1
|
Zhang P, Medwig-Kinney TN, Breiner EA, Perez JM, Song AN, Goldstein B. Cell signaling facilitates apical constriction by basolaterally recruiting Arp2/3 via Rac and WAVE. J Cell Biol 2025; 224:e202409133. [PMID: 40042443 PMCID: PMC11893165 DOI: 10.1083/jcb.202409133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 03/12/2025] Open
Abstract
Apical constriction is a critical cell shape change that drives cell internalization and tissue bending. How precisely localized actomyosin regulators drive apical constriction remains poorly understood. Caenorhabditis elegans gastrulation provides a valuable model to address this question. The Arp2/3 complex is essential in C. elegans gastrulation. To understand how Arp2/3 is locally regulated, we imaged embryos with endogenously tagged Arp2/3 and its nucleation-promoting factors (NPFs). The three NPFs-WAVE, WASP, and WASH-controlled Arp2/3 localization at distinct subcellular locations. We exploited this finding to study distinct populations of Arp2/3 and found that only WAVE depletion caused penetrant gastrulation defects. WAVE localized basolaterally with Arp2/3 and controlled F-actin levels near cell-cell contacts. WAVE and Arp2/3 localization depended on CED-10/Rac. Establishing ectopic cell contacts recruited WAVE and Arp2/3, identifying the contact as a symmetry-breaking cue for localization of these proteins. These results suggest that cell-cell signaling via Rac activates WAVE and Arp2/3 basolaterally and that basolateral Arp2/3 makes an important contribution to apical constriction.
Collapse
Affiliation(s)
- Pu Zhang
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Eleanor A. Breiner
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jadyn M. Perez
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - April N. Song
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Kim HG, Berdasco C, Nairn AC, Kim Y. The WAVE complex in developmental and adulthood brain disorders. Exp Mol Med 2025; 57:13-29. [PMID: 39774290 PMCID: PMC11799376 DOI: 10.1038/s12276-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer's disease and Parkinson's disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
- Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Anjum S, Vijayraghavan D, Fernandez-Gonzalez R, Sutherland A, Davidson L. Inferring active and passive mechanical drivers of epithelial convergent extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635314. [PMID: 39975291 PMCID: PMC11838355 DOI: 10.1101/2025.01.28.635314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
What can we learn about the mechanical processes that shape tissues by simply watching? Several schemes suggest that static cell morphology or junctional connectivity can reveal where chains of cells transmit force or where force asymmetries drive cellular rearrangements. We hypothesize that dynamic cell shape changes from time lapse sequences can be used to distinguish specific mechanisms of tissue morphogenesis. Convergent extension (CE) is a crucial developmental motif wherein a planar tissue narrows in one direction and lengthens in the other. It is tempting to assume that forces driving CE reside within cells of the deforming tissue, as CE may reflect a variety of active processes or passive responses to forces generated by adjacent tissues. In this work, we first construct a simple model of epithelial cells capable of passive CE in response to external forces. We adapt this framework to simulate CE from active anisotropic processes in three different modes: crawling, contraction, and capture. We develop an image analysis pipeline for analysis of morphogenetic changes in both live cells and simulated cells using a panel of mechanical and statistical approaches. Our results allow us to identify how each simulated mechanism uniquely contributes to tissue morphology and provide insight into how force transmission is coordinated. We construct a MEchanism Index (MEI) to quantify how similar live cells are to simulated passive and active cells undergoing CE. Applying these analyses to live cell data of Xenopus neural CE reveals features of both passive motion and active forces. Furthermore, we find spatial variation across the neural plate. We compare the inferred mechanisms in the frog midline to tissues undergoing CE in both the mouse and fly. We find that distinct active modes may have different prevalences depending on the model system. Our modeling framework allows us to gain insight from tissue timelapse images and assess the relative contribution of specific cellular mechanisms to observed tissue phenotypes. This approach can be used to guide further experimental inquiry into how mechanics influences the shaping of tissues and organs during development.
Collapse
Affiliation(s)
- Sommer Anjum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Computational Modeling and Simulation Graduate Program, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Lance Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Petersen M, Dubielecka P. Adaptor protein Abelson interactor 1 in homeostasis and disease. Cell Commun Signal 2024; 22:468. [PMID: 39354505 PMCID: PMC11446139 DOI: 10.1186/s12964-024-01738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Dysregulation of Abelson interactor 1 (ABI1) is associated with various states of disease including developmental defects, pathogen infections, and cancer. ABI1 is an adaptor protein predominantly known to regulate actin cytoskeleton organization processes such as those involved in cell adhesion, migration, and shape determination. Linked to cytoskeleton via vasodilator-stimulated phosphoprotein (VASP), Wiskott-Aldrich syndrome protein family (WAVE), and neural-Wiskott-Aldrich syndrome protein (N-WASP)-associated protein complexes, ABI1 coordinates regulation of various cytoplasmic protein signaling complexes dysregulated in disease states. The roles of ABI1 beyond actin cytoskeleton regulation are much less understood. This comprehensive, protein-centric review describes molecular roles of ABI1 as an adaptor molecule in the context of its dysregulation and associated disease outcomes to better understand disease state-specific protein signaling and affected interconnected biological processes.
Collapse
Affiliation(s)
- Max Petersen
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
- Center for the Biology of Aging, Brown University, Providence, RI, USA
- Legoretta Cancer Center, Brown University, Providence, RI, USA
| | - Pat Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA.
- Center for the Biology of Aging, Brown University, Providence, RI, USA.
- Legoretta Cancer Center, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Zhang P, Medwig-Kinney TN, Breiner EA, Perez JM, Song AN, Goldstein B. Cell signaling facilitates apical constriction by basolaterally recruiting Arp2/3 via Rac and WAVE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614059. [PMID: 39386716 PMCID: PMC11463545 DOI: 10.1101/2024.09.23.614059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Apical constriction is a critical cell shape change that bends tissues. How precisely-localized actomyosin regulators drive apical constriction remains poorly understood. C. elegans gastrulation provides a valuable model to address this question. The Arp2/3 complex is essential in C. elegans gastrulation. To understand how Arp2/3 is locally regulated, we imaged embryos with endogenously-tagged Arp2/3 and its nucleation-promoting factors (NPFs). The three NPFs - WAVE, WASP, and WASH - colocalized with Arp2/3 and controlled Arp2/3 localization at distinct subcellular locations. We exploited this finding to study distinct populations of Arp2/3 and found that only WAVE depletion caused penetrant gastrulation defects. WAVE localized basolaterally with Arp2/3 at cell-cell contacts, dependent on CED-10/Rac. Establishing ectopic cell contacts recruited WAVE and Arp2/3, identifying contact as a symmetry-breaking cue for localization of these proteins. These results suggest that cell-cell signaling via Rac activates WAVE and Arp2/3 basolaterally, and that basolateral Arp2/3 is important for apical constriction.
Collapse
Affiliation(s)
- Pu Zhang
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Eleanor A. Breiner
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jadyn M. Perez
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - April N. Song
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Liang X, Hong A, Shen R, Zhu M, Tian W. NCKAP1 as a prognostic and immunological biomarker: pan-cancer analysis and validation in renal clear cell carcinoma. Am J Transl Res 2024; 16:4083-4100. [PMID: 39262720 PMCID: PMC11384366 DOI: 10.62347/ukqb2042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/14/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVES To systematically investigate the expression, prognostic value, genetic alterations, immune infiltration, and molecular function of Nck-associated protein 1 (NCKAP1) in a pan-cancer analysis, with a specific focus on its association with kidney renal cell carcinoma (KIRC). METHODS We analyzed the role of NCKAP1 across various tumor types using data from The Cancer Genome Atlas (TCGA). The Gene Expression Profiling Interactive Analysis version 2 (GEPIA2) database was used to assess the correlation between NCKAP1 expression levels and overall survival (OS) and disease-free survival (DFS) across different cancers, as well as its association with cancer stage. Genetic alterations of NCKAP1 were explored using CBioPortal, and their prognostic implications were assessed. NCKAP1 was further analyzed through Gene Ontology and protein interaction network analyses. Immunohistochemistry (IHC) staining from the Human Protein Atlas (HPA) database evaluated NCKAP1 levels in KIRC tissues. Functional assays, including Cell Counting Kit-8 (CCK-8), colony formation, transwell, and wound healing assays, were conducted to determine the effects of NCKAP1 overexpression on cell growth rate and their ability to invade, proliferate, migrate in a KIRC (786-O) cell line. The relationship between NCKAP1 expression and immune infiltration in KIRC was systematically examined using the Tumor Immune Estimation Resource. RESULTS NCKAP1 expression was significantly altered in most tumor types compared to corresponding non-tumor tissues. Survival analysis indicated that low NCKAP1 expression was associated with poor OS, DFS, and advanced cancer stage (P < 0.05) specifically in KIRC. Genetic alterations in NCKAP1 were linked to clinical outcome in cancer patients, and a positive correlation was observed between NCKAP1 expression and cancer-associated fibroblast infiltration (P < 0.05). Gene Ontology analysis revealed that NCKAP1 regulates the actin cytoskeleton and interacts with proteins such as CYFIP1, ABI2, WASF2, and BRK1. IHC staining showed significantly lower NCKAP1 levels in KIRC tissues compared to normal tissues. Overexpression of NCKAP1 in KIRC cell lines reduced cell proliferation, invasion, and migration (P < 0.05). NCKAP1 was also positively correlated with macrophage, neutrophil, and CD4+ T cell infiltration (P < 0.001). CONCLUSION NCKAP1 may serve as a prognostic and immunological marker and may be a therapeutic target for KIRC.
Collapse
Affiliation(s)
- Xiao Liang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine Nanjing 210000, Jiangsu, China
| | - Aonan Hong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine Nanjing 210000, Jiangsu, China
| | - Ruizhi Shen
- Department of Oncology, Jiangnan University Medical Center Wuxi 214002, Jiangsu, China
| | - Minmin Zhu
- Department of Anesthesiology, Jiangnan University Medical Center Wuxi 214002, Jiangsu, China
| | - Weiqian Tian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine Nanjing 210000, Jiangsu, China
| |
Collapse
|
7
|
Zhou W, Zhao Z, Lin A, Yang JZ, Xu J, Wilder-Romans K, Yang A, Li J, Solanki S, Speth JM, Walker N, Scott AJ, Wang L, Wen B, Andren A, Zhang L, Kothari AU, Yao Y, Peterson ER, Korimerla N, Werner CK, Ullrich A, Liang J, Jacobson J, Palavalasa S, O’Brien AM, Elaimy AL, Ferris SP, Zhao SG, Sarkaria JN, Győrffy B, Zhang S, Al-Holou WN, Umemura Y, Morgan MA, Lawrence TS, Lyssiotis CA, Peters-Golden M, Shah YM, Wahl DR. GTP Signaling Links Metabolism, DNA Repair, and Responses to Genotoxic Stress. Cancer Discov 2024; 14:158-175. [PMID: 37902550 PMCID: PMC10872631 DOI: 10.1158/2159-8290.cd-23-0437] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/07/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023]
Abstract
How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a guanine nucleotide-binding protein, which promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes nonhomologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard-of-care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in nonmalignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment. SIGNIFICANCE A newly described GTP-dependent signaling axis is an unexpected link between nucleotide metabolism and DNA repair. Disrupting this pathway can overcome cancer resistance to genotoxic therapy while augmenting it can mitigate genotoxic injury of normal tissues. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
- Weihua Zhou
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Zitong Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shan Xi, PR China
| | - Angelica Lin
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - John Z Yang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jie Xu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Annabel Yang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jing Li
- Cell Signaling Technology, Inc., Danvers, MA, USA
| | - Sumeet Solanki
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer M Speth
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Natalie Walker
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J Scott
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Andren
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Ayesha U Kothari
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Yangyang Yao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Erik R Peterson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Navyateja Korimerla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Christian K Werner
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Ullrich
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Liang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Janna Jacobson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sravya Palavalasa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra M O’Brien
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Ameer L Elaimy
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sean P Ferris
- Department of Pathology, Division of Neuropathology, University of Michigan, Ann Arbor, MI, USA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin Madison, WI, USA
| | | | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary; and TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Shuqun Zhang
- Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shan Xi, PR China
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Yoshie Umemura
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology and Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Lead contact
| |
Collapse
|
8
|
Petersen M, Chorzalska A, Pardo M, Rodriguez A, Morgan J, Ahsan N, Zhao TC, Liang O, Kotula L, Bertone P, Gruppuso PA, Dubielecka PM. Proximity proteomics reveals role of Abelson interactor 1 in the regulation of TAK1/RIPK1 signaling. Mol Oncol 2023; 17:2356-2379. [PMID: 36635880 PMCID: PMC10620119 DOI: 10.1002/1878-0261.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
Dysregulation of the adaptor protein Abelson interactor 1 (ABI1) is linked to malignant transformation. To interrogate the role of ABI1 in cancer development, we mapped the ABI1 interactome using proximity-dependent labeling (PDL) with biotin followed by mass spectrometry. Using a novel PDL data filtering strategy, considering both peptide spectral matches and peak areas of detected peptides, we identified 212 ABI1 proximal interactors. These included WAVE2 complex components such as CYFIP1, NCKAP1, or WASF1, confirming the known role of ABI1 in the regulation of actin-polymerization-dependent processes. We also identified proteins associated with the TAK1-IKK pathway, including TAK1, TAB2, and RIPK1, denoting a newly identified function of ABI1 in TAK1-NF-κB inflammatory signaling. Functional assays using TNFα-stimulated, ABI1-overexpressing or ABI1-deficient cells showed effects on the TAK1-NF-kB pathway-dependent signaling to RIPK1, with ABI1-knockout cells being less susceptible to TNFα-induced, RIPK1-mediated, TAK1-dependent apoptosis. In sum, our PDL-based strategy enabled mapping of the ABI1 proximal interactome, thus revealing a previously unknown role of this adaptor protein in TAK1/RIPK1-based regulation of cell death and survival.
