1
|
Krause C, Britsemmer JH, Bernecker M, Molenaar A, Taege N, Lopez-Alcantara N, Geißler C, Kaehler M, Iben K, Judycka A, Wagner J, Wolter S, Mann O, Pfluger P, Cascorbi I, Lehnert H, Stemmer K, Schriever SC, Kirchner H. Liver microRNA transcriptome reveals miR-182 as link between type 2 diabetes and fatty liver disease in obesity. eLife 2024; 12:RP92075. [PMID: 39037913 PMCID: PMC11262792 DOI: 10.7554/elife.92075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Background The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in individual studies; however, an unbiased genome-wide approach to map T2D induced changes in the miRNAs landscape in human liver samples, and a subsequent robust identification and validation of target genes are still missing. Methods Liver biopsies from age- and gender-matched obese individuals with (n=20) or without (n=20) T2D were used for microRNA microarray analysis. The candidate microRNA and target genes were validated in 85 human liver samples, and subsequently mechanistically characterized in hepatic cells as well as by dietary interventions and hepatic overexpression in mice. Results Here, we present the human hepatic microRNA transcriptome of type 2 diabetes in liver biopsies and use a novel seed prediction tool to robustly identify microRNA target genes, which were then validated in a unique cohort of 85 human livers. Subsequent mouse studies identified a distinct signature of T2D-associated miRNAs, partly conserved in both species. Of those, human-murine miR-182-5 p was the most associated with whole-body glucose homeostasis and hepatic lipid metabolism. Its target gene LRP6 was consistently lower expressed in livers of obese T2D humans and mice as well as under conditions of miR-182-5 p overexpression. Weight loss in obese mice decreased hepatic miR-182-5 p and restored Lrp6 expression and other miR-182-5 p target genes. Hepatic overexpression of miR-182-5 p in mice rapidly decreased LRP6 protein levels and increased liver triglycerides and fasting insulin under obesogenic conditions after only seven days. Conclusions By mapping the hepatic miRNA-transcriptome of type 2 diabetic obese subjects, validating conserved miRNAs in diet-induced mice, and establishing a novel miRNA prediction tool, we provide a robust and unique resource that will pave the way for future studies in the field. As proof of concept, we revealed that the repression of LRP6 by miR-182-5 p, which promotes lipogenesis and impairs glucose homeostasis, provides a novel mechanistic link between T2D and non-alcoholic fatty liver disease, and demonstrate in vivo that miR-182-5 p can serve as a future drug target for the treatment of obesity-driven hepatic steatosis. Funding This work was supported by research funding from the Deutsche Forschungsgemeinschaft (KI 1887/2-1, KI 1887/2-2, KI 1887/3-1 and CRC-TR296), the European Research Council (ERC, CoG Yoyo LepReSens no. 101002247; PTP), the Helmholtz Association (Initiative and Networking Fund International Helmholtz Research School for Diabetes; MB) and the German Center for Diabetes Research (DZD Next Grant 82DZD09D1G).
Collapse
Affiliation(s)
- Christin Krause
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
| | - Jan H Britsemmer
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
| | - Miriam Bernecker
- German Center for Diabetes Research (DZD)MunichGermany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz CentreMunichGermany
| | - Anna Molenaar
- German Center for Diabetes Research (DZD)MunichGermany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz CentreMunichGermany
| | - Natalie Taege
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
| | - Nuria Lopez-Alcantara
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- Institute for Experimental Endocrinology, University of LübeckLübeckGermany
| | - Cathleen Geißler
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus KielKielGermany
| | - Katharina Iben
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
| | - Anna Judycka
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
| | - Jonas Wagner
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Paul Pfluger
- German Center for Diabetes Research (DZD)MunichGermany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz CentreMunichGermany
- Chair of Neurobiology of Diabetes, TUM School of Medicine, Technical University of MunichMunichGermany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus KielKielGermany
| | - Hendrik Lehnert
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
- University Hospital of Coventry and WarwickshireCoventryUnited Kingdom
| | - Kerstin Stemmer
- German Center for Diabetes Research (DZD)MunichGermany
- Molecular Cell Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of AugsburgAugsburgGermany
| | - Sonja C Schriever
- German Center for Diabetes Research (DZD)MunichGermany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz CentreMunichGermany
| | - Henriette Kirchner
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
| |
Collapse
|
2
|
Belenkov YN, Iusupova AO, Slepova OA, Pakhtusov NN, Popova LV, Lishuta AS, Krivova AV, Khabarova NV, Abidaev MY, Privalova EV. WNT Signaling Cascade Proteins and LRP6 in the Formation of Various Types of Coronary Lesions in Patients With Coronary Artery Disease. KARDIOLOGIIA 2024; 64:3-10. [PMID: 38841783 DOI: 10.18087/cardio.2024.5.n2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 06/07/2024]
Abstract
AIM Assessment of WNT1, WNT3a, and LRP6 concentrations in patients with ischemic heart disease (IHD) and obstructive and non-obstructive coronary artery (CA) disease. MATERIAL AND METHODS This cross-sectional observational study included 50 IHD patients (verified by coronary angiography, CAG), of which 25 (50%) were men, mean age 64.9±8.1 years; 20 patients had non-obstructive CA disease (stenosis <50%), and 30 patients had hemodynamically significant stenosis. Concentrations of WNT1, WNT3a and LRP6 were measured in all patients. RESULTS The concentrations of WNT1 and WNT3a proteins were significantly higher in patients with IHD and obstructive CA disease (p < 0.001), while the concentration of LRP6 was higher in the group with non-obstructive CA disease (p = 0.016). Data analysis of the group with obstructive CA disease showed a moderate correlation between WNT1 and LRP6 (ρ=0.374; p=0.042). Correlation analysis of all groups of patients with CA disease revealed a moderate association between the concentrations of WNT1 and uric acid (ρ=0.416; p=0.007). Regression analysis showed that risk factors for the development of IHD, such as increased body mass index, age, smoking, dyslipidemia, and hypertension, did not significantly influence the type of CA disease in IHD patients. According to ROC analysis, the obstructive form of IHD was predicted by a WNT3a concentration higher than 0.155 ng/ml and a LRP6 concentration lower than 12.94 ng/ml. CONCLUSION IHD patients with non-obstructive CA disease had the greatest increase in LRP6, while patients with obstructive CA disease had significantly higher concentrations of the canonical WNT cascade proteins, WNT1 and WNT3a. According to the ROC analysis, a WNT3a concentration >0.155 ng/ml can serve as a predictor for the presence of hemodynamically significant CA stenosis in IHD patients (sensitivity 96.7%; specificity 70%), whereas a LRP6 concentration >12.94 ng/ml can predict the development of non-obstructive CA disease (sensitivity 76.7%; specificity 65%).
Collapse
Affiliation(s)
- Yu N Belenkov
- Sechenov First Moscow State Medical University, Moscow
| | - A O Iusupova
- Sechenov First Moscow State Medical University, Moscow
| | - O A Slepova
- Sechenov First Moscow State Medical University, Moscow
| | - N N Pakhtusov
- Sechenov First Moscow State Medical University, Moscow
| | - L V Popova
- Sechenov First Moscow State Medical University, Moscow
| | - A S Lishuta
- Sechenov First Moscow State Medical University, Moscow
| | - A V Krivova
- Sechenov First Moscow State Medical University, Moscow
| | - N V Khabarova
- Sechenov First Moscow State Medical University, Moscow
| | - M Yu Abidaev
- Sechenov First Moscow State Medical University, Moscow
| | - E V Privalova
- Sechenov First Moscow State Medical University, Moscow
| |
Collapse
|
3
|
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y, Yang H, Bai J, Geng D. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:202. [PMID: 37198232 DOI: 10.1038/s41392-023-01467-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Since the proposal of Paul Ehrlich's magic bullet concept over 100 years ago, tremendous advances have occurred in targeted therapy. From the initial selective antibody, antitoxin to targeted drug delivery that emerged in the past decades, more precise therapeutic efficacy is realized in specific pathological sites of clinical diseases. As a highly pyknotic mineralized tissue with lessened blood flow, bone is characterized by a complex remodeling and homeostatic regulation mechanism, which makes drug therapy for skeletal diseases more challenging than other tissues. Bone-targeted therapy has been considered a promising therapeutic approach for handling such drawbacks. With the deepening understanding of bone biology, improvements in some established bone-targeted drugs and novel therapeutic targets for drugs and deliveries have emerged on the horizon. In this review, we provide a panoramic summary of recent advances in therapeutic strategies based on bone targeting. We highlight targeting strategies based on bone structure and remodeling biology. For bone-targeted therapeutic agents, in addition to improvements of the classic denosumab, romosozumab, and PTH1R ligands, potential regulation of the remodeling process targeting other key membrane expressions, cellular crosstalk, and gene expression, of all bone cells has been exploited. For bone-targeted drug delivery, different delivery strategies targeting bone matrix, bone marrow, and specific bone cells are summarized with a comparison between different targeting ligands. Ultimately, this review will summarize recent advances in the clinical translation of bone-targeted therapies and provide a perspective on the challenges for the application of bone-targeted therapy in the clinic and future trends in this area.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Xin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
4
|
Luquero A, Vilahur G, Casani L, Badimon L, Borrell-Pages M. Differential cholesterol uptake in liver cells: A role for PCSK9. FASEB J 2022; 36:e22291. [PMID: 35344222 DOI: 10.1096/fj.202101660rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 12/21/2022]
Abstract
The clearance of low-density lipoprotein (LDL) particles from the circulation is regulated by the LDL receptor (LDLR) and proprotein convertase subtilisin/kexin 9 (PCSK9) interaction. Its disruption reduces blood cholesterol levels and delays atherosclerosis progression. Whether other members of the LDLR superfamily are in vivo targets of PCSK9 has been poorly explored. The aim of this work was to study the interaction between PCSK9 and members of the LDLR superfamily in the regulation of liver cholesterol homeostasis in an in vivo low-density lipoprotein receptor related protein 5 (LRP5) deficient mice model challenged with high-fat diet. Our results show that Wt and Lrp5-/- mice fed a hypercholesterolemic diet (HC) have increased cholesterol ester accumulation and decreased liver LDLR and LRP5 gene and protein expression. Very low-density lipoprotein receptor (VLDLR), LRP6, LRP2, and LRP1 expression levels were analyzed in liver samples and show that they do not participate in Lrp5-/- liver cholesterol uptake. Immunoprecipitation experiments show that LRP5 forms a complex with PCSK9 in liver-specific fat-storing stellate cells but not in structural HepG2 cells. Hepatic stellate cells silenced for LRP5 and/or PCSK9 expression and challenged with lipids show reduced cholesterol ester accumulation, indicating that both proteins are involved in lipid processing in the liver. Our results indicate that cholesterol esters accumulate in livers of Wt mice in a LDLR-family-members dependent manner as VLDLR, LRP2, and LRP6 show increased expression in HC mice. However, this increase is lost in livers of Lrp5-/- mice, where scavenger receptors are involved in cholesterol uptake. PCSK9 expression is strongly downregulated in mice livers after HC feeding. However PCSK9 and LRP5 bind in the cytoplasm of fat storing liver cells, indicating that this PCSK9-LRP5 interaction is cell-type specific and that both proteins contribute to lipid uptake.
