1
|
Raik S, Kaur B, Kumar S, Rattan V, Kumar N, Bhattacharyya S. Secretome Derived From Mesenchymal Stem Cells Cultured as Monolayer Show Enhanced Bone Regeneration Compared to Secretome From 3D Spheroid - Clues From the Proteome. Adv Healthc Mater 2025:e2500885. [PMID: 40249147 DOI: 10.1002/adhm.202500885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Repair and reconstruction of critical-sized bone defects present a significant challenge due to poor clinical outcomes of conventional bone repair strategies, such as autologous and allogenic bone grafts. The present study underscores the potential of human dental pulp stem cell-derived trophic factors to promote bone repair and regeneration, thus evading the risks associated with cell-based therapy. This study utilizes pre-osteoblast cells to evaluate the osteogenic potential of 2 Dimensional (2D) and 3 Dimensional (3D) secretome from monolayer and spheroid cultures of dental pulp stem cells (DPSCs), respectively. In-vitro results on pre-osteoblast cells (MC3T3-EI) treated with 2D and 3D secretome reveal lower mineralization and mRNA expression of osteogenic specific genes in 3D secretome in comparison to 2D secretome. Furthermore, 2D secretome shows better bone regeneration ability in rat models of calvarial bone defect compared to the 3D secretome. The proteomic profiles of 2D and 3D secretomes are also in concordance with these results and reveal key molecules governing bone regeneration potential. This data highlights the influence of culture conditions on the secretory pattern of mesenchymal stem cells and provides valuable insights for the development of a more effective secretome-based cell-free alternative for novel bone repair and regeneration.
Collapse
Affiliation(s)
- Shalini Raik
- Department of Biophysics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Bhavneet Kaur
- Department of Cytology and Gynecologic Pathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Saroj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Vidya Rattan
- Unit of oral and maxillofacial surgery, Department of Oral Health Sciences, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
2
|
Murcia-Belmonte V, Liu Y, Shamsi S, Shaw S, Collie-Duguid E, Herrera E, Collinson JM, Vargesson N, Erskine L. Identification of lens-regulated genes driving anterior eye development. Dev Biol 2025; 520:91-107. [PMID: 39814158 DOI: 10.1016/j.ydbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Signals from the lens regulate multiple aspects of eye development, including establishment of eye size, patterning of the presumptive iris and ciliary body in the anterior optic cup and migration and differentiation of neural crest cells. To advance understanding of the molecular mechanism by which the lens regulates eye development, we performed transcriptome profiling of embryonic chicken retinas after lens removal. Genes associated with nervous system development were upregulated in lens-removed eyes, but the presumptive ciliary body and iris region did not adopt a neural retina identity following lens removal. Lens-regulated genes implicated in periocular mesenchyme, cornea and anterior optic cup development were identified, including factors not previously implicated in eye development. Unexpectedly, transcriptomic differences were identified in retinas from male versus female chicken embryos, suggesting sexual dimorphism from early stages. In situ hybridisation of embryonic chicken eyes and analyses of datasets from embryonic mouse and adult human eyes confirmed expression of candidate genes, including multiple WNT genes, in tissues important for anterior eye development and function. Remarkably, pharmacological activation of canonical WNT signalling restored eye development and size in the absence of the lens. These analyses have identified candidate genes and biological pathways involved in eye development, providing avenues for new research in this area.
Collapse
Affiliation(s)
- Verónica Murcia-Belmonte
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK; Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal S/n, Alicante, 03550, Spain
| | - Yanlin Liu
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Sadia Shamsi
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Sophie Shaw
- University of Aberdeen, Centre for Genome Enabled Biology and Medicine, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK; Current Address: All Wales Medical Genomics Service, Cardiff and Vale University Health Board, University Hospital of Wales, CF14 4XW, UK
| | - Elaina Collie-Duguid
- University of Aberdeen, Centre for Genome Enabled Biology and Medicine, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Eloisa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal S/n, Alicante, 03550, Spain
| | - J Martin Collinson
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Neil Vargesson
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Lynda Erskine
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
3
|
Cheng Y, Xiao S, Lan L, Liu D, Tang R, Gu J, Ma L, He Z, Chen X, Geng L, Chen P, Li H, Ren L, Zhu Y, Cheng Y, Gong S. WNT2B high‑expressed fibroblasts induce the fibrosis of IBD by promoting NK cells secreting IL-33. J Mol Med (Berl) 2024; 102:1199-1215. [PMID: 39138828 DOI: 10.1007/s00109-024-02477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis is an important pathological change in inflammatory bowel disease (IBD), but the mechanism has yet to be elucidated. WNT2B high‑expressed fibroblasts are enriched in IBD intestinal tissues, although the precise function of this group of fibroblasts remains unclear. This study investigated whether WNT2B high‑expressed fibroblasts aggravated intestinal tissue damage and fibrosis. Our study provides evidence that WNT2B high‑expressed fibroblasts and NK cells were enriched in colitis tissue of patients with IBD. WNT2B high‑expressed fibroblasts secreted wnt2b, which bound to FZD4 on NK cells and activated the NF-κB and STAT3 pathways to enhance IL-33 expression. TCF4, a downstream component of the WNT/β-catenin pathway, bound to p65 and promoted binding to IL-33 promoter. Furthermore, Salinomycin, an inhibitor of the WNT/β-catenin pathway, inhibited IL-33 secretion in colitis, thereby reducing intestinal inflammation.Knocking down WNT2B reduces NK cell infiltration and IL-33 secretion in colitis, and reduce intestinal inflammation and fibrosis. In conclusion, WNT2B high‑expressed fibroblasts activate NK cells by secreting wnt2b, which activates the WNT/β-catenin and NF-κB pathways to promote IL-33 expression and secretion, potentially culminating in the induction of colonic fibrosis in IBD. KEY MESSAGES: WNT2B high-expressed fibroblasts and NK cells are enriched in colitis tissue, promoting NK cells secreting IL-33. Wnt2b activates NF-κB and STAT3 pathways promotes IL-33 expression by activating p65 and not STAT3. syndrome TCF4 binds to p65 and upregulates the NF- κB pathway. Salinomycin reduces NK cell infiltration and IL-33 secretion in colitis. Knocking down WNT2B mitigates inflammation and fibrosis in chronic colitis.
Collapse
Affiliation(s)
- Yanling Cheng
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Pediatrics, Shantou Central Hospital, Shantou, 515031, China
| | - Shuzhe Xiao
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lin Lan
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Danqiong Liu
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Rui Tang
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jianbiao Gu
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Li Ma
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhihua He
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Xirong Chen
- Nanshan School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lanlan Geng
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Peiyu Chen
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Huiwen Li
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Lu Ren
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yun Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yang Cheng
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China.
| | - Sitang Gong
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
4
|
Yan B, Luo P, Qiu H, Wang J, Xiong Q, Hu W, Wang F, Liu G, Zhi Y, Fang Q, Shi C, Li W. PC4 promotes bladder cancer progression and stemness by directly interacting with Sp1 to transcriptionally activate the Wnt5a/β-catenin pathway. Pathol Res Pract 2024; 259:155369. [PMID: 38820928 DOI: 10.1016/j.prp.2024.155369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/07/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Bladder cancer is a common malignancy with a poor prognosis worldwide. Positive cofactor 4 (PC4) is widely reported to promote malignant phenotypes in various tumors. Nonetheless, the biological function and mechanism of PC4 in bladder cancer remain unclear. Here, for the first time, we report that PC4 is elevated in bladder cancer and is associated with patient survival. Moreover, PC4 deficiency obviously inhibited bladder cancer cell proliferation and metastasis by reducing the expression of genes related to cancer stemness (CD44, CD47, KLF4 and c-Myc). Through RNA-seq and experimental verification, we found that activation of the Wnt5a/β-catenin pathway is involved in the malignant function of PC4. Mechanistically, PC4 directly interacts with Sp1 to promote Wnt5a transcription. Thus, our study furthers our understanding of the role of PC4 in cancer stemness regulation and provides a promising strategy for bladder cancer therapy.
Collapse
Affiliation(s)
- Benhuang Yan
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Peng Luo
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Heping Qiu
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jianwu Wang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qin Xiong
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weiwei Hu
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fulong Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Gaoyu Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yi Zhi
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qiang Fang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Chunmeng Shi
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Weibing Li
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| |
Collapse
|
5
|
Lan L, Huang C, Liu D, Cheng Y, Tang R, Gu J, Geng L, Cheng Y, Gong S. WNT2B activates macrophages via NF-κB signaling pathway in inflammatory bowel disease. FASEB J 2024; 38:e23551. [PMID: 38489235 DOI: 10.1096/fj.202302213r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Inflammation is a significant pathological manifestation of inflammatory bowel disease (IBD), yet its mechanism has remained unclear. Although WNT2B is enriched in the intestinal inflammatory tissue of IBD patients, the specific mechanism of WNT2B in the formation of intestinal inflammation remains unclear. This study was aimed to investigate whether macrophages expressing WNT2B can aggravate intestinal tissue inflammation. Samples were collected from both normal individuals and patients with IBD at multiple colon sites. Macrophages were identified using tissue immunofluorescence. IκB kinase (IKK)-interacting protein (IKIP), which interacts with WNT2B, was found by protein cross-linking and protein mass spectrometry. The expression of WNT2B, IKIP, the NF-κB pathway, and downstream molecules were analyzed. An acute colitis model of C57BL/6J mice was established using an adeno-associated virus (AAV)-mediated WNT2B knockdown system and 3% dextran sulfate sodium (DSS). The degree of intestinal inflammation in mice was assessed upon WNT2B knockdown in macrophages. Macrophages expressing WNT2B were found to be enriched in the colitis tissues of IBD patients. WNT2B in macrophages activated the NF-κB pathway and enhanced the expression of downstream inflammatory cytokines. By competitively binding IKIP, WNT2B reduced the binding of IKIP to IKKβ and promoted the activation of the NF-κB pathway. Using an AAV-mediated WNT2B knockdown system, WNT2B expression in intestinal macrophages was suppressed, leading to a reduction in intestinal inflammation. WNT2B activated the NF-κB pathway and enhanced the expression of downstream inflammatory cytokines by competitively binding to IKIP, potentially contributing to colon inflammatory injury in IBD.