Collapse
Affiliation(s)
- Max Petersen
- Department of Medicine, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
- Division of Hematology/OncologyRhode Island HospitalProvidenceRIUSA
- Division of Biology and Medicine, Department of Pathology and Laboratory MedicineBrown UniversityProvidenceRIUSA
| | - Anna Chorzalska
- Department of Medicine, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
- Division of Hematology/OncologyRhode Island HospitalProvidenceRIUSA
| | - Makayla Pardo
- Department of Medicine, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
- Division of Hematology/OncologyRhode Island HospitalProvidenceRIUSA
| | - Anaelena Rodriguez
- Department of Medicine, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
- Division of Hematology/OncologyRhode Island HospitalProvidenceRIUSA
| | - John Morgan
- Flow Cytometry and Cell Sorting Core FacilityRoger Williams Medical CenterProvidenceRIUSA
| | - Nagib Ahsan
- COBRE Center for Cancer Research Development, Proteomics Core FacilityRhode Island HospitalProvidenceRIUSA
- Department of Chemistry and BiochemistryThe University of OklahomaNormanOKUSA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research CenterThe University of OklahomaNormanOKUSA
| | - Ting C. Zhao
- Department of SurgeryRhode Island Hospital and Warren Alpert Medical School of Brown UniversityProvidenceRIUSA
| | - Olin Liang
- Department of Medicine, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
- Division of Hematology/OncologyRhode Island HospitalProvidenceRIUSA
- Legorreta Cancer Center, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
| | - Leszek Kotula
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
- Upstate Cancer CenterSUNY Upstate Medical UniversitySyracuseNYUSA
| | - Paul Bertone
- Department of Medicine, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
- Division of Hematology/OncologyRhode Island HospitalProvidenceRIUSA
- Legorreta Cancer Center, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
| | - Philip A. Gruppuso
- Division of Pediatric EndocrinologyRhode Island Hospital and Warren Alpert Medical School of Brown UniversityProvidenceRIUSA
| | - Patrycja M. Dubielecka
- Department of Medicine, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
- Division of Hematology/OncologyRhode Island HospitalProvidenceRIUSA
- Division of Biology and Medicine, Department of Pathology and Laboratory MedicineBrown UniversityProvidenceRIUSA
- Legorreta Cancer Center, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
| |
Collapse
|
9
|
Jensen CC, Clements AN, Liou H, Ball LE, Bethard JR, Langlais PR, Toth RK, Chauhan SS, Casillas AL, Daulat SR, Kraft AS, Cress AE, Miranti CK, Mouneimne G, Rogers GC, Warfel NA. PIM1 phosphorylates ABI2 to enhance actin dynamics and promote tumor invasion. J Cell Biol 2023; 222:e202208136. [PMID: 37042842 PMCID: PMC10103708 DOI: 10.1083/jcb.202208136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/13/2023] Open
Abstract
Distinguishing key factors that drive the switch from indolent to invasive disease will make a significant impact on guiding the treatment of prostate cancer (PCa) patients. Here, we identify a novel signaling pathway linking hypoxia and PIM1 kinase to the actin cytoskeleton and cell motility. An unbiased proteomic screen identified Abl-interactor 2 (ABI2), an integral member of the wave regulatory complex (WRC), as a PIM1 substrate. Phosphorylation of ABI2 at Ser183 by PIM1 increased ABI2 protein levels and enhanced WRC formation, resulting in increased protrusive activity and cell motility. Cell protrusion induced by hypoxia and/or PIM1 was dependent on ABI2. In vivo smooth muscle invasion assays showed that overexpression of PIM1 significantly increased the depth of tumor cell invasion, and treatment with PIM inhibitors significantly reduced intramuscular PCa invasion. This research uncovers a HIF-1-independent signaling axis that is critical for hypoxia-induced invasion and establishes a novel role for PIM1 as a key regulator of the actin cytoskeleton.
Collapse
Affiliation(s)
- Corbin C. Jensen
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | - Amber N. Clements
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | - Hope Liou
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Jennifer R. Bethard
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | | | | | - Shailender S. Chauhan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | | | | | | | - Anne E. Cress
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Cindy K. Miranti
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Ghassan Mouneimne
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Greg C. Rogers
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Noel A. Warfel
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Davidson A, Hume PJ, Greene NP, Koronakis V. Salmonella invasion of a cell is self-limiting due to effector-driven activation of N-WASP. iScience 2023; 26:106643. [PMID: 37168569 PMCID: PMC10164908 DOI: 10.1016/j.isci.2023.106643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Salmonella Typhimurium drives uptake into non-phagocytic host cells by injecting effector proteins that reorganize the actin cytoskeleton. The host actin regulator N-WASP has been implicated in bacterial entry, but its precise role is not clear. We demonstrate that Cdc42-dependent N-WASP activation, instigated by the Cdc42-activating effector SopE2, strongly impedes Salmonella uptake into host cells. This inhibitory pathway is predominant later in invasion, with the ubiquitin ligase activity of the effector SopA specifically interfering with negative Cdc42-N-WASP signaling at early stages. The cell therefore transitions from being susceptible to invasion, into a state almost completely recalcitrant to bacterial uptake, providing a mechanism to limit the number of internalized Salmonella. Our work raises the possibility that Cdc42-N-WASP, known to be activated by numerous bacterial and viral species during infection and commonly assumed to promote pathogen uptake, is used to limit the entry of multiple pathogens.
Collapse
Affiliation(s)
| | - Peter J. Hume
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, UK
- Corresponding author
| |
Collapse
|
11
|
Zhou W, Zhao Z, Lin A, Yang J, Xu J, Kari WR, Yang A, Li J, Solanki S, Speth J, Walker N, Scott AJ, Kothari AU, Yao Y, Peterson ER, Korimerla N, Werner CK, Liang J, Jacobson J, Palavalasa S, Obrien AM, Elaimy AL, Ferris SP, Zhao SG, Sarkaria JN, Győrffy B, Zhang S, Al-Holou WN, Umemura Y, Morgan MA, Lawrence TS, Lyssiotis CA, Peters-Golden M, Shah YM, Wahl DR. GTP signaling links metabolism, DNA repair, and responses to genotoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536297. [PMID: 37090571 PMCID: PMC10120670 DOI: 10.1101/2023.04.12.536297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a G protein, that promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes non-homologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard of care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in non-malignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment.
Collapse
|
12
|
Spencer WJ, Schneider NF, Lewis TR, Castillo CM, Skiba NP, Arshavsky VY. The WAVE complex drives the morphogenesis of the photoreceptor outer segment cilium. Proc Natl Acad Sci U S A 2023; 120:e2215011120. [PMID: 36917665 PMCID: PMC10041111 DOI: 10.1073/pnas.2215011120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023] Open
Abstract
The photoreceptor outer segment is a modified cilium filled with hundreds of flattened "disc" membranes responsible for efficient light capture. To maintain photoreceptor health and functionality, outer segments are continuously renewed through the addition of new discs at their base. This process is driven by branched actin polymerization nucleated by the Arp2/3 complex. To induce actin polymerization, Arp2/3 requires a nucleation promoting factor. Here, we show that the nucleation promoting factor driving disc morphogenesis is the pentameric WAVE complex and identify all protein subunits of this complex. We further demonstrate that the knockout of one of them, WASF3, abolishes actin polymerization at the site of disc morphogenesis leading to formation of disorganized membrane lamellae emanating from the photoreceptor cilium instead of an outer segment. These data establish that, despite the intrinsic ability of photoreceptor ciliary membranes to form lamellar structures, WAVE-dependent actin polymerization is essential for organizing these membranes into a proper outer segment.
Collapse
Affiliation(s)
- William J. Spencer
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC27710
- Department of Ophthalmology and Visual Sciences, State University of New York, Upstate Medical University, Syracuse, NY13210
| | | | - Tylor R. Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - Carson M. Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
13
|
Salloum G, Bresnick AR, Backer JM. Macropinocytosis: mechanisms and regulation. Biochem J 2023; 480:335-362. [PMID: 36920093 DOI: 10.1042/bcj20210584] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
Macropinocytosis is defined as an actin-dependent but coat- and dynamin-independent endocytic uptake process, which generates large intracellular vesicles (macropinosomes) containing a non-selective sampling of extracellular fluid. Macropinocytosis provides an important mechanism of immune surveillance by dendritic cells and macrophages, but also serves as an essential nutrient uptake pathway for unicellular organisms and tumor cells. This review examines the cell biological mechanisms that drive macropinocytosis, as well as the complex signaling pathways - GTPases, lipid and protein kinases and phosphatases, and actin regulatory proteins - that regulate macropinosome formation, internalization, and disposition.
Collapse
Affiliation(s)
- Gilbert Salloum
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Jonathan M Backer
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| |
Collapse
|
14
|
Campellone KG, Lebek NM, King VL. Branching out in different directions: Emerging cellular functions for the Arp2/3 complex and WASP-family actin nucleation factors. Eur J Cell Biol 2023; 102:151301. [PMID: 36907023 DOI: 10.1016/j.ejcb.2023.151301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The actin cytoskeleton impacts practically every function of a eukaryotic cell. Historically, the best-characterized cytoskeletal activities are in cell morphogenesis, motility, and division. The structural and dynamic properties of the actin cytoskeleton are also crucial for establishing, maintaining, and changing the organization of membrane-bound organelles and other intracellular structures. Such activities are important in nearly all animal cells and tissues, although distinct anatomical regions and physiological systems rely on different regulatory factors. Recent work indicates that the Arp2/3 complex, a broadly expressed actin nucleator, drives actin assembly during several intracellular stress response pathways. These newly described Arp2/3-mediated cytoskeletal rearrangements are coordinated by members of the Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation-promoting factors. Thus, the Arp2/3 complex and WASP-family proteins are emerging as crucial players in cytoplasmic and nuclear activities including autophagy, apoptosis, chromatin dynamics, and DNA repair. Characterizations of the functions of the actin assembly machinery in such stress response mechanisms are advancing our understanding of both normal and pathogenic processes, and hold great promise for providing insights into organismal development and interventions for disease.
