1
|
Yu M, Zhang C, Xu H, Dong Y, Zhu H, Xia C, Feng J. Design of a novel long-acting insulin analogs by acetylation modification and compared with insulin Icodec. Sci Rep 2025; 15:9408. [PMID: 40108309 PMCID: PMC11923205 DOI: 10.1038/s41598-025-94014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Insulin is a potent medication for managing diabetes, yet its short half-life requires daily administration. Currently, Novo Nordisk's icodec is the sole insulin available on the market that requires administration only once a week. Insulin icodec, developed by Novo Nordisk through amino acid mutations and fatty acid side chain modifications, has demonstrated the capability to control blood glucose levels on a once-weekly basis. To improve its efficacy, we modified the acylation side chain of icodec to generate insulin analogs appropriate for weekly dosing. A promising insulin analog, TBE001-A-S033, was synthesized and conjugated, and its efficacy was assessed in ICR and db/db mice. TBE001-A-S033 prolonged blood glucose control in ICR mice and exhibited a comparable blood glucose trend to insulin icodec in db/db mice. These findings suggest that TBE001-A-S033 possesses a favorable hypoglycemic effect and a differential half-life across species compared to insulin icodec, indicating its potential for once-weekly use in humans. This preclinical investigation indicates that TBE001-A-S033 may serve as an effective therapeutic for type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Min Yu
- China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Lianyungang, Jiangsu, People's Republic of China
| | - Chuanzhi Zhang
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Lianyungang, Jiangsu, People's Republic of China
| | - Hongjiang Xu
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Lianyungang, Jiangsu, People's Republic of China
| | - Yuanzhen Dong
- China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Duomirui Biotechnology Ltd, No.285 Gebaini Road, Pudong New Area, Shanghai, 201203, China
| | - Hongxiang Zhu
- China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Chunguang Xia
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Lianyungang, Jiangsu, People's Republic of China
| | - Jun Feng
- China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China.
- Shanghai Duomirui Biotechnology Ltd, No.285 Gebaini Road, Pudong New Area, Shanghai, 201203, China.
| |
Collapse
|
2
|
Mukherjee RP, Yow GY, Sarakbi S, Menegatti S, Gurgel PV, Carbonell RG, Bobay BG. Integrated in silico and experimental discovery of trimeric peptide ligands targeting Butyrylcholinesterase. Comput Biol Chem 2023; 102:107797. [PMID: 36463785 DOI: 10.1016/j.compbiolchem.2022.107797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Butyrylcholinesterase (BChE) is recognized as a high value biotherapeutic in the treatment of Alzheimer's disease and drug addiction. This study presents the rational design and screening of an in-silico library of trimeric peptides against BChE and the experimental characterization of peptide ligands for purification. The selected peptides consistently afforded high BChE recovery (> 90 %) and purity, yielding up to a 1000-fold purification factor. This study revealed a marked anti-correlated conformational movement governed by the ionic strength and pH of the aqueous environment, which ultimately controls BChE binding and release during chromatographic purification; and highlighted the role of residues within and allosteric to the catalytic triad of BChE in determining biorecognition, thus providing useful guidance for ligand design and affinity maturation.
Collapse
Affiliation(s)
- Rudra Palash Mukherjee
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | - Stefano Menegatti
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Patrick V Gurgel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA; Prometic Bioseparations Ltd, Cambridge CB23 7AJ, UK
| | - Ruben G Carbonell
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA; William R. Kenan, Jr. Institute for Engineering, Technology and Science North Carolina State University, Raleigh, NC 27606, USA.
| | - Benjamin G Bobay
- Duke University NMR Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Radiology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Argentova V, Aliev T, Dolgikh D, Pakanová Z, Katrlík J, Kirpichnikov M. Features, modulation and analysis of glycosylation patterns of therapeutic recombinant immunoglobulin A. Biotechnol Genet Eng Rev 2022; 38:247-269. [PMID: 35377278 DOI: 10.1080/02648725.2022.2060594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Increasing the production of recombinant antibodies while ensuring high and stable protein quality remains a challenge in mammalian cell culture. This review is devoted to advances in the field of obtaining stable and optimal glycosylation of therapeutic antibodies based on IgA, as well as the subsequent issues of glycosylation control of glycoproteins during their production. Current studies also demonstrate a general need for a more fundamental understanding of the use of CHO cell-based producer cell lines, through which the glycoprofile of therapeutic IgA antibodies is produced and the dependence of glycosylation on culture conditions could be controlled. Optimization of glycosylation improves the therapeutic efficacy and can expand the possibilities for the creation of highly effective glycoprotein therapeutic drugs. Current status and trends in glycan analysis of therapeutic IgA, dominantly based on mass spectrometry and lectin microarrays are herein summarised as well.
Collapse
Affiliation(s)
- Victoria Argentova
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Teimur Aliev
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Dolgikh
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Bioorganic Chemistry, Russian Academy of SciencesShemyakin-Ovchinnikov, Moscow, Russia
| | - Zuzana Pakanová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mikhail Kirpichnikov
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Bioorganic Chemistry, Russian Academy of SciencesShemyakin-Ovchinnikov, Moscow, Russia
| |
Collapse
|
4
|
Allard JL, Shields KA, Munro T, Lua LHL. Design and production strategies for developing a recombinant butyrylcholinesterase medical countermeasure for Organophosphorus poisoning. Chem Biol Interact 2022; 363:109996. [PMID: 35654125 DOI: 10.1016/j.cbi.2022.109996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Organophosphorus nerve agents represent a serious chemical threat due to their ease of production and scale of impact. The recent use of the nerve agent Novichok has re-emphasised the need for broad-spectrum medical countermeasures (MCMs) to these agents. However, current MCMs are limited. Plasma derived human butyrylcholinesterase (huBChE) is a promising novel bioscavenger MCM strategy, but is prohibitively expensive to isolate from human plasma at scale. Efforts to produce recombinant huBChE (rBChE) in various protein expression platforms have failed to achieve key critical attributes of huBChE such as circulatory half-life. These proteins often lack critical features such as tetrameric structure and requisite post-translational modifications. This review evaluates previous attempts to generate rBChE and assesses recent advances in mammalian cell expression and protein engineering strategies that could be deployed to achieve the required half-life and yield for a viable rBChE MCM. This includes the addition of a proline-rich attachment domain, fusion proteins, post translational modifications, expression system selection and optimised downstream processes. Whilst challenges remain, a combinatorial approach of these strategies demonstrates potential as a technically feasible approach to achieving a bioactive and cost effective bioscavenger MCM.
Collapse
Affiliation(s)
- Joanne L Allard
- Defence Science and Technology Group, Fishermans Bend, Victoria, 3207, Australia; The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Katherine A Shields
- Defence Science and Technology Group, Fishermans Bend, Victoria, 3207, Australia
| | - TrentP Munro
- The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Linda H L Lua
- The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
5
|
Varma A, Gemeda HB, McNulty MJ, McDonald KA, Nandi S, Knipe JM. Immobilization of transgenic plant cells towards bioprinting for production of a recombinant biodefense agent. Biotechnol J 2021; 16:e2100133. [PMID: 34347377 DOI: 10.1002/biot.202100133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/08/2022]
Abstract
Transgenic rice cells (Oryza sativa) producing recombinant butyrylcholinesterase (BChE) as a prophylactic/therapeutic against organophosphate nerve agent poisoning, cocaine toxicity, and neurodegenerative diseases like Alzheimer's were immobilized in a polyethylene glycol-based hydrogel. The cells were sustained for 14 days in the semi-solid matrix, undergoing a growth phase from days 0-6, a BChE production phase in sugar-free medium from days 6-12, and a growth/recovery phase from days 12-14. Throughout this period, the cells maintained similar viability to those in suspension cultures and displayed analogous sugar consumption trends. The rice cells in the hydrogel also produced a significant amount of active BChE, comparable to the levels produced in liquid cultures. A considerable fraction of this BChE was secreted into the media, allowing for easier product separation. To the best of our knowledge, this proof-of-concept is the first report of immobilization of recombinant plant cells for continuous production of high-value heterologous proteins. This work serves as a foundation for further investigation towards plant cell bioprinting and the development of a simple, efficient, robust, modular, and potentially field-deployable bioreactor system for the manufacture of biologics. GRAPHICAL ABSTRACT AND LAY SUMMARY: Transgenic rice cells were combined with a polyethylene glycol tetra-acrylate (PEGTA) and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) bioink and cured with UV light to construct an immobilized cell-based protein production system. The cells were maintained for 14 days in the hydrogel matrix and were induced to actively make and secrete recombinant butyrylcholinesterase, a complex enzyme that irreversibly binds to and can hydrolyze organophosphate. This proof-of-concept study showcases the use of immobilized and potentially bioprintable plant cells to produce high-value proteins with prophylactic and therapeutic applications.
