1
|
Huang Y, Wang J, Yang W, Hou F, Feng X. Precision therapeutic targets for HPV-positive cancers: an overview and new insights. Infect Agent Cancer 2025; 20:17. [PMID: 40069817 PMCID: PMC11900425 DOI: 10.1186/s13027-025-00641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/14/2025] Open
Abstract
The increasing incidence and mortality rates of HPV-positive cancers, particularly HPV-positive head and neck cancer, in recent years have emphasized the pressing need for more efficacious treatment options. Recent studies have elucidated the molecular distinctions between HPV-positive and HPV-negative cancers, which are crucial for developing precise and effective therapeutic strategies. This review updates the most recent findings on the molecular variances between HPV-positive and HPV-negative cancers, evaluates current treatments for HPV-positive cancers, and summarizes emerging frontiers in HPV-targeted therapies aimed at developing more effective and precise interventions against these cancers.
Collapse
Affiliation(s)
- Yixi Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiayi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofaical Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Feifei Hou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Avenhaus A, Velimirović M, Bulkescher J, Scheffner M, Hoppe-Seyler F, Hoppe-Seyler K. E6AP is essential for the proliferation of HPV-positive cancer cells by preventing senescence. PLoS Pathog 2025; 21:e1012914. [PMID: 39919145 PMCID: PMC11805377 DOI: 10.1371/journal.ppat.1012914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025] Open
Abstract
Oncogenic types of human papillomaviruses (HPVs) are major human carcinogens. The formation of a trimeric complex between the HPV E6 oncoprotein, the cellular ubiquitin ligase E6AP and the p53 tumor suppressor protein leads to proteolytic p53 degradation and plays a central role for HPV-induced cell transformation. We here uncover that E6AP silencing in HPV-positive cancer cells ultimately leads to efficient induction of cellular senescence, revealing that E6AP acts as a potent anti-senescent factor in these cells. Thus, although the downregulation of either E6 or E6AP expression also acts partially pro-apoptotic, HPV-positive cancer cells surviving E6 repression proliferate further, whereas they become irreversibly growth-arrested upon E6AP repression. We moreover show that the senescence induction following E6AP downregulation is mechanistically highly dependent on induction of the p53/p21 axis, other than the known pro-senescent response of HPV-positive cancer cells following combined downregulation of the viral E6 and E7 oncoproteins. Of further note, repression of E6AP allows senescence induction in the presence of the anti-senescent HPV E7 protein. Yet, despite these mechanistic differences, the pathways underlying the pro-senescent effects of E6AP or E6/E7 repression ultimately converge by being both dependent on the cellular pocket proteins pRb and p130. Taken together, our results uncover a hitherto unrecognized and potent anti-senescent function of the E6AP protein in HPV-positive cancer cells, which is essential for their sustained proliferation. Our results further indicate that interfering with E6AP expression or function could result in therapeutically desired effects in HPV-positive cancer cells by efficiently inducing an irreversible growth arrest. Since the critical role of the E6/E6AP/p53 complex for viral transformation is conserved between different oncogenic HPV types, this approach could provide a therapeutic strategy, which is not HPV type-specific.
Collapse
Affiliation(s)
- Alicia Avenhaus
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus-Associated Cancers, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Milica Velimirović
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus-Associated Cancers, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Julia Bulkescher
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus-Associated Cancers, Heidelberg, Germany
| | - Martin Scheffner
- Department of Biology, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Felix Hoppe-Seyler
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus-Associated Cancers, Heidelberg, Germany
| | - Karin Hoppe-Seyler
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus-Associated Cancers, Heidelberg, Germany
| |
Collapse
|
4
|
Palomino-Vizcaino G, Bañuelos-Villegas EG, Alvarez-Salas LM. The Natural History of Cervical Cancer and the Case for MicroRNAs: Is Human Papillomavirus Infection the Whole Story? Int J Mol Sci 2024; 25:12991. [PMID: 39684702 PMCID: PMC11641362 DOI: 10.3390/ijms252312991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that negatively regulate gene expression. MiRNAs regulate fundamental biological processes and have significant roles in several pathologies, including cancer. Cervical cancer is the best-known example of a widespread human malignancy with a demonstrated viral etiology. Infection with high-risk human papillomavirus (hrHPV) has been shown to be a causative factor for cervical carcinogenesis. Despite the occurrence of prophylactic vaccines, highly sensitive HPV diagnostics, and innovative new therapies, cervical cancer remains a main cause of death in developing countries. The relationship between hrHPV infection and cervical cancer depends on the integration of viral DNA to the host genome, disrupting the viral regulator E2 and the continuous production of the viral E6 and E7 proteins, which are necessary to acquire and maintain a transformed phenotype but insufficient for malignant cervical carcinogenesis. Lately, miRNAs, the tumor microenvironment, and immune evasion have been found to be major players in cervical carcinogenesis after hrHPV infection. Many miRNAs have been widely reported as deregulated in cervical cancer. Here, the relevance of miRNA in HPV-mediated transformation is critically reviewed in the context of the natural history of hrHPV infection and cervical cancer.
Collapse
Affiliation(s)
- Giovanni Palomino-Vizcaino
- Facultad de Ciencias de la Salud, Unidad Valle de las Palmas, Campus Tijuana, Universidad Autónoma de Baja California, Tijuana 21500, Mexico;
| | - Evelyn Gabriela Bañuelos-Villegas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México City 07360, Mexico;
| | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México City 07360, Mexico;
| |
Collapse
|
5
|
Zhang Y, Liu Y, Xing X, Liu H, Guan W. Genome-Wide Analysis of p53 Targets Reveals SCN2A as a Novel Player in p53-Induced Cell Arrest in HPV-Positive Cells. Viruses 2024; 16:1725. [PMID: 39599840 PMCID: PMC11598893 DOI: 10.3390/v16111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
The host transcription factor p53 is a critical tumor suppressor in HPV-induced carcinogenesis, regulating target genes involved in cell cycle arrest and apoptosis. However, the p53 targets have not been thoroughly analyzed in HPV-infected cells. In this study, p53 signaling in HPV16 and HPV18 cells was activated by depleting the viral oncoprotein E6. Subsequently, p53-regulated genes were identified by comparing them with genes altered in p53-silenced cells. True p53 targets were defined as genes with at least one overlapping p53 binding site and ChIP peak near their locus. Our analysis revealed that while some p53 targets were common to both the HPV16 and HPV18 cells, the majority of the targets differed between these two types, potentially contributing to the varying prevalence of HPV16 and HPV18 in cervical cancer. Additionally, we identified SCN2A as a novel p53 target involved in p53-induced cell cycle arrest in HPV-related carcinogenesis. This study provides new insights into the mechanisms by which p53 inhibits HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Yudi Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China; (Y.L.)
| | - Xueyan Xing
- Hubei Jiangxia Laboratory, Wuhan 430200, China; (Y.L.)
| | - Haibin Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China; (Y.L.)
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China; (Y.L.)
| |
Collapse
|
6
|
Zhang P, Ye X, Wang JCK, Baddock HT, Jensvold Z, Foe IT, Loas A, Eaton DL, Hao Q, Nile AH, Pentelute BL. Reversibly Reactive Affinity Selection-Mass Spectrometry Enables Identification of Covalent Peptide Binders. J Am Chem Soc 2024; 146:15627-15639. [PMID: 38771982 DOI: 10.1021/jacs.4c05571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Covalent peptide binders have found applications as activity-based probes and as irreversible therapeutic inhibitors. Currently, there is no rapid, label-free, and tunable affinity selection platform to enrich covalent reactive peptide binders from synthetic libraries. We address this challenge by developing a reversibly reactive affinity selection platform termed ReAct-ASMS enabled by tandem high-resolution mass spectrometry (MS/MS) to identify covalent peptide binders to native protein targets. It uses mixed disulfide-containing peptides to build reversible peptide-protein conjugates that can enrich for covalent variants, which can be sequenced by MS/MS after reduction. Using this platform, we identified covalent peptide binders against two oncoproteins, human papillomavirus 16 early protein 6 (HPV16 E6) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 protein (Pin1). The resulting peptide binders efficiently and selectively cross-link Cys58 of E6 at 37 °C and Cys113 of Pin1 at room temperature, respectively. ReAct-ASMS enables the identification of highly selective covalent peptide binders for diverse molecular targets, introducing an applicable platform to assist preclinical therapeutic development pipelines.