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA.
| | - Nadine M Lebek
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| | - Virginia L King
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| |
Collapse
|
15
|
Smooth Muscle Myosin Localizes at the Leading Edge and Regulates the Redistribution of Actin-regulatory Proteins during Migration. Cells 2022; 11:cells11152334. [PMID: 35954178 PMCID: PMC9367404 DOI: 10.3390/cells11152334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Airway smooth muscle cell migration plays an essential role in airway development, repair, and remodeling. Smooth muscle myosin II has been traditionally thought to localize in the cytoplasm solely and regulates cell migration by affecting stress fiber formation and focal adhesion assembly. In this study, we unexpectedly found that 20-kDa myosin light chain (MLC20) and myosin-11 (MYH11), important components of smooth muscle myosin, were present at the edge of lamellipodia. The knockdown of MLC20 or MYH11 attenuated the recruitment of c-Abl, cortactinProfilin-1 (Pfn-1), and Abi1 to the cell edge. Moreover, myosin light chain kinase (MLCK) colocalized with integrin β1 at the tip of protrusion. The inhibition of MLCK attenuated the recruitment of c-Abl, cortactin, Pfn-1, and Abi1 to the cell edge. Furthermore, MLCK localization at the leading edge was reduced by integrin β1 knockdown. Taken together, our results demonstrate that smooth muscle myosin localizes at the leading edge and orchestrates the recruitment of actin-regulatory proteins to the tip of lamellipodia. Mechanistically, integrin β1 recruits MLCK to the leading edge, which catalyzes MLC20 phosphorylation. Activated myosin regulates the recruitment of actin-regulatory proteins to the leading edge, and promotes lamellipodial formation and migration.
Collapse
|
16
|
Circular dorsal ruffles disturb the growth factor-induced PI3K-AKT pathway in hepatocellular carcinoma Hep3B cells. Cell Commun Signal 2022; 20:102. [PMID: 35799301 PMCID: PMC9264614 DOI: 10.1186/s12964-022-00911-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Circular dorsal ruffles (CDRs) are rounded membrane ruffles induced on the dorsal surfaces of cells stimulated by growth factors (GF). They can serve as signal platforms to activate AKT protein kinase. After GF stimulation, phosphatidylinositol 3-kinase (PI3K) generates phosphatidylinositol (3,4,5)-triphosphate (PIP3) in the plasma membrane. PIP3 accumulates inside CDRs, recruits AKT into the structures, and phosphorylates them (pAKT). Given the importance of the PI3K-AKT pathway in GF signaling, CDRs are likely involved in cell growth. Interestingly, some cancer cell lines express CDRs. We hypothesized that CDRs contribute to carcinogenesis by modulating the AKT pathway. In the present study, we identified CDR-expressing cancer cell lines and investigated their cellular functions. Methods CDR formation was examined in six cancer cell lines in response to epidermal growth factor (EGF) and insulin. The morphology of the CDRs was characterized, and the related signaling molecules were observed using confocal and scanning electron microscopy. The role of CDRs in the AKT pathway was studied using biochemical analysis. The actin inhibitor cytochalasin D (Cyto D) and the PI3K inhibitor TGX221 were used to block CDRs. Results GF treatment induced CDRs in the hepatocellular carcinoma (HCC) Hep3B cell line, but not in others, including HCC cell lines HepG2 and Huh7, and the LO2 hepatocyte cell line. Confocal microscopy and western blot analysis showed that the PI3K-PIP3-AKT pathway was activated at the CDRs and that receptor proteins were recruited to the structures. Cyto D and TGX221 completely blocked CDRs and partially attenuated GF-induced pAKT. These results indicate that CDRs regulate the receptor-mediated PI3K-AKT pathway in Hep3B cells and the existence of CDR-independent pAKT mechanisms. Conclusions Our results showed that CDRs modulate the AKT pathway in Hep3B cells. Since CDRs were not observed in other HCC and hepatocyte cell lines, we propose that CDRs in Hep3B would determine the carcinoma characteristic of the cell by aberrantly triggering the AKT pathway. Signaling molecules involved in CDR formation are promising therapeutic targets for some types of HCC. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00911-6.
Collapse
|
17
|
Regua A, Papp C, Grageda A, Porter BA, Caza T, Bichindaritz I, Krendel M, Sivapiragasam A, Bratslavsky G, Kuznetsov VA, Kotula L. ABI1-based expression signature predicts breast cancer metastasis and survival. Mol Oncol 2022; 16:2632-2657. [PMID: 34967509 PMCID: PMC9297774 DOI: 10.1002/1878-0261.13175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/29/2021] [Indexed: 11/05/2022] Open
Abstract
Despite the current standard of care, breast cancer remains one of the leading causes of mortality in women worldwide, thus emphasizing the need for better predictive and therapeutic targets. ABI1 is associated with poor survival and an aggressive breast cancer phenotype, although its role in tumorigenesis, metastasis, and the disease outcome remains to be elucidated. Here, we define the ABI1-based seven-gene prognostic signature that predicts survival of metastatic breast cancer patients; ABI1 is an essential component of the signature. Genetic disruption of Abi1 in primary breast cancer tumors of PyMT mice led to significant reduction of the number and size of lung metastases in a gene dose-dependent manner. The disruption of Abi1 resulted in deregulation of the WAVE complex at the mRNA and protein levels in mouse tumors. In conclusion, ABI1 is a prognostic metastatic biomarker in breast cancer. We demonstrate, for the first time, that lung metastasis is associated with an Abi1 gene dose and specific gene expression aberrations in primary breast cancer tumors. These results indicate that targeting ABI1 may provide a therapeutic advantage in breast cancer patients.
Collapse
Affiliation(s)
- Angelina Regua
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
- Present address:
Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNC27101USA
| | - Csaba Papp
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | - Andre Grageda
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | - Baylee A. Porter
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | - Tiffany Caza
- Department of PathologySUNY Upstate Medical UniversitySyracuseNYUSA
| | | | - Mira Krendel
- Department of Cell and Developmental BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | | | - Gennady Bratslavsky
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | - Vladimir A. Kuznetsov
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | - Leszek Kotula
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| |
Collapse
|
18
|
Verma SK, Deshmukh V, Thatcher K, Belanger KK, Rhyner A, Meng S, Holcomb R, Bressan M, Martin J, Cooke J, Wythe J, Widen S, Lincoln J, Kuyumcu-Martinez M. RBFOX2 is required for establishing RNA regulatory networks essential for heart development. Nucleic Acids Res 2022; 50:2270-2286. [PMID: 35137168 PMCID: PMC8881802 DOI: 10.1093/nar/gkac055] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Human genetic studies identified a strong association between loss of function mutations in RBFOX2 and hypoplastic left heart syndrome (HLHS). There are currently no Rbfox2 mouse models that recapitulate HLHS. Therefore, it is still unknown how RBFOX2 as an RNA binding protein contributes to heart development. To address this, we conditionally deleted Rbfox2 in embryonic mouse hearts and found profound defects in cardiac chamber and yolk sac vasculature formation. Importantly, our Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. To determine the molecular drivers of these cardiac defects, we performed RNA-sequencing in Rbfox2 mutant hearts and identified dysregulated alternative splicing (AS) networks that affect cell adhesion to extracellular matrix (ECM) mediated by Rho GTPases. We identified two Rho GTPase cycling genes as targets of RBFOX2. Modulating AS of these two genes using antisense oligos led to cell cycle and cell-ECM adhesion defects. Consistently, Rbfox2 mutant hearts displayed cell cycle defects and inability to undergo endocardial-mesenchymal transition, processes dependent on cell-ECM adhesion and that are seen in HLHS. Overall, our work not only revealed that loss of Rbfox2 leads to heart development defects resembling HLHS, but also identified RBFOX2-regulated AS networks that influence cell-ECM communication vital for heart development.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vaibhav Deshmukh
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaitlyn Thatcher
- Department of Pediatrics, Medical College of Wisconsin, Division of Pediatric Cardiology, The Herma Heart Institute, Children's WI, Milwaukee, WI 53226, USA
| | - KarryAnne K Belanger
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander M Rhyner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shu Meng
- Houston Methodist Research Institute, Department of Cardiovascular Sciences, Houston, TX 77030, USA
| | - Richard Joshua Holcomb
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiomyocyte Renewal Lab;Texas Heart Institute, Houston, TX77030, USA
| | - John P Cooke
- Houston Methodist Research Institute, Department of Cardiovascular Sciences, Houston, TX 77030, USA
| | - Joshua D Wythe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiomyocyte Renewal Lab;Texas Heart Institute, Houston, TX77030, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Division of Pediatric Cardiology, The Herma Heart Institute, Children's WI, Milwaukee, WI 53226, USA
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neuroscience, Cell Biology and Anatomy, Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd. Galveston, TX 77555, USA
| |
Collapse
|
19
|
Avilés EC, Krol A, Henle SJ, Burroughs-Garcia J, Deans MR, Goodrich LV. Fat3 acts through independent cytoskeletal effectors to coordinate asymmetric cell behaviors during polarized circuit assembly. Cell Rep 2022; 38:110307. [PMID: 35108541 PMCID: PMC8865054 DOI: 10.1016/j.celrep.2022.110307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
The polarized flow of information through neural circuits depends on the orderly arrangement of neurons, their processes, and their synapses. This polarity emerges sequentially in development, starting with the directed migration of neuronal precursors, which subsequently elaborate neurites that form synapses in specific locations. In other organs, Fat cadherins sense the position and then polarize individual cells by inducing localized changes in the cytoskeleton that are coordinated across the tissue. Here, we show that the Fat-related protein Fat3 plays an analogous role during the assembly of polarized circuits in the murine retina. We find that the Fat3 intracellular domain (ICD) binds to cytoskeletal regulators and synaptic proteins, with discrete motifs required for amacrine cell migration and neurite retraction. Moreover, upon ICD deletion, extra neurites form but do not make ectopic synapses, suggesting that Fat3 independently regulates synapse localization. Thus, Fat3 serves as a molecular node to coordinate asymmetric cell behaviors across development.
Collapse
Affiliation(s)
- Evelyn C Avilés
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Krol
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven J Henle
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Burroughs-Garcia
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Michael R Deans
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Law AL, Jalal S, Pallett T, Mosis F, Guni A, Brayford S, Yolland L, Marcotti S, Levitt JA, Poland SP, Rowe-Sampson M, Jandke A, Köchl R, Pula G, Ameer-Beg SM, Stramer BM, Krause M. Nance-Horan Syndrome-like 1 protein negatively regulates Scar/WAVE-Arp2/3 activity and inhibits lamellipodia stability and cell migration. Nat Commun 2021; 12:5687. [PMID: 34584076 PMCID: PMC8478917 DOI: 10.1038/s41467-021-25916-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Abstract
Cell migration is important for development and its aberrant regulation contributes to many diseases. The Scar/WAVE complex is essential for Arp2/3 mediated lamellipodia formation during mesenchymal cell migration and several coinciding signals activate it. However, so far, no direct negative regulators are known. Here we identify Nance-Horan Syndrome-like 1 protein (NHSL1) as a direct binding partner of the Scar/WAVE complex, which co-localise at protruding lamellipodia. This interaction is mediated by the Abi SH3 domain and two binding sites in NHSL1. Furthermore, active Rac binds to NHSL1 at two regions that mediate leading edge targeting of NHSL1. Surprisingly, NHSL1 inhibits cell migration through its interaction with the Scar/WAVE complex. Mechanistically, NHSL1 may reduce cell migration efficiency by impeding Arp2/3 activity, as measured in cells using a Arp2/3 FRET-FLIM biosensor, resulting in reduced F-actin density of lamellipodia, and consequently impairing the stability of lamellipodia protrusions.