Collapse
Affiliation(s)
- Anika Varma
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Hawi B Gemeda
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, California, USA.,Global HealthShare Initiative, University of California, Davis, California, USA
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, California, USA.,Global HealthShare Initiative, University of California, Davis, California, USA
| | - Jennifer M Knipe
- Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
6
|
Pashirova TN, Bogdanov A, Masson P. Therapeutic nanoreactors for detoxification of xenobiotics: Concepts, challenges and biotechnological trends with special emphasis to organophosphate bioscavenging. Chem Biol Interact 2021; 346:109577. [PMID: 34274336 DOI: 10.1016/j.cbi.2021.109577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/19/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
The introduction of enzyme nanoreactors in medicine is relatively new. However, this technology has already been experimentally successful in cancer treatments, struggle against toxicity of reactive oxygen species in inflammatory processes, detoxification of drugs and xenobiotics, and correction of metabolic and genetic defects by using encapsulated enzymes, acting in single or cascade reactions. Biomolecules, e.g. enzymes, antibodies, reactive proteins capable of inactivating toxicants in the body are called bioscavengers. In this review, we focus on enzyme-containing nanoreactors for in vivo detoxification of organophosphorous compounds (OP) to be used for prophylaxis and post-exposure treatment of OP poisoning. A particular attention is devoted to bioscavenger-containing injectable nanoreactors operating in the bloodstream. The nanoreactor concept implements single or multiple enzymes and cofactors co-encapsulated in polymeric semi-permeable nanocontainers. Thus, the detoxification processes take place in a confined space containing highly concentrated bioscavengers. The article deals with historical and theoretical backgrounds about enzymatic detoxification of OPs in nanoreactors, nanoreactor polymeric enveloppes, realizations and advantages over other approaches using bioscavengers.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Andrei Bogdanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Patrick Masson
- Kazan Federal University, Neuropharmacology Laboratory, Kremlevskaya str., 18, Kazan, 420111, Russian Federation.
| |
Collapse
|
7
|
Demina PA, Sholina NV, Akasov RA, Khochenkov DA, Nechaev AV, Balalaeva IV, Khaydukov EV, Generalova AN, Deev SM. Upconversion Nanoparticles Decorated with Polysialic Acid for Solid Tumors Visualization In Vivo. DOKL BIOCHEM BIOPHYS 2021; 497:81-85. [PMID: 33666804 PMCID: PMC8068683 DOI: 10.1134/s1607672921020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/02/2022]
Abstract
Upconversion nanoparticles (UCNPs) are a promising nanoplatform for bioreagent formation for in vivo imaging, which emit UV and blue light under the action of near-infrared radiation, providing deep tissue penetration and maintaining a high signal-to-noise ratio. In the case of solid tumor visualization, the UCNP surface functionalization is required to ensure a long circulation time, biocompatibility, and non-toxicity. The effective UCNP accumulation in the solid tumors is determined by the disturbed architecture of the vascular network and lymphatic drainage. This work demonstrates an approach to the UCNP biofunctionalization with endogenous polysialic acid for in vivo bioreagent formation. Bioreagents possess a low level of nonspecific protein adsorption and macrophage uptake, which allow the prolongation of the circulation time in the bloodstream up to 3 h. This leads to an intense photoluminescent signal in the tumor.
Collapse
Affiliation(s)
- P A Demina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia. .,Federal Research Center "Crystallography and Photonics," Russian Academy of Sciences, Moscow, Russia.
| | - N V Sholina
- Sechenov First Moscow State Medical University, Moscow, Russia.,Federal Research Center "Crystallography and Photonics," Russian Academy of Sciences, Moscow, Russia
| | - R A Akasov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia.,Federal Research Center "Crystallography and Photonics," Russian Academy of Sciences, Moscow, Russia
| | - D A Khochenkov
- Blokhin National Medical Research Center for Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Nechaev
- Lomonosov Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - I V Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - E V Khaydukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia.,Federal Research Center "Crystallography and Photonics," Russian Academy of Sciences, Moscow, Russia
| | - A N Generalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Federal Research Center "Crystallography and Photonics," Russian Academy of Sciences, Moscow, Russia
| | - S M Deev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Hrvat NM, Kovarik Z. Counteracting poisoning with chemical warfare nerve agents. Arh Hig Rada Toksikol 2020; 71:266-284. [PMID: 33410774 PMCID: PMC7968514 DOI: 10.2478/aiht-2020-71-3459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphylation of the pivotal enzyme acetylcholinesterase (AChE) by nerve agents (NAs) leads to irreversible inhibition of the enzyme and accumulation of neurotransmitter acetylcholine, which induces cholinergic crisis, that is, overstimulation of muscarinic and nicotinic membrane receptors in the central and peripheral nervous system. In severe cases, subsequent desensitisation of the receptors results in hypoxia, vasodepression, and respiratory arrest, followed by death. Prompt action is therefore critical to improve the chances of victim's survival and recovery. Standard therapy of NA poisoning generally involves administration of anticholinergic atropine and an oxime reactivator of phosphylated AChE. Anticholinesterase compounds or NA bioscavengers can also be applied to preserve native AChE from inhibition. With this review of 70 years of research we aim to present current and potential approaches to counteracting NA poisoning.
