1
|
Sui Y, Meyer TJ, Fennessey CM, Keele BF, Dadkhah K, Ma C, LaBranche CC, Breed MW, Kramer JA, Li J, Howe SE, Ferrari G, Williams LD, Cam M, Kelly MC, Shen X, Tomaras GD, Montefiori D, Greten TF, Miller CJ, Berzofsky JA. Innate protection against intrarectal SIV acquisition by a live SHIV vaccine. JCI Insight 2024; 9:e175800. [PMID: 38912579 PMCID: PMC11383375 DOI: 10.1172/jci.insight.175800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Identifying immune correlates of protection is a major challenge in AIDS vaccine development. Anti-Envelope antibodies have been considered critical for protection against SIV/HIV (SHIV) acquisition. Here, we evaluated the efficacy of an SHIV vaccine against SIVmac251 challenge, where the role of antibody was excluded, as there was no cross-reactivity between SIV and SHIV envelope antibodies. After 8 low-dose intrarectal challenges with SIVmac251, 12 SHIV-vaccinated animals demonstrated efficacy, compared with 6 naive controls, suggesting protection was achieved in the absence of anti-envelope antibodies. Interestingly, CD8+ T cells (and some NK cells) were not essential for preventing viral acquisition, as none of the CD8-depleted macaques were infected by SIVmac251 challenges. Initial investigation of protective innate immunity revealed that protected animals had elevated pathways related to platelet aggregation/activation and reduced pathways related to interferon and responses to virus. Moreover, higher expression of platelet factor 4 on circulating platelet-leukocyte aggregates was associated with reduced viral acquisition. Our data highlighted the importance of innate immunity, identified mechanisms, and may provide opportunities for novel HIV vaccines or therapeutic strategy development.
Collapse
Affiliation(s)
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | - Kimia Dadkhah
- Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Chi Ma
- Thoracic and GI Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Celia C. LaBranche
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Matthew W. Breed
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | - Josh A. Kramer
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | | | | | | | - LaTonya D. Williams
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Michael C. Kelly
- Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - David Montefiori
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tim F. Greten
- Thoracic and GI Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Christopher J. Miller
- Center for Comparative Medicine, University of California, Davis, Davis, California, USA
| | | |
Collapse
|
2
|
Schou MD, Søgaard OS, Rasmussen TA. Clinical trials aimed at HIV cure or remission: new pathways and lessons learned. Expert Rev Anti Infect Ther 2023; 21:1227-1243. [PMID: 37856845 DOI: 10.1080/14787210.2023.2273919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION The main barrier to finding a cure against HIV is the latent HIV reservoir, which persists in people living with HIV (PLWH) despite antiretroviral treatment (ART). Here, we discuss recent findings from interventional studies using mono- and combination therapies aimed at enhancing immune-mediated killing of the virus with or without activating HIV from latency. AREAS COVERED We discuss latency reversal agents (LRAs), broadly neutralizing antibodies, immunomodulatory therapies, and studies aimed at inducing apoptosis. EXPERT OPINION The landscape of clinical trials for HIV cure and remission has evolved considerably over the past 10 years. Several novel interventions such as immune checkpoint inhibitors, therapeutic vaccines, and broadly neutralizing antibodies have been tested either alone or in combination with LRAs but studies have so far not shown a meaningful impact on the frequency of latently infected cells. Immunomodulatory therapies could work differently in the setting of antigen expression, that is, during active viremia, and timing of interventions could therefore, be key to future therapeutic success. Lessons learned from clinical trials aimed at HIV cure indicate that while we are still far from reaching a complete eradication cure of HIV, clinical interventions capable of inducing enhanced control of HIV replication in the absence of ART might be a more feasible goal.
Collapse
Affiliation(s)
- Maya Dyveke Schou
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thomas Aagaard Rasmussen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Abstract
In humans, HIV-1 infection induces innate immune responses mediated mainly by type I interferon (IFN). Type I IFN restricts HIV-1 replication by upregulating the expression of IFN-stimulated genes with diverse anti-HIV properties. In this study, we report that the cell membrane protein otoferlin (OTOF) acts as a type I IFN-induced effector, inhibiting HIV-1 entry in myeloid lineage macrophages and dendritic cells (DCs). OTOF is significantly induced by type I IFN in macrophages and DCs but not in CD4+ T lymphocytes. Silencing OTOF abrogates the IFN-mediated suppression of HIV-1 infection in macrophages and DCs. Moreover, OTOF overexpression exhibits anti-HIV activity in macrophages and CD4+ T cells. Further evidence reveals that OTOF inhibits HIV-1 entry into target cells at the cell membrane. Collectively, OTOF is a downstream molecule induced by type I IFN to inhibit HIV-1 entry in macrophages; it is a new potential agent for the treatment of HIV infection.
Collapse
|
4
|
Álvarez B, Navarrete-Muñoz MA, Briz V, Olmedillas-López S, Nistal S, Cabello A, Prieto L, Górgolas M, García-Arranz M, Benito JM, Rallón N. HIV-reservoir size is not affected either by HCV coinfection or by direct acting antivirals (DAAs) therapy. Sci Rep 2022; 12:5095. [PMID: 35332180 PMCID: PMC8948254 DOI: 10.1038/s41598-022-08871-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
The role of HCV on the HIV reservoir is controversial since the reduction on HIV-DNA levels after HCV eradication with IFNα/RBV treatment seems to be the result of drugs instead of HCV clearance. We assessed whether HCV eradication can decrease HIV-DNA content in HIV/HCV-coinfected patients treated with direct-acting antivirals, DAAs (IFNα/RBV-free regimens). Cell-associated HIV-DNA was measured by ddPCR in 25 HIV-monoinfected and 25 HIV/HCV-coinfected patients. There were no differences in HIV-DNA levels between groups neither at baseline nor at 12 weeks after DAAs treatment completion. Our results indicate that HCV does not appear to influence the HIV reservoir size and suggest the lack of an anti-HIV action for DAAs.
Collapse
Affiliation(s)
- Beatriz Álvarez
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - María A Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Veronica Briz
- National Center of Microbiology, Institute of Health Carlos III, Majadahonda, Spain
| | - Susana Olmedillas-López
- New Therapy Group, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Sara Nistal
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Laura Prieto
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Mariano García-Arranz
- New Therapy Group, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - José M Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| |
Collapse
|
5
|
Shilova ON, Tsyba DL, Shilov ES. Mutagenic Activity of AID/APOBEC Deaminases in Antiviral Defense and Carcinogenesis. Mol Biol 2022; 56:46-58. [PMID: 35194245 PMCID: PMC8852905 DOI: 10.1134/s002689332201006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
Proteins of the AID/APOBEC family are capable of cytidine deamination in nucleic acids forming uracil. These enzymes are involved in mRNA editing, protection against viruses, the introduction of point mutations into DNA during somatic hypermutation, and antibody isotype switching. Since these deaminases, especially AID, are potent mutagens, their expression, activity, and specificity are regulated by several intracellular mechanisms. In this review, we discuss the mechanisms of impaired expression and activation of AID/APOBEC proteins in human tumors and their role in carcinogenesis and tumor progression. Also, the diagnostic and potential therapeutic value of increased expression of AID/APOBEC in different types of tumors is analyzed. We assume that in the case of solid tumors, increased expression of endogenous deaminases can serve as a marker of response to immunotherapy since multiple point mutations in host DNA could lead to amino acid substitutions in tumor proteins and thereby increase the frequency of neoepitopes.
Collapse
Affiliation(s)
- O. N. Shilova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - D. L. Tsyba
- Pavlov First State Medical University, 197022 St. Petersburg, Russia
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - E. S. Shilov
- Faculty of Biology, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
6
|
Petkov S, Chiodi F. Distinct transcriptomic profiles of naïve CD4+ T cells distinguish HIV-1 infected patients initiating antiretroviral therapy at acute or chronic phase of infection. Genomics 2021; 113:3487-3500. [PMID: 34425224 DOI: 10.1016/j.ygeno.2021.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
We analyzed the whole transcriptome characteristics of blood CD4+ T naïve (TN) cells isolated from HIV-1 infected patients starting ART at acute (early ART = EA; n = 13) or chronic (late ART = LA; n = 11) phase of infection and controls (C; n = 15). RNA sequencing revealed 389 differentially expressed genes (DEGs) in EA and 810 in LA group in relation to controls. Comparison of the two groups of patients showed 183 DEGs. We focused on DEGs involved in apoptosis, inflammation and immune response. Clustering showed a poor separation of EA from C suggesting that these two groups present a similar transcriptomic profile of CD4+ TN cells. The comparison of EA and LA patients resulted in a high cluster purity revealing that different biological dysfunctions characterize EA and LA patients. The upregulated expression of several inflammatory chemokine genes distinguished the patient groups from C; CCL2 and CCL7, however, were downregulated in EA compared to LA patients. BCL2, an anti-apoptotic factor pivotal for naïve T cell homeostasis, distinguished both EA and LA from C. The expression of several DEGs involved in different inflammatory processes (TLR4, PTGS2, RAG1, IFNA16) was lower in EA compared LA. We conclude that although the transcriptome of CD4+ TN cells isolated from patients initiating ART at acute infection reveals a more quiescent phenotype, the survival profile of these cells still appears to be affected. Our results show that the detrimental process of inflammation is under more efficient control in EA patients.
Collapse
Affiliation(s)
- Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology at Biomedicum, Karolinska Institutet, Solna, Sweden.
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology at Biomedicum, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
7
|
Scherrer AU, Traytel A, Braun DL, Calmy A, Battegay M, Cavassini M, Furrer H, Schmid P, Bernasconi E, Stoeckle M, Kahlert C, Trkola A, Kouyos RD, Tarr P, Marzolini C, Wandeler G, Fellay J, Bucher H, Yerly S, Suter F, Hirsch H, Huber M, Dollenmaier G, Perreau M, Martinetti G, Rauch A, Günthard HF. Cohort Profile Update: The Swiss HIV Cohort Study (SHCS). Int J Epidemiol 2021; 51:33-34j. [PMID: 34363666 DOI: 10.1093/ije/dyab141] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexandra U Scherrer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Anna Traytel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Hansjakob Furrer
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Patrick Schmid
- Division of Infectious Diseases, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital Lugano, Lugano, Switzerland
| | - Marcel Stoeckle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, Children's Hospital of Eastern Switzerland, St Gallen, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Philip Tarr
- University Department of Medicine, Kantonsspital Bruderholz, University of Basel, Bruderholz, Switzerland
| | - Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gilles Wandeler
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jacques Fellay
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Heiner Bucher
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sabine Yerly
- Division of Infectious Diseases and Laboratory of Virology, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - Franziska Suter
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans Hirsch
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Matthieu Perreau
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Gladys Martinetti
- Department of Microbiology, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
8
|
Grubczak K, Grzeszczuk A, Groth M, Hryniewicz A, Kretowska-Grunwald A, Flisiak R, Moniuszko M. Effects of Pegylated Interferon Alpha and Ribavirin (pegIFN-α/RBV) Therapeutic Approach on Regulatory T Cells in HCV-Monoinfected and HCV/HIV-Coinfected Patients. Viruses 2021; 13:v13081448. [PMID: 34452314 PMCID: PMC8402834 DOI: 10.3390/v13081448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/10/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Approximately 25% of HIV-infected patients are co-infected with HCV. Notably, the burden of HCV infection (e.g., viral persistence, viral load, or HCV-related liver symptoms) is more pronounced in the presence of HIV co-infection. However, to date, the underlying immune mechanisms accounting for accelerated disease progression in HIV/HCV-coinfected individuals have not been described in sufficient detail. We hypothesized that regulatory T cells (Treg) bearing potent immunosuppressive capacities could not only play a substantial role in the pathogenesis of HCV/HIV coinfection but also modulate the response to the standard anti-viral therapy. MATERIALS AND METHODS To this end, we studied alterations in frequencies of Treg cells in correlation with other Treg-related and virus-related parameters in both HCV and HCV/HIV-infected patients subjected to standard pegIFN-α/RBV therapy. RESULTS Notably, we found that pegIFN-α/RBV therapy significantly increased levels of Treg cells in HCV-infected but not in HIV/HCV-coinfected individuals. Furthermore, HIV/HCV-coinfection was demonstrated to inhibit expansion of regulatory T cells during anti-viral treatment; thus, it might probably be responsible for viral persistence and HCV-related liver damage. CONCLUSIONS Therapy with pegIFN-α/RBV demonstrated a significant effect on regulatory T cells in the course of HIV and/or HCV infection indicating a crucial role in the anti-viral immune response.
