisms. New concepts for the treatment of bladder cancer have been made possible by the advancement of research technologies and a number of new treatment options, including immunotherapy and targeted therapy. In this paper, we will extensively review the development of the tumor microenvironment and the possible molecular mechanisms of bladder cancer.
Collapse
Affiliation(s)
- Liu Tang
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Tong Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Yuhao Lu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Jijia Gu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Xiaoling Wang
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Mei Zhou
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Qiuyang Chen
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Xuan Sun
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Long K, Gong A, Yu D, Dong S, Ying Z, Zhang L. Exploring the immunological landscape of osteomyelitis through mendelian randomization analysis. Front Genet 2024; 15:1362432. [PMID: 38650858 PMCID: PMC11033344 DOI: 10.3389/fgene.2024.1362432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Background Osteomyelitis is a severe bone marrow infection, whose pathogenesis is not yet fully understood. This study aims to explore the causal relationship between immune cell characteristics and osteomyelitis, hoping to provide new insights for the prevention and treatment of osteomyelitis. Methods Based on two independent samples, this study employed a two-sample Mendelian randomization (MR) analysis to assess the causal relationship between 731 immune cell characteristics (divided into seven groups) and osteomyelitis. Genetic variants were used as proxies for risk factors to ensure that the selected instrumental variables meet the three key assumptions of MR analysis. Genome-Wide Association Studies (GWAS) data for immune characteristics were obtained from the public GWAS catalog, while data for osteomyelitis was sourced from the FinnGen. Results At a significance level of 0.05, 21 immune phenotypes were identified as having a causal relationship with osteomyelitis development. In the B cell group, phenotypes such as Memory B cell % B cell (percentage of memory B cells within the total B cell population, % finger cell ratio), CD20- %B cell (percentage of B cells that do not express the CD20 marker on their surface), and Memory B cell % lymphocyte showed a positive causal relationship with osteomyelitis, while Naive-mature B cell %B cell and IgD-CD38-absolute cell counts (AC) phenotypes showed a negative causal relationship. In addition, specific immune phenotypes in the conventional dendritic cells (cDCs) group, Myeloid cell group, TBNK (T cells, B cells, natural killer cells) cell group, T cell maturation stage, and Treg cell group also showed significant associations with osteomyelitis. Through reverse MR analysis, it was found that osteomyelitis had no significant causal impact on these immune phenotypes, suggesting that the occurrence of osteomyelitis may not affect these immune cell phenotypes. Conclusion To our knowledge, this is the first study to shed light on the causal relationship between specific immune cell characteristics and the development of osteomyelitis, thereby providing a new perspective to understand the immune mechanism of osteomyelitis. These findings are significant for formulating targeted prevention and treatment strategies, and hold promise to improve the treatment outcomes for patients with osteomyelitis.
Collapse
Affiliation(s)
- Kehan Long
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Ao Gong
- Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dou Yu
- School of Clinical Medicine, Shandong First Medical University, Jinan, Shandong, China
| | - Sumiao Dong
- School of Clinical Medicine, Shandong First Medical University, Jinan, Shandong, China
| | - Zhendong Ying
- Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lei Zhang
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
15
|
Wojciechowicz K, Spodzieja M, Wardowska A. The BTLA-HVEM complex - The future of cancer immunotherapy. Eur J Med Chem 2024; 268:116231. [PMID: 38387336 DOI: 10.1016/j.ejmech.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
The BTLA-HVEM complex plays a pivotal role in cancer and cancer immunotherapy by regulating immune responses. Dysregulation of BTLA and HVEM expression contributes to immunosuppression and tumor progression across various cancer types. Targeting the interaction between BTLA and HVEM holds promise for enhancing anti-tumor immune responses. Disruption of this complex presents a valuable avenue for advancing cancer immunotherapy strategies. Aberrant expression of BTLA and HVEM adversely affects immune cell function, particularly T cells, exacerbating tumor evasion mechanisms. Understanding and modulating the BTLA-HVEM axis represents a crucial aspect of designing effective immunotherapeutic interventions against cancer. Here, we summarize the current knowledge regarding the structure and function of BTLA and HVEM, along with their interaction with each other and various immune partners. Moreover, the expression of soluble and transmembrane forms of BTLA and HVEM in different types of cancer and their impact on the prognosis of patients is also discussed. Additionally, inhibitors of the proteins binding that might be used to block BTLA-HVEM interaction are reviewed. All the presented data highlight the plausible clinical application of BTLA-HVEM targeted therapies in cancer and autoimmune disease management. However, further studies are required to confirm the practical use of this concept. Despite the increasing number of reports on the BTLA-HVEM complex, many aspects of its biology and function still need to be elucidated. This review can be regarded as an encouragement and a guide to follow the path of BTLA-HVEM research.
Collapse
Affiliation(s)
- Karolina Wojciechowicz
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Poland.
| | - Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Poland
| | - Anna Wardowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Poland.
| |
Collapse
|
16
|
Zhou Y, Qin X, Hu Q, Qin S, Xu R, Gu K, Lu H. Cross-talk between disulfidptosis and immune check point genes defines the tumor microenvironment for the prediction of prognosis and immunotherapies in glioblastoma. Sci Rep 2024; 14:3901. [PMID: 38365809 PMCID: PMC10873294 DOI: 10.1038/s41598-024-52128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/14/2024] [Indexed: 02/18/2024] Open
Abstract
Disulfidptosis is a condition where dysregulated NAPDH levels and abnormal accumulation of cystine and other disulfides occur in cells with high SLC7A11 expression under glucose deficiency. This disrupts normal formation of disulfide bonds among cytoskeletal proteins, leading to histone skeleton collapse and triggering cellular apoptosis. However, the correlation between disulfidptosis and immune responses in relation to glioblastoma survival rates and immunotherapy sensitivity remains understudied. Therefore, we utilized The Cancer Genome Atlas and The Chinese Glioma Genome Atlas to identify disulfidptosis-related immune checkpoint genes and established an overall survival (OS) prediction model comprising six genes: CD276, TNFRSF 14, TNFSF14, TNFSF4, CD40, and TNFRSF18, which could also be used for predicting immunotherapy sensitivity. We identified a cohort of glioblastoma patients classified as high-risk, which exhibited an upregulation of angiogenesis, extracellular matrix remodeling, and epithelial-mesenchymal transition as well as an immunosuppressive tumor microenvironment (TME) enriched with tumor associated macrophages, tumor associated neutrophils, CD8 + T-cell exhaustion. Immunohistochemical staining of CD276 in 144 cases further validated its negative correlation with OS in glioma. Disulfidptosis has the potential to induce chronic inflammation and an immunosuppressive TME in glioblastoma.
Collapse
Affiliation(s)
- Yanjun Zhou
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China.
| | - Xue Qin
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qunchao Hu
- Department of Radiation Oncology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China, Shanghai
| | - Shaolei Qin
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ran Xu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, 214125, Jiangsu, China
| | - Ke Gu
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China.
| | - Hua Lu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, 214125, Jiangsu, China.
| |
Collapse
|
17
|
Wojciechowicz K, Kuncewicz K, Lisowska KA, Wardowska A, Spodzieja M. Peptides targeting the BTLA-HVEM complex can modulate T cell immune response. Eur J Pharm Sci 2024; 193:106677. [PMID: 38128840 DOI: 10.1016/j.ejps.2023.106677] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Immune checkpoints secure the proper function of the immune system and the maintenance of the BTLA-HVEM complex, an inhibitory immune checkpoint, is one of the pathways vital for T cell responsiveness to various stimuli. The present study reports the immunomodulatory potential of five peptides targeting the BTLA-HVEM complex on the activity of human T cells. Isolated T cells were exposed to the peptides alone or combined with CD3/CD28 mAb for 72 h or 120 h. The flow cytometry was used to evaluate the activation markers (CD69, CD62L, CD25), changes within the T cell memory compartment, proliferation rate, and apoptosis of T cells. The immunomodulatory effect of the peptides was visible as an increase in the percentage of CD4+ and CD8+ T cells expressing CD69 or CD25, a boost in T cell proliferation, and shifts in the T cell memory compartment. Pep(2) and Pep(5) were the most promising compounds, displaying a putative immune-restoring function.
Collapse
Affiliation(s)
- Karolina Wojciechowicz
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Katarzyna Kuncewicz
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland
| | - Katarzyna A Lisowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Anna Wardowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Poland.
| | - Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland.