Collapse
Affiliation(s)
- Aureli Luquero
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain.,CIBER-CV, Instituto de Salud Carlos III, Spain
| | - Laura Casani
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain.,CIBER-CV, Instituto de Salud Carlos III, Spain.,Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain.,CIBER-CV, Instituto de Salud Carlos III, Spain
| |
Collapse
|
5
|
Sheikh MSA, Almaeen A, Alduraywish A, Alomair BM, Salma U, Fei L, Yang TL. Overexpression of miR-126 Protects Hypoxic-Reoxygenation-Exposed HUVEC Cellular Injury through Regulating LRP6 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3647744. [PMID: 35082967 PMCID: PMC8786472 DOI: 10.1155/2022/3647744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
The aim of the study was to explore the clinical impact of circulatory miR-126 as a candidate for novel biomarker in patients with coronary artery disease (CAD) and its protective role against hypoxia/reoxygenation- (H/R-) exposed HUVEC cellular injury. A total of 278 subjects, which included 153 subjects with angiographically confirmed CAD, 70 unstable angina subjects, and 55 healthy individuals, along with 18-hour HR-induced HUVECs were recruited in this study. Plasma miR-126 levels were significantly downregulated in stable and unstable CAD patients as well as 18-hour HR-exposed HUVECs as compared with controls. Stable and unstable CAD subjects were significantly differentiated from healthy individuals with a predictive value of AUC 0.903 and 0.923, respectively. Moreover, peripheral circulatory miR-126 expressions in elderly (71-90 years) stable and unstable CAD patients were comparatively lower than younger (30-50 years) subjects. The caspase-3 activity, intracellular ROS concentrations, and cellular viabilities were evidently increased in 18-hour HR-exposed HUVECs than in normal cells (P < 0.001). On the contrary, mimic expressions of miR-126 prominently reduced caspase-3 activity and intracellular ROS levels and markedly enhanced HUVEC cellular viabilities (P < 0.001). LRP6 expressions were significantly elevated in HR-induced HUVECs, whereas overexpression of miR-126 remarkably decreased LRP6 expressions (P < 0.001). Plasma miR-126 could be used as a novel biomarker for early prediction of CAD subjects. Overexpression of miR-126 significantly improved HUVEC cellular viabilities by downregulation of LRP6 protein expression, suggesting a potential therapeutic target for CAD patients.
Collapse
Affiliation(s)
- Md Sayed Ali Sheikh
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - A. Almaeen
- Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - A. Alduraywish
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Basil Mohammed Alomair
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Umme Salma
- Department of Gynecology and Obstetrics, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Li Fei
- Department of Cardiology, Xiangya Hospital, Central South University, China
| | - T. L. Yang
- Department of Cardiology, Xiangya Hospital, Central South University, China
| |
Collapse
|
6
|
Zhou YX, Zhang H, Peng C. Effects of Puerarin on the Prevention and Treatment of Cardiovascular Diseases. Front Pharmacol 2021; 12:771793. [PMID: 34950032 PMCID: PMC8689134 DOI: 10.3389/fphar.2021.771793] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Puerarin, an isoflavone glycoside derived from Pueraria lobata (Willd.) Ohwi, has been identified as a pharmacologically active component with diverse benefits. A large number of experimental and clinical studies have demonstrated that puerarin is widely used in the treatment of a variety of diseases. Among them, cardiovascular diseases (CVDs) are the leading cause of death in the world, and therefore remain one of the most prominent global public health concerns. In this review, we systematically analyze the preclinical investigations of puerarin in CVDs, such as atherosclerosis, cardiac hypertrophy, heart failure, diabetic cardiovascular complications, myocardial infarction, stroke and hypertension. In addition, the potential molecular targets of puerarin are also discussed. Furthermore, we summarize the clinical trails of puerarin in the treatment of CVDs. Finally, the therapeutic effects of puerarin derivatives and its drug delivery systems are overviewed.
Collapse
Affiliation(s)
- Yan-Xi Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Library, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Zhang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Jeong W, Jho EH. Regulation of the Low-Density Lipoprotein Receptor-Related Protein LRP6 and Its Association With Disease: Wnt/β-Catenin Signaling and Beyond. Front Cell Dev Biol 2021; 9:714330. [PMID: 34589484 PMCID: PMC8473786 DOI: 10.3389/fcell.2021.714330] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Wnt signaling plays crucial roles in development and tissue homeostasis, and its dysregulation leads to various diseases, notably cancer. Wnt/β-catenin signaling is initiated when the glycoprotein Wnt binds to and forms a ternary complex with the Frizzled and low-density lipoprotein receptor-related protein 5/6 (LRP5/6). Despite being identified as a Wnt co-receptor over 20 years ago, the molecular mechanisms governing how LRP6 senses Wnt and transduces downstream signaling cascades are still being deciphered. Due to its role as one of the main Wnt signaling components, the dysregulation or mutation of LRP6 is implicated in several diseases such as cancer, neurodegeneration, metabolic syndrome and skeletal disease. Herein, we will review how LRP6 is activated by Wnt stimulation and explore the various regulatory mechanisms involved. The participation of LRP6 in other signaling pathways will also be discussed. Finally, the relationship between LRP6 dysregulation and disease will be examined in detail.
Collapse
Affiliation(s)
- Wonyoung Jeong
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, South Korea
| |
Collapse
|
8
|
Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res 2021; 116:1254-1274. [PMID: 31834409 DOI: 10.1093/cvr/cvz338] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The founding member of the lipoprotein receptor family, low-density lipoprotein receptor (LDLR) plays a major role in the atherogenesis through the receptor-mediated endocytosis of LDL particles and regulation of cholesterol homeostasis. Since the discovery of the LDLR, many other structurally and functionally related receptors have been identified, which include low-density lipoprotein receptor-related protein (LRP)1, LRP5, LRP6, very low-density lipoprotein receptor, and apolipoprotein E receptor 2. The scavenger receptor family members, on the other hand, constitute a family of pattern recognition proteins that are structurally diverse and recognize a wide array of ligands, including oxidized LDL. Among these are cluster of differentiation 36, scavenger receptor class B type I and lectin-like oxidized low-density lipoprotein receptor-1. In addition to the initially assigned role as a mediator of the uptake of macromolecules into the cell, a large number of studies in cultured cells and in in vivo animal models have revealed that these lipoprotein receptors participate in signal transduction to modulate cellular functions. This review highlights the signalling pathways by which these receptors influence the process of atherosclerosis development, focusing on their roles in the vascular cells, such as macrophages, endothelial cells, smooth muscle cells, and platelets. Human genetics of the receptors is also discussed to further provide the relevance to cardiovascular disease risks in humans. Further knowledge of the vascular biology of the lipoprotein receptors and their ligands will potentially enhance our ability to harness the mechanism to develop novel prophylactic and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of Pediatrics and Cell Biology, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| |
Collapse
|
9
|
Abstract
The WNT/β-catenin signalling pathway is a rich and complex network of cellular proteins that orchestrates diverse short-range cell-to-cell communication in metazoans and is essential for both embryonic development and adult homeostasis. Due to its fundamental importance in controlling cell behaviour at multiple levels, its deregulation is associated with a wide range of diseases in humans and identification of drugs targeting the pathway has attracted strong interest in the pharmaceutical sector. Transduction of WNT signals across the plasma membrane of cells involves a staggering degree of complexity and variety with respect to ligand-receptor, receptor-receptor and receptor-co-receptor interactions (Niehrs, Nat Rev Mol Cell Biol 13:767-779, 2012). Although the low-density-lipoprotein-receptor-related-protein (LRP) family is best known for its role in binding and endocytosis of lipoproteins, specific members appear to have additional roles in cellular communication. Indeed, for WNT/β-catenin signalling one apparently universal requirement is the presence of either LRP5 or LRP6 in combination with one of the ten Frizzled (FZD) WNT receptors (FZD1-10). In the 20 years since their discovery as WNT/FZD co-receptors, research on the LRP family has contributed greatly to our understanding of WNT signalling and LRPs have emerged as central players in WNT/β-catenin signalling. LRP5/6 are highly similar and represent the least redundant class of WNT receptor that transduce WNT/β-catenin signalling from a wide range of different WNT and FZD subtypes. This apparent simplicity however belies the complex arrangement of binding sites in the extracellular domain (ECD) of LRP5/6, which regulate interaction not only with WNTs but also with several inhibitors of WNT signalling. This chapter provides a historical overview, chronologically charting this remarkable progress in the field during the last 20 years of research on LRPs and their role in WNT/-catenin signalling. A more focused overview of the structural, functional and mechanistic aspects of LRP biology is also provided, together with the implications this has for pharmacological targeting of this notoriously intractable pathway.
Collapse
Affiliation(s)
- Gary Davidson
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBSC-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
10
|
LRP6 downregulation promotes cardiomyocyte proliferation and heart regeneration. Cell Res 2020; 31:450-462. [PMID: 32973339 DOI: 10.1038/s41422-020-00411-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
The adult mammalian heart is thought to be a terminally differentiated organ given the postmitotic nature of cardiomyocytes. Consequently, the potential for cardiac repair through cardiomyocyte proliferation is extremely limited. Low-density lipoprotein receptor-related protein 6 (LRP6) is a Wnt co-receptor that is required for embryonic heart development. In this study we investigated the role of LRP6 in heart repair through regulation of cardiomyocyte proliferation. Lrp6 deficiency increased cardiomyocyte cell cycle activity in neonatal, juvenile and adult mice. Cardiomyocyte-specific deletion of Lrp6 in the mouse heart induced a robust regenerative response after myocardial infarction (MI), led to reduced MI area and improvement in left ventricular systolic function. In vivo genetic lineage tracing revealed that the newly formed cardiomyocytes in Lrp6-deficient mouse hearts after MI were mainly derived from resident cardiomyocytes. Furthermore, we found that the pro-proliferative effect of Lrp6 deficiency was mediated by the ING5/P21 signaling pathway. Gene therapy using the adeno-associated virus (AAV)9 miRNAi-Lrp6 construct promoted the repair of heart injury in mice. Lrp6 deficiency also induced the proliferation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Our study identifies LRP6 as a critical regulator of cardiomyocyte proliferation, which may lead to the development of a novel molecular strategy to promote myocardial regeneration and repair.
Collapse
|
11
|
Low-density lipoprotein receptor-related protein 6-mediated signaling pathways and associated cardiovascular diseases: diagnostic and therapeutic opportunities. Hum Genet 2020; 139:447-459. [PMID: 32076828 DOI: 10.1007/s00439-020-02124-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a member of the low-density lipoprotein receptors (LDLRs) family and accumulating evidence points to the critical role of LRP6 in cardiovascular health and homeostasis. In addition to presenting the well-appreciated roles in canonical signaling regulating blood pressure, blood glucose, lipid metabolism, atherosclerosis, cardiac valve disease, cardiac development, Alzheimer's disease and tumorigenesis, LRP6 also inhibits non-canonical Wnt signals that promote arterial smooth muscle cell proliferation and vascular calcification. Noticeably, the role of LRP6 is displayed in cardiometabolic disease, an increasingly important clinical burden with aging and obesity. The prospect for cardiovascular diseases treatment via targeting LRP6-mediated signaling pathways may improve central blood pressure and lipid metabolism, and reduce neointima formation and myocardial ischemia-reperfusion injury. Thus, a deep and comprehensive understanding of LRP6 structure, function and signaling pathways will contribute to clinical diagnosis, therapy and new drug development for LRP6-related cardiovascular diseases.
Collapse
|
12
|
Wang Y, Yin C, Chen Z, Li Y, Zou Y, Wang X, An Y, Wu F, Zhang G, Yang C, Tang H, Zou Y, Gong H. Cardiac-specific LRP6 knockout induces lipid accumulation through Drp1/CPT1b pathway in adult mice. Cell Tissue Res 2019; 380:143-153. [PMID: 31811407 DOI: 10.1007/s00441-019-03126-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023]
Abstract
We recently reported low-density lipoprotein receptor-related protein 6 (LRP6) decreased in dilated cardiomyopathy hearts, and cardiac-specific knockout mice displayed lethal heart failure through activation of dynamin-related protein 1 (Drp1). We also observed lipid accumulation in LRP6 deficiency hearts, but the detailed molecular mechanisms are unclear. Here, we detected fatty acids components in LRP6 deficiency hearts and explored the potential molecular mechanisms. Fatty acid analysis by GC-FID/MS revealed cardiac-specific LRP6 knockout induced the higher level of total fatty acids and some medium-long-chain fatty acids (C16:0, C18:1n9 and C18:2n6) than in control hearts. Carnitine palmitoyltransferase 1b (CPT1b), a rate-limiting enzyme of mitochondrial β-oxidation in adult heart, was sharply decreased in LRP6 deficiency hearts, coincident with the activation of Drp1. Drp1 inhibitor greatly improved cardiac dysfunction and attenuated the increase in total fatty acids and fatty acids C16:0, C18:1n9 in LRP6 deficiency hearts. It also greatly inhibited the decrease in the cardiac expression of CPT1b and the transcriptional factors CCCTC-binding factor (CTCF) and c-Myc induced by cardiac-specific LRP6 knockout in mice. C-Myc but not CTCF was identified to regulate CPT1b expression and lipid accumulation in cardiomyocytes in vitro. The present study indicated cardiac-specific LRP6 knockout induced lipid accumulation by Drp1/CPT1b pathway in adult mice, and c-Myc is involved in the process. It suggests that LRP6 regulates fatty acid metabolism in adult heart.