Collapse
Affiliation(s)
- Lin Lan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Chuxiang Huang
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Danqiong Liu
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Yanling Cheng
- Department of Pediatrics, Shantou Central Hospital, Shantou, China
| | - Rui Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Jianbiao Gu
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Lanlan Geng
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Yang Cheng
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Sitang Gong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Digestive Diseases, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Wright EB, Larsen EG, Coloma-Roessle CM, Hart HR, Bhattacharya MRC. Transmembrane protein 184B (TMEM184B) promotes expression of synaptic gene networks in the mouse hippocampus. BMC Genomics 2023; 24:559. [PMID: 37730546 PMCID: PMC10512654 DOI: 10.1186/s12864-023-09676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
In Alzheimer's Disease (AD) and other dementias, hippocampal synaptic dysfunction and loss contribute to the progression of memory impairment. Recent analysis of human AD transcriptomes has provided a list of gene candidates that may serve as drivers of disease. One such candidate is the membrane protein TMEM184B. To evaluate whether TMEM184B contributes to neurological impairment, we asked whether loss of TMEM184B in mice causes gene expression or behavior alterations, focusing on the hippocampus. Because one major risk factor for AD is age, we compared young adult (5-month-old) and aged (15-month-old) wild type and Tmem184b-mutant mice to assess the dual contributions of age and genotype. TMEM184B loss altered expression of pre- and post-synaptic transcripts by 5 months and continued through 15 months, specifically affecting genes involved in synapse assembly and neural development. Wnt-activated enhancer elements were enriched among differentially expressed genes, suggesting an intersection with this pathway. Few differences existed between young adult and aged mutants, suggesting that transcriptional effects of TMEM184B loss are relatively constant. To understand how TMEM184B disruption may impact behaviors, we evaluated memory using the novel object recognition test and anxiety using the elevated plus maze. Young adult Tmem184b-mutant mice show normal object discrimination, suggesting a lack of memory impairment at this age. However, mutant mice showed decreased anxiety, a phenotype seen in some neurodevelopmental disorders. Taken together, our data suggest that TMEM184B is required for proper synaptic gene expression and anxiety-related behavior and is more likely to be linked to neurodevelopmental disorders than to dementia.
Collapse
Affiliation(s)
- Elizabeth B Wright
- Department of Neuroscience, 1040 E 4th Street, Tucson, Arizona, 85721, USA
| | - Erik G Larsen
- Department of Neuroscience, 1040 E 4th Street, Tucson, Arizona, 85721, USA
| | | | - Hannah R Hart
- Department of Neuroscience, 1040 E 4th Street, Tucson, Arizona, 85721, USA
| | | |
Collapse
|
7
|
Shah R, Amador C, Chun ST, Ghiam S, Saghizadeh M, Kramerov AA, Ljubimov AV. Non-canonical Wnt signaling in the eye. Prog Retin Eye Res 2023; 95:101149. [PMID: 36443219 PMCID: PMC10209355 DOI: 10.1016/j.preteyeres.2022.101149] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Wnt signaling comprises a group of complex signal transduction pathways that play critical roles in cell proliferation, differentiation, and apoptosis during development, as well as in stem cell maintenance and adult tissue homeostasis. Wnt pathways are classified into two major groups, canonical (β-catenin-dependent) or non-canonical (β-catenin-independent). Most previous studies in the eye have focused on canonical Wnt signaling, and the role of non-canonical signaling remains poorly understood. Additionally, the crosstalk between canonical and non-canonical Wnt signaling in the eye has hardly been explored. In this review, we present an overview of available data on ocular non-canonical Wnt signaling, including developmental and functional aspects in different eye compartments. We also discuss important changes of this signaling in various ocular conditions, such as keratoconus, aniridia-related keratopathy, diabetes, age-related macular degeneration, optic nerve damage, pathological angiogenesis, and abnormalities in the trabecular meshwork and conjunctival cells, and limbal stem cell deficiency.
Collapse
Affiliation(s)
- Ruchi Shah
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cynthia Amador
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven T Chun
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California Los Angeles, Los Angeles, CA, USA
| | - Sean Ghiam
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Paez-Gonzalez P, Lopez-de-San-Sebastian J, Ceron-Funez R, Jimenez AJ, Rodríguez-Perez LM. Therapeutic strategies to recover ependymal barrier after inflammatory damage: relevance for recovering neurogenesis during development. Front Neurosci 2023; 17:1204197. [PMID: 37397456 PMCID: PMC10308384 DOI: 10.3389/fnins.2023.1204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
The epithelium covering the surfaces of the cerebral ventricular system is known as the ependyma, and is essential for maintaining the physical and functional integrity of the central nervous system. Additionally, the ependyma plays an essential role in neurogenesis, neuroinflammatory modulation and neurodegenerative diseases. Ependyma barrier is severely affected by perinatal hemorrhages and infections that cross the blood brain barrier. The recovery and regeneration of ependyma after damage are key to stabilizing neuroinflammatory and neurodegenerative processes that are critical during early postnatal ages. Unfortunately, there are no effective therapies to regenerate this tissue in human patients. Here, the roles of the ependymal barrier in the context of neurogenesis and homeostasis are reviewed, and future research lines for development of actual therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Patricia Paez-Gonzalez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | | | - Raquel Ceron-Funez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
| | - Antonio J. Jimenez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Luis Manuel Rodríguez-Perez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Sports, University of Malaga, Málaga, Spain
| |
Collapse
|
9
|
Blomfield AK, Maurya M, Bora K, Pavlovich MC, Yemanyi F, Huang S, Fu Z, O’Connell AE, Chen J. Ectopic Rod Photoreceptor Development in Mice with Genetic Deficiency of WNT2B. Cells 2023; 12:1033. [PMID: 37048106 PMCID: PMC10093714 DOI: 10.3390/cells12071033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Wnt/β-catenin signaling is essential for embryonic eye development in both the anterior eye and retina. WNT2B, a ligand and activator of the Wnt/β-catenin pathway, assists in the development of the lens and peripheral regions of the eye. In humans WNT2B mutations are associated with coloboma and WNT2B may also assist in retinal progenitor cell differentiation in chicken, yet the potential role of WNT2B in retinal neuronal development is understudied. This study explored the effects of WNT2B on retinal neuronal and vascular formation using systemic Wnt2b knockout (KO) mice generated by crossing Wnt2bflox/flox (fl/fl) mice with CMV-cre mice. Wnt2b KO eyes exhibited relatively normal anterior segments and retinal vasculature. Ectopic formation of rod photoreceptor cells in the subretinal space was observed in Wnt2b KO mice as early as one week postnatally and persisted through nine-month-old mice. Other retinal neuronal layers showed normal organization in both thickness and lamination, without detectable signs of retinal thinning. The presence of abnormal photoreceptor genesis was also observed in heterozygous Wnt2b mice, and occasionally in wild type mice with decreased Wnt2b expression levels. Expression of Wnt2b was found to be enriched in the retinal pigment epithelium compared with whole retina. Together these findings suggest that WNT2B is potentially involved in rod photoreceptor genesis during eye development; however, potential influence by a yet unknown genetic factor is also possible.
Collapse
Affiliation(s)
- Alexandra K. Blomfield
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Meenakshi Maurya
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kiran Bora
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Madeline C. Pavlovich
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Felix Yemanyi
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shuo Huang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Amy E. O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
10
|
Istiaq A, Ohta K. A review on Tsukushi: mammalian development, disorders, and therapy. J Cell Commun Signal 2022; 16:505-513. [PMID: 35233735 PMCID: PMC9733752 DOI: 10.1007/s12079-022-00669-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Tsukushi (TSK), a leucine-rich peptidoglycan in the extracellular compartment, mediates multiple signaling pathways that are critical for development and metabolism. TSK regulates signaling pathways that eventually control cellular communication, proliferation, and cell fate determination. Research on TSK has become more sophisticated in recent years, illustrating its involvement in the physiology and pathophysiology of neural, genetic, and metabolic diseases. In a recent study, we showed that TSK therapy reversed the pathophysiological abnormalities of the hydrocephalic (a neurological disorder) brain in mice. This review summarizes the roles of TSK in key signaling processes in the mammalian development, disorders, and evaluating its possible therapeutic and diagnostic potential.
