1
|
Sanchez-Sanchez JM, Riefolo F, Barbero-Castillo A, Sortino R, Agnetta L, Manasanch A, Matera C, Bosch M, Forcella M, Decker M, Gorostiza P, Sanchez-Vives MV. Control of cortical slow oscillations and epileptiform discharges with photoswitchable type 1 muscarinic ligands. PNAS NEXUS 2025; 4:pgaf009. [PMID: 40007579 PMCID: PMC11851066 DOI: 10.1093/pnasnexus/pgaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/02/2025] [Indexed: 02/27/2025]
Abstract
Acetylcholine and the cholinergic system are crucial to brain function, including functions such as consciousness and cognition. Dysregulation of this system is implicated in the pathophysiology of neurological conditions such as Alzheimer's disease. For this reason, cholinergic neuromodulation is relevant in both basic neuroscience and clinical neurology. In this study, we used photopharmacology to modulate neuronal activity using the novel selective type-1 muscarinic (M1) photoswitchable drugs: the agonist benzyl quinolone carboxylic acid-azo-iperoxo (BAI) and the antagonist cryptozepine-2. Our aim was to investigate the control over these cholinergic receptors using light and to investigate the effects of these drugs on physiological spontaneous slow waves and on epileptic activity in the cerebral cortex. First, we used transfected HEK cell cultures and demonstrated BAI's preferential activation of M1 muscarinic acetylcholine receptors (mAChRs) compared with M2 mAChRs. Next, we found that white-light illumination of BAI increased the frequency of spontaneous slow-wave activity in brain cortical networks of both active slices and anesthetized mice, through M1-mAChRs activation. Illumination of cryptozepine-2 with UV light effectively suppressed not only the muscarinic-induced increase in slow-wave frequency, but also muscarinic-induced epileptiform discharges. These findings not only shed light on the role of M1 acetylcholine receptors in the cortical network dynamics but also lay the groundwork for developing advanced light-based pharmacological therapies. Photopharmacology offers the potential for high-precision spatiotemporal control of brain networks with high pharmacological specificity in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Jose M Sanchez-Sanchez
- Systems Neuroscience, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Fabio Riefolo
- Teamit Institute, Partnerships, Barcelona Health Hub, Barcelona 08025, Spain
| | - Almudena Barbero-Castillo
- Systems Neuroscience, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Rosalba Sortino
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology. Barcelona 08028, Spain
| | - Luca Agnetta
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Arnau Manasanch
- Systems Neuroscience, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona 08036, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology. Barcelona 08028, Spain
- Department of Pharmaceutical Sciences, University of Milan, Milan 20133, Italy
| | - Miquel Bosch
- Systems Neuroscience, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology. Barcelona 08028, Spain
| | - Marta Forcella
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology. Barcelona 08028, Spain
| | - Michael Decker
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology. Barcelona 08028, Spain
- CIBER-BBN, Madrid 28029, Spain
- ICREA, Barcelona 08010, Spain
| | - Maria V Sanchez-Vives
- Systems Neuroscience, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- ICREA, Barcelona 08010, Spain
| |
Collapse
|
2
|
López-Merino E, Cuartero MI, Esteban JA, Briz V. Perinatal exposure to pesticides alters synaptic plasticity signaling and induces behavioral deficits associated with neurodevelopmental disorders. Cell Biol Toxicol 2023; 39:2089-2111. [PMID: 35137321 PMCID: PMC10547633 DOI: 10.1007/s10565-022-09697-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Increasing evidence from animal and epidemiological studies indicates that perinatal exposure to pesticides cause developmental neurotoxicity and may increase the risk for psychiatric disorders such as autism and intellectual disability. However, the underlying pathogenic mechanisms remain largely elusive. This work was aimed at testing the hypothesis that developmental exposure to different classes of pesticides hijacks intracellular neuronal signaling contributing to synaptic and behavioral alterations associated with neurodevelopmental disorders (NDD). Low concentrations of organochlorine (dieldrin, endosulfan, and chlordane) and organophosphate (chlorpyrifos and its oxon metabolite) pesticides were chronically dosed ex vivo (organotypic rat hippocampal slices) or in vivo (perinatal exposure in rats), and then biochemical, electrophysiological, behavioral, and proteomic studies were performed. All the pesticides tested caused prolonged activation of MAPK/ERK pathway in a concentration-dependent manner. Additionally, some of them impaired metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD). In the case of the pesticide chlordane, the effect was attributed to chronic modulation of MAPK/ERK signaling. These synaptic alterations were reproduced following developmental in vivo exposure to chlordane and chlorpyrifos-oxon, and were also associated with prototypical behavioral phenotypes of NDD, including impaired motor development, increased anxiety, and social and memory deficits. Lastly, proteomic analysis revealed that these pesticides differentially regulate the expression of proteins in the hippocampus with pivotal roles in brain development and synaptic signaling, some of which are associated with NDD. Based on these results, we propose a novel mechanism of synaptic dysfunction, involving chronic overactivation of MAPK and impaired mGluR-LTD, shared by different pesticides which may have important implications for NDD.
Collapse
Affiliation(s)
| | - María I Cuartero
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| | - Víctor Briz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
3
|
Fogaça MV, Wu M, Li C, Li XY, Duman RS, Picciotto MR. M1 acetylcholine receptors in somatostatin interneurons contribute to GABAergic and glutamatergic plasticity in the mPFC and antidepressant-like responses. Neuropsychopharmacology 2023; 48:1277-1287. [PMID: 37142667 PMCID: PMC10354201 DOI: 10.1038/s41386-023-01583-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023]
Abstract
Alterations in glutamatergic and GABAergic function in the medial prefrontal cortex (mPFC) are prevalent in individuals with major depressive disorder, resulting in impaired synaptic plasticity that compromises the integrity of signal transfer to limbic regions. Scopolamine, a non-selective muscarinic receptor antagonist, produces rapid antidepressant-like effects by targeting M1-type acetylcholine receptors (M1R) on somatostatin (SST) interneurons. So far, these effects have been investigated with relatively short-term manipulations, and long-lasting synaptic mechanisms involved in these responses are still unknown. Here, we generated mice with conditional deletion of M1R (M1f/fSstCre+) only in SST interneurons to determine the role of M1R in modulating long-term GABAergic and glutamatergic plasticity in the mPFC that leads to attenuation of stress-relevant behaviors. We have also investigated whether the molecular and antidepressant-like effects of scopolamine could be mimicked or occluded in male M1f/fSstCre+ mice. M1R deletion in SST-expressing neurons occluded the rapid and sustained antidepressant-like effects of scopolamine, as well as scopolamine-induced increases in c-Fos+/CaMKIIα cells and proteins necessary for glutamatergic and GABAergic function in the mPFC. Importantly, M1R SST deletion resulted in resilience to chronic unpredictable stress in behaviors relevant to coping strategies and motivation, and to a lesser extent, in behaviors relevant to avoidance. Finally, M1R SST deletion also prevented stress-induced impairments in the expression of GABAergic and glutamatergic markers in the mPFC. These findings suggest that the antidepressant-like effects of scopolamine result from modulation of excitatory and inhibitory plasticity via M1R blockade in SST interneurons. This mechanism could represent a promising strategy for antidepressant development.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA.
| | - Min Wu
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Chan Li
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Xiao-Yuan Li
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| |
Collapse
|
4
|
Zheng F, Wess J, Alzheimer C. Long-Term-But Not Short-Term-Plasticity at the Mossy Fiber-CA3 Pyramidal Cell Synapse in Hippocampus Is Altered in M1/M3 Muscarinic Acetylcholine Receptor Double Knockout Mice. Cells 2023; 12:1890. [PMID: 37508553 PMCID: PMC10378318 DOI: 10.3390/cells12141890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Muscarinic acetylcholine receptors are well-known for their crucial involvement in hippocampus-dependent learning and memory, but the exact roles of the various receptor subtypes (M1-M5) are still not fully understood. Here, we studied how M1 and M3 receptors affect plasticity at the mossy fiber (MF)-CA3 pyramidal cell synapse. In hippocampal slices from M1/M3 receptor double knockout (M1/M3-dKO) mice, the signature short-term plasticity of the MF-CA3 synapse was not significantly affected. However, the rather unique NMDA receptor-independent and presynaptic form of long-term potentiation (LTP) of this synapse was much larger in M1/M3-deficient slices compared to wild-type slices in both field potential and whole-cell recordings. Consistent with its presynaptic origin, induction of MF-LTP strongly enhanced the excitatory drive onto single CA3 pyramidal cells, with the effect being more pronounced in M1/M3-dKO cells. In an earlier study, we found that the deletion of M2 receptors in mice disinhibits MF-LTP in a similar fashion, suggesting that endogenous acetylcholine employs both M1/M3 and M2 receptors to constrain MF-LTP. Importantly, such synergism was not observed for MF long-term depression (LTD). Low-frequency stimulation, which reliably induced LTD of MF synapses in control slices, failed to do so in M1/M3-dKO slices and gave rise to LTP instead. In striking contrast, loss of M2 receptors augmented LTD when compared to control slices. Taken together, our data demonstrate convergence of M1/M3 and M2 receptors on MF-LTP, but functional divergence on MF-LTD, with the net effect resulting in a well-balanced bidirectional plasticity of the MF-CA3 pyramidal cell synapse.