Collapse
Affiliation(s)
- Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Chao Yin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Zhidan Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yan Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Xiang Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, International Centre for Molecular Phenomics, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Feizhen Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Guoping Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, International Centre for Molecular Phenomics, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| |
Collapse
|
13
|
Srivastava R, Rolyan H, Xie Y, Li N, Bhat N, Hong L, Esteghamat F, Adeniran A, Geirsson A, Zhang J, Ge G, Nobrega M, Martin KA, Mani A. TCF7L2 (Transcription Factor 7-Like 2) Regulation of GATA6 (GATA-Binding Protein 6)-Dependent and -Independent Vascular Smooth Muscle Cell Plasticity and Intimal Hyperplasia. Arterioscler Thromb Vasc Biol 2019; 39:250-262. [PMID: 30567484 PMCID: PMC6365015 DOI: 10.1161/atvbaha.118.311830] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— TCF7L2 (transcription factor 7-like 2) is a Wnt-regulated transcription factor that maintains stemness and promotes proliferation in embryonic tissues and adult stem cells. Mice with a coronary artery disease–linked mutation in Wnt-coreceptor LRP6 (LDL receptor-related protein 6) exhibit vascular smooth muscle cell dedifferentiation and obstructive coronary artery disease, which are paradoxically associated with reduced TCF7L2 expression. We conducted a comprehensive study to explore the role of TCF7L2 in vascular smooth muscle cell differentiation and protection against intimal hyperplasia. Approach and Results— Using multiple mouse models, we demonstrate here that TCF7L2 promotes differentiation and inhibits proliferation of vascular smooth muscle cells. TCF7L2 accomplishes these effects by stabilization of GATA6 (GATA-binding protein 6) and upregulation of SM-MHC (smooth muscle cell myosin heavy chain) and cell cycle inhibitors. Accordingly, TCF7L2 haploinsufficient mice exhibited increased susceptibility to injury-induced hyperplasia, while mice overexpressing TCF7L2 were protected against injury-induced intimal hyperplasia compared with wild-type littermates. Consequently, the overexpression of TCF7L2 in LRP6 mutant mice rescued the injury-induced intimal hyperplasia. Conclusions— Our novel findings imply cell type-specific functional role of TCF7L2 and provide critical insight into mechanisms underlying the pathogenesis of intimal hyperplasia.
Collapse
Affiliation(s)
- Roshni Srivastava
- From the Yale Cardiovascular Research Center (R.S., H.R., Y.X., N.L., N,B., L.H., F.E., J.Z., G.G., K.A.M., A.M.), Yale School of Medicine, New Haven, CT
| | - Harshvardhan Rolyan
- From the Yale Cardiovascular Research Center (R.S., H.R., Y.X., N.L., N,B., L.H., F.E., J.Z., G.G., K.A.M., A.M.), Yale School of Medicine, New Haven, CT
| | - Yi Xie
- From the Yale Cardiovascular Research Center (R.S., H.R., Y.X., N.L., N,B., L.H., F.E., J.Z., G.G., K.A.M., A.M.), Yale School of Medicine, New Haven, CT
| | - Na Li
- From the Yale Cardiovascular Research Center (R.S., H.R., Y.X., N.L., N,B., L.H., F.E., J.Z., G.G., K.A.M., A.M.), Yale School of Medicine, New Haven, CT
| | - Neha Bhat
- From the Yale Cardiovascular Research Center (R.S., H.R., Y.X., N.L., N,B., L.H., F.E., J.Z., G.G., K.A.M., A.M.), Yale School of Medicine, New Haven, CT
| | - Lingjuan Hong
- From the Yale Cardiovascular Research Center (R.S., H.R., Y.X., N.L., N,B., L.H., F.E., J.Z., G.G., K.A.M., A.M.), Yale School of Medicine, New Haven, CT
| | - Fatemehsadat Esteghamat
- From the Yale Cardiovascular Research Center (R.S., H.R., Y.X., N.L., N,B., L.H., F.E., J.Z., G.G., K.A.M., A.M.), Yale School of Medicine, New Haven, CT
| | | | - Arnar Geirsson
- Department of Surgery (A.G.), Yale School of Medicine, New Haven, CT
| | - Jiasheng Zhang
- From the Yale Cardiovascular Research Center (R.S., H.R., Y.X., N.L., N,B., L.H., F.E., J.Z., G.G., K.A.M., A.M.), Yale School of Medicine, New Haven, CT
| | - Guanghao Ge
- From the Yale Cardiovascular Research Center (R.S., H.R., Y.X., N.L., N,B., L.H., F.E., J.Z., G.G., K.A.M., A.M.), Yale School of Medicine, New Haven, CT
| | - Marcelo Nobrega
- Department of Human Genetics, University of Chicago, IL (M.N.)
| | - Kathleen A Martin
- From the Yale Cardiovascular Research Center (R.S., H.R., Y.X., N.L., N,B., L.H., F.E., J.Z., G.G., K.A.M., A.M.), Yale School of Medicine, New Haven, CT
| | - Arya Mani
- From the Yale Cardiovascular Research Center (R.S., H.R., Y.X., N.L., N,B., L.H., F.E., J.Z., G.G., K.A.M., A.M.), Yale School of Medicine, New Haven, CT.,Department of Genetics (A.M.), Yale School of Medicine, New Haven, CT
| |
Collapse
|
14
|
Affiliation(s)
- Andreas W Heumüller
- From the Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Germany
| | - Stefanie Dimmeler
- From the Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Germany
| |
Collapse
|
15
|
SAA1 increases NOX4/ROS production to promote LPS-induced inflammation in vascular smooth muscle cells through activating p38MAPK/NF-κB pathway. BMC Mol Cell Biol 2019; 20:15. [PMID: 31216990 PMCID: PMC6582534 DOI: 10.1186/s12860-019-0197-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
Background To investigate the effects of serum amyloid A1 (SAA1) on lipopolysaccharide (LPS) -induced inflammation in vascular smooth muscle cells (VSMCs). SAA1 expression was detected in LPS induced VSMCs at different concentrations for different time by using Western blotting. After pre-incubation with recombinant SAA1 protein, VSMCs were treated with 1 μg/ml LPS for 24 h. The VSMCs were then divided into Control, SAA1 siRNA, Nox4 siRNA, LPS, LPS + SAA1 siRNA, LPS + Nox4 siRNA and LPS + SAA1 siRNA + Nox4 groups. MTT was performed to observe the toxicity of VSMCs. Lucigenin-enhanced chemiluminescence method was used to detect superoxide anion (O2−) production and NADPH oxidase activity. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine expressions of inflammatory factors. Western blotting was used to determine expressions of NOX-4 and p38MAPK/NF-κB pathway related proteins. Results LPS promoted SAA1 protein expression in a concentration−/time-dependent manner. Recombinant SAA1 protein could increase NOX4/ROS production and promote the release of inflammatory factors (IL-1β, IL-6, IL-8, IL-17, TNF-α and MCP-1) in LPS (1 μg/ml) - induced VSMCs. Besides, both SAA1 siRNA and NOX-4 siRNA could not only enhance the O2− production and NADPH oxidase activity, but also up-regulate the protein expression of NOX4, the release of inflammatory factors, and the levels of p-p38 and p-NF-κB p65 in LPS-induced VSMCs. However, no significant differences in each index were observed between LPS group and LPS + SAA1 siRNA + Nox4 group. Conclusion SAA1-mediated NOX4/ROS pathway could activate p38MAPK/NF-κB pathway, thereby contributing to the release of inflammatory factors in LPS-induced VSMCs.
Collapse
|
16
|
Asadipooya K, Weinstock A. Cardiovascular Outcomes of Romosozumab and Protective Role of Alendronate. Arterioscler Thromb Vasc Biol 2019; 39:1343-1350. [PMID: 31242037 DOI: 10.1161/atvbaha.119.312371] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteoporosis and cardiovascular diseases are major public health issues. Bone and cardiovascular remodeling share multiple biological markers and pathways. Medical intervention, such as using romosozumab, an antisclerostin antibody, improves the clinical outcome of osteoporosis. However, blocking sclerostin leads to Wnt (wingless/integrated) activation and participation in the cardiovascular remodeling process, which could potentially lead to adverse events. Based on the opposing roles of bisphosphonates and the Wnt pathway on endothelial dysfunction, lipid accumulation and calcification of the vessel walls, the combination of romosozumab and bisphosphonates could be a new therapeutic approach to reducing the risks of adverse cardiovascular events in romosozumab receivers. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Kamyar Asadipooya
- From the Division of Endocrinology and Molecular Medicine, Department of Medicine, University of Kentucky, Lexington (K.A.)
| | - Ada Weinstock
- Departments of Medicine (Cardiology) and Cell Biology, and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York (A.W.)
| |
Collapse
|
17
|
Gao Y, Zhu P, Xu SF, Li YQ, Deng J, Yang DL. Ginsenoside Re inhibits PDGF-BB-induced VSMC proliferation via the eNOS/NO/cGMP pathway. Biomed Pharmacother 2019; 115:108934. [PMID: 31082773 DOI: 10.1016/j.biopha.2019.108934] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022] Open
Abstract
Ginsenoside Re (GS-Re), which is a major monomeric member of the ginseng trialcohol saponin family, is one of the main active components of ginseng and plays an important role in protecting the cardiovascular system. Here, we report a novel function by which GS-Re regulates the eNOS/NO/cGMP pathway, which affects the platelet-derived growth factor-BB (PDGF-BB)-induced proliferation of vascular smooth muscle cells (VSMCs). GS-Re inhibited PDGF-BB-induced VSMC proliferation in a concentration-dependent manner without cytotoxicity, and the endothelial nitric oxide synthase (eNOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) antagonized the antiproliferative effect of GS-Re. The flow cytometry analysis suggested that GS-Re regulates VSMC proliferation by influencing the cell cycle transition from G0/G1 to S phase and decreasing the expression of G0/G1-specific regulatory proteins, including proliferating cell nuclear antigen (PCNA), cyclin D1, and CDK4, in PDGF-BB-treated VSMCs, consequently upregulating the protein expression of p21. After GS-Re treatment, the levels of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) and the phos-eNOS Ser1177/eNOS protein ratio were obviously increased. In addition, treatment with L-NAME blocked the eNOS/NO/cGMP signaling pathway, and the protein levels of PCNA, cyclin D1, and CDK4 were markedly increased in GS-Re-treated VSMCs, while p21 expression was decreased in PDGF-BB-induced VSMCs. Overall, these findings reveal that GS-Re can inhibit the proliferation of VSMCs through G0/G1 cell cycle arrest, which is closely related to eNOS/NO/cGMP pathway activation. The present results provide basic pharmacological evidence of the potential prevention and treatment of cardiovascular diseases by GS-Re.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, PR China.
| | - Ping Zhu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, PR China
| | - Shang-Fu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, PR China
| | - Yi-Qi Li
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong, 519041, China
| | - Jiang Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, PR China
| | - Dan-Li Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, PR China
| |
Collapse
|
18
|
Kang S, Pu JL. WITHDRAWN: Low Density Lipoprotein Receptor Related Protein 6-mediated Cardiovascular Diseases and associated signaling pathways. Can J Cardiol 2019. [DOI: 10.1016/j.cjca.2019.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
19
|
Hall IF, Climent M, Quintavalle M, Farina FM, Schorn T, Zani S, Carullo P, Kunderfranco P, Civilini E, Condorelli G, Elia L. Circ_Lrp6, a Circular RNA Enriched in Vascular Smooth Muscle Cells, Acts as a Sponge Regulating miRNA-145 Function. Circ Res 2019; 124:498-510. [PMID: 30582454 DOI: 10.1161/circresaha.118.314240] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE microRNAs (miRNAs) modulate gene expression by repressing translation of targeted genes. Previous work has established a role for miRNAs in regulating vascular smooth muscle cell (VSMC) activity. Whether circular RNAs are involved in the modulation of miRNA activity in VSMCs is unknown. OBJECTIVE We aimed to identify circular RNAs interacting with miRNAs enriched in VSMCs and modulating the cells' activity. METHODS AND RESULTS RNA sequencing and bioinformatics identified several circular RNAs enriched in VSMCs; however, only one, possessing multiple putative binding sites for miR-145, was highly conserved between mouse and man. This circular RNA gemmed from alternative splicing of Lrp6 (lipoprotein receptor 6), a gene highly expressed in vessels and implicated in vascular pathologies and was thus named circ_Lrp6. Its role as a miR-145 sponge was confirmed by determining reciprocal interaction through RNA immunoprecipitation, stimulated emission depletion microscopy, and competitive luciferase assays; functional inhibition of miR-145 was assessed by measuring expression of the target genes ITGβ8 (integrin-β8), FASCIN (fascin actin-bundling protein 1), KLF4 (Kruppel-like factor 4), Yes1 (YES proto-oncogene 1), and Lox (lysyl oxidase). The interaction was preferentially localized to P-bodies, sites of mRNA degradation. Using loss- and gain-of-function approaches, we found that circ_Lrp6 hindered miR-145-mediated regulation of VSMC migration, proliferation, and differentiation. Differential expression of miR-145 and circ_Lrp6 in murine and human vascular diseases suggests that the ratio of circ_Lrp6 bound to miR-145 versus unbound could play a role in vascular pathogenesis. Viral delivery of circ_Lrp6 shRNA prevented intimal hyperplasia in mouse carotids. CONCLUSIONS circ_Lrp6 is an intracellular modulator and a natural sponge for miR-145, counterbalancing the functions of the miRNA in VSMCs.