Collapse
Affiliation(s)
- Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Białystok, Poland;
- Correspondence: (K.G.); (M.M.); Tel./Fax: +48-85-748-59-72 (K.G. & M.M.)
| | - Anna Grzeszczuk
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540 Bialystok, Poland;
| | - Monika Groth
- Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Anna Hryniewicz
- Department of Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Anna Kretowska-Grunwald
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Białystok, Poland;
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, 15-540 Bialystok, Poland;
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Białystok, Poland;
- Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland;
- Correspondence: (K.G.); (M.M.); Tel./Fax: +48-85-748-59-72 (K.G. & M.M.)
| |
Collapse
|
9
|
Sugawara S, El-Diwany R, Cohen LK, Rousseau KE, Williams CYK, Veenhuis RT, Mehta SH, Blankson JN, Thomas DL, Cox AL, Balagopal A. People with HIV-1 demonstrate type 1 interferon refractoriness associated with upregulated USP18. J Virol 2021; 95:JVI.01777-20. [PMID: 33658340 PMCID: PMC8139647 DOI: 10.1128/jvi.01777-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/19/2021] [Indexed: 01/04/2023] Open
Abstract
HIV-1 infection persists in humans despite expression of antiviral type 1 interferons (IFN). Even exogenous administration of IFNα only marginally reduces HIV-1 abundance, raising the hypothesis that people living with HIV-1 (PLWH) are refractory to type 1 IFN. We demonstrated type 1 IFN refractoriness in CD4+ and CD8+ T cells isolated from HIV-1 infected persons by detecting diminished STAT1 phosphorylation (pSTAT1) and interferon-stimulated gene (ISG) induction upon type 1 IFN stimulation compared to healthy controls. Importantly, HIV-1 infected people who were virologically suppressed with antiretrovirals also showed type 1 IFN refractoriness. We found that USP18 levels were elevated in people with refractory pSTAT1 and ISG induction and confirmed this finding ex vivo in CD4+ T cells from another cohort of HIV-HCV coinfected persons who received exogenous pegylated interferon-α2b in a clinical trial. We used a cell culture model to recapitulate type 1 IFN refractoriness in uninfected CD4+ T cells that were conditioned with media from HIV-1 inoculated PBMCs, inhibiting de novo infection with antiretroviral agents. In this model, RNA interference against USP18 partly restored type 1 IFN responses in CD4+ T cells. We found evidence of type 1 IFN refractoriness in PLWH irrespective of virologic suppression that was associated with upregulated USP18, a process that might be therapeutically targeted to improve endogenous control of infection.ImportancePeople living with HIV-1 (PLWH) have elevated constitutive expression of type 1 interferons (IFN). However, it is unclear whether this impacts downstream innate immune responses. We identified refractory responses to type 1 IFN stimulation in T cells from PLWH, independent of antiretroviral treatment. Type 1 IFN refractoriness was linked to elevated USP18 levels in the same cells. Moreover, we found that USP18 levels predicted the anti-HIV-1 effect of type 1 IFN-based therapy on PLWH. In vitro, we demonstrated that refractory type 1 IFN responses were transferrable to HIV-1 uninfected target CD4+ T cells, and this phenomenon was mediated by type 1 IFN from HIV-1 infected cells. Type 1 IFN responses were partially restored by USP18 knockdown. Our findings illuminate a new mechanism by which HIV-1 contributes to innate immune dysfunction in PLWH, through the continuous production of type 1 IFN that induces a refractory state of responsiveness.
Collapse
Affiliation(s)
- Sho Sugawara
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ramy El-Diwany
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura K Cohen
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kimberly E Rousseau
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Rebecca T Veenhuis
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shruti H Mehta
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Joel N Blankson
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David L Thomas
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea L Cox
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ashwin Balagopal
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Mouse APOBEC3 Restriction of Retroviruses. Viruses 2020; 12:v12111217. [PMID: 33121095 PMCID: PMC7692085 DOI: 10.3390/v12111217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic peptide 3 (APOBEC3) proteins are critical host proteins that counteract and prevent the replication of retroviruses. Unlike the genome of humans and other species, the mouse genome encodes a single Apobec3 gene, which has undergone positive selection, as reflected by the allelic variants found in different inbred mouse strains. This positive selection was likely due to infection by various mouse retroviruses, which have persisted in their hosts for millions of years. While mouse retroviruses are inhibited by APOBEC3, they nonetheless still remain infectious, likely due to the actions of different viral proteins that counteract this host factor. The study of viruses in their natural hosts provides important insight into their co-evolution.
Collapse
|
11
|
Gartner MJ, Roche M, Churchill MJ, Gorry PR, Flynn JK. Understanding the mechanisms driving the spread of subtype C HIV-1. EBioMedicine 2020; 53:102682. [PMID: 32114391 PMCID: PMC7047180 DOI: 10.1016/j.ebiom.2020.102682] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C (C-HIV) is the most prevalent form of HIV-1 globally, accounting for approximately 50% of infections worldwide. C-HIV is the predominant and near-exclusive subtype in the low resource regions of India and Southern Africa. Given the vast diversity of HIV-1 subtypes, it is curious as to why C-HIV constitutes such a large proportion of global infections. This enriched prevalence may be due to phenotypic differences between C-HIV isolates and other viral strains that permit enhanced transmission efficiency or, pathogenicity, or might due to the socio-demographics of the regions where C-HIV is endemic. Here, we compare the mechanisms of C-HIV pathogenesis to less prominent HIV-1 subtypes, including viral genetic and phenotypic characteristics, and host genetic variability, to understand whether evolutionary factors drove C-HIV to predominance.
Collapse
Affiliation(s)
- Matthew J Gartner
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Michael Roche
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Melissa J Churchill
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; Department of Microbiology, Monash University, Melbourne, Australia
| | - Paul R Gorry
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| | - Jacqueline K Flynn
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia; School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia.
| |
Collapse
|
12
|
Zhang XL, Luo MT, Song JH, Pang W, Zheng YT. An Alu Element Insertion in Intron 1 Results in Aberrant Alternative Splicing of APOBEC3G Pre-mRNA in Northern Pig-Tailed Macaques ( Macaca leonina) That May Reduce APOBEC3G-Mediated Hypermutation Pressure on HIV-1. J Virol 2020; 94:e01722-19. [PMID: 31776266 PMCID: PMC6997765 DOI: 10.1128/jvi.01722-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022] Open
Abstract
APOBEC3 family members, particularly APOBEC3F and APOBEC3G, inhibit the replication and spread of various retroviruses by inducing hypermutation in newly synthesized viral DNA. Viral hypermutation by APOBEC3 is associated with viral evolution, viral transmission, and disease progression. In recent years, increasing attention has been paid to targeting APOBEC3G for AIDS therapy. Thus, a controllable model system using species such as macaques, which provide a relatively ideal in vivo system, is needed for the study of APOBEC3-related issues. To appropriately utilize this animal model for biomedical research, important differences between human and macaque APOBEC3s must be considered. In this study, we found that the ratio of APOBEC3G-mediated/APOBEC3-mediated HIV-1 hypermutation footprints was much lower in peripheral blood mononuclear cells (PBMCs) from northern pig-tailed macaques than in PBMCs from humans. Next, we identified a novel and conserved APOBEC3G pre-mRNA alternative splicing pattern in macaques, which differed from that in humans and resulted from an Alu element insertion into macaque APOBEC3G gene intron 1. This alternative splicing pattern generating an aberrant APOBEC3G mRNA isoform may significantly dilute full-length APOBEC3G and reduce APOBEC3G-mediated hypermutation pressure on HIV-1 in northern pig-tailed macaques, which was supported by the elimination of other possibilities accounting for this hypermutation difference between the two hosts.IMPORTANCE APOBEC3 family members, particularly APOBEC3F and APOBEC3G, are important cellular antiviral factors. Recently, more attention has been paid to targeting APOBEC3G for AIDS therapy. To appropriately utilize macaque animal models for the study of APOBEC3-related issues, it is important that the differences between human and macaque APOBEC3s are clarified. In this study, we identified a novel and conserved APOBEC3G pre-mRNA alternative splicing pattern in macaques, which differed from that in humans and which may reduce the APOBEC3G-mediated hypermutation pressure on HIV-1 in northern pig-tailed macaques (NPMs). Our work provides important information for the proper application of macaque animal models for APOBEC3-related issues in AIDS research and a better understanding of the biological functions of APOBEC3 proteins.
Collapse
Affiliation(s)
- Xiao-Liang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Meng-Ting Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jia-Hao Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Institute of Health Sciences, Anhui University, Hefei, Anhui, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
13
|
Dias BDC, Paximadis M, Martinson N, Chaisson RE, Ebrahim O, Tiemessen CT. The impact of bone marrow stromal antigen-2 (BST2) gene variants on HIV-1 control in black South African individuals. INFECTION GENETICS AND EVOLUTION 2020; 80:104216. [PMID: 32006707 DOI: 10.1016/j.meegid.2020.104216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/24/2022]
Abstract
Bone marrow stromal cell antigen 2 (BST2 or tetherin) is a host-encoded, interferon-inducible antiviral restriction factor which blocks the release of enveloped viruses. Few studies have assessed the role of BST2 polymorphisms on HIV-1 acquisition or disease progression in sub-Saharan Africa. This study investigated the frequency of four HIV-1-associated BST2 variants rs3217318, rs12609479, rs10415893 and rs113189798 in uninfected and HIV-1 infected black South Africans. Homozygosity for the rs12609479-A minor allele, previously associated with decreased HIV-1 acquisition risk, was underrepresented in HIV-1 uninfected black South Africans (2%) compared to reference African (9%) and in particular European populations (61%) (p = .047 and p < .0001, respectively). To determine if any of these gene variants influenced HIV-1 control in the absence of antiretroviral treatment (ART), we compared HIV-1 infected ART-naïve progressors [n = 72] and controllers [n = 71], the latter includes elite controllers [EC: n = 23; VL < 50 RNA copies/ml]. Heterozygosity for the rs12609479 SNP (G/A) was enriched in progressors compared to ECs (47.2% vs 21.7%, OR = 3.50 [1.16-10.59], p = .03), while rs113189798 heterozygosity (A/G) showed a strong trend of overrepresentation in ECs compared to progressors (47.8% vs 26.4%, OR = 0.39 [0.14-1.04], p = .07). Heterozygosity for the promoter indel rs3217318 (i19/Δ19) was associated with a faster rate of CD4+ T-cell decline in progressors (p = .0134). Carriage of the rs3217318 (i19/Δ19), rs12609479 (G/G), rs10415893(G/A) and rs113189798 (A/G) combined genotype, denoted as i19Δ19 GG GA AG, was associated with significantly higher CD4+ T-cell counts in progressors (p = .03), a finding predominantly driven by the _GG_AG combination. Our data suggest that the possession of select BST2 genotype combinations may be implicated in HIV-1 disease progression and natural spontaneous control.