Collapse
Affiliation(s)
- Peiyuan Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiyun Ye
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John C K Wang
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Hannah T Baddock
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Zena Jensvold
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Ian T Foe
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dan L Eaton
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Qi Hao
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Aaron H Nile
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
7
|
Chi Y, Shi L, Lu S, Cui H, Zha W, Shan L, Shen Y. Inhibitory effect of Lonicera japonica-derived exosomal miR2911 on human papilloma virus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116969. [PMID: 37516391 DOI: 10.1016/j.jep.2023.116969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lonicera japonica Thunb. has been used as a traditional medicinal herb in China for thousands of years for its heat-clearing and detoxification effects. In recent years, experimental and clinical studies have shown that some Lonicera japonica-containing Chinese medicine prescriptions have been used to treat intraepithelia neoplasia caused by human papilloma virus (HPV) infection. However, its bioactive molecules and mechanism of action have not been fully explored. AIM OF THE STUDY In this study, Lonicera japonica-derived exosomes was extracted and exosomal miR2911 was identified. Bioinformatic analysis indicated that miR2911 potentially binds to the sequence of HPV. The mechanism of miR2911 action on HPV and the effect of exosomal miR2911 on HPV-induced cervical cancer cells were investigated. METHODS The potential targets of miR2911 on the HPV sequence were predicted and confirmed by using RNAhybrid and dual-luciferase reporter assays. Lonicera japonica exosomes were characterized by transmission electronic microscopy and zeta sizer analysis. RT-qPCR was used to measure miR2911 concentration in various tissues and exosomes. Synthetic miR2911 and GFP-E6/E7 plasmids were transfected into HEK293T cells to examine the effect of miR2911 on E6/E7 gene expression. The effects of miR2911 on endogenous E6/E7 mRNA and protein levels were detected in HPV16/18-positive cervical cancer cells by RT-qPCR and Western blotting. The proliferation and apoptosis of CaSki, SiHa and HeLa cells by the treatment of miR2911 or miR2911-containing exosomes were examined by CCK8, colony formation and flow cytometry assays. RESULTS MiR2911 is found to be enriched in various Lonicera japonica tissues, and is stably present in Lonicera japonica-derived exosomes. It is observed that MiR2911 directly binds to E6 and E7 oncogenes of HPV16/18, leading to the suppression of their protein expression. In addition, the endogenous E6/E7 mRNA and protein levels were significantly decreased by using miR2911 treatment in HPV16/18-positive cervical cancer cells. Furthermore, both miR2911 and miR2911-containing exosomes inhibited cell proliferation of SiHa, CaSki and HeLa cells, meanwhile inducing the cell apoptosis through E6/E7-p53/Caspase3 axis. CONCLUSION Our findings indicate that miR2911, an active component present in Lonicera japonica exosomes, inhibits proliferation and induces apoptosis of cervical cancer cells by targeting the E6/E7 genes of HPV16/18. Thus, Lonicera japonica-derived exosomal miR2911 has implications for the development of novel therapeutic strategies for the treatment of HPV-associated cervical cancers.
Collapse
Affiliation(s)
- Yuhao Chi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, PR China; School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Lei Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, PR China; Xinxiang Engineering Technology Research Center of Tumor-Targeted Drug Development, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Shun Lu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Hongqian Cui
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Wenjing Zha
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Linlin Shan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Yuan Shen
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, PR China; School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, PR China.
| |
Collapse
|
8
|
Dong S, Zhang Y, Wang Y. Role of extracellular vesicle in human papillomavirus-associated cervical cancer. J Cancer Res Clin Oncol 2023; 149:16203-16212. [PMID: 37668793 DOI: 10.1007/s00432-023-05374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Cervical cancer is a gynecological malignant tumor and a serious threat to women's health. Although human papillomavirus (HPV) infection and the occurrence of cervical cancer are known to be closely related, the underlying carcinogenic mechanism of HPV is not fully understood. Extracellular vesicles (EVs) are found in a variety of body fluids and play an important role in both intercellular communication and cancer progression. Furthermore, the presence of EVs makes liquid biopsy of cervical cancer possible. The study of EVs in cervical cancer can provide clinical ideas for the diagnosis and treatment of the disease. OBJECTIVES The purpose of this article is to summarizes the role of EV contents in HPV-associated cervical cancer and discusses the possible clinical application of EVs in cervical cancer treatment. METHODS The search terms included the following: HPV with cervical cancer and extracellular vesicles. The initial literature search ended on March 1, 2023. CONCLUSIONS In HPV-positive cervical cancer, EV contents are changed due to the presence of HPV. HPV-positive cervical cancer affects the cell microenvironment and other surrounding cells through the secretion of EVs.
Collapse
Affiliation(s)
- Shixiang Dong
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, China
| | - Yan Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, 255036, China.
| | - Yankui Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, China.
| |
Collapse
|
9
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Aptamers against cancer drug resistance: Small fighters switching tactics in the face of defeat. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166720. [PMID: 37062453 DOI: 10.1016/j.bbadis.2023.166720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Discovering novel cancer therapies has attracted extreme interest in the last decade. In this regard, multidrug resistance (MDR) to chemotherapies is a key challenge in cancer treatment. Cancerous cells are growingly become resistant to existing chemotherapeutics by employing diverse mechanisms, highlighting the significance of discovering approaches to overcome MDR. One promising strategy is utilizing aptamers as unique tools to target elements or signaling pathways incorporated in resistance mechanisms, or develop actively targeted drug delivery systems or chimeras enabling the precise delivery of novel agents to inhibit the conventionally undruggable resistance elements. Furthermore, due to their advantages over their proteinaceous counterparts, particularly antibodies, including improved targeting action, enhanced thermal stability, easier production, and superior tumor penetration, aptamers are emerging and have frequently been considered for developing cancer therapeutics. Here, we highlighted significant chemoresistance pathways in cancer and discussed the use of aptamers as prospective tools to surmount cancer MDR.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Wei Y, Zhao Z, Ma X. Description of CRISPR-Cas9 development and its prospects in human papillomavirus-driven cancer treatment. Front Immunol 2022; 13:1037124. [PMID: 36479105 PMCID: PMC9721393 DOI: 10.3389/fimmu.2022.1037124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Human papillomaviruses (HPVs) have been recognized as the etiologic agents of various cancers and are called HPV-driven cancers. Concerning HPV-mediated carcinogenic action, gene therapy can cure cancer at the molecular level by means of the correction of specific genes or sites. CRISPR-Cas9, as a novel genetic editing technique, can correct errors in the genome and change the gene expression and function in cells efficiently, quickly, and with relative ease. Herein, we overviewed studies of CRISPR-mediated gene remedies for HPV-driven cancers and summarized the potential applications of CRISPR-Cas9 in gene therapy for cancer.
Collapse
Affiliation(s)
- Yuhao Wei
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Zhao
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Xuelei Ma,
| |
Collapse
|
11
|
Ramberg IMS. Human papillomavirus-related neoplasia of the ocular adnexa. Acta Ophthalmol 2022; 100 Suppl 272:3-33. [PMID: 36203222 PMCID: PMC9827891 DOI: 10.1111/aos.15244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 01/12/2023]
Abstract
Human papillomaviruses (HPV) are involved in approximately 5% of solid cancers worldwide. The mucosotropic genotypes infect the stratified epithelium of various locations, where persistent infection may lead to invasive carcinomas. While the causative role of HPV in certain anogenital and head and neck carcinomas is well established, the role of HPV in carcinomas arising in the mucosal membranes of the ocular adnexal tissue (the lacrimal drainage system and the conjunctiva) has been a topic of great uncertainty. Therefore, we conducted a series of studies to assess the correlation between HPV and carcinomas arising in the mucosa of the ocular adnexal tissue and characterize the clinical, histopathological, and genomic features of the tumors in the context of HPV status in a Danish nationwide cohort. We collected clinical and histopathological data and tumor specimens from patients with carcinomas of the conjunctiva and the lacrimal drainage system, and their potential precursors, identified in Danish nationwide registries. The HPV status of the tumors was determined by the combined use of HPV DNA polymerase chain reaction (PCR), HPV E6/E7 mRNA in-situ hybridization, and p16 immunohistochemistry. The genomic profile was investigated by high-throughput DNA sequencing targeting 523 cancer-relevant genes. The literature to date on carcinomas of the lacrimal drainage system and the conjunctiva was summarized. In the Danish cohort, 67% of all carcinomas of the lacrimal drainage system and 21% of all conjunctival carcinomas were HPV-positive. HPV16 was the most frequently implicated genotype. A full-thickness expression of the viral oncogenes E6 and E7 was evident in almost all HPV DNA-positive cases. The HPV-positive carcinomas of the conjunctiva and the lacrimal drainage system shared histopathological and genomic features distinct from their HPV-negative counterparts. The HPV-positive carcinomas were characterized by a non-keratinizing morphology, p16 overexpression, high transcriptional activity of HPV E6/E7, and frequent pathogenic variants in the PI3K-AKT signaling cascade. In contrast, the HPV-negative carcinomas were characterized by a keratinizing morphology, lack of p16 and E6/E7 expression, and frequent somatic pathogenic variants in TP53, CDKN2A, and RB1. Among the patients with conjunctival tumors, HPV positivity was associated with a younger age at diagnosis and a higher risk of recurrence. In conclusion, the results support an etiological role of HPV in a subset of conjunctival and LDS carcinomas and their precursor lesions. Our investigations have shown that the HPV-positive carcinomas of the ocular adnexa share genomic and phenotypic characteristics with HPV-positive carcinomas of other anatomical locations. Therefore, these patients may be eligible for inclusion in future basket trials and future treatment regimens tailored to the more frequently occurring HPV-positive carcinomas of other locations. Future research will further elucidate the diagnostic, prognostic, and predictive role of HPV in these carcinomas.