Collapse
Affiliation(s)
- Ignacio Fernando Hall
- From the Humanitas Research Hospital, Rozzano, Milan, Italy (I.F.H., M.C., M.Q., F.M.F., T.S., S.Z., P.C., P.K., E.C., G.C., L.E.)
- Humanitas University, Rozzano, Milan, Italy (I.F.H., S.Z., P.C., E.C., G.C.)
| | - Montserrat Climent
- From the Humanitas Research Hospital, Rozzano, Milan, Italy (I.F.H., M.C., M.Q., F.M.F., T.S., S.Z., P.C., P.K., E.C., G.C., L.E.)
| | - Manuela Quintavalle
- From the Humanitas Research Hospital, Rozzano, Milan, Italy (I.F.H., M.C., M.Q., F.M.F., T.S., S.Z., P.C., P.K., E.C., G.C., L.E.)
| | - Floriana Maria Farina
- From the Humanitas Research Hospital, Rozzano, Milan, Italy (I.F.H., M.C., M.Q., F.M.F., T.S., S.Z., P.C., P.K., E.C., G.C., L.E.)
| | - Tilo Schorn
- From the Humanitas Research Hospital, Rozzano, Milan, Italy (I.F.H., M.C., M.Q., F.M.F., T.S., S.Z., P.C., P.K., E.C., G.C., L.E.)
| | - Stefania Zani
- From the Humanitas Research Hospital, Rozzano, Milan, Italy (I.F.H., M.C., M.Q., F.M.F., T.S., S.Z., P.C., P.K., E.C., G.C., L.E.)
- Humanitas University, Rozzano, Milan, Italy (I.F.H., S.Z., P.C., E.C., G.C.)
| | - Pierluigi Carullo
- From the Humanitas Research Hospital, Rozzano, Milan, Italy (I.F.H., M.C., M.Q., F.M.F., T.S., S.Z., P.C., P.K., E.C., G.C., L.E.)
- Humanitas University, Rozzano, Milan, Italy (I.F.H., S.Z., P.C., E.C., G.C.)
- Institute of Genetics and Biomedical Research, National Research Council, Rozzano, Milan, Italy (P.C., G.C., L.E.)
| | - Paolo Kunderfranco
- From the Humanitas Research Hospital, Rozzano, Milan, Italy (I.F.H., M.C., M.Q., F.M.F., T.S., S.Z., P.C., P.K., E.C., G.C., L.E.)
| | - Efrem Civilini
- From the Humanitas Research Hospital, Rozzano, Milan, Italy (I.F.H., M.C., M.Q., F.M.F., T.S., S.Z., P.C., P.K., E.C., G.C., L.E.)
- Humanitas University, Rozzano, Milan, Italy (I.F.H., S.Z., P.C., E.C., G.C.)
| | - Gianluigi Condorelli
- From the Humanitas Research Hospital, Rozzano, Milan, Italy (I.F.H., M.C., M.Q., F.M.F., T.S., S.Z., P.C., P.K., E.C., G.C., L.E.)
- Humanitas University, Rozzano, Milan, Italy (I.F.H., S.Z., P.C., E.C., G.C.)
- Institute of Genetics and Biomedical Research, National Research Council, Rozzano, Milan, Italy (P.C., G.C., L.E.)
| | - Leonardo Elia
- From the Humanitas Research Hospital, Rozzano, Milan, Italy (I.F.H., M.C., M.Q., F.M.F., T.S., S.Z., P.C., P.K., E.C., G.C., L.E.)
- Institute of Genetics and Biomedical Research, National Research Council, Rozzano, Milan, Italy (P.C., G.C., L.E.)
- Department of Molecular and Translational Medicine, University of Brescia, Italy (L.E.)
| |
Collapse
|
20
|
Lee LL, Chintalgattu V. Pericytes in the Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1122:187-210. [PMID: 30937870 DOI: 10.1007/978-3-030-11093-2_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mural cells known as pericytes envelop the endothelial layer of microvessels throughout the body and have been described to have tissue-specific functions. Cardiac pericytes are abundantly found in the heart, but they are relatively understudied. Currently, their importance is emerging in cardiovascular homeostasis and dysfunction due to their pleiotropism. They are known to play key roles in vascular tone and vascular integrity as well as angiogenesis. However, their dysfunctional presence and/or absence is critical in the mechanisms that lead to cardiac pathologies such as myocardial infarction, fibrosis, and thrombosis. Moreover, they are targeted as a therapeutic potential due to their mesenchymal properties that could allow them to repair and regenerate a damaged heart. They are also sought after as a cell-based therapy based on their healing potential in preclinical studies of animal models of myocardial infarction. Therefore, recognizing the importance of cardiac pericytes and understanding their biology will lead to new therapeutic concepts.
Collapse
Affiliation(s)
- Linda L Lee
- Department of CardioMetabolic Disorders, Amgen Research and Discovery, Amgen Inc., South San Francisco, CA, USA
| | - Vishnu Chintalgattu
- Department of CardioMetabolic Disorders, Amgen Research and Discovery, Amgen Inc., South San Francisco, CA, USA.
| |
Collapse
|
21
|
Li Q, Liao C, Xu W, Li G, Hong K, Cheng X, Li J. Xeroderma Pigmentosum Group D (XPD) Inhibits the Proliferation Cycle of Vascular Smooth Muscle Cell (VSMC) by Activating Glycogen Synthase Kinase 3β (GSK3β). Med Sci Monit 2018; 24:5951-5959. [PMID: 30146633 PMCID: PMC6122044 DOI: 10.12659/msm.909614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND VSMC proliferation plays a key role in atherosclerosis, but the role of XPD in VSMC proliferation remains unknown. We investigated the expression of XPD, which is involved in cell cycle regulation, and its role in VSMC proliferation response to atherogenic stimuli. MATERIAL AND METHODS Human umbilical vein VSMCs were transfected with recombinant plasmid pEGFP-N2/XPD and pEGFP-N2 and incubated with PDGF-BB in vitro. Cell viability was determined by MTT assay. The expressions of XPD, GSK3β, p-GSK3β, CDK4, and cyclin D1 protein were detected by Western blot analysis. Cell cycle was examined by flow cytometry. RESULTS PDGF inhibited the expression of XPD in VSMCs and promoted VSMC proliferation. Overexpression of XPD significantly augmented cell cycle arrest, and attenuated protein expression levels of CDK4 and cyclin D1 in VSMCs. XPD overexpression suppressed the effects of PDGF-BB in promoting G1/S transition and accelerating protein expression levels of CDK4 and cyclin D1. XPD diminished the phosphorylation of GSK3β, and SB216763 inhibited the reduction effect of XPD on CDK4 and cyclin D1. CONCLUSIONS XPD induces VSMC cell cycle arrest, and the activation of GSK3β plays a crucial role in inhibitory effect of XPD on VSMC proliferation.
Collapse
Affiliation(s)
- Qing Li
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,Jiangxi Provincial Key Laboratory of Molecular Medicine, Nanchang, Jiangxi, China (mainland)
| | - Chunyao Liao
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Wang Xu
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Genlin Li
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Kui Hong
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xiaoshu Cheng
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Juxiang Li
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
22
|
Montazeri-Najafabady N, Dabbaghmanesh MH, Mohammadian Amiri R. The association of LRP6 rs2302685 (V1062I) polymorphism with the risk of hyperlipidemia in Iranian children and adolescents. Ann Hum Genet 2018; 82:382-388. [PMID: 30039844 DOI: 10.1111/ahg.12254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/04/2018] [Accepted: 03/23/2018] [Indexed: 01/01/2023]
Abstract
Wnt signaling/LRP6 plays a critical role in metabolic syndrome and atherosclerosis, and variation in this pathway may lead to hyperlipidemia, nonalcoholic fatty liver disease, and coronary artery disease. In the present study, we investigated the effect of LRP6 rs2302685 (V1062I) on hyperlipidemia in Iranian children and adolescents. The population in this study consisted of 200 children (101 boys, 99 girls) aged 9-18 years old. Total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), non-HDL cholesterol, and triglyceride levels were measured. Body composition was evaluated by the Hologic DXA system. PCR/restriction fragment length polymorphism was performed for LRP6 rs2302685 (V1062I) genotyping. Logistic regression analysis was done to find the association between LRP6 rs2302685 (V1062I) and categorized lipid parameters in the adjusted model for confounding factors (age, sex, and puberty). Individuals with the CC genotype showed significantly higher levels of cholesterol, triglycerides, LDL, and non-HDL compared to the CT and TT genotypes. In modeling analysis, for categorized lipid parameters, a significant association was found between CC versus CT, and CC versus TT in terms of cholesterol, LDL, and non-HDL. It seems that LRP6 rs2302685 (V1062I) variant carriers are associated with an increased risk of hyperlipidemia in Iranian children and adolescents.
Collapse
Affiliation(s)
- Nima Montazeri-Najafabady
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Dabbaghmanesh
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rajeeh Mohammadian Amiri
- Shiraz Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Abou Ziki MD, Mani A. The interplay of canonical and noncanonical Wnt signaling in metabolic syndrome. Nutr Res 2018; 70:18-25. [PMID: 30049588 DOI: 10.1016/j.nutres.2018.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022]
Abstract
Metabolic syndrome is a cluster of inherited metabolic traits, which centers around obesity and insulin resistance and is a major contributor to the growing prevalence of cardiovascular disease. The factors that underlie the association of metabolic traits in this syndrome are poorly understood due to disease heterogeneity and complexity. Genetic studies of kindreds with severe manifestation of metabolic syndrome have led to the identification of casual rare mutations in the LDL receptor-related protein 6, which serves as a co-receptor with frizzled protein receptors for Wnt signaling ligands. Extensive investigations have since unraveled the significance of the Wnt pathways in regulating body mass, glucose metabolism, de novo lipogenesis, low-density lipoprotein clearance, vascular smooth muscle plasticity, liver fat, and liver inflammation. The impaired canonical Wnt signaling observed in the R611C mutation carriers and the ensuing activation of noncanonical Wnt signaling constitute the underlying mechanism for these cardiometabolic abnormalities. Transcription factor 7-like 2 is a key transcription factor activated through LDL receptor-related protein 6 canonical Wnt and reciprocally inhibited by the noncanonical pathway. TC7L2 increases insulin receptor expression, decreases low-density lipoprotein and triglyceride synthesis, and inhibits vascular smooth muscle proliferation. Canonical Wnt also inhibits noncanonical protein kinase C, Ras homolog gene family member A, and Rho associated coiled-coil containing protein kinase 2 activation, thus inhibiting steatohepatitis and transforming growth factor β-mediated extracellular matrix deposition and hepatic fibrosis. Therefore, dysregulation of the highly conserved Wnt signaling pathway underlies the pleiotropy of metabolic traits of the metabolic syndrome and the subsequent end-organ complications.