| |
Collapse
|
18
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Granda-Díaz R, Martínez-Pérez A, Aguilar-García C, Rodrigo JP, García-Pedrero JM, Gonzalez S. Beyond the anti-PD-1/PD-L1 era: promising role of the BTLA/HVEM axis as a future target for cancer immunotherapy. Mol Cancer 2023; 22:142. [PMID: 37649037 PMCID: PMC10466776 DOI: 10.1186/s12943-023-01845-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Recent introduction of monoclonal antibodies targeting immune checkpoints to harness antitumor immunity has revolutionized the cancer treatment landscape. The therapeutic success of immune checkpoint blockade (ICB)-based therapies mainly relies on PD-1/PD-L1 and CTLA-4 blockade. However, the limited overall responses and lack of reliable predictive biomarkers of patient´s response are major pitfalls limiting immunotherapy success. Hence, this reflects the compelling need of unveiling novel targets for immunotherapy that allow to expand the spectrum of ICB-based strategies to achieve optimal therapeutic efficacy and benefit for cancer patients. This review thoroughly dissects current molecular and functional knowledge of BTLA/HVEM axis and the future perspectives to become a target for cancer immunotherapy. BTLA/HVEM dysregulation is commonly found and linked to poor prognosis in solid and hematological malignancies. Moreover, circulating BTLA has been revealed as a blood-based predictive biomarker of immunotherapy response in various cancers. On this basis, BTLA/HVEM axis emerges as a novel promising target for cancer immunotherapy. This prompted rapid development and clinical testing of the anti-BTLA blocking antibody Tifcemalimab/icatolimab as the first BTLA-targeted therapy in various ongoing phase I clinical trials with encouraging results on preliminary efficacy and safety profile as monotherapy and combined with other anti-PD-1/PD-L1 therapies. Nevertheless, it is anticipated that the intricate signaling network constituted by BTLA/HVEM/CD160/LIGHT involved in immune response regulation, tumor development and tumor microenvironment could limit therapeutic success. Therefore, in-depth functional characterization in different cancer settings is highly recommended for adequate design and implementation of BTLA-targeted therapies to guarantee the best clinical outcomes to benefit cancer patients.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rocío Granda-Díaz
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Otolaryngology-Head and Neck Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Martínez-Pérez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Candelaria Aguilar-García
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Juan P Rodrigo
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Otolaryngology-Head and Neck Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M García-Pedrero
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Otolaryngology-Head and Neck Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
19
|
Cheung TC, Atwell S, Bafetti L, Cuenca PD, Froning K, Hendle J, Hickey M, Ho C, Huang J, Lieu R, Lim S, Lippner D, Obungu V, Ward-Kavanagh L, Weichert K, Ware CF, Vendel AC. Epitope topography of agonist antibodies to the checkpoint inhibitory receptor BTLA. Structure 2023; 31:958-967.e3. [PMID: 37279757 DOI: 10.1016/j.str.2023.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/16/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
B and T lymphocyte attenuator (BTLA) is an attractive target for a new class of therapeutics that attempt to rebalance the immune system by agonizing checkpoint inhibitory receptors (CIRs). Herpesvirus entry mediator (HVEM) binds BTLA in both trans- and cis-orientations. We report here the development and structural characterization of three humanized BTLA agonist antibodies, 22B3, 25F7, and 23C8. We determined the crystal structures of the antibody-BTLA complexes, showing that these antibodies bind distinct and non-overlapping epitopes of BTLA. While all three antibodies activate BTLA, 22B3 mimics HVEM binding to BTLA and shows the strongest agonistic activity in functional cell assays and in an imiquimod-induced mouse model of psoriasis. 22B3 is also capable of modulating HVEM signaling through the BTLA-HVEM cis-interaction. The data obtained from crystal structures, biochemical assays, and functional studies provide a mechanistic model of HVEM and BTLA organization on the cell surface and informed the discovery of a highly active BTLA agonist.
Collapse
Affiliation(s)
- Timothy C Cheung
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Shane Atwell
- Biotechnology Discovery Research, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Lisa Bafetti
- Immunology Discovery Research, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Paulina Delgado Cuenca
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Karen Froning
- Biotechnology Discovery Research, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Jorg Hendle
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Michael Hickey
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Carolyn Ho
- Biotechnology Discovery Research, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Jiawen Huang
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ricky Lieu
- Biotechnology Discovery Research, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Stacie Lim
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - David Lippner
- Biotechnology Discovery Research, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Victor Obungu
- Biotechnology Discovery Research, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Lindsay Ward-Kavanagh
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kenneth Weichert
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Andrew C Vendel
- Immunology Discovery Research, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA.
| |
Collapse
|
20
|
Liu Z, Li Z, Yan G, Lin C, Luo Y, Ye Y, Zeng X, Yao J. MIF promotes Th17 cell differentiation in Hashimoto's thyroiditis by binding HVEM and activating NF-κB signaling pathway. Int Immunopharmacol 2023; 121:110494. [PMID: 37331297 DOI: 10.1016/j.intimp.2023.110494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Hashimoto's thyroiditis is a typical thyroid autoimmune disease and Th17 cells are crucial in its development. In recent years, MIF (Macrophage Migration Inhibitory Factor) has been found to promote the secretion of IL-17A and the production and differentiation of Th17 cells. However, the specific mechanism of it remains unclear. Here, we found that the expression of MIF, IL-17A and HVEM (Herpes Virus Entry Mediator) were up-regulated in HT patients. The proportion of Th17 cells in peripheral blood mononuclear cells was positively correlated with the serum MIF protein level. We further found that the expression of HVEM and the phosphorylation level of NF-κB in peripheral blood mononuclear cells of HT patients were significantly increased. Therefore, we speculated that MIF promotes Th17 cell differentiation through HVEM and NF-κB signaling pathways. Further mechanism studies showed that MIF could directly bind to HVEM, and the stimulation of rhMIF in vitro could increase the expression of HVEM and activate NF-κB signaling pathways to promote Th17 cell differentiation. After blocking HVEM with HVEM antibody, the effect of MIF on Th17 cell differentiation disappeared. The results above show that the differentiation of Th17 cells is promoted by MIF combined with HVEM through NF-κB signaling pathways. Our research provides a new theory to the regulation mechanism of Th17 cell differentiation and gives hint to new potential therapeutic targets for HT.
Collapse
Affiliation(s)
- Zijian Liu
- Department of Laboratory Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Zhihao Li
- Department of Laboratory Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Guozhi Yan
- Department of Laboratory Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Can Lin
- Department of Laboratory Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Yaosheng Luo
- Department of Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Yanshi Ye
- Department of Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Xiaokang Zeng
- Department of Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.
| | - Jie Yao
- Department of Laboratory Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.
| |
Collapse
|
21
|
Shuptrine CW, Perez VM, Selitsky SR, Schreiber TH, Fromm G. Shining a LIGHT on myeloid cell targeted immunotherapy. Eur J Cancer 2023; 187:147-160. [PMID: 37167762 DOI: 10.1016/j.ejca.2023.03.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Despite over a decade of clinical trials combining inhibition of emerging checkpoints with a PD-1/L1 inhibitor backbone, meaningful survival benefits have not been shown in PD-1/L1 inhibitor resistant or refractory solid tumours, particularly tumours dominated by a myelosuppressive microenvironment. Achieving durable anti-tumour immunity will therefore likely require combination of adaptive and innate immune stimulation, myeloid repolarisation, enhanced APC activation and antigen processing/presentation, lifting of the CD47/SIRPα (Cluster of Differentiation 47/signal regulatory protein alpha) 'do not eat me' signal, provision of an apoptotic 'pro-eat me' or 'find me' signal, and blockade of immune checkpoints. The importance of effectively targeting mLILRB2 and SIRPAyeloid cells to achieve improved response rates has recently been emphasised, given myeloid cells are abundant in the tumour microenvironment of most solid tumours. TNFSF14, or LIGHT, is a tumour necrosis superfamily ligand with a broad range of adaptive and innate immune activities, including (1) myeloid cell activation through Lymphotoxin Beta Receptor (LTβR), (2) T/NK (T cell and natural killer cell) induced anti-tumour immune activity through Herpes virus entry mediator (HVEM), (3) potentiation of proinflammatory cytokine/chemokine secretion through LTβR on tumour stromal cells, (4) direct induction of tumour cell apoptosis in vitro, and (5) the reorganisation of lymphatic tissue architecture, including within the tumour microenvironment (TME), by promoting high endothelial venule (HEV) formation and induction of tertiary lymphoid structures. LTBR (Lymphotoxin beta receptor) and HVEM rank highly amongst a range of costimulatory receptors in solid tumours, which raises interest in considering how LIGHT-mediated costimulation may be distinct from a growing list of immunotherapy targets which have failed to provide survival benefit as monotherapy or in combination with PD-1 inhibitors, particularly in the checkpoint acquired resistant setting.
Collapse
Affiliation(s)
- Casey W Shuptrine
- Shattuck Labs Inc., Austin, TX, USA; Shattuck Labs Inc., Durham, NC, USA
| | | | | | - Taylor H Schreiber
- Shattuck Labs Inc., Austin, TX, USA; Shattuck Labs Inc., Durham, NC, USA
| | - George Fromm
- Shattuck Labs Inc., Austin, TX, USA; Shattuck Labs Inc., Durham, NC, USA.
| |
Collapse
|
22
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Martínez-Pérez A, Gonzalez-Rodriguez AP, Payer ÁR, González-García E, Aguilar-García C, González-Rodríguez S, López-Soto A, García-Torre A, Gonzalez S. BTLA dysregulation correlates with poor outcome and diminished T cell-mediated antitumor responses in chronic lymphocytic leukemia. Cancer Immunol Immunother 2023; 72:2529-2539. [PMID: 37041226 PMCID: PMC10264494 DOI: 10.1007/s00262-023-03435-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
Patients with chronic lymphocytic leukemia (CLL) progressively develop marked immunosuppression, dampening innate and adaptive-driven antitumor responses. However, the underlying mechanisms promoting immune exhaustion are largely unknown. Herein, we provide new insights into the role of BTLA/HVEM axis promoting defects in T cell-mediated responses against leukemic cells. Increased expression of BTLA, an inhibitory immune checkpoint, was detected on the surface of CD4 + and CD8 + T lymphocytes in patients with CLL. Moreover, high levels of BTLA on CD4 + T cells correlated with diminished time to treatment. Signaling through BTLA activation led to decreased IL-2 and IFN-γ production ex vivo, whereas BTLA/HVEM binding disruption enhanced IFN-γ + CD8 + T lymphocytes. Accordingly, BTLA blockade in combination with bispecific anti-CD3/anti-CD19 antibody promoted CD8 + T cell-mediated anti-leukemic responses. Finally, treatment with an anti-BLTA blocking monoclonal antibody alone or in combination with ibrutinib-induced leukemic cell depletion in vitro. Altogether, our data reveal that BTLA dysregulation has a prognostic role and is limiting T cell-driven antitumor responses, thus providing new insights about immune exhaustion in patients with CLL.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, Universidad de Oviedo, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, Universidad de Oviedo, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
| | - Alejandra Martínez-Pérez
- Department of Functional Biology, Immunology, Universidad de Oviedo, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
| | - Ana P Gonzalez-Rodriguez
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Ángel R Payer
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Esther González-García
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
- Department of Hematology, Hospital de Cabueñes, 33203, Gijón, Spain
| | - Candelaria Aguilar-García
- Department of Functional Biology, Immunology, Universidad de Oviedo, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
| | - Sara González-Rodríguez
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, 33006, PharmacologyOviedo, Spain
| | - Alejandro López-Soto
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
- Department of Biochemistry and Molecular Biology, Universidad of Oviedo, 33006, Oviedo, Spain
| | - Alejandra García-Torre
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, Universidad de Oviedo, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| |
Collapse
|
23
|
Baranasic J, Niazi Y, Chattopadhyay S, Rumora L, Ćorak L, Dugac AV, Jakopović M, Samaržija M, Försti A, Knežević J. Germline variants of the genes involved in NF-kB activation are associated with the risk of COPD and lung cancer development. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:243-256. [PMID: 37307368 DOI: 10.2478/acph-2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 06/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer (LC) are closely related diseases associated with smoking history and dysregulated immune response. However, not all smokers develop the disease, indicating that genetic susceptibility could be important. Therefore, the aim of this study was to search for the potential overlapping genetic biomarkers, with a focus on single nucleotide polymorphisms (SNPs) located in the regulatory regions of immune-related genes. Additionally, the aim was to see if an identified SNP has potentially an effect on proinflamma-tory cytokine concentration in the serum of COPD patients. We extracted summary data of variants in 1511 immune-related genes from COPD and LC genome-wide association studies (GWAS) from the UK Biobank. The LC data had 203 cases, patients diagnosed with LC, and 360 938 controls, while COPD data had 1 897 cases and 359 297 controls. Assuming 1 association/gene, SNPs with a p-value < 3.3 × 10-5 were considered statistically significantly associated with the disease. We identified seven SNPs located in different genes (BAG6, BTNL2, TNF, HCP5, MICB, NCR3, ABCF1, TCF7L1) to be associated with the COPD risk and two with the LC risk (HLA-C, HLA-B), with statistical significance. We also identified two SNPs located in the IL2RA gene associated with LC (rs2386841; p = 1.86 × 10-4) and COPD (rs11256442; p = 9.79 × 10-3) but with lower significance. Functional studies conducted on COPD patients showed that RNA expression of IL2RA, IFNγ and related proinflammatory cytokines in blood serum did not correlate with a specific genotype. Although results presented in this study do not fully support our hypothesis, it is worth to mention that the identified genes/SNPs that were associated with either COPD or LC risk, all were involved in the activation of the NF-κB transcription factor which is closely related to the regulation of the inflammatory response, a condition associated with both pathologies.
