1
|
Nishizawa M, Nishizawa K. A simulation analysis of the effect of a cholesterol-dependent fusogenic peptide from HIV gp41 on membrane phospholipid dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184413. [PMID: 39900215 DOI: 10.1016/j.bbamem.2025.184413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
CpreTM is a fusogenic peptide whose N-terminal portion is derived from the membrane-proximal external region (MPER) and C-terminal portion covers the transmembrane (TM) domain of gp41 of HIV. CpreTM has been shown to induce membrane fusion, which requires cholesterol molecules as membrane components. To gain insight into the effects of CpreTM on membrane lipid dynamics, we performed molecular dynamics simulations. In conventional simulations, several cholesterol-binding sites were found under the segment derived from MPER and near the cholesterol recognition/interaction amino acid consensus (CRAC) motif located at the C-terminus of MPER. CpreTM resides in shallower positions in the POPC (palmitoyl oleoyl phosphatidylcholine)/cholesterol bilayer than in the pure POPC bilayer. Our metadynamic simulations using the position of one POPC molecule ("target POPC") as the collective variable showed that CpreTM remarkably lowered the free energy cost for the POPC protrusion from the cholesterol-containing membrane; e.g., the cost for 0.7 nm outward displacement from the height of bulk POPC molecules was decreased by ~10 kJ/mol compared to the peptide-free corresponding system. Such stabilization of the POPC protrusion was not observed in the cholesterol-free POPC membrane. It was more pronounced near the aromatic residues, including the three Trp residues of CpreTM, suggesting important roles for aromatic residues in stabilizing the POPC protrusion.
Collapse
Affiliation(s)
- Manami Nishizawa
- NIK Biomolecular Research Group, 7-50-15 Takinogawa, Kita, 114-0023 Tokyo, Japan
| | | |
Collapse
|
2
|
López CA, Alam SM, Derdeyn CA, Haynes BF, Gnanakaran S. Influence of membrane on the antigen presentation of the HIV-1 envelope membrane proximal external region (MPER). Curr Opin Struct Biol 2024; 88:102897. [PMID: 39173417 DOI: 10.1016/j.sbi.2024.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The membrane proximal external region (MPER) of the HIV envelope glycoproteins has generated renewed interest after a recent phase I vaccine trial that presented MPER lipid-peptide epitopes demonstrated promise to elicit a broad neutralization response. The antigenicity of MPER is intimately associated with the membrane, and its presentation relies significantly on the lipid composition. This review brings together recent findings on the influence of membranes on the conformation of MPER and its recognition by broadly neutralizing antibodies. Specifically, the review highlights the importance of properly accounting for the balance between protein-protein and membrane-protein interactions in vaccine design.
Collapse
Affiliation(s)
- Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cynthia A Derdeyn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University of School of Medicine, Durham, NC, USA.
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
3
|
Tam EH, Peng Y, Cheah MXY, Yan C, Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res 2024; 224:105834. [PMID: 38369246 DOI: 10.1016/j.antiviral.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Neutralizing antibodies (NAbs) are naturally produced by our immune system to combat viral infections. Clinically, neutralizing antibodies with potent efficacy and high specificity have been extensively used to prevent and treat a wide variety of viral infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Human Immunodeficiency Virus (HIV), Dengue Virus (DENV) and Hepatitis B Virus (HBV). An overwhelmingly large subset of clinically effective NAbs operates by targeting viral envelope proteins to inhibit viral entry into the host cell. Binding of viral envelope protein to the host receptor is a critical rate limiting step triggering a cascade of downstream events, including endocytosis, membrane fusion and pore formation to allow viral entry. In recent years, improved structural knowledge on these processes have allowed researchers to also leverage NAbs as an indispensable tool in guiding discovery of novel antiviral entry inhibitors, providing drug candidates with high efficacy and pan-genus specificity. This review will summarize the latest progresses on the applications of NAbs as effective entry inhibitors and as important tools to develop antiviral therapeutics by high-throughput drug screenings, rational design of peptidic entry inhibitor mimicking NAbs and in silico computational modeling approaches.