Collapse
Affiliation(s)
- Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Biological Chemistry, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
5
|
da Silva LA, Diniz CRAF, Uliana DL, da Silva-Júnior AF, Bertacchini GL, Resstel LBM. The interaction between hippocampal cholinergic and nitrergic neurotransmission coordinates NMDA-dependent behavior and autonomic changes induced by contextual fear retrieval. Psychopharmacology (Berl) 2022; 239:3297-3311. [PMID: 35978221 DOI: 10.1007/s00213-022-06213-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
RATIONALE Re-exposing an animal to an environment previously paired with an aversive stimulus evokes large alterations in behavioral and cardiovascular parameters. Dorsal hippocampus (dHC) receives important cholinergic inputs from the basal forebrain, and respective acetylcholine (ACh) levels are described to influence defensive behavior. Activation of muscarinic M1 and M3 receptors facilitates autonomic and behavioral responses along threats. Evidence show activation of cholinergic receptors promoting formation of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) in dHC. Altogether, the action of ACh and NO on conditioned responses appears to converge within dHC. OBJECTIVES As answer about how ACh and NO interact to modulate defensive responses has so far been barely addressed, we aimed to shed additional light on this topic. METHODS Male Wistar rats had guide cannula implanted into the dHC before being submitted to the contextual fear conditioning (3footshocks/085 mA/2 s). A catheter was implanted in the femoral artery the next day for cardiovascular recordings. Drugs were delivered into dHC 10 min before contextual re-exposure, which occurred 48 h after the conditioning procedure. RESULTS Neostigmine (Neo) amplified the retrieval of conditioned responses. Neo effects (1 nmol) were prevented by the prior infusion of a M1-M3 antagonist (fumarate), a neuronal nitric oxide synthase inhibitor (NPLA), a NO scavenger (cPTIO), a guanylyl cyclase inhibitor (ODQ), and a NMDA antagonist (AP-7). Pretreatment with a selective M1 antagonist (pirenzepine) only prevented the increase in autonomic responses induced by Neo. CONCLUSION The results show that modulation in the retrieval of contextual fear responses involves coordination of the dHC M1-M3/NO/cGMP/NMDA pathway.
Collapse
Affiliation(s)
- Leandro Antero da Silva
- Department of Pharmacology, School of Medicine, Universidade de Sao Paulo, Campus USP, Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil
- State University of Mato Grosso Do Sul - Medicine UEMS, Mato Grosso Do Sul, Campo Grande, Brazil
| | - Cassiano Ricardo Alves Faria Diniz
- Department of Pharmacology, School of Medicine, Universidade de Sao Paulo, Campus USP, Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil
| | - Daniela Lescano Uliana
- Department of Pharmacology, School of Medicine, Universidade de Sao Paulo, Campus USP, Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA, 15260, USA
| | - Antonio Furtado da Silva-Júnior
- Department of Pharmacology, School of Medicine, Universidade de Sao Paulo, Campus USP, Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil
| | - Gabriela Luiz Bertacchini
- Department of Pharmacology, School of Medicine, Universidade de Sao Paulo, Campus USP, Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil
| | - Leonardo Barbosa Moraes Resstel
- Department of Pharmacology, School of Medicine, Universidade de Sao Paulo, Campus USP, Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
6
|
Downs AM, Donsante Y, Jinnah H, Hess EJ. Blockade of M4 muscarinic receptors on striatal cholinergic interneurons normalizes striatal dopamine release in a mouse model of TOR1A dystonia. Neurobiol Dis 2022; 168:105699. [DOI: 10.1016/j.nbd.2022.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022] Open
|
7
|
Nakauchi S, Su H, Trang I, Sumikawa K. Long-term effects of early postnatal nicotine exposure on cholinergic function in the mouse hippocampal CA1 region. Neurobiol Learn Mem 2021; 181:107445. [PMID: 33895349 PMCID: PMC9836228 DOI: 10.1016/j.nlm.2021.107445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 01/14/2023]
Abstract
In rodent models of smoking during pregnancy, early postnatal nicotine exposure results in impaired hippocampus-dependent memory, but the underlying mechanism remains elusive. Given that hippocampal cholinergic systems modulate memory and rapid development of hippocampal cholinergic systems occurs during nicotine exposure, here we investigated its impacts on cholinergic function. Both nicotinic and muscarinic activation produce transient or long-lasting depression of excitatory synaptic transmission in the hippocampal CA1 region. We found that postnatal nicotine exposure impairs both the induction and nicotinic modulation of NMDAR-dependent long-term depression (LTD). Activation of muscarinic receptors decreases excitatory synaptic transmission and CA1 network activity in both wild-type and α2 knockout mice. These muscarinic effects are still observed in nicotine-exposed mice. M1 muscarinic receptor activity is required for mGluR-dependent LTD. Early postnatal nicotine exposure has no effect on mGluR-dependent LTD induction, suggesting that it has no effect on the function of m1 muscarinic receptors involved in this form of LTD. Our results demonstrate that early postnatal nicotine exposure has more pronounced effects on nicotinic function than muscarinic function in the hippocampal CA1 region. Thus, impaired hippocampus-dependent memory may arise from the developmental disruption of nicotinic cholinergic systems in the hippocampal CA1 region.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/growth & development
- CA1 Region, Hippocampal/metabolism
- Cigarette Smoking
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Female
- Lactation
- Long-Term Synaptic Depression/drug effects
- Long-Term Synaptic Depression/physiology
- Male
- Maternal Exposure
- Memory/drug effects
- Memory/physiology
- Mice
- Mice, Knockout
- Nicotine/pharmacology
- Nicotinic Agonists/pharmacology
- Receptor, Muscarinic M1/drug effects
- Receptor, Muscarinic M1/metabolism
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/metabolism
Collapse
Affiliation(s)
- Sakura Nakauchi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Hailing Su
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Ivan Trang
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Katumi Sumikawa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA.
| |
Collapse
|
8
|
Niwa Y, Kanda GN, Yamada RG, Shi S, Sunagawa GA, Ukai-Tadenuma M, Fujishima H, Matsumoto N, Masumoto KH, Nagano M, Kasukawa T, Galloway J, Perrin D, Shigeyoshi Y, Ukai H, Kiyonari H, Sumiyama K, Ueda HR. Muscarinic Acetylcholine Receptors Chrm1 and Chrm3 Are Essential for REM Sleep. Cell Rep 2020; 24:2231-2247.e7. [PMID: 30157420 DOI: 10.1016/j.celrep.2018.07.082] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Accepted: 07/25/2018] [Indexed: 01/30/2023] Open
Abstract
Sleep regulation involves interdependent signaling among specialized neurons in distributed brain regions. Although acetylcholine promotes wakefulness and rapid eye movement (REM) sleep, it is unclear whether the cholinergic pathway is essential (i.e., absolutely required) for REM sleep because of redundancy from neural circuits to molecules. First, we demonstrate that synaptic inhibition of TrkA+ cholinergic neurons causes a severe short-sleep phenotype and that sleep reduction is mostly attributable to a shortened sleep duration in the dark phase. Subsequent comprehensive knockout of acetylcholine receptor genes by the triple-target CRISPR method reveals that a similar short-sleep phenotype appears in the knockout of two Gq-type acetylcholine receptors Chrm1 and Chrm3. Strikingly, Chrm1 and Chrm3 double knockout chronically diminishes REM sleep to an almost undetectable level. These results suggest that muscarinic acetylcholine receptors, Chrm1 and Chrm3, are essential for REM sleep.
Collapse
Affiliation(s)
- Yasutaka Niwa
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Genki N Kanda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Rikuhiro G Yamada
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoi Shi
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Genshiro A Sunagawa
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Maki Ukai-Tadenuma
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Fujishima
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naomi Matsumoto
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koh-Hei Masumoto
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osakasayama City, Osaka 589-8511, Japan; Center for Medical Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Mianmi-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osakasayama City, Osaka 589-8511, Japan
| | - Takeya Kasukawa
- Large Scale Data Managing Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - James Galloway
- School of Electrical Engineering and Computer Science, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Dimitri Perrin
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; School of Electrical Engineering and Computer Science, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osakasayama City, Osaka 589-8511, Japan
| | - Hideki Ukai
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
9
|
Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci 2019; 9:brainsci9110300. [PMID: 31683595 PMCID: PMC6896105 DOI: 10.3390/brainsci9110300] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance.
Collapse
|
10
|
Maksymetz J, Joffe ME, Moran SP, Stansley BJ, Li B, Temple K, Engers DW, Lawrence JJ, Lindsley CW, Conn PJ. M 1 Muscarinic Receptors Modulate Fear-Related Inputs to the Prefrontal Cortex: Implications for Novel Treatments of Posttraumatic Stress Disorder. Biol Psychiatry 2019; 85:989-1000. [PMID: 31003787 PMCID: PMC6555658 DOI: 10.1016/j.biopsych.2019.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The prefrontal cortex (PFC) integrates information from multiple inputs to exert top-down control allowing for appropriate responses in a given context. In psychiatric disorders such as posttraumatic stress disorder, PFC hyperactivity is associated with inappropriate fear in safe situations. We previously reported a form of muscarinic acetylcholine receptor (mAChR)-dependent long-term depression in the PFC that we hypothesize is involved in appropriate fear responding and could serve to reduce cortical hyperactivity following stress. However, it is unknown whether this long-term depression occurs at fear-related inputs. METHODS Using optogenetics with extracellular and whole-cell electrophysiology, we assessed the effect of mAChR activation on the synaptic strength of specific PFC inputs. We used selective pharmacological tools to assess the involvement of M1 mAChRs in conditioned fear extinction in control mice and in the stress-enhanced fear-learning model. RESULTS M1 mAChR activation induced long-term depression at inputs from the ventral hippocampus and basolateral amygdala but not from the mediodorsal nucleus of the thalamus. We found that systemic M1 mAChR antagonism impaired contextual fear extinction. Treatment with an M1 positive allosteric modulator enhanced contextual fear extinction consolidation in stress-enhanced fear learning-conditioned mice. CONCLUSIONS M1 mAChRs dynamically modulate synaptic transmission at two PFC inputs whose activity is necessary for fear extinction, and M1 mAChR function is required for proper contextual fear extinction. Furthermore, an M1 positive allosteric modulator enhanced the consolidation of fear extinction in the stress-enhanced fear-learning model, suggesting that M1 positive allosteric modulators may provide a novel treatment strategy to facilitate exposure therapy in the clinic for the treatment of posttraumatic stress disorder.