Collapse
|
12
|
Boitard C, Michel A, Ménager C, Griffete N. Protein Denaturation Through the Use of Magnetic Molecularly Imprinted Polymer Nanoparticles. Molecules 2021; 26:molecules26133980. [PMID: 34210027 PMCID: PMC8272029 DOI: 10.3390/molecules26133980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
The inhibition of the protein function for therapeutic applications remains challenging despite progress these past years. While the targeting application of molecularly imprinted polymer are in their infancy, no use was ever made of their magnetic hyperthermia properties to damage proteins when they are coupled to magnetic nanoparticles. Therefore, we have developed a facile and effective method to synthesize magnetic molecularly imprinted polymer nanoparticles using the green fluorescent protein (GFP) as the template, a bulk imprinting of proteins combined with a grafting approach onto maghemite nanoparticles. The hybrid material exhibits very high adsorption capacities and very strong affinity constants towards GFP. We show that the heat generated locally upon alternative magnetic field is responsible of the decrease of fluorescence intensity.
Collapse
|
13
|
Chitsike L, Duerksen-Hughes PJ. PPI Modulators of E6 as Potential Targeted Therapeutics for Cervical Cancer: Progress and Challenges in Targeting E6. Molecules 2021; 26:molecules26103004. [PMID: 34070144 PMCID: PMC8158384 DOI: 10.3390/molecules26103004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022] Open
Abstract
Advanced cervical cancer is primarily managed using cytotoxic therapies, despite evidence of limited efficacy and known toxicity. There is a current lack of alternative therapeutics to treat the disease more effectively. As such, there have been more research endeavors to develop targeted therapies directed at oncogenic host cellular targets over the past 4 decades, but thus far, only marginal gains in survival have been realized. The E6 oncoprotein, a protein of human papillomavirus origin that functionally inactivates various cellular antitumor proteins through protein–protein interactions (PPIs), represents an alternative target and intriguing opportunity to identify novel and potentially effective therapies to treat cervical cancer. Published research has reported a number of peptide and small-molecule modulators targeting the PPIs of E6 in various cell-based models. However, the reported compounds have rarely been well characterized in animal or human subjects. This indicates that while notable progress has been made in targeting E6, more extensive research is needed to accelerate the optimization of leads. In this review, we summarize the current knowledge and understanding of specific E6 PPI inhibition, the progress and challenges being faced, and potential approaches that can be utilized to identify novel and potent PPI inhibitors for cervical cancer treatment.
Collapse
|
14
|
Zhang W, Shan H, Jiang K, Huang W, Li S. A novel intracellular nanobody against HPV16 E6 oncoprotein. Clin Immunol 2021; 225:108684. [PMID: 33549834 DOI: 10.1016/j.clim.2021.108684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Cervical cancer occurs as a result of the persistent infection of high-risk human papillomavirus (HPV). HPV16 oncoproteins E6 and E7 exert different and concerted pro-tumor actions in cell transformation and malignance maintenance in various m echanisms. Nanobody expressed as "intracellular antibodies" (intrabodies) can target intracellular antigens to hamper their function efficaciously and specifically. In this work, phage-display approach was employed to select the high affinity HPV16 E6-specific nanobody, nanobody Nb9 against HPV16 E6 was selected. Nb9 has high affinity (Kaff =6.3 × 108 M-) and can specifically bind endogenous HPV16 E6 protein in HPV16 positive CaSki and SiHa cells. In Nb9 overexpressed SiHa and CaSki cells, nucleus localization of HPV16 E6 was inhibited, p53 inactivation was prevented and increased apoptosis was observed. Moreover, tumor growth was inhibited in mouse xenograft model. Taken together, our results suggested that nanobody Nb9 could be a useful inhibitor for HPV16 E6 function and particularly appropriate for the treatment of HPV-associated disease.
Collapse
Affiliation(s)
- Wei Zhang
- The Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University Medical School, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Haitao Shan
- The Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University Medical School, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Kunpeng Jiang
- The Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University Medical School, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Wenbin Huang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Shufeng Li
- The Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University Medical School, 87 Dingjiaqiao Road, Nanjing 210009, China.
| |
Collapse
|
15
|
Adenoviral Vectors Armed with PAPILLOMAVIRUs Oncogene Specific CRISPR/Cas9 Kill Human-Papillomavirus-Induced Cervical Cancer Cells. Cancers (Basel) 2020; 12:cancers12071934. [PMID: 32708897 PMCID: PMC7409089 DOI: 10.3390/cancers12071934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Human papillomaviruses (HPV) cause malignant epithelial cancers including cervical carcinoma, non-melanoma skin and head and neck cancer. They drive tumor development through the expression of their oncoproteins E6 and E7. Designer nucleases were shown to be efficient to specifically destroy HPV16 and HPV18 oncogenes to induce cell cycle arrest and apoptosis. Here, we used high-capacity adenoviral vectors (HCAdVs) expressing the complete CRISPR/Cas9 machinery specific for HPV18-E6 or HPV16-E6. Cervical cancer cell lines SiHa and CaSki containing HPV16 and HeLa cells containing HPV18 genomes integrated into the cellular genome, as well as HPV-negative cancer cells were transduced with HPV-type-specific CRISPR-HCAdV. Upon adenoviral delivery, the expression of HPV-type-specific CRISPR/Cas9 resulted in decreased cell viability of HPV-positive cervical cancer cell lines, whereas HPV-negative cells were unaffected. Transduced cervical cancer cells showed increased apoptosis induction and decreased proliferation compared to untreated or HPV negative control cells. This suggests that HCAdV can serve as HPV-specific cancer gene therapeutic agents when armed with HPV-type-specific CRISPR/Cas9. Based on the versatility of the CRISPR/Cas9 system, we anticipate that our approach can contribute to personalized treatment options specific for the respective HPV type present in each individual tumor.
Collapse
|
16
|
Kumar A, Rathi E, Hariharapura RC, Kini SG. Is viral E6 oncoprotein a viable target? A critical analysis in the context of cervical cancer. Med Res Rev 2020; 40:2019-2048. [PMID: 32483862 DOI: 10.1002/med.21697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
An understanding of the pathology of cervical cancer (CC) mediated by E6/E7 oncoproteins of high-risk human papillomavirus (HPV) was developed by late 80's. But if we look at the present scenario, not a single drug could be developed to inhibit these oncoproteins and in turn, be used specifically for the treatment of CC. The readers are advised not to presume the "viability of E6 protein" as mentioned in the title relates to just druggability of E6. The viability aspect will cover almost everything a researcher should know to develop E6 inhibitors until the preclinical stage. Herein, we have analysed the achievements and shortcomings of the scientific community in the last four decades in targeting HPV E6 against CC. Role of all HPV proteins has been briefly described for better perspective with a little detailed discussion of the role of E6. We have reviewed the articles from 1985 onward, reporting in vitro inhibition of E6. Recently, many computational studies have reported potent E6 inhibitors and these have also been reviewed. Subsequently, a critical analysis has been reported to cover the in vitro assay protocols and in vivo models to develop E6 inhibitors. A paragraph has been devoted to the role of public policy to fight CC employing vaccines and whether the vaccine against HPV has quenched the zeal to develop drugs against it. The review concludes with the challenges and the way forward.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
17
|
Abstract
Human papillomaviruses cause around 5% of all human cancers, yet there are no specific antiviral therapeutic approaches available for combatting these cancers. These cancers are currently treated with standard chemoradiation therapy (CRT). Specific antiviral reagents are desperately required, particularly for HPV+HNSCC whose incidence is increasing and for which there are no diagnostic tools available for combatting this disease. Using data from The Cancer Genome Atlas (TCGA), we and others determined that the estrogen receptor alpha (ERα) is overexpressed in HPV+HNSCC and that elevated levels are associated with an improved disease outcome. This has led to the proposal that estrogen treatment could be a novel therapeutic approach for combatting HPV+cancers. Here, we demonstrate that estrogen attenuates the growth of HPV+epithelial cells using multiple mechanisms, supporting the idea that estrogen has potential as a therapeutic agent for the treatment of HPV+HNSCC. Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that are significant risk factors in the development of cancer, and HPV accounts for approximately 5% of all worldwide cancers. Recent studies using data from The Cancer Genome Atlas (TCGA) have demonstrated that elevated levels of estrogen receptor alpha (ERα) are associated with improved survival in oropharyngeal cancers, and these elevated receptor levels were linked with human papillomavirus-positive cancers (HPV+cancers). There has been a dramatic increase in HPV-related head and neck squamous cell carcinomas (HPV+HNSCCs) over the last 2 decades, and therapeutic options for this ongoing health crisis are a priority; currently, there are no antiviral therapeutics available for combatting HPV+cancers. During our TGCA studies on head and neck cancer, we had also discovered the overexpression of ERα in HPV+cancers. Here, we demonstrate that 17β-estradiol (estrogen) attenuates the growth/cell viability of HPV+cancers in vitro, but not HPV-negative cancer cells. In addition, N/Tert-1 cells (foreskin keratinocytes immortalized with human telomerase reverse transcriptase [hTERT]) containing human papillomavirus 16 (HPV16) have elevated levels of ERα and growth sensitivity after estrogen treatment compared with parental N/Tert-1 cells. Finally, we demonstrate that there are potentially two mechanisms contributing to the attenuation of HPV+ cell growth following estrogen treatment. First, estrogen represses the viral transcriptional long control region (LCR) downregulating early gene expression, including E6/E7. Second, expression of E6 and E7 by themselves sensitizes cells to estrogen. Overall, our results support the recent proposal that estrogen could be exploited therapeutically for the treatment of HPV-positive oral cancers. IMPORTANCE Human papillomaviruses cause around 5% of all human cancers, yet there are no specific antiviral therapeutic approaches available for combatting these cancers. These cancers are currently treated with standard chemoradiation therapy (CRT). Specific antiviral reagents are desperately required, particularly for HPV+HNSCC whose incidence is increasing and for which there are no diagnostic tools available for combatting this disease. Using data from The Cancer Genome Atlas (TCGA), we and others determined that the estrogen receptor alpha (ERα) is overexpressed in HPV+HNSCC and that elevated levels are associated with an improved disease outcome. This has led to the proposal that estrogen treatment could be a novel therapeutic approach for combatting HPV+cancers. Here, we demonstrate that estrogen attenuates the growth of HPV+epithelial cells using multiple mechanisms, supporting the idea that estrogen has potential as a therapeutic agent for the treatment of HPV+HNSCC.