Collapse
Affiliation(s)
- Maen D Abou Ziki
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Arya Mani
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510; Deparetment of Genetics, Yale University School of Medicine, New Haven, CT, 06510.
| |
Collapse
|
24
|
Wang ZM, Luo JQ, Xu LY, Zhou HH, Zhang W. Harnessing low-density lipoprotein receptor protein 6 (LRP6) genetic variation and Wnt signaling for innovative diagnostics in complex diseases. THE PHARMACOGENOMICS JOURNAL 2018; 18:351-358. [PMID: 28696417 DOI: 10.1038/tpj.2017.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
Abstract
Wnt signaling regulates a broad variety of processes in both embryonic development and various diseases. Recent studies indicated that some genetic variants in Wnt signaling pathway may serve as predictors of diseases. Low-density lipoprotein receptor protein 6 (LRP6) is a Wnt co-receptor with essential functions in the Wnt/β-catenin pathway, and mutations in LRP6 gene are linked to many complex human diseases, including metabolic syndrome, cancer, Alzheimer's disease and osteoporosis. Therefore, we focus on the role of LRP6 genetic polymorphisms and Wnt signaling in complex diseases, and the mechanisms from mouse models and cell lines. It is also highly anticipated that LRP6 variants will be applied clinically in the future. The brief review provided here could be a useful resource for future research and may contribute to a more accurate diagnosis in complex diseases.
Collapse
Affiliation(s)
- Z-M Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| | - J-Q Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| | - L-Y Xu
- Department of Epidemiology and Statistics, School of Public Health, Central South University, Changsha, Hunan, China
| | - H-H Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| | - W Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| |
Collapse
|
25
|
Huang X, Xu MQ, Zhang W, Ma S, Guo W, Wang Y, Zhang Y, Gou T, Chen Y, Liang XJ, Cao F. ICAM-1-Targeted Liposomes Loaded with Liver X Receptor Agonists Suppress PDGF-Induced Proliferation of Vascular Smooth Muscle Cells. NANOSCALE RESEARCH LETTERS 2017; 12:322. [PMID: 28472871 PMCID: PMC5415450 DOI: 10.1186/s11671-017-2097-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/20/2017] [Indexed: 05/05/2023]
Abstract
The proliferation of vascular smooth muscle cells (VSMCs) is one of the key events during the progress of atherosclerosis. The activated liver X receptor (LXR) signalling pathway is demonstrated to inhibit platelet-derived growth factor BB (PDGF-BB)-induced VSMC proliferation. Notably, following PDGF-BB stimulation, the expression of intercellular adhesion molecule-1 (ICAM-1) by VSMCs increases significantly. In this study, anti-ICAM-1 antibody-conjugated liposomes were fabricated for targeted delivery of a water-insoluble LXR agonist (T0901317) to inhibit VSMC proliferation. The liposomes were prepared by filming-rehydration method with uniform size distribution and considerable drug entrapment efficiency. The targeting effect of the anti-ICAM-T0901317 liposomes was evaluated by confocal laser scanning microscope (CLSM) and flow cytometry. Anti-ICAM-T0901317 liposomes showed significantly higher inhibition effect of VSMC proliferation than free T0901317 by CCk8 proliferation assays and BrdU staining. Western blot assay further confirmed that anti-ICAM-T0901317 liposomes inhibited retinoblastoma (Rb) phosphorylation and MCM6 expression. In conclusion, this study identified anti-ICAM-T0901317 liposomes as a promising nanotherapeutic approach to overcome VSMC proliferation during atherosclerosis progression.
Collapse
Affiliation(s)
- Xu Huang
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Meng-Qi Xu
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wei Zhang
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Sai Ma
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Weisheng Guo
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yabin Wang
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Zhang
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tiantian Gou
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yundai Chen
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Feng Cao
- Department of Cardiology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Cardiometabolic diseases increasingly afflict our aging, dysmetabolic population. Complex signals regulating low-density lipoprotein receptor-related protein (LRP) and frizzled protein family members - the plasma membrane receptors for the cadre of Wnt polypeptide morphogens - contribute to the control of cardiovascular homeostasis. RECENT FINDINGS Both canonical (β-catenin-dependent) and noncanonical (β-catenin-independent) Wnt signaling programs control vascular smooth muscle (VSM) cell phenotypic modulation in cardiometabolic disease. LRP6 limits VSM proliferation, reduces arteriosclerotic transcriptional reprogramming, and preserves insulin sensitivity while LRP5 restrains foam cell formation. Adipose, skeletal muscle, macrophages, and VSM have emerged as important sources of circulating Wnt ligands that are dynamically regulated during the prediabetes-diabetes transition with cardiometabolic consequences. Platelets release Dkk1, a LRP5/LRP6 inhibitor that induces endothelial inflammation and the prosclerotic endothelial-mesenchymal transition. By contrast, inhibitory secreted frizzled-related proteins shape the Wnt signaling milieu to limit myocardial inflammation with ischemia-reperfusion injury. VSM sclerostin, an inhibitor of canonical Wnt signaling in bone, restrains remodeling that predisposes to aneurysm formation, and is downregulated in aneurysmal vessels by epigenetic methylation. SUMMARY Components of the Wnt signaling cascade represent novel targets for pharmacological intervention in cardiometabolic disease. Conversely, strategies targeting the Wnt signaling cascade for other therapeutic purposes will have cardiovascular consequences that must be delineated to establish clinically useful pharmacokinetic-pharmacodynamic relationships.
Collapse
Affiliation(s)
- Austin Gay
- Department of Internal Medicine-Endocrine Division, UT Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
27
|
Masoudkabir F, Sarrafzadegan N, Gotay C, Ignaszewski A, Krahn AD, Davis MK, Franco C, Mani A. Cardiovascular disease and cancer: Evidence for shared disease pathways and pharmacologic prevention. Atherosclerosis 2017; 263:343-351. [PMID: 28624099 PMCID: PMC6207942 DOI: 10.1016/j.atherosclerosis.2017.06.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/08/2017] [Accepted: 06/01/2017] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) and cancer are leading causes of mortality and morbidity worldwide. Strategies to improve their treatment and prevention are global priorities and major focus of World Health Organization's joint prevention programs. Emerging evidence suggests that modifiable risk factors including diet, sedentary lifestyle, obesity and tobacco use are central to the pathogenesis of both diseases and are reflected in common genetic, cellular, and signaling mechanisms. Understanding this important biological overlap is critical and may help identify novel therapeutic and preventative strategies for both disorders. In this review, we will discuss the shared genetic and molecular factors central to CVD and cancer and how the strategies commonly used for the prevention of atherosclerotic vascular disease can be applied to cancer prevention.
Collapse
Affiliation(s)
- Farzad Masoudkabir
- Cardiac Primary Prevention Research Center, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Carolyn Gotay
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; Cancer Control Research Program, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Andrew Ignaszewski
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Margot K Davis
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Franco
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arya Mani
- Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
28
|
Abou Ziki MD, Mani A. Wnt signaling, a novel pathway regulating blood pressure? State of the art review. Atherosclerosis 2017; 262:171-178. [PMID: 28522145 PMCID: PMC5508596 DOI: 10.1016/j.atherosclerosis.2017.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/06/2017] [Accepted: 05/03/2017] [Indexed: 12/18/2022]
Abstract
Recent antihypertensive trials show conflicting results on blood pressure (BP) targets in patient populations with different metabolic profiles, with lowest benefit from tight BP control observed in patients with type 2 diabetes mellitus. This paradox could arise from the heterogeneity of study populations and underscores the importance of precision medicine initiatives towards understanding and treating hypertension. Wnt signaling pathways and genetic variations in its signaling peptides have been recently associated with metabolic syndrome, hypertension and diabetes, generating a breakthrough for advancement of precision medicine in the field of hypertension. We performed a review of PubMed for publications addressing the contributions of Wnt to BP regulation and hypertension. In addition, we performed a manual search of the reference lists for relevant articles, and included unpublished observations from our laboratory. There is emerging evidence for Wnt's role in BP regulation and its involvement in the pathogenesis of hypertension. Wnt signaling has pleiotropic effects on distinct pathways that involve vascular smooth muscle plasticity, and cardiac, renal, and neural physiology. Hypertension is a heterogeneous disease with unique molecular pathways regulating its response to therapy. Recognition of these pathways is a prerequisite to identify novel targets for drug development and personalizing medicine. A review of Wnt signaling reveals its emerging role in BP regulation and as a target for novel drug development that has the potential to transform the therapy of hypertension in specific populations.
Collapse
Affiliation(s)
- Maen D Abou Ziki
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Arya Mani
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
29
|
El-Agamy DS. Nilotinib attenuates endothelial dysfunction and liver damage in high-cholesterol-fed rabbits. Hum Exp Toxicol 2017; 36:1131-1145. [PMID: 27941169 DOI: 10.1177/0960327116681649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nilotinib is an oral potent tyrosine kinase inhibitor that has diverse biological activities. However, its effects on hypercholesterolemia and associated disorders have not been studied yet. The present study explored the effect of nilotinib on atherosclerosis progression, endothelial dysfunction, and hyperlipidemia-associated hepatic injury in high-cholesterol (HC)-fed rabbits. Rabbits were classified into four groups: control, nilotinib, HC, and HC + nilotinib groups. Rabbits were fed either a regular diet or an HC-enriched diet for 8 weeks. By the end of the eighth week, blood and tissue samples were obtained for biochemical, histological, immunohistochemical, and in vitro analyses. Results indicated that the HC diet induced a significant elevation in the serum lipid parameters (triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol), lactate dehydrogenase, and nitric oxide content. Endothelial dysfunction was evident through the impairment of acetylcholine-induced relaxation of isolated aortas and the histopathological lesions of the aortic specimen. Moreover, HC significantly increased serum malondialdehyde. Liver damage was clear through increase in serum transaminases and alkaline phosphatase, and it was further supported by histopathological examination. HC increased the expression of platelet-derived growth factor receptor (PDGFR)-B in both aorta and liver tissues. Interestingly, nilotinib administration retarded atherosclerosis progression and attenuated all of the aforementioned parameters. These data suggest that nilotinib may counteract atherosclerosis development, vascular dysfunction, and hepatic damage in HC-fed rabbits through interfering with PDGF-B.
Collapse
Affiliation(s)
- D S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
30
|
Jansen F, Stumpf T, Proebsting S, Franklin BS, Wenzel D, Pfeifer P, Flender A, Schmitz T, Yang X, Fleischmann BK, Nickenig G, Werner N. Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. J Mol Cell Cardiol 2017; 104:43-52. [PMID: 28143713 DOI: 10.1016/j.yjmcc.2016.12.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) proliferation is of importance in the pathogenesis of vascular diseases such as restenosis or atherosclerosis. Endothelial microparticles (EMPs) regulate function and phenotype of target endothelial cells (ECs), but their influence on VSMC biology is unknown. We aim to investigate the role of EMPs in the regulation of vascular smooth muscle cell (VSMC) proliferation and vascular remodeling. METHODS AND RESULTS Systemic treatment of mice with EMPs after vascular injury reduced neointima formation in vivo. In vitro, EMP uptake in VSMCs diminished VSMC proliferation and migration, both pivotal steps in neointima formation. To explore the underlying mechanisms, Taqman microRNA-array was performed and miR-126-3p was identified as the predominantly expressed miR in EMPs. Confocal microscopy revealed an EMP-mediated miR-126 transfer into recipient VSMCs. Expression of miR-126 target protein LRP6, regulating VSMC proliferation, was reduced in VSMCs after EMP treatment. Importantly, genetic regulation of miR-126 in EMPs showed a miR-126-dependent inhibition of LRP6 expression, VSMC proliferation and neointima formation in vitro and in vivo, suggesting a crucial role of miR-126 in EMP-mediated neointima formation reduction. Finally, analysis of miR-126 expression in circulating MPs in 176 patients with coronary artery disease revealed a reduced PCI rate in patients with high miR-126 expression level, supporting a central role for MP-incorporated miR-126 in vascular remodelling. CONCLUSION EMPs reduce VSMC proliferation, migration and subsequent neointima formation by delivering functional miR-126 into recipient VSMCs.