Collapse
Affiliation(s)
- James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Max E Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Sean P Moran
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Branden J Stansley
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Brianna Li
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Kayla Temple
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Darren W Engers
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - J Josh Lawrence
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
11
|
O'Riordan KJ, Hu NW, Rowan MJ. Aß Facilitates LTD at Schaffer Collateral Synapses Preferentially in the Left Hippocampus. Cell Rep 2019; 22:2053-2065. [PMID: 29466733 DOI: 10.1016/j.celrep.2018.01.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/16/2017] [Accepted: 01/26/2018] [Indexed: 01/03/2023] Open
Abstract
Promotion of long-term depression (LTD) mechanisms by synaptotoxic soluble oligomers of amyloid-β (Aß) has been proposed to underlie synaptic dysfunction in Alzheimer's disease (AD). Previously, LTD was induced by relatively non-specific electrical stimulation. Exploiting optogenetics, we studied LTD using a more physiologically diffuse spatial pattern of selective pathway activation in the rat hippocampus in vivo. This relatively sparse synaptic LTD requires both the ion channel function and GluN2B subunit of the NMDA receptor but, in contrast to electrically induced LTD, is not facilitated by boosting endogenous muscarinic acetylcholine or metabotropic glutamate 5 receptor activation. Although in the absence of Aß, there is no evidence of hippocampal LTD asymmetry, in the presence of Aß, the induction of LTD is preferentially enhanced in the left hippocampus in an mGluR5-dependent manner. This circuit-selective disruption of synaptic plasticity by Aß provides a route to understanding the development of aberrant brain lateralization in AD.
Collapse
Affiliation(s)
- Kenneth J O'Riordan
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland; Department of Gerontology, Yijishan Hospital, Wannan Medical College, Wuhu, China.
| | - Michael J Rowan
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
12
|
Enhancing Oligodendrocyte Myelination Rescues Synaptic Loss and Improves Functional Recovery after Chronic Hypoxia. Neuron 2018; 99:689-701.e5. [PMID: 30078577 DOI: 10.1016/j.neuron.2018.07.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/01/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022]
Abstract
To address the significance of enhancing myelination for functional recovery after white matter injury (WMI) in preterm infants, we characterized hypomyelination associated with chronic hypoxia and identified structural and functional deficits of excitatory cortical synapses with a prolonged motor deficit. We demonstrate that genetically delaying myelination phenocopies the synaptic and functional deficits observed in mice after hypoxia, suggesting that myelination may possibly facilitate excitatory presynaptic innervation. As a gain-of-function experiment, we specifically ablated the muscarinic receptor 1 (M1R), a negative regulator of oligodendrocyte differentiation in oligodendrocyte precursor cells. Genetically enhancing oligodendrocyte differentiation and myelination rescued the synaptic loss after chronic hypoxia and promoted functional recovery. As a proof of concept, drug-based myelination therapies also resulted in accelerated differentiation and myelination with functional recovery after chronic hypoxia. Together, our data indicate that myelination-enhancing strategies in preterm infants may represent a promising therapeutic approach for structural/functional recovery after hypoxic WMI.
Collapse
|
13
|
Gu Z, Alexander GM, Dudek SM, Yakel JL. Hippocampus and Entorhinal Cortex Recruit Cholinergic and NMDA Receptors Separately to Generate Hippocampal Theta Oscillations. Cell Rep 2018; 21:3585-3595. [PMID: 29262336 DOI: 10.1016/j.celrep.2017.11.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/10/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022] Open
Abstract
Although much progress has been made in understanding type II theta rhythm generation under urethane anesthesia, less is known about the mechanisms underlying type I theta generation during active exploration. To better understand the contributions of cholinergic and NMDA receptor activation to type I theta generation, we recorded hippocampal theta oscillations from freely moving mice with local infusion of cholinergic or NMDA receptor antagonists to either the hippocampus or the entorhinal cortex (EC). We found that cholinergic receptors in the hippocampus, but not the EC, and NMDA receptors in the EC, but not the hippocampus, are critical for open-field theta generation and Y-maze performance. We further found that muscarinic M1 receptors located on pyramidal neurons, but not interneurons, are critical for cholinergic modulation of hippocampal synapses, theta generation, and Y-maze performance. These results suggest that hippocampus and EC neurons recruit cholinergic-dependent and NMDA-receptor-dependent mechanisms, respectively, to generate theta oscillations to support behavioral performance.
Collapse
Affiliation(s)
- Zhenglin Gu
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Georgia M Alexander
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
14
|
Zannone S, Brzosko Z, Paulsen O, Clopath C. Acetylcholine-modulated plasticity in reward-driven navigation: a computational study. Sci Rep 2018; 8:9486. [PMID: 29930322 PMCID: PMC6013476 DOI: 10.1038/s41598-018-27393-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/29/2018] [Indexed: 11/08/2022] Open
Abstract
Neuromodulation plays a fundamental role in the acquisition of new behaviours. In previous experimental work, we showed that acetylcholine biases hippocampal synaptic plasticity towards depression, and the subsequent application of dopamine can retroactively convert depression into potentiation. We also demonstrated that incorporating this sequentially neuromodulated Spike-Timing-Dependent Plasticity (STDP) rule in a network model of navigation yields effective learning of changing reward locations. Here, we employ computational modelling to further characterize the effects of cholinergic depression on behaviour. We find that acetylcholine, by allowing learning from negative outcomes, enhances exploration over the action space. We show that this results in a variety of effects, depending on the structure of the model, the environment and the task. Interestingly, sequentially neuromodulated STDP also yields flexible learning, surpassing the performance of other reward-modulated plasticity rules.
Collapse
Affiliation(s)
- Sara Zannone
- Imperial College London, Department of Bioengineering, South Kensington Campus, London, United Kingdom
| | - Zuzanna Brzosko
- University of Cambridge, Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| | - Ole Paulsen
- University of Cambridge, Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| | - Claudia Clopath
- Imperial College London, Department of Bioengineering, South Kensington Campus, London, United Kingdom.
| |
Collapse
|
15
|
Choi B, Lee HW, Mo S, Kim JY, Kim HW, Rhyu IJ, Hong E, Lee YK, Choi JS, Kim CH, Kim H. Inositol 1,4,5-trisphosphate 3-kinase A overexpressed in mouse forebrain modulates synaptic transmission and mGluR-LTD of CA1 pyramidal neurons. PLoS One 2018; 13:e0193859. [PMID: 29617377 PMCID: PMC5884490 DOI: 10.1371/journal.pone.0193859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/20/2018] [Indexed: 11/18/2022] Open
Abstract
Inositol 1,4,5-trisphosphate 3-kinase A (IP3K-A) regulates the level of the inositol polyphosphates, inositol trisphosphate (IP3) and inositol tetrakisphosphate to modulate cellular signaling and intracellular calcium homeostasis in the central nervous system. IP3K-A binds to F-actin in an activity-dependent manner and accumulates in dendritic spines, where it is involved in the regulation of synaptic plasticity. IP3K-A knockout mice exhibit deficits in some forms of hippocampus-dependent learning and synaptic plasticity, such as long-term potentiation in the dentate gyrus synapses of the hippocampus. In the present study, to further elucidate the role of IP3K-A in the brain, we developed a transgenic (Tg) mouse line in which IP3K-A is conditionally overexpressed approximately 3-fold in the excitatory neurons of forebrain regions, including the hippocampus. The Tg mice showed an increase in both presynaptic release probability of evoked responses, along with bigger synaptic vesicle pools, and miniature excitatory postsynaptic current amplitude, although the spine density or the expression levels of the postsynaptic density-related proteins NR2B, synaptotagmin 1, and PSD-95 were not affected. Hippocampal-dependent learning and memory tasks, including novel object recognition and radial arm maze tasks, were partially impaired in Tg mice. Furthermore, (R,S)-3,5-dihydroxyphenylglycine-induced metabotropic glutamate receptor long-term depression was inhibited in Tg mice and this inhibition was dependent on protein kinase C but not on the IP3 receptor. Long-term potentiation and depression dependent on N-methyl-d-aspartate receptor were marginally affected in Tg mice. In summary, this study shows that overexpressed IP3K-A plays a role in some forms of hippocampus-dependent learning and memory tasks as well as in synaptic transmission and plasticity by regulating both presynaptic and postsynaptic functions.
Collapse
Affiliation(s)
- Byungil Choi
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Hyun Woo Lee
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Seojung Mo
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Jin Yong Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Hyun Wook Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Eunhwa Hong
- Department of Psychology, Korea University, Seoul, Korea
| | - Yeon Kyung Lee
- Department of Psychology, Korea University, Seoul, Korea
| | - June-Seek Choi
- Department of Psychology, Korea University, Seoul, Korea
| | - Chong-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology and Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
- * E-mail: (C-HK); (HK)
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
- * E-mail: (C-HK); (HK)
| |
Collapse
|
16
|
Ghoshal A, Moran SP, Dickerson JW, Joffe ME, Grueter BA, Xiang Z, Lindsley CW, Rook JM, Conn PJ. Role of mGlu 5 Receptors and Inhibitory Neurotransmission in M 1 Dependent Muscarinic LTD in the Prefrontal Cortex: Implications in Schizophrenia. ACS Chem Neurosci 2017; 8:2254-2265. [PMID: 28679049 DOI: 10.1021/acschemneuro.7b00167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Selective potentiation of the mGlu5 subtype of metabotropic glutamate (mGlu) receptor using positive allosteric modulators (PAMs) has robust cognition-enhancing effects in rodent models that are relevant for schizophrenia. Until recently, these effects were thought to be due to potentiation of mGlu5-induced modulation of NMDA receptor (NMDAR) currents and NMDAR-dependent synaptic plasticity. However, "biased" mGlu5 PAMs that do not potentiate mGlu5 effects on NMDAR currents show efficacy that is similar to that of prototypical mGlu5 PAMs, suggesting that NMDAR-independent mechanisms must be involved in these actions. We now report that synaptic activation of mGlu5 is required for a form of long-term depression (mLTD) in mouse prefrontal cortex (PFC) that is induced by activation of M1 muscarinic acetylcholine (mAChR) receptors, which was previously thought to be independent of mGlu5 activation. Interestingly, a biased mGlu5 PAM, VU0409551, that does not potentiate mGlu5 modulation of NMDAR currents, potentiated induction of mLTD. Furthermore, coactivation of mGlu5 and M1 receptors increased GABAA-dependent inhibitory tone in the PFC pyramidal neurons, which likely contributes to the observed mLTD. Finally, systemic administration of the biased mGlu5 PAM reversed deficits in mLTD and associated cognitive deficits in a model of cortical disruption caused by repeated phencyclidine exposure that is relevant for schizophrenia and was previously shown to be responsive to selective M1 muscarinic receptor PAMs. These studies provide exciting new insights into a novel mechanism by which mGlu5 PAMs can reverse deficits in PFC function and cognition that is independent of modulation of NMDAR currents.