Collapse
Affiliation(s)
- Bianca Da Costa Dias
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maria Paximadis
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Neil Martinson
- Perinatal HIV Research Unit (PHRU), SA MRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, University of the Witwatersrand, Johannesburg, South Africa; Centre for TB Research, Johns Hopkins University, Baltimore, USA
| | | | - Osman Ebrahim
- School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
14
|
Troyer RM, Malmberg JL, Zheng X, Miller C, MacMillan M, Sprague WS, Wood BA, VandeWoude S. Expression of APOBEC3 Lentiviral Restriction Factors in Cats. Viruses 2019; 11:v11090831. [PMID: 31500260 PMCID: PMC6783916 DOI: 10.3390/v11090831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a naturally occurring T-cell tropic lentiviral disease of felids with many similarities to HIV/AIDS in humans. Similar to primate lentiviral-host interactions, feline APOBEC3 (A3) has been shown to inhibit FIV infection in a host-specific manner and feline A3 degradation is mediated by FIV Vif. Further, infection of felids with non-native FIV strains results in restricted viral replication in both experimental and naturally occurring infections. However, the link between molecular A3-Vif interactions and A3 biological activity during FIV infection has not been well characterized. We thus examined expression of the feline A3 genes A3Z2, A3Z3 and A3Z2-Z3 during experimental infection of domestic cats with host-adapted domestic cat FIV (referred to as FIV) and non-adapted Puma concolor FIV (referred to as puma lentivirus, PLV). We determined A3 expression in different tissues and blood cells from uninfected, FIV-infected, PLV-infected and FIV/PLV co-infected cats; and in purified blood cell subpopulations from FIV-infected and uninfected cats. Additionally, we evaluated regulation of A3 expression by cytokines, mitogens, and FIV infection in cultured cells. In all feline cells and tissues studied, there was a striking difference in expression between the A3 genes which encode FIV inhibitors, with A3Z3 mRNA abundance exceeding that of A3Z2-Z3 by 300-fold or more. Interferon-alpha treatment of cat T cells resulted in upregulation of A3 expression, while treatment with interferon-gamma enhanced expression in cat cell lines. In cats, secondary lymphoid organs and peripheral blood mononuclear cells (PBMC) had the highest basal A3 expression levels and A3 genes were differentially expressed among blood T cells, B cells, and monocytes. Acute FIV and PLV infection of cats, and FIV infection of primary PBMC resulted in no detectable change in A3 expression with the exception of significantly elevated A3 expression in the thymus, the site of highest FIV replication. We conclude that cat A3 expression is regulated by cytokine treatment but, by and large, lentiviral infection did not appear to alter expression. Differences in A3 expression in different blood cell subsets did not appear to impact FIV viral replication kinetics within these cells. Furthermore, the relative abundance of A3Z3 mRNA compared to A3Z2-Z3 suggests that A3Z3 may be the major active anti-lentiviral APOBEC3 gene product in domestic cats.
Collapse
Affiliation(s)
- Ryan M Troyer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond St., London, ON N6A 5C1, Canada.
| | - Jennifer L Malmberg
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
- Wyoming State Veterinary Laboratory, University of Wyoming, 1174 Snowy Range Rd., Laramie, WY 82072, USA.
| | - Xin Zheng
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Craig Miller
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Martha MacMillan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Wendy S Sprague
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
- Sprague Medical and Scientific Communications, LLC, Fort Collins, CO 80528, USA.
| | - Britta A Wood
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK.
| | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
15
|
Interplay between Intrinsic and Innate Immunity during HIV Infection. Cells 2019; 8:cells8080922. [PMID: 31426525 PMCID: PMC6721663 DOI: 10.3390/cells8080922] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Restriction factors are antiviral components of intrinsic immunity which constitute a first line of defense by blocking different steps of the human immunodeficiency virus (HIV) replication cycle. In immune cells, HIV infection is also sensed by several pattern recognition receptors (PRRs), leading to type I interferon (IFN-I) and inflammatory cytokines production that upregulate antiviral interferon-stimulated genes (ISGs). Several studies suggest a link between these two types of immunity. Indeed, restriction factors, that are generally interferon-inducible, are able to modulate immune responses. This review highlights recent knowledge of the interplay between restriction factors and immunity inducing antiviral defenses. Counteraction of this intrinsic and innate immunity by HIV viral proteins will also be discussed.
Collapse
|
16
|
Prévost J, Pickering S, Mumby MJ, Medjahed H, Gendron-Lepage G, Delgado GG, Dirk BS, Dikeakos JD, Stürzel CM, Sauter D, Kirchhoff F, Bibollet-Ruche F, Hahn BH, Dubé M, Kaufmann DE, Neil SJD, Finzi A, Richard J. Upregulation of BST-2 by Type I Interferons Reduces the Capacity of Vpu To Protect HIV-1-Infected Cells from NK Cell Responses. mBio 2019; 10:e01113-19. [PMID: 31213558 PMCID: PMC6581860 DOI: 10.1128/mbio.01113-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/03/2023] Open
Abstract
The HIV-1 accessory protein Vpu enhances viral release by counteracting the restriction factor BST-2. Furthermore, Vpu promotes NK cell evasion by downmodulating cell surface NTB-A and PVR, known ligands of the NK cell receptors NTB-A and DNAM-1, respectively. While it has been established that Vpu's transmembrane domain (TMD) is required for the interaction and intracellular sequestration of BST-2, NTB-A, and PVR, it remains unclear how Vpu manages to target these proteins simultaneously. In this study, we show that upon upregulation, BST-2 is preferentially downregulated by Vpu over its other TMD substrates. We found that type I interferon (IFN)-mediated BST-2 upregulation greatly impairs the ability of Vpu to downregulate NTB-A and PVR. Our results suggest that occupation of Vpu by BST-2 affects its ability to downregulate other TMD substrates. Accordingly, knockdown of BST-2 increases Vpu's potency to downmodulate NTB-A and PVR in the presence of type I IFN treatment. Moreover, we show that expression of human BST-2, but not that of the macaque orthologue, decreases Vpu's capacity to downregulate NTB-A. Importantly, we show that type I IFNs efficiently sensitize HIV-1-infected cells to NTB-A- and DNAM-1-mediated direct and antibody-dependent NK cell responses. Altogether, our results reveal that type I IFNs decrease Vpu's polyfunctionality, thus reducing its capacity to protect HIV-1-infected cells from NK cell responses.IMPORTANCE The restriction factor BST-2 and the NK cell ligands NTB-A and PVR are among a growing list of membrane proteins found to be downregulated by HIV-1 Vpu. BST-2 antagonism enhances viral release, while NTB-A and PVR downmodulation contributes to NK cell evasion. However, it remains unclear how Vpu can target multiple cellular factors simultaneously. Here we provide evidence that under physiological conditions, BST-2 is preferentially targeted by Vpu over NTB-A and PVR. Specifically, we show that type I IFNs decrease Vpu's polyfunctionality by upregulating BST-2, thus reducing its capacity to protect HIV-1-infected cells from NK cell responses. This indicates that there is a hierarchy of Vpu substrates upon IFN treatment, revealing that for the virus, targeting BST-2 as part of its resistance to IFN takes precedence over evading NK cell responses. This reveals a potential weakness in HIV-1's immunoevasion mechanisms that may be exploited therapeutically to harness NK cell responses against HIV-1.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec, Canada
| | - Suzanne Pickering
- Department of Infectious Disease, King's College London School of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom
| | - Mitchell J Mumby
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | - Brennan S Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frederic Bibollet-Ruche
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - Stuart J D Neil
- Department of Infectious Disease, King's College London School of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
17
|
Van Hecke C, Trypsteen W, Malatinkova E, De Spiegelaere W, Vervisch K, Rutsaert S, Kinloch-de Loes S, Sips M, Vandekerckhove L. Early treated HIV-1 positive individuals demonstrate similar restriction factor expression profile as long-term non-progressors. EBioMedicine 2019; 41:443-454. [PMID: 30770230 PMCID: PMC6442000 DOI: 10.1016/j.ebiom.2019.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Clarissa Van Hecke
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Eva Malatinkova
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Karen Vervisch
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Sabine Kinloch-de Loes
- Division of Infection and Immunitys, Royal Free Hospital and Royal Free Campus, University College London, Pont St, Hampstead, London NW3 2QG, United Kingdom
| | - Magdalena Sips
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
18
|
Zhang Y, Ozono S, Yao W, Tobiume M, Yamaoka S, Kishigami S, Fujita H, Tokunaga K. CRISPR-mediated activation of endogenous BST-2/tetherin expression inhibits wild-type HIV-1 production. Sci Rep 2019; 9:3134. [PMID: 30816279 PMCID: PMC6395588 DOI: 10.1038/s41598-019-40003-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
The CRISPR technology not only can knock out target genes by using the RNA-guided Cas9 nuclease but also can activate their expression when a nuclease-deficient Cas9 (dCas9) is employed. Using the latter function, we here show the effect of the CRISPR-mediated pinpoint activation of endogenous expression of BST-2 (also known as tetherin), a virus restriction factor with a broad antiviral spectrum. Single-guide RNA (sgRNA) sequences targeting the BST-2 promoter were selected by promoter assays. Potential sgRNAs and dCas9 fused to the VP64 transactivation domain, along with an accessory transcriptional activator complex, were introduced into cells by lentiviral transduction. Increased expression of BST-2 mRNA in transduced cells was confirmed by real-time RT-PCR. Cells in which BST-2 expression was highly enhanced showed the effective inhibition of HIV-1 production and replication even in the presence of the viral antagonist Vpu against BST-2. These findings confirm that the physiological stoichiometry between host restriction factors and viral antagonists may determine the outcome of the battle with viruses.
Collapse
Affiliation(s)
- Yanzhao Zhang
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Seiya Ozono
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Weitong Yao
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Hideaki Fujita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, 859-3298, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| |
Collapse
|
19
|
Borzooee F, Joris KD, Grant MD, Larijani M. APOBEC3G Regulation of the Evolutionary Race Between Adaptive Immunity and Viral Immune Escape Is Deeply Imprinted in the HIV Genome. Front Immunol 2019; 9:3032. [PMID: 30687306 PMCID: PMC6338068 DOI: 10.3389/fimmu.2018.03032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
APOBEC3G (A3G) is a host enzyme that mutates the genomes of retroviruses like HIV. Since A3G is expressed pre-infection, it has classically been considered an agent of innate immunity. We and others previously showed that the impact of A3G-induced mutations on the HIV genome extends to adaptive immunity also, by generating cytotoxic T cell (CTL) escape mutations. Accordingly, HIV genomic sequences encoding CTL epitopes often contain A3G-mutable “hotspot” sequence motifs, presumably to channel A3G action toward CTL escape. Here, we studied the depths and consequences of this apparent viral genome co-evolution with A3G. We identified all potential CTL epitopes in Gag, Pol, Env, and Nef restricted to several HLA class I alleles. We simulated A3G-induced mutations within CTL epitope-encoding sequences, and flanking regions. From the immune recognition perspective, we analyzed how A3G-driven mutations are predicted to impact CTL-epitope generation through modulating proteasomal processing and HLA class I binding. We found that A3G mutations were most often predicted to result in diminishing/abolishing HLA-binding affinity of peptide epitopes. From the viral genome evolution perspective, we evaluated enrichment of A3G hotspots at sequences encoding CTL epitopes and included control sequences in which the HIV genome was randomly shuffled. We found that sequences encoding immunogenic epitopes exhibited a selective enrichment of A3G hotspots, which were strongly biased to translate to non-synonymous amino acid substitutions. When superimposed on the known mutational gradient across the entire length of the HIV genome, we observed a gradient of A3G hotspot enrichment, and an HLA-specific pattern of the potential of A3G hotspots to lead to CTL escape mutations. These data illuminate the depths and extent of the co-evolution of the viral genome to subvert the host mutator A3G.
Collapse
Affiliation(s)
- Faezeh Borzooee
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Krista D Joris
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
20
|
Sugawara S, Thomas DL, Balagopal A. HIV-1 Infection and Type 1 Interferon: Navigating Through Uncertain Waters. AIDS Res Hum Retroviruses 2019; 35:25-32. [PMID: 29999412 DOI: 10.1089/aid.2018.0161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HIV-1 remains a chronic viral infection of global health importance. Although HIV-1 replication can be controlled by antiretroviral therapy (ART), there is no cure due to persistence of a long-lived latent reservoir. In addition, people living with HIV-1 who are taking ART still bear signatures of persistent immune activation that include continued type 1 interferon (IFN) signaling. Paradoxically, type 1 IFN exerts a limited role on the control of chronic HIV-1. Indeed, recent reports from humanized mice suggest that type 1 IFN may partly maintain the latent reservoir. In this review, we discuss the molecular interactions between HIV-1 and the type 1 IFN signaling pathway, and examine the efficacy of type 1 IFNs in vivo. We also explore whether limited type 1 IFN manipulation may have a therapeutic role.