Collapse
Affiliation(s)
- Felix Jansen
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Tobias Stumpf
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Sebastian Proebsting
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Bernardo S Franklin
- Department of Innate Immunity, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Philipp Pfeifer
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Anna Flender
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Theresa Schmitz
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Xiaoyan Yang
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, USA
| | - Bernd K Fleischmann
- Institute of Physiology I, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Nikos Werner
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany.
| |
Collapse
|
31
|
Avolio E, Madeddu P. Discovering cardiac pericyte biology: From physiopathological mechanisms to potential therapeutic applications in ischemic heart disease. Vascul Pharmacol 2016; 86:53-63. [PMID: 27268036 DOI: 10.1016/j.vph.2016.05.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
Abstract
Microvascular pericytes and the more recently discovered adventitial pericyte-like progenitor cells are a subpopulation of vascular stem cells closely associated with small and large blood vessels respectively. These populations of perivascular cells are remarkably abundant in the heart. Pericytes control important physiological processes such as angiogenesis, blood flow and vascular permeability. In the heart, this pleiotropic activity makes pericytes extremely interesting for applications in regenerative medicine. On the other hand, dysfunction of pericytes could participate in the pathogenesis of cardiovascular disease, such as arterial hypertension, fibro-calcific cardiovascular remodeling, myocardial edema and post-ischemic coronary no-reflow. On a therapeutic standpoint, preclinical studies in small animal models of myocardial infarction have demonstrated the healing potential of pericytes transplantation, which has been ascribed to direct vascular incorporation and paracrine pro-angiogenic and anti-apoptotic activities. These promising findings open the door to the clinical use of pericytes for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Elisa Avolio
- Division of Experimental Cardiovascular Medicine, University of Bristol, Bristol Heart Institute, Level 7 Bristol Royal Infirmary, Upper Maudlin St, BS2 8HW Bristol, United Kingdom.
| | - Paolo Madeddu
- Division of Experimental Cardiovascular Medicine, University of Bristol, Bristol Heart Institute, Level 7 Bristol Royal Infirmary, Upper Maudlin St, BS2 8HW Bristol, United Kingdom.
| |
Collapse
|
32
|
Yan T, Venkat P, Chopp M, Zacharek A, Ning R, Roberts C, Zhang Y, Lu M, Chen J. Neurorestorative Responses to Delayed Human Mesenchymal Stromal Cells Treatment of Stroke in Type 2 Diabetic Rats. Stroke 2016; 47:2850-2858. [PMID: 27729575 DOI: 10.1161/strokeaha.116.014686] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/14/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Comorbidity of diabetes mellitus and stroke results in worse functional outcome, poor long-term recovery, and extensive vascular damage. We investigated the neurorestorative effects and mechanisms of stroke treatment with human bone marrow-derived mesenchymal stromal cells (hMSCs) in type 2 diabetes mellitus (T2DM) rats. METHODS Adult male Wistar rats were induced with T2DM, subjected to 2 hours of middle cerebral artery occlusion (MCAo) and treated via tail-vein injection with (1) PBS (n=8) and (2) hMSCs (n=10; 5×106) at 3 days after MCAo. RESULTS In T2DM rats, hMSCs administered at 3 days after MCAo significantly improves neurological function without affecting blood glucose, infarct volume, and incidence of brain hemorrhage in comparison to T2DM-MCAo PBS-treated rats. Delayed hMSC treatment of T2DM stroke significantly improves blood-brain barrier integrity, increases vascular and arterial density and cerebral vascular perfusion, and promotes neuroblast cell migration and white matter remodeling as indicated by increased doublecortin, axon, myelin, and neurofilament density, respectively. Delayed hMSC treatment significantly increases platelet-derived growth factor expression in the ischemic brain, decreases proinflammatory M1 macrophage and increases anti-inflammatory M2 macrophage compared to PBS-treated T2DM-MCAo rats. In vitro data show that hMSCs increase subventricular zone explant cell migration and primary cortical neuron neurite outgrowth, whereas inhibition of platelet-derived growth factor decreases hMSC-induced subventricular zone cell migration and axonal outgrowth. CONCLUSIONS In T2DM stroke rats, delayed hMSC treatment significantly improves neurological functional outcome and increases neurorestorative effects and M2 macrophage polarization. Increasing brain platelet-derived growth factor expression may contribute to hMSC-induced neurorestoration.
Collapse
Affiliation(s)
- Tao Yan
- From the Tianjin Neurological and Gerontology Institute, Department of Neurology of Tianjin Medical University General Hospital, China (T.Y., J.C.); Department of Neurology (T.Y., P.V., M.C., A.Z., R.N., C.R., Y.Z., J.C.) and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Poornima Venkat
- From the Tianjin Neurological and Gerontology Institute, Department of Neurology of Tianjin Medical University General Hospital, China (T.Y., J.C.); Department of Neurology (T.Y., P.V., M.C., A.Z., R.N., C.R., Y.Z., J.C.) and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Michael Chopp
- From the Tianjin Neurological and Gerontology Institute, Department of Neurology of Tianjin Medical University General Hospital, China (T.Y., J.C.); Department of Neurology (T.Y., P.V., M.C., A.Z., R.N., C.R., Y.Z., J.C.) and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Alex Zacharek
- From the Tianjin Neurological and Gerontology Institute, Department of Neurology of Tianjin Medical University General Hospital, China (T.Y., J.C.); Department of Neurology (T.Y., P.V., M.C., A.Z., R.N., C.R., Y.Z., J.C.) and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Ruizhuo Ning
- From the Tianjin Neurological and Gerontology Institute, Department of Neurology of Tianjin Medical University General Hospital, China (T.Y., J.C.); Department of Neurology (T.Y., P.V., M.C., A.Z., R.N., C.R., Y.Z., J.C.) and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Cynthia Roberts
- From the Tianjin Neurological and Gerontology Institute, Department of Neurology of Tianjin Medical University General Hospital, China (T.Y., J.C.); Department of Neurology (T.Y., P.V., M.C., A.Z., R.N., C.R., Y.Z., J.C.) and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Yi Zhang
- From the Tianjin Neurological and Gerontology Institute, Department of Neurology of Tianjin Medical University General Hospital, China (T.Y., J.C.); Department of Neurology (T.Y., P.V., M.C., A.Z., R.N., C.R., Y.Z., J.C.) and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Mei Lu
- From the Tianjin Neurological and Gerontology Institute, Department of Neurology of Tianjin Medical University General Hospital, China (T.Y., J.C.); Department of Neurology (T.Y., P.V., M.C., A.Z., R.N., C.R., Y.Z., J.C.) and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Jieli Chen
- From the Tianjin Neurological and Gerontology Institute, Department of Neurology of Tianjin Medical University General Hospital, China (T.Y., J.C.); Department of Neurology (T.Y., P.V., M.C., A.Z., R.N., C.R., Y.Z., J.C.) and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.).
| |
Collapse
|
33
|
Sun DQ, Liu WY, Wu SJ, Zhu GQ, Braddock M, Zhang DC, Shi KQ, Song D, Zheng MH. Increased levels of low-density lipoprotein cholesterol within the normal range as a risk factor for nonalcoholic fatty liver disease. Oncotarget 2016; 7:5728-5737. [PMID: 26735337 PMCID: PMC4868717 DOI: 10.18632/oncotarget.6799] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/04/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Dyslipidemia exists within the setting of NAFLD and the relationship of a normal level of low-density lipoprotein cholesterol (LDL-c) with NAFLD is largely unknown. This large population-based study aimed to investigate the association between LDL-c levels within the normal range and the incidence of NAFLD. METHODS A total of 60527 subjects from 2 medical centers who had undergone liver ultrasonography were initially enrolled into this study. NAFLD was defined by ultrasonographic detection of steatosis in the absence of other liver disease. Subjects were divided into 4 groups (Q1 to Q4) by normal LDL-c quartiles : Q1: ≤ 2.00, Q2: 2.10-2.35, Q3: 2.36-2.68 and Q4: 2.69-3.12 mmol/L. The odds ratios (OR), hazard ratio (HR) and 95% confidence intervals (CIs) for NAFLD were calculated across each quartile of LDL-c, using the Q1 as reference. RESULTS The prevalence rates of NAFLD in a cross-sectional population from Q1 to Q4 were 19.34%, 25.86%, 35.65% and 42.08%, respectively. The OR for NAFLD in the cross-sectional population were 1.31 (95% CI 1.14-1.54), 1.73 (95% CI 1.46-2.04), and 1.82 (95% CI 1.49-2.23), respectively, after adjusting for known confounding variables. The HR for NAFLD in the longitudinal population were 1.23 (95% CI 1.12-1.35), 1.57 (95% CI 1.44-1.72) and 2.02 (95% CI 1.86-2.21), compared with Q1. Subjects with higher LDL-c level within the normal range had an increased cumulative incidence rate of NAFLD. CONCLUSIONS Increased levels of LDL-c within the normal range may play a significant role in the prevalence and incidence of NAFLD, independent of other confounding factors.
Collapse
Affiliation(s)
- Dan-Qin Sun
- Department of Nephrology, Affiliated Wuxi Second Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Wen-Yue Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Sheng-Jie Wu
- Department of Cardiovascular Medicine, the Heart Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Gui-Qi Zhu
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Martin Braddock
- Global Medicines Development, AstraZeneca R&D, Alderley Park, United Kingdom
| | - Dong-Chu Zhang
- Wenzhou Medical Center, Wenzhou People's Hospital, Wenzhou 325000, China
| | - Ke-Qing Shi
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Dan Song
- Department of Nephrology, Affiliated Wuxi Second Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Ming-Hua Zheng
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
34
|
Reinke L, Lam AP, Flozak AS, Varga J, Gottardi CJ. Adiponectin inhibits Wnt co-receptor, Lrp6, phosphorylation and β-catenin signaling. Biochem Biophys Res Commun 2016; 470:606-612. [PMID: 26797284 DOI: 10.1016/j.bbrc.2016.01.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 12/15/2022]
Abstract
Adiponectin is a pleiotropic adipokine implicated in obesity, metabolic syndrome and cardiovascular disease. Recent studies have identified adiponectin as a negative regulator of tissue fibrosis. Wnt/β-catenin signaling has also been implicated in metabolic syndrome and can promote tissue fibrosis, but the extent to which adiponectin cross-regulates Wnt/β-catenin signaling is unknown. Using primary human dermal fibroblasts and recombinant purified proteins, we show that adiponectin can limit β-catenin accumulation and downstream gene activation by inhibiting Lrp6 phosphorylation, a key activation step in canonical Wnt signaling. Inhibition of Wnt3a-mediated Lrp6 phospho-activation is relatively rapid (e.g., by 30 min), and is not dependent on established adiponectin G-protein coupled receptors, AdipoR1 and R2, suggesting a more direct relationship to Lrp6 signaling. In contrast, the ability of adiponectin to limit Wnt-induced and baseline collagen production in fibroblasts requires AdipoR1/R2. These results suggest the possibility that the pleiotropic effects of adiponectin may be mediated through distinct cell surface receptor complexes. Accordingly, we propose that the anti-fibrotic activity of adiponectin may be mediated through AdipoR1/R2 receptors, while the ability of adiponectin to inhibit Lrp6 phospho-activation may be relevant to other recently established roles for Lrp6 signaling in glucose metabolism and metabolic syndrome.
Collapse
Affiliation(s)
- Lauren Reinke
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA; Department of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Anna P Lam
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA; Department of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Annette S Flozak
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA; Department of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA
| | - John Varga
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA; Department of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA.
| | - Cara J Gottardi
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA; Department of Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA; Department of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA.
| |
Collapse
|
35
|
Thouverey C, Caverzasio J. Sclerostin inhibits osteoblast differentiation without affecting BMP2/SMAD1/5 or Wnt3a/β-catenin signaling but through activation of platelet-derived growth factor receptor signaling in vitro. BONEKEY REPORTS 2015; 4:757. [PMID: 26587226 DOI: 10.1038/bonekey.2015.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/29/2015] [Indexed: 01/18/2023]
Abstract
Sclerostin inhibits bone formation mostly by antagonizing LRP5/6, thus inhibiting Wnt signaling. However, experiments with genetically modified mouse models suggest that a significant part of sclerostin-mediated inhibition of bone formation is due to interactions with other binding partners. The objective of the present work was to identify signaling pathways affected by sclerostin in relation with its inhibitory action on osteogenic differentiation of C3H10T1/2 cells, MC3T3-E1 cells and primary osteoblasts. Sclerostin inhibited BMP2-induced osteoblast differentiation without altering SMAD1/5 phosphorylation and transcriptional activity. Moreover, sclerostin prevented Wnt3a-mediated osteoblastogenesis without affecting LRP5/6 phosphorylation or β-catenin transcriptional activity. In addition, sclerostin inhibited mineralization promoted by GSK3 inhibition, which mimics canonical Wnt signaling without activation of LRP5/6, suggesting that sclerostin can prevent osteoblast differentiation without antagonizing LRP5/6. Finally, we found that sclerostin could activate platelet-derived growth factor receptor (PDGFR) and its downstream signaling pathways PLCγ, PKC, Akt and ERK1/2. PDGFR inhibition could reverse sclerostin-mediated inhibitory activity on BMP2-induced osteoblast differentiation. Therefore, our data suggest that sclerostin can activate PDGFR signaling by itself, and this functional interaction may be involved in the negative effect of sclerostin on osteoblast differentiation.