Collapse
|
18
|
Li Y, Liu B, Huang Z, Liu J. Engineering base-excised aptamers for highly specific recognition of adenosine. Chem Sci 2020; 11:2735-2743. [PMID: 34084332 PMCID: PMC8157715 DOI: 10.1039/d0sc00086h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The DNA aptamer for adenosine and ATP has been used as a model system for developing analytical biosensors. For practical reasons, it is important to distinguish adenosine from ATP, although this has yet to be achieved despite extensive efforts made on selection of new aptamers. We herein report a strategy of excising an adenine nucleotide from the backbone of a one-site adenosine aptamer, and the adenine-excised aptamer allowed highly specific binding of adenosine. Cognate analytes including AMP, ATP, guanosine, cytidine, uridine, and theophylline all failed to bind to the engineered aptamer according to the SYBR Green I (SGI) fluorescence spectroscopy and isothermal titration calorimetry (ITC) results. Our A-excised aptamer has two binding sites: the original aptamer binding site in the loop and the newly created one due to base excision from the DNA backbone. ITC demonstrated that the A-excised aptamer strand can bind to two adenosine molecules, with a Kd of 14.8 ± 2.1 μM at 10 °C and entropy-driven binding. Since the wild-type aptamer cannot discriminate adenosine from AMP and ATP, we attributed this improved specificity to the excised site. Further study showed that these two sites worked cooperatively. Finally, the A-excised aptamer was tested in diluted fetal bovine serum and showed a limit of detection of 46.7 μM adenosine. This work provides a facile, cost-effective, and non-SELEX method to engineer existing aptamers for new features and better applications. The DNA aptamer for adenosine and ATP has been used as a model system for developing analytical biosensors.![]()
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
19
|
Braun JA, Herrmann AL, Blase JI, Frensemeier K, Bulkescher J, Scheffner M, Galy B, Hoppe-Seyler K, Hoppe-Seyler F. Effects of the antifungal agent ciclopirox in HPV-positive cancer cells: Repression of viral E6/E7 oncogene expression and induction of senescence and apoptosis. Int J Cancer 2019; 146:461-474. [PMID: 31603527 DOI: 10.1002/ijc.32709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 01/02/2023]
Abstract
The malignant growth of human papillomavirus (HPV)-positive cancer cells is dependent on the continuous expression of the viral E6/E7 oncogenes. Here, we examined the effects of iron deprivation on the phenotype of HPV-positive cervical cancer cells. We found that iron chelators, such as the topical antifungal agent ciclopirox (CPX), strongly repress HPV E6/E7 oncogene expression, both at the transcript and protein level. CPX efficiently blocks the proliferation of HPV-positive cancer cells by inducing cellular senescence. Although active mTOR signaling is considered to be critical for the cellular senescence response towards a variety of prosenescent agents, CPX-induced senescence occurs under conditions of severely impaired mTOR signaling. Prolonged CPX treatment leads to p53-independent Caspase-3/7 activation and induction of apoptosis. CPX also eliminates HPV-positive cancer cells under hypoxic conditions through induction of apoptosis. Taken together, these results show that iron deprivation exerts profound antiviral and antiproliferative effects in HPV-positive cancer cells and suggest that iron chelators, such as CPX, possess therapeutic potential as HPV-inhibitory, prosenescent and proapoptotic agents in both normoxic and hypoxic environments.
Collapse
Affiliation(s)
- Julia A Braun
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Anja L Herrmann
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Johanna I Blase
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristin Frensemeier
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Julia Bulkescher
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Bruno Galy
- Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
Boitard C, Curcio A, Rollet AL, Wilhelm C, Ménager C, Griffete N. Biological Fate of Magnetic Protein-Specific Molecularly Imprinted Polymers: Toxicity and Degradation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35556-35565. [PMID: 31496222 DOI: 10.1021/acsami.9b11717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnetic nanoparticles coated with protein-specific molecularly imprinted polymers (MIPs) are receiving increasing attention thanks to their binding abilities, robustness, and easy synthesis compared to their natural analogues also able to target proteins, such as antibodies or aptamers. Acting as tailor-made recognition systems, protein-specific MIPs can be used in many in vivo nanomedicine applications, such as targeted drug delivery, biosensing, and tissue engineering. Nonetheless, studies on their biocompatibility and long-term fate in biological environments are almost nonexistent, although these questions have to be addressed before considering clinical applications. To alleviate this lack of knowledge, we propose here to monitor the effect of a protein-specific MIP coating on the toxicity and biodegradation of magnetic iron oxide nanoparticles, both in a minimal aqueous degradation medium and in a model of cartilage tissue formed by differentiated human mesenchymal stem cells. Degradation of iron oxide nanoparticles with or without the polymer coating was monitored for a month by following their magnetic properties using vibrating sample magnetometry and their morphology by transmission electron microscopy. We showed that the MIP coating of magnetic iron oxide nanoparticles does not affect their biocompatibility or internalization inside cells. Remarkably, the imprinted polymer coating does not hinder the magnetic particle degradation but seems to slow it down, although this effect is more visible when degradation occurs in the buffer medium than in cells. Hence, the results presented in this paper are really encouraging and open up the way to future applications of MIP-coated nanoparticles into the clinic.
Collapse
Affiliation(s)
- Charlotte Boitard
- CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , Sorbonne Université , F-75005 Paris , France
| | - Alberto Curcio
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 , CNRS and Université Paris Diderot , 75205 Paris Cedex 05, France
| | - Anne-Laure Rollet
- CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , Sorbonne Université , F-75005 Paris , France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 , CNRS and Université Paris Diderot , 75205 Paris Cedex 05, France
| | - Christine Ménager
- CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , Sorbonne Université , F-75005 Paris , France
| | - Nébéwia Griffete
- CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , Sorbonne Université , F-75005 Paris , France
| |
Collapse
|
21
|
Kumar A, Rathi E, Kini SG. Identification of E6 Inhibitors Employing Energetically Optimized Structure‐Based Pharmacophore Modelling, Ligand Docking and Molecular Dynamics Simulations Studies. ChemistrySelect 2019. [DOI: 10.1002/slct.201902105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Avinash Kumar
- Department of Pharmaceutical ChemistryManipal College of PharmaceuticalSsciences, MAHE. Madhav Nagar, Manipal Karnataka India- 576104
| | - Ekta Rathi
- Department of Pharmaceutical ChemistryManipal College of PharmaceuticalSsciences, MAHE. Madhav Nagar, Manipal Karnataka India- 576104
| | - Suvarna G. Kini
- Department of Pharmaceutical ChemistryManipal College of PharmaceuticalSsciences, MAHE. Madhav Nagar, Manipal Karnataka India- 576104
| |
Collapse
|
22
|
Ma X, Lakshmipriya T, Gopinath SCB. Recent Advances in Identifying Biomarkers and High-Affinity Aptamers for Gynecologic Cancers Diagnosis and Therapy. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:5426974. [PMID: 31583159 PMCID: PMC6754908 DOI: 10.1155/2019/5426974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/04/2019] [Accepted: 08/21/2019] [Indexed: 05/28/2023]
Abstract
Cancer is the uncontrollable abnormal division of cell growth, caused due to the varied reasons. Cancer can be expressed in any part of the body, and it is one of the death-causing diseases. Human reproductive organs are commonly damaged by cancer. In particular, the women reproductive system is affected by various cancers including ovarian, cervical, endometrial, vaginal, fallopian tube, and vulvar cancers. Identifying these cancers at earlier stages prevents the damage to the organs. Aptamer is the potential probe that can identify these cancers. Aptamer is an artificial antibody selected from the randomized library of molecules and has a high binding affinity to the target biomarker. Targeting cancers in the reproductive organs using aptamers showed an excellent efficiency of detection compared to other probes. Different aptamers have been generated against the gynaecological cancer biomarkers, which include HE4, CA125, VEGF, OCCA (for ovarian cancer), EGFR, FGFR1, K-ras (for endometrial cancer), HPV E-16, HPV E-7, HPV E-6, tyrosine, and kinase (for cervical cancer), which help to identify the cancers in woman reproductive organs. In this overview, the biomarkers for gynecologic cancers and the relevant diagnosing systems generated using the specific aptamers are discussed. Furthermore, the therapeutic applications of aptamer with gynaecological cancers are narrated.