Collapse
Affiliation(s)
- Ayan Ghoshal
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Sean P. Moran
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Jonathan W. Dickerson
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Max E. Joffe
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Brad A. Grueter
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Zixiu Xiang
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Craig W. Lindsley
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Jerri M. Rook
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - P. Jeffrey Conn
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| |
Collapse
|
17
|
Thomsen M, Sørensen G, Dencker D. Physiological roles of CNS muscarinic receptors gained from knockout mice. Neuropharmacology 2017; 136:411-420. [PMID: 28911965 DOI: 10.1016/j.neuropharm.2017.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
Abstract
Because the five muscarinic acetylcholine receptor subtypes have overlapping distributions in many CNS tissues, and because ligands with a high degree of selectivity for a given subtype long remained elusive, it has been difficult to determine the physiological functions of each receptor. Genetically engineered knockout mice, in which one or more muscarinic acetylcholine receptor subtype has been inactivated, have been instrumental in identifying muscarinic receptor functions in the CNS, at the neuronal, circuit, and behavioral level. These studies revealed important functions of muscarinic receptors modulating neuronal activity and neurotransmitter release in many brain regions, shaping neuronal plasticity, and affecting functions ranging from motor and sensory function to cognitive processes. As gene targeting technology evolves including the use of conditional, cell type specific strains, knockout mice are likely to continue to provide valuable insights into brain physiology and pathophysiology, and advance the development of new medications for a range of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and addictions, as well as non-opioid analgesics. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- Morgane Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen and University of Copenhagen, Denmark; Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | - Gunnar Sørensen
- Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Ditte Dencker
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen and University of Copenhagen, Denmark
| |
Collapse
|
18
|
Brzosko Z, Zannone S, Schultz W, Clopath C, Paulsen O. Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation. eLife 2017; 6. [PMID: 28691903 PMCID: PMC5546805 DOI: 10.7554/elife.27756] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/07/2017] [Indexed: 11/14/2022] Open
Abstract
Spike timing-dependent plasticity (STDP) is under neuromodulatory control, which is correlated with distinct behavioral states. Previously, we reported that dopamine, a reward signal, broadens the time window for synaptic potentiation and modulates the outcome of hippocampal STDP even when applied after the plasticity induction protocol (Brzosko et al., 2015). Here, we demonstrate that sequential neuromodulation of STDP by acetylcholine and dopamine offers an efficacious model of reward-based navigation. Specifically, our experimental data in mouse hippocampal slices show that acetylcholine biases STDP toward synaptic depression, whilst subsequent application of dopamine converts this depression into potentiation. Incorporating this bidirectional neuromodulation-enabled correlational synaptic learning rule into a computational model yields effective navigation toward changing reward locations, as in natural foraging behavior. Thus, temporally sequenced neuromodulation of STDP enables associations to be made between actions and outcomes and also provides a possible mechanism for aligning the time scales of cellular and behavioral learning. DOI:http://dx.doi.org/10.7554/eLife.27756.001
Collapse
Affiliation(s)
- Zuzanna Brzosko
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| | - Sara Zannone
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Wolfram Schultz
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| |
Collapse
|
19
|
Muñoz W, Tremblay R, Levenstein D, Rudy B. Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science 2017; 355:954-959. [PMID: 28254942 DOI: 10.1126/science.aag2599] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 02/06/2017] [Indexed: 10/25/2024]
Abstract
γ-Aminobutyric acid (GABA)ergic inputs are strategically positioned to gate synaptic integration along the dendritic arbor of pyramidal cells. However, their spatiotemporal dynamics during behavior are poorly understood. Using an optical-tagging electrophysiological approach to record and label somatostatin-expressing (Sst) interneurons (GABAergic neurons specialized for dendritic inhibition), we discovered a layer-specific modulation of their activity in behaving mice. Sst interneuron subtypes, residing in different cortical layers and innervating complementary laminar domains, exhibited opposite activity changes during transitions to active wakefulness. The relative weight of vasoactive intestinal peptide-expressing (Vip) interneuron-mediated inhibition of distinct Sst interneurons and cholinergic modulation determined their in vivo activity. These results reveal a state-dependent laminar influence of Sst interneuron-mediated inhibition, with implications for the compartmentalized regulation of dendritic signaling in the mammalian neocortex.
Collapse
Affiliation(s)
- William Muñoz
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Robin Tremblay
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Daniel Levenstein
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Bernardo Rudy
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
20
|
Leaderbrand K, Chen HJ, Corcoran KA, Guedea AL, Jovasevic V, Wess J, Radulovic J. Muscarinic acetylcholine receptors act in synergy to facilitate learning and memory. ACTA ACUST UNITED AC 2016; 23:631-638. [PMID: 27918283 PMCID: PMC5066603 DOI: 10.1101/lm.043133.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
Abstract
Understanding how episodic memories are formed and retrieved is necessary if we are to treat disorders in which they malfunction. Muscarinic acetylcholine receptors (mAChR) in the hippocampus and cortex underlie memory formation, but there is conflicting evidence regarding their role in memory retrieval. Additionally, there is no consensus on which mAChR subtypes are critical for memory processing. Using pharmacological and genetic approaches, we found that (1) encoding and retrieval of contextual memory requires mAChR in the dorsal hippocampus (DH) and retrosplenial cortex (RSC), (2) memory formation requires hippocampal M3 and cooperative activity of RSC M1 and M3, and (3) memory retrieval is more impaired by inactivation of multiple M1–M4 mAChR in DH or RSC than inactivation of individual receptor subtypes. Contrary to the view that acetylcholine supports learning but is detrimental to memory retrieval, we found that coactivation of multiple mAChR is required for retrieval of both recently and remotely acquired context memories. Manipulations with higher receptor specificity were generally less potent than manipulations targeting multiple receptor subtypes, suggesting that mAChR act in synergy to regulate memory processes. These findings provide unique insight into the development of therapies for amnestic symptoms, suggesting that broadly acting, rather than receptor-specific, mAchR agonists and positive allosteric modulators may be the most effective therapeutic approach.
Collapse
Affiliation(s)
- Katherine Leaderbrand
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Helen J Chen
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kevin A Corcoran
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Anita L Guedea
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Vladimir Jovasevic
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jurgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
21
|
Mei F, Lehmann-Horn K, Shen YAA, Rankin KA, Stebbins KJ, Lorrain DS, Pekarek K, A Sagan S, Xiao L, Teuscher C, von Büdingen HC, Wess J, Lawrence JJ, Green AJ, Fancy SP, Zamvil SS, Chan JR. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. eLife 2016; 5. [PMID: 27671734 PMCID: PMC5039026 DOI: 10.7554/elife.18246] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/01/2016] [Indexed: 01/19/2023] Open
Abstract
Demyelination in MS disrupts nerve signals and contributes to axon degeneration. While remyelination promises to restore lost function, it remains unclear whether remyelination will prevent axonal loss. Inflammatory demyelination is accompanied by significant neuronal loss in the experimental autoimmune encephalomyelitis (EAE) mouse model and evidence for remyelination in this model is complicated by ongoing inflammation, degeneration and possible remyelination. Demonstrating the functional significance of remyelination necessitates selectively altering the timing of remyelination relative to inflammation and degeneration. We demonstrate accelerated remyelination after EAE induction by direct lineage analysis and hypothesize that newly formed myelin remains stable at the height of inflammation due in part to the absence of MOG expression in immature myelin. Oligodendroglial-specific genetic ablation of the M1 muscarinic receptor, a potent negative regulator of oligodendrocyte differentiation and myelination, results in accelerated remyelination, preventing axonal loss and improving functional recovery. Together our findings demonstrate that accelerated remyelination supports axonal integrity and neuronal function after inflammatory demyelination. DOI:http://dx.doi.org/10.7554/eLife.18246.001
Collapse
Affiliation(s)
- Feng Mei
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Klaus Lehmann-Horn
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Yun-An A Shen
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Kelsey A Rankin
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | | | | | - Kara Pekarek
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Sharon A Sagan
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Cory Teuscher
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
| | | | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - J Josh Lawrence
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, United States
| | - Ari J Green
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Stephen Pj Fancy
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Scott S Zamvil
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
22
|
Aitken P, Benoit A, Zheng Y, Philoxene B, Le Gall A, Denise P, Besnard S, Smith PF. Hippocampal and striatal M1-muscarinic acetylcholine receptors are down-regulated following bilateral vestibular loss in rats. Hippocampus 2016; 26:1509-1514. [DOI: 10.1002/hipo.22651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Phillip Aitken
- Department of Pharmacology and Toxicology; Brain Health Research Centre University of Otago; Dunedin New Zealand
| | - Alice Benoit
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology; Brain Health Research Centre University of Otago; Dunedin New Zealand
- Brain Research New Zealand Centre of Research Excellence; New Zealand
| | - Bruno Philoxene
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Anne Le Gall
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Pierre Denise
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Stephane Besnard
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Paul F. Smith
- Department of Pharmacology and Toxicology; Brain Health Research Centre University of Otago; Dunedin New Zealand
- Brain Research New Zealand Centre of Research Excellence; New Zealand
| |
Collapse
|
23
|
Abbas AK. Protein Synthesis Inhibitors Did Not Interfere with Long-Term Depression Induced either Electrically in Juvenile Rats or Chemically in Middle-Aged Rats. PLoS One 2016; 11:e0161270. [PMID: 27517693 PMCID: PMC4982604 DOI: 10.1371/journal.pone.0161270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/02/2016] [Indexed: 11/26/2022] Open
Abstract
In testing the hypothesis that long-term potentiation (LTP) maintenance depends on triggered protein synthesis, we found no effect of protein synthesis inhibitors (PSIs) on LTP stabilization. Similarly, some studies reported a lack of effect of PSIs on long-term depression (LTD); the lack of effect on LTD has been suggested to be resulting from the short time recordings. If this proposal were true, LTD might exhibit sensitivity to PSIs when the recording intervals were enough long. We firstly induced LTD by a standard protocol involving low frequency stimulation, which is suitable for eliciting NMDAR-LTD in CA1 area of hippocampal slices obtained from juvenile Sprague-Dawley rats. This LTD was persistent for intervals in range of 8–10 h. Treating slices with anisomycin, however, did not interfere with the magnitude and persistence of this form of LTD. The failure of anisomycin to block synaptic-LTD might be relied on the age of animal, the type of protein synthesis inhibitors and/or the inducing protocol. To verify whether those variables altogether were determinant, NMDA or DHPG was used to chemically elicit LTD recorded up to 10 h on hippocampal slices obtained from middle-aged rats. In either form of LTD, cycloheximide did not interfere with LTD stabilization. Furthermore, DHPG application did show an increase in the global protein synthesis as assayed by radiolabeled methodology indicating that though triggered protein synthesis can occur but not necessarily required for LTD expression. The findings confirm that stabilized LTD in either juvenile, or middle-aged rats can be independent of triggered protein synthesis. Although the processes responsible for the independence of LTD stabilization on the triggered protein synthesis are not yet defined, these findings raise the possibility that de novo protein synthesis is not universally necessary.