Collapse
Affiliation(s)
- Cyril Thouverey
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva , Geneva, Switzerland
| | - Joseph Caverzasio
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva , Geneva, Switzerland
| |
Collapse
|
36
|
Pitulescu ME, Adams RH. Regulation of signaling interactions and receptor endocytosis in growing blood vessels. Cell Adh Migr 2015; 8:366-77. [PMID: 25482636 DOI: 10.4161/19336918.2014.970010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Blood vessels and the lymphatic vasculature are extensive tubular networks formed by endothelial cells that have several indispensable functions in the developing and adult organism. During growth and tissue regeneration but also in many pathological settings, these vascular networks expand, which is critically controlled by the receptor EphB4 and the ligand ephrin-B2. An increasing body of evidence links Eph/ephrin molecules to the function of other receptor tyrosine kinases and cell surface receptors. In the endothelium, ephrin-B2 is required for clathrin-dependent internalization and full signaling activity of VEGFR2, the main receptor for vascular endothelial growth factor. In vascular smooth muscle cells, ephrin-B2 antagonizes clathrin-dependent endocytosis of PDGFRβ and controls the balanced activation of different signal transduction processes after stimulation with platelet-derived growth factor. This review summarizes the important roles of Eph/ephrin molecules in vascular morphogenesis and explains the function of ephrin-B2 as a molecular hub for receptor endocytosis in the vasculature.
Collapse
Key Words
- Ang, angiopoietin
- CHC, clathrin heavy chains
- CLASP, clathrin-associated-sorting protein
- CV, cardinal vein
- DA, dorsal aorta
- EC, endothelial cell
- EEA1, early antigen 1
- Eph
- Ephrin-B2ΔV, ephrin-B2 deletion of C-terminal PDZ binding motif
- HSPG, heparan sulfate proteoglycan
- JNK, c-Jun N-terminal kinase
- LEC, lymphatic endothelial cells
- LRP1, Low density lipoprotein receptor-related protein 1
- MVB, multivesicular body
- NRP, neuropilin
- PC, pericytes
- PDGF, platelet-derived growth factor
- PDGFR, platelet-derived growth factor receptor
- PTC, peritubular capillary
- PlGF, placental growth factor
- RTK, receptor tyrosine kinase
- VEGF, Vascular endothelial growth factor
- VEGFR, Vascular endothelial growth factor receptor
- VSMC, vascular smooth muscle cells.
- aPKC, atypical protein kinase C
- endocytosis
- endothelial cells
- ephrin
- mural cells
- receptor
Collapse
Affiliation(s)
- Mara E Pitulescu
- a Department of Tissue Morphogenesis; Max Planck Institute for Molecular Biomedicine; and Faculty of Medicine , University of Münster ; Münster , Germany
| | | |
Collapse
|
37
|
Go GW. Low-Density Lipoprotein Receptor-Related Protein 6 (LRP6) Is a Novel Nutritional Therapeutic Target for Hyperlipidemia, Non-Alcoholic Fatty Liver Disease, and Atherosclerosis. Nutrients 2015; 7:4453-64. [PMID: 26046396 PMCID: PMC4488795 DOI: 10.3390/nu7064453] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/13/2015] [Accepted: 05/27/2015] [Indexed: 12/23/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a member of the low-density lipoprotein receptor family and has a unique structure, which facilitates its multiple functions as a co-receptor for Wnt/β-catenin signaling and as a ligand receptor for endocytosis. The role LRP6 plays in metabolic regulation, specifically in the nutrient-sensing pathway, has recently garnered considerable interest. Patients carrying an LRP6 mutation exhibit elevated levels of LDL cholesterol, triglycerides, and fasting glucose, which cooperatively constitute the risk factors of metabolic syndrome and atherosclerosis. Since the discovery of this mutation, the general role of LRP6 in lipid homeostasis, glucose metabolism, and atherosclerosis has been thoroughly researched. These studies have demonstrated that LRP6 plays a role in LDL receptor-mediated LDL uptake. In addition, when the LRP6 mutant impaired Wnt-LRP6 signaling, hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis developed. LRP6 regulates lipid homeostasis and body fat mass via the nutrient-sensing mechanistic target of the rapamycin (mTOR) pathway. Furthermore, the mutant LRP6 triggers atherosclerosis by activating platelet-derived growth factor (PDGF)-dependent vascular smooth muscle cell differentiation. This review highlights the exceptional opportunities to study the pathophysiologic contributions of LRP6 to metabolic syndrome and cardiovascular diseases, which implicate LRP6 as a latent regulator of lipid metabolism and a novel therapeutic target for nutritional intervention.
Collapse
Affiliation(s)
- Gwang-woong Go
- Department of Food and Nutrition, Kookmin University, Seoul 136-702, Korea.
| |
Collapse
|
38
|
A rare variant in MCF2L identified using exclusion linkage in a pedigree with premature atherosclerosis. Eur J Hum Genet 2015; 24:86-91. [PMID: 25898923 DOI: 10.1038/ejhg.2015.70] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 11/08/2022] Open
Abstract
Cardiovascular disease (CVD) is a major cause of death in Western societies. CVD risk is largely genetically determined. The molecular pathology is, however, not elucidated in a large number of families suffering from CVD. We applied exclusion linkage analysis and next-generation sequencing to elucidate the molecular defect underlying premature CVD in a small pedigree, comprising two generations of which six members suffered from premature CVD. A total of three variants showed co-segregation with the disease status in the family. Two of these variants were excluded from further analysis based on the prevalence in replication cohorts, whereas a non-synonymous variant in MCF.2 Cell Line Derived Transforming Sequence-like protein (MCF2L, c.2066A>G; p.(Asp689Gly); NM_001112732.1), located in the DH domain, was only present in the studied family. MCF2L is a guanine exchange factor that potentially links pathways that signal through Rac1 and RhoA. Indeed, in HeLa cells, MCF2L689Gly failed to activate Rac1 as well as RhoA, resulting in impaired stress fiber formation. Moreover, MCF2L protein was found in human atherosclerotic lesions but not in healthy tissue segments. In conclusion, a rare functional variant in MCF2L, leading to impaired DH function, was identified in a small pedigree with premature CVD. The presence of MCF2L in human atherosclerotic plaque specimen lends further support to its potential role in atherosclerosis.
Collapse
|
39
|
The anti-atherosclerotic effects of puerarin on induced-atherosclerosis in rabbits. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:53-9. [DOI: 10.5507/bp.2013.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022] Open
|
40
|
Borrell-Pagès M, Romero JC, Badimon L. LRP5 deficiency down-regulates Wnt signalling and promotes aortic lipid infiltration in hypercholesterolaemic mice. J Cell Mol Med 2015; 19:770-7. [PMID: 25656427 PMCID: PMC4395191 DOI: 10.1111/jcmm.12396] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/18/2014] [Indexed: 01/05/2023] Open
Abstract
Low-density lipoprotein receptor-related protein 5 (LRP5) is a member of the LDLR family that orchestrates cholesterol homoeostasis. The role of LRP5 and the canonical Wnt pathway in the vascular wall of dyslipidaemic animals remains unknown. In this study, we analysed the role of LRP5 and the Wnt signalling pathway in mice fed a hypercholesterolaemic diet (HC) to trigger dyslipidaemia. We show that Lrp5−/− mice had larger aortic lipid infiltrations than wild-type mice, indicating a protective role for LRP5 in the vascular wall. Three members of the LDLR family, Lrp1, Vldlr and Lrp6, showed up-regulated gene expression levels in aortas of Lrp5−/− mice fed a hypercholesterolaemic diet. HC feeding in Lrp5−/− mice induced higher macrophage infiltration in the aortas and accumulation of inflammatory cytokines in blood. Wnt/β-CATENIN signalling proteins were down-regulated in HC Lrp5−/− mice indicating that LRP5 regulates the activation of Wnt signalling in the vascular wall. In conclusion, our findings show that LRP5 and the canonical Wnt pathway down-regulation regulate the dyslipidaemic profile by promoting lipid and macrophage retention in the vessel wall and increasing leucocyte-driven systemic inflammation.
Collapse
Affiliation(s)
- Maria Borrell-Pagès
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | | | | |
Collapse
|
41
|
Ezetimibe suppresses cholesterol accumulation in lipid-loaded vascular smooth muscle cells in vitro via MAPK signaling. Acta Pharmacol Sin 2014; 35:1129-36. [PMID: 25087996 DOI: 10.1038/aps.2014.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 07/14/2014] [Indexed: 01/30/2023]
Abstract
AIM To investigate the mechanisms of anti-atherosclerotic action of ezetimibe in rat vascular smooth muscle cells (VSMCs) in vitro. METHODS VSMCs of SD rats were cultured in the presence of Chol:MβCD (10 μg/mL) for 72 h, and intracellular lipid droplets and cholesterol levels were evaluated using Oil Red O staining, HPLC and Enzymatic Fluorescence Assay, respectively. The expression of caveolin-1, sterol response element-binding protein-1 (SREBP-1) and ERK1/2 were analyzed using Western blot assays. Translocation of SREBP-1 and ERK1/2 was detected with immunofluorescence. RESULTS Treatment with Chol:MβCD dramatically increased the cellular levels of total cholesterol (TC), cholesterol ester (CE) and free cholesterol (FC) in VSMCs, which led to the formation of foam cells. Furthermore, Chol:MβCD treatment significantly decreased the expression of caveolin-1, and stimulated the expression and nuclear translocation of SREBP-1 in VSMCs. Co-treatment with ezetimibe (3 μmol/L) significantly decreased the cellular levels of TC, CE and FC, which was accompanied by elevation of caveolin-1 expression, and by a reduction of SREBP-1 expression and nuclear translocation. Co-treatment with ezetimibe dose-dependently decreased the expression of phosphor-ERK1/2 (p-ERK1/2) in VSMCs. The ERK1/2 inhibitor PD98059 (50 μmol/L) altered the cholesterol level and the expression of p-ERK1/2, SREBP-1 and caveolin-1 in the same manner as ezetimibe did. CONCLUSION Ezetimibe suppresses cholesterol accumulation in rat VSMCs in vitro by regulating SREBP-1 and caveolin-1 expression, possibly via the MAPK signaling pathway.
