1
|
Banjac I, Maimets M, Tsang IHC, Dioli M, Hansen SL, Krizic K, Bressan RB, Lövkvist C, Jensen KB. Fate mapping in mouse demonstrates early secretory differentiation directly from Lgr5+ intestinal stem cells. Dev Cell 2025; 60:1281-1289.e6. [PMID: 39793582 DOI: 10.1016/j.devcel.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/10/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
The intestinal epithelium has a remarkably high turnover in homeostasis. It remains unresolved how this is orchestrated at the cellular level and how the behavior of stem and progenitor cells ensures tissue maintenance. To address this, we combined quantitative fate mapping in three complementary mouse models with mathematical modeling and single-cell RNA sequencing. Our integrated approach generated a spatially and temporally defined model of crypt maintenance based on two cycling populations: stem cells at the crypt-bottom and transit-amplifying (TA) cells above them. Subsequently, we validated the predictions from the mathematical model, demonstrating that fate decisions between the secretory and absorptive lineages are made within the stem cell compartment, whereas TA cell divisions contribute specifically to the absorptive lineage. These quantitative insights provide further direct evidence for crypt-bottom stem cells as the dominant driver of the intestinal epithelium replenishment.
Collapse
Affiliation(s)
- Isidora Banjac
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Martti Maimets
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Ingrid H C Tsang
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Marius Dioli
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Stine Lind Hansen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Kata Krizic
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Raul Bardini Bressan
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Cecilia Lövkvist
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
2
|
Lynch EB, Kapur N, Goretsky T, Bradford EM, Vekaria H, Bhogoju S, Hassan SA, Pauw E, Avdiushko MG, Lee G, Gao T, Sullivan PG, Barrett TA. Phosphatidylinositol 3-Kinase Signaling Enhances Intestinal Crypt Epithelial Cell Recovery after Radiation. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00151-8. [PMID: 40316215 DOI: 10.1016/j.ajpath.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 05/04/2025]
Abstract
Intestinal stem cell (ISC) signaling maintains the balance of self-renewal and differentiation. The role of phosphatidylinositol 3-kinase (PI3K) signaling in ISC responses to radiation was interrogated using Villin-Cre pik3r1lox/lox (p85ΔIEC) mice and p85α-deficient human enteroids (shp85α). Lethal whole-body irradiation in mice was performed to monitor PI3K-mediated survival responses. Rectal biopsies from patients with radiation proctitis were examined by immunohistochemistry for the PI3K/Akt- and Wnt-target survivin. The intestinal epithelial cells (IECs) from p85ΔIEC mice showed increased protein levels of phosphorylated phosphatase and tensin homolog, phosphorylated AktSer473, survivin, cyclin D1, and ρ-β-cateninSer552, as well as increased mRNA for ISC/progenitor cell. In situ hybridization showed that enhanced PI3K signaling reduced Lgr5+ cells but expansion of Axin2+ cells. The shp85α enteroids showed increased mRNA expression of Wnt targets and transcription factor ASCL2, needed for dedifferentiation-mediated restoration of ablated ISCs. The p85α-deficient enteroids showed reduced HES1 mRNA and increases in secretory (ATOH1/MATH1) signaling determinants GFI1 and SPDEF, indicative of reduced NOTCH signaling. Seahorse analyses and phosphorylated p38 staining in IECΔp85 mice indicated that enhanced PI3K signaling led to increased IEC mitochondrial respiration and reactive oxygen species generation. Expression of survivin correlated with the radiation injury in patients. The current data indicate that PI3K signaling increases mitochondrial reactive oxygen species generation and ISC activation that improves IEC recovery from radiation-induced injury. The results suggest that increasing PI3K signaling and induced mitochondrial respiration may improve mucosal healing from radiation injury in patients.
Collapse
Affiliation(s)
- Evan B Lynch
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky; Division of Plastic Surgery, Department of Surgery, University of Kentucky, Lexington, Kentucky; Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky
| | - Neeraj Kapur
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky; Lexington VA Healthcare System, Lexington, Kentucky
| | - Tatiana Goretsky
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky; Lexington VA Healthcare System, Lexington, Kentucky
| | - Emily M Bradford
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky; Lexington VA Healthcare System, Lexington, Kentucky
| | - Hemendra Vekaria
- Lexington VA Healthcare System, Lexington, Kentucky; Department of Neuroscience, University of Kentucky, Lexington, Kentucky
| | - Sarayu Bhogoju
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky
| | - Syed A Hassan
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky; Lexington VA Healthcare System, Lexington, Kentucky
| | - Emily Pauw
- College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Margarita G Avdiushko
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky; Lexington VA Healthcare System, Lexington, Kentucky
| | - Goo Lee
- The University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, Alabama
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky
| | - Patrick G Sullivan
- Lexington VA Healthcare System, Lexington, Kentucky; Department of Neuroscience, University of Kentucky, Lexington, Kentucky
| | - Terrence A Barrett
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky; Lexington VA Healthcare System, Lexington, Kentucky.
| |
Collapse
|
3
|
Smith NR, Giske NR, Sengupta SK, Conley P, Swain JR, Nair A, Fowler KL, Klocke C, Yoo YJ, Anderson AN, Sanati N, Torkenczy K, Adey AC, Fischer JM, Wu G, Wong MH. Dual states of murine Bmi1-expressing intestinal stem cells drive epithelial development utilizing non-canonical Wnt signaling. Dev Cell 2025:S1534-5807(25)00177-7. [PMID: 40262610 DOI: 10.1016/j.devcel.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 11/07/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Intestinal epithelial development and homeostasis critically rely upon balanced stem cell proliferation, involving slow-cycling/label-retaining and active-cycling/canonical Wnt-dependent intestinal stem cell (ISC) subtypes. ISC regulation during development remains poorly understood but has important implications for establishing key mechanisms governing tissue maintenance. Herein, we identify Bmi1+ cells as functional stem cells present in early murine intestinal development, prior to Lgr5-expressing ISCs. Lineage tracing and single-cell RNA sequencing identify that Bmi1+ ISCs can trace to Lgr5+ ISCs and other differentiated lineages. Initially highly proliferative, Bmi1+ ISCs transition to slow-cycling states as Lgr5+ ISCs emerge. Non-canonical Wnt signaling regulates the proliferative Bmi1+ cell state. These findings highlight the dynamic interplay between stem cell populations and the opposing Wnt pathways that govern proliferation-ultimately having implications for tissue development, homeostasis, regeneration, and tumorigenesis. Understanding these fundamental developmental mechanisms is critical for understanding adult intestinal maintenance.
Collapse
Affiliation(s)
- Nicholas R Smith
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nicole R Giske
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Sidharth K Sengupta
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Patrick Conley
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - John R Swain
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Ashvin Nair
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Kathryn L Fowler
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher Klocke
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yeon Jung Yoo
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Ashley N Anderson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nasim Sanati
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kristof Torkenczy
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrew C Adey
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jared M Fischer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA; Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97201 USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H Wong
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
4
|
Quintero M, Samuelson LC. Paneth Cells: Dispensable yet Irreplaceable for the Intestinal Stem Cell Niche. Cell Mol Gastroenterol Hepatol 2024; 19:101443. [PMID: 39708920 PMCID: PMC11847746 DOI: 10.1016/j.jcmgh.2024.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Intestinal stem cells replenish the epithelium throughout life by continuously generating intestinal epithelial cell types, including absorptive enterocytes, and secretory goblet, endocrine, and Paneth cells. This process is orchestrated by a symphony of niche factors required to maintain intestinal stem cells and to direct their proliferation and differentiation. Among the various mature intestinal epithelial cell types, Paneth cells are unique in their location in the stem cell zone, directly adjacent to intestinal stem cells. Although Paneth cells were first described as an epithelial cell component of the innate immune system due to their expression of anti-microbial peptides, they have been proposed to be niche cells due to their close proximity to intestinal stem cells and expression of niche factors. However, function as a niche cell has been debated since mice lacking Paneth cells retain functional stem cells that continue to replenish the intestinal epithelium. In this review, we summarize the intestinal stem cell niche, including the Notch, Wnt, growth factor, mechanical, and metabolic niche, and discuss how Paneth cells might contribute to these various components. We also present a nuanced view of the Paneth cell as a niche cell. Although not required, Paneth cells enhance stem cell function, particularly during intestinal development and regeneration. Furthermore, we suggest that Paneth cell loss induces intestinal stem cell remodeling to adjust their niche demands.
Collapse
Affiliation(s)
- Michaela Quintero
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
5
|
Shi G, Li Y, Shen H, He Q, Zhu P. Intestinal stem cells in intestinal homeostasis and colorectal tumorigenesis. LIFE MEDICINE 2024; 3:lnae042. [PMID: 39872442 PMCID: PMC11749485 DOI: 10.1093/lifemedi/lnae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025]
Abstract
Colorectal cancer (CRC), one of the most common tumors in the world, is generally proposed to be generated from intestinal stem cells (ISCs). Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5)-positive ISCs are located at the bottom of the crypt and harbor self-renewal and differentiation capacities, serving as the resource of all intestinal epithelial cells and CRC cells as well. Here we review recent progress in ISCs both in non-tumoral and tumoral contexts. We summarize the molecular mechanisms of ISC self-renewal, differentiation, and plasticity for intestinal homeostasis and regeneration. We also discuss the function of ISCs in colorectal tumorigenesis as cancer stem cells and summarize fate dynamic, competition, niche regulation, and remote environmental regulation of ISCs for CRC initiation and propagation.