Collapse
Affiliation(s)
- Sho Sugawara
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David L. Thomas
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashwin Balagopal
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
OhAinle M, Helms L, Vermeire J, Roesch F, Humes D, Basom R, Delrow JJ, Overbaugh J, Emerman M. A virus-packageable CRISPR screen identifies host factors mediating interferon inhibition of HIV. eLife 2018; 7:e39823. [PMID: 30520725 PMCID: PMC6286125 DOI: 10.7554/elife.39823] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022] Open
Abstract
Interferon (IFN) inhibits HIV replication by inducing antiviral effectors. To comprehensively identify IFN-induced HIV restriction factors, we assembled a CRISPR sgRNA library of Interferon Stimulated Genes (ISGs) into a modified lentiviral vector that allows for packaging of sgRNA-encoding genomes in trans into budding HIV-1 particles. We observed that knockout of Zinc Antiviral Protein (ZAP) improved the performance of the screen due to ZAP-mediated inhibition of the vector. A small panel of IFN-induced HIV restriction factors, including MxB, IFITM1, Tetherin/BST2 and TRIM5alpha together explain the inhibitory effects of IFN on the CXCR4-tropic HIV-1 strain, HIV-1LAI, in THP-1 cells. A second screen with a CCR5-tropic primary strain, HIV-1Q23.BG505, described an overlapping, but non-identical, panel of restriction factors. Further, this screen also identifies HIV dependency factors. The ability of IFN-induced restriction factors to inhibit HIV strains to replicate in human cells suggests that these human restriction factors are incompletely antagonized. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Molly OhAinle
- Divisions of Human Biology and Basic SciencesFred Hutchinson Cancer Research CenterWashingtonUnited States
| | - Louisa Helms
- Divisions of Human Biology and Basic SciencesFred Hutchinson Cancer Research CenterWashingtonUnited States
| | - Jolien Vermeire
- Divisions of Human Biology and Basic SciencesFred Hutchinson Cancer Research CenterWashingtonUnited States
| | - Ferdinand Roesch
- Divisions of Human Biology and Basic SciencesFred Hutchinson Cancer Research CenterWashingtonUnited States
| | - Daryl Humes
- Divisions of Human Biology and Basic SciencesFred Hutchinson Cancer Research CenterWashingtonUnited States
| | - Ryan Basom
- Genomics and Bioinformatics Shared ResourceFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Jeffrey J Delrow
- Genomics and Bioinformatics Shared ResourceFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Julie Overbaugh
- Divisions of Human Biology and Basic SciencesFred Hutchinson Cancer Research CenterWashingtonUnited States
| | - Michael Emerman
- Divisions of Human Biology and Basic SciencesFred Hutchinson Cancer Research CenterWashingtonUnited States
| |
Collapse
|
22
|
Colomer-Lluch M, Ruiz A, Moris A, Prado JG. Restriction Factors: From Intrinsic Viral Restriction to Shaping Cellular Immunity Against HIV-1. Front Immunol 2018; 9:2876. [PMID: 30574147 PMCID: PMC6291751 DOI: 10.3389/fimmu.2018.02876] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Antiviral restriction factors are host cellular proteins that constitute a first line of defense blocking viral replication and propagation. In addition to interfering at critical steps of the viral replication cycle, some restriction factors also act as innate sensors triggering innate responses against infections. Accumulating evidence suggests an additional role for restriction factors in promoting antiviral cellular immunity to combat viruses. Here, we review the recent progress in our understanding on how restriction factors, particularly APOBEC3G, SAMHD1, Tetherin, and TRIM5α have the cell-autonomous potential to induce cellular resistance against HIV-1 while promoting antiviral innate and adaptive immune responses. Also, we provide an overview of how these restriction factors may connect with protein degradation pathways to modulate anti-HIV-1 cellular immune responses, and we summarize the potential of restriction factors-based therapeutics. This review brings a global perspective on the influence of restrictions factors in intrinsic, innate, and also adaptive antiviral immunity opening up novel research avenues for therapeutic strategies in the fields of drug discovery, gene therapy, and vaccines to control viral infections.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Alba Ruiz
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Arnaud Moris
- Sorbonne Université, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
23
|
Flamar AL, Bonnabau H, Zurawski S, Lacabaratz C, Montes M, Richert L, Wiedemann A, Galmin L, Weiss D, Cristillo A, Hudacik L, Salazar A, Peltekian C, Thiebaut R, Zurawski G, Levy Y. HIV-1 T cell epitopes targeted to Rhesus macaque CD40 and DCIR: A comparative study of prototype dendritic cell targeting therapeutic vaccine candidates. PLoS One 2018; 13:e0207794. [PMID: 30500852 PMCID: PMC6267996 DOI: 10.1371/journal.pone.0207794] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/06/2018] [Indexed: 11/18/2022] Open
Abstract
HIV-1 infection can be controlled by anti-retroviral drug therapy, but this is a lifetime treatment and the virus remains latent and rapidly rebounds if therapy is stopped. HIV-1-infected individuals under this drug regimen have increased rates of cancers, cardiovascular diseases, and autoimmunity due to compromised immunity. A therapeutic vaccine boosting cellular immunity against HIV-1 is therefore desirable and, possibly combined with other immune modulating agents, could obviate the need for long-term drug therapies. An approach to elicit strong T cell-based immunity is to direct virus protein antigens specifically to dendritic cells (DCs), which are the key cell type for controlling immune responses. For eliciting therapeutic cellular immunity in HIV-1-infected individuals, we developed vaccines comprised of five T cell epitope-rich regions of HIV-1 Gag, Nef, and Pol (HIV5pep) fused to monoclonal antibodies that bind either, the antigen presenting cell activating receptor CD40, or the endocytic dendritic cell immunoreceptor DCIR. The study aimed to demonstrate vaccine safety, establish efficacy for broad T cell responses in both primed and naïve settings, and identify one candidate vaccine for human therapeutic development. The vaccines were administered to Rhesus macaques by intradermal injection with poly-ICLC adjuvant. The animals were either i) naïve or, ii) previously primed with modified vaccinia Ankara vector (MVA) encoding HIV-1 Gag, Pol, and Nef (MVA GagPolNef). In the MVA-primed groups, both DC-targeting vaccinations boosted HIV5pep-specific blood CD4+ T cells producing multiple cytokines, but did not affect the MVA-elicited CD8+ T cell responses. In the naive groups, both DC-targeting vaccines elicited antigen-specific polyfunctional CD4+ and CD8+ T cell responses to multiple epitopes and these responses were unchanged by a subsequent MVA GagPolNef boost. In both settings, the T cell responses elicited via the CD40-targeting vaccine were more robust and were detectable in all the animals, favoring further development of the CD40-targeting vaccine for therapeutic vaccination of HIV-1-infected individuals.
Collapse
Affiliation(s)
- Anne-Laure Flamar
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
| | - Henri Bonnabau
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
- Inserm, Bordeaux Population Health Research Center, UMR 1219, Inria SISTM, Université Bordeaux, ISPED, Bordeaux, France
| | - Sandra Zurawski
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
| | - Christine Lacabaratz
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service D’immunologie Clinique, Créteil, France
| | - Monica Montes
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
| | - Laura Richert
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France
- Inserm, Bordeaux Population Health Research Center, UMR 1219, Inria SISTM, Université Bordeaux, ISPED, Bordeaux, France
| | - Aurelie Wiedemann
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service D’immunologie Clinique, Créteil, France
| | - Lindsey Galmin
- Advanced BioScience Laboratories, Inc., Rockville, MD, United States of America
| | - Deborah Weiss
- Advanced BioScience Laboratories, Inc., Rockville, MD, United States of America
| | - Anthony Cristillo
- Advanced BioScience Laboratories, Inc., Rockville, MD, United States of America
| | - Lauren Hudacik
- Advanced BioScience Laboratories, Inc., Rockville, MD, United States of America
| | | | - Cécile Peltekian
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
| | - Rodolphe Thiebaut
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France
- Inserm, Bordeaux Population Health Research Center, UMR 1219, Inria SISTM, Université Bordeaux, ISPED, Bordeaux, France
| | - Gerard Zurawski
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France
- Baylor Institute for Immunology Research and INSERM U955, Dallas, Texas, United States of America
- * E-mail:
| | - Yves Levy
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service D’immunologie Clinique, Créteil, France
| |
Collapse
|
24
|
Paquin-Proulx D, Greenspun BC, Kitchen SM, Saraiva Raposo RA, Nixon DF, Grayfer L. Human interleukin-34-derived macrophages have increased resistance to HIV-1 infection. Cytokine 2018; 111:272-277. [PMID: 30241016 DOI: 10.1016/j.cyto.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
The establishment of latent HIV-1 reservoirs in terminally differentiated cells represents a major impediment to the success of antiretroviral therapies. Notably, macrophages (Mϕs) are susceptible to HIV-1 infection and recent evidence suggests that they may be involved in long-term HIV-1 persistence. While the extensive functional heterogeneity seen across the Mϕ cell lineage parallels the spectrum of HIV-1 susceptibility reported across these cell subsets, the facets of Mϕ HIV-1 resistance and susceptibility remain to be fully defined. Notably, the differentiation of most Mϕ subsets depends on signaling through the macrophage colony-stimulating factor receptor (M-CSFR), which in addition to M-CSF, is now known to bind the unrelated interleukin-34 (IL-34) cytokine. The biological need for two M-CSFR ligands awaits full elucidation. Here, we report that Mϕs differentiated from human peripheral blood monocytes with IL-34 are substantially more resistant to HIV-1 infection than M-CSF-derived Mϕs. Moreover, while both Mϕ subsets express comparable surface protein levels of the HIV-1 receptor and co-receptor, CD4 and CCR5 respectively, the IL-34-Mϕs express significantly greater levels of pertinent restriction factor genes, potentially accounting for their greater resistance to HIV-1 infection than that observed in M-CSF-Mϕs. Together, our findings underline previously unexplored differentiation pathways resulting in HIV-1-susceptible and resistant Mϕ subsets and pave the way for further research that may overcome one of the last major hurdles in developing more successful antiretroviral therapy.
Collapse
Affiliation(s)
- Dominic Paquin-Proulx
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Benjamin C Greenspun
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Shannon M Kitchen
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Rui André Saraiva Raposo
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Douglas F Nixon
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Leon Grayfer
- Department of Biological Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
25
|
El-Diwany R, Soliman M, Sugawara S, Breitwieser F, Skaist A, Coggiano C, Sangal N, Chattergoon M, Bailey JR, Siliciano RF, Blankson JN, Ray SC, Wheelan SJ, Thomas DL, Balagopal A. CMPK2 and BCL-G are associated with type 1 interferon-induced HIV restriction in humans. SCIENCE ADVANCES 2018; 4:eaat0843. [PMID: 30083606 PMCID: PMC6070316 DOI: 10.1126/sciadv.aat0843] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/19/2018] [Indexed: 05/14/2023]
Abstract
Type 1 interferons (IFN) are critical for host control of HIV and simian immunodeficiency virus. However, it is unknown which of the hundreds of interferon-stimulated genes (ISGs) restrict HIV in vivo. We sequenced RNA from cells that support HIV replication (activated CD4+ T cells) in 19 HIV-infected people before and after interferon-α2b (IFN-α2b) injection. IFN-α2b administration reduced plasma HIV RNA and induced mRNA expression in activated CD4+ T cells: The IFN-α2b-induced change of each mRNA was compared to the change in plasma HIV RNA. Of 99 ISGs, 13 were associated in magnitude with plasma HIV RNA decline. In addition to well-known restriction factors among the 13 ISGs, two novel genes, CMPK2 and BCL-G, were identified and confirmed for their ability to restrict HIV in vitro: The effect of IFN on HIV restriction in culture was attenuated with RNA interference to CMPK2, and overexpression of BCL-G diminished HIV replication. These studies reveal novel antiviral molecules that are linked with IFN-mediated restriction of HIV in humans.