Collapse
Affiliation(s)
- Abdul-Karim Abbas
- Institute of Neuroscience and Physiology, University of Gothenburg, Box 432, SE-40530, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
24
|
Induction of Anti-Hebbian LTP in CA1 Stratum Oriens Interneurons: Interactions between Group I Metabotropic Glutamate Receptors and M1 Muscarinic Receptors. J Neurosci 2016; 35:13542-54. [PMID: 26446209 DOI: 10.1523/jneurosci.0956-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED An anti-Hebbian form of LTP is observed at excitatory synapses made with some hippocampal interneurons. LTP induction is facilitated when postsynaptic interneurons are hyperpolarized, presumably because Ca(2+) entry through Ca(2+)-permeable glutamate receptors is enhanced. The contribution of modulatory transmitters to anti-Hebbian LTP induction remains to be established. Activation of group I metabotropic receptors (mGluRs) is required for anti-Hebbian LTP induction in interneurons with cell bodies in the CA1 stratum oriens. This region receives a strong cholinergic innervation from the septum, and muscarinic acetylcholine receptors (mAChRs) share some signaling pathways and cooperate with mGluRs in the control of neuronal excitability.We therefore examined possible interactions between group I mGluRs and mAChRs in anti-Hebbian LTP at synapses which excite oriens interneurons in rat brain slices. We found that blockade of either group I mGluRs or M1 mAChRs prevented the induction of anti-Hebbian LTP by pairing presynaptic activity with postsynaptic hyperpolarization. Blocking either receptor also suppressed long-term effects of activation of the other G-protein coupled receptor on interneuron membrane potential. However, no crossed blockade was detected for mGluR or mAchR effects on interneuron after-burst potentials or on the frequency of miniature EPSPs. Paired recordings between pyramidal neurons and oriens interneurons were obtained to determine whether LTP could be induced without concurrent stimulation of cholinergic axons. Exogenous activation of mAChRs led to LTP, with changes in EPSP amplitude distributions consistent with a presynaptic locus of expression. LTP, however, required noninvasive presynaptic and postsynaptic recordings. SIGNIFICANCE STATEMENT In the hippocampus, a form of NMDA receptor-independent long-term potentiation (LTP) occurs at excitatory synapses made on some inhibitory neurons. This is preferentially induced when postsynaptic interneurons are hyperpolarized, depends on Ca(2+) entry through Ca(2+)-permeable AMPA receptors, and has been labeled anti-Hebbian LTP. Here we show that this form of LTP also depends on activation of both group I mGluR and M1 mAChRs. We demonstrate that these G-protein coupled receptors (GPCRs) interact, because the blockade of one receptor suppresses long-term effects of activation of the other GPCR on both LTP and interneuron membrane potential. This LTP was also detected in paired recordings, although only when both presynaptic and postsynaptic recordings did not perturb the intracellular medium. Changes in EPSP amplitude distributions in dual recordings were consistent with a presynaptic locus of expression.
Collapse
|
25
|
Adinoff B, Gu H, Merrick C, McHugh M, Jeon-Slaughter H, Lu H, Yang Y, Stein EA. Basal Hippocampal Activity and Its Functional Connectivity Predicts Cocaine Relapse. Biol Psychiatry 2015; 78:496-504. [PMID: 25749098 PMCID: PMC5671769 DOI: 10.1016/j.biopsych.2014.12.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cocaine-induced neuroplastic changes may result in a heightened propensity for relapse. Using regional cerebral blood flow (rCBF) as a marker of basal neuronal activity, this study assessed alterations in rCBF and related resting state functional connectivity (rsFC) to prospectively predict relapse in patients following treatment for cocaine use disorder (CUD). METHODS Pseudocontinuous arterial spin labeling functional magnetic resonance imaging and resting blood oxygen level-dependent functional magnetic resonance imaging data were acquired in the same scan session in abstinent participants with CUD before residential treatment discharge and in 20 healthy matched control subjects. Substance use was assessed twice weekly following discharge. Relapsed participants were defined as those who used stimulants within 30 days following treatment discharge (n = 22); early remission participants (n = 18) did not. RESULTS Voxel-wise, whole-brain analysis revealed enhanced rCBF only in the left posterior hippocampus (pHp) in the relapsed group compared with the early remission and control groups. Using this pHp as a seed, increased rsFC strength with the posterior cingulate cortex (PCC)/precuneus was seen in the relapsed versus early remission subgroups. Together, both increased pHp rCBF and strengthened pHp-PCC rsFC predicted relapse with 75% accuracy at 30, 60, and 90 days following treatment. CONCLUSIONS In CUD participants at risk of early relapse, increased pHp basal activity and pHp-PCC circuit strength may reflect the propensity for heightened reactivity to cocaine cues and persistent cocaine-related ruminations. Mechanisms to mute hyperactivated brain regions and delink dysregulated neural circuits may prove useful to prevent relapse in patients with CUD.
Collapse
Affiliation(s)
- Bryon Adinoff
- Veterans Affairs North Texas Health Care System, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Hong Gu
- Intramural Research Program-Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, Maryland
| | - Carmen Merrick
- School of Behavior and Brain Sciences, University of Texas at Dallas
| | - Meredith McHugh
- Intramural Research Program-Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, Maryland
| | | | - Hanzhang Lu
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yihong Yang
- Intramural Research Program-Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, Maryland
| | - Elliot A Stein
- Intramural Research Program-Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, Maryland
| |
Collapse
|
26
|
Girasole AE, Nelson AB. Probing striatal microcircuitry to understand the functional role of cholinergic interneurons. Mov Disord 2015; 30:1306-18. [PMID: 26227561 DOI: 10.1002/mds.26340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/12/2015] [Accepted: 06/21/2015] [Indexed: 12/23/2022] Open
Affiliation(s)
- Allison E Girasole
- Department of Neurology, University of California, San Francisco, USA.,Neuroscience Graduate Program, University of California, San Francisco, USA
| | - Alexandra B Nelson
- Department of Neurology, University of California, San Francisco, USA.,Neuroscience Graduate Program, University of California, San Francisco, USA
| |
Collapse
|
27
|
Yi F, DeCan E, Stoll K, Marceau E, Deisseroth K, Lawrence JJ. Muscarinic excitation of parvalbumin-positive interneurons contributes to the severity of pilocarpine-induced seizures. Epilepsia 2014; 56:297-309. [PMID: 25495999 DOI: 10.1111/epi.12883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2014] [Indexed: 01/20/2023]
Abstract
OBJECTIVE A common rodent model in epilepsy research employs the muscarinic acetylcholine receptor (mAChR) agonist pilocarpine, yet the mechanisms underlying the induction of pilocarpine-induced seizures (PISs) remain unclear. Global M1 mAChR (M1 R) knockout mice are resistant to PISs, implying that M1 R activation disrupts excitation/inhibition balance. Parvalbumin-positive (PV) inhibitory neurons express M1 Rs, participate in cholinergically induced oscillations, and can enter a state of depolarization block (DB) during epileptiform activity. Here, we test the hypothesis that pilocarpine activation of M1 Rs expressed on PV cells contributes to PISs. METHODS CA1 PV cells in PV-CRE mice were visualized with a floxed YFP or hM3Dq-mCherry adeno-associated virus, or by crossing PV-CRE mice with the RosaYFP reporter line. To eliminate M1 Rs from PV cells, we generated PV-M1 knockout (KO) mice by crossing PV-CRE and floxed M1 mice. Action potential (AP) frequency was monitored during application of pilocarpine (200 μm). In behavioral experiments, locomotion and seizure symptoms were recorded in wild-type (WT) or PV-M1 KO mice during PISs. RESULTS Pilocarpine significantly increased AP frequency in CA1 PV cells into the gamma range. In the continued presence of pilocarpine, a subset (5/7) of PV cells progressed to DB, which was mimicked by hM3Dq activation of Gq-receptor signaling. Pilocarpine-induced depolarization, AP firing at gamma frequency, and progression to DB were prevented in CA1 PV cells of PV-M1 KO mice. Finally, compared to WT mice, PV-M1 KO mice were associated with reduced severity of PISs. SIGNIFICANCE Pilocarpine can directly depolarize PV+ cells via M1 R activation, but a subset of these cells progress to DB. Our electrophysiologic and behavioral results suggest that this mechanism is active during PISs, contributing to a collapse of PV-mediated γ-aminobutyric acid (GABA)ergic inhibition, dysregulation of excitation/inhibition balance, and increased susceptibility to PISs.