Collapse
Affiliation(s)
- Ah-Lai Law
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- School of Life Sciences, University of Bedfordshire, Luton, LU1 3JU, UK
| | - Shamsinar Jalal
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Tommy Pallett
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Fuad Mosis
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Ahmad Guni
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Simon Brayford
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Lawrence Yolland
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Stefania Marcotti
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - James A Levitt
- Ameer-Beg Group, Richard Dimbleby Cancer Research Laboratories, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Simon P Poland
- Ameer-Beg Group, Richard Dimbleby Cancer Research Laboratories, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Maia Rowe-Sampson
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Anett Jandke
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Robert Köchl
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Giordano Pula
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg (UKE), Martinistrasse 52, O26, 20246, Hamburg, Germany
| | - Simon M Ameer-Beg
- Ameer-Beg Group, Richard Dimbleby Cancer Research Laboratories, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Brian Marc Stramer
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Matthias Krause
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
21
|
Howard DM, Pain O, Arathimos R, Barbu MC, Amador C, Walker RM, Jermy B, Adams MJ, Deary IJ, Porteous D, Campbell A, Sullivan PF, Evans KL, Arseneault L, Wray NR, Meaney M, McIntosh AM, Lewis CM. Methylome-wide association study of early life stressors and adult mental health. Hum Mol Genet 2021; 31:651-664. [PMID: 34523677 PMCID: PMC8863421 DOI: 10.1093/hmg/ddab274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/25/2022] Open
Abstract
The environment and events that we are exposed to in utero, during birth and in early childhood influence our future physical and mental health. The underlying mechanisms that lead to these outcomes are unclear, but long-term changes in epigenetic marks, such as DNA methylation, could act as a mediating factor or biomarker. DNA methylation data were assayed at 713 522 CpG sites from 9537 participants of the Generation Scotland: Scottish Family Health Study, a family-based cohort with extensive genetic, medical, family history and lifestyle information. Methylome-wide association studies of eight early life environment phenotypes and two adult mental health phenotypes (major depressive disorder and brief resilience scale) were conducted using DNA methylation data collected from adult whole blood samples. Two genes involved with different developmental pathways (PRICKLE2, Prickle Planar Cell Polarity Protein 2 and ABI1, Abl-Interactor-1) were annotated to CpG sites associated with preterm birth (P < 1.27 × 10−9). A further two genes important to the development of sensory pathways (SOBP, Sine Oculis Binding Protein Homolog and RPGRIP1, Retinitis Pigmentosa GTPase Regulator Interacting Protein) were annotated to sites associated with low birth weight (P < 4.35 × 10−8). The examination of methylation profile scores and genes and gene-sets annotated from associated CpGs sites found no evidence of overlap between the early life environment and mental health conditions. Birth date was associated with a significant difference in estimated lymphocyte and neutrophil counts. Previous studies have shown that early life environments influence the risk of developing mental health disorders later in life; however, this study found no evidence that this is mediated by stable changes to the methylome detectable in peripheral blood.
Collapse
Affiliation(s)
- David M Howard
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Oliver Pain
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ryan Arathimos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Miruna C Barbu
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Carmen Amador
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,Chancellor's Building, 49 Little France Crescent, University of Edinburgh, Edinburgh, UK
| | - Bradley Jermy
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - David Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Louise Arseneault
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Naomi R Wray
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Michael Meaney
- Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC, Canada.,Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.,Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| |
Collapse
|
22
|
Wu Y, Lv X, Wang H, Qian K, Ding J, Wang J, Hua S, Sun T, Zhou Y, Yu L, Qiu S. Adaptor protein APPL1 links neuronal activity to chromatin remodeling in cultured hippocampal neurons. J Mol Cell Biol 2021; 13:335-346. [PMID: 33104190 PMCID: PMC8373263 DOI: 10.1093/jmcb/mjaa058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 11/15/2022] Open
Abstract
Local signaling events at synapses or axon terminals are communicated to the nucleus to elicit transcriptional responses, and thereby translate information about the external environment into internal neuronal representations. This retrograde signaling is critical to dendritic growth, synapse development, and neuronal plasticity. Here, we demonstrate that neuronal activity induces retrograde translocation and nuclear accumulation of endosomal adaptor APPL1. Disrupting the interaction of APPL1 with Importin α1 abolishes nuclear accumulation of APPL1, which in turn decreases the levels of histone acetylation. We further demonstrate that retrograde translocation of APPL1 is required for the regulation of gene transcription and then maintenance of hippocampal late-phase long-term potentiation. Thus, these results illustrate an APPL1-mediated pathway that contributes to the modulation of synaptic plasticity via coupling neuronal activity with chromatin remodeling.
Collapse
Affiliation(s)
- Yu Wu
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinyou Lv
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haiting Wang
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kai Qian
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jinjun Ding
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiejie Wang
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shushan Hua
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tiancheng Sun
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiting Zhou
- Department of Biochemistry, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Orthopaedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lina Yu
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shuang Qiu
- Department of Neurobiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Li K, Peng YF, Guo JZ, Li M, Zhang Y, Chen JY, Lin TR, Yu X, Yu WD. Abelson interactor 1 splice isoform-L plays an anti-oncogenic role in colorectal carcinoma through interactions with WAVE2 and full-length Abelson interactor 1. World J Gastroenterol 2021; 27:1595-1615. [PMID: 33958846 PMCID: PMC8058658 DOI: 10.3748/wjg.v27.i15.1595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Expression of the full-length isoform of Abelson interactor 1 (ABI1), ABI1-p65, is increased in colorectal carcinoma (CRC) and is thought to be involved in one or more steps leading to tumor progression or metastasis. The ABI1 splice isoform-L (ABI1-SiL) has conserved WAVE2-binding and SH3 domains, lacks the homeo-domain homologous region, and is missing the majority of PxxP- and Pro-rich domains found in full-length ABI1-p65. Thus, ABI1-SiL domain structure suggests that the protein may regulate CRC cell morphology, adhesion, migration, and metastasis via interactions with the WAVE2 complex pathway. AIM To investigate the potential role and underlying mechanisms associated with ABI1-SiL-mediated regulation of CRC. METHODS ABI1-SiL mRNA expression in CC tissue and cell lines was measured using both qualitative reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time quantitative RT-PCR. A stably ABI1-SiL overexpressing SW480 cell model was constructed using Lipofectamine 2000, and cells selected with G418. Image J software, CCK8, and transwell assays were used to investigate SW480 cell surface area, proliferation, migration, and invasion. Immunoprecipitation, Western blot, and co-localization assays were performed to explore intermolecular interactions between ABI1-SiL, WAVE2, and ABI1-p65 proteins. RESULTS ABI1-SiL was expressed in normal colon tissue and was significantly decreased in CRC cell lines and tissues. Overexpression of ABI1-SiL in SW480 cells significantly increased the cell surface area and inhibited the adhesive and migration properties of the cells, but did not alter their invasive capacity. Similar to ABI1-p65, ABI1-SiL still binds WAVE2, and the ABI1-p65 isoform in SW480 cells. Furthermore, co-localization assays confirmed these intermolecular interactions. CONCLUSION These results support a model in which ABI1-SiL plays an anti-oncogenic role by competitively binding to WAVE2 and directly interacting with phosphorylated and non-phosphorylated ABI1-p65, functioning as a dominant-negative form of ABI1-p65.
Collapse
Affiliation(s)
- Kun Li
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing 100044, China
- Department of Gastroenterology, Peking University People’s Hospital, Peking University, Beijing 100044, China
| | - Yi-Fan Peng
- Gastrointestinal Cancer Center, Unit III, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jing-Zhu Guo
- Department of Pediatrics, Peking University People’s Hospital, Beijing 100044, China
| | - Mei Li
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing 100044, China
| | - Yu Zhang
- Department of Gastroenterology, Peking University People’s Hospital, Peking University, Beijing 100044, China
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jing-Yi Chen
- Department of Gastroenterology, Peking University People’s Hospital, Peking University, Beijing 100044, China
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Ting-Ru Lin
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing 100044, China
- Department of Gastroenterology, Peking University People’s Hospital, Peking University, Beijing 100044, China
| | - Xin Yu
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing 100044, China
| | - Wei-Dong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
24
|
Qi Y, Liu J, Chao J, Greer PA, Li S. PTEN dephosphorylates Abi1 to promote epithelial morphogenesis. J Cell Biol 2021; 219:151941. [PMID: 32673396 PMCID: PMC7480098 DOI: 10.1083/jcb.201910041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/08/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
The tumor suppressor PTEN is essential for early development. Its lipid phosphatase activity converts PIP3 to PIP2 and antagonizes the PI3K–Akt pathway. In this study, we demonstrate that PTEN’s protein phosphatase activity is required for epiblast epithelial differentiation and polarization. This is accomplished by reconstitution of PTEN-null embryoid bodies with PTEN mutants that lack only PTEN’s lipid phosphatase activity or both PTEN’s lipid and protein phosphatase activities. Phosphotyrosine antibody immunoprecipitation and mass spectrometry were used to identify Abi1, a core component of the WASP-family verprolin homologous protein (WAVE) regulatory complex (WRC), as a new PTEN substrate. We demonstrate that PTEN dephosphorylation of Abi1 at Y213 and S216 results in Abi1 degradation through the calpain pathway. This leads to down-regulation of the WRC and reorganization of the actin cytoskeleton. The latter is critical to the transformation of nonpolar pluripotent stem cells into the polarized epiblast epithelium. Our findings establish a link between PTEN and WAVE-Arp2/3–regulated actin cytoskeletal dynamics in epithelial morphogenesis.
Collapse
Affiliation(s)
- Yanmei Qi
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Jie Liu
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Joshua Chao
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Shaohua Li
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
25
|
Abstract
Fodrin and its erythroid cell-specific isoform spectrin are actin-associated fibrous proteins that play crucial roles in the maintenance of structural integrity in mammalian cells, which is necessary for proper cell function. Normal cell morphology is altered in diseases such as various cancers and certain neuronal disorders. Fodrin and spectrin are two-chain (αβ) molecules that are encoded by paralogous genes and share many features but also demonstrate certain differences. Fodrin (in humans, typically a heterodimer of the products of the SPTAN1 and SPTBN1 genes) is expressed in nearly all cell types and is especially abundant in neuronal tissues, whereas spectrin (in humans, a heterodimer of the products of the SPTA1 and SPTB1 genes) is expressed almost exclusively in erythrocytes. To fulfill a role in such a variety of different cell types, it was anticipated that fodrin would need to be a more versatile scaffold than spectrin. Indeed, as summarized here, domains unique to fodrin and its regulation by Ca2+, calmodulin, and a variety of posttranslational modifications (PTMs) endow fodrin with additional specific functions. However, how fodrin structural variations and misregulated PTMs may contribute to the etiology of various cancers and neurodegenerative diseases needs to be further investigated.
Collapse
|
26
|
Qi Y, Liu J, Chao J, Scheuerman MP, Rahimi SA, Lee LY, Li S. PTEN suppresses epithelial-mesenchymal transition and cancer stem cell activity by downregulating Abi1. Sci Rep 2020; 10:12685. [PMID: 32728066 PMCID: PMC7391766 DOI: 10.1038/s41598-020-69698-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The epithelial–mesenchymal transition (EMT) is an embryonic program frequently reactivated during cancer progression and is implicated in cancer invasion and metastasis. Cancer cells can also acquire stem cell properties to self-renew and give rise to new tumors through the EMT. Inactivation of the tumor suppressor PTEN has been shown to induce the EMT, but the underlying molecular mechanisms are less understood. In this study, we reconstituted PTEN-deficient breast cancer cells with wild-type and mutant PTEN, demonstrating that restoration of PTEN expression converted cancer cells with mesenchymal traits to an epithelial phenotype and inhibited cancer stem cell (CSC) activity. The protein rather than the lipid phosphatase activity of PTEN accounts for the reversal of the EMT. PTEN dephosphorylates and downregulates Abi1 in breast cancer cells. Gain- and loss-of-function analysis indicates that upregulation of Abi1 mediates PTEN loss-induced EMT and CSC activity. These results suggest that PTEN may suppress breast cancer invasion and metastasis via dephosphorylating and downregulating Abi1.