Collapse
Affiliation(s)
- Ramy El-Diwany
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary Soliman
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sho Sugawara
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Florian Breitwieser
- Center for Computational Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyza Skaist
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Candelaria Coggiano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neel Sangal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Chattergoon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Justin R. Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel N. Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stuart C. Ray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah J. Wheelan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David L. Thomas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ashwin Balagopal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Li Y, Sun B, Esser S, Jessen H, Streeck H, Widera M, Yang R, Dittmer U, Sutter K. Expression Pattern of Individual IFNA Subtypes in Chronic HIV Infection. J Interferon Cytokine Res 2018; 37:541-549. [PMID: 29252127 DOI: 10.1089/jir.2017.0076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferon-α (IFN-α) plays an important role in HIV pathogenesis. IFN-α consists of 13 individual IFN-α subtypes, which exhibit individual antiviral and immunomodulatory activities in HIV infection. Here, we determined the expression profiles of all IFN-α subtypes in treated and treatment-naive HIV+ patients and their impact on the induction of distinct HIV restriction factors. We collected blood samples of chronic HIV+ patients, which underwent antiretroviral therapy or were treatment-naive, and determined the individual expression levels of different IFN-α subtypes and HIV restriction factors. HIV infection transiently enhanced the expression of IFNA mRNA. The IFN-α response was dominated by the most abundantly expressed subtypes IFNA4, A5, A7, and A14 in all individuals. HIV infection affected the expression pattern of the IFN-α response, in particular for IFNA2 and IFNA16, which were elevated by chronic HIV infection. Elevated expression of HIV restriction factors was observed in chronically HIV-infected patients, which partly decreased during successful antiretroviral treatment. In vitro stimulation of peripheral blood mononuclear cells revealed that IFN-α6, -α14, and -α21 were most effective in inducing the expression of HIV restriction factors. These results indicate that HIV infection induces a specific expression pattern of IFN-α subtypes, which in turn induce the expression of various HIV restriction factors.
Collapse
Affiliation(s)
- Yanpeng Li
- 1 Wuhan Institute of Virology , Chinese Academy of Sciences, Wuhan, PR China
| | - Binlian Sun
- 1 Wuhan Institute of Virology , Chinese Academy of Sciences, Wuhan, PR China
| | - Stefan Esser
- 2 Clinic of Dermatology, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | | | - Hendrik Streeck
- 4 Institute for HIV Research, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Marek Widera
- 5 Institute for Virology, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Rongge Yang
- 1 Wuhan Institute of Virology , Chinese Academy of Sciences, Wuhan, PR China
| | - Ulf Dittmer
- 5 Institute for Virology, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Kathrin Sutter
- 5 Institute for Virology, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| |
Collapse
|
27
|
Knuschke T, Rotan O, Bayer W, Kollenda S, Dickow J, Sutter K, Hansen W, Dittmer U, Lang KS, Epple M, Buer J, Westendorf AM. Induction of Type I Interferons by Therapeutic Nanoparticle-Based Vaccination Is Indispensable to Reinforce Cytotoxic CD8 + T Cell Responses During Chronic Retroviral Infection. Front Immunol 2018; 9:614. [PMID: 29740425 PMCID: PMC5924795 DOI: 10.3389/fimmu.2018.00614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/12/2018] [Indexed: 11/29/2022] Open
Abstract
T cell dysfunction and immunosuppression are characteristic for chronic viral infections and contribute to viral persistence. Overcoming these burdens is the goal of new therapeutic strategies to cure chronic infectious diseases. We recently described that therapeutic vaccination of chronic retrovirus infected mice with a calcium phosphate (CaP) nanoparticle (NP)-based vaccine carrier, functionalized with CpG and viral peptides is able to efficiently reactivate the CD8+ T cell response and improve the eradication of virus infected cells. However, the mechanisms underlying this effect were largely unclear. While type I interferons (IFNs I) are considered to drive T cell exhaustion by persistent immune activation during chronic viral infection, we here describe an indispensable role of IFN I induced by therapeutic vaccination to efficiently reinforce cytotoxic CD8+ T cells (CTL) and improve control of chronic retroviral infection. The induction of IFN I is CpG dependent and leads to significant IFN signaling indicated by upregulation of IFN stimulated genes. By vaccinating chronically retrovirus-infected mice lacking the IFN I receptor (IFNAR−/−) or by blocking IFN I signaling in vivo during therapeutic vaccination, we demonstrate that IFN I signaling is necessary to drive full reactivation of CTLs. Surprisingly, we also identified an impaired suppressive capability of regulatory T cells in the presence of IFNα, which implicates an important role for vaccine-induced IFNα in the regulation of the T cell response during chronic retroviral infection. Our data suggest that inducing IFN I signaling in conjunction with the presentation of viral antigens can reactivate immune functions and reduce viral loads in chronic infections. Therefore, we propose CaP NPs as potential therapeutic tool to treat chronic infections.
Collapse
Affiliation(s)
- Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Olga Rotan
- Institute of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Wibke Bayer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Kollenda
- Institute of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Julia Dickow
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl S Lang
- Institute for Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Institute of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
28
|
George J, Mattapallil JJ. Interferon-α Subtypes As an Adjunct Therapeutic Approach for Human Immunodeficiency Virus Functional Cure. Front Immunol 2018; 9:299. [PMID: 29520278 PMCID: PMC5827157 DOI: 10.3389/fimmu.2018.00299] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/02/2018] [Indexed: 01/12/2023] Open
Abstract
Human immunodeficiency virus (HIV) establishes life-long latency in infected individuals. Although highly active antiretroviral therapy (HAART) has had a significant impact on the course of HIV infection leading to a better long-term outcome, the pool of latent reservoir remains substantial even under HAART. Numerous approaches have been under development with the goal of eradicating the latent HIV reservoir though with limited success. Approaches that combine immune-mediated control of HIV to activate both the innate and the adaptive immune system under suppressive therapy along with "shock and kill" drugs may lead to a better control of the reactivated virus. Interferon-α (IFN-α) is an innate cytokine that has been shown to activate intracellular defenses capable of restricting and controlling HIV. IFN-α, however, harbors numerous functional subtypes that have been reported to display different binding affinities and potency. Recent studies have suggested that certain subtypes such as IFN-α8 and IFN-α14 have potent anti-HIV activity with little or no immune activation, whereas other subtypes such as IFN-α4, IFN-α5, and IFN-α14 activate NK cells. Could these subtypes be used in combination with other strategies to reduce the latent viral reservoir? Here, we review the role of IFN-α subtypes in HIV infection and discuss the possibility that certain subtypes could be potential adjuncts to a "shock and kill" or therapeutic vaccination strategy leading to better control of the latent reservoir and subsequent functional cure.
Collapse
Affiliation(s)
- Jeffy George
- Uniformed Services University, Bethesda, MD, United States
| | | |
Collapse
|
29
|
Interferon α subtypes in HIV infection. Cytokine Growth Factor Rev 2018; 40:13-18. [PMID: 29475588 DOI: 10.1016/j.cytogfr.2018.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023]
Abstract
Type I interferons (IFN), which are immediately induced after most virus infections, are central for direct antiviral immunity and link innate and adaptive immune responses. However, several viruses have evolved strategies to evade the IFN response by preventing IFN induction or blocking IFN signaling pathways. Thus, therapeutic application of exogenous type I IFN or agonists inducing type I IFN responses are a considerable option for future immunotherapies against chronic viral infections. An important part of the type I IFN family are 12 IFNα subtypes, which all bind the same receptor, but significantly differ in their biological activities. Up to date only one IFNα subtype (IFNα2) is being used in clinical treatment against chronic virus infections, however its therapeutic success rate is rather limited, especially during Human Immunodeficiency Virus (HIV) infection. Recent studies addressed the important question if other IFNα subtypes would be more potent against retroviral infections in in vitro and in vivo experiments. Indeed, very potent IFNα subtypes were defined and their antiviral and immunomodulatory properties were characterized. In this review we summarize the recent findings on the role of individual IFNα subtypes during HIV and Simian Immunodeficiency Virus infection. This includes their induction during HIV/SIV infection, their antiretroviral activity and the regulation of immune response against HIV by different IFNα subtypes. The findings might facilitate novel strategies for HIV cure or functional cure studies.
Collapse
|
30
|
Foster TL, Pickering S, Neil SJD. Inhibiting the Ins and Outs of HIV Replication: Cell-Intrinsic Antiretroviral Restrictions at the Plasma Membrane. Front Immunol 2018; 8:1853. [PMID: 29354117 PMCID: PMC5758531 DOI: 10.3389/fimmu.2017.01853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023] Open
Abstract
Like all viruses, human immunodeficiency viruses (HIVs) and their primate lentivirus relatives must enter cells in order to replicate and, once produced, new virions need to exit to spread to new targets. These processes require the virus to cross the plasma membrane of the cell twice: once via fusion mediated by the envelope glycoprotein to deliver the viral core into the cytosol; and secondly by ESCRT-mediated scission of budding virions during release. This physical barrier thus presents a perfect location for host antiviral restrictions that target enveloped viruses in general. In this review we will examine the current understanding of innate host antiviral defences that inhibit these essential replicative steps of primate lentiviruses associated with the plasma membrane, the mechanism by which these viruses have adapted to evade such defences, and the role that this virus/host battleground plays in the transmission and pathogenesis of HIV/AIDS.
Collapse
Affiliation(s)
- Toshana L Foster
- Department of Infectious Disease, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Suzanne Pickering
- Department of Infectious Disease, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Stuart J D Neil
- Department of Infectious Disease, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
31
|
Hotter D, Kirchhoff F. Interferons and beyond: Induction of antiretroviral restriction factors. J Leukoc Biol 2017; 103:465-477. [PMID: 29345347 DOI: 10.1002/jlb.3mr0717-307r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
Antiviral restriction factors are structurally and functionally diverse cellular proteins that play a key role in the first line of defense against viral pathogens. Although many cell types constitutively express restriction factors at low levels, their induction in response to viral exposure and replication is often required for potent control and repulse of the invading pathogens. It is well established that type I IFNs efficiently induce antiviral restriction factors. Accumulating evidence suggests that other types of IFN, as well as specific cytokines, such as IL-27, and other activators of the cell are also capable of enhancing the expression of restriction factors and hence to establish an antiviral cellular state. Agents that efficiently induce restriction factors, increase their activity, and/or render them resistant against viral antagonists without causing general inflammation and significant side effects hold some promise for novel therapeutic or preventive strategies. In the present review, we summarize some of the current knowledge on the induction of antiretroviral restriction factors and perspectives for therapeutic application.
Collapse
Affiliation(s)
- Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
32
|
Deshiere A, Joly-Beauparlant C, Breton Y, Ouellet M, Raymond F, Lodge R, Barat C, Roy MA, Corbeil J, Tremblay MJ. Global Mapping of the Macrophage-HIV-1 Transcriptome Reveals that Productive Infection Induces Remodeling of Host Cell DNA and Chromatin. Sci Rep 2017; 7:5238. [PMID: 28701698 PMCID: PMC5507862 DOI: 10.1038/s41598-017-05566-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/30/2017] [Indexed: 12/23/2022] Open
Abstract
It has been proposed that macrophages could serve as long-lived compartments for HIV-1 infection under in vivo situations because these cells are resistant to the virus-mediated cytopathic effect, produce progeny virus over extended periods of time and are localized in tissues that are often less accessible by treatment. Comprehensive experimental studies are thus needed to characterize the HIV-1-induced modulation of host genes in these myeloid lineage cells. To shed light on this important issue, we performed comparative analyses of mRNA expression levels of host genes in uninfected bystander and HIV-1-infected human macrophages using an infectious reporter virus construct coupled with a large-scale RNA sequencing approach. We observed a rapid differential expression of several host factors in the productively infected macrophage population including genes regulating DNA replication factors and chromatin remodeling. A siRNA-mediated screening study to functionally identify host determinants involved in HIV-1 biology has provided new information on the virus molecular regulation in macrophages.