Collapse
Affiliation(s)
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
9
|
Simplified bioreactor processes for recombinant butyrylcholinesterase production in transgenic rice cell suspension cultures. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Xing S, Li Q, Xiong B, Chen Y, Feng F, Liu W, Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Med Res Rev 2020; 41:858-901. [PMID: 33103262 DOI: 10.1002/med.21745] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Structural information of butyrylcholinesterase (BChE) and its variants associated with several diseases are discussed here. Pure human BChE has been proved safe and effective in treating organophosphorus (OPs) poisoning and has completed Phase 1 and 2 pharmacokinetic (PK) and safety studies. The introduction of specific mutations into native BChE to endow it a self-reactivating property has gained much progress in producing effective OPs hydrolases. The hydrolysis ability of native BChE on cocaine has been confirmed but was blocked to clinical application due to poor PK properties. Several BChE mutants with elevated cocaine hydrolysis activity were published, some of which have shown safety and efficiency in treating cocaine addiction of human. The increased level of BChE in progressed Alzheimer's disease patients made it a promising target to elevate acetylcholine level and attenuate cognitive status. A variety of selective BChE inhibitors with high inhibitory activity published in recent years are reviewed here. BChE could influence the weight and insulin secretion and resistance of BChE knockout (KO) mice through hydrolyzing ghrelin. The BChE-ghrelin pathway could also regulate aggressive behaviors of BChE-KO mice.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China.,Institute of Food and Pharmaceuticals Research, Jiangsu Food and Pharmaceuticals Science College, Nanjing, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Mokrushina YA, Golovin AV, Smirnov IV, Chatziefthimiou SD, Stepanova AV, Bobik TV, Zalevsky AO, Zlobin AS, Konovalov KA, Terekhov SS, Stepanov AV, Pipiya SO, Shamborant OG, Round E, Belogurov AA, Bourenkov G, Makarov AA, Wilmanns M, Xie J, Blackburn GM, Gabibov AG, Lerner RA. Multiscale computation delivers organophosphorus reactivity and stereoselectivity to immunoglobulin scavengers. Proc Natl Acad Sci U S A 2020; 117:22841-22848. [PMID: 32859757 PMCID: PMC7502716 DOI: 10.1073/pnas.2010317117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Quantum mechanics/molecular mechanics (QM/MM) maturation of an immunoglobulin (Ig) powered by supercomputation delivers novel functionality to this catalytic template and facilitates artificial evolution of biocatalysts. We here employ density functional theory-based (DFT-b) tight binding and funnel metadynamics to advance our earlier QM/MM maturation of A17 Ig-paraoxonase (WTIgP) as a reactibody for organophosphorus toxins. It enables regulation of biocatalytic activity for tyrosine nucleophilic attack on phosphorus. The single amino acid substitution l-Leu47Lys results in 340-fold enhanced reactivity for paraoxon. The computed ground-state complex shows substrate-induced ionization of the nucleophilic l-Tyr37, now H-bonded to l-Lys47, resulting from repositioning of l-Lys47. Multiple antibody structural homologs, selected by phenylphosphonate covalent capture, show contrasting enantioselectivities for a P-chiral phenylphosphonate toxin. That is defined by crystallographic analysis of phenylphosphonylated reaction products for antibodies A5 and WTIgP. DFT-b analysis using QM regions based on these structures identifies transition states for the favored and disfavored reactions with surprising results. This stereoselection analysis is extended by funnel metadynamics to a range of WTIgP variants whose predicted stereoselectivity is endorsed by experimental analysis. The algorithms used here offer prospects for tailored design of highly evolved, genetically encoded organophosphorus scavengers and for broader functionalities of members of the Ig superfamily, including cell surface-exposed receptors.
Collapse
Affiliation(s)
- Yuliana A Mokrushina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russian Federation
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
- European Molecular Biology Laboratory, 22603 Hamburg, Germany
| | - Andrey V Golovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
- Sirius University of Science and Technology, 354340 Sochi, Russian Federation
| | - Ivan V Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russian Federation
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
- Endocrinology Research Centre, 115478 Moscow, Russian Federation
| | | | - Anastasia V Stepanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russian Federation
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Tatyana V Bobik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Arthur O Zalevsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
- Sirius University of Science and Technology, 354340 Sochi, Russian Federation
| | - Alexander S Zlobin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Kirill A Konovalov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Stanislav S Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russian Federation
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Alexey V Stepanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russian Federation
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Sofiya O Pipiya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Olga G Shamborant
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Ekaterina Round
- European Molecular Biology Laboratory, 22603 Hamburg, Germany
| | - Alexey A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russian Federation
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, 22603 Hamburg, Germany
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | | | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Alexander G Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russian Federation;
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
12
|
Mirzaie V, Eslaminejad T, Babaei H, Nematollahi-Mahani SN. Enhancing the Butyrylcholinesterase Activity in HEK-293 Cell Line by Dual-Promoter Vector Decorated on Lipofectamine. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3589-3599. [PMID: 32943846 PMCID: PMC7481294 DOI: 10.2147/dddt.s260419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/06/2020] [Indexed: 01/16/2023]
Abstract
Purpose Human butyrylcholinesterase (BChE) serves as a bio scavenger to counteract organophosphate poisoning. It is also a potential drug candidate in several therapeutic fields. Therefore, in the present study, we constructed a new dual-promoter plasmid consisting of Cytomegalovirus (CMV) and human elongation factor 1α (EF-1α) promoters and transfected that into HEK-293 cells using Lipofectamine to enhance the BChE secretion. Methods The new dual-promoter construction (pBudCE dual BChE) including two copies of the BChE gene was designed and transfected into cells by liposomal structures. The cloned plasmids were evaluated by enzyme digestion and gel electrophoresis analysis. Experimental groups were categorized into the cells transfected by pBudCE dual BChE (treatment), pCMV (positive control) vectors, and nontransfected cells (negative control). BChE gene expression was evaluated by qRT-PCR and the enzyme activity was assessed using modified Ellman’s method. The freeze-thaw process was carried out for analyzing the stability of the pBudCE dual BChE vector. Results Validation examination of the cloned plasmids confirmed the successful cloning process. The gene expression level and Ellman’s method value in pBudCE dual BChE was higher than the other groups. CMV promoter has also increased the enzyme activity, although the difference was not significant compared with the control group. Interestingly, freeze-thaw cycles followed by several passages did not affect the enzyme activity. Conclusion The designed construction with CMV and EF-1α promoters could increase BChE gene expression and the activity of the BChE enzyme in HEK-293 cell line. Large-scale production of BChE enzyme can be achieved by using dual-promoter plasmid construction compared to a single-promoter vector to be used in clinical trials.
Collapse
Affiliation(s)
- Vida Mirzaie
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Homayoon Babaei
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Seyed Noureddin Nematollahi-Mahani
- Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Afzal Research Institute (NGO), Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Zhang L, Murata H, Amitai G, Smith PN, Matyjaszewski K, Russell AJ. Catalytic Detoxification of Organophosphorus Nerve Agents by Butyrylcholinesterase-Polymer-Oxime Bioscavengers. Biomacromolecules 2020; 21:3867-3877. [DOI: 10.1021/acs.biomac.0c00959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Libin Zhang
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gabriel Amitai
- Wohl Drug Discovery Institute, Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot 760001, Israel
| | - Paige N. Smith
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J. Russell
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Natarajan A, Jaroentomeechai T, Cabrera-Sánchez M, Mohammed JC, Cox EC, Young O, Shajahan A, Vilkhovoy M, Vadhin S, Varner JD, Azadi P, DeLisa MP. Engineering orthogonal human O-linked glycoprotein biosynthesis in bacteria. Nat Chem Biol 2020; 16:1062-1070. [PMID: 32719555 DOI: 10.1038/s41589-020-0595-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022]
Abstract
A major objective of synthetic glycobiology is to re-engineer existing cellular glycosylation pathways from the top down or construct non-natural ones from the bottom up for new and useful purposes. Here, we have developed a set of orthogonal pathways for eukaryotic O-linked protein glycosylation in Escherichia coli that installed the cancer-associated mucin-type glycans Tn, T, sialyl-Tn and sialyl-T onto serine residues in acceptor motifs derived from different human O-glycoproteins. These same glycoengineered bacteria were used to supply crude cell extracts enriched with glycosylation machinery that permitted cell-free construction of O-glycoproteins in a one-pot reaction. In addition, O-glycosylation-competent bacteria were able to generate an antigenically authentic Tn-MUC1 glycoform that exhibited reactivity with antibody 5E5, which specifically recognizes cancer-associated glycoforms of MUC1. We anticipate that the orthogonal glycoprotein biosynthesis pathways developed here will provide facile access to structurally diverse O-glycoforms for a range of important scientific and therapeutic applications.