Collapse
Affiliation(s)
- Xiaoqun Ma
- Deparment of Gynecology, Taian City Central Hospital, Taian, Shandong 271000, China
| | - Thangavel Lakshmipriya
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| |
Collapse
|
23
|
Benzothiazole derivative bearing amide moiety induces p53-mediated apoptosis in HPV16 positive cervical cancer cells. Invest New Drugs 2019; 38:934-945. [PMID: 31432292 DOI: 10.1007/s10637-019-00848-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022]
Abstract
In our previous study, we screened the anti-cancer properties of 10 benzothiazole derivatives in cervical cancer cell lines. In the present study, we aimed to delineate the mechanism of the apoptotic pathway (whether intrinsic or extrinsic) following the treatment of N-(4-(benzo[d]thiazol-2-yl)phenyl)-5-chloro-2-methoxybenzamide (named as A-07) on cervical cancer cell lines. Cellular stress by reactive oxygen species was measured using DCFDA dye by flowcytometry. Protein expression and localization was checked by immunofluorescence for γH2A.X, TP53, and CASP-3. Expression profiles of BAX and BCL-2 was done by semi-quantitative RT-PCR and PARP-1 (Poly(ADP-ribose) polymerase-1) by Western blot analysis. Bioinformatic studies were done using PDB websites, metaPocket 2.0 server, YASARA software and Discovery Studio 3.5 Visualizer. We demonstrate that the compound A-07 leads to ROS generation and double strand breaks in SiHa and C-33A cells. The induction of apoptosis in SiHa cells is associated with increased nuclear expression of the tumor suppressor protein, TP53. The shift in BAX/BCL-2 ratio, increased expression of Caspase-3 and cleaved Poly(ADP-ribose) polymerase-1 favour apoptotic signal in SiHa. In silico studies revealed that A-07 has inhibiting capabilities to the E6/E6AP/P53 complex. Our data suggest that treatment of A-07 causes p53 and caspase dependent apoptosis in HPV 16 infected SiHa cells.
Collapse
|
24
|
Kumar A, Rathi E, Kini SG. E-pharmacophore modelling, virtual screening, molecular dynamics simulations and in-silico ADME analysis for identification of potential E6 inhibitors against cervical cancer. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Drug repurposing approach for the identification and designing of potential E6 inhibitors against cervical cancer: an in silico investigation. Struct Chem 2019. [DOI: 10.1007/s11224-019-01378-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Single-Domain Antibodies Represent Novel Alternatives to Monoclonal Antibodies as Targeting Agents against the Human Papillomavirus 16 E6 Protein. Int J Mol Sci 2019; 20:ijms20092088. [PMID: 31035322 PMCID: PMC6539864 DOI: 10.3390/ijms20092088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/18/2023] Open
Abstract
Approximately one fifth of all malignancies worldwide are etiologically associated with a persistent viral or bacterial infection. Thus, there is a particular interest in therapeutic molecules which use components of a natural immune response to specifically inhibit oncogenic microbial proteins, as it is anticipated they will elicit fewer off-target effects than conventional treatments. This concept has been explored in the context of human papillomavirus 16 (HPV16)-related cancers, through the development of monoclonal antibodies and fragments thereof against the viral E6 oncoprotein. Challenges related to the biology of E6 as well as the functional properties of the antibodies themselves appear to have precluded their clinical translation. Here, we addressed these issues by exploring the utility of the variable domains of camelid heavy-chain-only antibodies (denoted as VHHs). Through construction and panning of two llama, immune VHH phage display libraries, a pool of potential VHHs was isolated. The interactions of these with recombinant E6 were further characterized using an enzyme-linked immunosorbent assay (ELISA), Western blotting under denaturing and native conditions, and surface plasmon resonance. Three VHHs were identified that bound recombinant E6 with nanomolar affinities. Our results lead the way for subsequent studies into the ability of these novel molecules to inhibit HPV16-infected cells in vitro and in vivo.
Collapse
|
27
|
Kumar A, Kuhn LT, Balbach J. A Cu 2+ complex induces the aggregation of human papillomavirus oncoprotein E6 and stabilizes p53. FEBS J 2018; 285:3013-3025. [PMID: 29931810 DOI: 10.1111/febs.14591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/14/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
Papillomavirus oncoprotein E6 is a critical factor in the modulation of cervical cancer in humans. At the molecular level, formation of the E6-E6AP-p53 ternary complex, which directs p53's degradation, is the key instigator of cancer transforming properties. Herein, a Cu2+ anthracenyl-terpyridine complex is described which specifically induces the aggregation of E6 in vitro and in cultured cells. For a hijacking mechanism, both E6 and E6AP are required for p53 ubiquitination and degradation. The Cu2+ complex interacts with E6 at the E6AP and p53 binding sites. We show that E6 function is suppressed by aggregation, rendering it incapable of hijacking p53 and thus increasing its cellular level. Therapeutic treatments of cervical cancer are currently unavailable to infected individuals. We anticipate that this Cu2+ complex might open up a new therapeutic avenue for the design and development of new chemical entities for the diagnosis and treatment of HPV-induced cancers.
Collapse
Affiliation(s)
- Amit Kumar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, UK.,Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Germany.,Institute of Technical Biochemistry e.V., Martin-Luther-University Halle-Wittenberg, Germany
| | - Lars T Kuhn
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, UK
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Germany.,Institute of Technical Biochemistry e.V., Martin-Luther-University Halle-Wittenberg, Germany
| |
Collapse
|
28
|
Targeting p53 as a promising therapeutic option for cancer by re-activating the wt or mutant p53’s tumor suppression. Future Med Chem 2018; 10:755-777. [DOI: 10.4155/fmc-2017-0175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
p53 protein, a product of the TP53 tumor suppressor gene, controls the cellular genome’s integrity and is an important regulator of cell cycling, proliferation, apoptosis and metabolism. Mutations of TP53 or inactivation of its gene product are among the first events initiating malignant transformation. The consequent loss of control over the cell cycle, resulting in accelerated cell proliferation and facilitating metabolic reprogramming, gives the initiated (premalignant) cells numerous advantages over healthy cells. Interestingly, p53 status is not only an important marker in cancer diagnosis; it has also become a promising target of personalized therapy. Depending on the TP53 status different therapeutic options have been developed. (Re)-activation of p53 functionality in cancer cells offers promising new alternatives to existing oncological therapies.
Collapse
|
29
|
Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 Oncogenes: Key Factors for Viral Carcinogenesis and Therapeutic Targets. Trends Microbiol 2017; 26:158-168. [PMID: 28823569 DOI: 10.1016/j.tim.2017.07.007] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Human papillomavirus (HPV)-induced cancers are expected to remain a major health problem worldwide for decades. The growth of HPV-positive cancer cells depends on the sustained expression of the viral E6 and E7 oncogenes which act in concert with still poorly defined cellular alterations. E6/E7 constitute attractive therapeutic targets since E6/E7 inhibition rapidly induces senescence in HPV-positive cancer cells. This cellular response is linked to the reconstitution of the antiproliferative p53 and pRb pathways, and to prosenescent mTOR signaling. Hypoxic HPV-positive cancer cells could be a major obstacle for treatment strategies targeting E6/E7 since they downregulate E6/E7 but evade senescence through hypoxia-induced mTOR impairment. Prospective E6/E7 inhibitors may therefore benefit from a combination with treatment strategies directed against hypoxic tumor cells.
Collapse
Affiliation(s)
- Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Felicitas Bossler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Julia A Braun
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Anja L Herrmann
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Use of peptide aptamers, cationic peptides and artificial zinc finger proteins to generate resistance to plant viruses. Curr Opin Virol 2017; 26:120-124. [PMID: 28806695 DOI: 10.1016/j.coviro.2017.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 11/22/2022]
Abstract
Various RNA/DNA viruses have caused severe infectious diseases in plants as well as animals, including humans, and been a threat to the production of agricultural crops. Therefore, prevention of plant virus infections is a major objective in crop protection. One attractive approach is to inhibit functions of viral proteins responsible for virus infections. In this review, I describe the status using such approaches to confer virus resistance to plants by three types of peptides/proteins: peptide aptamers, artificial zinc finger proteins and acidic peptides. These approaches vary in their specificity, broadness to other viruses, extent of protection and mechanisms of action. Additional ways to improve these approaches are also discussed.