Collapse
Affiliation(s)
- Jurica Baranasic
- 1Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Yasmeen Niazi
- 2Hopp Children's Cancer Center (KiTZ) Heidelberg, Germany
- 3Division of Pediatric Neurooncology German Cancer Research Center (DKFZ) German Cancer Consortium (DKTK) Heidelberg, Germany
| | - Subhayan Chattopadhyay
- 3Division of Pediatric Neurooncology German Cancer Research Center (DKFZ) German Cancer Consortium (DKTK) Heidelberg, Germany
- 4Departments of Clinical Genetics, Lund University, Lund, Sweden
| | - Lada Rumora
- 5Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb Zagreb, Croatia
| | - Lorna Ćorak
- 6Clinical Department for Respiratory Diseases Jordanovac, University Hospital Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Andrea Vukić Dugac
- 6Clinical Department for Respiratory Diseases Jordanovac, University Hospital Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Marko Jakopović
- 6Clinical Department for Respiratory Diseases Jordanovac, University Hospital Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Miroslav Samaržija
- 6Clinical Department for Respiratory Diseases Jordanovac, University Hospital Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Asta Försti
- 2Hopp Children's Cancer Center (KiTZ) Heidelberg, Germany
- 3Division of Pediatric Neurooncology German Cancer Research Center (DKFZ) German Cancer Consortium (DKTK) Heidelberg, Germany
| | - Jelena Knežević
- 1Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
- 7Faculty of Dental Medicine and Health University of Osijek, Osijek, Croatia
| |
Collapse
|
24
|
Wakeley ME, Armstead BE, Gray CC, Tindal EW, Heffernan DS, Chung CS, Ayala A. Lymphocyte HVEM/BTLA co-expression after critical illness demonstrates severity indiscriminate upregulation, impacting critical illness-induced immunosuppression. Front Med (Lausanne) 2023; 10:1176602. [PMID: 37305124 PMCID: PMC10248445 DOI: 10.3389/fmed.2023.1176602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The co-regulatory molecule, HVEM, can stimulate or inhibit immune function, but when co-expressed with BTLA, forms an inert complex preventing signaling. Altered HVEM or BTLA expression, separately have been associated with increased nosocomial infections in critical illness. Given that severe injury induces immunosuppression, we hypothesized that varying severity of shock and sepsis in murine models and critically ill patients would induce variable increases in HVEM/BTLA leukocyte co-expression. Methods In this study, varying severities of murine models of critical illness were utilized to explore HVEM+BTLA+ co-expression in the thymic and splenic immune compartments, while circulating blood lymphocytes from critically ill patients were also assessed for HVEM+BTLA+ co-expression. Results Higher severity murine models resulted in minimal change in HVEM+BTLA+ co-expression, while the lower severity model demonstrated increased HVEM+BTLA+ co-expression on thymic and splenic CD4+ lymphocytes and splenic B220+ lymphocytes at the 48-hour time point. Patients demonstrated increased co-expression of HVEM+BTLA+ on CD3+ lymphocytes compared to controls, as well as CD3+Ki67- lymphocytes. Both L-CLP 48hr mice and critically ill patients demonstrated significant increases in TNF-α. Discussion While HVEM increased on leukocytes after critical illness in mice and patients, changes in co-expression did not relate to degree of injury severity of murine model. Rather, co-expression increases were seen at later time points in lower severity models, suggesting this mechanism evolves temporally. Increased co-expression on CD3+ lymphocytes in patients on non-proliferating cells, and associated TNF-α level increases, suggest post-critical illness co-expression does associate with developing immune suppression.
Collapse
Affiliation(s)
- Michelle E. Wakeley
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
| | - Brandon E. Armstead
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
- Graduate Pathobiology Program, Brown University, Providence, RI, United States
| | - Chyna C. Gray
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
- Molecular, Cellular and Developmental Biology Graduate Program, Brown University, Providence, RI, United States
| | - Elizabeth W. Tindal
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
| | - Daithi S. Heffernan
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
| |
Collapse
|
25
|
del Rio ML, de Juan CYD, Roncador G, Caleiras E, Álvarez-Esteban R, Pérez-Simón JA, Rodriguez-Barbosa JI. Genetic deletion of HVEM in a leukemia B cell line promotes a preferential increase of PD-1 - stem cell-like T cells over PD-1 + T cells curbing tumor progression. Front Immunol 2023; 14:1113858. [PMID: 37033927 PMCID: PMC10076739 DOI: 10.3389/fimmu.2023.1113858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION A high frequency of mutations affecting the gene encoding Herpes Virus Entry Mediator (HVEM, TNFRSF14) is a common clinical finding in a wide variety of human tumors, including those of hematological origin. METHODS We have addressed how HVEM expression on A20 leukemia cells influences tumor survival and its involvement in the modulation of the anti-tumor immune responses in a parental into F1 mouse tumor model of hybrid resistance by knocking-out HVEM expression. HVEM WT or HVEM KO leukemia cells were then injected intravenously into semiallogeneic F1 recipients and the extent of tumor dissemination was evaluated. RESULTS The loss of HVEM expression on A20 leukemia cells led to a significant increase of lymphoid and myeloid tumor cell infiltration curbing tumor progression. NK cells and to a lesser extent NKT cells and monocytes were the predominant innate populations contributing to the global increase of immune infiltrates in HVEM KO tumors compared to that present in HVEM KO tumors. In the overall increase of the adaptive T cell immune infiltrates, the stem cell-like PD-1- T cells progenitors and the effector T cell populations derived from them were more prominently present than terminally differentiated PD-1+ T cells. CONCLUSIONS These results suggest that the PD-1- T cell subpopulation is likely to be a more relevant contributor to tumor rejection than the PD-1+ T cell subpopulation. These findings highlight the role of co-inhibitory signals delivered by HVEM upon engagement of BTLA on T cells and NK cells, placing HVEM/BTLA interaction in the spotlight as a novel immune checkpoint for the reinforcement of the anti-tumor responses in malignancies of hematopoietic origin.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
| | - Carla Yago-Diez de Juan
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Core Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Ramón Álvarez-Esteban
- Section of Statistics and Operational Research, Department of Economy and Statistics, University of Leon, Leon, Spain
| | - José Antonio Pérez-Simón
- Department of Hematology, University Hospital Virgen del Rocio / Institute of Biomedicine (IBIS / CSIC), Sevilla, Spain
| | - Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
| |
Collapse
|
26
|
Ramos da Silva J, Bitencourt Rodrigues K, Formoso Pelegrin G, Silva Sales N, Muramatsu H, de Oliveira Silva M, Porchia BFMM, Moreno ACR, Aps LRMM, Venceslau-Carvalho AA, Tombácz I, Fotoran WL, Karikó K, Lin PJC, Tam YK, de Oliveira Diniz M, Pardi N, de Souza Ferreira LC. Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control HPV-associated tumors in mice. Sci Transl Med 2023; 15:eabn3464. [PMID: 36867683 DOI: 10.1126/scitranslmed.abn3464] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
As mRNA vaccines have proved to be very successful in battling the coronavirus disease 2019 (COVID-19) pandemic, this new modality has attracted widespread interest for the development of potent vaccines against other infectious diseases and cancer. Cervical cancer caused by persistent human papillomavirus (HPV) infection is a major cause of cancer-related deaths in women, and the development of safe and effective therapeutic strategies is urgently needed. In the present study, we compared the performance of three different mRNA vaccine modalities to target tumors associated with HPV-16 infection in mice. We generated lipid nanoparticle (LNP)-encapsulated self-amplifying mRNA as well as unmodified and nucleoside-modified non-replicating mRNA vaccines encoding a chimeric protein derived from the fusion of the HPV-16 E7 oncoprotein and the herpes simplex virus type 1 glycoprotein D (gDE7). We demonstrated that single low-dose immunizations with any of the three gDE7 mRNA vaccines induced activation of E7-specific CD8+ T cells, generated memory T cell responses capable of preventing tumor relapses, and eradicated subcutaneous tumors at different growth stages. In addition, the gDE7 mRNA-LNP vaccines induced potent tumor protection in two different orthotopic mouse tumor models after administration of a single vaccine dose. Last, comparative studies demonstrated that all three gDE7 mRNA-LNP vaccines proved to be superior to gDE7 DNA and gDE7 recombinant protein vaccines. Collectively, we demonstrated the immunogenicity and therapeutic efficacy of three different mRNA vaccines in extensive comparative experiments. Our data support further evaluation of these mRNA vaccines in clinical trials.