Collapse
Affiliation(s)
| | - Thapakorn Jaroentomeechai
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Jody C Mohammed
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Emily C Cox
- Biomedical and Biological Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Olivia Young
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Michael Vilkhovoy
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Sandra Vadhin
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Jeffrey D Varner
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Matthew P DeLisa
- Department of Microbiology, Cornell University, Ithaca, NY, USA. .,Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA. .,Biomedical and Biological Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
15
|
Lang X, Hong X, Baker CA, Otto TC, Wheeldon I. Molecular binding scaffolds increase local substrate concentration enhancing the enzymatic hydrolysis of VX nerve agent. Biotechnol Bioeng 2020; 117:1970-1978. [PMID: 32239488 DOI: 10.1002/bit.27346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/25/2022]
Abstract
Kinetic enhancement of organophosphate hydrolysis is a long-standing challenge in catalysis. For prophylactic treatment against organophosphate exposure, enzymatic hydrolysis needs to occur at high rates in the presence of low substrate concentrations and enzymatic activity should persist over days and weeks. Here, the conjugation of small DNA scaffolds was used to introduce substrate binding sites with micromolar affinity to VX, paraoxon, and methyl-parathion in close proximity to the enzyme phosphotriesterase (PTE). The result was a decrease in KM and increase in the rate at low substrate concentrations. An optimized system for paraoxon hydrolysis decreased KM by 11-fold, with a corresponding increase in second-order rate constant. The initial rates of VX and methyl-parathion hydrolysis were also increased by 3.1- and 6.7-fold, respectively. The designed scaffolds not only increased the local substrate concentration, but they also resulted in increased stability and PTE-DNA particle size tuning between 25 and ~150 nm. The scaffold engineering approach taken here is focused on altering the local chemical and physical microenvironment around the enzyme and is therefore compatible with active site engineering via combinatorial and computational approaches.
Collapse
Affiliation(s)
- Xuye Lang
- Chemical and Environmental Engineering Department, University of California, Riverside, California
| | - Xiao Hong
- Biochemistry Department, University of California, Riverside, California
| | - Cetara A Baker
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Tamara C Otto
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Ian Wheeldon
- Chemical and Environmental Engineering Department, University of California, Riverside, California.,Center for Industrial Biotechnology, University of California, Riverside, California
| |
Collapse
|
16
|
Cavalcante SFDA, Simas ABC, Barcellos MC, de Oliveira VGM, Sousa RB, Cabral PADM, Kuča K, França TCC. Acetylcholinesterase: The "Hub" for Neurodegenerative Diseases and Chemical Weapons Convention. Biomolecules 2020; 10:E414. [PMID: 32155996 PMCID: PMC7175162 DOI: 10.3390/biom10030414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
This article describes acetylcholinesterase (AChE), an enzyme involved in parasympathetic neurotransmission, its activity, and how its inhibition can be pharmacologically useful for treating dementia, caused by Alzheimer's disease, or as a warfare method due to the action of nerve agents. The chemical concepts related to the irreversible inhibition of AChE, its reactivation, and aging are discussed, along with a relationship to the current international legislation on chemical weapons.
Collapse
Affiliation(s)
- Samir F. de A. Cavalcante
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Alessandro B. C. Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
| | - Marcos C. Barcellos
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Victor G. M. de Oliveira
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Roberto B. Sousa
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Paulo A. de M. Cabral
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Tanos C. C. França
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil
| |
Collapse
|
17
|
Wayman JA, Glasscock C, Mansell TJ, DeLisa MP, Varner JD. Improving designer glycan production in Escherichia coli through model-guided metabolic engineering. Metab Eng Commun 2019; 9:e00088. [PMID: 31008057 PMCID: PMC6454127 DOI: 10.1016/j.mec.2019.e00088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
Asparagine-linked (N-linked) glycosylation is the most common protein modification in eukaryotes, affecting over two-thirds of the proteome. Glycosylation is also critical to the pharmacokinetic activity and immunogenicity of many therapeutic proteins currently produced in complex eukaryotic hosts. The discovery of a protein glycosylation pathway in the pathogen Campylobacter jejuni and its subsequent transfer into laboratory strains of Escherichia coli has spurred great interest in glycoprotein production in prokaryotes. However, prokaryotic glycoprotein production has several drawbacks, including insufficient availability of non-native glycan precursors. To address this limitation, we used a constraint-based model of E. coli metabolism in combination with heuristic optimization to design gene knockout strains that overproduced glycan precursors. First, we incorporated reactions associated with C. jejuni glycan assembly into a genome-scale model of E. coli metabolism. We then identified gene knockout strains that coupled optimal growth to glycan synthesis. Simulations suggested that these growth-coupled glycan overproducing strains had metabolic imbalances that rerouted flux toward glycan precursor synthesis. We then validated the model-identified knockout strains experimentally by measuring glycan expression using a flow cytometric-based assay involving fluorescent labeling of cell surface-displayed glycans. Overall, this study demonstrates the promising role that metabolic modeling can play in optimizing the performance of a next-generation microbial glycosylation platform.
Collapse
Affiliation(s)
- Joseph A Wayman
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Cameron Glasscock
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Thomas J Mansell
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jeffrey D Varner
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
18
|
Braid LR, Wood CA, Ford BN. Human umbilical cord perivascular cells: A novel source of the organophosphate antidote butyrylcholinesterase. Chem Biol Interact 2019; 305:66-78. [PMID: 30926319 DOI: 10.1016/j.cbi.2019.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
Abstract
Human butyrylcholinesterase (BChE) is a well-characterized bioscavenger with significant potential as a prophylactic or post-exposure treatment for organophosphate poisoning. Despite substantial efforts, BChE has proven technically challenging to produce in recombinant systems. Recombinant BChE tends to be insufficiently or incorrectly glycosylated, and consequently exhibits a truncated half-life, compromised activity, or is immunogenic. Thus, expired human plasma remains the only reliable source of the benchmark BChE tetramer, but production is costly and time intensive and presents possible blood-borne disease hazards. Here we report a human BChE production platform that produces functionally active, tetrameric BChE enzyme, without the addition of external factors such as polyproline peptides or chemical or gene modification required by other systems. Human umbilical cord perivascular cells (HUCPVCs) are a rich population of mesenchymal stromal cells (MSCs) derived from Wharton's jelly. We show that HUCPVCs naturally and stably secrete BChE during culture in xeno- and serum-free media, and can be gene-modified to increase BChE output. However, BChE secretion from HUCPVCs is limited by innate feedback mechanisms that can be interrupted by addition of miR 186 oligonucleotide mimics or by competitive inhibition of muscarinic cholinergic signalling receptors by addition of atropine. By contrast, adult bone marrow-derived mesenchymal stromal cells neither secrete measurable levels of BChE naturally, nor after gene modification. Further work is required to fully characterize and disable the intrinsic ceiling of HUCPVC-mediated BChE secretion to achieve commercially relevant enzyme output. However, HUCPVCs present a unique opportunity to produce both native and strategically engineered recombinant BChE enzyme in a human platform with the innate capacity to secrete the benchmark human plasma form.