Collapse
Affiliation(s)
- Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, 819-0395 Fukuoka, Japan ,Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 860-8555 Kumamoto, Japan ,HIGO Program, Kumamoto University, 860-8555 Kumamoto, Japan
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, 819-0395 Fukuoka, Japan
| |
Collapse
|
11
|
Istiaq A, Umemoto T, Ito N, Suda T, Shimamura K, Ohta K. Tsukushi proteoglycan maintains RNA splicing and developmental signaling network in GFAP-expressing subventricular zone neural stem/progenitor cells. Front Cell Dev Biol 2022; 10:994588. [DOI: 10.3389/fcell.2022.994588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Tsukushi (TSK) proteoglycan dysfunction leads to hydrocephalus, a condition defined by excessive fluid collection in the ventricles and lateral ventricular enlargement. TSK injections into the LV at birth are effective at rescuing the lateral ventricle (LV). TSK regulates the activation of the Wnt signaling to facilitate the proper expansion of the LV and maintain the fate of the neural stem cell lineage. However, the molecular mechanism by which TSK acts on neural stem/progenitor cells (NSCs) during LV development is unknown. We demonstrated that TSK is crucial for the splicing and development-associated gene regulation of GFAP-expressing subventricular zone (SVZ) NSCs. We isolated GFAP-expressing NSCs from the SVZ of wild-type (GFAPGFP/+/TSK+/+) and TSK knock-out (GFAPGFP/+/TSK−/−) mice on postnatal day 3 and compared their transcriptome and splicing profiles. TSK deficiency in NSCs resulted in genome-wide missplicing (alteration in exon usage) and transcriptional dysregulation affecting the post-transcriptional regulatory processes (including splicing, cell cycle, and circadian rhythm) and developmental signaling networks specific to the cell (including Wnt, Sonic Hedgehog, and mTOR signaling). Furthermore, TSK deficiency prominently affected the splicing of genes encoding RNA and DNA binding proteins in the nervous SVZ and non-nervous muscle tissues. These results suggested that TSK is involved in the maintenance of correct splicing and gene regulation in GFAP-expressing NSCs, thereby protecting cell fate and LV development. Hence, our study provides a critical insight on hydrocephalus development.
Collapse
|
12
|
Quaresima S, Istiaq A, Jono H, Cacci E, Ohta K, Lupo G. Assessing the Role of Ependymal and Vascular Cells as Sources of Extracellular Cues Regulating the Mouse Ventricular-Subventricular Zone Neurogenic Niche. Front Cell Dev Biol 2022; 10:845567. [PMID: 35450289 PMCID: PMC9016221 DOI: 10.3389/fcell.2022.845567] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neurogenesis persists in selected regions of the adult mouse brain; among them, the ventricular-subventricular zone (V-SVZ) of the lateral ventricles represents a major experimental paradigm due to its conspicuous neurogenic output. Postnatal V-SVZ neurogenesis is maintained by a resident population of neural stem cells (NSCs). Although V-SVZ NSCs are largely quiescent, they can be activated to enter the cell cycle, self-renew and generate progeny that gives rise to olfactory bulb interneurons. These adult-born neurons integrate into existing circuits to modify cognitive functions in response to external stimuli, but cells shed by V-SVZ NSCs can also reach injured brain regions, suggesting a latent regenerative potential. The V-SVZ is endowed with a specialized microenvironment, which is essential to maintain the proliferative and neurogenic potential of NSCs, and to preserve the NSC pool from exhaustion by finely tuning their quiescent and active states. Intercellular communication is paramount to the stem cell niche properties of the V-SVZ, and several extracellular signals acting in the niche milieu have been identified. An important part of these signals comes from non-neural cell types, such as local vascular cells, ependymal and glial cells. Understanding the crosstalk between NSCs and other niche components may aid therapeutic approaches for neuropathological conditions, since neurodevelopmental disorders, age-related cognitive decline and neurodegenerative diseases have been associated with dysfunctional neurogenic niches. Here, we review recent advances in the study of the complex interactions between V-SVZ NSCs and their cellular niche. We focus on the extracellular cues produced by ependymal and vascular cells that regulate NSC behavior in the mouse postnatal V-SVZ, and discuss the potential implication of these molecular signals in pathological conditions.
Collapse
Affiliation(s)
- Sabrina Quaresima
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Emanuele Cacci
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
- *Correspondence: Kunimasa Ohta, ; Giuseppe Lupo,
| | - Giuseppe Lupo
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- *Correspondence: Kunimasa Ohta, ; Giuseppe Lupo,
| |
Collapse
|
13
|
Wang Q, Qiu X, Liu T, Ahn C, Horowitz JF, Lin JD. The hepatokine TSK maintains myofiber integrity and exercise endurance and contributes to muscle regeneration. JCI Insight 2022; 7:154746. [PMID: 35025761 PMCID: PMC8876464 DOI: 10.1172/jci.insight.154746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Mammalian skeletal muscle contains heterogenous myofibers with different contractile and metabolic properties that sustain muscle mass and endurance capacity. The transcriptional regulators that govern these myofiber gene programs have been elucidated. However, the hormonal cues that direct the specification of myofiber types and muscle endurance remain largely unknown. Here we uncover the secreted factor Tsukushi (TSK) as an extracellular signal that is required for maintaining muscle mass, strength, and endurance capacity, and contributes to muscle regeneration. Mice lacking TSK exhibited reduced grip strength and impaired exercise capacity. Muscle transcriptomic analysis revealed that TSK deficiency results in a remarkably selective impairment in the expression of myofibrillar genes characteristic of slow-twitch muscle fibers that is associated with abnormal neuromuscular junction formation. AAV-mediated overexpression of TSK failed to rescue these myofiber defects in adult mice, suggesting that the effects of TSK on myofibers are likely restricted to certain developmental stages. Finally, mice lacking TSK exhibited diminished muscle regeneration following cardiotoxin-induced muscle injury. These findings support a crucial role of TSK as a hormonal cue in the regulation of contractile gene expression, endurance capacity, and muscle regeneration.
Collapse
Affiliation(s)
- Qiuyu Wang
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, United States of America
| | - Xiaoxue Qiu
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, United States of America
| | - Tongyu Liu
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, United States of America
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, United States of America
| | | | - Jiandie D Lin
- University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
14
|
Ito N, Riyadh MA, Ahmad SAI, Hattori S, Kanemura Y, Kiyonari H, Abe T, Furuta Y, Shinmyo Y, Kaneko N, Hirota Y, Lupo G, Hatakeyama J, Abdulhaleem M FA, Anam MB, Yamaguchi M, Takeo T, Takebayashi H, Takebayashi M, Oike Y, Nakagata N, Shimamura K, Holtzman MJ, Takahashi Y, Guillemot F, Miyakawa T, Sawamoto K, Ohta K. Dysfunction of the proteoglycan Tsukushi causes hydrocephalus through altered neurogenesis in the subventricular zone in mice. Sci Transl Med 2021; 13:13/587/eaay7896. [PMID: 33790026 DOI: 10.1126/scitranslmed.aay7896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/13/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
The lateral ventricle (LV) is flanked by the subventricular zone (SVZ), a neural stem cell (NSC) niche rich in extrinsic growth factors regulating NSC maintenance, proliferation, and neuronal differentiation. Dysregulation of the SVZ niche causes LV expansion, a condition known as hydrocephalus; however, the underlying pathological mechanisms are unclear. We show that deficiency of the proteoglycan Tsukushi (TSK) in ependymal cells at the LV surface and in the cerebrospinal fluid results in hydrocephalus with neurodevelopmental disorder-like symptoms in mice. These symptoms are accompanied by altered differentiation and survival of the NSC lineage, disrupted ependymal structure, and dysregulated Wnt signaling. Multiple TSK variants found in patients with hydrocephalus exhibit reduced physiological activity in mice in vivo and in vitro. Administration of wild-type TSK protein or Wnt antagonists, but not of hydrocephalus-related TSK variants, in the LV of TSK knockout mice prevented hydrocephalus and preserved SVZ neurogenesis. These observations suggest that TSK plays a crucial role as a niche molecule modulating the fate of SVZ NSCs and point to TSK as a candidate for the diagnosis and therapy of hydrocephalus.
Collapse
Affiliation(s)
- Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - M Asrafuzzaman Riyadh
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shah Adil Ishtiyaq Ahmad
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Satoko Hattori
- Division of System Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, 2-1-14, Hoensaka, Chuo-ku, Osaka 540-0006, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi,Chuou-ku, Kobe 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi,Chuou-ku, Kobe 650-0047, Japan
| | - Yasuhide Furuta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi,Chuou-ku, Kobe 650-0047, Japan.,Mouse Genetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Yohei Shinmyo
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takara-cho, Ishikawa 920-8640, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yuki Hirota
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.,Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Giuseppe Lupo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Felemban Athary Abdulhaleem M
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Department of Biology, Faculty of Applied Science, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mohammad Badrul Anam
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata 951-8510, Japan
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Yoshiko Takahashi
- Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.,AMED Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo 100-0004, Japan
| | | | - Tsuyoshi Miyakawa
- Division of System Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan. .,Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.,AMED Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo 100-0004, Japan.,Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Deng X, Li Y, Guo C, Zhao Z, Yuan G. Novel roles of Tsukushi in signaling pathways and multiple disease processes. Biofactors 2021; 47:512-521. [PMID: 33759220 DOI: 10.1002/biof.1723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
Tsukushi (TSK), a newly identified hepatokine, is a member of the small leucine-rich proteoglycans (SLRPs) family. TSK was originally isolated and identified in the lens of the chicken. Preliminary research on TSK has focused on its role in various physiological processes such as growth and development, wound healing, and cartilage formation. In recent years, the role of TSK in regulating cell signaling pathways, cell proliferation, and differentiation has been studied. In addition, the research has gradually expanded to the fields of glycolipid metabolism and energy balance. This article briefly reviews the role of TSK in the physiological and pathological process.