Collapse
Affiliation(s)
- Gaoli Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Qiankun He
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Kayama H, Takeda K. Regulation of intestinal epithelial homeostasis by mesenchymal cells. Inflamm Regen 2024; 44:42. [PMID: 39327633 PMCID: PMC11426228 DOI: 10.1186/s41232-024-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
The gastrointestinal tract harbors diverse microorganisms in the lumen. Epithelial cells segregate the luminal microorganisms from immune cells in the lamina propria by constructing chemical and physical barriers through the production of various factors to prevent excessive immune responses against microbes. Therefore, perturbations of epithelial integrity are linked to the development of gastrointestinal disorders. Several mesenchymal stromal cell populations, including fibroblasts, myofibroblasts, pericytes, and myocytes, contribute to the establishment and maintenance of epithelial homeostasis in the gut through regulation of the self-renewal, proliferation, and differentiation of intestinal stem cells. Recent studies have revealed alterations in the composition of intestinal mesenchymal stromal cells in patients with inflammatory bowel disease and colorectal cancer. A better understanding of the interplay between mesenchymal stromal cells and epithelial cells associated with intestinal health and diseases will facilitate identification of novel biomarkers and therapeutic targets for gastrointestinal disorders. This review summarizes the key findings obtained to date on the mechanisms by which functionally distinct mesenchymal stromal cells regulate epithelial integrity in intestinal health and diseases at different developmental stages.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Hua X, Zhao C, Tian J, Wang J, Miao X, Zheng G, Wu M, Ye M, Liu Y, Zhou Y. A Ctnnb1 enhancer transcriptionally regulates Wnt signaling dosage to balance homeostasis and tumorigenesis of intestinal epithelia. eLife 2024; 13:RP98238. [PMID: 39320349 PMCID: PMC11424096 DOI: 10.7554/elife.98238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 - the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.
Collapse
Affiliation(s)
- Xiaojiao Hua
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Junbao Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Gen Zheng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Zhou G, Shimura T, Yoneima T, Nagamachi A, Kanai A, Doi K, Sasatani M. Age-Dependent Differences in Radiation-Induced DNA Damage Responses in Intestinal Stem Cells. Int J Mol Sci 2024; 25:10213. [PMID: 39337697 PMCID: PMC11431935 DOI: 10.3390/ijms251810213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Age at exposure is a critical modifier of the risk of radiation-induced cancer. However, the effects of age on radiation-induced carcinogenesis remain poorly understood. In this study, we focused on tissue stem cells using Lgr5-eGFP-ires-CreERT2 mice to compare radiation-induced DNA damage responses between Lgr5+ and Lgr5- intestinal stem cells. Three-dimensional immunostaining analyses demonstrated that radiation induced apoptosis and the mitotic index more efficiently in adult Lgr5- stem cells than in adult Lgr5+ stem cells but not in infants, regardless of Lgr5 expression. Supporting this evidence, rapid and transient p53 activation occurred after irradiation in adult intestinal crypts but not in infants. RNA sequencing revealed greater variability in gene expression in adult Lgr5+ stem cells than in infant Lgr5+ stem cells after irradiation. Notably, the cell cycle and DNA repair pathways were more enriched in adult stem cells than in infant stem cells after irradiation. Our findings suggest that radiation-induced DNA damage responses in mouse intestinal crypts differ between infants and adults, potentially contributing to the age-dependent susceptibility to radiation carcinogenesis.
Collapse
Grants
- none Research project on the Health Effects of Radiation organized by Ministry of the Environment, Japan.
- 23K25008 Japan Society for the Promotion of Science, JSPS KAKENHI
- 22H03754 Japan Society for the Promotion of Science, JSPS KAKENHI
- 23K28232 Japan Society for the Promotion of Science, JSPS KAKENHI
- 23H03542 Japan Society for the Promotion of Science, JSPS KAKENHI
- 20K21846 Japan Society for the Promotion of Science, JSPS KAKENHI
- NIFS20KOCA004 National Institute for Fusion Science Collaborative Research Program
- NIFS23HDCF005 National Institute for Fusion Science Collaborative Research Program
- none QST Research Collaboration
- none the Program of the Network-Type Joint Usage/Research Center for Radiation Disaster Medical Science at Hiroshima University, Nagasaki University, and Fukushima Medical University.
- none Initiative for Realizing Diversity in the Research Environment (Specific Correspondence Type), a support project for the Development of Human Resources in Science and Technology conducted by the Ministry of Education, Culture, Sports, Science and Technolo
- NIFS17KOCA002 National Institute for Fusion Science Collaborative Research Program
Collapse
Affiliation(s)
- Guanyu Zhou
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 754-8553, Japan;
| | - Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Saitama 351-0197, Japan
| | - Taiki Yoneima
- School of Medicine, Hiroshima University, Hiroshima 754-8551, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 754-8553, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, Institute for Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 754-8553, Japan;
| |
Collapse
|
9
|
Imada S, Khawaled S, Shin H, Meckelmann SW, Whittaker CA, Corrêa RO, Alquati C, Lu Y, Tie G, Pradhan D, Calibasi-Kocal G, Nascentes Melo LM, Allies G, Rösler J, Wittenhofer P, Krystkiewicz J, Schmitz OJ, Roper J, Vinolo MAR, Ricciardiello L, Lien EC, Vander Heiden MG, Shivdasani RA, Cheng CW, Tasdogan A, Yilmaz ÖH. Short-term post-fast refeeding enhances intestinal stemness via polyamines. Nature 2024; 633:895-904. [PMID: 39169180 PMCID: PMC12103248 DOI: 10.1038/s41586-024-07840-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
For over a century, fasting regimens have improved health, lifespan and tissue regeneration in diverse organisms, including humans1-6. However, how fasting and post-fast refeeding affect adult stem cells and tumour formation has yet to be explored in depth. Here we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation; post-fast refeeding augments the regenerative capacity of Lgr5+ ISCs, and loss of the tumour suppressor gene Apc in post-fast-refed ISCs leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum-fed states, demonstrating that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust mTORC1 induction in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production or protein synthesis abrogates the regenerative or tumorigenic effects of post-fast refeeding. Given our findings, fast-refeeding cycles must be carefully considered and tested when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst in stem-cell-driven regeneration and tumorigenicity.
Collapse
Affiliation(s)
- Shinya Imada
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Saleh Khawaled
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Heaji Shin
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Charles A Whittaker
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA, USA
| | - Renan Oliveira Corrêa
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Chiara Alquati
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Yixin Lu
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Guodong Tie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Dikshant Pradhan
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA, USA
| | - Gizem Calibasi-Kocal
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir-Turkey, Turkey
| | | | - Gabriele Allies
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jonas Rösler
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Pia Wittenhofer
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jonathan Krystkiewicz
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Marco Aurelio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, Houston, TX, USA
| | - Evan C Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Matthew G Vander Heiden
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chia-Wei Cheng
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany.
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Hausmann A, Steenholdt C, Nielsen OH, Jensen KB. Immune cell-derived signals governing epithelial phenotypes in homeostasis and inflammation. Trends Mol Med 2024; 30:239-251. [PMID: 38320941 DOI: 10.1016/j.molmed.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
The intestinal epithelium fulfills important physiological functions and forms a physical barrier to the intestinal lumen. Barrier function is regulated by several pathways, and its impairment contributes to the pathogenesis of inflammatory bowel disease (IBD), a chronic inflammatory condition affecting more than seven million people worldwide. Current treatment options specifically target inflammatory mediators and have led to improvement of clinical outcomes; however, a significant proportion of patients experience treatment failure. Pro-repair effects of inflammatory mediators on the epithelium are emerging. In this review we summarize current knowledge on involved epithelial pathways, identify open questions, and put recent findings into clinical perspective, and pro-repair effects. A detailed understanding of epithelial pathways integrating mucosal stimuli in homeostasis and inflammation is crucial for the development of novel, more targeted therapies.
Collapse
Affiliation(s)
- Annika Hausmann
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | - Casper Steenholdt
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Ole H Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
11
|
Kwon SJ, Khan MS, Kim SG. Intestinal Inflammation and Regeneration-Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:1311. [PMID: 38279309 PMCID: PMC10816399 DOI: 10.3390/ijms25021311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflammation and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced weight, and fatigue. In IBD, the immune system attacks the intestinal tract's inner wall, causing chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individuals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition, excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon, can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in intestinal microflora, which may also contribute to disease progression. However, interfering with de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet effects on IBD animal models. This review will focus on the pathological basis of the link between dietary lipids intake and IBD and will cover the currently available pharmacological approaches.
Collapse
Affiliation(s)
| | | | - Sang Geon Kim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.J.K.); (M.S.K.)
| |
Collapse
|
12
|
Zhang D, Tang W, Niu H, Tse W, Ruan HB, Dolznig H, Knösel T, Karl-Heinz F, Themanns M, Wang J, Song M, Denson L, Kenner L, Moriggl R, Zheng Y, Han X. Monogenic deficiency in murine intestinal Cdc42 leads to mucosal inflammation that induces crypt dysplasia. Genes Dis 2024; 11:413-429. [PMID: 37588188 PMCID: PMC10425749 DOI: 10.1016/j.gendis.2022.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 01/04/2023] Open
Abstract
CDC42 controls intestinal epithelial (IEC) stem cell (IESC) division. How aberrant CDC42 initiates intestinal inflammation or neoplasia is unclear. We utilized models of inflammatory bowel diseases (IBD), colorectal cancer, aging, and IESC injury to determine the loss of intestinal Cdc42 upon inflammation and neoplasia. Intestinal specimens were collected to determine the levels of CDC42 in IBD or colorectal cancer. Cdc42 floxed mice were crossed with Villin-Cre, Villin-CreERT2 and/or Lgr5-eGFP-IRES-CreERT2, or Bmi1-CreERT2 mice to generate Cdc42 deficient mice. Irradiation, colitis, aging, and intestinal organoid were used to evaluate CDC42 upon mucosal inflammation, IESC/progenitor regenerative capacity, and IEC repair. Our studies revealed that increased CDC42 in colorectal cancer correlated with lower survival; in contrast, lower levels of CDC42 were found in the inflamed IBD colon. Colonic Cdc42 depletion significantly reduced Lgr5+ IESCs, increased progenitors' hyperplasia, and induced mucosal inflammation, which led to crypt dysplasia. Colonic Cdc42 depletion markedly enhanced irradiation- or chemical-induced colitis. Depletion or inhibition of Cdc42 reduced colonic Lgr5+ IESC regeneration. In conclusion, depletion of Cdc42 reduces the IESC regeneration and IEC repair, leading to prolonged mucosal inflammation. Constitutive monogenic loss of Cdc42 induces mucosal inflammation, which could result in intestinal neoplasia in the context of aging.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Division of Hematology and Oncology, Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU), School of Medicine, Cleveland, OH 44109, USA
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University (CWRU), Cleveland, OH 44106, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Wenjuan Tang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Children's Hospital of Fudan University, Shanghai 201102, China
| | - Haitao Niu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
- Laboratory Animal Science (ILAS), Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing 100006, China
| | - William Tse
- Division of Hematology and Oncology, Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU), School of Medicine, Cleveland, OH 44109, USA
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University (CWRU), Cleveland, OH 44106, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MI 55455, USA
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Vienna 1040, Austria
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich 80539, Germany
| | | | - Madeleine Themanns
- Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Jiang Wang
- Department of Pathology, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Mingquan Song
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266005, China
| | - Lee Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna 1040, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna 1090, Austria
- Medical University of Vienna, Vienna 1040, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Yi Zheng
- Division of Experimental Hematology, CCHMC, Cincinnati, OH 45229, USA
| | - Xiaonan Han
- Division of Hematology and Oncology, Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU), School of Medicine, Cleveland, OH 44109, USA
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University (CWRU), Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Zheng X, Betjes MA, Ender P, Goos YJ, Huelsz-Prince G, Clevers H, van Zon JS, Tans SJ. Organoid cell fate dynamics in space and time. SCIENCE ADVANCES 2023; 9:eadd6480. [PMID: 37595032 PMCID: PMC10438469 DOI: 10.1126/sciadv.add6480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Organoids are a major new tool to study tissue renewal. However, characterizing the underlying differentiation dynamics remains challenging. Here, we developed TypeTracker, which identifies cell fates by AI-enabled cell tracking and propagating end point fates back along the branched lineage trees. Cells that ultimately migrate to the villus commit to their new type early, when still deep inside the crypt, with important consequences: (i) Secretory cells commit before terminal division, with secretory fates emerging symmetrically in sister cells. (ii) Different secretory types descend from distinct stem cell lineages rather than an omnipotent secretory progenitor. (iii) The ratio between secretory and absorptive cells is strongly affected by proliferation after commitment. (iv) Spatial patterning occurs after commitment through type-dependent cell rearrangements. This "commit-then-sort" model contrasts with the conventional conveyor belt picture, where cells differentiate by moving up the crypt-villus axis and hence raises new questions about the underlying commitment and sorting mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Uppsalalaan 8, Utrecht 3584 CT, Netherlands
| | | | - Sander J Tans
- Bionanoscience Department, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
- AMOLF, Amsterdam, Netherlands.