Collapse
Affiliation(s)
- Feng Yi
- COBRE Center for Structural and Functional Neuroscience, The University of Montana, Missoula, Montana, U.S.A; Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana, U.S.A
| | | | | | | | | | | |
Collapse
|
28
|
Zhang Y, Yu T, Liu Y, Qian K, Yu BW. Muscarinic M1 Receptors Regulate Propofol Modulation of GABAergic Transmission in Rat Ventrolateral Preoptic Neurons. J Mol Neurosci 2014; 55:830-5. [DOI: 10.1007/s12031-014-0435-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/30/2014] [Indexed: 11/25/2022]
|
29
|
Keum D, Baek C, Kim DI, Kweon HJ, Suh BC. Voltage-dependent regulation of CaV2.2 channels by Gq-coupled receptor is facilitated by membrane-localized β subunit. ACTA ACUST UNITED AC 2014; 144:297-309. [PMID: 25225550 PMCID: PMC4178937 DOI: 10.1085/jgp.201411245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pathway through which preferentially GqPCRs inhibit CaV2.2 channels depends on which β subunits are present. G protein–coupled receptors (GPCRs) signal through molecular messengers, such as Gβγ, Ca2+, and phosphatidylinositol 4,5-bisphosphate (PIP2), to modulate N-type voltage-gated Ca2+ (CaV2.2) channels, playing a crucial role in regulating synaptic transmission. However, the cellular pathways through which GqPCRs inhibit CaV2.2 channel current are not completely understood. Here, we report that the location of CaV β subunits is key to determining the voltage dependence of CaV2.2 channel modulation by GqPCRs. Application of the muscarinic agonist oxotremorine-M to tsA-201 cells expressing M1 receptors, together with CaV N-type α1B, α2δ1, and membrane-localized β2a subunits, shifted the current-voltage relationship for CaV2.2 activation 5 mV to the right and slowed current activation. Muscarinic suppression of CaV2.2 activity was relieved by strong depolarizing prepulses. Moreover, when the C terminus of β-adrenergic receptor kinase (which binds Gβγ) was coexpressed with N-type channels, inhibition of CaV2.2 current after M1 receptor activation was markedly reduced and delayed, whereas the delay between PIP2 hydrolysis and inhibition of CaV2.2 current was decreased. When the Gβγ-insensitive CaV2.2 α1C-1B chimera was expressed, voltage-dependent inhibition of calcium current was virtually abolished, suggesting that M1 receptors act through Gβγ to inhibit CaV2.2 channels bearing membrane-localized CaV β2a subunits. Expression of cytosolic β subunits such as β2b and β3, as well as the palmitoylation-negative mutant β2a(C3,4S), reduced the voltage dependence of M1 muscarinic inhibition of CaV2.2 channels, whereas it increased inhibition mediated by PIP2 depletion. Together, our results indicate that, with membrane-localized CaV β subunits, CaV2.2 channels are subject to Gβγ-mediated voltage-dependent inhibition, whereas cytosol-localized β subunits confer more effective PIP2-mediated voltage-independent regulation. Thus, the voltage dependence of GqPCR regulation of calcium channels can be determined by the location of isotype-specific CaV β subunits.
Collapse
Affiliation(s)
- Dongil Keum
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Christina Baek
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Dong-Il Kim
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Hae-Jin Kweon
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Byung-Chang Suh
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| |
Collapse
|
30
|
Atwood BK, Lovinger DM, Mathur BN. Presynaptic long-term depression mediated by Gi/o-coupled receptors. Trends Neurosci 2014; 37:663-73. [PMID: 25160683 DOI: 10.1016/j.tins.2014.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 01/20/2023]
Abstract
Long-term depression (LTD) of the efficacy of synaptic transmission is now recognized as an important mechanism for the regulation of information storage and the control of actions, as well as for synapse, neuron, and circuit development. Studies of LTD mechanisms have focused mainly on postsynaptic AMPA-type glutamate receptor trafficking. However, the focus has now expanded to include presynaptically expressed plasticity, the predominant form being initiated by presynaptically expressed Gi/o-coupled metabotropic receptor (Gi/o-GPCR) activation. Several forms of LTD involving activation of different presynaptic Gi/o-GPCRs as a 'common pathway' are described. We review here the literature on presynaptic Gi/o-GPCR-mediated LTD, discuss known mechanisms, gaps in our knowledge, and evaluate whether all Gi/o-GPCRs are capable of inducing presynaptic LTD.
Collapse
Affiliation(s)
- Brady K Atwood
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, 5625 Fishers Lane, MSC 9411, Bethesda, MD 20852-9411, USA
| | - David M Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, 5625 Fishers Lane, MSC 9411, Bethesda, MD 20852-9411, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
31
|
Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov 2014; 13:549-60. [PMID: 24903776 DOI: 10.1038/nrd4295] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The muscarinic acetylcholine receptors are a subfamily of G protein-coupled receptors that regulate numerous fundamental functions of the central and peripheral nervous system. The past few years have witnessed unprecedented new insights into muscarinic receptor physiology, pharmacology and structure. These advances include the first structural views of muscarinic receptors in both inactive and active conformations, as well as a better understanding of the molecular underpinnings of muscarinic receptor regulation by allosteric modulators. These recent findings should facilitate the development of new muscarinic receptor subtype-selective ligands that could prove to be useful for the treatment of many severe pathophysiological conditions.
Collapse
|
32
|
Yi F, Ball J, Stoll KE, Satpute VC, Mitchell SM, Pauli JL, Holloway BB, Johnston AD, Nathanson NM, Deisseroth K, Gerber DJ, Tonegawa S, Lawrence JJ. Direct excitation of parvalbumin-positive interneurons by M1 muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition. J Physiol 2014; 592:3463-94. [PMID: 24879872 DOI: 10.1113/jphysiol.2014.275453] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parvalbumin-containing (PV) neurons, a major class of GABAergic interneurons, are essential circuit elements of learning networks. As levels of acetylcholine rise during active learning tasks, PV neurons become increasingly engaged in network dynamics. Conversely, impairment of either cholinergic or PV interneuron function induces learning deficits. Here, we examined PV interneurons in hippocampus (HC) and prefrontal cortex (PFC) and their modulation by muscarinic acetylcholine receptors (mAChRs). HC PV cells, visualized by crossing PV-CRE mice with Rosa26YFP mice, were anatomically identified as basket cells and PV bistratified cells in the stratum pyramidale; in stratum oriens, HC PV cells were electrophysiologically distinct from somatostatin-containing cells. With glutamatergic transmission pharmacologically blocked, mAChR activation enhanced PV cell excitability in both CA1 HC and PFC; however, CA1 HC PV cells exhibited a stronger postsynaptic depolarization than PFC PV cells. To delete M1 mAChRs genetically from PV interneurons, we created PV-M1 knockout mice by crossing PV-CRE and floxed M1 mice. The elimination of M1 mAChRs from PV cells diminished M1 mAChR immunoreactivity and muscarinic excitation of HC PV cells. Selective cholinergic activation of HC PV interneurons using Designer Receptors Exclusively Activated by Designer Drugs technology enhanced the frequency and amplitude of inhibitory synaptic currents in CA1 pyramidal cells. Finally, relative to wild-type controls, PV-M1 knockout mice exhibited impaired novel object recognition and, to a lesser extent, impaired spatial working memory, but reference memory remained intact. Therefore, the direct activation of M1 mAChRs on PV cells contributes to some forms of learning and memory.
Collapse
Affiliation(s)
- Feng Yi
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Jackson Ball
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Kurt E Stoll
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Vaishali C Satpute
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences Neuroscience Graduate Program
| | - Samantha M Mitchell
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences Davidson Honors College, The University of Montana, Missoula, MT 59812, USA
| | - Jordan L Pauli
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Benjamin B Holloway
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - April D Johnston
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Neil M Nathanson
- Department of Pharmacology, University of Washington, Box 357750, Seattle, WA 98195-7750, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - David J Gerber
- Howard Hughes Medical Institute, RIKEN-MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susumu Tonegawa
- Howard Hughes Medical Institute, RIKEN-MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Josh Lawrence
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| |
Collapse
|
33
|
Scarr E, Gibbons AS, Neo J, Udawela M, Dean B. Cholinergic connectivity: it's implications for psychiatric disorders. Front Cell Neurosci 2013; 7:55. [PMID: 23653591 PMCID: PMC3642390 DOI: 10.3389/fncel.2013.00055] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Andrew S. Gibbons
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Jaclyn Neo
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience, The University of MelbourneParkville, VIC, Australia
| | - Brian Dean
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| |
Collapse
|
34
|
Upreti C, Zhang XL, Alford S, Stanton PK. Role of presynaptic metabotropic glutamate receptors in the induction of long-term synaptic plasticity of vesicular release. Neuropharmacology 2012; 66:31-9. [PMID: 22626985 DOI: 10.1016/j.neuropharm.2012.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 11/24/2022]
Abstract
While postsynaptic ionotropic and metabotropic glutamate receptors have received the lions share of attention in studies of long-term activity-dependent synaptic plasticity, it is becoming clear that presynaptic metabotropic glutamate receptors play critical roles in both short-term and long-term plasticity of vesicular transmitter release, and that they act both at the level of voltage-dependent calcium channels and directly on proteins of the vesicular release machinery. Activation of G protein-coupled receptors can transiently inhibit vesicular release through the release of Gβγ which binds to both voltage-dependent calcium channels to reduce calcium influx, and directly to the C-terminus region of the SNARE protein SNAP-25. Our recent work has revealed that the binding of Gβγ to SNAP-25 is necessary, but not sufficient, to elicit long-term depression (LTD) of vesicular glutamate release, and that the concomitant release of Gα(i) and the second messenger nitric oxide are also necessary steps in the presynaptic LTD cascade. Here, we review the current state of knowledge of the molecular steps mediating short-term and long-term plasticity of vesicular release at glutamatergic synapses, and the many gaps that remain to be addressed. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Chirag Upreti
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Muscarinic acetylcholine (ACh) receptors (mAChRs; M₁-M₅) regulate the activity of an extraordinarily large number of important physiological processes. During the past 10-15 years, studies with whole-body M₁-M₅ mAChR knockout mice have provided many new insights into the physiological and pathophysiological roles of the individual mAChR subtypes. This review will focus on the characterization of a novel generation of mAChR mutant mice, including mice in which distinct mAChR genes have been excised in a tissue- or cell type-specific fashion, various transgenic mouse lines that overexpress wild-type or different mutant M₃ mAChRs in certain tissues or cells only, as well as a novel M₃ mAChR knockin mouse strain deficient in agonist-induced M₃ mAChR phosphorylation. Phenotypic analysis of these new animal models has greatly advanced our understanding of the physiological roles of the various mAChR subtypes and has identified potential targets for the treatment of type 2 diabetes, schizophrenia, Parkinson's disease, drug addiction, cognitive disorders, and several other pathophysiological conditions.