Collapse
Affiliation(s)
- Jamile Ramos da Silva
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karine Bitencourt Rodrigues
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Guilherme Formoso Pelegrin
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Natiely Silva Sales
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Hiromi Muramatsu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariângela de Oliveira Silva
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Bruna F M M Porchia
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Laboratory of Tumor Immunology, Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil.,ImunoTera Soluções Terapêuticas Ltda., São Paulo, SP 05508-000, Brazil
| | - Ana Carolina Ramos Moreno
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Luana Raposo M M Aps
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,ImunoTera Soluções Terapêuticas Ltda., São Paulo, SP 05508-000, Brazil
| | - Aléxia Adrianne Venceslau-Carvalho
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - István Tombácz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wesley Luzetti Fotoran
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | | | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T1Z3, Canada
| | - Mariana de Oliveira Diniz
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Norbert Pardi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Scientific Platform Pasteur USP, University of São Paulo, São Paulo, SP, 05508-020, Brazil
| |
Collapse
|
27
|
Andrzejczak A, Partyka A, Wiśniewski A, Porębska I, Pawełczyk K, Ptaszkowski K, Kuśnierczyk P, Jasek M, Karabon L. The association of BTLA gene polymorphisms with non-small lung cancer risk in smokers and never-smokers. Front Immunol 2023; 13:1006639. [PMID: 36741370 PMCID: PMC9893504 DOI: 10.3389/fimmu.2022.1006639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Lung cancer is the predominant cause of death among cancer patients and non-small cell lung cancer (NSCLC) is the most common type. Cigarette smoking is the prevailing risk factor for NSCLC, nevertheless, this cancer is also diagnosed in never-smokers. B and T lymphocyte attenuator (BTLA) belongs to immunological checkpoints which are key regulatory molecules of the immune response. A growing body of evidence highlights the important role of BTLA in cancer. In our previous studies, we showed a significant association between BTLA gene variants and susceptibility to chronic lymphoblastic leukemia and renal cell carcinoma in the Polish population. The present study aimed to analyze the impact of BTLA polymorphic variants on the susceptibility to NSCLC and NSCLC patients' overall survival (OS). Methods Using TaqMan probes we genotyped seven BTLA single-nucleotide polymorphisms (SNPs): rs2705511, rs1982809, rs9288952, rs9288953, rs1844089, rs11921669 and rs2633582 with the use of ViiA 7 Real-Time PCR System. Results We found that rs1982809 within BTLA is associated with NSCLC risk, where carriers of rs1982809G allele (AG+GG genotypes) were more frequent in patients compared to controls. In subgroup analyses, we also noticed that rs1982809G carriers are significantly overrepresented in never-smokers, but not in smokers compared to controls. Additionally, the global distribution of the haplotypes differed between the never-smokers and smokers, where haplotypes A G G C A, C G A C G, and C G A T G were more frequent in never-smoking patients. Furthermore, the presence rs1982809G (AG+GG genotypes) allele as well as the presence of rs9288953T allele (CT+TT genotypes) increased NSCLC risk in females' patients. After stratification by histological type, we noticed that rs1982809G and rs2705511C carriers were more frequent among adenocarcinoma patients. Moreover, rs1982809G and rs2705511C correlated with the more advanced stages of NSCLC (stage II and III), but not with stage IV. Furthermore, we showed that rs2705511 and rs1982809 significantly modified OS, while rs9288952 tend to be associated with patients' survival. Conclusion Our results indicate that BTLA polymorphic variants may be considered low penetrating risk factors for NSCLC especially in never-smokers, and in females, and are associated with OS of NSCLC patients.
Collapse
Affiliation(s)
- Anna Andrzejczak
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland,*Correspondence: Anna Andrzejczak, ; Lidia Karabon,
| | - Anna Partyka
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Irena Porębska
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Konrad Pawełczyk
- Departament of Thoracic Surgery, Lower Silesian Centre of Oncology, Pulmonology and Haematology, Wrocław, Poland
| | - Kuba Ptaszkowski
- Department of Clinical Biomechanics and Physiotherapy in Motor System Disorders, Wrocław Medical University, Wrocław, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Monika Jasek
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Lidia Karabon
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland,*Correspondence: Anna Andrzejczak, ; Lidia Karabon,
| |
Collapse
|
28
|
Pan M, Zhao H, Jin R, Leung PSC, Shuai Z. Targeting immune checkpoints in anti-neutrophil cytoplasmic antibodies associated vasculitis: the potential therapeutic targets in the future. Front Immunol 2023; 14:1156212. [PMID: 37090741 PMCID: PMC10115969 DOI: 10.3389/fimmu.2023.1156212] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Anti-neutrophil cytoplasmic autoantibodies (ANCA) associated vasculitis (AAV) is a necrotizing vasculitis mainly involving small blood vessels. It is demonstrated that T cells are important in the pathogenesis of AAV, including regulatory T cells (Treg) and helper T cells (Th), especially Th2, Th17, and follicular Th cells (Tfh). In addition, the exhaustion of T cells predicted the favorable prognosis of AAV. The immune checkpoints (ICs) consist of a group of co-stimulatory and co-inhibitory molecules expressed on the surface of T cells, which maintains a balance between the activation and exhaustion of T cells. CD28, inducible T-cell co-stimulator (ICOS), OX40, CD40L, glucocorticoid induced tumor necrosis factor receptor (GITR), and CD137 are the common co-stimulatory molecules, while the programmed cell death 1 (PD-1), cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), T cell immunoglobulin (Ig) and mucin domain-containing protein 3 (TIM-3), B and T lymphocyte attenuator (BTLA), V-domain Ig suppressor of T cell activation (VISTA), T-cell Ig and ITIM domain (TIGIT), CD200, and lymphocyte activation gene 3 (LAG-3) belong to co-inhibitory molecules. If this balance was disrupted and the activation of T cells was increased, autoimmune diseases (AIDs) might be induced. Even in the treatment of malignant tumors, activation of T cells by immune checkpoint inhibitors (ICIs) may result in AIDs known as rheumatic immune-related adverse events (Rh-irAEs), suggesting the importance of ICs in AIDs. In this review, we summarized the features of AAV induced by immunotherapy using ICIs in patients with malignant tumors, and then reviewed the biological characteristics of different ICs. Our aim was to explore potential targets in ICs for future treatment of AAV.
Collapse
Affiliation(s)
- Menglu Pan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huanhuan Zhao
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruimin Jin
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Patrick S. C. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: Zongwen Shuai, ; Patrick S. C. Leung,
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- *Correspondence: Zongwen Shuai, ; Patrick S. C. Leung,
| |
Collapse
|
29
|
Cheng TY, Liu YJ, Yan H, Xi YB, Duan LQ, Wang Y, Zhang TT, Gu YM, Wang XD, Wu CX, Gao S. Tumor Cell-Intrinsic BTLA Receptor Inhibits the Proliferation of Tumor Cells via ERK1/2. Cells 2022; 11:cells11244021. [PMID: 36552785 PMCID: PMC9777428 DOI: 10.3390/cells11244021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
B and T lymphocyte attenuator (BTLA) is an immune checkpoint molecule that mediates the escape of tumor cells from immunosurveillance. Consequently, BTLA and its ligand herpesvirus entry mediator (HVEM) are potentially immunotherapeutic targets. However, the potential effects of BTLA on tumor cells remain incompletely unknown. Here, we show that BTLA is expressed across a broad range of tumor cells. The depletion of BTLA or HVEM promotes cell proliferation and colony formation, which is reversed by the overexpression of BTLA in BTLA knockout cells. In contrast, overexpression of BTLA or HVEM inhibits tumor cell proliferation and colony formation. Furthermore, the proliferation of a subpopulation with high BTLA was also significantly slower than that of the low BTLA subpopulation. Mechanistically, the coordination of BTLA and HVEM inhibits its major downstream extracellular regulated protein kinase (ERK1/2) signaling pathway, thus preventing tumor cell growth. This study demonstrates that tumor cell-intrinsic BTLA/HVEM is a potential tumor suppressor and is likely to have a potential antagonist for immunotherapy, thus representing a potential biomarker for the optimal cancer immunotherapeutic treatment.
Collapse
Affiliation(s)
- Tian-You Cheng
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Ya-Juan Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Hong Yan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yi-Bo Xi
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Li-Qiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yang Wang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Tian-Tian Zhang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yin-Min Gu
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Xiao-Dong Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chang-Xin Wu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Shan Gao
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
- Correspondence:
| |
Collapse
|
30
|
Rush-Kittle J, Gámez-Díaz L, Grimbacher B. Inborn errors of immunity associated with defects of self-tolerance checkpoints: The CD28 family. Pediatr Allergy Immunol 2022; 33:e13886. [PMID: 36564875 DOI: 10.1111/pai.13886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/11/2022]
Abstract
One of the causes of inborn errors of immunity is immune dysregulation. The inability of the immune system to regulate the extent of its activity has several deleterious effects, including autoimmunity, recurrent infections, and malignancy. In recent years, many proteins in the CD28 family - CD28, ICOS, CTLA-4, PD-1, and BTLA - have come into the focus of several research areas for their consequential role in the upregulation or downregulation of the immune response. In this review, we will discuss the structure and function of these proteins, as well as provide an overview of the clinical picture of patients with genetic defects.