Collapse
Affiliation(s)
- Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanyan Li
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Chang Guo
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhicong Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
16
|
Zhang YJ, Jimenez L, Azova S, Kremen J, Chan YM, Elhusseiny AM, Saeed H, Goldsmith J, Al-Ibraheemi A, O'Connell AE, Kovbasnjuk O, Rodan L, Agrawal PB, Thiagarajah JR. Novel variants in the stem cell niche factor WNT2B define the disease phenotype as a congenital enteropathy with ocular dysgenesis. Eur J Hum Genet 2021; 29:998-1007. [PMID: 33526876 PMCID: PMC8187348 DOI: 10.1038/s41431-021-00812-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
WNT2B is a member of the Wnt family, a group of signal transduction proteins involved in embryologic development and stem cell renewal and maintenance. We recently reported homozygous nonsense variants in WNT2B in three individuals with severe, neonatal-onset diarrhea, and intestinal failure. Here we present a fourth case, from a separate family, with neonatal diarrhea associated with novel compound heterozygous WNT2B variants. One of the two variants was a frameshift variant (c.423del [p.Phe141fs]), while the other was a missense change (c.722 G > A [p.G241D]) that we predict through homology modeling to be deleterious, disrupting post-translational acylation. This patient presented as a neonate with severe diet-induced (osmotic) diarrhea and growth failure resulting in dependence on parenteral nutrition. Her gastrointestinal histology revealed abnormal cellular architecture particularly in the stomach and colon, including oxyntic atrophy, abnormal distribution of enteroendocrine cells, and a paucity of colonic crypt glands. In addition to her gastrointestinal findings, she had bilateral corneal clouding and atypical genital development later identified as a testicular 46,XX difference/disorder of sexual development. Upon review of the previously reported cases, two others also had anterior segment ocular anomalies though none had atypical genital development. This growing case series suggests that variants in WNT2B are associated with an oculo-intestinal (and possibly gonadal) syndrome, due to the protein's putative involvement in multiple developmental and stem cell maintenance pathways.
Collapse
Affiliation(s)
- Yanjia Jason Zhang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lissette Jimenez
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Congenital Enteropathy Program, Boston Children's Hospital, Boston, MA, USA
| | - Svetlana Azova
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Kremen
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Abdelrahman M Elhusseiny
- Department of Ophthalmology, Boston Children's Hospital and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Hajirah Saeed
- Department of Ophthalmology, Boston Children's Hospital and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Jeffrey Goldsmith
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amy E O'Connell
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Olga Kovbasnjuk
- Department of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lance Rodan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Congenital Enteropathy Program, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
17
|
Miwa T, Ito N, Ohta K. Tsukushi is essential for the formation of the posterior semicircular canal that detects gait performance. J Cell Commun Signal 2021; 15:581-594. [PMID: 34061311 DOI: 10.1007/s12079-021-00627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/25/2021] [Indexed: 11/27/2022] Open
Abstract
Tsukushi is a small, leucine-rich repeat proteoglycan that interacts with and regulates essential cellular signaling cascades in the chick retina and murine subventricular zone, hippocampus, dermal hair follicles, and the cochlea. However, its function in the vestibules of the inner ear remains unknown. Here, we investigated the function of Tsukushi in the vestibules and found that Tsukushi deficiency in mice resulted in defects in posterior semicircular canal formation in the vestibules, but did not lead to vestibular hair cell loss. Furthermore, Tsukushi accumulated in the non-prosensory and prosensory regions during the embryonic and postnatal developmental stages. The downregulation of Tsukushi altered the expression of key genes driving vestibule differentiation in the non-prosensory regions. Our results indicate that Tsukushi interacts with Wnt2b, bone morphogenetic protein 4, fibroblast growth factor 10, and netrin 1, thereby controlling semicircular canal formation. Therefore, Tsukushi may be an essential component of the molecular pathways regulating vestibular development.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Ougimaci, Kita-ku, Osaka, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kumamoto University, Honjo, Kumamoto, Japan.
| | - Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, Honjo, Kumamoto, Japan
- K.K. Sciex Japan, Shinagawa, Tokyo, Japan
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
18
|
Matsushima N, Miyashita H, Kretsinger RH. Sequence features, structure, ligand interaction, and diseases in small leucine rich repeat proteoglycans. J Cell Commun Signal 2021; 15:519-531. [PMID: 33860400 DOI: 10.1007/s12079-021-00616-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Small leucine rich repeat proteoglycans (SLRPs) are a group of active components of the extracellular matrix in all tissues. SLRPs bind to collagens and regulate collagen fibril growth and fibril organization. SLRPs also interact with various cytokines and extracellular compounds, which lead to various biological functions such cell adhesion and signaling, proliferation, and differentiation. Mutations in SLRP genes are associated with human diseases. Now crystal structures of five SLRPs are available. We describe some features of amino acid sequence and structures of SLRPs. We also review ligand interactions and then discuss the interaction surfaces. Furthermore, we map mutations associated with human diseases and discuss possible effects on structures by the mutations.
Collapse
Affiliation(s)
- Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu, 059-0464, Japan.
- Center for Medical Education, Sapporo Medical University, Sapporo, 060-8556, Japan.
| | - Hiroki Miyashita
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu, 059-0464, Japan
- Hokubu Rinsho Co., Ltd, Sapporo, 060⎼0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
19
|
Huang H, Zhang D, Fu J, Zhao L, Li D, Sun H, Liu X, Xu J, Tian T, Zhang L, Liu Y, Zhang Y, Zhao Y. Tsukushi is a novel prognostic biomarker and correlates with tumor-infiltrating B cells in non-small cell lung cancer. Aging (Albany NY) 2021; 13:4428-4451. [PMID: 33428594 PMCID: PMC7906171 DOI: 10.18632/aging.202403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/03/2020] [Indexed: 01/21/2023]
Abstract
A recent study has reported that tsukushi (TSKU) may be related to the development of lung cancer. However, few studies focused on if TSKU associated with the prognosis and immune infiltration cells in non-small cell lung cancer (NSCLC). The effect of TSKU expression on prognosis with NSCLC was analyzed in the PrognoScan database and validated in The Cancer Genome Atlas. The composition of tumor infiltrating cells was quantified by methylation and expression data. We combined levels of tumor infiltrating cells with TSKU to evaluate the survival of patients. The analysis of a cohort (GSE31210, N=204) of lung cancer patients demonstrated that high TSKU expression was strongly associated with poor overall survival (P =1.90E-05). The combination of high TSKU expression and low infiltration B cells identified a subtype of patients with poor survival in NSCLC. Besides, the proportion of B cells in NSCLC patients with TSKU hypermethylation were higher than those patients with TSKU hypomethylation (P <0.001). Overall, high TSKU expression combined with low infiltration of B cells may associate with a poor prognosis of NSCLC patients. TSKU might be a potential prognostic biomarker involved in tumor immune infiltration in NSCLC.
Collapse
Affiliation(s)
- Hao Huang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ding Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jinming Fu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Liyuan Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Dapeng Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongru Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xinyan Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jing Xu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Tian Tian
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Lei Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ying Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yuanyuan Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
20
|
Kosuge H, Nakakido M, Nagatoishi S, Fukuda T, Bando Y, Ohnuma SI, Tsumoto K. Proteomic identification and validation of novel interactions of the putative tumor suppressor PRELP with membrane proteins including IGFI-R and p75NTR. J Biol Chem 2021; 296:100278. [PMID: 33428936 PMCID: PMC7948961 DOI: 10.1016/j.jbc.2021.100278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/19/2023] Open
Abstract
Proline and arginine-rich end leucine-rich repeat protein (PRELP) is a member of the small leucine-rich repeat proteoglycans (SLRPs) family. Levels of PRELP mRNA are downregulated in many types of cancer, and PRELP has been reported to have suppressive effects on tumor cell growth, although the molecular mechanism has yet to be fully elucidated. Given that other SLRPs regulate signaling pathways through interactions with various membrane proteins, we reasoned that PRELP likely interacts with membrane proteins to maintain cellular homeostasis. To identify membrane proteins that interact with PRELP, we carried out coimmunoprecipitation coupled with mass spectrometry (CoIP-MS). We prepared membrane fractions from Expi293 cells transfected to overexpress FLAG-tagged PRELP or control cells and analyzed samples precipitated with anti-FLAG antibody by mass spectrometry. Comparison of membrane proteins in each sample identified several that seem to interact with PRELP; among them, we noted two growth factor receptors, insulin-like growth factor I receptor (IGFI-R) and low-affinity nerve growth factor receptor (p75NTR), interactions with which might help to explain PRELP's links to cancer. We demonstrated that PRELP directly binds to extracellular domains of these two growth factor receptors with low micromolar affinities by surface plasmon resonance analysis using recombinant proteins. Furthermore, cell-based analysis using recombinant PRELP protein showed that PRELP suppressed cell growth and affected cell morphology of A549 lung carcinoma cells, also at micromolar concentration. These results suggest that PRELP regulates cellular functions through interactions with IGFI-R and p75NTR and provide a broader set of candidate partners for further exploration.