Collapse
|
31
|
Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 772:23-35. [PMID: 28528687 DOI: 10.1016/j.mrrev.2016.08.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/18/2016] [Accepted: 08/02/2016] [Indexed: 11/17/2022]
|
32
|
Ningegowda R, Shivananju NS, Rajendran P, Basappa, Rangappa KS, Chinnathambi A, Li F, Achar RR, Shanmugam MK, Bist P, Alharbi SA, Lim LHK, Sethi G, Priya BS. A novel 4,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazole derivative inhibits tumor cell invasion and potentiates the apoptotic effect of TNFα by abrogating NF-κB activation cascade. Apoptosis 2016; 22:145-157. [DOI: 10.1007/s10495-016-1312-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Tomaić V. Functional Roles of E6 and E7 Oncoproteins in HPV-Induced Malignancies at Diverse Anatomical Sites. Cancers (Basel) 2016; 8:cancers8100095. [PMID: 27775564 PMCID: PMC5082385 DOI: 10.3390/cancers8100095] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/15/2016] [Accepted: 10/08/2016] [Indexed: 01/13/2023] Open
Abstract
Approximately 200 human papillomaviruses (HPVs) infect human epithelial cells, of which the alpha and beta types have been the most extensively studied. Alpha HPV types mainly infect mucosal epithelia and a small group of these causes over 600,000 cancers per year worldwide at various anatomical sites, especially anogenital and head-and-neck cancers. Of these the most important is cervical cancer, which is the leading cause of cancer-related death in women in many parts of the world. Beta HPV types infect cutaneous epithelia and may contribute towards the initiation of non-melanoma skin cancers. HPVs encode two oncoproteins, E6 and E7, which are directly responsible for the development of HPV-induced carcinogenesis. They do this cooperatively by targeting diverse cellular pathways involved in the regulation of cell cycle control, of apoptosis and of cell polarity control networks. In this review, the biological consequences of papillomavirus targeting of various cellular substrates at diverse anatomical sites in the development of HPV-induced malignancies are highlighted.
Collapse
Affiliation(s)
- Vjekoslav Tomaić
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy.
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
| |
Collapse
|
34
|
Peptide Derivatives of 1,2-Dihydro-3-Methyl-2-Oxoquinoxaline-6-Carboxylic Acid: Synthesis and Evaluation of Antimicrobial, Antifungal and Antiviral Potential. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1447-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Wang S, Yin D, Wang W, Shen X, Zhu JJ, Chen HY, Liu Z. Targeting and Imaging of Cancer Cells via Monosaccharide-Imprinted Fluorescent Nanoparticles. Sci Rep 2016; 6:22757. [PMID: 26948803 PMCID: PMC4780104 DOI: 10.1038/srep22757] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023] Open
Abstract
The recognition of cancer cells is a key for cancer diagnosis and therapy, but the specificity highly relies on the use of biorecognition molecules particularly antibodies. Because biorecognition molecules suffer from some apparent disadvantages, such as hard to prepare and poor storage stability, novel alternatives that can overcome these disadvantages are highly important. Here we present monosaccharide-imprinted fluorescent nanoparticles (NPs) for targeting and imaging of cancer cells. The molecularly imprinted polymer (MIP) probe was fluorescein isothiocyanate (FITC) doped silica NPs with a shell imprinted with sialic acid, fucose or mannose as the template. The monosaccharide-imprinted NPs exhibited high specificity toward the target monosaccharides. As the template monosaccharides used are over-expressed on cancer cells, these monosaccharide-imprinted NPs allowed for specific targeting cancer cells over normal cells. Fluorescence imaging of human hepatoma carcinoma cells (HepG-2) over normal hepatic cells (L-02) and mammary cancer cells (MCF-7) over normal mammary epithelial cells (MCF-10A) by these NPs was demonstrated. As the imprinting approach employed herein is generally applicable and highly efficient, monosaccharide-imprinted NPs can be promising probes for targeting cancer cells.
Collapse
Affiliation(s)
- Shuangshou Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Danyang Yin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenjing Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaojing Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
36
|
Stutz C, Reinz E, Honegger A, Bulkescher J, Schweizer J, Zanier K, Travé G, Lohrey C, Hoppe-Seyler K, Hoppe-Seyler F. Intracellular Analysis of the Interaction between the Human Papillomavirus Type 16 E6 Oncoprotein and Inhibitory Peptides. PLoS One 2015; 10:e0132339. [PMID: 26151636 PMCID: PMC4495056 DOI: 10.1371/journal.pone.0132339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022] Open
Abstract
Oncogenic types of human papillomaviruses (HPVs) cause cervical cancer and other malignancies in humans. The HPV E6 oncoprotein is considered to be an attractive therapeutic target since its inhibition can lead to the apoptotic cell death of HPV-positive cancer cells. The HPV type 16 (HPV16) E6-binding peptide pep11, and variants thereof, induce cell death specifically in HPV16-positive cancer cells. Although they do not encompass the LxxLL binding motif found in cellular HPV16 E6 interaction partners, such as E6AP, the pep11 variants strongly bind to HPV16 E6 by contacting the recently identified E6AP binding pocket. Thus, these peptides can serve as prototype E6-inhibitory molecules which target the E6AP pocket. We here analyzed their intracellular interaction with HPV16 E6. By comprehensive intracellular binding studies and GST pull-down assays, we show that E6-binding competent pep11 variants induce the formation of a trimeric complex, consisting of pep11, HPV16 E6 and p53. These findings indicate that peptides, which do not contain the LxxLL motif, can reshape E6 to enable its interaction with p53. The formation of the trimeric HPV16 E6 / peptide / p53 complex was associated with an increase of endogenous HPV16 E6 protein amounts. Yet, total cellular p53 amounts were also increased, indicating that the E6 / E6AP-mediated degradation of p53 is blocked. These findings suggest that inhibition of oncogenic activities by targeting the E6AP pocket on HPV16 E6 could be a strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Christina Stutz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Eileen Reinz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anja Honegger
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Julia Bulkescher
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Katia Zanier
- Institut de Recherche de l’École de Biotechnologie de Strasbourg (IREBS), 67412 Illkirch, France
| | - Gilles Travé
- Institut de Recherche de l’École de Biotechnologie de Strasbourg (IREBS), 67412 Illkirch, France
| | - Claudia Lohrey
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- * E-mail:
| |
Collapse
|
37
|
Human Papillomavirus: Current and Future RNAi Therapeutic Strategies for Cervical Cancer. J Clin Med 2015; 4:1126-55. [PMID: 26239469 PMCID: PMC4470221 DOI: 10.3390/jcm4051126] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022] Open
Abstract
Human papillomaviruses (HPVs) are small DNA viruses; some oncogenic ones can cause different types of cancer, in particular cervical cancer. HPV-associated carcinogenesis provides a classical model system for RNA interference (RNAi) based cancer therapies, because the viral oncogenes E6 and E7 that cause cervical cancer are expressed only in cancerous cells. Previous studies on the development of therapeutic RNAi facilitated the advancement of therapeutic siRNAs and demonstrated its versatility by siRNA-mediated depletion of single or multiple cellular/viral targets. Sequence-specific gene silencing using RNAi shows promise as a novel therapeutic approach for the treatment of a variety of diseases that currently lack effective treatments. However, siRNA-based targeting requires further validation of its efficacy in vitro and in vivo, for its potential off-target effects, and of the design of conventional therapies to be used in combination with siRNAs and their drug delivery vehicles. In this review we discuss what is currently known about HPV-associated carcinogenesis and the potential for combining siRNA with other treatment strategies for the development of future therapies. Finally, we present our assessment of the most promising path to the development of RNAi therapeutic strategies for clinical settings.
Collapse
|
38
|
Utility of microRNAs and siRNAs in cervical carcinogenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:374924. [PMID: 25874209 PMCID: PMC4385600 DOI: 10.1155/2015/374924] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023]
Abstract
MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3'-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer.
Collapse
|
39
|
Chen J. Signaling pathways in HPV-associated cancers and therapeutic implications. Rev Med Virol 2015; 25 Suppl 1:24-53. [PMID: 25752815 DOI: 10.1002/rmv.1823] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/15/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences and Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
40
|
Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sültmann H, Scheffner M, Hoppe-Seyler K, Hoppe-Seyler F. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog 2015; 11:e1004712. [PMID: 25760330 PMCID: PMC4356518 DOI: 10.1371/journal.ppat.1004712] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/28/2015] [Indexed: 02/07/2023] Open
Abstract
Specific types of human papillomaviruses (HPVs) cause cervical cancer. Cervical cancers exhibit aberrant cellular microRNA (miRNA) expression patterns. By genome-wide analyses, we investigate whether the intracellular and exosomal miRNA compositions of HPV-positive cancer cells are dependent on endogenous E6/E7 oncogene expression. Deep sequencing studies combined with qRT-PCR analyses show that E6/E7 silencing significantly affects ten of the 52 most abundant intracellular miRNAs in HPV18-positive HeLa cells, downregulating miR-17-5p, miR-186-5p, miR-378a-3p, miR-378f, miR-629-5p and miR-7-5p, and upregulating miR-143-3p, miR-23a-3p, miR-23b-3p and miR-27b-3p. The effects of E6/E7 silencing on miRNA levels are mainly not dependent on p53 and similarly observed in HPV16-positive SiHa cells. The E6/E7-regulated miRNAs are enriched for species involved in the control of cell proliferation, senescence and apoptosis, suggesting that they contribute to the growth of HPV-positive cancer cells. Consistently, we show that sustained E6/E7 expression is required to maintain the intracellular levels of members of the miR-17~92 cluster, which reduce expression of the anti-proliferative p21 gene in HPV-positive cancer cells. In exosomes secreted by HeLa cells, a distinct seven-miRNA-signature was identified among the most abundant miRNAs, with significant downregulation of let-7d-5p, miR-20a-5p, miR-378a-3p, miR-423-3p, miR-7-5p, miR-92a-3p and upregulation of miR-21-5p, upon E6/E7 silencing. Several of the E6/E7-dependent exosomal miRNAs have also been linked to the control of cell proliferation and apoptosis. This study represents the first global analysis of intracellular and exosomal miRNAs and shows that viral oncogene expression affects the abundance of multiple miRNAs likely contributing to the E6/E7-dependent growth of HPV-positive cancer cells.