Collapse
Affiliation(s)
- Alexandre Deshiere
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Charles Joly-Beauparlant
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Yann Breton
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Michel Ouellet
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Frédéric Raymond
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Robert Lodge
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Marc-André Roy
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Jacques Corbeil
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada.,Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada. .,Département de microbiologie-infectiologie et immunologie, Faculté de médecine, Université Laval, Québec, Canada.
| |
Collapse
|
33
|
French MA, Tjiam MC, Abudulai LN, Fernandez S. Antiviral Functions of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific IgG Antibodies: Effects of Antiretroviral Therapy and Implications for Therapeutic HIV-1 Vaccine Design. Front Immunol 2017; 8:780. [PMID: 28725225 PMCID: PMC5495868 DOI: 10.3389/fimmu.2017.00780] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/19/2017] [Indexed: 12/24/2022] Open
Abstract
Contemporary antiretroviral therapy (ART) is effective and tolerable for long periods of time but cannot eradicate human immunodeficiency virus type 1 (HIV-1) infection by either elimination of viral reservoirs or enhancement of HIV-1-specific immune responses. Boosting "protective" HIV-1-specific immune responses by active or passive immunization will therefore be necessary to control or eradicate HIV-1 infection and is currently the topic of intense investigation. Recently reported studies conducted in HIV patients and non-human primate (NHP) models of HIV-1 infection suggest that HIV-1-specific IgG antibody responses may contribute to the control of HIV-1 infection. However, production of IgG antibodies with virus neutralizing activity by vaccination remains problematic and while vaccine-induced natural killer cell-activating IgG antibodies have been shown to prevent the acquisition of HIV-1 infection, they may not be sufficient to control or eradicate established HIV-1 infection. It is, therefore, important to consider other functional characteristics of IgG antibody responses. IgG antibodies to viruses also mediate opsonophagocytic antibody responses against virions and capsids that enhance the function of phagocytic cells playing critical roles in antiviral immune responses, particularly conventional dendritic cells and plasmacytoid dendritic cells. Emerging evidence suggests that these antibody functions might contribute to the control of HIV-1 infection. In addition, IgG antibodies contribute to the intracellular degradation of viruses via binding to the cytosolic fragment crystallizable (Fc) receptor tripartite motif containing-21 (TRIM21). The functional activity of an IgG antibody response is influenced by the IgG subclass content, which affects binding to antigens and to Fcγ receptors on phagocytic cells and to TRIM21. The IgG subclass content and avidity of IgG antibodies is determined by germinal center (GC) reactions in follicles of lymphoid tissue. As HIV-1 infects cells in GCs and induces GC dysfunction, which may persist during ART, strategies for boosting HIV-1-specific IgG antibody responses should include early commencement of ART and possibly the use of particular antiretroviral drugs to optimize drug levels in lymphoid follicles. Finally, enhancing particular functions of HIV-1-specific IgG antibody responses by using adjuvants or cytokines to modulate the IgG subclass content of the antibody response might be investigated in NHP models of HIV-1 infection and during trials of therapeutic vaccines in HIV patients.
Collapse
Affiliation(s)
- Martyn A. French
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine, Perth, WA, Australia
| | - M. Christian Tjiam
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Laila N. Abudulai
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Sonia Fernandez
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
34
|
Sandstrom TS, Ranganath N, Angel JB. Impairment of the type I interferon response by HIV-1: Potential targets for HIV eradication. Cytokine Growth Factor Rev 2017; 37:1-16. [PMID: 28455216 DOI: 10.1016/j.cytogfr.2017.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
By interfering with the type I interferon (IFN1) response, human immunodeficiency virus 1 (HIV-1) can circumvent host antiviral signalling and establish persistent viral reservoirs. HIV-1-mediated defects in the IFN pathway are numerous, and include the impairment of protein receptors involved in pathogen detection, downstream signalling cascades required for IFN1 upregulation, and expression or function of key IFN1-inducible, antiviral proteins. Despite this, the activation of IFN1-inducible, antiviral proteins has been shown to facilitate the killing of latently HIV-infected cells in vitro. Understanding how IFN1 signalling is blocked in physiologically-relevant models of HIV-1 infection, and whether these defects can be reversed, is therefore of great importance for the development of novel therapeutic strategies aimed at eradicating the HIV-1 reservoir.
Collapse
Affiliation(s)
- Teslin S Sandstrom
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Nischal Ranganath
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Jonathan B Angel
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Division of Infectious Diseases, Ottawa Hospital-General Campus, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
35
|
A novel mechanism linking memory stem cells with innate immunity in protection against HIV-1 infection. Sci Rep 2017; 7:1057. [PMID: 28432326 PMCID: PMC5430909 DOI: 10.1038/s41598-017-01188-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/27/2017] [Indexed: 11/23/2022] Open
Abstract
HIV infection affects 37 million people and about 1.7 million are infected annually. Among the phase III clinical trials only the RV144 vaccine trial elicited significant protection against HIV-1 acquisition, but the efficacy and immune memory were inadequate. To boost these vaccine functions we studied T stem cell memory (TSCM) and innate immunity. TSCM cells were identified by phenotypic markers of CD4+ T cells and they were further characterised into 4 subsets. These expressed the common IL-2/IL-15 receptors and another subset of APOBEC3G anti-viral restriction factors, both of which were upregulated. In contrast, CD4+ TSCM cells expressing CCR5 co-receptors and α4β7 mucosal homing integrins were decreased. A parallel increase in CD4+ T cells was recorded with IL-15 receptors, APOBEC3G and CC chemokines, the latter downmodulating CCR5 molecules. We suggest a novel mechanism of dual memory stem cells; the established sequential memory pathway, TSCM →Central →Effector memory CD4+ T cells and the innate pathway consisting of the 4 subsets of TSCM. Both pathways are likely to be activated by endogenous HSP70. The TSCM memory stem cell and innate immunity pathways have to be optimised to boost the efficacy and immune memory of protection against HIV-1 in the clinical trial.
Collapse
|
36
|
Zhang XL, Song JH, Pang W, Zheng YT. Molecular cloning and anti-HIV-1 activities of APOBEC3s from northern pig-tailed macaques (Macaca leonina). DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2017; 37:246-51. [PMID: 27469256 DOI: 10.13918/j.issn.2095-8137.2016.4.246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Northern pig-tailed macaques (NPMs, Macaca leonina) are susceptible to HIV-1 infection largely due to the loss of HIV-1-restricting factor TRIM5α. However, great impediments still exist in the persistent replication of HIV-1 in vivo, suggesting some viral restriction factors are reserved in this host. The APOBEC3 proteins have demonstrated a capacity to restrict HIV-1 replication, but their inhibitory effects in NPMs remain elusive. In this study, we cloned the NPM A3A-A3H genes, and determined by BLAST searching that their coding sequences (CDSs) showed 99% identity to the corresponding counterparts from rhesus and southern pig-tailed macaques. We further analyzed the anti-HIV-1 activities of the A3A-A3H genes, and found that A3G and A3F had the greatest anti-HIV-1 activity compared with that of other members. The results of this study indicate that A3G and A3F might play critical roles in limiting HIV-1 replication in NPMs in vivo. Furthermore, this research provides valuable information for the optimization of monkey models of HIV-1 infection.
Collapse
Affiliation(s)
- Xiao-Liang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, China
| | - Jia-Hao Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;Institute of Health Sciences, Anhui University, Hefei Anhui 230601, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, China;Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.
| |
Collapse
|
37
|
Dynamic Modulation of Expression of Lentiviral Restriction Factors in Primary CD4 + T Cells following Simian Immunodeficiency Virus Infection. J Virol 2017; 91:JVI.02189-16. [PMID: 28100613 DOI: 10.1128/jvi.02189-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/11/2017] [Indexed: 01/12/2023] Open
Abstract
Although multiple restriction factors have been shown to inhibit HIV/SIV replication, little is known about their expression in vivo Expression of 45 confirmed and putative HIV/SIV restriction factors was analyzed in CD4+ T cells from peripheral blood and the jejunum in rhesus macaques, revealing distinct expression patterns in naive and memory subsets. In both peripheral blood and the jejunum, memory CD4+ T cells expressed higher levels of multiple restriction factors compared to naive cells. However, relative to their expression in peripheral blood CD4+ T cells, jejunal CCR5+ CD4+ T cells exhibited significantly lower expression of multiple restriction factors, including APOBEC3G, MX2, and TRIM25, which may contribute to the exquisite susceptibility of these cells to SIV infection. In vitro stimulation with anti-CD3/CD28 antibodies or type I interferon resulted in upregulation of distinct subsets of multiple restriction factors. After infection of rhesus macaques with SIVmac239, the expression of most confirmed and putative restriction factors substantially increased in all CD4+ T cell memory subsets at the peak of acute infection. Jejunal CCR5+ CD4+ T cells exhibited the highest levels of SIV RNA, corresponding to the lower restriction factor expression in this subset relative to peripheral blood prior to infection. These results illustrate the dynamic modulation of confirmed and putative restriction factor expression by memory differentiation, stimulation, tissue microenvironment and SIV infection and suggest that differential expression of restriction factors may play a key role in modulating the susceptibility of different populations of CD4+ T cells to lentiviral infection.IMPORTANCE Restriction factors are genes that have evolved to provide intrinsic defense against viruses. HIV and simian immunodeficiency virus (SIV) target CD4+ T cells. The baseline level of expression in vivo and degree to which expression of restriction factors is modulated by conditions such as CD4+ T cell differentiation, stimulation, tissue location, or SIV infection are currently poorly understood. We measured the expression of 45 confirmed and putative restriction factors in primary CD4+ T cells from rhesus macaques under various conditions, finding dynamic changes in each state. Most dramatically, in acute SIV infection, the expression of almost all target genes analyzed increased. These are the first measurements of many of these confirmed and putative restriction factors in primary cells or during the early events after SIV infection and suggest that the level of expression of restriction factors may contribute to the differential susceptibility of CD4+ T cells to SIV infection.
Collapse
|
38
|
Cytokines Elevated in HIV Elite Controllers Reduce HIV Replication In Vitro and Modulate HIV Restriction Factor Expression. J Virol 2017; 91:JVI.02051-16. [PMID: 28053103 DOI: 10.1128/jvi.02051-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
A subset of HIV-infected individuals termed elite controllers (ECs) maintain CD4+ T cell counts and control viral replication in the absence of antiretroviral therapy (ART). Systemic cytokine responses may differentiate ECs from subjects with uncontrolled viral replication or from those who require ART to suppress viral replication. We measured 87 cytokines in four groups of women: 73 ECs, 42 with pharmacologically suppressed viremia (ART), 42 with uncontrolled viral replication (noncontrollers [NCs]), and 48 HIV-uninfected (NEG) subjects. Four cytokines were elevated in ECs but not NCs or ART subjects: CCL14, CCL21, CCL27, and XCL1. In addition, median stromal cell-derived factor-1 (SDF-1) levels were 43% higher in ECs than in NCs. The combination of the five cytokines suppressed R5 and X4 virus replication in resting CD4+ T cells, and individually SDF-1β, CCL14, and CCL27 suppressed R5 virus replication, while SDF-1β, CCL21, and CCL14 suppressed X4 virus replication. Functional studies revealed that the combination of the five cytokines upregulated CD69 and CCR5 and downregulated CXCR4 and CCR7 on CD4+ T cells. The CD69 and CXCR4 effects were driven by SDF-1, while CCL21 downregulated CCR7. The combination of the EC-associated cytokines induced expression of the anti-HIV host restriction factors IFITM1 and IFITM2 and suppressed expression of RNase L and SAMHD1. These results identify a set of cytokines that are elevated in ECs and define their effects on cellular activation, HIV coreceptor expression, and innate restriction factor expression. This cytokine pattern may be a signature characteristic of HIV-1 elite control, potentially important for HIV therapeutic and curative strategies.IMPORTANCE Approximately 1% of people infected with HIV control virus replication without taking antiviral medications. These subjects, termed elite controllers (ECs), are known to have stronger immune responses targeting HIV than the typical HIV-infected subject, but the exact mechanisms of how their immune responses control infection are not known. In this study, we identified five soluble immune signaling molecules (cytokines) in the blood that were higher in ECs than in subjects with typical chronic HIV infection. We demonstrated that these cytokines can activate CD4+ T cells, the target cells for HIV infection. Furthermore, these five EC-associated cytokines could change expression levels of intrinsic resistance factors, or molecules inside the target cell that fight HIV infection. This study is significant in that it identified cytokines elevated in subjects with a good immune response against HIV and defined potential mechanisms as to how these cytokines could induce resistance to the virus in target cells.