Collapse
Affiliation(s)
- Lorena R Braid
- Aurora BioSolutions Inc., PO Box 21053, Crescent Heights PO, Medicine Hat, AB, T1A 6N0, Canada.
| | - Catherine A Wood
- Aurora BioSolutions Inc., PO Box 21053, Crescent Heights PO, Medicine Hat, AB, T1A 6N0, Canada
| | - Barry N Ford
- DRDC Suffield Research Centre, Casualty Management Section, Box 4000 Station Main, Medicine Hat, AB, T1A 8K6, Canada
| |
Collapse
|
19
|
Timperley CM, Abdollahi M, Al-Amri AS, Baulig A, Benachour D, Borrett V, Cariño FA, Geist M, Gonzalez D, Kane W, Kovarik Z, Martínez-Álvarez R, Fusaro Mourão NM, Neffe S, Raza SK, Rubaylo V, Suárez AG, Takeuchi K, Tang C, Trifirò F, van Straten FM, Vanninen PS, Vučinić S, Zaitsev V, Zafar-Uz-Zaman M, Zina MS, Holen S, Forman JE, Alwan WS, Suri V. Advice on assistance and protection by the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons: Part 2. On preventing and treating health effects from acute, prolonged, and repeated nerve agent exposure, and the identification of medical countermeasures able to reduce or eliminate the longer term health effects of nerve agents. Toxicology 2019; 413:13-23. [DOI: 10.1016/j.tox.2018.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023]
|
20
|
Alkanaimsh S, Corbin JM, Kailemia MJ, Karuppanan K, Rodriguez RL, Lebrilla CB, McDonald KA, Nandi S. Purification and site-specific N-glycosylation analysis of human recombinant butyrylcholinesterase from Nicotiana benthamiana. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Zhang P, Liu EJ, Tsao C, Kasten SA, Boeri MV, Dao TL, DeBus SJ, Cadieux CL, Baker CA, Otto TC, Cerasoli DM, Chen Y, Jain P, Sun F, Li W, Hung HC, Yuan Z, Ma J, Bigley AN, Raushel FM, Jiang S. Nanoscavenger provides long-term prophylactic protection against nerve agents in rodents. Sci Transl Med 2019; 11:11/473/eaau7091. [DOI: 10.1126/scitranslmed.aau7091] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/06/2018] [Indexed: 12/24/2022]
Abstract
Nerve agents are a class of organophosphorus compounds (OPs) that blocks communication between nerves and organs. Because of their acute neurotoxicity, it is extremely difficult to rescue the victims after exposure. Numerous efforts have been devoted to search for an effective prophylactic nerve agent bioscavenger to prevent the deleterious effects of these compounds. However, low scavenging efficiency, unfavorable pharmacokinetics, and immunological problems have hampered the development of effective drugs. Here, we report the development and testing of a nanoparticle-based nerve agent bioscavenger (nanoscavenger) that showed long-term protection against OP intoxication in rodents. The nanoscavenger, which catalytically breaks down toxic OP compounds, showed a good pharmacokinetic profile and negligible immune response in a rat model of OP intoxication. In vivo administration of the nanoscavenger before or after OP exposure in animal models demonstrated protective and therapeutic efficacy. In a guinea pig model, a single prophylactic administration of the nanoscavenger effectively prevented lethality after multiple sarin exposures over a 1-week period. Our results suggest that the prophylactic administration of the nanoscavenger might be effective in preventing the toxic effects of OP exposure in humans.
Collapse
|
22
|
Cryo-EM structure of the native butyrylcholinesterase tetramer reveals a dimer of dimers stabilized by a superhelical assembly. Proc Natl Acad Sci U S A 2018; 115:13270-13275. [PMID: 30538207 DOI: 10.1073/pnas.1817009115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The quaternary structures of the cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), are essential for their localization and function. Of practical importance, BChE is a promising therapeutic candidate for intoxication by organophosphate nerve agents and insecticides, and for detoxification of addictive substances. Efficacy of the recombinant enzyme hinges on its having a long circulatory half-life; this, in turn, depends strongly on its ability to tetramerize. Here, we used cryoelectron microscopy (cryo-EM) to determine the structure of the highly glycosylated native BChE tetramer purified from human plasma at 5.7 Å. Our structure reveals that the BChE tetramer is organized as a staggered dimer of dimers. Tetramerization is mediated by assembly of the C-terminal tryptophan amphiphilic tetramerization (WAT) helices from each subunit as a superhelical assembly around a central lamellipodin-derived oligopeptide with a proline-rich attachment domain (PRAD) sequence that adopts a polyproline II helical conformation and runs antiparallel. The catalytic domains within a dimer are asymmetrically linked to the WAT/PRAD. In the resulting arrangement, the tetramerization domain is largely shielded by the catalytic domains, which may contribute to the stability of the human BChE (HuBChE) tetramer. Our cryo-EM structure reveals the basis for assembly of the native tetramers and has implications for the therapeutic applications of HuBChE. This mode of tetramerization is seen only in the cholinesterases but may provide a promising template for designing other proteins with improved circulatory residence times.
Collapse
|
23
|
Zamani M, Aghajanzadeh M, Molavi H, Danafar H, Shojaei A. Thermally Oxidized Nanodiamond: An Effective Sorbent for Separation of Methotrexate from Aqueous Media: Synthesis, Characterization, In Vivo and In Vitro Biocompatibility Study. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-1043-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Purification of recombinant human butyrylcholinesterase on Hupresin®. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:109-115. [PMID: 30384187 DOI: 10.1016/j.jchromb.2018.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022]
Abstract
Affinity chromatography on procainamide-Sepharose has been an important step in the purification of butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) since its introduction in 1978. The procainamide affinity gel has limitations. In the present report a new affinity gel called Hupresin® was evaluated for its ability to purify truncated, recombinant human butyrylcholinesterase (rHuBChE) expressed in a stably transfected Chinese Hamster Ovary cell line. We present a detailed example of the purification of rHuBChE secreted into 3940 mL of serum-free culture medium. The starting material contained 13,163 units of BChE activity (20.9 mg). rHuBChE was purified to homogeneity in a single step by passage over 82 mL of Hupresin® eluted with 0.1 M tetramethylammonium bromide in 20 mM TrisCl pH 7.5. The fraction with the highest specific activity of 630 units/mg contained 11 mg of BChE. Hupresin® is superior to procainamide-Sepharose for purification of BChE, but is not suitable for purifying native AChE because Hupresin® binds AChE so tightly that AChE is not released with buffers, but is desorbed with denaturing solvents such as 50% acetonitrile or 1% trifluoroacetic acid. Procainamide-Sepharose will continue to be useful for purification of AChE.
Collapse
|
25
|
Zlobin AS, Zalevsky AO, Mokrushina YA, Kartseva OV, Golovin AV, Smirnov IV. The Preferable Binding Pose of Canonical Butyrylcholinesterase Substrates Is Unproductive for Echothiophate. Acta Naturae 2018; 10:121-124. [PMID: 30713771 PMCID: PMC6351040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Indexed: 10/25/2022] Open
Abstract
In this paper, we, for the first time, describe the interaction between the butyrylcholinesterase enzyme and echothiophate, a popular model compound and an analogue of the chemical warfare agents VX and VR, at the atomistic level. Competition between the two echothiophate conformations in the active site was found using molecular modeling techniques. The first one is close to the mode of binding of the substrates of choline series (butyrylcholine and butyrylthiocholine) and is inhibitory, since it is unable to react with the enzyme. The second one is characterized by a significantly worse estimated binding affinity and is reactive. Thus, echothiophate combines the features of two types of inhibitors: competitive and suicidal. This observation will help clarify the kinetic reaction scheme in order to accurately assess the kinetic constants, which is especially important when designing new butyrylcholinesterase variants capable of full-cycle hydrolysis of organophosphorus compounds.