Collapse
Affiliation(s)
- Ee Hong Tam
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Yu Peng
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Megan Xin Yan Cheah
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Chuan Yan
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Tianshu Xiao
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore.
| |
Collapse
|
4
|
Chiliveri SC, Louis JM, Bax A. Concentration‐Dependent Structural Transition of the HIV‐1 gp41 MPER Peptide into α‐Helical Trimers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases Bethesda MD 20892 USA
| | - John M. Louis
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases Bethesda MD 20892 USA
| | - Ad Bax
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases Bethesda MD 20892 USA
| |
Collapse
|
5
|
Chiliveri SC, Louis JM, Bax A. Concentration-Dependent Structural Transition of the HIV-1 gp41 MPER Peptide into α-Helical Trimers. Angew Chem Int Ed Engl 2020; 60:166-170. [PMID: 32916024 DOI: 10.1002/anie.202008804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/20/2020] [Indexed: 11/12/2022]
Abstract
The membrane proximal external region (MPER) of HIV-1 gp41 contains epitopes for at least four broadly neutralizing antibodies. Depending on solution conditions and construct design, different structures have been reported for this segment. We show that in aqueous solution the MPER fragment (gp160660-674 ) exists in a monomer-trimer equilibrium with an association constant in the micromolar range. Thermodynamic analysis reveals that the association is exothermic, more favorable in D2 O than H2 O, and increases with ionic strength, indicating hydrophobically driven intermolecular interactions. Circular dichroism, 13 Cα chemical shifts, NOE, and hydrogen exchange rates reveal that MPER undergoes a structural transition from predominately unfolded monomer at low concentrations to an α-helical trimer at high concentrations. This result has implications for antibody recognition of MPER prior to and during the process where gp41 switches from a pre-hairpin intermediate to its post-fusion 6-helical bundle state.
Collapse
Affiliation(s)
- Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Caillat C, Guilligay D, Sulbaran G, Weissenhorn W. Neutralizing Antibodies Targeting HIV-1 gp41. Viruses 2020; 12:E1210. [PMID: 33114242 PMCID: PMC7690876 DOI: 10.3390/v12111210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
HIV-1 vaccine research has obtained an enormous boost since the discovery of many broadly neutralizing antibodies (bnAbs) targeting all accessible sites on the HIV-1 envelope glycoprotein (Env). This in turn facilitated high-resolution structures of the Env glycoprotein in complex with bnAbs. Here we focus on gp41, its highly conserved heptad repeat region 1 (HR1), the fusion peptide (FP) and the membrane-proximal external region (MPER). Notably, the broadest neutralizing antibodies target MPER. Both gp41 HR1 and MPER are only fully accessible once receptor-induced conformational changes have taken place, although some studies suggest access to MPER in the close to native Env conformation. We summarize the data on the structure and function of neutralizing antibodies targeting gp41 HR1, FP and MPER and we review their access to Env and their complex formation with gp41 HR1, MPER peptides and FP within native Env. We further discuss MPER bnAb binding to lipids and the role of somatic mutations in recognizing a bipartite epitope composed of the conserved MPER sequence and membrane components. The problematic of gp41 HR1 access and MPER bnAb auto- and polyreactivity is developed in the light of inducing such antibodies by vaccination.
Collapse
Affiliation(s)
- Christophe Caillat
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Delphine Guilligay
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Guidenn Sulbaran
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| |
Collapse
|
7
|
Barrett CT, Dutch RE. Viral Membrane Fusion and the Transmembrane Domain. Viruses 2020; 12:v12070693. [PMID: 32604992 PMCID: PMC7412173 DOI: 10.3390/v12070693] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
Initiation of host cell infection by an enveloped virus requires a viral-to-host cell membrane fusion event. This event is mediated by at least one viral transmembrane glycoprotein, termed the fusion protein, which is a key therapeutic target. Viral fusion proteins have been studied for decades, and numerous critical insights into their function have been elucidated. However, the transmembrane region remains one of the most poorly understood facets of these proteins. In the past ten years, the field has made significant advances in understanding the role of the membrane-spanning region of viral fusion proteins. We summarize developments made in the past decade that have contributed to the understanding of the transmembrane region of viral fusion proteins, highlighting not only their critical role in the membrane fusion process, but further demonstrating their involvement in several aspects of the viral lifecycle.