Collapse
Affiliation(s)
- Anja Honegger
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Schilling
- Cancer Genome Research (B063), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sandra Bastian
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jasmin Sponagel
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vladimir Kuryshev
- Cancer Genome Research (B063), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Holger Sültmann
- Cancer Genome Research (B063), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
41
|
Zanier K, Stutz C, Kintscher S, Reinz E, Sehr P, Bulkescher J, Hoppe-Seyler K, Travé G, Hoppe-Seyler F. The E6AP binding pocket of the HPV16 E6 oncoprotein provides a docking site for a small inhibitory peptide unrelated to E6AP, indicating druggability of E6. PLoS One 2014; 9:e112514. [PMID: 25383876 PMCID: PMC4226571 DOI: 10.1371/journal.pone.0112514] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/03/2014] [Indexed: 12/11/2022] Open
Abstract
The HPV E6 oncoprotein maintains the malignant phenotype of HPV-positive cancer cells and represents an attractive therapeutic target. E6 forms a complex with the cellular E6AP ubiquitin ligase, ultimately leading to p53 degradation. The recently elucidated x-ray structure of a HPV16 E6/E6AP complex showed that HPV16 E6 forms a distinct binding pocket for E6AP. This discovery raises the question whether the E6AP binding pocket is druggable, i. e. whether it provides a docking site for functional E6 inhibitors. To address these issues, we performed a detailed analysis of the HPV16 E6 interactions with two small peptides: (i) E6APpep, corresponding to the E6 binding domain of E6AP, and (ii) pep11**, a peptide that binds to HPV16 E6 and, in contrast to E6APpep, induces apoptosis, specifically in HPV16-positive cancer cells. Surface plasmon resonance, NMR chemical shift perturbation, and mammalian two-hybrid analyses coupled to mutagenesis indicate that E6APpep contacts HPV16 E6 amino acid residues within the E6AP pocket, both in vitro and intracellularly. Many of these amino acids were also important for binding to pep11**, suggesting that the binding sites for the two peptides on HPV16 E6 overlap. Yet, few E6 amino acids were differentially involved which may contribute to the higher binding affinity of pep11**. Data from the HPV16 E6/pep11** interaction allowed the rational design of single amino acid exchanges in HPV18 and HPV31 E6 that enabled their binding to pep11**. Taken together, these results suggest that E6 molecular surfaces mediating E6APpep binding can also accommodate pro-apoptotic peptides that belong to different sequence families. As proof of concept, this study provides the first experimental evidence that the E6AP binding pocket is druggable, opening new possibilities for rational, structure-based drug design.
Collapse
Affiliation(s)
- Katia Zanier
- Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67412, Illkirch, France
- * E-mail: (KZ); (FHS)
| | - Christina Stutz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Susanne Kintscher
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Eileen Reinz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Peter Sehr
- EMBL-DKFZ Chemical Biology Core Facility, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Julia Bulkescher
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Gilles Travé
- Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67412, Illkirch, France
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- * E-mail: (KZ); (FHS)
| |
Collapse
|
42
|
Zhu H, Li J, Zhang XB, Ye M, Tan W. Nucleic acid aptamer-mediated drug delivery for targeted cancer therapy. ChemMedChem 2014; 10:39-45. [PMID: 25277749 DOI: 10.1002/cmdc.201402312] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Indexed: 12/21/2022]
Abstract
Aptamers are emerging as promising therapeutic agents and recognition elements. In particular, cell-SELEX (systematic evolution of ligands by exponential enrichment) allows in vitro selection of aptamers selective to whole cells without prior knowledge of the molecular signatures on the cell surface. The advantage of aptamers is their high affinitiy and binding specificity towards the target. This Minireview focuses on single-stranded (ss) oligonucleotide (DNA or RNA)-based aptamers as cancer therapeutics/theranostics. Specifically, aptamer-nanomaterial conjugates, aptamer-drug conjugates, targeted phototherapy and targeted biotherapy are covered in detail. In reviewing the literature, the potential of aptamers as delivery systems for therapeutic and imaging applications in cancer is clear, however, major challenges remain to be resolved, such as the poorly understood pharmacokinetics, toxicity and off-target effects, before they can be fully exploited in a clinical setting.
Collapse
Affiliation(s)
- Huijie Zhu
- Molecular Science & Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, and College of Biology, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, 410082 (China)
| | | | | | | | | |
Collapse
|
43
|
Malecka KA, Fera D, Schultz DC, Hodawadekar S, Reichman M, Donover PS, Murphy ME, Marmorstein R. Identification and characterization of small molecule human papillomavirus E6 inhibitors. ACS Chem Biol 2014; 9:1603-12. [PMID: 24854633 PMCID: PMC4145632 DOI: 10.1021/cb500229d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cervical cancer is the sixth most common cancer in women worldwide and the leading cause of women's death in developing countries. Nearly all cervical cancers are associated with infection of the human papillomavirus (HPV). This sexually transmitted pathogen disrupts the cell cycle via two oncoproteins: E6 and E7. Cells respond to E7-mediated degradation of pRB by upregulating the p53 tumor suppressor pathway. However, E6 thwarts this response by binding to the cellular E6-Associating Protein (E6AP) and targeting p53 for degradation. These two virus-facilitated processes pave the way for cellular transformation. Prophylactic HPV vaccines are available, but individuals already infected with HPV lack drug-based therapeutic options. To fill this void, we sought to identify small molecule inhibitors of the E6-E6AP interaction. We designed an ELISA-based high throughput assay to rapidly screen compound libraries, and hits were confirmed in several orthogonal biochemical and cell-based assays. Over 88,000 compounds were screened; 30 had in vitro potencies in the mid-nanomolar to mid-micromolar range and were classified as validated hits. Seven of these hits inhibited p53 degradation in cell lines with HPV-integrated genomes. Two compounds of similar scaffold successfully blocked p53 degradation and inhibited cell proliferation in cells stably transfected with E6. Together, these studies suggest that small molecules can successfully block E6-dependent p53 degradation and restore p53 activity. The compounds identified here constitute attractive starting points for further medicinal chemistry efforts and development into beneficial therapeutics.
Collapse
Affiliation(s)
| | - Daniela Fera
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - David C. Schultz
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | | | - Melvin Reichman
- Lankenau
Institute for Medical Research, Chemical Genomics Center, Wynnewood, Pennsylvania 19096, United States
| | - Preston S. Donover
- Lankenau
Institute for Medical Research, Chemical Genomics Center, Wynnewood, Pennsylvania 19096, United States
| | - Maureen E. Murphy
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Ronen Marmorstein
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
44
|
Nucleic acid aptamers: research tools in disease diagnostics and therapeutics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:540451. [PMID: 25050359 PMCID: PMC4090538 DOI: 10.1155/2014/540451] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
Abstract
Aptamers are short sequences of nucleic acid (DNA or RNA) or peptide molecules which adopt a conformation and bind cognate ligands with high affinity and specificity in a manner akin to antibody-antigen interactions. It has been globally acknowledged that aptamers promise a plethora of diagnostic and therapeutic applications. Although use of nucleic acid aptamers as targeted therapeutics or mediators of targeted drug delivery is a relatively new avenue of research, one aptamer-based drug “Macugen” is FDA approved and a series of aptamer-based drugs are in clinical pipelines. The present review discusses the aspects of design, unique properties, applications, and development of different aptamers to aid in cancer diagnosis, prevention, and/or treatment under defined conditions.
Collapse
|
45
|
Leśniewska K, Warbrick E, Ohkura H. Peptide aptamers define distinct EB1- and EB3-binding motifs and interfere with microtubule dynamics. Mol Biol Cell 2014; 25:1025-36. [PMID: 24478452 PMCID: PMC3967968 DOI: 10.1091/mbc.e13-08-0504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 11/16/2022] Open
Abstract
EB1 is a conserved protein that plays a central role in regulating microtubule dynamics and organization. It binds directly to microtubule plus ends and recruits other plus end-localizing proteins. Most EB1-binding proteins contain a Ser-any residue-Ile-Pro (SxIP) motif. Here we describe the isolation of peptide aptamers with optimized versions of this motif by screening for interaction with the Drosophila EB1 protein. The use of small peptide aptamers to competitively inhibit protein interaction and function is becoming increasingly recognized as a powerful technique. We show that SxIP aptamers can bind microtubule plus ends in cells and functionally act to displace interacting proteins by competitive binding. Their expression in developing flies can interfere with microtubules, altering their dynamics. We also identify aptamers binding to human EB1 and EB3, which have sequence requirements similar to but distinct from each other and from Drosophila EB1. This suggests that EB1 paralogues within one species may interact with overlapping but distinct sets of proteins in cells.