Collapse
Affiliation(s)
- Hirofumi Kosuge
- School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | - Shin-Ichi Ohnuma
- The Institute of Ophthalmology, University College London, London, United Kingdom
| | - Kouhei Tsumoto
- School of Engineering, The University of Tokyo, Tokyo, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
21
|
In JG, Yin J, Atanga R, Doucet M, Cole RN, DeVine L, Donowitz M, Zachos NC, Blutt SE, Estes MK, Kovbasnjuk O. Epithelial WNT2B and Desert Hedgehog Are Necessary for Human Colonoid Regeneration after Bacterial Cytotoxin Injury. iScience 2020; 23:101618. [PMID: 33089106 PMCID: PMC7559866 DOI: 10.1016/j.isci.2020.101618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/03/2020] [Accepted: 09/24/2020] [Indexed: 01/09/2023] Open
Abstract
Intestinal regeneration and crypt hyperplasia after radiation or pathogen injury relies on Wnt signaling to stimulate stem cell proliferation. Mesenchymal Wnts are essential for homeostasis and regeneration in mice, but the role of epithelial Wnts remains largely uncharacterized. Using the enterohemorrhagic E. coli-secreted cytotoxin EspP to induce injury to human colonoids, we evaluated a simplified, epithelial regeneration model that lacks mesenchymal Wnts. Here, we demonstrate that epithelial-produced WNT2B is upregulated following injury and essential for regeneration. Hedgehog signaling, specifically activation via the ligand Desert Hedgehog (DHH), but not Indian or Sonic Hedgehog, is another driver of regeneration and modulates WNT2B expression. These findings highlight the importance of epithelial WNT2B and DHH in regulating human colonic regeneration after injury.
Collapse
Affiliation(s)
- Julie G. In
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jianyi Yin
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roger Atanga
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michele Doucet
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert N. Cole
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren DeVine
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas C. Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olga Kovbasnjuk
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Medina-Martinez O, Haller M, Rosenfeld JA, O'Neill MA, Lamb DJ, Jamrich M. The transcription factor Maz is essential for normal eye development. Dis Model Mech 2020; 13:dmm044412. [PMID: 32571845 PMCID: PMC7449797 DOI: 10.1242/dmm.044412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
Wnt/β-catenin signaling has an essential role in eye development. Faulty regulation of this pathway results in ocular malformations, owing to defects in cell-fate determination and differentiation. Herein, we show that disruption of Maz, the gene encoding Myc-associated zinc-finger transcription factor, produces developmental eye defects in mice and humans. Expression of key genes involved in the Wnt cascade, Sfrp2, Wnt2b and Fzd4, was significantly increased in mice with targeted inactivation of Maz, resulting in abnormal peripheral eye formation with reduced proliferation of the progenitor cells in the region. Paradoxically, the Wnt reporter TCF-Lef1 displayed a significant downregulation in Maz-deficient eyes. Molecular analysis indicates that Maz is necessary for the activation of the Wnt/β-catenin pathway and participates in the network controlling ciliary margin patterning. Copy-number variations and single-nucleotide variants of MAZ were identified in humans that result in abnormal ocular development. The data support MAZ as a key contributor to the eye comorbidities associated with chromosome 16p11.2 copy-number variants and as a transcriptional regulator of ocular development.
Collapse
Affiliation(s)
- Olga Medina-Martinez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meade Haller
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Marisol A O'Neill
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dolores J Lamb
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- James Buchanan Brady Foundation Department of Urology, Weill Cornell Medical College, New York City, NY 10065, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, NY 10065, USA
- Center for Reproductive Genomics, Weill Cornell Medical College, New York City, NY 10065, USA
| | - Milan Jamrich
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Ortiz-Masià D, Salvador P, Macias-Ceja DC, Gisbert-Ferrándiz L, Esplugues JV, Manyé J, Alós R, Navarro-Vicente F, Mamie C, Scharl M, Cosin-Roger J, Calatayud S, Barrachina MD. WNT2b Activates Epithelial-mesenchymal Transition Through FZD4: Relevance in Penetrating Crohn´s Disease. J Crohns Colitis 2020; 14:230-239. [PMID: 31359032 DOI: 10.1093/ecco-jcc/jjz134] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Epithelial-mesenchymal transition [EMT] has been related to fibrosis and fistula formation, common complications associated with Crohn´s disease [CD]. The WNT signalling pathway mediates EMT, and specific WNT/FZD interactions have been related to the activation of this process in several diseases. We aim to analyse the relevance of EMT and WNT ligands and receptors in the penetrating behaviour of CD. METHODS Intestinal surgical resections were obtained from control and CD patients with a stenotic or penetrating behaviour. Fibrosis was determined by the histological analysis of collagen deposition and EMT by confocal microscopy. The expression of WNT ligands, inhibitors, and FZD receptors was analysed by RT-PCR, WB, IH, and IF studies. The effects of WNT2b and the role of FZD4 in EMT were analysed in HT29 epithelial cells. RESULTS Fibrosis and expression of EMT markers were detected in samples from CD patients irrespective of the clinical behaviour. However, an increased colocalisation of E-CADHERIN and VIMENTIN, an increased number of cells expressing WNT2b, and a higher expression of FZD4 and WNT2b/FZD4 interaction, were detected in intestinal tissue from the penetrating compared with the stenotic CD behaviour. WNT2b induced EMT in HT29 cells through FZD4 activation. CONCLUSIONS An increased EMT, associated with increased WNT2b/FZD4 interaction, was detected in intestinal tissue from CD patients with a penetrating behaviour. WNT2b, through FZD4 activation, induces EMT in vitro which points to a novel pharmacological target to prevent intestinal penetrating complications of CD.
Collapse
Affiliation(s)
- Dolores Ortiz-Masià
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Pedro Salvador
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - Laura Gisbert-Ferrándiz
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Juan V Esplugues
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,FISABIO, Hospital Dr. Peset, Valencia, Spain
| | - Josep Manyé
- IBD Unit, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Rafael Alós
- Department of Gastroenterology, Hospital De Sagunto, Valencia, Spain
| | | | - Céline Mamie
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Sara Calatayud
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - María D Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
24
|
Ahmad SAI, Anam MB, Istiaq A, Ito N, Ohta K. Tsukushi is essential for proper maintenance and terminal differentiation of mouse hippocampal neural stem cells. Dev Growth Differ 2020; 62:108-117. [DOI: 10.1111/dgd.12649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Shah Adil Ishtiyaq Ahmad
- Department of Developmental Neurobiology Graduate School of Life Sciences Kumamoto University Kumamoto Japan
- Stem Cell‐Based Tissue Regeneration Research and Education Unit Kumamoto University Kumamoto Japan
- Department of Biotechnology and Genetic Engineering Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Mohammad Badrul Anam
- Department of Developmental Neurobiology Graduate School of Life Sciences Kumamoto University Kumamoto Japan
- Stem Cell‐Based Tissue Regeneration Research and Education Unit Kumamoto University Kumamoto Japan
- HIGO Program Kumamoto University Kumamoto Japan
| | - Arif Istiaq
- Department of Developmental Neurobiology Graduate School of Life Sciences Kumamoto University Kumamoto Japan
- Stem Cell‐Based Tissue Regeneration Research and Education Unit Kumamoto University Kumamoto Japan
- HIGO Program Kumamoto University Kumamoto Japan
| | - Naofumi Ito
- Department of Developmental Neurobiology Graduate School of Life Sciences Kumamoto University Kumamoto Japan
- Stem Cell‐Based Tissue Regeneration Research and Education Unit Kumamoto University Kumamoto Japan
| | - Kunimasa Ohta
- Department of Developmental Neurobiology Graduate School of Life Sciences Kumamoto University Kumamoto Japan
- Stem Cell‐Based Tissue Regeneration Research and Education Unit Kumamoto University Kumamoto Japan
- HIGO Program Kumamoto University Kumamoto Japan
- AMED Core Research for Evolutional Science and Technology (AMED‐CREST) Japan Agency for Medical Research and Development (AMED) Tokyo Japan
| |
Collapse
|
25
|
Listik E, Azevedo Marques Gaschler J, Matias M, Neuppmann Feres MF, Toma L, Raphaelli Nahás-Scocate AC. Proteoglycans and dental biology: the first review. Carbohydr Polym 2019; 225:115199. [DOI: 10.1016/j.carbpol.2019.115199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/08/2023]
|
26
|
Mouchiroud M, Camiré É, Aldow M, Caron A, Jubinville É, Turcotte L, Kaci I, Beaulieu MJ, Roy C, Labbé SM, Varin TV, Gélinas Y, Lamothe J, Trottier J, Mitchell PL, Guénard F, Festuccia WT, Joubert P, Rose CF, Karvellas CJ, Barbier O, Morissette MC, Marette A, Laplante M. The hepatokine Tsukushi is released in response to NAFLD and impacts cholesterol homeostasis. JCI Insight 2019; 4:129492. [PMID: 31391339 PMCID: PMC6693835 DOI: 10.1172/jci.insight.129492] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) prevails in obesity and is linked to several health complications including dyslipidemia and atherosclerosis. How exactly NAFLD induces atherogenic dyslipidemia to promote cardiovascular diseases is still elusive. Here, we identify Tsukushi (TSK) as a hepatokine induced in response to NAFLD. We show that both endoplasmic reticulum stress and inflammation promote the expression and release of TSK in mice. In humans, hepatic TSK expression is also associated with steatosis, and its circulating levels are markedly increased in patients suffering from acetaminophen-induced acute liver failure (ALF), a condition linked to severe hepatic inflammation. In these patients, elevated blood TSK levels were associated with decreased transplant-free survival at hospital discharge, suggesting that TSK could have a prognostic significance. Gain- and loss-of-function studies in mice revealed that TSK impacts systemic cholesterol homeostasis. TSK reduces circulating HDL cholesterol, lowers cholesterol efflux capacity, and decreases cholesterol-to-bile acid conversion in the liver. Our data identify the hepatokine TSK as a blood biomarker of liver stress that could link NAFLD to the development of atherogenic dyslipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Mathilde Mouchiroud