Collapse
|
42
|
Xu S, Cheng J, Chen YN, Li K, Ma ZW, Cen JM, Liu X, Yang XL, Chen C, Xiong XD. The LRP6 rs2302685 polymorphism is associated with increased risk of myocardial infarction. Lipids Health Dis 2014; 13:94. [PMID: 24906453 PMCID: PMC4059096 DOI: 10.1186/1476-511x-13-94] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/27/2014] [Indexed: 12/13/2022] Open
Abstract
Background Abnormal lipids is one of the critical risk factors for myocardial infarction (MI), however the role of genetic variants in lipid metabolism-related genes on MI pathogenesis still requires further investigation. We herein genotyped three SNPs (LRP6 rs2302685, LDLRAP1 rs6687605, SOAT1 rs13306731) in lipid metabolism-related genes, aimed to shed light on the influence of these SNPs on individual susceptibility to MI. Methods Genotyping of the three SNPs (rs2302685, rs6687605 and rs13306731) was performed in 285 MI cases and 650 control subjects using polymerase chain reaction–ligation detection reaction (PCR–LDR) method. The association of these SNPs with MI and lipid profiles was performed with SPSS software. Results Multivariate logistic regression analysis showed that C allele (OR = 1.62, P = 0.039) and the combined CT/CC genotype (OR = 1.67, P = 0.035) of LRP6 rs2302685 were associated with increased MI risk, while the other two SNPs had no significant effect. Further stratified analysis uncovered a more evident association with MI risk among younger subjects (≤60 years old). Fascinatingly, CT/CC genotype of rs2302685 conferred increased LDL-C levels compared to TT genotype (3.0 mmol/L vs 2.72 mmol/L) in younger subjects. Conclusions Our data provides the first evidence that LRP6 rs2302685 polymorphism is associated with an increased risk of MI in Chinese subjects, and the association is more evident among younger individuals, which probably due to the elevated LDL-C levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xing-Dong Xiong
- Institute of Aging Research, Guangdong Medical College, Dongguan, P,R, China.
| |
Collapse
|
43
|
Chen J, Dai M, Wang Y. Paeonol Inhibits Proliferation of Vascular Smooth Muscle Cells Stimulated by High Glucose via Ras-Raf-ERK1/2 Signaling Pathway in Coculture Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:484269. [PMID: 25002903 PMCID: PMC4068084 DOI: 10.1155/2014/484269] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/29/2014] [Accepted: 05/18/2014] [Indexed: 11/17/2022]
Abstract
Paeonol (Pae) has been previously reported to protect against atherosclerosis (AS) by inhibiting vascular smooth muscle cell (VSMC) proliferation or vascular endothelial cell (VEC) injury. But studies lack how VSMCs and VECs interact when Pae plays a role. The current study was based on a coculture model of VSMCs and VECs to investigate the protective mechanisms of Pae on atherosclerosis (AS) by determining the secretory function of VECs and proliferation of VSMCs focusing on the Ras-Raf-ERK1/2 signaling pathway. VECs were stimulated by high glucose. Our data showed that high concentration (35.5 mM) of glucose induced damage in VECs. Injury of VECs stimulated VSMC proliferation in the coculture model. Pae (120 μ M) decreased vascular endothelial growth factor (VEGF) and platelet derivative growth factor B (PDGF-B) release from VECs and inhibited overexpression of Ras, P-Raf, and P-ERK proteins in VSMCs. The results indicate that diabetes modulates the inflammatory response in VECs to stimulate VSMC proliferation and promote the development of AS. Pae was beneficial by inhibiting the inflammatory effects of VECs on VSMC proliferation. This study suggests the inhibitory mechanism of Pae due to the inhibition of VEGF and PDGF-B secretion in VECs and Ras-Raf-ERK1/2 signaling pathway in VSMCs.
Collapse
Affiliation(s)
- Junjun Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei 230038, China
| | - Min Dai
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei 230038, China
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Shihe Road 45, Hefei, Anhui 230031, China
| | - Yueqin Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei 230038, China
| |
Collapse
|
44
|
Maiwald S, Sivapalaratnam S, Motazacker MM, van Capelleveen JC, Bot I, de Jager SC, van Eck M, Jolley J, Kuiper J, Stephens J, Albers CA, Vosmeer CR, Kruize H, Geerke DP, van der Wal AC, van der Loos CM, Kastelein JJP, Trip MD, Ouwehand WH, Dallinga-Thie GM, Hovingh GK. Mutation in KERA identified by linkage analysis and targeted resequencing in a pedigree with premature atherosclerosis. PLoS One 2014; 9:e98289. [PMID: 24879339 PMCID: PMC4039470 DOI: 10.1371/journal.pone.0098289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/30/2014] [Indexed: 01/29/2023] Open
Abstract
AIMS Genetic factors explain a proportion of the inter-individual variation in the risk for atherosclerotic events, but the genetic basis of atherosclerosis and atherothrombosis in families with Mendelian forms of premature atherosclerosis is incompletely understood. We set out to unravel the molecular pathology in a large kindred with an autosomal dominant inherited form of premature atherosclerosis. METHODS AND RESULTS Parametric linkage analysis was performed in a pedigree comprising 4 generations, of which a total of 11 members suffered from premature vascular events. A parametric LOD-score of 3.31 was observed for a 4.4 Mb interval on chromosome 12. Upon sequencing, a non-synonymous variant in KERA (c.920C>G; p.Ser307Cys) was identified. The variant was absent from nearly 28,000 individuals, including 2,571 patients with premature atherosclerosis. KERA, a proteoglycan protein, was expressed in lipid-rich areas of human atherosclerotic lesions, but not in healthy arterial specimens. Moreover, KERA expression in plaques was significantly associated with plaque size in a carotid-collar Apoe-/- mice (r2 = 0.69; p<0.0001). CONCLUSION A rare variant in KERA was identified in a large kindred with premature atherosclerosis. The identification of KERA in atherosclerotic plaque specimen in humans and mice lends support to its potential role in atherosclerosis.
Collapse
Affiliation(s)
- Stephanie Maiwald
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | | | - Mahdi M. Motazacker
- Department of Experimental Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | | | - Ilze Bot
- Division of Biopharmaceutics, Leiden/Amsterdam Centre for Drug Research, Leiden, the Netherlands
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Saskia C. de Jager
- Division of Biopharmaceutics, Leiden/Amsterdam Centre for Drug Research, Leiden, the Netherlands
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Miranda van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Centre for Drug Research, Leiden, the Netherlands
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jennifer Jolley
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden/Amsterdam Centre for Drug Research, Leiden, the Netherlands
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jonathon Stephens
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - Cornelius A. Albers
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - C. Ruben Vosmeer
- Amsterdam Institute of Molecules, Medicines and Systems, Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University, Amsterdam, the Netherlands
| | - Heleen Kruize
- Amsterdam Institute of Molecules, Medicines and Systems, Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University, Amsterdam, the Netherlands
| | - Daan P. Geerke
- Amsterdam Institute of Molecules, Medicines and Systems, Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University, Amsterdam, the Netherlands
| | | | | | - John J. P. Kastelein
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - Mieke D. Trip
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - Geesje M. Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - G. Kees Hovingh
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
45
|
Nakayama A, Nakayama M, Turner CJ, Höing S, Lepore JJ, Adams RH. Ephrin-B2 controls PDGFRβ internalization and signaling. Genes Dev 2014; 27:2576-89. [PMID: 24298057 PMCID: PMC3861671 DOI: 10.1101/gad.224089.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ephrin-B2 is essential for supporting mural cells; namely, pericytes and vascular smooth muscle cells (VSMCs). Nakayama et al. find that ephrin-B2 controls platelet-derived growth factor receptor β (PDGFRβ) distribution in the VSMC plasma membrane, endocytosis, and signaling. VSMCs lacking ephrin-B2 exhibited a redistribution of PDGFRβ from caveolin-positive to clathrin-associated membrane fractions and enhanced PDGF-B-induced PDGFRβ internalization. Mice lacking ephrin-B2 in vascular smooth muscle developed vessel wall defects and aortic aneurysms. These results suggest that ephrin-B2 is an important regulator of PDGFRβ endocytosis in mural cells. B-class ephrins, ligands for EphB receptor tyrosine kinases, are critical regulators of growth and patterning processes in many organs and species. In the endothelium of the developing vasculature, ephrin-B2 controls endothelial sprouting and proliferation, which has been linked to vascular endothelial growth factor (VEGF) receptor endocytosis and signaling. Ephrin-B2 also has essential roles in supporting mural cells (namely, pericytes and vascular smooth muscle cells [VSMCs]), but the underlying mechanism is not understood. Here, we show that ephrin-B2 controls platelet-derived growth factor receptor β (PDGFRβ) distribution in the VSMC plasma membrane, endocytosis, and signaling in a fashion that is highly distinct from its role in the endothelium. Absence of ephrin-B2 in cultured VSMCs led to the redistribution of PDGFRβ from caveolin-positive to clathrin-associated membrane fractions, enhanced PDGF-B-induced PDGFRβ internalization, and augmented downstream mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK) activation but impaired Tiam1–Rac1 signaling and proliferation. Accordingly, mutant mice lacking ephrin-B2 expression in vascular smooth muscle developed vessel wall defects and aortic aneurysms, which were associated with impaired Tiam1 expression and excessive activation of MAP kinase and JNK. Our results establish that ephrin-B2 is an important regulator of PDGFRβ endocytosis and thereby acts as a molecular switch controlling the downstream signaling activity of this receptor in mural cells.
Collapse
Affiliation(s)
- Akiko Nakayama
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Xu Y, Gong W, Peng J, Wang H, Huang J, Ding H, Wang DW. Functional analysis LRP6 novel mutations in patients with coronary artery disease. PLoS One 2014; 9:e84345. [PMID: 24427284 PMCID: PMC3888387 DOI: 10.1371/journal.pone.0084345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 11/14/2013] [Indexed: 02/05/2023] Open
Abstract
Background Genetic architecture of coronary artery disease (CAD) is still to be defined. Since low density lipoprotein receptor-related protein 6 (LRP6) gene play critical roles in Wnt signal transduction which are important for vascular development and endodermis specification, we therefore resequenced it to search for mutations in CAD patients. Methods We systemically sequenced all the exons and promoter region of LRP6 gene in a sample of 380 early onset CAD patients and 380 control subjects in Chinese. Results In total, we identified 5 patient-specific mutations including K82N (two patients), S488Y (one patient), P1066T (two patients), P1206H (two patients) and I1264V (one patient) All these mutations located at the extracellular domain of LRP6 gene. In vitro functional analysis of patient-specific mutations demonstrated that these mutations resulted in a significant reduction in both protein level transporting to cell membrane and downstream Wnt signal activity. Furthermore, we found that LRP6 novel mutations attenuated proliferation and migration of human umbilical vein endothelial cells (HUVECs) when compared with wild type (WT) LRP6. Conclusion Our results demonstrated that these loss-of-function variants might contribute to disease liability in a subset of CAD and defects in Wnt signal activation might be important contributing factors for the onset of CAD.
Collapse
Affiliation(s)
- Yujun Xu
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Gong
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Peng
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Echocardiography Laboratory, Sichuan Provincial Hospital, Chengdu, China
| | - Haoran Wang
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Huang
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Ding
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (DWW); (HD)
| | - Dao Wen Wang
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (DWW); (HD)
| |
Collapse
|
47
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
48
|
de Gonzalo-Calvo D, Revuelta-López E, Llorente-Cortés V. [Basic mechanisms. Regulation and clearance of lipoproteins that contain apolipoprotein B]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2013; 25:194-200. [PMID: 23768652 DOI: 10.1016/j.arteri.2013.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Affiliation(s)
- David de Gonzalo-Calvo
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | | | | |
Collapse
|
49
|
Heldin CH. Targeting the PDGF signaling pathway in the treatment of non-malignant diseases. J Neuroimmune Pharmacol 2013; 9:69-79. [PMID: 23793451 DOI: 10.1007/s11481-013-9484-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/05/2013] [Indexed: 12/13/2022]
Abstract
Platelet-derived growth factor (PDGF) is a family of mesenchymal mitogens with important functions during the embryonal development and in the control of tissue homeostasis in the adult. The PDGF isoforms exert their effects by binding to α-and β-tyrosine kinase receptors. Overactivity of PDGF signaling has been linked to the development of certain malignant and non-malignant diseases, including atherosclerosis and various fibrotic diseases. Different types of PDGF antagonists have been developed, including inhibitory monoclonal antibodies and DNA aptamers against PDGF isoforms and receptors, and receptor tyrosine kinase inhibitors. Beneficial effects have been recorded using such inhibitors in preclinical models and in patients with certain malignant as well as non-malignant diseases. The present communication summarizes the use of PDGF antagonists in the treatment of non-malignant diseases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd, Science for Life Laboratory, Uppsala University, Box 595, SE-75124, Uppsala, Sweden,
| |
Collapse
|
50
|
Singh R, Smith E, Fathzadeh M, Liu W, Go GW, Subrahmanyan L, Faramarzi S, McKenna W, Mani A. Rare nonconservative LRP6 mutations are associated with metabolic syndrome. Hum Mutat 2013; 34:1221-5. [PMID: 23703864 DOI: 10.1002/humu.22360] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/07/2013] [Indexed: 12/13/2022]
Abstract
A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation.
Collapse
Affiliation(s)
- Rajvir Singh
- Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | | | | | | | | | | | | | | | | |
Collapse
|