Collapse
Affiliation(s)
- A. S. Zlobin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie gori, 1 , bldg. 73, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - A. O. Zalevsky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie gori, 1 , bldg. 73, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str., 8, bldg. 2, Moscow, 119992, Russia
| | - Yu. A. Mokrushina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - O. V. Kartseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - A. V. Golovin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie gori, 1 , bldg. 73, Moscow, 119991, Russia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str., 8, bldg. 2, Moscow, 119992, Russia
- National Research University HSE, Myasnitskaya Str., 20, Moscow, 101000, Russia
| | - I. V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
- Chemical Faculty of Lomonosov Moscow State University, Leninskie gori, 1, bldg. 3, Moscow, 119991 , Russia
| |
Collapse
|
26
|
Zlobin A, Mokrushina Y, Terekhov S, Zalevsky A, Bobik T, Stepanova A, Aliseychik M, Kartseva O, Panteleev S, Golovin A, Belogurov A, Gabibov A, Smirnov I. QM/MM Description of Newly Selected Catalytic Bioscavengers Against Organophosphorus Compounds Revealed Reactivation Stimulus Mediated by Histidine Residue in the Acyl-Binding Loop. Front Pharmacol 2018; 9:834. [PMID: 30123127 PMCID: PMC6085465 DOI: 10.3389/fphar.2018.00834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/11/2018] [Indexed: 11/14/2022] Open
Abstract
Butyrylcholinesterase (BChE) is considered as an efficient stoichiometric antidote against organophosphorus (OP) poisons. Recently we utilized combination of calculations and ultrahigh-throughput screening (uHTS) to select BChE variants capable of catalytic destruction of OP pesticide paraoxon. The purpose of this study was to elucidate the molecular mechanism underlying enzymatic hydrolysis of paraoxon by BChE variants using hybrid quantum mechanical/molecular mechanical (QM/MM) calculations. Detailed analysis of accomplished QM/MM runs revealed that histidine residues introduced into the acyl-binding loop are always located in close proximity with aspartate residue at position 70. Histidine residue acts as general base thus leading to attacking water molecule activation and subsequent SN2 inline hydrolysis resulting in BChE reactivation. This combination resembles canonical catalytic triad found in active centers of various proteases. Carboxyl group activates histidine residue by altering its pKa, which in turn promotes the activation of water molecule in terms of its nucleophilicity. Observed re-protonation of catalytic serine residue at position 198 from histidine residue at position 438 recovers initial configuration of the enzyme’s active center, facilitating next catalytic cycle. We therefore suggest that utilization of uHTS platform in combination with deciphering of molecular mechanisms by QM/MM calculations may significantly improve our knowledge of enzyme function, propose new strategies for enzyme design and open new horizons in generation of catalytic bioscavengers against OP poisons.
Collapse
Affiliation(s)
- Alexander Zlobin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Yuliana Mokrushina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Stanislav Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Arthur Zalevsky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Bobik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya Stepanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria Aliseychik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Olga Kartseva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sergey Panteleev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Golovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexey Belogurov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Gabibov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Pope CN, Brimijoin S. Cholinesterases and the fine line between poison and remedy. Biochem Pharmacol 2018; 153:205-216. [PMID: 29409903 PMCID: PMC5959757 DOI: 10.1016/j.bcp.2018.01.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) are related enzymes found across the animal kingdom. The critical role of acetylcholinesterase in neurotransmission has been known for almost a century, but a physiological role for butyrylcholinesterase is just now emerging. The cholinesterases have been deliberately targeted for both therapy and toxicity, with cholinesterase inhibitors being used in the clinic for a variety of disorders and conversely for their toxic potential as pesticides and chemical weapons. Non-catalytic functions of the cholinesterases (ChEs) participate in both neurodevelopment and disease. Manipulating either the catalytic activities or the structure of these enzymes can potentially shift the balance between beneficial and adverse effect in a wide number of physiological processes.
Collapse
Affiliation(s)
- Carey N Pope
- Department of Physiological Sciences, Interdisciplinary Toxicology Program, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
28
|
Rozov SM, Permyakova NV, Deineko EV. Main Strategies of Plant Expression System Glycoengineering for Producing Humanized Recombinant Pharmaceutical Proteins. BIOCHEMISTRY (MOSCOW) 2018; 83:215-232. [PMID: 29625542 DOI: 10.1134/s0006297918030033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Most the pharmaceutical proteins are derived not from their natural sources, rather their recombinant analogs are synthesized in various expression systems. Plant expression systems, unlike mammalian cell cultures, combine simplicity and low cost of procaryotic systems and the ability for posttranslational modifications inherent in eucaryotes. More than 50% of all human proteins and more than 40% of the currently used pharmaceutical proteins are glycosylated, that is, they are glycoproteins, and their biological activity, pharmacodynamics, and immunogenicity depend on the correct glycosylation pattern. This review examines in detail the similarities and differences between N- and O-glycosylation in plant and mammalian cells, as well as the effect of plant glycans on the activity, pharmacokinetics, immunity, and intensity of biosynthesis of pharmaceutical proteins. The main current strategies of glycoengineering of plant expression systems aimed at obtaining fully humanized proteins for pharmaceutical application are summarized.
Collapse
Affiliation(s)
- S M Rozov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | |
Collapse
|
29
|
Palikov VA, Terekhov SS, Palikova YA, Khokhlova ON, Kazakov VA, Dyachenko IA, Panteleev SV, Mokrushina YA, Knorre VD, Shamborant OG, Smirnov IV, Gabibov AG. Mouse Model for Assessing the Subchronic Toxicity of Organophosphate Pesticides. Acta Naturae 2018; 10:125-128. [PMID: 30713772 PMCID: PMC6351027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The development of antidotes to organophosphate poisons is an important aspect of modern pharmacology. Recombinant acetylcholinesterase and butyrylcholinesterase are effective DNA-encoded acceptors of organophosphate poisons and, in particular, pesticides. Here, we present the results of a study on the effectiveness of recombinant butyrylcholinesterase (BChE) in modeling organophosphate poisoning caused by oral administration of paraoxon at a dose of 2 mg / kg. The study showed a high activity of BChE as a protective agent for subchronic anticholinesterase poisoning in an in vivo model. The administration of BChE in a dose of 20 mg / kg allows one to avoid mortality, and also contributed to rapid recovery after model poisoning.
Collapse
Affiliation(s)
- V. A. Palikov
- Branch of the Institute of Bioorganic Chemistry, Academicians M.M. Shemyakin and Yu.A. Ovchinnikova RAS, Nauki Ave., 6, Pushchino, Moscow region, 142290, Russia
| | - S. S. Terekhov
- Institute of Bioorganic Chemistry, Academicians M.M. Shemyakin and Yu.A. Ovchinnikova RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - Yu. A. Palikova
- Branch of the Institute of Bioorganic Chemistry, Academicians M.M. Shemyakin and Yu.A. Ovchinnikova RAS, Nauki Ave., 6, Pushchino, Moscow region, 142290, Russia
| | - O. N. Khokhlova
- Branch of the Institute of Bioorganic Chemistry, Academicians M.M. Shemyakin and Yu.A. Ovchinnikova RAS, Nauki Ave., 6, Pushchino, Moscow region, 142290, Russia
| | - V. A. Kazakov
- Branch of the Institute of Bioorganic Chemistry, Academicians M.M. Shemyakin and Yu.A. Ovchinnikova RAS, Nauki Ave., 6, Pushchino, Moscow region, 142290, Russia
| | - I. A. Dyachenko
- Branch of the Institute of Bioorganic Chemistry, Academicians M.M. Shemyakin and Yu.A. Ovchinnikova RAS, Nauki Ave., 6, Pushchino, Moscow region, 142290, Russia
| | - S. V. Panteleev
- Institute of Bioorganic Chemistry, Academicians M.M. Shemyakin and Yu.A. Ovchinnikova RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - Yu. A. Mokrushina
- Institute of Bioorganic Chemistry, Academicians M.M. Shemyakin and Yu.A. Ovchinnikova RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - V. D. Knorre
- Institute of Bioorganic Chemistry, Academicians M.M. Shemyakin and Yu.A. Ovchinnikova RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - O. G. Shamborant
- Institute of Bioorganic Chemistry, Academicians M.M. Shemyakin and Yu.A. Ovchinnikova RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - I. V. Smirnov
- Institute of Bioorganic Chemistry, Academicians M.M. Shemyakin and Yu.A. Ovchinnikova RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia , Faculty of Chemistry, Moscow State University M.V. Lomonosov, Leninskie gori, 1, bldg. 3, Moscow, 119991, Russia
| | - A. G. Gabibov
- Institute of Bioorganic Chemistry, Academicians M.M. Shemyakin and Yu.A. Ovchinnikova RAS, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| |
Collapse
|
30
|