Collapse
|
39
|
Yu J, Liang C, Liu SL. Interferon-inducible LY6E Protein Promotes HIV-1 Infection. J Biol Chem 2017; 292:4674-4685. [PMID: 28130445 DOI: 10.1074/jbc.m116.755819] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/24/2017] [Indexed: 11/06/2022] Open
Abstract
LY6E is a glycosylphosphatidylinositol-anchored, IFN-inducible protein that regulates T lymphocytes proliferation, differentiation, and development. Single-nucleotide polymorphism rs2572886 in the LY6 family protein locus has been shown to associate with accelerated progression to AIDS. In this study, we show that LY6E promotes HIV, type 1 (HIV-1) infection by enhancing viral entry and gene expression. Knockdown of LY6E in human peripheral blood mononuclear, SupT1, and THP-1 cells diminishes HIV-1 replication. Virion-cell and cell-cell fusion experiments revealed that LY6E promotes membrane fusion of the viral entry step. Interestingly, we find that LTR-driven HIV-1 gene expression is also enhanced by LY6E, suggesting additional roles of LY6E in HIV-1 replication. HIV-1 infection induces LY6E expression in human peripheral blood mononuclear cells, concomitant with increased production of type I IFN and some classical IFN-stimulated genes. Altogether, our results demonstrate that IFN-inducible LY6E promotes HIV-1 entry and replication and highlight a positive regulatory role of IFN-induced proteins in HIV-1 infection. Our work emphasizes the complexity of IFN-mediated signaling in HIV-host interaction and AIDS pathogenesis.
Collapse
Affiliation(s)
- Jingyou Yu
- From the Center for Retrovirus Research.,Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Chen Liang
- the McGill AIDS Centre, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada, and.,the Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Shan-Lu Liu
- From the Center for Retrovirus Research, .,Center for Microbial Interface Biology, and
| |
Collapse
|
40
|
Moysi E, Estes JD, Petrovas C. Novel Imaging Methods for Analysis of Tissue Resident Cells in HIV/SIV. Curr HIV/AIDS Rep 2016; 13:38-43. [PMID: 26830285 DOI: 10.1007/s11904-016-0300-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of advanced tissue-imaging methodologies has greatly facilitated the study of molecular mechanisms and cellular interactions in humans and animal models of disease. Particularly, in HIV research, there is an ever-increasing demand for a comprehensive analysis of immune cell dynamics at tissue level stemming from the need to advance our understanding of those interactions that regulate the generation of adaptive antigen-specific immune responses. The latter is critical for the development of vaccines to elicit broadly neutralizing antibodies as well as for the discovery of novel targets for immuno-therapies to strengthen the cytolytic arm of the immune system at local level. In this review, we focus on current and emerging imaging technologies, discuss their strengths and limitations, and examine how such technologies can inform the development of new treatments and vaccination strategies. We also present some perspective on the future of the technology development.
Collapse
Affiliation(s)
- Eirini Moysi
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136-1013, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, NIAID, National Institutes of Health, Building 40, 40 Convent Drive, Bethesda, MD, 20892-3005, USA.
| |
Collapse
|
41
|
Murira A, Lamarre A. Type-I Interferon Responses: From Friend to Foe in the Battle against Chronic Viral Infection. Front Immunol 2016; 7:609. [PMID: 28066419 PMCID: PMC5165262 DOI: 10.3389/fimmu.2016.00609] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022] Open
Abstract
Type I interferons (IFN-I) have long been heralded as key contributors to effective antiviral responses. More widely understood in the context of acute viral infection, the role of this pleiotropic cytokine has been characterized as triggering antiviral states in cells and potentiating adaptive immune responses. Upon induction in the innate immune response, IFN-I triggers the expression of interferon-stimulated genes (ISGs), which upregulate the effector function of immune cells (e.g., dendritic cells, B cells, and T cells) toward successful resolution of infections. However, emerging lines of evidence reveal that viral persistence in the course of chronic infections could be driven by deleterious immunomodulatory effects upon sustained IFN-I expression. In this setting, elevation of IFN-I and ISGs is directly correlated to viral persistence and elevated viral loads. It is important to note that the correlation among IFN-I expression, ISGs, and viral persistence may be a cause or effect of chronic infection and this is an important distinction to make toward establishing the dichotomous nature of IFN-I responses. The aim of this mini review is to (i) summarize the interaction between IFN-I and downstream effector responses and therefore (ii) delineate the function of this cytokine on positive and negative immunoregulation in chronic infection. This is a significant consideration given the current therapeutic administration of IFN-I in chronic viral infections whose therapeutic significance is projected to continue despite emergence of increasingly efficacious antiviral regimens. Furthermore, elucidation of the interplay between virus and the antiviral response in the context of IFN-I will elucidate avenues toward more effective therapeutic and prophylactic measures against chronic viral infections.
Collapse
Affiliation(s)
- Armstrong Murira
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier , Laval, QC , Canada
| | - Alain Lamarre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier , Laval, QC , Canada
| |
Collapse
|
42
|
Li SX, Barrett BS, Guo K, Santiago ML. Tetherin/BST-2: Restriction Factor or Immunomodulator? Curr HIV Res 2016; 14:235-46. [PMID: 26957198 DOI: 10.2174/1570162x14999160224102752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cell-mediated immune (CMI) responses are critical for the control of HIV-1 infection and their importance was highlighted by the existence of viral proteins, particularly Vpu and Nef, that antagonize these responses. Pandemic HIV-1 Vpu counteracts Tetherin/BST-2, a host factor that could prevent the release of HIV-1 virions by tethering virions on the cell surface, but a link between Tetherin and HIV-1 CMI responses has not yet been demonstrated in vivo. In vitro, the virological and immunological impact of Tetherin-mediated accumulation of virions ranged from enhanced or diminished cell-to-cell spread to enhanced recognition by virus-specific antibodies for natural killer cellmediated lysis. However, Tetherin-restricted virions could be internalized through an endocytosis motif in the Tetherin cytoplasmic tail. METHODS Given the uncertainties on which in vitro results manifest in vivo and the dearth of knowledge on how Tetherin influences retroviral immunity, in vivo retrovirus infections in mice encoding wild-type, null and endocytosis-defective Tetherin were performed. Here, we review and highlight the results from these in vivo studies. RESULTS Current data suggests that endocytosis-defective Tetherin functions as a potent innate restriction factor. By contrast, endocytosis-competent Tetherin, the form found in most mammals including humans and the form counteracted by HIV-1 Vpu, was linked to stronger CMI responses in mice. CONCLUSION We propose that the main role of endocytosis-competent Tetherin is not to directly restrict retroviral replication, but to promote a more effective CMI response against retroviruses.
Collapse
Affiliation(s)
| | | | | | - Mario L Santiago
- Division of Infectious Diseases, University of Colorado Denver, Mail Stop B-168, 12700 E 19th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
43
|
Vanwalscappel B, Rato S, Perez-Olmeda M, Díez Fuertes F, Casartelli N, Alcami J, Mammano F. Genetic and phenotypic analyses of sequential vpu alleles from HIV-infected IFN-treated patients. Virology 2016; 500:247-258. [PMID: 27855354 DOI: 10.1016/j.virol.2016.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
Treatment of HIV-infected patients with IFN-α results in significant, but clinically insufficient, reductions of viremia. IFN induces the expression of several antiviral proteins including BST-2, which inhibits HIV by multiple mechanisms. The viral protein Vpu counteracts different effects of BST-2. We thus asked if Vpu proteins from IFN-treated patients displayed improved anti-BST-2 activities as compared to Vpu from baseline. Deep-sequencing analyses revealed that in five of seven patients treated by IFN-α for a concomitant HCV infection in the absence of antiretroviral drugs, the dominant Vpu sequences differed before and during treatment. In three patients, vpu alleles that emerged during treatment improved virus replication in the presence of IFN-α, and two of them conferred improved virus budding from cells expressing BST-2. Differences were observed for the ability to down-regulate CD4, while all Vpu variants potently down-modulated BST-2 from the cell surface. This report discloses relevant consequences of IFN-treatment on HIV properties.
Collapse
Affiliation(s)
- Bénédicte Vanwalscappel
- INSERM, U941, Paris F-75010, France; Univ Paris Diderot, Sorbonne Paris Cité, F-75475 Paris, France
| | | | - Mayte Perez-Olmeda
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Díez Fuertes
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - José Alcami
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.
| | - Fabrizio Mammano
- INSERM, U941, Paris F-75010, France; Univ Paris Diderot, Sorbonne Paris Cité, F-75475 Paris, France.
| |
Collapse
|
44
|
Desimmie BA, Burdick RC, Izumi T, Doi H, Shao W, Alvord WG, Sato K, Koyanagi Y, Jones S, Wilson E, Hill S, Maldarelli F, Hu WS, Pathak VK. APOBEC3 proteins can copackage and comutate HIV-1 genomes. Nucleic Acids Res 2016; 44:7848-65. [PMID: 27439715 PMCID: PMC5027510 DOI: 10.1093/nar/gkw653] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/31/2023] Open
Abstract
Although APOBEC3 cytidine deaminases A3G, A3F, A3D and A3H are packaged into virions and inhibit viral replication by inducing G-to-A hypermutation, it is not known whether they are copackaged and whether they can act additively or synergistically to inhibit HIV-1 replication. Here, we showed that APOBEC3 proteins can be copackaged by visualization of fluorescently-tagged APOBEC3 proteins using single-virion fluorescence microscopy. We further determined that viruses produced in the presence of A3G + A3F and A3G + A3H, exhibited extensive comutation of viral cDNA, as determined by the frequency of G-to-A mutations in the proviral genomes in the contexts of A3G (GG-to-AG) and A3D, A3F or A3H (GA-to-AA) edited sites. The copackaging of A3G + A3F and A3G + A3H resulted in an additive increase and a modest synergistic increase (1.8-fold) in the frequency of GA-to-AA mutations, respectively. We also identified distinct editing site trinucleotide sequence contexts for each APOBEC3 protein and used them to show that hypermutation of proviral DNAs from seven patients was induced by A3G, A3F (or A3H), A3D and A3G + A3F (or A3H). These results indicate that APOBEC3 proteins can be copackaged and can comutate the same genomes, and can cooperate to inhibit HIV replication.