Collapse
Affiliation(s)
- Yanmei Qi
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, 125 Paterson Street, MEB-687, New Brunswick, NJ, 08093, USA
| | - Jie Liu
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, 125 Paterson Street, MEB-687, New Brunswick, NJ, 08093, USA
| | - Joshua Chao
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, 125 Paterson Street, MEB-687, New Brunswick, NJ, 08093, USA
| | - Mark P Scheuerman
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, 125 Paterson Street, MEB-687, New Brunswick, NJ, 08093, USA
| | - Saum A Rahimi
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, 125 Paterson Street, MEB-687, New Brunswick, NJ, 08093, USA
| | - Leonard Y Lee
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, 125 Paterson Street, MEB-687, New Brunswick, NJ, 08093, USA
| | - Shaohua Li
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, 125 Paterson Street, MEB-687, New Brunswick, NJ, 08093, USA.
| |
Collapse
|
27
|
Distinctive roles of Abi1 in regulating actin-associated proteins during human smooth muscle cell migration. Sci Rep 2020; 10:10667. [PMID: 32606387 PMCID: PMC7326921 DOI: 10.1038/s41598-020-67781-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Smooth muscle cell migration is essential for many diverse biological processes such as pulmonary/cardiovascular development and homeostasis. Abi1 (Abelson interactor 1) is an adapter protein that has been implicated in nonmuscle cell migration. However, the role and mechanism of Abi1 in smooth muscle migration are largely unknown. Here, Abi1 knockdown by shRNA reduced human airway smooth muscle cell migration, which was restored by Abi1 rescue. Abi1 localized at the tip of lamellipodia and its protrusion coordinated with F-actin at the leading cell edge of live cells. In addition, we identified profilin-1 (Pfn-1), a G-actin transporter, as a new partner for Abi1. Abi1 knockdown reduced the recruitment of Pfn-1 to the leading cell edge. Moreover, Abi1 knockdown reduced the localization of the actin-regulatory proteins c-Abl (Abelson tyrosine kinase) and N-WASP (neuronal Wiskott–Aldrich Syndrome Protein) at the cell edge without affecting other migration-related proteins including pVASP (phosphorylated vasodilator stimulated phosphoprotein), cortactin and vinculin. Furthermore, we found that c-Abl and integrin β1 regulated the positioning of Abi1 at the leading edge. Taken together, the results suggest that Abi1 regulates cell migration by affecting Pfn-1 and N-WASP, but not pVASP, cortactin and focal adhesions. Integrin β1 and c-Abl are important for the recruitment of Abi1 to the leading edge.
Collapse
|
28
|
Faulkner J, Jiang P, Farris D, Walker R, Dai Z. CRISPR/CAS9-mediated knockout of Abi1 inhibits p185 Bcr-Abl-induced leukemogenesis and signal transduction to ERK and PI3K/Akt pathways. J Hematol Oncol 2020; 13:34. [PMID: 32276588 PMCID: PMC7147029 DOI: 10.1186/s13045-020-00867-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Abl interactor 1 (Abi1) is a downstream target of Abl tyrosine kinases and a component of the WAVE regulatory complex (WRC) that plays an important role in regulating actin cytoskeleton remodeling and membrane receptor signaling. While studies using short hairpin RNA (shRNA) have suggested that Abi1 plays a critical role in Bcr-Abl-induced leukemogenesis, the mechanism involved is not clear. Methods In this study, we knocked out Abi1 expression in p185Bcr-Abl-transformed hematopoietic cells using CRISPR/Cas9-mediated gene editing technology. The effects of Abi1 deficiency on actin cytoskeleton remodeling, the Bcr-Abl signaling, IL-3 independent growth, and SDF-induced chemotaxis in these cells were examined by various in vitro assays. The leukemogenic activity of these cells was evaluated by a syngeneic mouse transplantation model. Results We show here that Abi1 deficiency reduced the IL3-independent growth and SDF-1α-mediated chemotaxis in p185Bcr-Abl-transformed hematopoietic cells and inhibited Bcr-Abl-induced abnormal actin remodeling. Depletion of Abi1 also impaired the Bcr-Abl signaling to the ERK and PI3 kinase/Akt pathways. Remarkably, the p185Bcr-Abl-transformed cells with Abi1 deficiency lost their ability to develop leukemia in syngeneic mice. Even though these cells developed drug tolerance in vitro after prolonged selection with imatinib as their parental cells, the imatinib-tolerant cells remain incapable of leukemogenesis in vivo. Conclusions Together, this study highlights an essential role of Abi1 in Bcr-Abl-induced leukemogenesis and provides a model system for dissecting the Abi1 signaling in Bcr-Abl-positive leukemia.
Collapse
Affiliation(s)
- James Faulkner
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Peixin Jiang
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Delaney Farris
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Ryan Walker
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Zonghan Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA.
| |
Collapse
|
29
|
Edwards JJ, Rouillard AD, Fernandez NF, Wang Z, Lachmann A, Shankaran SS, Bisgrove BW, Demarest B, Turan N, Srivastava D, Bernstein D, Deanfield J, Giardini A, Porter G, Kim R, Roberts AE, Newburger JW, Goldmuntz E, Brueckner M, Lifton RP, Seidman CE, Chung WK, Tristani-Firouzi M, Yost HJ, Ma’ayan A, Gelb BD. Systems Analysis Implicates WAVE2 Complex in the Pathogenesis of Developmental Left-Sided Obstructive Heart Defects. JACC Basic Transl Sci 2020; 5:376-386. [PMID: 32368696 PMCID: PMC7188873 DOI: 10.1016/j.jacbts.2020.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022]
Abstract
Genetic variants are the primary driver of congenital heart disease (CHD) pathogenesis. However, our ability to identify causative variants is limited. To identify causal CHD genes that are associated with specific molecular functions, the study used prior knowledge to filter de novo variants from 2,881 probands with sporadic severe CHD. This approach enabled the authors to identify an association between left ventricular outflow tract obstruction lesions and genes associated with the WAVE2 complex and regulation of small GTPase-mediated signal transduction. Using CRISPR zebrafish knockdowns, the study confirmed that WAVE2 complex proteins brk1, nckap1, and wasf2 and the regulators of small GTPase signaling cul3a and racgap1 are critical to cardiac development.
Collapse
Key Words
- CHD, congenital heart disease
- CORUM, Comprehensive Resource of Mammalian Protein Complexes
- CRISPR, clustered regularly interspaced short palindromic repeats
- CTD, conotruncal defect
- GOBP, Gene Ontology biological processes
- HHE, high heart expression
- HLHS, hypoplastic left heart syndrome
- HTX, heterotaxy
- LVOTO, left ventricular outflow tract obstruction
- MGI, Mouse Genome Informatics
- PCGC, Pediatric Cardiac Genomics Consortium
- PPI, protein-protein interaction
- congenital heart disease
- systems biology
- translational genomics
Collapse
Affiliation(s)
- Jonathan J. Edwards
- Department of Pediatrics, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew D. Rouillard
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicolas F. Fernandez
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zichen Wang
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexander Lachmann
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sunita S. Shankaran
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Brent W. Bisgrove
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | - Bradley Demarest
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, California
| | - Daniel Bernstein
- Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California
| | - John Deanfield
- Department of Cardiology, Great Ormond Street Hospital, University College London, London, United Kingdom
| | - Alessandro Giardini
- Department of Cardiology, Great Ormond Street Hospital, University College London, London, United Kingdom
| | - George Porter
- Department of Pediatrics, University of Rochester Medical Center, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Richard Kim
- Section of Cardiothoracic Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Amy E. Roberts
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts
| | - Jane W. Newburger
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts
| | - Elizabeth Goldmuntz
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martina Brueckner
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - H. Joseph Yost
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | - Avi Ma’ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
30
|
Nath D, Li X, Mondragon C, Post D, Chen M, White JR, Hryniewicz-Jankowska A, Caza T, Kuznetsov VA, Hehnly H, Jamaspishvili T, Berman DM, Zhang F, Kung SHY, Fazli L, Gleave ME, Bratslavsky G, Pandolfi PP, Kotula L. Abi1 loss drives prostate tumorigenesis through activation of EMT and non-canonical WNT signaling. Cell Commun Signal 2019; 17:120. [PMID: 31530281 PMCID: PMC6749699 DOI: 10.1186/s12964-019-0410-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022] Open
Abstract
Background Prostate cancer development involves various mechanisms, which are poorly understood but pointing to epithelial mesenchymal transition (EMT) as the key mechanism in progression to metastatic disease. ABI1, a member of WAVE complex and actin cytoskeleton regulator and adaptor protein, acts as tumor suppressor in prostate cancer but the role of ABI1 in EMT is not clear. Methods To investigate the molecular mechanism by which loss of ABI1 contributes to tumor progression, we disrupted the ABI1 gene in the benign prostate epithelial RWPE-1 cell line and determined its phenotype. Levels of ABI1 expression in prostate organoid tumor cell lines was evaluated by Western blotting and RNA sequencing. ABI1 expression and its association with prostate tumor grade was evaluated in a TMA cohort of 505 patients and metastatic cell lines. Results Low ABI1 expression is associated with biochemical recurrence, metastasis and death (p = 0.038). Moreover, ABI1 expression was significantly decreased in Gleason pattern 5 vs. pattern 4 (p = 0.0025) and 3 (p = 0.0012), indicating an association between low ABI1 expression and highly invasive prostate tumors. Disruption of ABI1 gene in RWPE-1 cell line resulted in gain of an invasive phenotype, which was characterized by a loss of cell-cell adhesion markers and increased migratory ability of RWPE-1 spheroids. Through RNA sequencing and protein expression analysis, we discovered that ABI1 loss leads to activation of non-canonical WNT signaling and EMT pathways, which are rescued by re-expression of ABI1. Furthermore, an increase in STAT3 phosphorylation upon ABI1 inactivation and the evidence of a high-affinity interaction between the FYN SH2 domain and ABI1 pY421 support a model in which ABI1 acts as a gatekeeper of non-canonical WNT-EMT pathway activation downstream of the FZD2 receptor. Conclusions ABI1 controls prostate tumor progression and epithelial plasticity through regulation of EMT-WNT pathway. Here we discovered that ABI1 inhibits EMT through suppressing FYN-STAT3 activation downstream from non-canonical WNT signaling thus providing a novel mechanism of prostate tumor suppression. Electronic supplementary material The online version of this article (10.1186/s12964-019-0410-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Disharee Nath
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Xiang Li
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Claudia Mondragon
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA
| | - Dawn Post
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA
| | - Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Present address: Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.,Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
| | - Julie R White
- Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Anita Hryniewicz-Jankowska
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA.,Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Tiffany Caza
- Department of Pathology and Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Vladimir A Kuznetsov
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA.,Bioinformatics Institute, A-STAR, Singapore, 138671, Singapore
| | - Heidi Hehnly
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Tamara Jamaspishvili
- Department of Pathology and Molecular Medicine and Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, 10 Stuart St, Kingston, ON, K7L 3N6, Canada
| | - David M Berman
- Department of Pathology and Molecular Medicine and Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, 10 Stuart St, Kingston, ON, K7L 3N6, Canada
| | - Fan Zhang
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Sonia H Y Kung
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Martin E Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Gennady Bratslavsky
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Leszek Kotula
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
31
|
Cohen J, Raviv S, Adir O, Padmanabhan K, Soffer A, Luxenburg C. The Wave complex controls epidermal morphogenesis and proliferation by suppressing Wnt-Sox9 signaling. J Cell Biol 2019; 218:1390-1406. [PMID: 30867227 PMCID: PMC6446834 DOI: 10.1083/jcb.201807216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 02/08/2023] Open
Abstract
The Wave complex promotes Arp2/3-mediated actin polymerization. Cohen et al. show that Wave complex activity regulates epidermal shape and growth. Without Wave complex activity, F-actin content is down-regulated and ectopic activity of the Wnt/β-catenin–SOX9 pathway is triggered. This activity induces epidermal hyperproliferation and disrupts tissue architecture. Development of the skin epidermis requires tight spatiotemporal control over the activity of several signaling pathways; however, the mechanisms that orchestrate these events remain poorly understood. Here, we identify a key role for the Wave complex proteins ABI1 and Wave2 in regulating signals that control epidermal shape and growth. In utero RNAi-mediated silencing of Abi1 or Wasf2 induced cellular hyperproliferation and defects in architecture of the interfollicular epidermis (IFE) and delayed hair follicle growth. Unexpectedly, SOX9, a hair follicle growth regulator, was aberrantly expressed throughout the IFE of the mutant embryos, and its forced overexpression mimicked the Wave complex loss-of-function phenotype. Moreover, Wnt signaling, which regulates SOX9+ cell specification, was up-regulated in Wave complex loss-of-function IFE. Importantly, we show that the Wave complex regulates filamentous actin content and that a decrease in actin levels is sufficient to elevate Wnt/β-catenin signaling. Our results identify a novel role for Wave complex– and actin-regulated signaling via Wnt and SOX9 in skin development.