Collapse
|
8
|
NMR Structure of the FIV gp36 C-Terminal Heptad Repeat and Membrane-Proximal External Region. Int J Mol Sci 2020; 21:ijms21062037. [PMID: 32188158 PMCID: PMC7139756 DOI: 10.3390/ijms21062037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Feline immunodeficiency virus (FIV), a lentivirus causing an immunodeficiency syndrome in cats, represents a relevant model of pre-screening therapies for human immunodeficiency virus (HIV). The envelope glycoproteins gp36 in FIV and gp41 in HIV mediate the fusion of the virus with the host cell membrane. They have a common structural framework in the C-terminal region that includes a Trp-rich membrane-proximal external region (MPER) and a C-terminal heptad repeat (CHR). MPER is essential for the correct positioning of gp36 on the lipid membrane, whereas CHR is essential for the stabilization of the low-energy six-helical bundle (6HB) that is necessary for the fusion of the virus envelope with the cell membrane. Conformational data for gp36 are missing, and several aspects of the MPER structure of different lentiviruses are still debated. In the present work, we report the structural investigation of a gp36 construct that includes the MPER and part of the CHR domain (737-786gp36 CHR–MPER). Using 2D and 3D homo and heteronuclear NMR spectra on 15N and 13C double-labelled samples, we solved the NMR structure in micelles composed of dodecyl phosphocholine (DPC) and sodium dodecyl sulfate (SDS) 90/10 M: M. The structure of 737-786gp36 CHR–MPER is characterized by a helix–turn–helix motif, with a regular α-helix and a moderately flexible 310 helix, characterizing the CHR and the MPER domains, respectively. The two helices are linked by a flexible loop regulating their orientation at a ~43° angle. We investigated the positioning of 737-786gp36 CHR–MPER on the lipid membrane using spin label-enhanced NMR and ESR spectroscopies. On a different scale, using confocal microscopy imaging, we studied the effect of 737-786gp36 CHR–MPER on 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DOPC/DOPG) multilamellar vesicles (MLVs). This effect results in membrane budding and tubulation that is reminiscent of a membrane-plasticizing role that is typical of MPER domains during the event in which the virus envelope merges with the host cell membrane.
Collapse
|
9
|
Jou JD, Holt GT, Lowegard AU, Donald BR. Minimization-Aware Recursive K*: A Novel, Provable Algorithm that Accelerates Ensemble-Based Protein Design and Provably Approximates the Energy Landscape. J Comput Biol 2019; 27:550-564. [PMID: 31855059 DOI: 10.1089/cmb.2019.0315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Protein design algorithms that model continuous sidechain flexibility and conformational ensembles better approximate the in vitro and in vivo behavior of proteins. The previous state of the art, iMinDEE-A*-K*, computes provable ɛ-approximations to partition functions of protein states (e.g., bound vs. unbound) by computing provable, admissible pairwise-minimized energy lower bounds on protein conformations, and using the A* enumeration algorithm to return a gap-free list of lowest-energy conformations. iMinDEE-A*-K* runs in time sublinear in the number of conformations, but can be trapped in loosely-bounded, low-energy conformational wells containing many conformations with highly similar energies. That is, iMinDEE-A*-K* is unable to exploit the correlation between protein conformation and energy: similar conformations often have similar energy. We introduce two new concepts that exploit this correlation: Minimization-Aware Enumeration and Recursive K*. We combine these two insights into a novel algorithm, Minimization-Aware Recursive K* (MARK*), which tightens bounds not on single conformations, but instead on distinct regions of the conformation space. We compare the performance of iMinDEE-A*-K* versus MARK* by running the Branch and Bound over K* (BBK*) algorithm, which provably returns sequences in order of decreasing K* score, using either iMinDEE-A*-K* or MARK* to approximate partition functions. We show on 200 design problems that MARK* not only enumerates and minimizes vastly fewer conformations than the previous state of the art, but also runs up to 2 orders of magnitude faster. Finally, we show that MARK* not only efficiently approximates the partition function, but also provably approximates the energy landscape. To our knowledge, MARK* is the first algorithm to do so. We use MARK* to analyze the change in energy landscape of the bound and unbound states of an HIV-1 capsid protein C-terminal domain in complex with a camelid VHH, and measure the change in conformational entropy induced by binding. Thus, MARK* both accelerates existing designs and offers new capabilities not possible with previous algorithms.