Collapse
Affiliation(s)
- Jorrell Rush-Kittle
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Laura Gámez-Díaz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
31
|
Pathway Analysis of Genome Wide Association Studies (GWAS) Data Associated with Male Infertility. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Infertility is a common condition affecting approximately 10–20% of the reproductive age population. Idiopathic infertility cases are thought to have a genetic basis, but the underlying causes are largely unknown. However, the genetic basis underlying male infertility in humans is only partially understood. The Purpose of the study is to understand the current state of research on the genetics of male infertility and its association with significant biological mechanisms. Results: We performed an Identify Candidate Causal SNPs and Pathway (ICSN Pathway) analysis using a genome-wide association study (GWAS) dataset, and NCBI-PubMed search which included 632 SNPs in GWAS and 451 SNPs from the PubMed server, respectively. The ICSN Pathway analysis produced three hypothetical biological mechanisms associated with male infertility: (1) rs8084 and rs7192→HLA-DRA→inflammatory pathways and cell adhesion; rs7550231 and rs2234167→TNFRSF14→TNF Receptor Superfamily Member 14→T lymphocyte proliferation and activation; rs1105879 and rs2070959→UGT1A6→UDP glucuronosyltransferase family 1 member A6→Metabolism of Xenobiotics, androgen, estrogen, retinol, and carbohydrates. Conclusions: We believe that our results may be helpful to study the genetic mechanisms of male infertility. Pathway-based methods have been applied to male infertility GWAS datasets to investigate the biological mechanisms and reported some novel male infertility risk pathways. This pathway analysis using GWAS dataset suggests that the biological process related to inflammation and metabolism might contribute to male infertility susceptibility. Our analysis suggests that genetic contribution to male infertility operates through multiple genes affecting common inflammatory diseases interacting in functional pathways.
Collapse
|
32
|
Du W, Gao CY, You X, Li L, Zhao ZB, Fang M, Ye Z, Si M, Lian ZX, Yu X. Increased proportion of follicular helper T cells is associated with B cell activation and disease severity in IgA nephropathy. Front Immunol 2022; 13:901465. [PMID: 35983053 PMCID: PMC9381139 DOI: 10.3389/fimmu.2022.901465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis, characterized by glomerular deposition of IgA immune complexes, mainly produced by B cells under the regulation of CD4+T cells. However, the alterations of specific CD4+T cell subsets and the mechanism of B cells activation in IgAN remain unclear. Therefore, we aimed to investigate the landscape characteristics and role of CD4+T cells in the progression of IgAN. We identified that the proportion of Th2, Th17 and Tfh (follicular helper T) cells in patients with IgAN was significantly higher than that of healthy controls (P < 0.05). Single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) showed that Th cells and B cells in patients with IgAN were more activated. Correspondingly, multiplex immunohistochemistry staining of renal biopsy showed increased infiltration of CD4+T and B cells in the kidneys of patients with IgAN. The degree of infiltration was positively correlated with the degree of renal damage. Interestingly, the proportion of Tfh cells in peripheral blood was positively correlated with the severity of proteinuria. Moreover, the proximity position of Tfh cells and B cells suggested that cell-cell interactions between Tfh and B cells were happening in situ. Intercellular communication analysis also showed enhanced interaction between Tfh cells and B cells in IgAN. Our findings suggested that Tfh cells of patients possibly contributed to the progression of IgAN by activating B cells via cell-cell interactions and TNFSF14-TNFRSF14 may be an underlying signaling pathway.
Collapse
Affiliation(s)
- Wanshan Du
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cai-Yue Gao
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xing You
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Liang Li
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Bin Zhao
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengting Fang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
| | - Meijun Si
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
| | - Zhe-Xiong Lian
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xueqing Yu
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
- *Correspondence: Xueqing Yu,
| |
Collapse
|
33
|
Yoo KJ, Johannes K, González LE, Patel A, Shuptrine CW, Opheim Z, Lenz K, Campbell K, Nguyen TA, Miriyala J, Smith C, McGuire A, Tsai YH, Rangwala F, de Silva S, Schreiber TH, Fromm G. LIGHT (TNFSF14) Costimulation Enhances Myeloid Cell Activation and Antitumor Immunity in the Setting of PD-1/PD-L1 and TIGIT Checkpoint Blockade. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:510-525. [PMID: 35817517 PMCID: PMC10580117 DOI: 10.4049/jimmunol.2101175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Coinhibition of TIGIT (T cell immunoreceptor with Ig and ITIM domains) and PD-1/PD-L1 (PD-1/L1) may improve response rates compared with monotherapy PD-1/L1 blockade in checkpoint naive non-small cell lung cancer with PD-L1 expression >50%. TIGIT mAbs with an effector-competent Fc can induce myeloid cell activation, and some have demonstrated effector T cell depletion, which carries a clinical liability of unknown significance. TIGIT Ab blockade translates to antitumor activity by enabling PVR signaling through CD226 (DNAM-1), which can be directly inhibited by PD-1. Furthermore, DNAM-1 is downregulated on tumor-infiltrating lymphocytes (TILs) in advanced and checkpoint inhibition-resistant cancers. Therefore, broadening clinical responses from TIGIT blockade into PD-L1low or checkpoint inhibition-resistant tumors, may be induced by immune costimulation that operates independently from PD-1/L1 inhibition. TNFSF14 (LIGHT) was identified through genomic screens, in vitro functional analysis, and immune profiling of TILs as a TNF ligand that could provide broad immune activation. Accordingly, murine and human bifunctional fusion proteins were engineered linking the extracellular domain of TIGIT to the extracellular domain of LIGHT, yielding TIGIT-Fc-LIGHT. TIGIT competitively inhibited binding to all PVR ligands. LIGHT directly activated myeloid cells through interactions with LTβR (lymphotoxin β receptor), without the requirement for a competent Fc domain to engage Fcγ receptors. LIGHT costimulated CD8+ T and NK cells through HVEM (herpes virus entry mediator A). Importantly, HVEM was more widely expressed than DNAM-1 on T memory stem cells and TILs across a range of tumor types. Taken together, the mechanisms of TIGIT-Fc-LIGHT promoted strong antitumor activity in preclinical tumor models of primary and acquired resistance to PD-1 blockade, suggesting that immune costimulation mediated by LIGHT may broaden the clinical utility of TIGIT blockade.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | | | | | | | | |
Collapse
|
34
|
Ware CF, Croft M, Neil GA. Realigning the LIGHT signaling network to control dysregulated inflammation. J Exp Med 2022; 219:213236. [PMID: 35604387 PMCID: PMC9130030 DOI: 10.1084/jem.20220236] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Advances in understanding the physiologic functions of the tumor necrosis factor superfamily (TNFSF) of ligands, receptors, and signaling networks are providing deeper insight into pathogenesis of infectious and autoimmune diseases and cancer. LIGHT (TNFSF14) has emerged as an important modulator of critical innate and adaptive immune responses. LIGHT and its signaling receptors, herpesvirus entry mediator (TNFRSF14), and lymphotoxin β receptor, form an immune regulatory network with two co-receptors of herpesvirus entry mediator, checkpoint inhibitor B and T lymphocyte attenuator, and CD160. Deciphering the fundamental features of this network reveals new understanding to guide therapeutic development. Accumulating evidence from infectious diseases points to the dysregulation of the LIGHT network as a disease-driving mechanism in autoimmune and inflammatory reactions in barrier organs, including coronavirus disease 2019 pneumonia and inflammatory bowel diseases. Recent clinical results warrant further investigation of the LIGHT regulatory network and application of target-modifying therapeutics for disease intervention.
Collapse
Affiliation(s)
- Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA
| | | |
Collapse
|
35
|
Hensler E, Petros H, Gray CC, Chung CS, Ayala A, Fallon EA. The Neonatal Innate Immune Response to Sepsis: Checkpoint Proteins as Novel Mediators of This Response and as Possible Therapeutic/Diagnostic Levers. Front Immunol 2022; 13:940930. [PMID: 35860251 PMCID: PMC9289477 DOI: 10.3389/fimmu.2022.940930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Sepsis, a dysfunctional immune response to infection leading to life-threatening organ injury, represents a significant global health issue. Neonatal sepsis is disproportionately prevalent and has a cost burden of 2-3 times that of adult patients. Despite this, no widely accepted definition for neonatal sepsis or recommendations for management exist and those created for pediatric patients are significantly limited in their applicability to this unique population. This is in part due to neonates' reliance on an innate immune response (which is developmentally more prominent in the neonate than the immature adaptive immune response) carried out by dysfunctional immune cells, including neutrophils, antigen-presenting cells such as macrophages/monocytes, dendritic cells, etc., natural killer cells, and innate lymphoid regulatory cell sub-sets like iNKT cells, γδ T-cells, etc. Immune checkpoint inhibitors are a family of proteins with primarily suppressive/inhibitory effects on immune and tumor cells and allow for the maintenance of self-tolerance. During sepsis, these proteins are often upregulated and are thought to contribute to the long-term immunosuppression seen in adult patients. Several drugs targeting checkpoint inhibitors, including PD-1 and PD-L1, have been developed and approved for the treatment of various cancers, but no such therapeutics have been approved for the management of sepsis. In this review, we will comparatively discuss the role of several checkpoint inhibitor proteins, including PD-1, PD-L1, VISTA, and HVEM, in the immune response to sepsis in both adults and neonates, as well as posit how they may uniquely propagate their actions through the neonatal innate immune response. We will also consider the possibility of leveraging these proteins in the clinical setting as potential therapeutics/diagnostics that might aid in mitigating neonatal septic morbidity/mortality.
Collapse
Affiliation(s)
- Emily Hensler
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States,Graduate Program in Biotechnology, Brown University, Providence, RI, United States
| | - Habesha Petros
- Graduate Program in Biotechnology, Brown University, Providence, RI, United States
| | - Chyna C. Gray
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States,Graduate Program in Biotechnology, Brown University, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States,Graduate Program in Biotechnology, Brown University, Providence, RI, United States
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States,Graduate Program in Biotechnology, Brown University, Providence, RI, United States,*Correspondence: Alfred Ayala,
| | - Eleanor A. Fallon
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States,Graduate Program in Biotechnology, Brown University, Providence, RI, United States
| |
Collapse
|
36
|
Diethelm P, Schmitz I, Iten I, Kisielow J, Matsushita M, Kopf M. LCMV induced down-regulation of HVEM on anti-viral T cells is critical for an efficient effector response. Eur J Immunol 2022; 52:924-935. [PMID: 35344223 PMCID: PMC9321772 DOI: 10.1002/eji.202048569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
T‐cell responses against tumors and pathogens are critically shaped by cosignaling molecules providing a second signal. Interaction of herpes virus entry mediator (HVEM, CD270, TNFRSF14) with multiple ligands has been proposed to promote or inhibit T‐cell responses and inflammation, dependent on the context. In this study, we show that absence of HVEM did neither affect generation of effector nor maintenance of memory antiviral T cells and accordingly viral clearance upon acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, due to potent HVEM downregulation during infection. Notably, overexpression of HVEM on virus‐specific CD8+ T cells resulted in a reduction of effector cells, whereas numbers of memory cells were increased. Overall, this study indicates that downregulation of HVEM driven by LCMV infection ensures an efficient acute response at the price of impaired formation of T‐cell memory.