Collapse
Affiliation(s)
- Jonathan Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shaul Raviv
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Adir
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arad Soffer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Schaks M, Singh SP, Kage F, Thomason P, Klünemann T, Steffen A, Blankenfeldt W, Stradal TE, Insall RH, Rottner K. Distinct Interaction Sites of Rac GTPase with WAVE Regulatory Complex Have Non-redundant Functions in Vivo. Curr Biol 2018; 28:3674-3684.e6. [PMID: 30393033 PMCID: PMC6264382 DOI: 10.1016/j.cub.2018.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/30/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
Abstract
Cell migration often involves the formation of sheet-like lamellipodia generated by branched actin filaments. The branches are initiated when Arp2/3 complex [1] is activated by WAVE regulatory complex (WRC) downstream of small GTPases of the Rac family [2]. Recent structural studies defined two independent Rac binding sites on WRC within the Sra-1/PIR121 subunit of the pentameric WRC [3, 4], but the functions of these sites in vivo have remained unknown. Here we dissect the mechanism of WRC activation and the in vivo relevance of distinct Rac binding sites on Sra-1, using CRISPR/Cas9-mediated gene disruption of Sra-1 and its paralog PIR121 in murine B16-F1 cells combined with Sra-1 mutant rescue. We show that the A site, positioned adjacent to the binding region of WAVE-WCA mediating actin and Arp2/3 complex binding, is the main site for allosteric activation of WRC. In contrast, the D site toward the C terminus is dispensable for WRC activation but required for optimal lamellipodium morphology and function. These results were confirmed in evolutionarily distant Dictyostelium cells. Moreover, the phenotype seen in D site mutants was recapitulated in Rac1 E31 and F37 mutants; we conclude these residues are important for Rac-D site interaction. Finally, constitutively activated WRC was able to induce lamellipodia even after both Rac interaction sites were lost, showing that Rac interaction is not essential for membrane recruitment. Our data establish that physical interaction with Rac is required for WRC activation, in particular through the A site, but is not mandatory for WRC accumulation in the lamellipodium.
Collapse
Affiliation(s)
- Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Shashi P Singh
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; University of Glasgow Institute of Cancer Sciences, Switchback Road, Glasgow G61 1BD, UK
| | - Frieda Kage
- Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Peter Thomason
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; University of Glasgow Institute of Cancer Sciences, Switchback Road, Glasgow G61 1BD, UK
| | - Thomas Klünemann
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Anika Steffen
- Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Theresia E Stradal
- Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Robert H Insall
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; University of Glasgow Institute of Cancer Sciences, Switchback Road, Glasgow G61 1BD, UK.
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
33
|
Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood 2018; 132:2053-2066. [PMID: 30213875 DOI: 10.1182/blood-2018-05-848408] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/01/2018] [Indexed: 12/23/2022] Open
Abstract
Although the pathogenesis of primary myelofibrosis (PMF) and other myeloproliferative neoplasms (MPNs) is linked to constitutive activation of the JAK-STAT pathway, JAK inhibitors have neither curative nor MPN-stem cell-eradicating potential, indicating that other targetable mechanisms are contributing to the pathophysiology of MPNs. We previously demonstrated that Abelson interactor 1 (Abi-1), a negative regulator of Abelson kinase 1, functions as a tumor suppressor. Here we present data showing that bone marrow-specific deletion of Abi1 in a novel mouse model leads to development of an MPN-like phenotype resembling human PMF. Abi1 loss resulted in a significant increase in the activity of the Src family kinases (SFKs), STAT3, and NF-κB signaling. We also observed impairment of hematopoietic stem cell self-renewal and fitness, as evidenced in noncompetitive and competitive bone marrow transplant experiments. CD34+ hematopoietic progenitors and granulocytes from patients with PMF showed decreased levels of ABI1 transcript as well as increased activity of SFKs, STAT3, and NF-κB. In aggregate, our data link the loss of Abi-1 function to hyperactive SFKs/STAT3/NF-κB signaling and suggest that this signaling axis may represent a regulatory module involved in the molecular pathophysiology of PMF.
Collapse
|
34
|
Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson's disease. Proc Natl Acad Sci U S A 2018; 115:E5164-E5173. [PMID: 29760073 DOI: 10.1073/pnas.1718946115] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been implicated in both familial and sporadic Parkinson's disease (PD), yet its pathogenic role remains unclear. A previous screen in Drosophila identified Scar/WAVE (Wiskott-Aldrich syndrome protein-family verproline) proteins as potential genetic interactors of LRRK2 Here, we provide evidence that LRRK2 modulates the phagocytic response of myeloid cells via specific modulation of the actin-cytoskeletal regulator, WAVE2. We demonstrate that macrophages and microglia from LRRK2-G2019S PD patients and mice display a WAVE2-mediated increase in phagocytic response, respectively. Lrrk2 loss results in the opposite effect. LRRK2 binds and phosphorylates Wave2 at Thr470, stabilizing and preventing its proteasomal degradation. Finally, we show that Wave2 also mediates Lrrk2-G2019S-induced dopaminergic neuronal death in both macrophage-midbrain cocultures and in vivo. Taken together, a LRRK2-WAVE2 pathway, which modulates the phagocytic response in mice and human leukocytes, may define an important role for altered immune function in PD.
Collapse
|
35
|
Wang JL, Yan TT, Long C, Cai WW. Oncogenic function and prognostic significance of Abelson interactor 1 in hepatocellular carcinoma. Int J Oncol 2017; 50:1889-1898. [PMID: 28339046 DOI: 10.3892/ijo.2017.3920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
Aberrant expression of Abelson interactor 1 (ABI1) has been reported in multiple cancers. However, its clinical significance and potential biological roles in hepatocellular carcinoma (HCC) have not been fully elucidated. In this study, we found that ABI1 was obviously upregulated in HCC tissues compared with non-tumor tissues. Moreover, high ABI1 expression was significantly correlated with tumor size (P=0.041), tumor number (P<0.001), tumor encapsulation (P<0.001) and BCLC stage (P=0.010). Importantly, Kaplan-Meier survival analysis showed that increased ABI1 expression predicted shorter overall survival time (P<0.001) and a higher tendency of tumor recurrence (P=0.001) in HCC patients. Multivariate Cox regression analysis further confirmed high ABI1 expression was an independent predictor for both overall survival (HR=1.795, P=0.025) and early recurrence (HR=1.893, P=0.012) after surgical resection. Furthermore, in vitro studies indicated that overexpression of ABI1 induced an increase in cell proliferation, migration and invasion of HCC cells, whereas knockdown of ABI1 did the opposite. Xenograft mouse models verified the promoting effects of ABI1 on HCC growth and lung metastasis in vivo. Collectively, our findings indicated that ABI1 contributes to the development and progression of HCC as an oncogene and may serve as a valuable prognostic marker for HCC patients.
Collapse
Affiliation(s)
- Ji-Long Wang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ting-Ting Yan
- Xiangya School of Public Health, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chen Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Wen-Wu Cai
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
36
|
Chorzalska A, Kim JF, Roder K, Tepper A, Ahsan N, Rao RSP, Olszewski AJ, Yu X, Terentyev D, Morgan J, Treaba DO, Zhao TC, Liang O, Gruppuso PA, Dubielecka PM. Long-Term Exposure to Imatinib Mesylate Downregulates Hippo Pathway and Activates YAP in a Model of Chronic Myelogenous Leukemia. Stem Cells Dev 2017; 26:656-677. [PMID: 28103766 DOI: 10.1089/scd.2016.0262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite the success of tyrosine kinase inhibitor (TKI) therapy in chronic myelogenous leukemia (CML), leukemic stem/progenitor cells remain detectable even in the state of deep molecular remission. Mechanisms that allow them to persist despite continued kinase inhibition remain unclear. We have previously shown that prolonged exposure to imatinib mesylate (IM) results in dysregulation of Akt/Erk 1/2 signaling, upregulation of miR-181a, enhanced adhesiveness, and resistance to high IM. To characterize the molecular basis and reversibility of those effects, we applied gene and protein expression analysis, quantitative phosphoproteomics, and direct miR-181a inhibition to our cellular model of CML cells subjected to prolonged exposure to IM. Those cells demonstrated upregulation of pluripotency markers (SOX2, SALL4) and adhesion receptors (CD44, VLA-4, CXCR4), as well as downregulation of Hippo signaling and upregulation of transcription coactivator YAP. Furthermore, inhibition of miR-181a using a microRNA sponge inhibitor resulted in decreased transcription of SOX2 and SALL4, decreased activation of YAP, and increased sensitivity to IM. Our findings indicate that long-term exposure to IM results in dysregulation of stem cell renewal-regulatory Hippo/YAP signaling, acquisition of expression of stem cell markers and that experimental interference with YAP activity may help to restore chemosensitivity to TKI.
Collapse
Affiliation(s)
- Anna Chorzalska
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Javier Flores Kim
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Karim Roder
- 2 Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Alexander Tepper
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Nagib Ahsan
- 3 Division of Biology and Medicine, Brown University , Center for Cancer Research and Development Proteomics Core Facility, Rhode Island Hospital, Providence, Rhode Island
| | - R Shyama Prasad Rao
- 4 Division of Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University , Mangalore, India
| | - Adam J Olszewski
- 5 Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Xiaoqing Yu
- 6 Department of Biostatistics, Yale School of Public Health , New Haven, Connecticut
| | - Dmitry Terentyev
- 2 Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - John Morgan
- 7 Flow Cytometry and Cell Sorting Core Facility, Roger Williams Medical Center , Providence, Rhode Island
| | - Diana O Treaba
- 8 Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Ting C Zhao
- 9 Cardiovascular Laboratory, Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine , Providence, Rhode Island
| | - Olin Liang
- 5 Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island.,10 Department of Orthopedics, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Philip A Gruppuso
- 11 Department of Pediatrics, Brown University , Rhode Island Hospital, Providence, Rhode Island
| | - Patrycja M Dubielecka
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| |
Collapse
|
37
|
Kumar S, Lu B, Dixit U, Hossain S, Liu Y, Li J, Hornbeck P, Zheng W, Sowalsky AG, Kotula L, Birge RB. Reciprocal regulation of Abl kinase by Crk Y251 and Abi1 controls invasive phenotypes in glioblastoma. Oncotarget 2016; 6:37792-807. [PMID: 26473374 PMCID: PMC4741966 DOI: 10.18632/oncotarget.6096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
Crk is the prototypical member of a class of Src homology 2 (SH2) and Src homology 3 (SH3) domain-containing adaptor proteins that positively regulate cell motility via the activation of Rac1 and, in certain tumor types such as GBM, can promote cell invasion and metastasis by mechanisms that are not well understood. Here we demonstrate that Crk, via its phosphorylation at Tyr251, promotes invasive behavior of tumor cells, is a prominent feature in GBM, and correlating with aggressive glioma grade IV staging and overall poor survival outcomes. At the molecular level, Tyr251 phosphorylation of Crk is negatively regulated by Abi1, which competes for Crk binding to Abl and attenuates Abl transactivation. Together, these results show that Crk and Abi1 have reciprocal biological effects and act as a molecular rheostat to control Abl activation and cell invasion. Finally, these data suggest that Crk Tyr251 phosphorylation regulate invasive cell phenotypes and may serve as a biomarker for aggressive GBM.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Bin Lu
- Institute of Biophysics, School of Life Sciences, Wenzhou Medical University, Wenzhou, China.,Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Updesh Dixit
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Sajjad Hossain
- Departments of Urology and Biochemistry and Molecular Biology, SUNY Upstate Medical University, New York, NY, USA
| | - Yongzhang Liu
- Institute of Biophysics, School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jing Li
- Cell Signaling Technology, Danvers, MA, USA
| | | | - Weiming Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Adam G Sowalsky
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Leszek Kotula
- Departments of Urology and Biochemistry and Molecular Biology, SUNY Upstate Medical University, New York, NY, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
38
|
Sowalsky AG, Sager R, Schaefer RJ, Bratslavsky G, Pandolfi PP, Balk SP, Kotula L. Loss of Wave1 gene defines a subtype of lethal prostate cancer. Oncotarget 2016; 6:12383-91. [PMID: 25906751 PMCID: PMC4494945 DOI: 10.18632/oncotarget.3564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022] Open
Abstract
Genetic alterations involving TMPRSS2-ERG alterations and deletion of key tumor suppressor genes are associated with development and progression of prostate cancer (PCa). However, less defined are early events that may contribute to the development of high-risk metastatic prostate cancer. Bioinformatic analysis of existing tumor genomic data from PCa patients revealed that WAVE complex gene alterations are associated with a greater likelihood of prostate cancer recurrence. Further analysis of primary vs. castration resistant prostate cancer indicate that disruption of WAVE complex gene expression, and particularly WAVE1 gene (WASF1) loss, is also associated with castration resistance, where WASF1 is frequently co-deleted with PTEN and resists androgen deprivation therapy (ADT). Hence, we propose that WASF1 status defines a subtype of ADT-resistant patients. Better understanding of the effects of WAVE pathway disruption will lead to development of better diagnostic and treatment modalities.