Collapse
Affiliation(s)
- Jonathan D Jou
- Department of Computer Science, Duke University, Durham, North Carolina
| | - Graham T Holt
- Department of Computer Science, Duke University, Durham, North Carolina.,Computational Biology and Bioinformatics Program, Duke University, Durham, North Carolina
| | - Anna U Lowegard
- Department of Computer Science, Duke University, Durham, North Carolina.,Computational Biology and Bioinformatics Program, Duke University, Durham, North Carolina
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, North Carolina.,Department of Biochemistry, Duke University Medical Center, Durham, North Carolina.,Department of Chemistry, Duke University, Durham, North Carolina
| |
Collapse
|
10
|
Topological analysis of the gp41 MPER on lipid bilayers relevant to the metastable HIV-1 envelope prefusion state. Proc Natl Acad Sci U S A 2019; 116:22556-22566. [PMID: 31624123 DOI: 10.1073/pnas.1912427116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The membrane proximal external region (MPER) of HIV-1 envelope glycoprotein (gp) 41 is an attractive vaccine target for elicitation of broadly neutralizing antibodies (bNAbs) by vaccination. However, current details regarding the quaternary structural organization of the MPER within the native prefusion trimer [(gp120/41)3] are elusive and even contradictory, hindering rational MPER immunogen design. To better understand the structural topology of the MPER on the lipid bilayer, the adjacent transmembrane domain (TMD) was appended (MPER-TMD) and studied. Membrane insertion of the MPER-TMD was sensitive both to the TMD sequence and cytoplasmic residues. Antigen binding of MPER-specific bNAbs, in particular 10E8 and DH511.2_K3, was significantly impacted by the presence of the TMD. Furthermore, MPER-TMD assembly into 10-nm diameter nanodiscs revealed a heterogeneous membrane array comprised largely of monomers and dimers, as enumerated by bNAb Fab binding using single-particle electron microscopy analysis, arguing against preferential trimeric association of native MPER and TMD protein segments. Moreover, introduction of isoleucine mutations in the C-terminal heptad repeat to induce an extended MPER α-helical bundle structure yielded an antigenicity profile of cell surface-arrayed Env variants inconsistent with that found in the native prefusion state. In line with these observations, electron paramagnetic resonance analysis suggested that 10E8 inhibits viral membrane fusion by lifting the MPER N-terminal region out of the viral membrane, mandating the exposure of residues that would be occluded by MPER trimerization. Collectively, our data suggest that the MPER is not a stable trimer, but rather a dynamic segment adapted for structural changes accompanying fusion.
Collapse
|
11
|
Lorieau JL. Partial alignment, residual dipolar couplings and molecular symmetry in solution NMR. JOURNAL OF BIOMOLECULAR NMR 2019; 73:477-491. [PMID: 31407205 DOI: 10.1007/s10858-019-00256-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
Residual dipolar couplings (RDCs) and residual anisotropic chemical shifts (RACSs) are produced by the partial alignment of solution NMR samples. RDCs and RACSs yield high-resolution structural and dynamic information on the orientation of bonds and chemical groups in molecules. Many molecules form oligomers or have intrinsic symmetries, which may simplify the analysis of their partial alignment datasets. In this report, we explore the theory of partial alignment using an irreducible spherical representation, and we investigate the impact of molecular symmetry on the alignment of molecules. Though previous studies have reported simplified relationships on the partial alignment of molecules bearing different symmetry groups, we show that these simplified relationships may not be universal and only apply to a limited set of systems.
Collapse
Affiliation(s)
- Justin L Lorieau
- Department of Chemistry, University of Illinois at Chicago, 4500 SES, 845 W Taylor St, Chicago, IL, 60607, USA.
| |
Collapse
|
12
|
Georgoulia PS, Glykos NM. Folding Molecular Dynamics Simulation of a gp41-Derived Peptide Reconcile Divergent Structure Determinations. ACS OMEGA 2018; 3:14746-14754. [PMID: 31458149 PMCID: PMC6643504 DOI: 10.1021/acsomega.8b01579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/23/2018] [Indexed: 06/10/2023]
Abstract
T-20 peptide is the first FDA-approved fusion inhibitor against AIDS/HIV-1 gp41 protein. Part of it, the gp41[659-671] peptide, that contains the complete epitope for the neutralizing 2F5 monoclonal antibody, has been found experimentally in a number of divergent structures. Herein, we attempt to reconcile them by using unbiased large-scale all-atom molecular dynamics folding simulations. We show that our approach can successfully capture the peptide's heterogeneity and reach each and every experimentally determined conformation in sub-angstrom accuracy, whilst preserving the peptide's disordered nature. Our analysis also unveils that the minor refinements within the AMBER99SB family of force fields can lead to appreciable differences in the predicted conformational stability arising from subtle differences in the helical- and β-region of the Ramachandran plot. Our work underlines the contribution of molecular dynamics simulation in structurally characterizing pharmacologically important peptides of ambiguous structure.