| |
Collapse
|
14
|
Xiang J, Guo J, Zhang S, Wu H, Chen YG, Wang J, Li B, Liu H. A stromal lineage maintains crypt structure and villus homeostasis in the intestinal stem cell niche. BMC Biol 2023; 21:169. [PMID: 37553612 PMCID: PMC10408166 DOI: 10.1186/s12915-023-01667-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The nutrient-absorbing villi of small intestines are renewed and repaired by intestinal stem cells (ISCs), which reside in a well-organized crypt structure. Genetic studies have shown that Wnt molecules secreted by telocytes, Gli1+ stromal cells, and epithelial cells are required for ISC proliferation and villus homeostasis. Intestinal stromal cells are heterogeneous and single-cell profiling has divided them into telocytes/subepithelial myofibroblasts, myocytes, pericytes, trophocytes, and Pdgfralow stromal cells. Yet, the niche function of these stromal populations remains incompletely understood. RESULTS We show here that a Twist2 stromal lineage, which constitutes the Pdgfralow stromal cell and trophocyte subpopulations, maintains the crypt structure to provide an inflammation-restricting niche for regenerating ISCs. Ablating Twist2 lineage cells or deletion of one Wntless allele in these cells disturbs the crypt structure and impairs villus homeostasis. Upon radiation, Wntless haplo-deficiency caused decreased production of anti-microbial peptides and increased inflammation, leading to defective ISC proliferation and crypt regeneration, which were partially rescued by eradication of commensal bacteria. In addition, we show that Wnts secreted by Acta2+ subpopulations also play a role in crypt regeneration but not homeostasis. CONCLUSIONS These findings suggest that ISCs may require different niches for villus homeostasis and regeneration and that the Twist2 lineage cells may help to maintain a microbe-restricted environment to allow ISC-mediated crypt regeneration.
Collapse
Affiliation(s)
- Jinnan Xiang
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China
| | - Jigang Guo
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China
| | - Shaoyang Zhang
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China
| | - Hongguang Wu
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China
| | - Ye-Guang Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junping Wang
- Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Baojie Li
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China.
| | - Huijuan Liu
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China.
| |
Collapse
|
15
|
Kolev HM, Kaestner KH. Mammalian Intestinal Development and Differentiation-The State of the Art. Cell Mol Gastroenterol Hepatol 2023; 16:809-821. [PMID: 37507088 PMCID: PMC10520362 DOI: 10.1016/j.jcmgh.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The development of the mammalian intestine, from its earliest origins as a morphologically uniform sheet of endoderm cells during gastrulation into the complex organ system that is essential for the life of the organism, is a truly fascinating process. During midgestation development, reciprocal interactions between endoderm-derived epithelium and mesoderm-derived mesenchyme enable villification, or the conversion of a radially symmetric pseudostratified epithelium into the functional subdivision of crypts and villi. Once a mature crypt-villus axis is established, proliferation and differentiation of new epithelial cells continue throughout life. Spatially localized signals including the wingless and Int-1, fibroblast growth factor, and Hippo systems, among others, ensure that new cells are being born continuously in the crypt. As cells exit the crypt compartment, a gradient of bone morphogenetic protein signaling limits proliferation to allow for the specification of multiple mature cell types. The first major differentiation decision is dependent on Notch signaling, which specifies epithelial cells into absorptive and secretory lineages. The secretory lineage is subdivided further into Paneth, goblet, tuft, and enteroendocrine cells via a complex network of transcription factors. Although some of the signaling molecules are produced by epithelial cells, critical components are derived from specialized crypt-adjacent mesenchymal cells termed telocytes, which are marked by Forkhead box l1, GLI Family Zinc Finger 1, and platelet-derived growth factor receptor α. The crucial nature of these processes is evidenced by the multitude of intestinal disorders such as colorectal cancer, short-bowel syndrome, and inflammatory bowel disease, which all reflect perturbations of the development and/or differentiation of the intestine.
Collapse
Affiliation(s)
- Hannah M Kolev
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Klaus H Kaestner
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
16
|
McCarthy N, Tie G, Madha S, He R, Kraiczy J, Maglieri A, Shivdasani RA. Smooth muscle contributes to the development and function of a layered intestinal stem cell niche. Dev Cell 2023; 58:550-564.e6. [PMID: 36924771 PMCID: PMC10089980 DOI: 10.1016/j.devcel.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/05/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023]
Abstract
Wnt and Rspondin (RSPO) signaling drives proliferation, and bone morphogenetic protein inhibitors (BMPi) impede differentiation, of intestinal stem cells (ISCs). Here, we identify the mouse ISC niche as a complex, multi-layered structure that encompasses distinct mesenchymal and smooth muscle populations. In young and adult mice, diverse sub-cryptal cells provide redundant ISC-supportive factors; few of these are restricted to single cell types. Niche functions refine during postnatal crypt morphogenesis, in part to oppose the dense aggregation of differentiation-promoting BMP+ sub-epithelial myofibroblasts at crypt-villus junctions. Muscularis mucosae, a specialized muscle layer, first appears during this period and supplements neighboring RSPO and BMPi sources. Components of this developing niche are conserved in human fetuses. The in vivo ablation of mouse postnatal smooth muscle increases BMP signaling activity, potently limiting a pre-weaning burst of crypt fission. Thus, distinct and progressively specialized mesenchymal cells together create the milieu that is required to propagate crypts during rapid organ growth and to sustain adult ISCs.
Collapse
Affiliation(s)
- Neil McCarthy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ruiyang He
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Kraiczy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Adrianna Maglieri
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Kraiczy J, McCarthy N, Malagola E, Tie G, Madha S, Boffelli D, Wagner DE, Wang TC, Shivdasani RA. Graded BMP signaling within intestinal crypt architecture directs self-organization of the Wnt-secreting stem cell niche. Cell Stem Cell 2023; 30:433-449.e8. [PMID: 37028407 PMCID: PMC10134073 DOI: 10.1016/j.stem.2023.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 04/09/2023]
Abstract
Signals from the surrounding niche drive proliferation and suppress differentiation of intestinal stem cells (ISCs) at the bottom of intestinal crypts. Among sub-epithelial support cells, deep sub-cryptal CD81+ PDGFRAlo trophocytes capably sustain ISC functions ex vivo. Here, we show that mRNA and chromatin profiles of abundant CD81- PDGFRAlo mouse stromal cells resemble those of trophocytes and that both populations provide crucial canonical Wnt ligands. Mesenchymal expression of key ISC-supportive factors extends along a spatial and molecular continuum from trophocytes into peri-cryptal CD81- CD55hi cells, which mimic trophocyte activity in organoid co-cultures. Graded expression of essential niche factors is not cell-autonomous but dictated by the distance from bone morphogenetic protein (BMP)-secreting PDGFRAhi myofibroblast aggregates. BMP signaling inhibits ISC-trophic genes in PDGFRAlo cells near high crypt tiers; that suppression is relieved in stromal cells near and below the crypt base, including trophocytes. Cell distances thus underlie a self-organized and polar ISC niche.
Collapse
Affiliation(s)
- Judith Kraiczy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Neil McCarthy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dario Boffelli
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel E Wagner
- Department of Obstetrics, Gynecology and Reproductive Science and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Smith RJ, Liang M, Loe AKH, Yung T, Kim JE, Hudson M, Wilson MD, Kim TH. Epigenetic control of cellular crosstalk defines gastrointestinal organ fate and function. Nat Commun 2023; 14:497. [PMID: 36717563 PMCID: PMC9887003 DOI: 10.1038/s41467-023-36228-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Epithelial-mesenchymal signaling in the gastrointestinal system is vital in establishing regional identity during organogenesis and maintaining adult stem cell homeostasis. Although recent work has demonstrated that Wnt ligands expressed by mesenchymal cells are required during gastrointestinal development and stem cell homeostasis, epigenetic mechanisms driving spatiotemporal control of crosstalk remain unknown. Here, we demonstrate that gastrointestinal mesenchymal cells control epithelial fate and function through Polycomb Repressive Complex 2-mediated chromatin bivalency. We find that while key lineage-determining genes possess tissue-specific chromatin accessibility, Polycomb Repressive Complex 2 controls Wnt expression in mesenchymal cells without altering accessibility. We show that reduction of mesenchymal Wnt secretion rescues gastrointestinal fate and proliferation defects caused by Polycomb Repressive Complex 2 loss. We demonstrate that mesenchymal Polycomb Repressive Complex 2 also regulates niche signals to maintain stem cell function in the adult intestine. Our results highlight a broadly permissive chromatin architecture underlying regionalization in mesenchymal cells, then demonstrate further how chromatin architecture in niches can influence the fate and function of neighboring cells.