Wang Q, Chen CH, Chung CY, Priola J, Chu JH, Tang J, Ulmschneider MB, Betenbaugh MJ. Proline-Rich Chaperones Are Compared Computationally and Experimentally for Their Abilities to Facilitate Recombinant Butyrylcholinesterase Tetramerization in CHO Cells. Biotechnol J 2017; 13:e1700479. [DOI: 10.1002/biot.201700479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/26/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; 221 Maryland Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
| | - Charles H. Chen
- Department of Materials Science and Engineering, Johns Hopkins University; 204C Shaffer Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
- Department of Chemistry, King's College London; Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Cheng-yu Chung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; 221 Maryland Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
| | - Joseph Priola
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; 221 Maryland Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
| | - Jeffrey H. Chu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; 221 Maryland Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
| | - Juechun Tang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; 221 Maryland Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
| | - Martin B. Ulmschneider
- Department of Materials Science and Engineering, Johns Hopkins University; 204C Shaffer Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
- Department of Chemistry, King's College London; Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; 221 Maryland Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
| |
Collapse
|
31
|
Keys TG, Wetter M, Hang I, Rutschmann C, Russo S, Mally M, Steffen M, Zuppiger M, Müller F, Schneider J, Faridmoayer A, Lin CW, Aebi M. A biosynthetic route for polysialylating proteins in Escherichia coli. Metab Eng 2017; 44:293-301. [PMID: 29101090 DOI: 10.1016/j.ymben.2017.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/12/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023]
Abstract
Polysialic acid (polySia) is a posttranslational modification found on only a handful of proteins in the central nervous and immune systems. The addition of polySia to therapeutic proteins improves pharmacokinetics and reduces immunogenicity. To date, polysialylation of therapeutic proteins has only been achieved in vitro by chemical or chemoenzymatic strategies. In this work, we develop a biosynthetic pathway for site-specific polysialylation of recombinant proteins in the cytoplasm of Escherichia coli. The pathway takes advantage of a bacterial cytoplasmic polypeptide-glycosyltransferase to establish a site-specific primer on the target protein. The glucose primer is extended by glycosyltransferases derived from lipooligosaccharide, lipopolysaccharide and capsular polysaccharide biosynthesis from different bacterial species to synthesize long chain polySia. We demonstrate the new biosynthetic route by modifying green fluorescent proteins and a therapeutic DARPin (designed ankyrin repeat protein).
Collapse
Affiliation(s)
- Timothy G Keys
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | - Ivan Hang
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | | | | | | | | | | | | | | | - Chia-Wei Lin
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
| |
Collapse
|
32
|
|
33
|
Jaroentomeechai T, Zheng X, Hershewe J, Stark JC, Jewett MC, DeLisa MP. A Pipeline for Studying and Engineering Single-Subunit Oligosaccharyltransferases. Methods Enzymol 2017; 597:55-81. [PMID: 28935112 DOI: 10.1016/bs.mie.2017.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Asparagine-linked (N-linked) protein glycosylation is one of the most abundant types of posttranslational modification, occurring in all domains of life. The central enzyme in N-linked glycosylation is the oligosaccharyltransferase (OST), which catalyzes the covalent attachment of preassembled glycans to specific asparagine residues in target proteins. Whereas in higher eukaryotes the OST is comprised of eight different membrane proteins, of which the catalytic subunit is STT3, in kinetoplastids and prokaryotes the OST is a monomeric enzyme bearing homology to STT3. Given their relative simplicity, these single-subunit OSTs (ssOSTs) have emerged as important targets for mechanistic dissection of poorly understood aspects of N-glycosylation and at the same time hold great potential for the biosynthesis of custom glycoproteins. To take advantage of this utility, this chapter describes a multipronged approach for studying and engineering ssOSTs that integrates in vivo screening technology with in vitro characterization methods, thereby creating a versatile and readily adaptable pipeline for virtually any ssOST of interest.
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Xiaolu Zheng
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | | | | | - Michael C Jewett
- Northwestern University, Evanston, IL, United States; Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
34
|
A Study of the Protective Properties of an Antibody-Based Antidote Metabolizing Organophosphorus Pesticide Paraoxon. Bull Exp Biol Med 2017; 163:218-221. [PMID: 28726199 DOI: 10.1007/s10517-017-3770-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 10/19/2022]
Abstract
A catalytic antibody A17 and its mutants highly efficiently interact with organophosphorus pesticide paraoxon. In this work, we studied the protective properties of antibody A17-K47 in paraoxon poisoning using a mouse model. The optimal paraoxon dose simulating the acute toxic effect of organophosphorus compounds was 550 μg/kg. The pharmacokinetic parameters of A17-K47 antibody were t1/2distr =7.2±1.4 min, t1/2el =330±20 min. The antibody did not cause toxic effects when administered at a ten-fold calculated therapeutic dose (610 mg/kg). The drug did not reduce mortality from acute paraoxon poisoning; however, the absence of drug toxicity opens up prospects for its use in symptomatic treatment of chronic paraoxon poisoning.
Collapse
|
35
|
Preparation and characterization of a novel polysialic acid–hyaluronan graft copolymer potential as dermal filler. Int J Biol Macromol 2017; 99:692-698. [DOI: 10.1016/j.ijbiomac.2017.03.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 11/21/2022]
|
36
|
Masson P, Nachon F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. J Neurochem 2017; 142 Suppl 2:26-40. [PMID: 28542985 DOI: 10.1111/jnc.14026] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
Organophosphorus agents (OPs) irreversibly inhibit acetylcholinesterase (AChE) causing a major cholinergic syndrome. The medical counter-measures of OP poisoning have not evolved for the last 30 years with carbamates for pretreatment, pyridinium oximes-based AChE reactivators, antimuscarinic drugs and neuroprotective benzodiazepines for post-exposure treatment. These drugs ensure protection of peripheral nervous system and mitigate acute effects of OP lethal doses. However, they have significant limitations. Pyridostigmine and oximes do not protect/reactivate central AChE. Oximes poorly reactivate AChE inhibited by phosphoramidates. In addition, current neuroprotectants do not protect the central nervous system shortly after the onset of seizures when brain damage becomes irreversible. New therapeutic approaches for pre- and post-exposure treatments involve detoxification of OP molecules before they reach their molecular targets by administrating catalytic bioscavengers, among them phosphotriesterases are the most promising. Novel generation of broad spectrum reactivators are designed for crossing the blood-brain barrier and reactivate central AChE. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| | - Florian Nachon
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, Cédex, France
| |
Collapse
|
37
|
Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proc Natl Acad Sci U S A 2017; 114:2550-2555. [PMID: 28202731 DOI: 10.1073/pnas.1621226114] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE-FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen, Staphylococcus aureus, and predicted which genera were associated with inhibitory activity.
Collapse
|
38
|
Iyengar ARS, Pande AH. Organophosphate-Hydrolyzing Enzymes as First-Line of Defence Against Nerve Agent-Poisoning: Perspectives and the Road Ahead. Protein J 2016; 35:424-439. [DOI: 10.1007/s10930-016-9686-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
van Witteloostuijn SB, Pedersen SL, Jensen KJ. Half-Life Extension of Biopharmaceuticals using Chemical Methods: Alternatives to PEGylation. ChemMedChem 2016; 11:2474-2495. [DOI: 10.1002/cmdc.201600374] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/24/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Søren B. van Witteloostuijn
- Department of Chemistry; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
- Gubra ApS; Hørsholm Kongevej 11B 2970 Hørsholm Denmark
| | | | - Knud J. Jensen
- Department of Chemistry; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
40
|
Wu J, Lu S, Zheng Z, Zhu L, Zhan X. Modification with polysialic acid–PEG copolymer as a new method for improving the therapeutic efficacy of proteins. Prep Biochem Biotechnol 2016; 46:788-797. [DOI: 10.1080/10826068.2015.1135463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jianrong Wu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shaozeng Lu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiyong Zheng
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Li Zhu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaobei Zhan
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
41
|
Masson P. Novel approaches in prophylaxis/pretreatment and treatment of organophosphorus poisoning. PHOSPHORUS SULFUR 2016. [DOI: 10.1080/10426507.2016.1211652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
42
|
Abstract
Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions.