Collapse
|
36
|
Erasing synapses in sleep: is it time to be SHY? Neural Plast 2012; 2012:264378. [PMID: 22530156 PMCID: PMC3317003 DOI: 10.1155/2012/264378] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/04/2011] [Indexed: 02/04/2023] Open
Abstract
Converging lines of evidence strongly support a role for sleep in brain plasticity. An elegant idea that may explain how sleep accomplishes this role is the "synaptic homeostasis hypothesis (SHY)." According to SHY, sleep promotes net synaptic weakening which offsets net synaptic strengthening that occurs during wakefulness. SHY is intuitively appealing because it relates the homeostatic regulation of sleep to an important function (synaptic plasticity). SHY has also received important experimental support from recent studies in Drosophila melanogaster. There remain, however, a number of unanswered questions about SHY. What is the cellular mechanism governing SHY? How does it fit with what we know about plasticity mechanisms in the brain? In this review, I discuss the evidence and theory of SHY in the context of what is known about Hebbian and non-Hebbian synaptic plasticity. I conclude that while SHY remains an elegant idea, the underlying mechanisms are mysterious and its functional significance unknown.
Collapse
|
37
|
Falsafi SK, Deli A, Höger H, Pollak A, Lubec G. Scopolamine administration modulates muscarinic, nicotinic and NMDA receptor systems. PLoS One 2012; 7:e32082. [PMID: 22384146 PMCID: PMC3285663 DOI: 10.1371/journal.pone.0032082] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/19/2012] [Indexed: 11/25/2022] Open
Abstract
Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration. C57BL/6J mice were used for the experiments and divided into four groups. Two groups were given scopolamine 1 mg/kg i.p. (the first group was trained and the second group untrained) in the multiple T-maze (MTM), a paradigm for evaluation of spatial memory. Likewise, vehicle-treated mice were trained or untrained thus serving as controls. Hippocampal levels of M1, nicotinic receptor alpha 4 (Nic4) and 7 (Nic7) and subunit NR1containing complexes were determined by immunoblotting on blue native gel electrophoresis. Vehicle-treated trained mice learned the task and showed memory retrieval on day 8, while scopolamine-treatment led to significant impairment of performance in the MTM. At the day of retrieval, hippocampal levels for M1, Nic7 and NR1 were higher in the scopolamine treated groups than in vehicle-treated groups. The concerted action, i.e. the pattern of four brain receptor complexes regulated by the anticholinergic compound scopolamine, is shown. Insight into probable action mechanisms of scopolamine at the brain receptor complex level in the hippocampus is provided. Scopolamine treatment is a standard approach to test cognitive enhancers and other psychoactive compounds in pharmacological studies and therefore knowledge on mechanisms is of pivotal interest.
Collapse
Affiliation(s)
| | - Alev Deli
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Vienna, Austria
| | - Arnold Pollak
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
38
|
Kanju PM, Parameshwaran K, Sims-Robinson C, Uthayathas S, Josephson EM, Rajakumar N, Dhanasekaran M, Suppiramaniam V. Selective cholinergic depletion in medial septum leads to impaired long term potentiation and glutamatergic synaptic currents in the hippocampus. PLoS One 2012; 7:e31073. [PMID: 22355337 PMCID: PMC3280283 DOI: 10.1371/journal.pone.0031073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 01/02/2012] [Indexed: 12/02/2022] Open
Abstract
Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning.
Collapse
Affiliation(s)
- Patrick M. Kanju
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kodeeswaran Parameshwaran
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- Department of Pathobiology, Auburn University, Auburn, Alabama, United States of America
| | - Catrina Sims-Robinson
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Subramaniam Uthayathas
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Eleanor M. Josephson
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama, United States of America
| | - Nagalingam Rajakumar
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | | | - Vishnu Suppiramaniam
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
39
|
Presynaptic gating of postsynaptically expressed plasticity at mature thalamocortical synapses. J Neurosci 2011; 31:16012-25. [PMID: 22049443 DOI: 10.1523/jneurosci.3281-11.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thalamocortical (TC) projections provide the major pathway for ascending sensory information to the mammalian neocortex. Arrays of these projections form synaptic inputs on thalamorecipient neurons, thus contributing to the formation of receptive fields (RFs) in sensory cortices. Experience-dependent plasticity of RFs persists throughout an organism's life span but in adults requires activation of cholinergic inputs to the cortex. In contrast, synaptic plasticity at TC projections is limited to the early postnatal period. This disconnect led to the widespread belief that TC synapses are the principal site of RF plasticity only in neonatal sensory cortices, but that they lose this plasticity upon maturation. Here, we tested an alternative hypothesis that mature TC projections do not lose synaptic plasticity but rather acquire gating mechanisms that prevent the induction of synaptic plasticity. Using whole-cell recordings and direct measures of postsynaptic and presynaptic activity (two-photon glutamate uncaging and two-photon imaging of the FM 1-43 assay, respectively) at individual synapses in acute mouse brain slices that contain the auditory thalamus and cortex, we determined that long-term depression (LTD) persists at mature TC synapses but is gated presynaptically. Cholinergic activation releases presynaptic gating through M(1) muscarinic receptors that downregulate adenosine inhibition of neurotransmitter release acting through A(1) adenosine receptors. Once presynaptic gating is released, mature TC synapses can express LTD postsynaptically through group I metabotropic glutamate receptors. These results indicate that synaptic plasticity at TC synapses is preserved throughout the life span and, therefore, may be a cellular substrate of RF plasticity in both neonate and mature animals.
Collapse
|
40
|
Medeiros R, Kitazawa M, Caccamo A, Baglietto-Vargas D, Estrada-Hernandez T, Cribbs DH, Fisher A, LaFerla FM. Loss of muscarinic M1 receptor exacerbates Alzheimer's disease-like pathology and cognitive decline. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:980-91. [PMID: 21704011 PMCID: PMC3157199 DOI: 10.1016/j.ajpath.2011.04.041] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/29/2011] [Accepted: 04/22/2011] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is pathologically characterized by tau-laden neurofibrillary tangles and β-amyloid deposits. Dysregulation of cholinergic neurotransmission has been implicated in AD pathogenesis, contributing to the associated memory impairments; yet, the exact mechanisms remain to be defined. Activating the muscarinic acetylcholine M(1) receptors (M(1)Rs) reduces AD-like pathological features and enhances cognition in AD transgenic models. To elucidate the molecular mechanisms by which M(1)Rs affect AD pathophysiological features, we crossed the 3xTgAD and transgenic mice expressing human Swedish, Dutch, and Iowa triple-mutant amyloid precursor protein (Tg-SwDI), two widely used animal models, with the M(1)R(-/-) mice. Our data show that M(1)R deletion in the 3xTgAD and Tg-SwDI mice exacerbates the cognitive impairment through mechanisms dependent on the transcriptional dysregulation of genes required for memory and through acceleration of AD-related synaptotoxicity. Ablating the M(1)R increased plaque and tangle levels in the brains of 3xTgAD mice and elevated cerebrovascular deposition of fibrillar Aβ in Tg-SwDI mice. Notably, tau hyperphosphorylation and potentiation of amyloidogenic processing in the mice with AD lacking M(1)R were attributed to changes in the glycogen synthase kinase 3β and protein kinase C activities. Finally, deleting the M(1)R increased the astrocytic and microglial response associated with Aβ plaques. Our data highlight the significant role that disrupting the M(1)R plays in exacerbating AD-related cognitive decline and pathological features and provide critical preclinical evidence to justify further development and evaluation of selective M(1)R agonists for treating AD.