Collapse
Affiliation(s)
- Ryan J Smith
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Minggao Liang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Adrian Kwan Ho Loe
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Theodora Yung
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ji-Eun Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Matthew Hudson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
19
|
Du Y, Gao H, He C, Xin S, Wang B, Zhang S, Gong F, Yu X, Pan L, Sun F, Wang W, Xu J. An update on the biological characteristics and functions of tuft cells in the gut. Front Cell Dev Biol 2023; 10:1102978. [PMID: 36704202 PMCID: PMC9872863 DOI: 10.3389/fcell.2022.1102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
The intestine is a powerful digestive system and one of the most sophisticated immunological organs. Evidence shows that tuft cells (TCs), a kind of epithelial cell with distinct morphological characteristics, play a significant role in various physiological processes. TCs can be broadly categorized into different subtypes depending on different molecular criteria. In this review, we discuss its biological properties and role in maintaining homeostasis in the gastrointestinal tract. We also emphasize its relevance to the immune system and highlight its powerful influence on intestinal diseases, including inflammations and tumors. In addition, we provide fresh insights into future clinical diagnostic and therapeutic strategies related to TCs.
Collapse
Affiliation(s)
- Yixuan Du
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University People’s Hospital, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fanglin Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China,*Correspondence: Jingdong Xu,
| |
Collapse
|
20
|
Jones C, Avino M, Giroux V, Boudreau F. HNF4α Acts as Upstream Functional Regulator of Intestinal Wnt3 and Paneth Cell Fate. Cell Mol Gastroenterol Hepatol 2023; 15:593-612. [PMID: 36464209 PMCID: PMC9871320 DOI: 10.1016/j.jcmgh.2022.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND & AIMS The intestinal epithelium intrinsically renews itself ex vivo via the proliferation of Lgr5+ intestinal stem cells, which is sustained by the establishment of an epithelial stem cell niche. Differentiated Paneth cells are the main source of epithelial-derived niche factor supplies and produce Wnt3 as an essential factor in supporting Lgr5+ stem cell activity in the absence of redundant mesenchymal Wnts. Maturation of Paneth cells depends on canonical Wnt signaling, but few transcriptional regulators have been identified to this end. The role of HNF4α in intestinal epithelial cell differentiation is considered redundant with its paralog HNF4γ. However, it is unclear whether HNF4α alone controls intrinsic intestinal epithelial cell growth and fate in the absence of a mesenchymal niche. METHODS We used transcriptomic analyses to dissect the role of HNF4α in the maintenance of jejunal epithelial culture when cultured ex vivo as enteroids in the presence or absence of compensatory mesenchymal cells. RESULTS HNF4α plays a crucial role in supporting the growth and survival of jejunal enteroids. Transcriptomic analyses revealed an autonomous function of HNF4α in Wnt3 transcriptional regulation and Paneth cell differentiation. We showed that Wnt3a supplementation or co-culture with intestinal subepithelial mesenchymal cells reversed cell death and transcriptional changes caused by the deletion of Hnf4a in jejunal enteroids. CONCLUSIONS Our results support the intrinsic epithelial role of HNF4α in regulating Paneth cell homeostasis and intestinal epithelium renewal in the absence of compensatory Wnt signaling.
Collapse
Affiliation(s)
- Christine Jones
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mariano Avino
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Véronique Giroux
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Francois Boudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
21
|
Role of Wnt signaling in the maintenance and regeneration of the intestinal epithelium. Curr Top Dev Biol 2023; 153:281-326. [PMID: 36967198 DOI: 10.1016/bs.ctdb.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intestinal epithelium plays a key role in digestion and protection against external pathogens. This tissue presents a high cellular turnover with the epithelium being completely renewed every 5days, driven by intestinal stem cells (ISCs) residing in the crypt bases. To sustain this dynamic renewal of the intestinal epithelium, the maintenance, proliferation, and differentiation of ISCs must be precisely controlled. One of the central pathways supporting ISC maintenance and dynamics is the Wnt pathway. In this chapter, we examine the role of Wnt signaling in intestinal epithelial homeostasis and tissue regeneration, including mechanisms regulating ISC identity and fine-tuning of Wnt pathway activation. We extensively discuss the contribution of the stem cell niche in maintaining Wnt signaling in the intestinal crypts that support ISC functions. The integration of these findings highlights the complex interplay of multiple niche signals and cellular components sustaining ISC behavior and maintenance, which together supports the immense plasticity of the intestinal epithelium.
Collapse
|
22
|
Ramadan R, Wouters VM, van Neerven SM, de Groot NE, Garcia TM, Muncan V, Franklin OD, Battle M, Carlson KS, Leach J, Sansom OJ, Boulard O, Chamaillard M, Vermeulen L, Medema JP, Huels DJ. The extracellular matrix controls stem cell specification and crypt morphology in the developing and adult mouse gut. Biol Open 2022; 11:bio059544. [PMID: 36350252 PMCID: PMC9713296 DOI: 10.1242/bio.059544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/22/2022] [Indexed: 11/01/2023] Open
Abstract
The rapid renewal of the epithelial gut lining is fuelled by stem cells that reside at the base of intestinal crypts. The signal transduction pathways and morphogens that regulate intestinal stem cell self-renewal and differentiation have been extensively characterised. In contrast, although extracellular matrix (ECM) components form an integral part of the intestinal stem cell niche, their direct influence on the cellular composition is less well understood. We set out to systematically compare the effect of two ECM classes, the interstitial matrix and the basement membrane, on the intestinal epithelium. We found that both collagen I and laminin-containing cultures allow growth of small intestinal epithelial cells with all cell types present in both cultures, albeit at different ratios. The collagen cultures contained a subset of cells enriched in fetal-like markers. In contrast, laminin increased Lgr5+ stem cells and Paneth cells, and induced crypt-like morphology changes. The transition from a collagen culture to a laminin culture resembled gut development in vivo. The dramatic ECM remodelling was accompanied by a local expression of the laminin receptor ITGA6 in the crypt-forming epithelium. Importantly, deletion of laminin in the adult mouse resulted in a marked reduction of adult intestinal stem cells. Overall, our data support the hypothesis that the formation of intestinal crypts is induced by an increased laminin concentration in the ECM.
Collapse
Affiliation(s)
- Rana Ramadan
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Valérie M. Wouters
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sanne M. van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nina E. de Groot
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Tania Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC University of Amsterdam, 1015 BK Amsterdam, The Netherlands
| | - Vanessa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC University of Amsterdam, 1015 BK Amsterdam, The Netherlands
| | - Olivia D. Franklin
- The Medical College of Wisconsin, Department of Cell Biology, Neurobiology, and Anatomy, Milwaukee, WI 53226, USA
| | - Michelle Battle
- The Medical College of Wisconsin, Department of Cell Biology, Neurobiology, and Anatomy, Milwaukee, WI 53226, USA
| | - Karen Sue Carlson
- The Medical College of Wisconsin, Department of Cell Biology, Neurobiology, and Anatomy, Milwaukee, WI 53226, USA
- The Blood Research Institute of Wisconsin, part of Versiti, and the Medical College of Wisconsin, Department of Internal Medicine, Milwaukee, WI 53226, USA
| | - Joshua Leach
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Olivier Boulard
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Centre d'Infection et d'Immunité de Lille (CIIL), Université de Lille, 59019 Lille, France
| | - Mathias Chamaillard
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Centre d'Infection et d'Immunité de Lille (CIIL), Université de Lille, 59019 Lille, France
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - David J. Huels
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Kim JE, Li B, Fei L, Horne R, Lee D, Loe AK, Miyake H, Ayar E, Kim DK, Surette MG, Philpott DJ, Sherman P, Guo G, Pierro A, Kim TH. Gut microbiota promotes stem cell differentiation through macrophage and mesenchymal niches in early postnatal development. Immunity 2022; 55:2300-2317.e6. [PMID: 36473468 DOI: 10.1016/j.immuni.2022.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/15/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Intestinal stem cell maturation and development coincide with gut microbiota exposure after birth. Here, we investigated how early life microbial exposure, and disruption of this process, impacts the intestinal stem cell niche and development. Single-cell transcriptional analysis revealed impaired stem cell differentiation into Paneth cells and macrophage specification upon antibiotic treatment in early life. Mouse genetic and organoid co-culture experiments demonstrated that a CD206+ subset of intestinal macrophages secreted Wnt ligands, which maintained the mesenchymal niche cells important for Paneth cell differentiation. Antibiotics and reduced numbers of Paneth cells are associated with the deadly infant disease, necrotizing enterocolitis (NEC). We showed that colonization with Lactobacillus or transfer of CD206+ macrophages promoted Paneth cell differentiation and reduced NEC severity. Together, our work defines the gut microbiota-mediated regulation of stem cell niches during early postnatal development.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bo Li
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine, Zhejiang University of School of Medicine, Hangzhou 310058, China
| | - Rachael Horne
- Program in Cell Biology, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dorothy Lee
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Adrian Kwan Loe
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hiromu Miyake
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Eda Ayar
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dae-Kyum Kim
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, Department of Medicine, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4L8, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philip Sherman
- Program in Cell Biology, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University of School of Medicine, Hangzhou 310058, China
| | - Agostino Pierro
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
24
|
Zheng L, Duan SL, Wen XL, Dai YC. Molecular regulation after mucosal injury and regeneration in ulcerative colitis. Front Mol Biosci 2022; 9:996057. [PMID: 36310594 PMCID: PMC9606627 DOI: 10.3389/fmolb.2022.996057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with a complex etiology. Intestinal mucosal injury is an important pathological change in individuals with UC. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5+) intestinal stem cells (ISCs) exhibit self-renewal and high differentiation potential and play important roles in the repair of intestinal mucosal injury. Moreover, LGR5+ ISCs are intricately regulated by both the Wnt/β-catenin and Notch signaling pathways, which jointly maintain the function of LGR5+ ISCs. Combination therapy targeting multiple signaling pathways and transplantation of LGR5+ ISCs may lead to the development of new clinical therapies for UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Azkanaz M, Corominas-Murtra B, Ellenbroek SIJ, Bruens L, Webb AT, Laskaris D, Oost KC, Lafirenze SJA, Annusver K, Messal HA, Iqbal S, Flanagan DJ, Huels DJ, Rojas-Rodríguez F, Vizoso M, Kasper M, Sansom OJ, Snippert HJ, Liberali P, Simons BD, Katajisto P, Hannezo E, van Rheenen J. Retrograde movements determine effective stem cell numbers in the intestine. Nature 2022; 607:548-554. [PMID: 35831497 PMCID: PMC7614894 DOI: 10.1038/s41586-022-04962-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
The morphology and functionality of the epithelial lining differ along the intestinal tract, but tissue renewal at all sites is driven by stem cells at the base of crypts1-3. Whether stem cell numbers and behaviour vary at different sites is unknown. Here we show using intravital microscopy that, despite similarities in the number and distribution of proliferative cells with an Lgr5 signature in mice, small intestinal crypts contain twice as many effective stem cells as large intestinal crypts. We find that, although passively displaced by a conveyor-belt-like upward movement, small intestinal cells positioned away from the crypt base can function as long-term effective stem cells owing to Wnt-dependent retrograde cellular movement. By contrast, the near absence of retrograde movement in the large intestine restricts cell repositioning, leading to a reduction in effective stem cell number. Moreover, after suppression of the retrograde movement in the small intestine, the number of effective stem cells is reduced, and the rate of monoclonal conversion of crypts is accelerated. Together, these results show that the number of effective stem cells is determined by active retrograde movement, revealing a new channel of stem cell regulation that can be experimentally and pharmacologically manipulated.