Collapse
Affiliation(s)
- Adam G Sowalsky
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca Sager
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rachel J Schaefer
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Pier Paolo Pandolfi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P Balk
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leszek Kotula
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.,Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
39
|
Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and Caenorhabditis elegans Gastrulation. Genetics 2015; 202:123-39. [PMID: 26434722 DOI: 10.1534/genetics.115.183137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Neural tube defects including spina bifida are common and severe congenital disorders. In mice, mutations in more than 200 genes can result in neural tube defects. We hypothesized that this large gene set might include genes whose homologs contribute to morphogenesis in diverse animals. To test this hypothesis, we screened a set of Caenorhabditis elegans homologs for roles in gastrulation, a topologically similar process to vertebrate neural tube closure. Both C. elegans gastrulation and vertebrate neural tube closure involve the internalization of surface cells, requiring tissue-specific gene regulation, actomyosin-driven apical constriction, and establishment and maintenance of adhesions between specific cells. Our screen identified several neural tube defect gene homologs that are required for gastrulation in C. elegans, including the transcription factor sptf-3. Disruption of sptf-3 in C. elegans reduced the expression of early endodermally expressed genes as well as genes expressed in other early cell lineages, establishing sptf-3 as a key contributor to multiple well-studied C. elegans cell fate specification pathways. We also identified members of the actin regulatory WAVE complex (wve-1, gex-2, gex-3, abi-1, and nuo-3a). Disruption of WAVE complex members reduced the narrowing of endodermal cells' apical surfaces. Although WAVE complex members are expressed broadly in C. elegans, we found that expression of a vertebrate WAVE complex member, nckap1, is enriched in the developing neural tube of Xenopus. We show that nckap1 contributes to neural tube closure in Xenopus. This work identifies in vivo roles for homologs of mammalian neural tube defect genes in two manipulable genetic model systems.
Collapse
|
40
|
Sekino S, Kashiwagi Y, Kanazawa H, Takada K, Baba T, Sato S, Inoue H, Kojima M, Tani K. The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based WAVE2 complex. Cell Commun Signal 2015; 13:41. [PMID: 26428302 PMCID: PMC4589964 DOI: 10.1186/s12964-015-0119-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 09/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abl interactor (Abi) family proteins play significant roles in actin cytoskeleton organization through participation in the WAVE complex. Mammals possess three Abi proteins: Abi-1, Abi-2, and NESH/Abi-3. Abi-1 and Abi-2 were originally identified as Abl tyrosine kinase-binding proteins. It has been disclosed that Abi-1 acts as a bridge between c-Abl and WAVE2, and c-Abl-mediated WAVE2 phosphorylation promotes actin remodeling. We showed previously that NESH/Abi-3 is present in the WAVE2 complex, but neither binds to c-Abl nor promotes c-Abl-mediated phosphorylation of WAVE2. RESULTS In this study, we characterized NESH/Abi-3 in more detail, and compared its properties with those of Abi-1 and Abi-2. NESH/Abi-3 was ectopically expressed in NIH3T3 cells, in which Abi-1, but not NESH/Abi-3, is expressed. The expression of NESH/Abi-3 caused degradation of endogenous Abi-1, which led to the formation of a NESH/Abi-3-based WAVE2 complex. When these cells were plated on fibronectin-coated dishes, the translocation of WAVE2 to the plasma membrane was significantly reduced and the formation of peripheral lamellipodial structures was disturbed, suggesting that the NESH/Abi-3-based WAVE2 complex was unable to help produce lamellipodial protrusions. Next, Abi-1, Abi-2, or NESH/Abi-3 was expressed in v-src-transformed NIH3T3 cells. Only in NESH/Abi-3-expressed cells did treatment with an Abl kinase inhibitor, imatinib mesylate, or siRNA-mediated knockdown of c-Abl promote the formation of invadopodia, which are ventral membrane protrusions with extracellular matrix degradation activity. Structural studies showed that a linker region between the proline-rich regions and the Src homology 3 (SH3) domain of Abi-1 is crucial for its interaction with c-Abl and c-Abl-mediated phosphorylation of WAVE2. CONCLUSIONS The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based one, and NESH/Abi-3 may be involved in the formation of ventral protrusions under certain conditions.
Collapse
Affiliation(s)
- Saki Sekino
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Yuriko Kashiwagi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Hitoshi Kanazawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Kazuki Takada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Takashi Baba
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Seiichi Sato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Masaki Kojima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Katsuko Tani
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
41
|
Basquin C, Trichet M, Vihinen H, Malardé V, Lagache T, Ripoll L, Jokitalo E, Olivo-Marin JC, Gautreau A, Sauvonnet N. Membrane protrusion powers clathrin-independent endocytosis of interleukin-2 receptor. EMBO J 2015; 34:2147-61. [PMID: 26124312 PMCID: PMC4557667 DOI: 10.15252/embj.201490788] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 11/09/2022] Open
Abstract
Endocytosis controls many functions including nutrient uptake, cell division, migration and signal transduction. A clathrin- and caveolin-independent endocytosis pathway is used by important physiological cargos, including interleukin-2 receptors (IL-2R). However, this process lacks morphological and dynamic data. Our electron microscopy (EM) and tomography studies reveal that IL-2R-pits and vesicles are initiated at the base of protrusions. We identify the WAVE complex as a specific endocytic actor. The WAVE complex interacts with IL-2R, via a WAVE-interacting receptor sequence (WIRS) present in the receptor polypeptide, and allows for receptor clustering close to membrane protrusions. In addition, using total internal reflection fluorescent microscopy (TIRF) and automated analysis we demonstrate that two timely distinct bursts of actin polymerization are required during IL-2R uptake, promoted first by the WAVE complex and then by N-WASP. Finally, our data reveal that dynamin acts as a transition controller for the recruitment of Arp2/3 activators required for IL-2R endocytosis. Altogether, our work identifies the spatio-temporal specific role of factors initiating clathrin-independent endocytosis by a unique mechanism that does not depend on the deformation of a flat membrane, but rather on that of membrane protrusions.
Collapse
Affiliation(s)
- Cyril Basquin
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France CNRS UMR3691, Paris, France
| | - Michaël Trichet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut de Biologie Paris-Seine (IBPS), FR3631, Electron Microscopy Facility, Paris, France
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Valérie Malardé
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France CNRS UMR3691, Paris, France
| | - Thibault Lagache
- CNRS UMR3691, Paris, France Unité d'Analyse d'Images Biologiques, Institut Pasteur, Paris, France
| | - Léa Ripoll
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France CNRS UMR3691, Paris, France
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Alexis Gautreau
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654 Ecole Polytechnique Centre, National de la Recherche Scientifique, Palaiseau, France
| | - Nathalie Sauvonnet
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France CNRS UMR3691, Paris, France
| |
Collapse
|
42
|
Zhang J, Tang L, Chen Y, Duan Z, Xiao L, Li W, Liu X, Shen L. Upregulation of Abelson interactor protein 1 predicts tumor progression and poor outcome in epithelial ovarian cancer. Hum Pathol 2015; 46:1331-40. [PMID: 26193797 DOI: 10.1016/j.humpath.2015.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
Abelson interactor protein 1 (Abi1) is a key regulator of actin reorganization and lamellipodia formation. Because of its role in cell migration, Abi1 has been implicated in tumor progression. In the present study, we investigated the role of Abi1 in epithelial ovarian cancer (EOC) by analyzing its expression and correlation with clinicopathological and survival data. We evaluated the expression of Abi1 in 223 paraffin-embedded EOC specimens by immunohistochemistry and 46 frozen EOC samples by Western blot and real-time reverse transcription polymerase chain reaction analysis. Results showed that Abi1 protein and mRNA expression was significantly higher in EOC tissue compared with noncancerous tumors and normal ovaries (P < .05). Moreover, high level of Abi1 expression was significantly correlated with advanced stage, high grade, elevated Ca-125 level, and suboptimal surgical debulking (P < .05). By Western blot analysis, Abi1 was expressed in highly invasive cells compared with weakly invasive cells (P < .05). Immunofluorescence was performed to demonstrate Abi1 expression in SKOV3 cells. Additionally, upregulation of Abi1 significantly correlated with shorter survival (P < .05). Most importantly, multivariate analysis showed that Abi1 overexpression is an independent prognostic factor, complementary to clinical stage and residual tumor size. In conclusion, our findings suggest that Abi1 acts as a tumor-promoting gene in EOC progression, which may lead to unfavorable prognosis. Abi1 may serve as a potential effective prognostic marker for EOC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Liangdan Tang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yanlin Chen
- Department of Pathology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhaoning Duan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lin Xiao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Wenwen Li
- Department of Pathology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xiaohan Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Liyuan Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
43
|
New Abelson interactor-1 (Abi-1)-driven mechanism of acquired drug resistance. Leuk Suppl 2014; 3:S7-8. [PMID: 27175273 DOI: 10.1038/leusup.2014.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
44
|
Steinestel K, Gläsle F, Brüderlein S, Steinestel J, Pröpper C, Möller P. [Abelson interactor 1 (Abi1) in colorectal cancer. From synaptic plasticity to tumor cell migration]. DER PATHOLOGE 2014; 34 Suppl 2:189-94. [PMID: 24196611 DOI: 10.1007/s00292-013-1810-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Invasion and metastatic dissemination of tumor cells defines the prognosis of patients with colorectal cancer (CRC). The Abelson interactor 1 (Abi1), a 65 kD substrate of the eponymous Abelson tyrosine kinase, interacts with phosphatidylinositol-3-kinase (PI3K) and heterogeneous nuclear ribonucleoprotein K (hnRNP K) and is a key regulator of cytoskeletal reorganization during synaptic maturation and cellular migration. AIM The aim of this study was the analysis of Abi1 expression patterns and to elucidate the role in cytoskeletal reorganization in colorectal carcinoma cells. MATERIAL AND METHODS The methods used in this study were immunohistochemistry; immunofluorescence microscopy; liposomal transfection and protein analysis by Western blotting. RESULTS The results showed that Abi1 is expressed at the invasive front of colorectal carcinomas and localizes to the leading edge of lamellipodia in cultured colorectal carcinoma cells. A phosphorylated isoform of Abi1 that stains positively in these microcompartments disappears after treatment with the tyrosine kinase inhibitor STI571 (Glivec®). The RNA interference (RNAi) approach knockdown of Abi1 as well as treatment with STI571 induce a shift in cellular morphology from broad lamellipodia-like to thin filopodia-like cellular protrusions. DISCUSSION The initial results support a central role for phosphorylated Abi1 in the formation of lamellipodia-like cellular protrusions as a prerequisite for cellular migration of colorectal carcinoma cells. As phosphorylation of Abi1 could be pharmaceutically targeted with STI571, this indicates a possible therapeutic option to prevent the gain of a metastatic phenotype in colorectal cancer. This possibility will be further evaluated in ongoing research.