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Étienne Camiré
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Manal Aldow
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Alexandre Caron
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Éric Jubinville
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Laurie Turcotte
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Inès Kaci
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Marie-Josée Beaulieu
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Christian Roy
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Sébastien M. Labbé
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
- IPS Thérapeutique, Sherbrooke, Québec, Canada
| | - Thibault V. Varin
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec City, Québec, Canada
| | - Yves Gélinas
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Jennifer Lamothe
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, Endocrinology-Nephrology Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada
- Faculty of Pharmacy, Université Laval, Québec City, Québec, Canada
| | - Patricia L. Mitchell
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Frédéric Guénard
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec City, Québec, Canada
| | - William T. Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Philippe Joubert
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Christopher F. Rose
- Hepato-Neuro Laboratory, Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Constantine J. Karvellas
- Liver Unit, Division of Gastroenterology, Department of Critical Care Medicine, School of Public Health Science, University of Alberta, Edmonton, Alberta, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, Endocrinology-Nephrology Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada
- Faculty of Pharmacy, Université Laval, Québec City, Québec, Canada
| | - Mathieu C. Morissette
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
- Département de Médecine and
| | - André Marette
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec City, Québec, Canada
- Département de Médecine and
| | - Mathieu Laplante
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
- Département de Médecine and
- Centre de Recherche sur le Cancer de l’Université Laval, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
27
|
Yamada T, Ohta K, Motooka Y, Fujino K, Kudoh S, Tenjin Y, Sato Y, Matsuo A, Ikeda K, Suzuki M, Ito T. Significance of Tsukushi in lung cancer. Lung Cancer 2019; 131:104-111. [DOI: 10.1016/j.lungcan.2019.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
|
28
|
Xiong X, Wang Q, Wang S, Zhang J, Liu T, Guo L, Yu Y, Lin JD. Mapping the molecular signatures of diet-induced NASH and its regulation by the hepatokine Tsukushi. Mol Metab 2019; 20:128-137. [PMID: 30595550 PMCID: PMC6358550 DOI: 10.1016/j.molmet.2018.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Nonalcoholic steatohepatitis (NASH) is closely associated with metabolic syndrome and increases the risk for end-stage liver disease, such as cirrhosis and hepatocellular carcinoma. Despite this, the molecular events that influence NASH pathogenesis remain poorly understood. The objectives of the current study are to delineate the transcriptomic and proteomic signatures of NASH liver, to identify potential pathogenic pathways and factors, and to critically assess their role in NASH pathogenesis. METHODS We performed RNA sequencing and quantitative proteomic analyses on the livers from healthy and diet-induced NASH mice. We examined the association between plasma levels of TSK, a newly discovered hepatokine, and NASH pathologies and reversal in response to dietary switch in mice. Using TSK knockout mouse model, we determined how TSK deficiency modulates key aspects of NASH pathogenesis. RESULTS RNA sequencing and quantitative proteomic analyses revealed that diet-induced NASH triggers concordant reprogramming of the liver transcriptome and proteome in mice. NASH pathogenesis is linked to elevated plasma levels of the hepatokine TSK, whereas dietary switch reverses NASH pathologies and reduces circulating TSK concentrations. Finally, TSK inactivation protects mice from diet-induced NASH and liver transcriptome remodeling. CONCLUSIONS Global transcriptomic and proteomic profiling of healthy and NASH livers revealed the molecular signatures of diet-induced NASH and dysregulation of the liver secretome. Our study illustrates a novel pathogenic mechanism through which elevated TSK in circulation promotes NASH pathologies, thereby revealing a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Xuelian Xiong
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| | - Qiuyu Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Shuai Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jinglong Zhang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Tongyu Liu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Liang Guo
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
29
|
Zou W, Wan J, Li M, Xing J, Chen Q, Zhang Z, Gong Y. Small leucine rich proteoglycans in host immunity and renal diseases. J Cell Commun Signal 2018; 13:463-471. [PMID: 30357553 DOI: 10.1007/s12079-018-0489-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023] Open
Abstract
The small leucine rich proteoglycans (SLRPs), structurally consisting of protein cores and various glycosaminoglycan side chains, are grouped into five classes based on common structural and functional properties. Besides being an important structural component of extracellular matrix (ECM), SLRPs have been implicated in the complex network of signal transduction and host immune responses. The focus of this review is on SLRPs in host immunity. Because host immunity plays an important part in the pathogenesis of renal diseases, the role of SLRPs in this set of diseases will also be discussed.
Collapse
Affiliation(s)
- Wei Zou
- Department of Infectious Diseases, The 1st Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Junhui Wan
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Li
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Juanjuan Xing
- Department of Burn, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Chen
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi Zhang
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Gong
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
30
|
Ohta K, Aoyama E, Ahmad SAI, Ito N, Anam MB, Kubota S, Takigawa M. CCN2/CTGF binds the small leucine rich proteoglycan protein Tsukushi. J Cell Commun Signal 2018; 13:113-118. [PMID: 30232710 DOI: 10.1007/s12079-018-0487-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022] Open
Abstract
Extracellular molecules coordinate the multiple signaling pathways spatiotemporally to exchange information between cells during development. Understanding the regulation of these signal molecule-dependent pathways elucidates the mechanism of intercellular crosstalks. CCN2/CTGF is one of the CCN family members that binds BMP2, fibronectin, aggrecan, FGFR2 - regulating cartilage and bone formation, angiogenesis, wound repair etc. Tsukushi (TSK), which belongs to the Small Leucine-Rich Proteoglycan (SLRP) family, binds nodal/Vg1/TGF-β1, BMP4/chordin, Delta, FGF8, Frizzled4, and is involved in the early body formation, bone growth, wound healing, retinal stem cell regulation etc. These two secreted molecules are expressed in similar tissues and involved in several biological events by functioning as extracellular signaling modulators. Here, we examine the molecular interaction between CCN2 and TSK biochemically. Co-precipitation assay and Surface Plasmon Resonance measurement showed their direct binding with the Kd value 15.3 nM. Further, the Solid-phase Binding Assay indicated that TSK binds to IGFBP and CT domains of CCN2. Our data suggest that CCN2 and TSK exert their function together in the body formation.
Collapse
Affiliation(s)
- Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan. .,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan. .,Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0881, Japan. .,Japan Agency for Medical Research and Development (AMED), Tokyo, 100-0004, Japan.
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan
| | - Shah Adil Ishtiyaq Ahmad
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mohammad Badrul Anam
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Satoshi Kubota
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan.
| |
Collapse
|
31
|
Yamaguchi S, Aoki N, Matsushima T, Homma KJ. Wnt-2b in the intermediate hyperpallium apicale of the telencephalon is critical for the thyroid hormone-mediated opening of the sensitive period for filial imprinting in domestic chicks (Gallus gallus domesticus). Horm Behav 2018; 102:120-128. [PMID: 29778460 DOI: 10.1016/j.yhbeh.2018.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022]
Abstract
Filial imprinting is the behavior observed in chicks during the sensitive or critical period of the first 2-3 days after hatching; however, after this period they cannot be imprinted when raised in darkness. Our previous study showed that temporal augmentation of the endogenous thyroid hormone 3,5,3'-triiodothyronine (T3) in the telencephalon, by imprinting training, starts the sensitive period just after hatching. Intravenous injection of T3 enables imprinting of chicks on days 4 or 6 post-hatching, even when the sensitive period has ended. However, the molecular mechanism of how T3 acts as a determinant of the sensitive period is unknown. Here, we show that Wnt-2b mRNA level is increased in the T3-injected telencephalon of 4-day old chicks. Pharmacological inhibition of Wnt signaling in the intermediate hyperpallium apicale (IMHA), which is the caudal area of the telencephalon, blocked the recovery of the sensitive period following T3 injection. In addition, injection of recombinant Wnt-2b protein into the IMHA helped chicks recover the sensitive period without the injection of T3. Lastly, we showed Wnt signaling to be involved in imprinting via the IMHA region on day 1 during the sensitive period. These results indicate that Wnt signaling plays a critical role in the opening of the sensitive period downstream of T3.