Collapse
Affiliation(s)
- Maria Azkanaz
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Bernat Corominas-Murtra
- Institute of Biology, University of Graz, Graz, Austria
- Institute for Science and Technology Austria, Klosterneuburg, Austria
| | - Saskia I J Ellenbroek
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Lotte Bruens
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Anna T Webb
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Dimitrios Laskaris
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Koen C Oost
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Simona J A Lafirenze
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Royal Academy of Arts and Sciences, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Karl Annusver
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Hendrik A Messal
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sharif Iqbal
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Dustin J Flanagan
- CRUK Beatson Institute, Glasgow, UK
- Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - David J Huels
- Oncode Institute, Utrecht, The Netherlands
- CRUK Beatson Institute, Glasgow, UK
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Felipe Rojas-Rodríguez
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Miguel Vizoso
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Maria Kasper
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Owen J Sansom
- CRUK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Hugo J Snippert
- Oncode Institute, Utrecht, The Netherlands
- Molecular Cancer Research, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Benjamin D Simons
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| | - Pekka Katajisto
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden.
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Edouard Hannezo
- Institute for Science and Technology Austria, Klosterneuburg, Austria.
| | - Jacco van Rheenen
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Palikuqi B, Rispal J, Klein O. Good Neighbors: The Niche that Fine Tunes Mammalian Intestinal Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a040865. [PMID: 34580119 PMCID: PMC9159262 DOI: 10.1101/cshperspect.a040865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The intestinal epithelium undergoes continuous cellular turnover, making it an attractive model to study tissue renewal and regeneration. Intestinal stem cells (ISCs) can both self-renew and differentiate along all epithelial cell lineages. Decisions about which fate to pursue are controlled by a balance between high Wnt signaling at the crypt bottom, where Lgr5 + ISCs reside, and increasing bone morphogenetic protein (BMP) levels toward the villus, where differentiated cells are located. Under stress conditions, epithelial cells in the intestine are quite plastic, with dedifferentiation, the reversal of cell fate from a differentiated cell to a more stem-like cell, allowing for most mature epithelial cell types to acquire stem cell-like properties. The ISC niche, mainly made up of mesenchymal, immune, enteric neuronal, and endothelial cells, plays a central role in maintaining the physiological function of the intestine. Additionally, the immune system and the microbiome play an essential role in regulating intestinal renewal. The development of various mouse models, organoid co-cultures and single-cell technologies has led to advances in understanding signals emanating from the mesenchymal niche. Here, we review how intestinal regeneration is driven by stem cell self-renewal and differentiation, with an emphasis on the niche that fine tunes these processes in both homeostasis and injury conditions.
Collapse
Affiliation(s)
- Brisa Palikuqi
- Program in Craniofacial Biology and Department of Orofacial Sciences
| | - Jérémie Rispal
- Program in Craniofacial Biology and Department of Orofacial Sciences
| | - Ophir Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences
- Program in Craniofacial Biology and Department of Orofacial Sciences
| |
Collapse
|
27
|
Taelman J, Diaz M, Guiu J. Human Intestinal Organoids: Promise and Challenge. Front Cell Dev Biol 2022; 10:854740. [PMID: 35359445 PMCID: PMC8962662 DOI: 10.3389/fcell.2022.854740] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
The study of human intestinal biology in healthy and diseased conditions has always been challenging. Primary obstacles have included limited tissue accessibility, inadequate in vitro maintenance and ethical constrains. The development of three-dimensional organoid cultures has transformed this entirely. Intestinal organoids are self-organized three-dimensional structures that partially recapitulate the identity, cell heterogeneity and cell behaviour of the original tissue in vitro. This includes the capacity of stem cells to self-renew, as well as to differentiate towards major intestinal lineages. Therefore, over the past decade, the use of human organoid cultures has been instrumental to model human intestinal development, homeostasis, disease, and regeneration. Intestinal organoids can be derived from pluripotent stem cells (PSC) or from adult somatic intestinal stem cells (ISC). Both types of organoid sources harbour their respective strengths and weaknesses. In this mini review, we describe the applications of human intestinal organoids, discussing the differences, advantages, and disadvantages of PSC-derived and ISC-derived organoids.
Collapse
Affiliation(s)
- Jasin Taelman
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge–IDIBELL, L’Hospitalet de Llobregat, Spain
- Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Spain
| | - Mònica Diaz
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge–IDIBELL, L’Hospitalet de Llobregat, Spain
- Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Spain
| | - Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge–IDIBELL, L’Hospitalet de Llobregat, Spain
- Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Spain
- *Correspondence: Jordi Guiu,
| |
Collapse
|
28
|
Burclaff J, Bliton RJ, Breau KA, Ok MT, Gomez-Martinez I, Ranek JS, Bhatt AP, Purvis JE, Woosley JT, Magness ST. A Proximal-to-Distal Survey of Healthy Adult Human Small Intestine and Colon Epithelium by Single-Cell Transcriptomics. Cell Mol Gastroenterol Hepatol 2022; 13:1554-1589. [PMID: 35176508 PMCID: PMC9043569 DOI: 10.1016/j.jcmgh.2022.02.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Single-cell transcriptomics offer unprecedented resolution of tissue function at the cellular level, yet studies analyzing healthy adult human small intestine and colon are sparse. Here, we present single-cell transcriptomics covering the duodenum, jejunum, ileum, and ascending, transverse, and descending colon from 3 human beings. METHODS A total of 12,590 single epithelial cells from 3 independently processed organ donors were evaluated for organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets. Analyses focused on intrinsic cell properties and their capacity for response to extrinsic signals along the gut axis across different human beings. RESULTS Cells were assigned to 25 epithelial lineage clusters. Multiple accepted intestinal stem cell markers do not specifically mark all human intestinal stem cells. Lysozyme expression is not unique to human Paneth cells, and Paneth cells lack expression of expected niche factors. Bestrophin 4 (BEST4)+ cells express Neuropeptide Y (NPY) and show maturational differences between the small intestine and colon. Tuft cells possess a broad ability to interact with the innate and adaptive immune systems through previously unreported receptors. Some classes of mucins, hormones, cell junctions, and nutrient absorption genes show unappreciated regional expression differences across lineages. The differential expression of receptors and drug targets across lineages show biological variation and the potential for variegated responses. CONCLUSIONS Our study identifies novel lineage marker genes, covers regional differences, shows important differences between mouse and human gut epithelium, and reveals insight into how the epithelium responds to the environment and drugs. This comprehensive cell atlas of the healthy adult human intestinal epithelium resolves likely functional differences across anatomic regions along the gastrointestinal tract and advances our understanding of human intestinal physiology.
Collapse
Affiliation(s)
- Joseph Burclaff
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - R Jarrett Bliton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina
| | - Keith A Breau
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Meryem T Ok
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina
| | - Ismael Gomez-Martinez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jolene S Ranek
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Aadra P Bhatt
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeremy E Purvis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John T Woosley
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott T Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
29
|
Barreto E Barreto L, Rattes IC, da Costa AV, Gama P. Paneth cells and their multiple functions. Cell Biol Int 2022; 46:701-710. [PMID: 35032139 DOI: 10.1002/cbin.11764] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 01/08/2023]
Abstract
The small intestine mucosa is lined by specialized cells that form the crypt-villus axis, which expands its surface. Among the six intestinal epithelial cell types, the Paneth cell is located at the base of the crypt, and it contains numerous granules in its cytoplasm, composed of antimicrobial peptides, such as defensins and lysozyme, and growth factors, such as EGF, TGF-alpha, and Wnt ligands. Together, these elements act in the defense against microorganisms, regulation of intestinal microbiota, maintenance, and regulation of stem cell identity. Pathologies that target Paneth cells can disturb such defense activity, but they also affect the maintenance of stem cell niche. In that way, Crohn's disease, necrotizing enterocolitis, and graft-versus-host disease promote a reduction of Paneth cell population, and consequently of secretion of their products into the lumen of the crypts, making the affected organism predisposed to infections and dysbiosis. Additionally, the emergence of new intestinal cells is also decreased. This review aims to address the main characteristics of Paneth cells, highlighting their multiple functions and the importance of their preservation to ensure bowel homeostasis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laylla Barreto E Barreto
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Isadora Campos Rattes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Aline Vasques da Costa
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Patrícia Gama
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
30
|
Ferraces-Riegas P, Galbraith AC, Doupé DP. Epithelial Stem Cells: Making, Shaping and Breaking the Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:1-12. [DOI: 10.1007/5584_2021_686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractEpithelial stem cells maintain tissues throughout adult life and are tightly regulated by their microenvironmental niche to balance cell production and loss. These stem cells have been studied extensively as signal-receiving cells, responding to cues from other cell types and mechanical stimuli that comprise the niche. However, studies from a wide range of systems have identified epithelial stem cells as major contributors to their own microenvironment either through producing niche cells, acting directly as niche cells or regulating niche cells. The importance of stem cell contributions to the niche is particularly clear in cancer, where tumour cells extensively remodel their microenvironment to promote their survival and proliferation.