Collapse
Affiliation(s)
- Panagiota S Georgoulia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis 68100, Greece
| | - Nicholas M Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis 68100, Greece
| |
Collapse
|
13
|
Kwon B, Lee M, Waring AJ, Hong M. Oligomeric Structure and Three-Dimensional Fold of the HIV gp41 Membrane-Proximal External Region and Transmembrane Domain in Phospholipid Bilayers. J Am Chem Soc 2018; 140:8246-8259. [PMID: 29888593 DOI: 10.1021/jacs.8b04010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The HIV-1 glycoprotein, gp41, mediates fusion of the virus lipid envelope with the target cell membrane during virus entry into cells. Despite extensive studies of this protein, inconsistent and contradictory structural information abounds in the literature about the C-terminal membrane-interacting region of gp41. This C-terminal region contains the membrane-proximal external region (MPER), which harbors the epitopes for four broadly neutralizing antibodies, and the transmembrane domain (TMD), which anchors the protein to the virus lipid envelope. Due to the difficulty of crystallizing and solubilizing the MPER-TMD, most structural studies of this functionally important domain were carried out using truncated peptides either in the absence of membrane-mimetic solvents or bound to detergents and lipid bicelles. To determine the structural architecture of the MPER-TMD in the native environment of lipid membranes, we have now carried out a solid-state NMR study of the full MPER-TMD segment bound to cholesterol-containing phospholipid bilayers. 13C chemical shifts indicate that the majority of the peptide is α-helical, except for the C-terminus of the TMD, which has moderate β-sheet character. Intermolecular 19F-19F distance measurements of singly fluorinated peptides indicate that the MPER-TMD is trimerized in the virus-envelope mimetic lipid membrane. Intramolecular 13C-19F distance measurements indicate the presence of a turn between the MPER helix and the TMD helix. This is supported by lipid-peptide and water-peptide 2D 1H-13C correlation spectra, which indicate that the MPER binds to the membrane surface whereas the TMD spans the bilayer. Together, these data indicate that full-length MPER-TMD assembles into a trimeric helix-turn-helix structure in lipid membranes. We propose that the turn between the MPER and TMD may be important for inducing membrane defects in concert with negative-curvature lipid components such as cholesterol and phosphatidylethanolamine, while the surface-bound MPER helix may interact with N-terminal segments of the protein during late stages of membrane fusion.
Collapse
Affiliation(s)
- Byungsu Kwon
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Myungwoon Lee
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Alan J Waring
- Department of Medicine , Harbor-UCLA Medical Center , 1000 West Carson Street, Building RB2 , Torrance , California 90502 , United States
| | - Mei Hong
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
14
|
Cerutti N, Loredo-Varela JL, Caillat C, Weissenhorn W. Antigp41 membrane proximal external region antibodies and the art of using the membrane for neutralization. Curr Opin HIV AIDS 2017; 12:250-256. [PMID: 28422789 DOI: 10.1097/coh.0000000000000364] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW We summarize the latest research on the progress to understand the neutralizing epitopes present within the membrane proximal external region (MPER) of the HIV-1 fusion protein subunit gp41. RECENT FINDINGS The HIV-1 fusion protein subunit gp41 contains a highly conserved sequence that is essential for membrane fusion and targeted by broadly neutralizing antibodies such as 2F5, 4E10, Z13e1, and 10E8. These antibodies recognize a linear gp41 epitope with high affinity, but require additional hydrophobic sequences present in their heavy chain CDR3 for neutralization. Recent structural studies on mAbs 4E10 and 10E8 provide molecular details for specific interactions with lipids and implicate part of the transmembrane region as the relevant 10E8 epitope. Although many different approaches have been applied to engineer gp41 immunogens that can induce broadly neutralizing antibodies directed toward MPER, only modest success has yet been reported. SUMMARY The new structural details on the complex gp41-lipidic epitope will spur new approaches to design gp41-MPER immunogens that might induce broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- Nichole Cerutti
- aUniversity Grenoble Alpes bCEA cCNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | | | | | | |
Collapse
|
15
|