Collapse
Affiliation(s)
- Shinji Yamaguchi
- Faculty of Pharmaceutical Sciences, Teikyo University, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Naoya Aoki
- Faculty of Pharmaceutical Sciences, Teikyo University, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Hokkaido 060-0810, Japan
| | - Koichi J Homma
- Faculty of Pharmaceutical Sciences, Teikyo University, Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
32
|
Ahmad SAI, Anam MB, Ito N, Ohta K. Involvement of Tsukushi in diverse developmental processes. J Cell Commun Signal 2018; 12:205-210. [PMID: 29352451 PMCID: PMC5842206 DOI: 10.1007/s12079-018-0452-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Tsukushi (TSK) is a small signaling molecule which takes part in different developmental processes of multiple vertebrate organisms. The diverse activity of TSK depends on its ability to bind various intermediate molecules from different major signaling pathways. Interactions of TSK with BMP, FGF, TGF-β and Wnt pathways have already been confirmed. In this review, we will introduce the latest information regarding the involvement of TSK in developmental events. We suggest a fine tuning role for TSK in multiple signaling cascades. Also, we recommend further studies on the developmental role of TSK to fully reveal its potential.
Collapse
Affiliation(s)
- Shah Adil Ishtiyaq Ahmad
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Mohammad Badrul Anam
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
- AMED Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo, 100-0004, Japan.
| |
Collapse
|
33
|
Islam MS, Wei FY, Ohta K, Shigematsu N, Fukuda T, Tomizawa K, Yoshizawa T, Yamagata K. Sirtuin 7 is involved in the consolidation of fear memory in mice. Biochem Biophys Res Commun 2018; 495:261-266. [DOI: 10.1016/j.bbrc.2017.10.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/29/2017] [Indexed: 12/21/2022]
|
34
|
Yano K, Washio K, Tsumanuma Y, Yamato M, Ohta K, Okano T, Izumi Y. The role of Tsukushi (TSK), a small leucine-rich repeat proteoglycan, in bone growth. Regen Ther 2017; 7:98-107. [PMID: 30271858 PMCID: PMC6147151 DOI: 10.1016/j.reth.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Endochondral ossification is one of a key process for bone maturation. Tsukushi (TSK) is a novel member of the secreted small leucine-rich repeat proteoglycan (SLRP) family. SLRPs localize to skeletal regions and play significant roles during whole phases of bone development. Although prior evidence suggests that TSK may be involved in the regulation of bone formation, its role in skeletal development has not yet been elucidated. METHODS In the present study, we examined TSK's function during bone growth by comparing skeletal growth of TSK deficient (TSK-/-) mice and wild type (WT) mice. And an in vitro experiment using siRNA transfection of a chondrogenic cell line was performed. RESULTS TSK-/- mice exhibited decreased weight and short stature at 3 weeks of age due to decreased longitudinal bone growth coupled with low bone mass. Furthermore, an in vitro experiment using siRNA transfection into a chondrogenic cell line revealed that decreased TSK expression induced down-regulation of key chondrogenic marker gene expression and up-regulation of mid-to-late chondrogenic markers gene expression. CONCLUSIONS Our results reveal that TSK regulates bone elongation and bone mass by modulating growth plate chondrocyte function and consequently, overall body size.
Collapse
Key Words
- BMP, bone morphogenetic protein
- Chondrocyte
- ECM, extracellular matrix
- EDTA, ethylenediaminetetraacetic Acid
- Endochondral ossification
- FBS, fetal bovine serum
- FGF, fibroblast growth factor
- Growth plate
- ITS, insulin-transferrin-selenium supplements
- SLRP, small leucine-rich repeat proteoglycan
- SLRPs
- Skeletal development
- TGF, transforming growth factor
- TRAP, tartrate-resistant acid phosphatase
- TSK, Tsukushi
- Tsukushi
- WT, wild type
- β-gal, β-Galactosidase
Collapse
Affiliation(s)
- Kosei Yano
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Institute of Advanced Biomedical Engineering and Sciences, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Kaoru Washio
- Institute of Advanced Biomedical Engineering and Sciences, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Yuka Tsumanuma
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Sciences, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Sciences, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
35
|
Abstract
The Wingless-type MMTV integration site family member 2b (Wnt2b) has been found to be a principal mediator of liver development and regeneration. However, the significance of Wnt2b in the pathogenesis of fibrosis-related liver diseases remains undefined. Here, we report that Wnt2b was highly expressed in the fibrotic liver tissues, exhibiting protective effects against activation of hepatic stellate cells (HSCs) and fibrosis progression. We identified a negative regulation of Wnt2b on the toll-like receptor 4 (TLR4) activation-mediated pro-fibrogenic effects. Wnt2b was shown not only to directly suppress LPS-induced HSCs activation, but also to inhibit TLR4-enhanced the sensitivity of HSCs to transforming growth factor beta (TGF-β). Mechanistic study showed that Wnt2b suppresses TLR4 signaling through inhibiting the expression of TLR4 as well as the activation of NF-κB and MAPKs. These findings provided new insights into the pathophysiology of liver fibrosis by characterizing Wnt2b as a novel endogenous suppressor of TLR4 signaling, maintaining tissue homeostasis during the early stage of hepatic fibrosis-associated liver diseases.
Collapse
|
36
|
Agostino M, Pohl SÖG, Dharmarajan A. Structure-based prediction of Wnt binding affinities for Frizzled-type cysteine-rich domains. J Biol Chem 2017; 292:11218-11229. [PMID: 28533339 DOI: 10.1074/jbc.m117.786269] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/09/2017] [Indexed: 11/06/2022] Open
Abstract
Wnt signaling pathways are of significant interest in development and oncogenesis. The first step in these pathways typically involves the binding of a Wnt protein to the cysteine-rich domain (CRD) of a Frizzled receptor. Wnt-Frizzled interactions can be antagonized by secreted Frizzled-related proteins (SFRPs), which also contain a Frizzled-like CRD. The large number of Wnts, Frizzleds, and SFRPs, as well as the hydrophobic nature of Wnt, poses challenges to laboratory-based investigations of interactions involving Wnt. Here, utilizing structural knowledge of a representative Wnt-Frizzled CRD interaction, as well as experimentally determined binding affinities for a selection of Wnt-Frizzled CRD interactions, we generated homology models of Wnt-Frizzled CRD interactions and developed a quantitative structure-activity relationship for predicting their binding affinities. The derived model incorporates a small selection of terms derived from scoring functions used in protein-protein docking, as well as an energetic term considering the contribution made by the lipid of Wnt to the Wnt-Frizzled binding affinity. Validation with an external test set suggests that the model can accurately predict binding affinity for 75% of cases and that the error associated with the predictions is comparable with the experimental error. The model was applied to predict the binding affinities of the full range of mouse and human Wnt-Frizzled and Wnt-SFRP interactions, indicating trends in Wnt binding affinity for Frizzled and SFRP CRDs. The comprehensive predictions made in this study provide the basis for laboratory-based studies of previously unexplored Wnt-Frizzled and Wnt-SFRP interactions, which, in turn, may reveal further Wnt signaling pathways.
Collapse
Affiliation(s)
- Mark Agostino
- From the Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences and Curtin Health Innovation Research Institute and .,Curtin Institute of Computation, Curtin University, Kent Street, Bentley, Western Australia 6102, Australia
| | - Sebastian Öther-Gee Pohl
- From the Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences and Curtin Health Innovation Research Institute and
| | - Arun Dharmarajan
- From the Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences and Curtin Health Innovation Research Institute and
| |
Collapse
|
37
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
38
|
Acharjee UK, Gejima R, Felemban Athary Abdulhaleem M, Riyadh MA, Tanaka H, Ohta K. Tsukushi expression is dependent on Notch signaling and oscillated in the presomitic mesoderm during chick somitogenesis. Biochem Biophys Res Commun 2015; 465:625-30. [DOI: 10.1016/j.bbrc.2015.08.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022]
|
39
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 849] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
40
|
Dijksterhuis JP, Petersen J, Schulte G. WNT/Frizzled signalling: receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3. Br J Pharmacol 2014; 171:1195-209. [PMID: 24032637 DOI: 10.1111/bph.12364] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 12/14/2022] Open
Abstract
The wingless/int1 (WNT)/Frizzled (FZD) signalling pathway controls numerous cellular processes such as proliferation, differentiation, cell-fate decisions, migration and plays a crucial role during embryonic development. Nineteen mammalian WNTs can bind to 10 FZDs thereby activating different downstream pathways such as WNT/β-catenin, WNT/planar cell polarity and WNT/Ca(2+) . However, the mechanisms of signalling specification and the involvement of heterotrimeric G proteins are still unclear. Disturbances in the pathways can lead to various diseases ranging from cancer, inflammatory diseases to metabolic and neurological disorders. Due to the presence of seven-transmembrane segments, evidence for coupling between FZDs and G proteins and substantial structural differences in class A, B or C GPCRs, FZDs were grouped separately in the IUPHAR GPCR database as the class FZD within the superfamily of GPCRs. Recently, important progress has been made pointing to a direct activation of G proteins after WNT stimulation. WNT/FZD and G protein coupling remain to be fully explored, although the basic observation supporting the nature of FZDs as GPCRs is compelling. Because the involvement of different (i) WNTs; (ii) FZDs; and (iii) intracellular binding partners could selectively affect signalling specification, in this review we present the current understanding of receptor/ligand selectivity of FZDs and WNTs. We pinpoint what is known about signalling specification and the physiological relevance of these interactions with special emphasis on FZD-G protein interactions.