Collapse
Affiliation(s)
- Patrizia Diethelm
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Iwana Schmitz
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Irina Iten
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Jan Kisielow
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Mai Matsushita
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Manfred Kopf
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
37
|
Stienne C, Virgen-Slane R, Elmén L, Veny M, Huang S, Nguyen J, Chappell E, Balmert MO, Shui JW, Hurchla MA, Kronenberg M, Peterson SN, Murphy KM, Ware CF, Šedý JR. Btla signaling in conventional and regulatory lymphocytes coordinately tempers humoral immunity in the intestinal mucosa. Cell Rep 2022; 38:110553. [PMID: 35320716 PMCID: PMC9032671 DOI: 10.1016/j.celrep.2022.110553] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 11/09/2021] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
The Btla inhibitory receptor limits innate and adaptive immune responses, both preventing the development of autoimmune disease and restraining anti-viral and anti-tumor responses. It remains unclear how the functions of Btla in diverse lymphocytes contribute to immunoregulation. Here, we show that Btla inhibits activation of genes regulating metabolism and cytokine signaling, including Il6 and Hif1a, indicating a regulatory role in humoral immunity. Within mucosal Peyer's patches, we find T-cell-expressed Btla-regulated Tfh cells, while Btla in T or B cells regulates GC B cell numbers. Treg-expressed Btla is required for cell-intrinsic Treg homeostasis that subsequently controls GC B cells. Loss of Btla in lymphocytes results in increased IgA bound to intestinal bacteria, correlating with altered microbial homeostasis and elevations in commensal and pathogenic bacteria. Together our studies provide important insights into how Btla functions as a checkpoint in diverse conventional and regulatory lymphocyte subsets to influence systemic immune responses.
Collapse
Affiliation(s)
- Caroline Stienne
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Richard Virgen-Slane
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lisa Elmén
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marisol Veny
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sarah Huang
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jennifer Nguyen
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Elizabeth Chappell
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mary Olivia Balmert
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jr-Wen Shui
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Michelle A Hurchla
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| | | | - Scott N Peterson
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Carl F Ware
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - John R Šedý
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Kuncewicz K, Battin C, Węgrzyn K, Sieradzan A, Wardowska A, Sikorska E, Giedrojć I, Smardz P, Pikuła M, Steinberger P, Rodziewicz-Motowidło S, Spodzieja M. Targeting the HVEM protein using a fragment of glycoprotein D to inhibit formation of the BTLA/HVEM complex. Bioorg Chem 2022; 122:105748. [PMID: 35325694 DOI: 10.1016/j.bioorg.2022.105748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy using blockade of immune checkpoints is mainly based on monoclonal antibodies. Despite the tremendous success achieved by using those molecules to block immune checkpoint proteins, antibodies possess some weaknesses, which means that there is still a need to search for new compounds as alternatives to antibodies. Many current approaches are focused on use of peptides/peptidomimetics to destroy receptor/ligand interactions. Our studies concern blockade of the BTLA/HVEM complex, which generates an inhibitory effect on the immune response resulting in tolerance to cancer cells. To design inhibitors of such proteins binding we based our work on the amino acid sequence and structure of a ligand of HVEM protein, namely glycoprotein D, which possesses the same binding site on HVEM as BTLA protein. To disrupt the BTLA and HVEM interaction we designed several peptides, all fragments of glycoprotein D, and tested their binding to HVEM using SPR and their ability to inhibit the BTLA/HVEM complex formation using ELISA tests and cellular reporter platforms. That led to identification of two peptides, namely gD(1-36)(K10C-D30C) and gD(1-36)(A12C-L25C), which interact with HVEM and possess blocking capacities. Both peptides are not cytotoxic to human PBMCs, and show stability in human plasma. We also studied the 3D structure of the gD(1-36)(K10C-D30C) peptide using NMR and molecular modeling methods. The obtained data reveal that it possesses an unstructured conformation and binds to HVEM in the same location as gD and BTLA. All these results suggest that peptides based on the binding fragment of gD protein represent promising immunomodulation agents for future cancer immunotherapy.
Collapse
Affiliation(s)
| | - Claire Battin
- Medical University of Vienna, Institute of Immunology, Division of Immune Receptors and T cell Activation, 1090 Vienna, Austria
| | - Katarzyna Węgrzyn
- University of Gdańsk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Adam Sieradzan
- University of Gdańsk, Faculty of Chemistry, 80-308 Gdańsk, Poland
| | - Anna Wardowska
- Medical University of Gdańsk, Department of Physiopathology, 80-210 Gdańsk, Poland
| | - Emilia Sikorska
- University of Gdańsk, Faculty of Chemistry, 80-308 Gdańsk, Poland
| | - Irma Giedrojć
- University of Gdańsk, Faculty of Chemistry, 80-308 Gdańsk, Poland
| | - Pamela Smardz
- University of Gdańsk, Faculty of Chemistry, 80-308 Gdańsk, Poland
| | - Michał Pikuła
- Medical University of Gdańsk, Department of Embryology, Laboratory of Tissue Engineering and Regenerative Medicine, 80-210 Gdańsk, Poland
| | - Peter Steinberger
- Medical University of Vienna, Institute of Immunology, Division of Immune Receptors and T cell Activation, 1090 Vienna, Austria
| | | | - Marta Spodzieja
- University of Gdańsk, Faculty of Chemistry, 80-308 Gdańsk, Poland.
| |
Collapse
|
39
|
Del Rio ML, Nguyen TH, Tesson L, Heslan JM, Gutierrez-Adan A, Fernandez-Gonzalez R, Gutierrez-Arroyo J, Buhler L, Pérez-Simón JA, Anegon I, Rodriguez-Barbosa JI. The impact of CD160 deficiency on alloreactive CD8 T cell responses and allograft rejection. Transl Res 2022; 239:103-123. [PMID: 34461306 DOI: 10.1016/j.trsl.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/28/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022]
Abstract
CD160 is a member of the immunoglobulin superfamily with a pattern of expression mainly restricted to cytotoxic cells. To assess the functional relevance of the HVEM/CD160 signaling pathway in allogeneic cytotoxic responses, exon 2 of the CD160 gene was targeted by CRISPR/Cas9 to generate CD160 deficient mice. Next, we evaluated the impact of CD160 deficiency in the course of an alloreactive response. To that aim, parental donor WT (wild-type) or CD160 KO (knock-out) T cells were adoptively transferred into non-irradiated semiallogeneic F1 recipients, in which donor alloreactive CD160 KO CD4 T cells and CD8 T cells clonally expanded less vigorously than in WT T cell counterparts. This differential proliferative response rate at the early phase of T cell expansion influenced the course of CD8 T cell differentiation and the composition of the effector T cell pool that led to a significant decreased of the memory precursor effector cells (MPECs) / short-lived effector cells (SLECs) ratio in CD160 KO CD8 T cells compared to WT CD8 T cells. Despite these differences in T cell proliferation and differentiation, allogeneic MHC class I mismatched (bm1) skin allograft survival in CD160 KO recipients was comparable to that of WT recipients. However, the administration of CTLA-4.Ig showed an enhanced survival trend of bm1 skin allografts in CD160 KO with respect to WT recipients. Finally, CD160 deficient NK cells were as proficient as CD160 WT NK cells in rejecting allogeneic cellular allografts or MHC class I deficient tumor cells. CD160 may represent a CD28 alternative costimulatory molecule for the modulation of allogeneic CD8 T cell responses either in combination with costimulation blockade or by direct targeting of alloreactive CD8 T cells that upregulate CD160 expression in response to alloantigen stimulation.
Collapse
MESH Headings
- 4-1BB Ligand/metabolism
- Allografts
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CRISPR-Cas Systems
- Cell Differentiation
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Gene Expression Regulation
- Genes, MHC Class I
- Graft Rejection/etiology
- Graft Rejection/immunology
- Killer Cells, Natural/immunology
- Lectins, C-Type/metabolism
- Mice, Inbred Strains
- Mice, Knockout
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Skin Transplantation
- Thymocytes/immunology
- Mice
Collapse
Affiliation(s)
- Maria-Luisa Del Rio
- Transplantation Immunobiology and Immunotherapy Section. Institute of Molecular Biology, Genomics and Proteomics, University of Leon, Leon, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480.
| | - Tuan H Nguyen
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Laurent Tesson
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Jean-Marie Heslan
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Alfonso Gutierrez-Adan
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Raul Fernandez-Gonzalez
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Julia Gutierrez-Arroyo
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Leo Buhler
- Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - José-Antonio Pérez-Simón
- Department of Hematology, University Hospital Virgen del Rocio / Institute of Biomedicine (IBIS / CSIC / CIBERONC), Sevilla, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480
| | - Ignacio Anegon
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology and Immunotherapy Section. Institute of Molecular Biology, Genomics and Proteomics, University of Leon, Leon, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480.
| |
Collapse
|
40
|
Manresa MC, Wu A, Nhu QM, Chiang AWT, Okamoto K, Miki H, Kurten R, Pham E, Duong LD, Lewis NE, Akuthota P, Croft M, Aceves SS. LIGHT controls distinct homeostatic and inflammatory gene expression profiles in esophageal fibroblasts via differential HVEM and LTβR-mediated mechanisms. Mucosal Immunol 2022; 15:327-337. [PMID: 34903876 PMCID: PMC8866113 DOI: 10.1038/s41385-021-00472-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2021] [Indexed: 02/04/2023]
Abstract
Fibroblasts mediate tissue remodeling in eosinophilic esophagitis (EoE), a chronic allergen-driven inflammatory pathology. Diverse fibroblast subtypes with homeostasis-regulating or inflammatory profiles have been recognized in various tissues, but which mediators induce these alternate differentiation states remain largely unknown. We recently identified that TNFSF14/LIGHT promotes an inflammatory esophageal fibroblast in vitro. Herein we used esophageal biopsies and primary fibroblasts to investigate the role of the LIGHT receptors, herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTβR), and their downstream activated pathways, in EoE. In addition to promoting inflammatory gene expression, LIGHT down-regulated homeostatic factors including WNTs, BMPs and type 3 semaphorins. In vivo, WNT2B+ fibroblasts were decreased while ICAM-1+ and IL-34+ fibroblasts were expanded in EoE, suggesting that a LIGHT-driven gene signature was imprinted in EoE versus normal esophageal fibroblasts. HVEM and LTβR overexpression and deficiency experiments demonstrated that HVEM regulates a limited subset of LIGHT targets, whereas LTβR controls all transcriptional effects. Pharmacologic blockade of the non-canonical NIK/p100/p52-mediated NF-κB pathway potently silenced LIGHT's transcriptional effects, with a lesser role found for p65 canonical NF-κB. Collectively, our results show that LIGHT promotes differentiation of esophageal fibroblasts toward an inflammatory phenotype and represses homeostatic gene expression via a LTβR-NIK-p52 NF-κB dominant pathway.