Collapse
|
43
|
Zhang P, Jain P, Tsao C, Sinclair A, Sun F, Hung HC, Bai T, Wu K, Jiang S. Butyrylcholinesterase nanocapsule as a long circulating bioscavenger with reduced immune response. J Control Release 2016; 230:73-8. [DOI: 10.1016/j.jconrel.2016.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
|
44
|
Terekhov SS, Bobik TV, Mokrushina YA, Stepanova AV, Aleksandrova NM, Smirnov IV, Belogurov AA, Ponomarenko NA, Gabibov AG. Expression of DNA-Encoded Antidote to Organophosphorus Toxins in the Methylotrophic Yeast Pichia Pastoris. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816020162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Corbin JM, Hashimoto BI, Karuppanan K, Kyser ZR, Wu L, Roberts BA, Noe AR, Rodriguez RL, McDonald KA, Nandi S. Semicontinuous Bioreactor Production of Recombinant Butyrylcholinesterase in Transgenic Rice Cell Suspension Cultures. FRONTIERS IN PLANT SCIENCE 2016; 7:412. [PMID: 27066048 PMCID: PMC4814504 DOI: 10.3389/fpls.2016.00412] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/17/2016] [Indexed: 05/17/2023]
Abstract
An active and tetrameric form of recombinant butyrylcholinesterase (BChE), a large and complex human enzyme, was produced via semicontinuous operation in a transgenic rice cell suspension culture. After transformation of rice callus and screening of transformants, the cultures were scaled up from culture flask to a lab scale bioreactor. The bioreactor was operated through two phases each of growth and expression. The cells were able to produce BChE during both expression phases, with a maximum yield of 1.6 mg BChE/L of culture during the second expression phase. Cells successfully regrew during a 5-day growth phase. A combination of activity assays and Western blot analysis indicated production of an active and fully assembled tetramer of BChE.
Collapse
Affiliation(s)
- Jasmine M. Corbin
- Chemical Engineering and Materials Science, University of California, DavisDavis, CA, USA
| | - Bryce I. Hashimoto
- Chemical Engineering and Materials Science, University of California, DavisDavis, CA, USA
| | - Kalimuthu Karuppanan
- Chemical Engineering and Materials Science, University of California, DavisDavis, CA, USA
| | - Zachary R. Kyser
- Chemical Engineering and Materials Science, University of California, DavisDavis, CA, USA
| | | | | | | | - Raymond L. Rodriguez
- Global HealthShare®, Molecular and Cellular Biology, University of California, DavisDavis, CA, USA
| | - Karen A. McDonald
- Chemical Engineering and Materials Science, University of California, DavisDavis, CA, USA
| | - Somen Nandi
- Global HealthShare®, Molecular and Cellular Biology, University of California, DavisDavis, CA, USA
- *Correspondence: Somen Nandi
| |
Collapse
|
46
|
Terekhov S, Smirnov I, Bobik T, Shamborant O, Zenkova M, Chernolovskaya E, Gladkikh D, Murashev A, Dyachenko I, Palikov V, Palikova Y, Knorre V, Belogurov A, Ponomarenko N, Blackburn GM, Masson P, Gabibov A. A novel expression cassette delivers efficient production of exclusively tetrameric human butyrylcholinesterase with improved pharmacokinetics for protection against organophosphate poisoning. Biochimie 2015; 118:51-9. [DOI: 10.1016/j.biochi.2015.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
|
47
|
Molecular mechanisms of growth and progression of malignant neoplasms. Mol Biol 2015. [DOI: 10.1134/s0026893315050179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Wu JR, Zhan XB, Zheng ZY, Zhang HT. Synthesis and characterization of polysialic acid/carboxymethyl chitosan hydrogel with potential for drug delivery. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1068162015040135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Abstract
The number of intoxications from xenobiotics—natural or synthetic foreign chemicals, or substances given in higher doses than typically present in humans—has risen tremendously in the last decade, placing poisoning as the leading external cause of death in the United States. This epidemic has fostered the development of antidotal nanomedicines, which we call “nano-antidotes,” capable of efficiently neutralizing offending compounds in situ. Although prototype nano-antidotes have shown efficacy in proof-of-concept studies, the gap to clinical translation can only be filled if issues such as the clinical relevance of intoxication models and the safety profile of nano-antidotes are properly addressed. As the unmet medical needs in resuscitative care call for better treatments, this Perspective critically reviews the recent progress in antidotal medicine and emerging nanotechnologies.
Collapse
Affiliation(s)
- Vincent Forster
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
50
|
Terekhov SS, Smirnov IV, Shamborant OG, Bobik TV, Ilyushin DG, Murashev AN, Dyachenko IA, Palikov VA, Knorre VD, Belogurov AA, Ponomarenko NA, Kuzina ES, Genkin DD, Masson P, Gabibov AG. Chemical Polysialylation and In Vivo Tetramerization Improve Pharmacokinetic Characteristics of Recombinant Human Butyrylcholinesterase-Based Bioscavengers. Acta Naturae 2015; 7:136-41. [PMID: 26798501 PMCID: PMC4717259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Organophosphate toxins (OPs) are the most toxic low-molecular compounds. The extremely potent toxicity of OPs is determined by their specificity toward the nerve system. Human butyrylcholinesterase (hBChE) is a natural bioscavenger against a broad spectrum of OPs, which makes it a promising candidate for the development of DNA-encoded bioscavengers. The high values of the protective index observed for recombinant hBChE (rhBChE) make it appropriate for therapy against OP poisoning, especially in the case of highly toxic warfare nerve agents. Nevertheless, large-scale application of biopharmaceuticals based on hBChE is restricted due to its high cost and extremely rapid elimination from the bloodstream. In the present study, we examine two approaches for long-acting rhBChE production: I) chemical polysialylation and II) in-vivo tetramerization. We demonstrate that both approaches significantly improve the pharmacokinetic characteristics of rhBChE (more than 5 and 10 times, respectively), which makes it possible to use rhBChE conjugated with polysialic acids (rhBChE-CAO) and tetrameric rhBChE (4rhBChE) in the treatment of OP poisonings.
Collapse
Affiliation(s)
- S. S. Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - I. V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia ,Kazan’ Federal University, Kremlevskaya Str., 18, Kazan’, Republic of Tatarstan, 420000, Russia
| | - O. G. Shamborant
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - T. V. Bobik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - D. G. Ilyushin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - A. N. Murashev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, Moscow Region, 142290, Russia
| | - I. A. Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, Moscow Region, 142290, Russia
| | - V. A. Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, Moscow Region, 142290, Russia
| | - V. D. Knorre
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - A. A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia ,Kazan’ Federal University, Kremlevskaya Str., 18, Kazan’, Republic of Tatarstan, 420000, Russia ,Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334 , Russia
| | - N. A. Ponomarenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - E. S. Kuzina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - D. D. Genkin
- Pharmsynthez, Krasnogo Kursanta Str., 25zh, Saint Petersburg, 197110, Russia
| | - P. Masson
- Kazan’ Federal University, Kremlevskaya Str., 18, Kazan’, Republic of Tatarstan, 420000, Russia
| | - A. G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia ,Kazan’ Federal University, Kremlevskaya Str., 18, Kazan’, Republic of Tatarstan, 420000, Russia ,Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334 , Russia
| |
Collapse
|