Collapse
Affiliation(s)
- J P Dijksterhuis
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
41
|
Epigenomic profiling of men exposed to early-life stress reveals DNA methylation differences in association with current mental state. Transl Psychiatry 2014; 4:e448. [PMID: 25247593 PMCID: PMC4203020 DOI: 10.1038/tp.2014.94] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/26/2014] [Accepted: 08/07/2014] [Indexed: 01/09/2023] Open
Abstract
Early-life stress (ELS) is known to be associated with an increased risk of neuropsychiatric and cardiometabolic disease in later life. One of the potential mechanisms underpinning this is through effects on the epigenome, particularly changes in DNA methylation. Using a well-phenotyped cohort of 83 men from the Helsinki Birth Cohort Study, who experienced ELS in the form of separation from their parents during childhood, and a group of 83 matched controls, we performed a genome-wide analysis of DNA methylation in peripheral blood. We found no differences in DNA methylation between men who were separated from their families and non-separated men; however, we did identify differences in DNA methylation in association with the development of at least mild depressive symptoms over the subsequent 5-10 years. Notably, hypomethylation was identified at a number of genes with roles in brain development and/or function in association with depressive symptoms. Pathway analysis revealed an enrichment of DNA methylation changes in pathways associated with development and morphogenesis, DNA and transcription factor binding and programmed cell death. Our results support the concept that DNA methylation differences may be important in the pathogenesis of psychiatric disease.
Collapse
|
42
|
Niimori D, Kawano R, Niimori-Kita K, Ihn H, Ohta K. Tsukushi is involved in the wound healing by regulating the expression of cytokines and growth factors. J Cell Commun Signal 2014; 8:173-7. [PMID: 25159578 DOI: 10.1007/s12079-014-0241-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 11/22/2022] Open
Abstract
During the wound-healing process, macrophages, fibroblasts, and myofibroblasts play a leading role in shifting from the inflammation phase to the proliferation phase, although little is known about the cell differentiation and molecular control mechanisms underlying these processes. Previously, we reported that Tsukushi (TSK), a member of the small leucine-rich repeat proteoglycan family, functions as a key extracellular coordinator of multiple signalling networks. In this study, we investigated the contribution of TSK to wound healing. Analysis of wound tissue in heterozygous TSK-lacZ knock-in mice revealed a pattern of sequential TSK expression from macrophages to myofibroblasts. Quantitative PCR and in vitro cell induction experiments showed that TSK controls macrophage function and myofibroblast differentiation by inhibiting TGF-β1 secreted from macrophages. Our results suggest TSK facilitates wound healing by maintaining inflammatory cell quiescence.
Collapse
Affiliation(s)
- Daisuke Niimori
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | | | | | | | | |
Collapse
|
43
|
Zhao Y, Malinauskas T, Harlos K, Jones EY. Structural insights into the inhibition of Wnt signaling by cancer antigen 5T4/Wnt-activated inhibitory factor 1. Structure 2014; 22:612-20. [PMID: 24582434 PMCID: PMC3988984 DOI: 10.1016/j.str.2014.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/30/2013] [Accepted: 01/13/2014] [Indexed: 01/10/2023]
Abstract
The tumor antigen 5T4/WAIF1 (Wnt-activated inhibitory factor 1; also known as Trophoblast glycoprotein TPBG) is a cell surface protein targeted in multiple cancer immunotherapy clinical trials. Recently, it has been shown that 5T4/WAIF1 inhibits Wnt/β-catenin signaling, a signaling system central to many developmental and pathological processes. Wnt/β-catenin signaling is controlled by multiple inhibitors and activators. Here, we report crystal structures for the extracellular domain of 5T4/WAIF1 at 1.8 Å resolution. They reveal a highly glycosylated, rigid core, comprising eight leucine-rich repeats (LRRs), which serves as a platform to present evolutionarily conserved surface residues in the N-terminal LRR1. Structural and cell-based analyses, coupled with previously reported in vivo data, suggest that Tyr325 plus the LRR1 surface centered on a second exposed aromatic residue, Phe97, are essential for inhibition of Wnt/β-catenin signaling. These results provide a structural basis for the development of 5T4/WAIF1-targeted therapies that preserve or block 5T4/WAIF1-mediated inhibition of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
44
|
Koie M, Okumura K, Hisanaga A, Kamei T, Sasaki K, Deng M, Baba A, Kohno T, Hattori M. Cleavage within Reelin repeat 3 regulates the duration and range of the signaling activity of Reelin protein. J Biol Chem 2014; 289:12922-30. [PMID: 24644294 DOI: 10.1074/jbc.m113.536326] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reelin is a secreted glycoprotein that plays essential roles in the brain. Reelin is specifically cleaved at two distinct sites, called N-t and C-t, with the former being the major one. N-t cleavage can occur both in the extracellular space and in the endosomes, although the physiological importance of endosomal N-t cleavage has not been investigated. In this study, we first determined the exact N-t cleavage site catalyzed by a protease secreted by cerebral cortical neurons. Cleavage occurred between Pro-1244 and Ala-1245 within Reelin repeat 3. A Reelin mutant in which Pro-1244 was replaced with aspartate (Reelin-PD) was resistant to a protease secreted by cultured cerebral cortical neurons, and its biological activity stayed active longer than that of wild-type Reelin. Interestingly, Reelin-PD remained in the intracellular compartments longer than wild-type Reelin and persistently activated downstream signaling. Therefore, N-t cleavage of Reelin is required for halting the signaling machinery in the extracellular space as well as within endosomes of target neurons. We established a monoclonal antibody specific to uncleaved Reelin protein and found that it is localized in the vicinity of Reelin-producing cells, whereas the N-terminal fragment diffuses, or is transported, to distant regions. These data demonstrate that N-t cleavage of Reelin plays critical roles in regulating the duration and range of Reelin functions both in the extracellular milieu and in the intracellular compartments.
Collapse
Affiliation(s)
- Mari Koie
- From the Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Steinfeld J, Steinfeld I, Coronato N, Hampel ML, Layer PG, Araki M, Vogel-Höpker A. RPE specification in the chick is mediated by surface ectoderm-derived BMP and Wnt signalling. Development 2013; 140:4959-69. [PMID: 24227655 DOI: 10.1242/dev.096990] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The retinal pigment epithelium (RPE) is indispensable for vertebrate eye development and vision. In the classical model of optic vesicle patterning, the surface ectoderm produces fibroblast growth factors (FGFs) that specify the neural retina (NR) distally, whereas TGFβ family members released from the proximal mesenchyme are involved in RPE specification. However, we previously proposed that bone morphogenetic proteins (BMPs) released from the surface ectoderm are essential for RPE specification in chick. We now show that the BMP- and Wnt-expressing surface ectoderm is required for RPE specification. We reveal that Wnt signalling from the overlying surface ectoderm is involved in restricting BMP-mediated RPE specification to the dorsal optic vesicle. Wnt2b is expressed in the dorsal surface ectoderm and subsequently in dorsal optic vesicle cells. Activation of Wnt signalling by implanting Wnt3a-soaked beads or inhibiting GSK3β at optic vesicle stages inhibits NR development and converts the entire optic vesicle into RPE. Surface ectoderm removal at early optic vesicle stages or inhibition of Wnt, but not Wnt/β-catenin, signalling prevents pigmentation and downregulates the RPE regulatory gene Mitf. Activation of BMP or Wnt signalling can replace the surface ectoderm to rescue MITF expression and optic cup formation. We provide evidence that BMPs and Wnts cooperate via a GSK3β-dependent but β-catenin-independent pathway at the level of pSmad to ensure RPE specification in dorsal optic vesicle cells. We propose a new dorsoventral model of optic vesicle patterning, whereby initially surface ectoderm-derived Wnt signalling directs dorsal optic vesicle cells to develop into RPE through a stabilising effect of BMP signalling.
Collapse
Affiliation(s)
- Jörg Steinfeld
- Fachgebiet Entwicklungsbiologie und Neurogenetik, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
The combinatorial guidance activities of draxin and Tsukushi are essential for forebrain commissure formation. Dev Biol 2013. [DOI: 10.1016/j.ydbio.2012.11.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
47
|
Niimori D, Kawano R, Felemban A, Niimori-Kita K, Tanaka H, Ihn H, Ohta K. Tsukushi controls the hair cycle by regulating TGF-β1 signaling. Dev Biol 2012; 372:81-7. [DOI: 10.1016/j.ydbio.2012.08.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 08/27/2012] [Accepted: 08/30/2012] [Indexed: 12/13/2022]
|
48
|
Dellett M, Hu W, Papadaki V, Ohnuma SI. Small leucine rich proteoglycan family regulates multiple signalling pathways in neural development and maintenance. Dev Growth Differ 2012; 54:327-40. [DOI: 10.1111/j.1440-169x.2012.01339.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Margaret Dellett
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Wanzhou Hu
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Vasiliki Papadaki
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Shin-ichi Ohnuma
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| |
Collapse
|