Collapse
|
31
|
Meyer AR, Brown ME, McGrath PS, Dempsey PJ. Injury-Induced Cellular Plasticity Drives Intestinal Regeneration. Cell Mol Gastroenterol Hepatol 2021; 13:843-856. [PMID: 34915204 PMCID: PMC8803615 DOI: 10.1016/j.jcmgh.2021.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
The epithelial lining of the intestine, particularly the stem cell compartment, is affected by harsh conditions in the luminal environment and also is susceptible to genotoxic agents such as radiation and chemotherapy. Therefore, the ability for intestinal epithelial cells to revert to a stem cell state is an important physiological damage response to regenerate the intestinal epithelium at sites of mucosal injury. Many signaling networks involved in maintaining the stem cell niche are activated as part of the damage response to promote cellular plasticity and regeneration. The relative contribution of each cell type and signaling pathway is a critical area of ongoing research, likely dependent on the nature of injury as well as the regional specification within the intestine. Here, we review the current understanding of the multicellular cooperation to restore the intestinal epithelium after damage.
Collapse
Affiliation(s)
| | | | | | - Peter J. Dempsey
- Correspondence Address correspondence to: Peter J. Dempsey, PhD, Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, 1775 Aurora Court, Barbara Davis Center, M20–3306, Aurora, Colorado 80045. fax: (303) 724-6538.
| |
Collapse
|
32
|
Omatsu Y, Higaki K, Nagasawa T. Cellular Niches for Hematopoietic Stem Cells and Lympho-Hematopoiesis in Bone Marrow During Homeostasis and Blood Cancers. Curr Top Microbiol Immunol 2021; 434:33-54. [PMID: 34850281 DOI: 10.1007/978-3-030-86016-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Most types of blood cells, including immune cells are generated from hematopoietic stem cells (HSCs) within bone marrow in the adult. Most HSCs are in contact with and require the special microenvironment known as a niche for their maintenance. It has been thought that HSC niches comprise various types of support cells that provide critical signals, including cytokines and extracellular matrix for HSC regulation. However, among these cells, several lines of evidence have demonstrated that the population of bone marrow-specific mesenchymal stem cells, termed CXC chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells, which overlap strongly with leptin receptor-expressing (LepR+) cells, is the major cellular component of HSC niches. CAR/LepR+ cells give rise to most adipocytes and osteoblasts in adult bone marrow and express much higher levels of HSC niche factors, including cytokines CXCL12 and stem cell factor (SCF), which are essential for HSC maintenance, and transcription factors Foxc1 and Ebf3, which are essential for the formation and maintenance of HSC niches than other types of cells. CAR/LepR+ cells are present in human bone marrow, undergo fibrotic expansion, and have reduced expression of HSC niche factors in hematopoietic malignancies.
Collapse
Affiliation(s)
- Yoshiki Omatsu
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Kei Higaki
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
33
|
Strigli A, Gopalakrishnan S, Zeissig Y, Basic M, Wang J, Schwerd T, Doms S, Peuker K, Hartwig J, Harder J, Hönscheid P, Arnold P, Kurth T, Rost F, Petersen BS, Forster M, Franke A, Kelsen JR, Rohlfs M, Klein C, Muise AM, Warner N, Nambu R, Mayerle J, Török HP, Linkermann A, Muders MH, Baretton GB, Hampe J, Aust DE, Baines JF, Bleich A, Zeissig S. Deficiency in X-linked inhibitor of apoptosis protein promotes susceptibility to microbial triggers of intestinal inflammation. Sci Immunol 2021; 6:eabf7473. [PMID: 34739342 DOI: 10.1126/sciimmunol.abf7473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by inappropriate immune responses to the microbiota in genetically susceptible hosts, but little is known about the pathways that link individual genetic alterations to microbiota-dependent inflammation. Here, we demonstrated that the loss of X-linked inhibitor of apoptosis protein (XIAP), a gene associated with Mendelian IBD, rendered Paneth cells sensitive to microbiota-, tumor necrosis factor (TNF)–, receptor-interacting protein kinase 1 (RIPK1)–, and RIPK3-dependent cell death. This was associated with deficiency in Paneth cell–derived antimicrobial peptides and alterations in the stratification and composition of the microbiota. Loss of XIAP was not sufficient to elicit intestinal inflammation but provided susceptibility to pathobionts able to promote granulomatous ileitis, which could be prevented by administration of a Paneth cell–derived antimicrobial peptide. These data reveal a pathway critical for host-microbial cross-talk, which is required for intestinal homeostasis and the prevention of inflammation and which is amenable to therapeutic targeting.
Collapse
Affiliation(s)
- Anne Strigli
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Shreya Gopalakrishnan
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Yvonne Zeissig
- Department of General Pediatrics, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Jun Wang
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany.,CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tobias Schwerd
- Department of Pediatrics, Dr von Hauner Children's Hospital, LMU Munich, 80337 Munich, Germany
| | - Shauni Doms
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - Kenneth Peuker
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Jelka Hartwig
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Jürgen Harder
- Department of Dermatology, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Pia Hönscheid
- Institute of Pathology, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Fabian Rost
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Center for Information Services and High Performance Computing (ZIH), Technische Universität (TU) Dresden, 01602 Dresden, Germany
| | | | - Michael Forster
- Institute for Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Andre Franke
- Institute for Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Judith R Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meino Rohlfs
- Department of Pediatrics, Dr von Hauner Children's Hospital, LMU Munich, 80337 Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr von Hauner Children's Hospital, LMU Munich, 80337 Munich, Germany
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Pediatrics, Institute of Medical Science and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Ryusuke Nambu
- SickKids Inflammatory Bowel Disease Center, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, Saitama 330-8777, Japan
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Helga-Paula Török
- Department of Medicine II, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Medicine III, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Jochen Hampe
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Daniela E Aust
- Institute of Pathology, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Sebastian Zeissig
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| |
Collapse
|
34
|
Brischetto C, Krieger K, Klotz C, Krahn I, Kunz S, Kolesnichenko M, Mucka P, Heuberger J, Scheidereit C, Schmidt-Ullrich R. NF-κB determines Paneth versus goblet cell fate decision in the small intestine. Development 2021; 148:273388. [PMID: 34751748 PMCID: PMC8627599 DOI: 10.1242/dev.199683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Although the role of the transcription factor NF-κB in intestinal inflammation and tumor formation has been investigated extensively, a physiological function of NF-κB in sustaining intestinal epithelial homeostasis beyond inflammation has not been demonstrated. Using NF-κB reporter mice, we detected strong NF-κB activity in Paneth cells, in ‘+4/+5’ secretory progenitors and in scattered Lgr5+ crypt base columnar stem cells of small intestinal (SI) crypts. To examine NF–κB functions in SI epithelial self-renewal, mice or SI crypt organoids (‘mini-guts’) with ubiquitously suppressed NF-κB activity were used. We show that NF-κB activity is dispensable for maintaining SI epithelial proliferation, but is essential for ex vivo organoid growth. Furthermore, we demonstrate a dramatic reduction of Paneth cells in the absence of NF-κB activity, concomitant with a significant increase in goblet cells and immature intermediate cells. This indicates that NF-κB is required for proper Paneth versus goblet cell differentiation and for SI epithelial homeostasis, which occurs via regulation of Wnt signaling and Sox9 expression downstream of NF-κB. The current study thus presents evidence for an important role for NF-κB in intestinal epithelial self-renewal. Summary: The transcription factor NF-κB, together with downstream Wnt and Sox9, is required for Paneth and goblet cell fate decisions and for maintenance of the small intestinal stem cell niche.
Collapse
Affiliation(s)
- Cristina Brischetto
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Karsten Krieger
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Christian Klotz
- Unit for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute (RKI), 13353 Berlin, Germany
| | - Inge Krahn
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Séverine Kunz
- CF Electron Microscopy, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Marina Kolesnichenko
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Patrick Mucka
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Julian Heuberger
- Signal Transduction in Development and Cancer, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany.,Medical Department, Division of Gastroenterology and Hepatology, Charité University Medicine, 13353 Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Ruth Schmidt-Ullrich
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| |
Collapse
|
35
|
Omatsu Y, Nagasawa T. Identification of microenvironmental niches for hematopoietic stem cells and lymphoid progenitors-bone marrow fibroblastic reticular cells with salient features. Int Immunol 2021; 33:821-826. [PMID: 34668936 DOI: 10.1093/intimm/dxab092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Most lineages of blood cells, including immune cells are generated from hematopoietic stem cells (HSCs) in bone marrow throughout adult life. Since HSCs cannot expand on their own, they require and contact the special microenvironments, termed niches for their maintenance. HSC niches comprise supportive cells that provide adjacent HSCs with critical signals, including cytokines. Although bone marrow microenvironments have been thought to be complex, recent studies have demonstrated that the bone marrow-specific population of fibroblastic reticular cells with long processes, termed CXC chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells, which overlap strongly with leptin receptor (LepR)-expressing (LepR +) cells, is the major cellular component of niches for HSCs and lymphoid progenitors. CAR cells have salient features, expressing much higher levels of critical HSC niche factors than any other cell populations and function as self-renewing mesenchymal stem cells. Human counterpart of CAR cells is present and affected in diseases, including leukemia. Foxl1 + telocytes recently identified as the niche for intestinal stem cells share some features with CAR cells, suggesting that CAR cells are prototypical fibroblastic reticular cells creating niche for long-lived cells, including tissue stem cells and memory lymphocytes. These findings provided the basis for future mechanistic studies on the crosstalk between hematopoietic cells and microenvironments in both health and disease.