Collapse
Affiliation(s)
- Belete A Desimmie
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ryan C Burdick
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Taisuke Izumi
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Hibiki Doi
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wei Shao
- Clinical Retrovirology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - W Gregory Alvord
- Statistical Consulting, Data Management Services, Inc., Frederick, MD 21702, USA
| | - Kei Sato
- Institute of Virus Research, Kyoto University, Kyoto, 606-8057, Japan CREST, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Yoshio Koyanagi
- Institute of Virus Research, Kyoto University, Kyoto, 606-8057, Japan
| | - Sara Jones
- Leidos Biomedical Research, Inc., Bethesda, MD 20892, USA
| | - Eleanor Wilson
- Clinical Retrovirology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Shawn Hill
- Clinical Retrovirology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Frank Maldarelli
- Clinical Retrovirology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
45
|
Oberle CS, Joos B, Rusert P, Campbell NK, Beauparlant D, Kuster H, Weber J, Schenkel CD, Scherrer AU, Magnus C, Kouyos R, Rieder P, Niederöst B, Braun DL, Pavlovic J, Böni J, Yerly S, Klimkait T, Aubert V, Trkola A, Metzner KJ, Günthard HF. Tracing HIV-1 transmission: envelope traits of HIV-1 transmitter and recipient pairs. Retrovirology 2016; 13:62. [PMID: 27595568 PMCID: PMC5011806 DOI: 10.1186/s12977-016-0299-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/22/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mucosal HIV-1 transmission predominantly results in a single transmitted/founder (T/F) virus establishing infection in the new host despite the generally high genetic diversity of the transmitter virus population. To what extent HIV-1 transmission is a stochastic process or driven by selective forces that allow T/F viruses best to overcome bottlenecks in transmission has not been conclusively resolved. Building on prior investigations that suggest HIV-1 envelope (Env) features to contribute in the selection process during transmission, we compared phenotypic virus characteristics of nine HIV-1 subtype B transmission pairs, six men who have sex with men and three male-to-female transmission pairs. RESULTS All recipients were identified early in acute infection and harbored based on extensive sequencing analysis a single T/F virus allowing a controlled analysis of virus properties in matched transmission pairs. Recipient and transmitter viruses from the closest time point to transmission showed no signs of selection for specific Env modifications such as variable loop length and glycosylation. Recipient viruses were resistant to circulating plasma antibodies of the transmitter and also showed no altered sensitivity to a large panel of entry inhibitors and neutralizing antibodies. The recipient virus did not consistently differ from the transmitter virus in terms of entry kinetics, cell-cell transmission and replicative capacity in primary cells. Our paired analysis revealed a higher sensitivity of several recipient virus isolates to interferon-α (IFNα) which suggests that resistance to IFNα cannot be a general driving force in T/F establishment. CONCLUSIONS With the exception of increased IFNα sensitivity, none of the phenotypic virus properties we investigated clearly distinguished T/F viruses from their matched transmitter viruses supporting the notion that at least in subtype B infection HIV-1 transmission is to a considerable extent stochastic.
Collapse
Affiliation(s)
- Corinna S Oberle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Beda Joos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nottania K Campbell
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - David Beauparlant
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Herbert Kuster
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Corinne D Schenkel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra U Scherrer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Carsten Magnus
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Philip Rieder
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Barbara Niederöst
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jovan Pavlovic
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Sabine Yerly
- Laboratory of Virology, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - Thomas Klimkait
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Vincent Aubert
- Division of Immunology and Allergy, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
46
|
Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med 2016; 22:1043-9. [PMID: 27500724 PMCID: PMC5014606 DOI: 10.1038/nm.4156] [Citation(s) in RCA: 578] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022]
Abstract
Although antiretroviral therapy (ART) suppresses viral replication to clinically undetectable levels, HIV-1 persists in CD4+ T cells in a latent form not targeted by the immune system or ART1–5. This latent reservoir is a major barrier to cure. Many individuals initiate ART during chronic infection, and in this setting, most proviruses are defective6. However, the dynamics of the accumulation and persistence of defective proviruses during acute HIV-1 infection are largely unknown. Here we show that defective proviruses accumulate rapidly within the first few weeks of infection to make up over 93% of all proviruses, regardless of how early ART is initiated. Using an unbiased method to amplify near full-length proviral genomes from HIV-1 infected adults treated at different stages of infection, we demonstrate that early ART initiation limits the size of the reservoir but does not profoundly impact the proviral landscape. This analysis allows us to revise our understanding of the composition of proviral populations and estimate the true reservoir size in individuals treated early vs. late in infection. Additionally, we demonstrate that common assays for measuring the reservoir do not correlate with reservoir size. These findings reveal hurdles that must be overcome to successfully analyze future HIV-1 cure strategies.
Collapse
|
47
|
Abstract
Whether type I interferons (IFNs) hinder or facilitate HIV disease progression is controversial. Type I IFNs induce the production of restriction factors that protect against mucosal HIV/SIV acquisition and limit virus replication once systemic infection is established. However, type I IFNs also increase systemic immune activation, a predictor of poor CD4+ T-cell recovery and progression to AIDS, and facilitate production and recruitment of target CD4+ T cells. In addition, type I IFNs induce CD4+ T-cell apoptosis and limit antigen-specific CD4+ and CD8+ T-cell responses. The outcomes of type I IFN signaling may depend on the timing of IFN-stimulated gene upregulation relative to HIV exposure and infection, local versus systemic type I IFN-stimulated gene expression, and the subtype of type I IFN evaluated. To date, most interventional studies have evaluated IFNα2 administration largely in chronic HIV infection, and few have evaluated the effects on tissues or the HIV reservoir. Thus, whether the effect of type I IFN signaling on HIV disease is good, bad, or so complicated as to be ugly remains a topic of hot debate.
Collapse
Affiliation(s)
- Netanya S Utay
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
48
|
Interferon Alpha Subtype-Specific Suppression of HIV-1 Infection In Vivo. J Virol 2016; 90:6001-6013. [PMID: 27099312 DOI: 10.1128/jvi.00451-16] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/13/2016] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Although all 12 subtypes of human interferon alpha (IFN-α) bind the same receptor, recent results have demonstrated that they elicit unique host responses and display distinct efficacies in the control of different viral infections. The IFN-α2 subtype is currently in HIV-1 clinical trials, but it has not consistently reduced viral loads in HIV-1 patients and is not the most effective subtype against HIV-1 in vitro We now demonstrate in humanized mice that, when delivered at the same high clinical dose, the human IFN-α14 subtype has very potent anti-HIV-1 activity whereas IFN-α2 does not. In both postexposure prophylaxis and treatment of acute infections, IFN-α14, but not IFN-α2, significantly suppressed HIV-1 replication and proviral loads. Furthermore, HIV-1-induced immune hyperactivation, which is a prognosticator of disease progression, was reduced by IFN-α14 but not IFN-α2. Whereas ineffective IFN-α2 therapy was associated with CD8(+) T cell activation, successful IFN-α14 therapy was associated with increased intrinsic and innate immunity, including significantly higher induction of tetherin and MX2, increased APOBEC3G signature mutations in HIV-1 proviral DNA, and higher frequencies of TRAIL(+) NK cells. These results identify IFN-α14 as a potent new therapeutic that operates via mechanisms distinct from those of antiretroviral drugs. The ability of IFN-α14 to reduce both viremia and proviral loads in vivo suggests that it has strong potential as a component of a cure strategy for HIV-1 infections. The broad implication of these results is that the antiviral efficacy of each individual IFN-α subtype should be evaluated against the specific virus being treated. IMPORTANCE The naturally occurring antiviral protein IFN-α2 is used to treat hepatitis viruses but has proven rather ineffective against HIV in comparison to triple therapy with the antiretroviral (ARV) drugs. Although ARVs suppress the replication of HIV, they fail to completely clear infections. Since IFN-α acts by different mechanism than ARVs and has been shown to reduce HIV proviral loads, clinical trials are under way to test whether IFN-α2 combined with ARVs might eradicate HIV-1 infections. IFN-α is actually a family of 12 distinct proteins, and each IFN-α subtype has different efficacies toward different viruses. Here, we use mice that contain a human immune system, so they can be infected with HIV. With this model, we demonstrate that while IFN-α2 is only weakly effective against HIV, IFN-α14 is extremely potent. This discovery identifies IFN-α14 as a more powerful IFN-α subtype for use in combination therapy trials aimed toward an HIV cure.
Collapse
|
49
|
Abdel-Mohsen M, Chavez L, Tandon R, Chew GM, Deng X, Danesh A, Keating S, Lanteri M, Samuels ML, Hoh R, Sacha JB, Norris PJ, Niki T, Shikuma CM, Hirashima M, Deeks SG, Ndhlovu LC, Pillai SK. Human Galectin-9 Is a Potent Mediator of HIV Transcription and Reactivation. PLoS Pathog 2016; 12:e1005677. [PMID: 27253379 PMCID: PMC4890776 DOI: 10.1371/journal.ppat.1005677] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
Identifying host immune determinants governing HIV transcription, latency and infectivity in vivo is critical to developing an HIV cure. Based on our recent finding that the host factor p21 regulates HIV transcription during antiretroviral therapy (ART), and published data demonstrating that the human carbohydrate-binding immunomodulatory protein galectin-9 regulates p21, we hypothesized that galectin-9 modulates HIV transcription. We report that the administration of a recombinant, stable form of galectin-9 (rGal-9) potently reverses HIV latency in vitro in the J-Lat HIV latency model. Furthermore, rGal-9 reverses HIV latency ex vivo in primary CD4+ T cells from HIV-infected, ART-suppressed individuals (p = 0.002), more potently than vorinostat (p = 0.02). rGal-9 co-administration with the latency reversal agent "JQ1", a bromodomain inhibitor, exhibits synergistic activity (p<0.05). rGal-9 signals through N-linked oligosaccharides and O-linked hexasaccharides on the T cell surface, modulating the gene expression levels of key transcription initiation, promoter proximal-pausing, and chromatin remodeling factors that regulate HIV latency. Beyond latent viral reactivation, rGal-9 induces robust expression of the host antiviral deaminase APOBEC3G in vitro and ex vivo (FDR<0.006) and significantly reduces infectivity of progeny virus, decreasing the probability that the HIV reservoir will be replenished when latency is reversed therapeutically. Lastly, endogenous levels of soluble galectin-9 in the plasma of 72 HIV-infected ART-suppressed individuals were associated with levels of HIV RNA in CD4+ T cells (p<0.02) and with the quantity and binding avidity of circulating anti-HIV antibodies (p<0.009), suggesting a role of galectin-9 in regulating HIV transcription and viral production in vivo during therapy. Our data suggest that galectin-9 and the host glycosylation machinery should be explored as foundations for novel HIV cure strategies.
Collapse
Affiliation(s)
- Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Leonard Chavez
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Ravi Tandon
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Glen M. Chew
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Ali Danesh
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Sheila Keating
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Marion Lanteri
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Michael L. Samuels
- RainDance Technologies, Inc., Billerica, Massachusetts, United States of America
| | - Rebecca Hoh
- University of California, San Francisco, California, United States of America
| | - Jonah B. Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Philip J. Norris
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Toshiro Niki
- GalPharma Co., Ltd., Takamatsu-shi, Kagawa, Japan
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Cecilia M. Shikuma
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Mitsuomi Hirashima
- GalPharma Co., Ltd., Takamatsu-shi, Kagawa, Japan
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Steven G. Deeks
- University of California, San Francisco, California, United States of America
| | - Lishomwa C. Ndhlovu
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Satish K. Pillai
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Asmuth DM, Utay NS, Pollard RB. Peginterferon α-2a for the treatment of HIV infection. Expert Opin Investig Drugs 2016; 25:249-57. [PMID: 26667398 DOI: 10.1517/13543784.2016.1132699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Novel approaches are urgently needed to achieve the next level of control of HIV infection beyond antiretroviral medications that will lead to the ultimate goal of curing HIV infection. Exploiting the innate immune system control of HIV is one possible component of that strategy with pegylated interferon α representing a well-characterized agent that is being applied to this effort. AREAS COVERED In this review, the authors summarize the history of interferon α treatment in the setting of HIV infection with a focus on clinical trials that examined the downstream effects on innate immune responses. More recently, clinical trials that administered pegylated interferon α-2a have demonstrated which interferon-stimulated genes are associated with its antiviral effects and which of these host-restriction factors may play a role in limiting the magnitude of the HIV reservoir. EXPERT OPINION The potential to exploit interferon α as part of a cure strategy is provocative. Whether key interferon-induced antiviral factors can be upregulated sufficiently to affect the reservoir is unknown. Additional research employing pegylated interferon α-2a is needed to identify which innate immune pathways are candidate targets for novel biological therapies for the potential cure of HIV infection.
Collapse
Affiliation(s)
- David M Asmuth
- a Department of Internal Medicine , University of California Davis Medical Center , Sacramento , CA , USA
| | - Netanya S Utay
- b Department of Internal Medicine , University of Texas Medical Branch , Galveston , TX , USA
| | - Richard B Pollard
- a Department of Internal Medicine , University of California Davis Medical Center , Sacramento , CA , USA
| |
Collapse
|