Collapse
Affiliation(s)
- Karolina Leśniewska
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Emma Warbrick
- Division of Molecular Medicine, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
46
|
Leitz J, Reuschenbach M, Lohrey C, Honegger A, Accardi R, Tommasino M, Llano M, von Knebel Doeberitz M, Hoppe-Seyler K, Hoppe-Seyler F. Oncogenic human papillomaviruses activate the tumor-associated lens epithelial-derived growth factor (LEDGF) gene. PLoS Pathog 2014; 10:e1003957. [PMID: 24604027 PMCID: PMC3946365 DOI: 10.1371/journal.ppat.1003957] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/13/2014] [Indexed: 12/20/2022] Open
Abstract
The expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic. Specific types of human papillomaviruses (HPVs) are closely linked to the development of malignant tumors, such as cervical cancer. Virtually all cervical cancers contain HPV DNA and the tumorigenic growth behavior of cervical cancer cells is dependent on the activity of two viral oncogenes, called E6 and E7. It is important to study the activities by which the HPV oncogenes can support the growth of tumor cells. This should allow new insights into the molecular mechanisms of virus-induced carcinogenesis and could also be useful for developing novel approaches for cancer therapy. We here show that the HPV oncogenes stimulate and maintain expression of the cellular LEDGF gene in HPV-positive cancer cells. Consistently, pre-malignant and malignant lesions of the cervix exhibit significantly increased LEDGF protein levels. LEDGF is crucial for the protection of tumor cells against various forms of cellular stress, including DNA damage. LEDGF stimulation by the viral oncogenes could be a critical survival mechanism by which HPVs support the growth of cervical cancer cells and provide resistance towards chemo- and radiotherapy in the clinic.
Collapse
Affiliation(s)
- Jenny Leitz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miriam Reuschenbach
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Claudia Lohrey
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Honegger
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rosita Accardi
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | | | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (KHS); (FHS)
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (KHS); (FHS)
| |
Collapse
|
47
|
Vici P, Mariani L, Pizzuti L, Sergi D, Di Lauro L, Vizza E, Tomao F, Tomao S, Mancini E, Vincenzoni C, Barba M, Maugeri-Saccà M, Giovinazzo G, Venuti A. Emerging biological treatments for uterine cervical carcinoma. J Cancer 2014; 5:86-97. [PMID: 24494026 PMCID: PMC3909763 DOI: 10.7150/jca.7963] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is the third most common cancer worldwide, and the development of new diagnosis, prognostic, and treatment strategies is a major interest for public health. Cisplatin, in combination with external beam irradiation for locally advanced disease, or as monotherapy for recurrent/metastatic disease, has been the cornerstone of treatment for more than two decades. Other investigated cytotoxic therapies include paclitaxel, ifosfamide and topotecan, as single agents or in combination, revealing unsatisfactory results. In recent years, much effort has been made towards evaluating new drugs and developing innovative therapies to treat cervical cancer. Among the most investigated molecular targets are epidermal growth factor receptor and vascular endothelial growth factor (VEGF) signaling pathways, both playing a critical role in cervical cancer development. Studies with bevacizumab or VEGF receptor tyrosine kinase have given encouraging results in terms of clinical efficacy, without adding significant toxicity. A great number of other molecular agents targeting critical pathways in cervical malignant transformation are being evaluated in preclinical and clinical trials, reporting preliminary promising data. In the current review, we discuss novel therapeutic strategies which are being investigated for the treatment of advanced cervical cancer.
Collapse
Affiliation(s)
- Patrizia Vici
- 1. Department of Medical Oncology B, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy
| | - Luciano Mariani
- 2. Department of Gynecologic Oncology, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy ; 3. HPV Unit, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy
| | - Laura Pizzuti
- 1. Department of Medical Oncology B, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy
| | - Domenico Sergi
- 1. Department of Medical Oncology B, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy
| | - Luigi Di Lauro
- 1. Department of Medical Oncology B, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy
| | - Enrico Vizza
- 2. Department of Gynecologic Oncology, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy
| | - Federica Tomao
- 4. Department of Gynaecology and Obstetrics, "La Sapienza" University, V Policlinico 155, 00161, Rome, Italy
| | - Silverio Tomao
- 5. Department of Medical-Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Oncology Unit, C.so della Repubblica, 04100, Latina, Italy
| | - Emanuela Mancini
- 2. Department of Gynecologic Oncology, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy
| | - Cristina Vincenzoni
- 2. Department of Gynecologic Oncology, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy
| | - Maddalena Barba
- 1. Department of Medical Oncology B, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy ; 6. Scientific Direction, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy
| | - Marcello Maugeri-Saccà
- 1. Department of Medical Oncology B, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy ; 6. Scientific Direction, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy
| | - Giuseppe Giovinazzo
- 7. Department of Radiation Oncology, Regina Elena National Cancer Institute,V Elio Chianesi 53, 00144, Rome, Italy
| | - Aldo Venuti
- 3. HPV Unit, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy ; 8. Laboratory of Virology, Regina Elena National Cancer Institute, V Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
48
|
Manzo-Merino J, Thomas M, Fuentes-Gonzalez AM, Lizano M, Banks L. HPV E6 oncoprotein as a potential therapeutic target in HPV related cancers. Expert Opin Ther Targets 2013; 17:1357-68. [DOI: 10.1517/14728222.2013.832204] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Reyes MI, Nash TE, Dallas MM, Ascencio-Ibáñez JT, Hanley-Bowdoin L. Peptide aptamers that bind to geminivirus replication proteins confer a resistance phenotype to tomato yellow leaf curl virus and tomato mottle virus infection in tomato. J Virol 2013; 87:9691-706. [PMID: 23824791 PMCID: PMC3754110 DOI: 10.1128/jvi.01095-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/21/2013] [Indexed: 01/17/2023] Open
Abstract
Geminiviruses constitute a large family of single-stranded DNA viruses that cause serious losses in important crops worldwide. They often exist in disease complexes and have high recombination and mutation rates, allowing them to adapt rapidly to new hosts and environments. Thus, an effective resistance strategy must be general in character and able to target multiple viruses. The geminivirus replication protein (Rep) is a good target for broad-based disease control because it is highly conserved and required for viral replication. In an earlier study, we identified a set of peptide aptamers that bind to Rep and reduce viral replication in cultured plant cells. In this study, we selected 16 of the peptide aptamers for further analysis in yeast two-hybrid assays. The results of these experiments showed that all 16 peptide aptamers interact with all or most of the Rep proteins from nine viruses representing the three major Geminiviridae genera and identified two peptide aptamers (A22 and A64) that interact strongly with different regions in the Rep N terminus. Transgenic tomato lines expressing A22 or A64 and inoculated with Tomato yellow leaf curl virus or Tomato mottle virus exhibited delayed viral DNA accumulation and often contained lower levels of viral DNA. Strikingly, the effect on symptoms was stronger, with many of the plants showing no symptoms or strongly attenuated symptoms. Together, these results established the efficacy of using Rep-binding peptide aptamers to develop crops that are resistant to diverse geminiviruses.
Collapse
Affiliation(s)
- Maria Ines Reyes
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | |
Collapse
|
50
|
The inhibition of stat5 by a Peptide aptamer ligand specific for the DNA binding domain prevents target gene transactivation and the growth of breast and prostate tumor cells. Pharmaceuticals (Basel) 2013; 6:960-87. [PMID: 24276378 PMCID: PMC3817735 DOI: 10.3390/ph6080960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 12/05/2022] Open
Abstract
The signal transducer and activator of transcription Stat5 is transiently activated by growth factor and cytokine signals in normal cells, but its persistent activation has been observed in a wide range of human tumors. Aberrant Stat5 activity was initially observed in leukemias, but subsequently also found in carcinomas. We investigated the importance of Stat5 in human tumor cell lines. shRNA mediated downregulation of Stat5 revealed the dependence of prostate and breast cancer cells on the expression of this transcription factor. We extended these inhibition studies and derived a peptide aptamer (PA) ligand, which directly interacts with the DNA-binding domain of Stat5 in a yeast-two-hybrid screen. The Stat5 specific PA sequence is embedded in a thioredoxin (hTRX) scaffold protein. The resulting recombinant protein S5-DBD-PA was expressed in bacteria, purified and introduced into tumor cells by protein transduction. Alternatively, S5-DBD-PA was expressed in the tumor cells after infection with a S5-DBD-PA encoding gene transfer vector. Both strategies impaired the DNA-binding ability of Stat5, suppressed Stat5 dependent transactivation and caused its intracellular degradation. Our experiments describe a peptide based inhibitor of Stat5 protein activity which can serve as a lead for the development of a clinically useful compound for cancer treatment.
Collapse
|