Collapse
Affiliation(s)
- Yoshiki Omatsu
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
36
|
Capdevila C, Trifas M, Miller J, Anderson T, Sims PA, Yan KS. Cellular origins and lineage relationships of the intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2021; 321:G413-G425. [PMID: 34431400 PMCID: PMC8560372 DOI: 10.1152/ajpgi.00188.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/31/2023]
Abstract
Knowledge of the development and hierarchical organization of tissues is key to understanding how they are perturbed in injury and disease, as well as how they may be therapeutically manipulated to restore homeostasis. The rapidly regenerating intestinal epithelium harbors diverse cell types and their lineage relationships have been studied using numerous approaches, from classical label-retaining and genetic lineage tracing methods to novel transcriptome-based annotations. Here, we describe the developmental trajectories that dictate differentiation and lineage specification in the intestinal epithelium. We focus on the most recent single-cell RNA-sequencing (scRNA-seq)-based strategies for understanding intestinal epithelial cell lineage relationships, underscoring how they have refined our view of the development of this tissue and highlighting their advantages and limitations. We emphasize how these technologies have been applied to understand the dynamics of intestinal epithelial cells in homeostatic and injury-induced regeneration models.
Collapse
Affiliation(s)
- Claudia Capdevila
- Columbia Stem Cell Initiative, Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, New York
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York
| | - Maria Trifas
- Columbia Stem Cell Initiative, Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, New York
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York
| | - Jonathan Miller
- Columbia Stem Cell Initiative, Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, New York
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York
| | - Troy Anderson
- Columbia Stem Cell Initiative, Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, New York
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, New York
| | - Kelley S Yan
- Columbia Stem Cell Initiative, Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, New York
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
37
|
Guiu J, Jensen KB. In Vivo Studies Should Take Priority When Defining Mechanisms of Intestinal Crypt Morphogenesis. Cell Mol Gastroenterol Hepatol 2021; 13:1-3. [PMID: 34562638 PMCID: PMC8600083 DOI: 10.1016/j.jcmgh.2021.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/17/2020] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat, Spain,Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, L'Hospitalet de Llobregat, Spain,Jordi Guiu, Institut d’Investigació Biomèdica de Bellvitge, 08908Hospitalet de Llobregat, Spain.
| | - Kim B. Jensen
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Correspondence Address correspondence to: Kim B. Jensen, University of Copenhagen, Biotech Research and Innovation Center and Novo Nordisk Foundation Center for Stem Cell Biology, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
38
|
Ara T, Hashimoto D. Novel Insights Into the Mechanism of GVHD-Induced Tissue Damage. Front Immunol 2021; 12:713631. [PMID: 34512636 PMCID: PMC8429834 DOI: 10.3389/fimmu.2021.713631] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
Prophylaxis for and treatment of graft-versus-host disease (GVHD) are essential for successful allogeneic hematopoietic stem cell transplantation (allo-SCT) and mainly consist of immunosuppressants such as calcineurin inhibitors. However, profound immunosuppression can lead to tumor relapse and infectious complications, which emphasizes the necessity of developing novel management strategies for GVHD. Emerging evidence has revealed that tissue-specific mechanisms maintaining tissue homeostasis and promoting tissue tolerance to combat GVHD are damaged after allo-SCT, resulting in exacerbation and treatment refractoriness of GVHD. In the gastrointestinal tract, epithelial regeneration derived from intestinal stem cells (ISCs), a microenvironment that maintains healthy gut microbiota, and physical and chemical mucosal barrier functions against pathogens are damaged by conditioning regimens and/or GVHD. The administration of growth factors for cells that maintain intestinal homeostasis, such as interleukin-22 (IL-22) for ISCs, R-spondin 1 (R-Spo1) for ISCs and Paneth cells, and interleukin-25 (IL-25) for goblet cells, mitigates murine GVHD. In this review, we summarize recent advances in the understanding of GVHD-induced tissue damage and emerging strategies for the management of GVHD.
Collapse
Affiliation(s)
- Takahide Ara
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
39
|
Ouladan S, Gregorieff A. Taking a Step Back: Insights into the Mechanisms Regulating Gut Epithelial Dedifferentiation. Int J Mol Sci 2021; 22:ijms22137043. [PMID: 34208872 PMCID: PMC8268356 DOI: 10.3390/ijms22137043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 01/22/2023] Open
Abstract
Despite the environmental constraints imposed upon the intestinal epithelium, this tissue must perform essential functions such as nutrient absorption and hormonal regulation, while also acting as a critical barrier to the outside world. These functions depend on a variety of specialized cell types that are constantly renewed by a rapidly proliferating population of intestinal stem cells (ISCs) residing at the base of the crypts of Lieberkühn. The niche components and signals regulating crypt morphogenesis and maintenance of homeostatic ISCs have been intensely studied over the last decades. Increasingly, however, researchers are turning their attention to unraveling the mechanisms driving gut epithelial regeneration due to physical damage or infection. It is now well established that injury to the gut barrier triggers major cell fate changes, demonstrating the highly plastic nature of the gut epithelium. In particular, lineage tracing and transcriptional profiling experiments have uncovered several injury-induced stem-cell populations and molecular markers of the regenerative state. Despite the progress achieved in recent years, several questions remain unresolved, particularly regarding the mechanisms driving dedifferentiation of the gut epithelium. In this review, we summarize the latest studies, primarily from murine models, that define the regenerative processes governing the gut epithelium and discuss areas that will require more in-depth investigation.
Collapse
Affiliation(s)
- Shaida Ouladan
- Department of Pathology, McGill University, Montréal, QC H3A 2B4, Canada;
- McGill Regenerative Medicine Network, Montréal, QC H3A 1A3, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Alex Gregorieff
- Department of Pathology, McGill University, Montréal, QC H3A 2B4, Canada;
- McGill Regenerative Medicine Network, Montréal, QC H3A 1A3, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
40
|
Rosa I, Marini M, Manetti M. Telocytes: An Emerging Component of Stem Cell Niche Microenvironment. J Histochem Cytochem 2021; 69:795-818. [PMID: 34165348 DOI: 10.1369/00221554211025489] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Telocytes (TCs) are newly identified interstitial cells characterized by thin and long cytoplasmic processes, called telopodes, which exhibit a distinctive moniliform shape and, often, a sinuous trajectory. Telopodes typically organize in intricate networks within the stromal space of most organs, where they communicate with neighboring cells by means of specialized cell-to-cell junctions or shedding extracellular vesicles. Hence, TCs are generally regarded as supporting cells that help in the maintenance of local tissue homeostasis, with an ever-increasing number of studies trying to explore their functions both in physiological and pathological conditions. Notably, TCs appear to be part of stem cell (SC) niches in different organs, including the intestine, skeletal muscle, heart, lung, and skin. Indeed, growing evidence points toward a possible implication of TCs in the regulation of the activity of tissue-resident SCs and in shaping the SC niche microenvironment, thus contributing to tissue renewal and repair. Here, we review how the introduction of TCs into the scientific literature has deepened our knowledge of the stromal architecture focusing on the intestine and skeletal muscle, two organs in which the recently unveiled unique relationship between TCs and SCs is currently in the spotlight as potential target for tissue regenerative purposes.
Collapse
Affiliation(s)
- Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
41
|
Wang J, Garg S, Landes RD, Liu L, Fu Q, Seng J, Boerma M, Thrall K, Hauer-Jensen M, Pathak R. Differential Recovery of Small Intestinal Segments after Partial-Body Irradiation in Non-Human Primates. Radiat Res 2021; 196:204-212. [PMID: 34043805 DOI: 10.1667/rade-20-00272.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 05/06/2021] [Indexed: 11/03/2022]
Abstract
In the event of a radiological attack or accident, it is more likely that the absorbed radiation dose will be heterogeneous, rather than uniformly distributed throughout the body. This type of uneven dose distribution is known as partial-body irradiation (PBI). Partial exposure of the vital organs, specifically the highly radiosensitive intestines, may cause death, if the injury is significant and the post-exposure recovery is considerably compromised. Here we investigated the recovery rate and extent of recovery from PBI-induced intestinal damage in large animals. Rhesus macaques (Macaca mulatta) were randomly divided into four groups: sham-irradiated (0 Gy), 8 Gy PBI, 11 Gy PBI and 14 Gy PBI. A single dose of ionizing radiation was delivered in the abdominal region using a uniform bilateral anteroposterior and posteroanterior technique. Irradiated animals were scheduled for euthanasia on days 10, 28 or 60 postirradiation, and sham-irradiated animals on day 60. Intestinal structural injuries were assessed via crypt depth, villus height, and mucosal surface length in the four different intestinal regions (duodenum, proximal jejunum, distal jejunum and ileum) using H&E staining. Higher radiation doses corresponded with more injury at 10 days post-PBI, and faster recovery. However, at 60 days post-PBI, damage was still evident in all regions of the intestine. The proximal and distal ends (duodenum and ileum, respectively) sustained less damage and recovered more fully than the jejunum.
Collapse
Affiliation(s)
- Junru Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Liya Liu
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Qiang Fu
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John Seng
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
42
|
Kolev HM, Tian Y, Kim MS, Leu NA, Adams-Tzivelekidis S, Lengner CJ, Li N, Kaestner KH. A FoxL1-CreERT-2A-tdTomato Mouse Labels Subepithelial Telocytes. Cell Mol Gastroenterol Hepatol 2021; 12:1155-1158.e4. [PMID: 34029742 PMCID: PMC8413136 DOI: 10.1016/j.jcmgh.2021.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/04/2023]
Affiliation(s)
- H M Kolev
- Department of Genetics, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Y Tian
- Department of Biomedical Sciences, School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - M S Kim
- Department of Biomedical Sciences, School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - N A Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - S Adams-Tzivelekidis
- Department of Biomedical Sciences, School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - C J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, Philadelphia, Pennsylvania; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - N Li
- Department of Biomedical Sciences, School of Veterinary Medicine, Philadelphia, Pennsylvania; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - K H Kaestner
- Department of Genetics, Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
43
|
Bonis V, Rossell C, Gehart H. The Intestinal Epithelium - Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip. Front Cell Dev Biol 2021; 9:661931. [PMID: 34095127 PMCID: PMC8172987 DOI: 10.3389/fcell.2021.661931] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
The single-layered, simple epithelium of the gastro-intestinal tract controls nutrient uptake, coordinates our metabolism and shields us from pathogens. Despite its seemingly simple architecture, the intestinal lining consists of highly distinct cell populations that are continuously renewed by the same stem cell population. The need to maintain balanced diversity of cell types in an unceasingly regenerating tissue demands intricate mechanisms of spatial or temporal cell fate control. Recent advances in single-cell sequencing, spatio-temporal profiling and organoid technology have shed new light on the intricate micro-structure of the intestinal epithelium and on the mechanisms that maintain it. This led to the discovery of unexpected plasticity, zonation along the crypt-villus axis and new mechanism of self-organization. However, not only the epithelium, but also the underlying mesenchyme is distinctly structured. Several new studies have explored the intestinal stroma with single cell resolution and unveiled important interactions with the epithelium that are crucial for intestinal function and regeneration. In this review, we will discuss these recent findings and highlight the technologies that lead to their discovery. We will examine strengths and limitations of each approach and consider the wider impact of these results on our understanding of the intestine in health and disease.