Collapse
Affiliation(s)
- K Steinestel
- Institut für Radiobiologie der Bundeswehr, Neuherbergstr. 11, 80937, München, Deutschland,
| | | | | | | | | | | |
Collapse
|
45
|
Kaushik R, Grochowska KM, Butnaru I, Kreutz MR. Protein trafficking from synapse to nucleus in control of activity-dependent gene expression. Neuroscience 2014; 280:340-50. [PMID: 25230285 DOI: 10.1016/j.neuroscience.2014.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/18/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
Abstract
Long-lasting changes in neuronal excitability require activity-dependent gene expression and therefore the transduction of synaptic signals to the nucleus. Synaptic activity is rapidly relayed to the nucleus by membrane depolarization and the propagation of Ca(2+)-waves. However, it is unlikely that Ca(2+)-transients alone can explain the specific genomic response to the plethora of extracellular stimuli that control gene expression. In recent years a steadily growing number of studies report the transport of proteins from synapse to nucleus. Potential mechanisms for active retrograde transport and nuclear targets for these proteins have been identified and recent reports assigned first functions to this type of long-distance signaling. In this review we will discuss how the dissociation of synapto-nuclear protein messenger from synaptic and extrasynaptic sites, their transport, nuclear import and the subsequent genomic response relate to the prevailing concept behind this signaling mechanism, the encoding of signals at their site of origin and their decoding in the nucleus.
Collapse
Affiliation(s)
- R Kaushik
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - K M Grochowska
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - I Butnaru
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - M R Kreutz
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
46
|
Yoon KJ, Nguyen HN, Ursini G, Zhang F, Kim NS, Wen Z, Makri G, Nauen D, Shin JH, Park Y, Chung R, Pekle E, Zhang C, Towe M, Hussaini SMQ, Lee Y, Rujescu D, St Clair D, Kleinman JE, Hyde TM, Krauss G, Christian KM, Rapoport JL, Weinberger DR, Song H, Ming GL. Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell 2014; 15:79-91. [PMID: 24996170 PMCID: PMC4237009 DOI: 10.1016/j.stem.2014.05.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 01/01/2023]
Abstract
Defects in brain development are believed to contribute toward the onset of neuropsychiatric disorders, but identifying specific underlying mechanisms has proven difficult. Here, we took a multifaceted approach to investigate why 15q11.2 copy number variants are prominent risk factors for schizophrenia and autism. First, we show that human iPSC-derived neural progenitors carrying 15q11.2 microdeletion exhibit deficits in adherens junctions and apical polarity. This results from haploinsufficiency of CYFIP1, a gene within 15q11.2 that encodes a subunit of the WAVE complex, which regulates cytoskeletal dynamics. In developing mouse cortex, deficiency in CYFIP1 and WAVE signaling similarly affects radial glial cells, leading to their ectopic localization outside of the ventricular zone. Finally, targeted human genetic association analyses revealed an epistatic interaction between CYFIP1 and WAVE signaling mediator ACTR2 and risk for schizophrenia. Our findings provide insight into how CYFIP1 regulates neural stem cell function and may contribute to the susceptibility of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ki-Jun Yoon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ha Nam Nguyen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fengyu Zhang
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nam-Shik Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhexing Wen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Georgia Makri
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Nauen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Youngbin Park
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Raeeun Chung
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eva Pekle
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ce Zhang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Maxwell Towe
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Yohan Lee
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Dan Rujescu
- Department of Psychiatry, Ludwig-Maximilians University, Nussbaumstrasse 7, 80336, Munich, Germany
| | - David St Clair
- University of Aberdeen Royal Cornhill Hospital, Aberdeen AB25 2ZD, UK
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gregory Krauss
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Judith L Rapoport
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Daniel R Weinberger
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
47
|
Steinestel K, Brüderlein S, Lennerz JK, Steinestel J, Kraft K, Pröpper C, Meineke V, Möller P. Expression and Y435-phosphorylation of Abelson interactor 1 (Abi1) promotes tumour cell adhesion, extracellular matrix degradation and invasion by colorectal carcinoma cells. Mol Cancer 2014; 13:145. [PMID: 24913355 PMCID: PMC4066275 DOI: 10.1186/1476-4598-13-145] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/02/2014] [Indexed: 12/14/2022] Open
Abstract
Background The Abelson tyrosine kinase (c-Abl) inhibitor STI571 (Glivec®) has been shown to effectively inhibit colorectal cancer cell migration and invasion. The c-Abl substrate abelson interactor 1 (Abi1) is a key regulator of actin reorganization and upregulated in colorectal carcinoma. The specific role of Abi1 in relation to extracellular matrix degradation and effects of targeting Abi1 phosphorylation have not yet been examined. Here, we investigated the role of Abi1 in relation to invasive properties in colorectal cancer. Methods and results In 56 primary human colorectal carcinoma samples, we found overexpression of Abi1 in 39% at the invasive edge of the tumour, associated with an infiltrative phenotype and high-grade tumour cell budding (p = 0.001). To explore the role of Abi1 in vitro, we employed the Abi1 expressing and KRAS-mutated CHD1 model and performed matrix degradation assays that showed Abi1 localization at specific sites of matrix degradation. Moreover, quantification of matrix dissolution demonstrated suppression after RNAi knockdown of Abi1 by 95% (p = 0.001). Importantly, treatment with STI571 did abolish Abi1 Y435-phosphorylation, suppressed the matrix dissolution, decreased fibronectin attachment, and suppressed cell invasion through reconstituted extracellular matrix. Conclusion Our data indicate that phosphorylated Abi1 contributes to the invasive properties of colorectal cancer.
Collapse
Affiliation(s)
- Konrad Steinestel
- Bundeswehr Institute of Radiobiology, Neuherbergstr, 11, 80937 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chorzalska A, Salloum I, Shafqat H, Khan S, Marjon P, Treaba D, Schorl C, Morgan J, Bryke CR, Falanga V, Zhao TC, Reagan J, Winer E, Olszewski AJ, Al-Homsi AS, Kouttab N, Dubielecka PM. Low expression of Abelson interactor-1 is linked to acquired drug resistance in Bcr-Abl-induced leukemia. Leukemia 2014; 28:2165-77. [PMID: 24699303 PMCID: PMC4185277 DOI: 10.1038/leu.2014.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 03/03/2014] [Accepted: 03/10/2014] [Indexed: 01/04/2023]
Abstract
The basis for persistence of leukemic stem cells in the bone marrow microenvironment (BMME) remains poorly understood. We present evidence that signaling crosstalk between α4 integrin and Abelson interactor-1 (Abi-1) is involved in acquisition of an anchorage-dependent phenotype and drug resistance in Bcr-Abl positive leukemia cells. Comparison of Abi-1 (ABI-1) and α4 integrin (ITGA4) gene expression in relapsing Bcr-Abl positive CD34+ progenitor cells demonstrated a reduction in Abi-1 and an increase in α4 integrin mRNA in the absence of Bcr-Abl mutations. This inverse correlation between Abi-1 and α4 integrin expression, as well as linkage to elevated phospho-Akt and phospho-Erk signaling, was confirmed in imatinib mesylate (IM) resistant leukemic cells. These results indicate that the α4-Abi-1 signaling pathway may mediate acquisition of the drug resistant phenotype of leukemic cells.
Collapse
Affiliation(s)
- A Chorzalska
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - I Salloum
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - H Shafqat
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - S Khan
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - P Marjon
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - D Treaba
- Hematopathology Laboratories at Rhode Island Hospital and Miriam Hospital, Providence, RI, USA
| | - C Schorl
- Genomics Core Facility, Brown University, Providence, RI, USA
| | - J Morgan
- Flow Cytometry and Cell Sorting Core Facility, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Providence, RI, USA
| | - C R Bryke
- Cytogenetics, Quest Diagnostics Nichols Institute, Chantilly, VA, USA
| | - V Falanga
- 1] Department of Dermatology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA [2] Departments of Dermatology and Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - T C Zhao
- Cardiovascular Lab, Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - J Reagan
- Division of Hematology/Oncology, Rhode Island Hospital, Brown University Warren Alpert School of Medicine, Providence, RI, USA
| | - E Winer
- Division of Hematology/Oncology, Rhode Island Hospital, Brown University Warren Alpert School of Medicine, Providence, RI, USA
| | - A J Olszewski
- Memorial Hospital of Rhode Island, Brown University Warren Alpert School of Medicine, Pawtucket, RI, USA
| | - A S Al-Homsi
- Adult Blood and Marrow Transplantation, Spectrum Health, Michigan State University, Grand Rapids, MI, USA
| | - N Kouttab
- Department of Pathology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - P M Dubielecka
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| |
Collapse
|
49
|
Abekhoukh S, Bardoni B. CYFIP family proteins between autism and intellectual disability: links with Fragile X syndrome. Front Cell Neurosci 2014; 8:81. [PMID: 24733999 PMCID: PMC3973919 DOI: 10.3389/fncel.2014.00081] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/27/2014] [Indexed: 12/14/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASDs) have in common alterations in some brain circuits and brain abnormalities, such as synaptic transmission and dendritic spines morphology. Recent studies have indicated a differential expression for specific categories of genes as a cause for both types of disease, while an increasing number of genes is recognized to produce both disorders. An example is the Fragile X mental retardation gene 1 (FMR1), whose silencing causes the Fragile X syndrome, the most common form of ID and autism, also characterized by physical hallmarks. Fragile X mental retardation protein (FMRP), the protein encoded by FMR1, is an RNA-binding protein with an important role in translational control. Among the interactors of FMRP, CYFIP1/2 (cytoplasmic FMRP interacting protein) proteins are good candidates for ID and autism, on the bases of their genetic implication and functional properties, even if the precise functional significance of the CYFIP/FMRP interaction is not understood yet. CYFIP1 and CYFIP2 represent a link between Rac1, the WAVE (WAS protein family member) complex and FMRP, favoring the cross talk between actin polymerization and translational control.
Collapse
Affiliation(s)
- Sabiha Abekhoukh
- CNRS, Institute of Molecular and Cellular Pharmacology, UMR 7275 Valbonne, France ; University of Nice Sophia-Antipolis Nice, France ; CNRS, International Associated Laboratories-NEOGENEX Valbonne, France
| | - Barbara Bardoni
- CNRS, Institute of Molecular and Cellular Pharmacology, UMR 7275 Valbonne, France ; University of Nice Sophia-Antipolis Nice, France ; CNRS, International Associated Laboratories-NEOGENEX Valbonne, France
| |
Collapse
|
50
|
Bryce NS, Reynolds AB, Koleske AJ, Weaver AM. WAVE2 regulates epithelial morphology and cadherin isoform switching through regulation of Twist and Abl. PLoS One 2013; 8:e64533. [PMID: 23691243 PMCID: PMC3654908 DOI: 10.1371/journal.pone.0064533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/16/2013] [Indexed: 12/17/2022] Open
Abstract
Background Epithelial morphogenesis is a dynamic process that involves coordination of signaling and actin cytoskeletal rearrangements. Principal Findings We analyzed the contribution of the branched actin regulator WAVE2 in the development of 3-dimensional (3D) epithelial structures. WAVE2-knockdown (WAVE2-KD) cells formed large multi-lobular acini that continued to proliferate at an abnormally late stage compared to control acini. Immunostaining of the cell-cell junctions of WAVE2-KD acini revealed weak and heterogeneous E-cadherin staining despite little change in actin filament localization to the same junctions. Analysis of cadherin expression demonstrated a decrease in E-cadherin and an increase in N-cadherin protein and mRNA abundance in total cell lysates. In addition, WAVE2-KD cells exhibited an increase in the mRNA levels of the epithelial-mesenchymal transition (EMT)-associated transcription factor Twist1. KD of Twist1 expression in WAVE2-KD cells reversed the cadherin switching and completely rescued the aberrant 3D morphological phenotype. Activity of the WAVE2 complex binding partner Abl kinase was also increased in WAVE2-KD cells, as assessed by tyrosine phosphorylation of the Abl substrate CrkL. Inhibition of Abl with STI571 rescued the multi-lobular WAVE2-KD 3D phenotype whereas overexpression of Abl kinase phenocopied the WAVE2-KD phenotype. Conclusions The WAVE2 complex regulates breast epithelial morphology by a complex mechanism involving repression of Twist1 expression and Abl kinase activity. These data reveal a critical role for WAVE2 complex in regulation of cellular signaling and epithelial morphogenesis.
Collapse
Affiliation(s)
- Nicole S Bryce
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | | | | |
Collapse
|