Collapse
Affiliation(s)
- Mario C. Manresa
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA ,grid.185006.a0000 0004 0461 3162La Jolla Institute for Immunology, La Jolla, CA USA
| | - Amanda Wu
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA
| | - Quan M. Nhu
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA ,grid.419794.60000 0001 2111 8997Division of Gastroenterology and Hepatology, Scripps Clinic, San Diego, CA USA
| | - Austin W. T. Chiang
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA
| | - Kevin Okamoto
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA
| | - Haruka Miki
- grid.185006.a0000 0004 0461 3162La Jolla Institute for Immunology, La Jolla, CA USA
| | - Richard Kurten
- grid.239305.e0000 0001 2157 2081Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Arkansas Children’s Hospital Research Institute, Little Rock, AR USA
| | - Elaine Pham
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA
| | - Loan D. Duong
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA
| | - Nathan E. Lewis
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA
| | - Praveen Akuthota
- grid.266100.30000 0001 2107 4242Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA USA
| | - Michael Croft
- grid.185006.a0000 0004 0461 3162La Jolla Institute for Immunology, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Medicine, University of California, San Diego, CA USA
| | - Seema S. Aceves
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA ,grid.266100.30000 0001 2107 4242Department of Medicine, University of California, San Diego, CA USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital San Diego, San Diego, CA USA
| |
Collapse
|
41
|
Liu W, Chou TF, Garrett-Thomson SC, Seo GY, Fedorov E, Ramagopal UA, Bonanno JB, Wang Q, Kim K, Garforth SJ, Kakugawa K, Cheroutre H, Kronenberg M, Almo SC. HVEM structures and mutants reveal distinct functions of binding to LIGHT and BTLA/CD160. J Exp Med 2021; 218:e20211112. [PMID: 34709351 PMCID: PMC8558838 DOI: 10.1084/jem.20211112] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
HVEM is a TNF (tumor necrosis factor) receptor contributing to a broad range of immune functions involving diverse cell types. It interacts with a TNF ligand, LIGHT, and immunoglobulin (Ig) superfamily members BTLA and CD160. Assessing the functional impact of HVEM binding to specific ligands in different settings has been complicated by the multiple interactions of HVEM and HVEM binding partners. To dissect the molecular basis for multiple functions, we determined crystal structures that reveal the distinct HVEM surfaces that engage LIGHT or BTLA/CD160, including the human HVEM-LIGHT-CD160 ternary complex, with HVEM interacting simultaneously with both binding partners. Based on these structures, we generated mouse HVEM mutants that selectively recognized either the TNF or Ig ligands in vitro. Knockin mice expressing these muteins maintain expression of all the proteins in the HVEM network, yet they demonstrate selective functions for LIGHT in the clearance of bacteria in the intestine and for the Ig ligands in the amelioration of liver inflammation.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Crystallography, X-Ray
- Drosophila/cytology
- Drosophila/genetics
- Female
- GPI-Linked Proteins/chemistry
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/metabolism
- Mutation
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 14/chemistry
- Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
- Yersinia Infections/genetics
- Yersinia Infections/pathology
- Mice
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | - Elena Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Udupi A. Ramagopal
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | | | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, CA
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hilde Cheroutre
- La Jolla Institute for Immunology, La Jolla, CA
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
42
|
Sun Y, Sedgwick AJ, Khan MAAK, Palarasah Y, Mangiola S, Barrow AD. A Transcriptional Signature of IL-2 Expanded Natural Killer Cells Predicts More Favorable Prognosis in Bladder Cancer. Front Immunol 2021; 12:724107. [PMID: 34858395 PMCID: PMC8631443 DOI: 10.3389/fimmu.2021.724107] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Activation of natural killer (NK) cell function is regulated by cytokines, such as IL-2, and secreted factors upregulated in the tumor microenvironment, such as platelet-derived growth factor D (PDGF-DD). In order to elucidate a clinical role for these important regulators of NK cell function in antitumor immunity, we generated transcriptional signatures representing resting, IL-2-expanded, and PDGF-DD-activated, NK cell phenotypes and established their abundance in The Cancer Genome Atlas bladder cancer (BLCA) dataset using CIBERSORT. The IL-2-expanded NK cell phenotype was the most abundant in low and high grades of BLCA tumors and was associated with improved prognosis. In contrast, PDGFD expression was associated with numerous cancer hallmark pathways in BLCA tumors compared with normal bladder tissue, and a high tumor abundance of PDGFD transcripts and the PDGF-DD-activated NK cell phenotype were associated with a poor BLCA prognosis. Finally, high tumor expression of transcripts encoding the activating NK cell receptors, KLRK1 and the CD160-TNFRSF14 receptor-ligand pair, was strongly correlated with the IL-2-expanded NK cell phenotype and improved BLCA prognosis. The transcriptional parameters we describe may be optimized to improve BLCA patient prognosis and risk stratification in the clinic and potentially provide gene targets of therapeutic significance for enhancing NK cell antitumor immunity in BLCA.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Alexander James Sedgwick
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Md Abdullah-Al-Kamran Khan
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yaseelan Palarasah
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stefano Mangiola
- Division of Bioinformatics, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Alexander David Barrow
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
43
|
Yang Y, Lv W, Xu S, Shi F, Shan A, Wang J. Molecular and Clinical Characterization of LIGHT/TNFSF14 Expression at Transcriptional Level via 998 Samples With Brain Glioma. Front Mol Biosci 2021; 8:567327. [PMID: 34513918 PMCID: PMC8430338 DOI: 10.3389/fmolb.2021.567327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
LIGHT, also termed TNFSF14, has been reported to play a vital role in different tumors. However, its role in glioma remains unknown. This study is aimed at unveiling the characterization of the transcriptional expression profiling of LIGHT in glioma. We selected 301 glioma patients with mRNA microarray data from the CGGA dataset and 697 glioma patients with RNAseq data from the TCGA dataset. Transcriptome data and clinical data of 998 samples were analyzed. Statistical analyses and figure generation were performed with R language. LIGHT expression showed a positive correlation with WHO grade of glioma. LIGHT was significantly increased in mesenchymal molecular subtype. Gene Ontology analysis demonstrated that LIGHT was profoundly involved in immune response. Moreover, LIGHT was found to be synergistic with various immune checkpoint members, especially HVEM, PD1/PD-L1 pathway, TIM3, and B7-H3. To get further understanding of LIGHT-related immune response, we put LIGHT together with seven immune signatures into GSVA and found that LIGHT was particularly correlated with HCK, LCK, and MHC-II in both datasets, suggesting a robust correlation between LIGHT and activities of macrophages, T-cells, and antigen-presenting cells (APCs). Finally, higher LIGHT indicated significantly shorter survival for glioma patients. Cox regression models revealed that LIGHT expression was an independent variable for predicting survival. In conclusion, LIGHT was upregulated in more malignant gliomas including glioblastoma, IDH wildtype, and mesenchymal subtype. LIGHT was mainly involved in the immune function of macrophages, T cells, and APCs and served as an independent prognosticator in glioma.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pediatrics, Futian Women and Children Institute, Shenzhen, China
| | - Wen Lv
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Shihai Xu
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Fei Shi
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Aijun Shan
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Jin Wang
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
44
|
Chulanetra M, Chaicumpa W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front Cell Infect Microbiol 2021; 11:702125. [PMID: 34395313 PMCID: PMC8358743 DOI: 10.3389/fcimb.2021.702125] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
45
|
Virtual Evolution of HVEM Segment for Checkpoint Inhibitor Discovery. Int J Mol Sci 2021; 22:ijms22126638. [PMID: 34205742 PMCID: PMC8234244 DOI: 10.3390/ijms22126638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Immune therapy has emerged as an effective treatment against cancers. Inspired by the PD-1/PD-L1 antibodies, which have achieved great success in clinical, other immune checkpoint proteins have drawn increasing attention in cancer research. B and T lymphocyte attenuator (BTLA) and herpes virus entry mediator (HVEM) are potential targets for drug development. The co-crystal structure of BTLA/HVEM have revealed that HVEM (26-38) fragment is the core sequence which directly involved on the interface. Herein, we conducted virtual evolution with this sequence by using saturation mutagenesis in silico and mutants with lower binding energy were selected. Wet-lab experiments confirmed that several of them possessed higher affinity with BTLA. Based on the best mutant of the core sequence, extended peptides with better efficacy were obtained. Furthermore, the mechanism of the effects of mutations was revealed by computational analysis. The mutated peptide discovered here can be a potent inhibitor to block BTLA/HVEM interaction and its mechanism may extend people's view on inhibitor discovery for the checkpoint pair.