Collapse
Affiliation(s)
- Rodrigo Medeiros
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - Masashi Kitazawa
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - Antonella Caccamo
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - David Baglietto-Vargas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - Tatiana Estrada-Hernandez
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - David H. Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California
- Department of Neurology, University of California, Irvine, California
| | - Avraham Fisher
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Frank M. LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California
- Department of Neurobiology and Behavior, University of California, Irvine, California
| |
Collapse
|
41
|
Cocaine withdrawal impairs metabotropic glutamate receptor-dependent long-term depression in the nucleus accumbens. J Neurosci 2011; 31:4194-203. [PMID: 21411660 DOI: 10.1523/jneurosci.5239-10.2011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuroadaptation in the nucleus accumbens (NAc), a central component of the mesolimbic dopamine (DA) system, has been implicated in the development of cocaine-induced psychomotor sensitization and relapse to cocaine seeking. However, little is known about the cellular and synaptic mechanisms underlying such adaptation. Using a mouse model of behavioral sensitization, we show that animals withdrawn from repeated cocaine exposure have a selective deficit in the ability to elicit metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) in the shell of the NAc in response to bath application of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG). Experiments conducted in the presence of the selective mGluR1 antagonists 7-(hydroxyimino)cyclopropachromen-carboxylate ethyl ester and (S)-(+)-α-amino-4-carboxy-2-methylbenzeneacetic acid, or the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine, demonstrated that the impaired DHPG-LTD is likely attributable to a loss of mGluR5 function. Quantitative real-time reverse transcriptase-PCR and Western blot analysis revealed significant downregulation of mGluR5, but not mGluR1, mRNA and protein levels in the NAc shell. The inhibitory effect of repeated cocaine exposure on DHPG-LTD was selectively prevented when cocaine was coadministered with the selective D(1)-like DA receptor antagonist (R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine. Furthermore, the levels of brain-derived neurotrophic factor (BDNF) protein in the NAc shell increased progressively after cocaine withdrawal, and the impairment of DHPG-LTD in the NAc shell was not found in slices from BDNF-knock-out mice after cocaine withdrawal. These results suggest that withdrawal from repeated cocaine exposure may result in increased BDNF levels in the NAc shell, which leads to a selective downregulation of mGluR5 and thereby impairs the induction of mGluR-dependent LTD.
Collapse
|
42
|
Connelly T, Fan Y, Schulz PE. Distinct mechanisms contribute to agonist and synaptically induced metabotropic glutamate receptor long-term depression. Eur J Pharmacol 2011; 667:160-8. [PMID: 21575629 DOI: 10.1016/j.ejphar.2011.04.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 11/25/2022]
Abstract
Metabotropic glutamate receptor mediated long-term depression (mGlu receptor LTD) is evoked in hippocampal area CA1 chemically by the agonist 3,5-Dihydroxyphenylglycine (DHPG, agonist LTD) and synaptically by paired-pulse low frequency stimulation (PP-LFS, synaptic LTD). We tested the hypothesis that different expression mechanisms regulate mGlu receptor LTD in 15-21 day old rats through neurophysiologic recordings in CA1. Several findings, in fact, suggest that agonist and synaptic mGlu receptor LTD are expressed through different mechanisms. First, neither LTD occluded the other. Second, a low calcium solution enhanced agonist LTD but did not alter synaptic LTD. Third, application of the mGlu receptor antagonist LY341495 (2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid) reversed agonist LTD expression, but did not alter synaptic LTD. Finally, an N-type, voltage-dependent calcium channel antagonist, ω-conotoxin GVIA (CTX), reduced agonist LTD expression by 35%, but did not alter synaptic LTD. CTX also blocked the increase in the paired-pulse ratio associated with agonist LTD. This study cautions against assuming that agonist and synaptic LTD are equivalent as several components underlying their expression appear to differ. Moreover, the data suggest that agonist LTD, but not synaptic LTD, has a presynaptic, N-channel mediated component.
Collapse
Affiliation(s)
- Timothy Connelly
- University of Pennsylvania, Department of Neuroscience, United States
| | | | | |
Collapse
|
43
|
Abstract
Long-term depression (LTD) in the CNS has been the subject of intense investigation as a process that may be involved in learning and memory and in various pathological conditions. Several mechanistically distinct forms of this type of synaptic plasticity have been identified and their molecular mechanisms are starting to be unravelled. Most studies have focused on forms of LTD that are triggered by synaptic activation of either NMDARs (N-methyl-D-aspartate receptors) or metabotropic glutamate receptors (mGluRs). Converging evidence supports a crucial role of LTD in some types of learning and memory and in situations in which cognitive demands require a flexible response. In addition, LTD may underlie the cognitive effects of acute stress, the addictive potential of some drugs of abuse and the elimination of synapses in neurodegenerative diseases.
Collapse
|
44
|
Klinkenberg I, Blokland A. A comparison of scopolamine and biperiden as a rodent model for cholinergic cognitive impairment. Psychopharmacology (Berl) 2011; 215:549-66. [PMID: 21336581 PMCID: PMC3090581 DOI: 10.1007/s00213-011-2171-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 01/09/2011] [Indexed: 10/26/2022]
Abstract
RATIONALE The nonselective muscarinic antagonist scopolamine hydrobromide (SCOP) is employed as the gold standard for inducing memory impairments in healthy humans and animals. However, its use remains controversial due to the wide spectrum of behavioral effects of this drug. OBJECTIVE The present study investigated whether biperiden (BIP), a muscarinic m1 receptor antagonist, is to be preferred over SCOP as a pharmacological model for cholinergic memory deficits in rats. This was done by comparing the effects of SCOP and BIP using a battery of operant tasks: fixed ratio (FR5) and progressive ratio (PR10) schedules of reinforcement, an attention paradigm and delayed nonmatching to position task. RESULTS SCOP induced diffuse behavioral disruption, which included sensorimotor responding (FR5, 0.3 and 1 mg/kg), food motivation (PR10, 1 mg/kg), attention (0.3 mg/kg, independent of stimulus duration), and short-term memory (delayed nonmatching to position (DNMTP), 0.1 and 0.3 mg/kg, delay-dependent but also impairment at the zero second delay). BIP induced relatively more selective deficits, as it slowed sensorimotor responding (FR5, 10 mg/kg) and disrupted short-term memory (DNMTP, 3 mg/kg, delay-dependent but no impairment at the zero second delay). BIP had no effect on food motivation (PR10) or attention. CONCLUSION Muscarinic m1 antagonists should be considered an interesting alternative for SCOP as a pharmacological model for cholinergic mnemonic deficits in animals.
Collapse
Affiliation(s)
- Inge Klinkenberg
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands.
| | - Arjan Blokland
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, European Graduate School of Neuroscience (EURON), Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
45
|
Greene RW, Frank MG. Slow wave activity during sleep: functional and therapeutic implications. Neuroscientist 2010; 16:618-33. [PMID: 20921564 DOI: 10.1177/1073858410377064] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Electroencephalographic slow-wave activity (EEG SWA) is an electrophysiological signature of slow (0.5 to 4.0 Hz), synchronized, oscillatory neocortical activity. In healthy individuals, EEG SWA is maximally expressed during non-rapid-eye-movement (non-REM) sleep, and intensifies as a function of prior wake duration. Many of the cellular and network mechanisms generating EEG SWA have been identified, but a number of questions remain unanswered. For example, although EEG SWA is a marker of sleep need, its precise relationship with sleep homeostasis and its roles in the brain are unknown. In this review, the authors discuss their current understanding of the neural mechanisms and possible functions of EEG SWA.
Collapse
Affiliation(s)
- Robert W Greene
- Department of Psychiatry, UTSW Medical Center, Dallas VA, Dallas, Texas 75390, USA.
| | | |
Collapse
|
46
|
Kumar A. Carbachol-induced long-term synaptic depression is enhanced during senescence at hippocampal CA3-CA1 synapses. J Neurophysiol 2010; 104:607-16. [PMID: 20505129 DOI: 10.1152/jn.00278.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dysregulation of the cholinergic transmitter system is a hallmark of Alzheimer's disease and contributes to an age-associated decline in memory performance. The current study examined the influence of carbachol, a cholinergic receptor agonist, on synaptic transmission over the course of aging. Extracellular excitatory postsynaptic field potentials were recorded from CA3-CA1 synapses in acute hippocampal slices obtained from young adult (5-8 mo) and aged (22-24 mo) male Fischer 344 rats. Bath application of carbachol elicited a transient depression of synaptic transmission, which was followed by a long-lasting depression (CCh-LTD) observed 90 min after carbachol cessation in both age groups. However, the magnitude of CCh-LTD was significantly larger in senescent animals and was attenuated by N-methyl-D-aspartate receptor blockade in aged animals. Blockade of L-type Ca(2+) channels inhibited CCh-LTD to a greater extent in aged animals compared to young adults. Finally, the expression of CCh-LTD was dependent on protein synthesis. The results indicate that altered Ca(2+) homeostasis or muscarinic activation of Ca(2+) signaling contribute to the enhanced CCh-LTD during senescence.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0244, USA.
| |
Collapse
|
47
|
M3 muscarinic acetylcholine receptor expression confers differential cholinergic modulation to neurochemically distinct hippocampal basket cell subtypes. J Neurosci 2010; 30:6011-24. [PMID: 20427660 DOI: 10.1523/jneurosci.5040-09.2010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cholinergic neuromodulation of hippocampal circuitry promotes network oscillations and facilitates learning and memory through cellular actions on both excitatory and inhibitory circuits. Despite widespread recognition that neurochemical content discriminates between functionally distinct interneuron populations, there has been no systematic examination of whether neurochemically distinct interneuron classes undergo differential cholinergic neuromodulation in the hippocampus. Using GFP transgenic mice that enable the visualization of perisomatically targeting parvalbumin-positive (PV+) or cholecystokinin-positive (CCK+) basket cells (BCs), we tested the hypothesis that neurochemically distinct interneuron populations are differentially engaged by muscarinic acetylcholine receptor (mAChR) activation. Cholinergic fiber activation revealed that CCK BCs were more sensitive to synaptic release of ACh than PV BCs. In response to depolarizing current steps, mAChR activation of PV BCs and CCK BCs also elicited distinct cholinergic response profiles, differing in mAChR-induced changes in action potential (AP) waveform, firing frequency, and intrinsic excitability. In contrast to PV BCs, CCK BCs exhibited a mAChR-induced afterdepolarization (mADP) that was frequency and activity-dependent. Pharmacological, molecular, and loss-of-function data converged on the presence of M3 mAChRs in distinguishing CCK BCs from PV BCs. Firing frequency of CCK BCs was controlled through M3 mAChRs but PV BC excitability was altered solely through M1 mAChRs. Finally, upon mAChR activation, glutamatergic transmission enhanced cellular excitability preferentially in CCK BCs but not in PV BCs. Our findings demonstrate that cell type-specific cholinergic specializations are present on neurochemically distinct interneuron subtypes in the hippocampus, revealing an organizing principle that cholinergic neuromodulation depends critically on neurochemical identity.
Collapse
|
48
|
|