Collapse
Affiliation(s)
- Vangelis Bonis
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Carla Rossell
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Helmuth Gehart
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Chen Y, Ye Z, Seidler U, Tian D, Xiao F. Microenvironmental regulation of intestinal stem cells in the inflamed intestine. Life Sci 2021; 273:119298. [PMID: 33667519 DOI: 10.1016/j.lfs.2021.119298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 01/21/2023]
Abstract
The rapid renewal of intestinal epithelium during homeostasis requires balanced proliferation and differentiation of intestinal stem cells (ISCs) at the base of crypt. Upon intestinal inflammation, the vigorous expansion of surviving ISCs is responsible for epithelial repair. However, it is not well depicted how ISCs adapt to the inflammatory conditions within intestinal tissue and support epithelial repair. In the intestinal inflammation, niche cells around ISCs along with their secreted niche factors can facilitate the regeneration of ISCs via niche signals. Additionally, the growth of ISCs can respond to inflammatory cells, inflammatory cytokines, and inflammatory signals. Understanding the adaptive mechanism of ISCs in supporting intestinal epithelial regeneration during inflammation is a focus on the treatment for patients with intestinal inflammation. Here, we aim to present an overview of how ISCs adapt to the acute inflammation to support intestinal repair, with a focus on the roles and interaction of niche signals.
Collapse
Affiliation(s)
- Yu Chen
- Department of Gastsroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhenghao Ye
- Department of Gastroenterology of Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology of Hannover Medical School, Hannover, Germany
| | - Dean Tian
- Department of Gastsroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fang Xiao
- Department of Gastsroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
45
|
Gaudino SJ, Beaupre M, Lin X, Joshi P, Rathi S, McLaughlin PA, Kempen C, Mehta N, Eskiocak O, Yueh B, Blumberg RS, van der Velden AWM, Shroyer KR, Bialkowska AB, Beyaz S, Kumar P. IL-22 receptor signaling in Paneth cells is critical for their maturation, microbiota colonization, Th17-related immune responses, and anti-Salmonella immunity. Mucosal Immunol 2021; 14:389-401. [PMID: 33060802 PMCID: PMC7946635 DOI: 10.1038/s41385-020-00348-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Interleukin-22 (IL-22) signaling in the intestines is critical for promoting tissue-protective functions. However, since a diverse array of cell types (absorptive and secretory epithelium as well as stem cells) express IL-22Ra1, a receptor for IL-22, it has been difficult to determine what cell type(s) specifically respond to IL-22 to mediate intestinal mucosal host defense. Here, we report that IL-22 signaling in the small intestine is positively correlated with Paneth cell differentiation programs. Our Il22Ra1fl/fl;Lgr5-EGFP-creERT2-specific knockout mice and, independently, our lineage-tracing findings rule out the involvement of Lgr5+ intestinal stem cell (ISC)-dependent IL-22Ra1 signaling in regulating the lineage commitment of epithelial cells, including Paneth cells. Using novel Paneth cell-specific IL-22Ra1 knockout mice (Il22Ra1fl/fl;Defa6-cre), we show that IL-22 signaling in Paneth cells is required for small intestinal host defense. We show that Paneth cell maturation, antimicrobial effector function, expression of specific WNTs, and organoid morphogenesis are dependent on cell-intrinsic IL-22Ra1 signaling. Furthermore, IL-22 signaling in Paneth cells regulates the intestinal commensal bacteria and microbiota-dependent IL-17A immune responses. Finally, we show ISC and, independently, Paneth cell-specific IL-22Ra1 signaling are critical for providing immunity against Salmonella enterica serovar Typhimurium. Collectively, our findings illustrate a previously unknown role of IL-22 in Paneth cell-mediated small intestinal host defense.
Collapse
Affiliation(s)
- Stephen J Gaudino
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Michael Beaupre
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Xun Lin
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Preet Joshi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sonika Rathi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Patrick A McLaughlin
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cody Kempen
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Neil Mehta
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Brian Yueh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Richard S Blumberg
- Department of Gastroenterology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Adrianus W M van der Velden
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Kenneth R Shroyer
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Pawan Kumar
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
46
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
47
|
Hageman JH, Heinz MC, Kretzschmar K, van der Vaart J, Clevers H, Snippert HJG. Intestinal Regeneration: Regulation by the Microenvironment. Dev Cell 2021; 54:435-446. [PMID: 32841594 DOI: 10.1016/j.devcel.2020.07.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023]
Abstract
Damage to the intestinal stem cell niche can result from mechanical stress, infections, chronic inflammation or cytotoxic therapies. Progenitor cells can compensate for insults to the stem cell population through dedifferentiation. The microenvironment modulates this regenerative response by influencing the activity of signaling pathways, including Wnt, Notch, and YAP/TAZ. For instance, mesenchymal cells and immune cells become more abundant after damage and secrete signaling molecules that promote the regenerative process. Furthermore, regeneration is influenced by the nutritional state, microbiome, and extracellular matrix. Here, we review how all these components cooperate to restore epithelial homeostasis in the intestine after injury.
Collapse
Affiliation(s)
- Joris H Hageman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Maria C Heinz
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Kai Kretzschmar
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Mildred-Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Jelte van der Vaart
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Hugo J G Snippert
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
48
|
Hou Q, Huang J, Ayansola H, Masatoshi H, Zhang B. Intestinal Stem Cells and Immune Cell Relationships: Potential Therapeutic Targets for Inflammatory Bowel Diseases. Front Immunol 2021; 11:623691. [PMID: 33584726 PMCID: PMC7874163 DOI: 10.3389/fimmu.2020.623691] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian intestine is the largest immune organ that contains the intestinal stem cells (ISC), differentiated epithelial cells (enterocytes, Paneth cells, goblet cells, tuft cells, etc.), and gut resident-immune cells (T cells, B cells, dendritic cells, innate lymphoid cell, etc.). Inflammatory bowel disease (IBD), a chronic inflammatory disease characterized by mucosa damage and inflammation, threatens the integrity of the intestine. The continuous renewal and repair of intestinal mucosal epithelium after injury depend on ISCs. Inflamed mucosa healing could be a new target for the improvement of clinical symptoms, disease recurrence, and resection-free survival in IBD treated patients. The knowledge about the connections between ISC and immune cells is expanding with the development of in vitro intestinal organoid culture and single-cell RNA sequencing technology. Recent findings implicate that immune cells such as T cells, ILCs, dendritic cells, and macrophages and cytokines secreted by these cells are critical in the regeneration of ISCs and intestinal epithelium. Transplantation of ISC to the inflamed mucosa may be a new therapeutic approach to reconstruct the epithelial barrier in IBD. Considering the links between ISC and immune cells, we predict that the integration of biological agents and ISC transplantation will revolutionize the future therapy of IBD patients.
Collapse
Affiliation(s)
- Qihang Hou
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, China
| | - Jingxi Huang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, China
| | - Hammed Ayansola
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, China
| | - Hori Masatoshi
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
49
|
Zhu G, Hu J, Xi R. The cellular niche for intestinal stem cells: a team effort. CELL REGENERATION 2021; 10:1. [PMID: 33385259 PMCID: PMC7775856 DOI: 10.1186/s13619-020-00061-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
The rapidly self-renewing epithelium in the mammalian intestine is maintained by multipotent intestinal stem cells (ISCs) located at the bottom of the intestinal crypt that are interspersed with Paneth cells in the small intestine and Paneth-like cells in the colon. The ISC compartment is also closely associated with a sub-epithelial compartment that contains multiple types of mesenchymal stromal cells. With the advances in single cell and gene editing technologies, rapid progress has been made for the identification and characterization of the cellular components of the niche microenvironment that is essential for self-renewal and differentiation of ISCs. It has become increasingly clear that a heterogeneous population of mesenchymal cells as well as the Paneth cells collectively provide multiple secreted niche signals to promote ISC self-renewal. Here we review and summarize recent advances in the regulation of ISCs with a main focus on the definition of niche cells that sustain ISCs.
Collapse
Affiliation(s)
- Guoli Zhu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Jiulong Hu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
50
|
Gomart A, Vallée A, Lecarpentier Y. Necrotizing Enterocolitis: LPS/TLR4-Induced Crosstalk Between Canonical TGF-β/Wnt/β-Catenin Pathways and PPARγ. Front Pediatr 2021; 9:713344. [PMID: 34712628 PMCID: PMC8547806 DOI: 10.3389/fped.2021.713344] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Necrotizing enterocolitis (NEC) represents one of the major causes of morbidity and mortality in premature infants. Several recent studies, however, have contributed to a better understanding of the pathophysiology of this dreadful disease. Numerous intracellular pathways play a key role in NEC, namely: bacterial lipopolysaccharide (LPS), LPS toll-like receptor 4 (TLR4), canonical Wnt/β-catenin signaling and PPARγ. In a large number of pathologies, canonical Wnt/β-catenin signaling and PPARγ operate in opposition to one another, so that when one of the two pathways is overexpressed the other is downregulated and vice-versa. In NEC, activation of TLR4 by LPS leads to downregulation of the canonical Wnt/β-catenin signaling and upregulation of PPARγ. This review aims to shed light on the complex intracellular mechanisms involved in this pathophysiological profile by examining additional pathways such as the GSK-3β, NF-κB, TGF-β/Smads, and PI3K-Akt pathways.
Collapse
Affiliation(s)
- Alexia Gomart
- Département de Pédiatrie et Médecine de l'adolescent, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, Suresnes, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| |
Collapse
|