Collapse
|
46
|
Nectin-1 Expression Correlates with the Susceptibility of Malignant Melanoma to Oncolytic Herpes Simplex Virus In Vitro and In Vivo. Cancers (Basel) 2021; 13:cancers13123058. [PMID: 34205379 PMCID: PMC8234279 DOI: 10.3390/cancers13123058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Talimogene laherparepvec (T-VEC), a first-in-class oncolytic herpes simplex virus, improves the outcome of patients suffering from unresectable melanoma, in particular in combination with checkpoint inhibitors. However, a certain percentage of patients does not profit from this treatment, which raises the question of potential biomarkers to predict success or failure of oncolytic herpes viruses. For these purposes, we studied the oncolytic activity of T-VEC in a panel of 20 melanoma cell lines and evaluated the clinical response of 35 melanoma metastases to intralesional T-VEC application. Through these studies, we characterized Nectin-1 as a suitable biomarker predicting 86% and 78% of melanoma regression in vitro and in vivo, respectively. In contrast, other molecules involved in the entry (HVEM) and signal transduction (cGAS, STING) of herpes simplex viruses were not predictive. Altogether, our data support the role of Nectin-1 in pretreatment biopsies to guide clinical decision-making in malignant melanoma and supposedly other tumor entities. Abstract Talimogene laherparepvec (T-VEC), an oncolytic herpes simplex virus, is approved for intralesional injection of unresectable stage IIIB/IVM1a melanoma. However, it is still unclear which parameter(s) predict treatment response or failure. Our study aimed at characterizing surface receptors Nectin-1 and the herpes virus entry mediator (HVEM) in addition to intracellular molecules cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) as potential bio-markers for oncolytic virus treatment. In 20 melanoma cell lines, oncolytic activity of T-VEC was correlated with the expression of Nectin-1 but not HVEM, as evaluated via flow cytometry and immunohistochemistry. Knockout using CRISPR/Cas9 technology confirmed the superior role of Nectin-1 over HVEM for entry and oncolytic activity of T-VEC. Neither cGAS nor STING as evaluated by Western Blot and immunohistochemistry correlated with T-VEC induced oncolysis. The role of these biomarkers was retrospectively analyzed for the response of 35 cutaneous melanoma metastases of 21 patients to intralesional T-VEC injection, with 21 (60.0%) of these lesions responding with complete (n = 16) or partial regression (n = 5). Nectin-1 expression in pretreatment biopsies significantly predicted treatment outcome, while the expression of HVEM, cGAS, and STING was not prognostic. Altogether, Nectin-1 served as biomarker for T-VEC-induced melanoma regression in vitro and in vivo.
Collapse
|
47
|
Aubert N, Brunel S, Olive D, Marodon G. Blockade of HVEM for Prostate Cancer Immunotherapy in Humanized Mice. Cancers (Basel) 2021; 13:cancers13123009. [PMID: 34208480 PMCID: PMC8235544 DOI: 10.3390/cancers13123009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Current immune checkpoint inhibitors have shown limitations for immunotherapy of prostate cancer. Thus, it is crucial to investigate other immune checkpoints to prevent disease progression in patients with prostate cancer. Here, we first show that the HVEM/BTLA immune checkpoint is associated with disease progression in patients. We then show that immunotherapy aimed at targeting HVEM reduced tumor growth twofold in vivo in a humanized mouse model of the pathology. The mode of action of the therapy was dependent on CD8+ T cells and is associated with improved T cell activation and reduced exhaustion. Finally, we demonstrated that HVEM expressed by the tumor negatively regulated the anti-tumor immune response. Our results indicate that targeting HVEM might be an attractive option for patients with prostate cancer. Abstract The herpes virus entry mediator (HVEM) delivers a negative signal to T cells mainly through the B and T lymphocyte attenuator (BTLA) molecule. Thus, HVEM/BTLA may represent a novel immune checkpoint during an anti-tumor immune response. However, a formal demonstration that HVEM can represent a target for cancer immunotherapy is still lacking. Here, we first showed that HVEM and BTLA mRNA expression levels were associated with a worse progression-free interval in patients with prostate adenocarcinomas, indicating a detrimental role for the HVEM/BTLA immune checkpoint during prostate cancer progression. We then showed that administration of a monoclonal antibody to human HVEM resulted in a twofold reduction in the growth of a prostate cancer cell line in NOD.SCID.gc-null mice reconstituted with human T cells. Using CRISPR/Cas9, we showed that the therapeutic effect of the mAb depended on HVEM expression by the tumor, with no effect on graft vs. host disease or activation of human T cells in the spleen. In contrast, the proliferation and number of tumor-infiltrating leukocytes increased following treatment, and depletion of CD8+ T cells partly alleviated treatment’s efficacy. The expression of genes belonging to various T cell activation pathways was enriched in tumor-infiltrating leukocytes, whereas genes associated with immuno-suppressive pathways were decreased, possibly resulting in modifications of leukocyte adhesion and motility. Finally, we developed a simple in vivo assay in humanized mice to directly demonstrate that HVEM expressed by the tumor is an immune checkpoint for T cell-mediated tumor control. Our results show that targeting HVEM is a promising strategy for prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Nicolas Aubert
- Centre d’Immunologie et Maladies Infectieuses-Paris, CIMI-PARIS, Sorbonne Université, INSERM, CNRS, 75013 Paris, France; (N.A.); (S.B.)
| | - Simon Brunel
- Centre d’Immunologie et Maladies Infectieuses-Paris, CIMI-PARIS, Sorbonne Université, INSERM, CNRS, 75013 Paris, France; (N.A.); (S.B.)
| | - Daniel Olive
- Institut Paoli-Calmettes, Aix-Marseille Université, INSERM, CNRS, CRCM, Tumor Immunity Team, IBISA Immunomonitoring Platform, 13009 Marseille, France;
| | - Gilles Marodon
- Centre d’Immunologie et Maladies Infectieuses-Paris, CIMI-PARIS, Sorbonne Université, INSERM, CNRS, 75013 Paris, France; (N.A.); (S.B.)
- Correspondence:
| |
Collapse
|
48
|
Deng Z, Zheng Y, Cai P, Zheng Z. The Role of B and T Lymphocyte Attenuator in Respiratory System Diseases. Front Immunol 2021; 12:635623. [PMID: 34163466 PMCID: PMC8215117 DOI: 10.3389/fimmu.2021.635623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/18/2021] [Indexed: 01/03/2023] Open
Abstract
B and T lymphocyte attenuator (BTLA), an immunomodulatory molecule widely expressed on the surface of immune cells, can influence various signaling pathways and negatively regulate the activation and proliferation of immune cells by binding to its ligand herpes virus entry mediator (HVEM). BTLA plays an important role in immunoregulation and is involved in the pathogenesis of various respiratory diseases, including airway inflammation, asthma, infection, pneumonia, acute respiratory distress syndrome and lung cancer. In recent years, some studies have found that BTLA also has played a positive regulatory effect on immunity system in the occurrence and development of respiratory diseases. Since severe pulmonary infection is a risk factor for sepsis, this review also summarized the new findings on the role of BTLA in sepsis.
Collapse
Affiliation(s)
- Zheng Deng
- General Department, Hunan Institute for Tuberculosis Control, Changsha, China.,General Department, Hunan Chest Hospital, Changsha, China
| | - Yi Zheng
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Pei Cai
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zheng Zheng
- General Department, Hunan Institute for Tuberculosis Control, Changsha, China.,General Department, Hunan Chest Hospital, Changsha, China
| |
Collapse
|
49
|
Kushnareva Y, Mathews IT, Andreyev AY, Altay G, Lindestam Arlehamn CS, Pandurangan V, Nilsson R, Jain M, Sette A, Peters B, Sharma S. Functional Analysis of Immune Signature Genes in Th1* Memory Cells Links ISOC1 and Pyrimidine Metabolism to IFN-γ and IL-17 Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1181-1193. [PMID: 33547171 PMCID: PMC7946769 DOI: 10.4049/jimmunol.2000672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
CCR6+CXCR3+CCR4-CD4+ memory T cells, termed Th1*, are important for long-term immunity to Mycobacterium tuberculosis and the pathogenesis of autoimmune diseases. Th1* cells express a unique set of lineage-specific transcription factors characteristic of both Th1 and Th17 cells and display distinct gene expression profiles compared with other CD4+ T cell subsets. To examine molecules and signaling pathways important for the effector function of Th1* cells, we performed loss-of-function screening of genes selectively enriched in the Th1* subset. The genetic screen yielded candidates whose depletion significantly impaired TCR-induced IFN-γ production. These included genes previously linked to IFN-γ or M. tuberculosis susceptibility and novel candidates, such as ISOC1, encoding a metabolic enzyme of unknown function in mammalian cells. ISOC1-depleted T cells, which produced less IFN-γ and IL-17, displayed defects in oxidative phosphorylation and glycolysis and impairment of pyrimidine metabolic pathway. Supplementation with extracellular pyrimidines rescued both bioenergetics and IFN-γ production in ISOC1-deficient T cells, indicating that pyrimidine metabolism is a key driver of effector functions in CD4+ T cells and Th1* cells. Results provide new insights into the immune-stimulatory function of ISOC1 as well as the particular metabolic requirements of human memory T cells, providing a novel resource for understanding long-term T cell-driven responses.
Collapse
Affiliation(s)
| | - Ian T Mathews
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Alexander Y Andreyev
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
- The Scripps Research Institute, La Jolla, CA 92037; and
| | - Gokmen Altay
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | | | | | | | - Mohit Jain
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Sonia Sharma
- La Jolla Institute for Immunology, La Jolla, CA 92037;
| |
Collapse
|
50
|
de Freitas E Silva R, von Stebut E. Unraveling the Role of Immune Checkpoints in Leishmaniasis. Front Immunol 2021; 12:620144. [PMID: 33776999 PMCID: PMC7990902 DOI: 10.3389/fimmu.2021.620144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leishmaniasis are Neglected Tropical Diseases affecting millions of people every year in at least 98 countries and is one of the major unsolved world health issues. Leishmania is a parasitic protozoa which are transmitted by infected sandflies and in the host they mainly infect macrophages. Immunity elicited against those parasites is complex and immune checkpoints play a key role regulating its function. T cell receptors and their respective ligands, such as PD-1, CTLA-4, CD200, CD40, OX40, HVEM, LIGHT, 2B4 and TIM-3 have been characterized for their role in regulating adaptive immunity against different pathogens. However, the exact role those receptors perform during Leishmania infections remains to be better determined. This article addresses the key role immune checkpoints play during Leishmania infections, the limiting factors and translational implications.
Collapse
Affiliation(s)
| | - Esther von Stebut
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|