Augusto MT, Hollmann A, Troise F, Veiga AS, Pessi A, Santos NC. Lipophilicity is a key factor to increase the antiviral activity of HIV neutralizing antibodies. Colloids Surf B Biointerfaces 2017; 152:311-316. [DOI: 10.1016/j.colsurfb.2017.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
|
16
|
Banerjee S, Shi H, Banasik M, Moon H, Lees W, Qin Y, Harley A, Shepherd A, Cho MW. Evaluation of a novel multi-immunogen vaccine strategy for targeting 4E10/10E8 neutralizing epitopes on HIV-1 gp41 membrane proximal external region. Virology 2017; 505:113-126. [PMID: 28237764 DOI: 10.1016/j.virol.2017.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 02/01/2023]
Abstract
The membrane proximal external region (MPER) of HIV-1 gp41 is targeted by broadly neutralizing antibodies (bnAbs) 4E10 and 10E8. In this proof-of-concept study, we evaluated a novel multi-immunogen vaccine strategy referred to as Incremental, Phased Antigenic Stimulation for Rapid Antibody Maturation (IPAS-RAM) to induce 4E10/10E8-like bnAbs. Rabbits were immunized sequentially, but in a phased manner, with three immunogens that are progressively more native (gp41-28×3, gp41-54CT, and rVV-gp160DH12). Although nAbs were not induced, epitope-mapping analyses indicated that IPAS-RAM vaccination was better able to target antibodies towards the 4E10/10E8 epitopes than homologous prime-boost immunization using gp41-28×3 alone. MPER-specific rabbit monoclonal antibodies were generated, including 9F6. Although it lacked neutralizing activity, the target epitope profile of 9F6 closely resembled those of 4E10 and 10E8 (671NWFDITNWLWYIK683). B-cell repertoire analyses suggested the importance of co-immunizations for maturation of 9F6, which warrants further evaluation of our IPAS-RAM vaccine strategy using an improved priming immunogen.
Collapse
Affiliation(s)
- Saikat Banerjee
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Heliang Shi
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Marisa Banasik
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Hojin Moon
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - William Lees
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, UK
| | - Yali Qin
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Andrew Harley
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Adrian Shepherd
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, UK
| | - Michael W Cho
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
17
|
Abstract
Computational structure-based protein design (CSPD) is an important problem in computational biology, which aims to design or improve a prescribed protein function based on a protein structure template. It provides a practical tool for real-world protein engineering applications. A popular CSPD method that guarantees to find the global minimum energy solution (GMEC) is to combine both dead-end elimination (DEE) and A* tree search algorithms. However, in this framework, the A* search algorithm can run in exponential time in the worst case, which may become the computation bottleneck of large-scale computational protein design process. To address this issue, we extend and add a new module to the OSPREY program that was previously developed in the Donald lab (Gainza et al., Methods Enzymol 523:87, 2013) to implement a GPU-based massively parallel A* algorithm for improving protein design pipeline. By exploiting the modern GPU computational framework and optimizing the computation of the heuristic function for A* search, our new program, called gOSPREY, can provide up to four orders of magnitude speedups in large protein design cases with a small memory overhead comparing to the traditional A* search algorithm implementation, while still guaranteeing the optimality. In addition, gOSPREY can be configured to run in a bounded-memory mode to tackle the problems in which the conformation space is too large and the global optimal solution cannot be computed previously. Furthermore, the GPU-based A* algorithm implemented in the gOSPREY program can be combined with the state-of-the-art rotamer pruning algorithms such as iMinDEE (Gainza et al., PLoS Comput Biol 8:e1002335, 2012) and DEEPer (Hallen et al., Proteins 81:18-39, 2013) to also consider continuous backbone and side-chain flexibility.
Collapse
Affiliation(s)
- Yichao Zhou
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, P. R. China
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, NC, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, P. R. China.
| |
Collapse
|
18
|
Parajuli B, Acharya K, Yu R, Ngo B, Rashad AA, Abrams CF, Chaiken IM. Lytic Inactivation of Human Immunodeficiency Virus by Dual Engagement of gp120 and gp41 Domains in the Virus Env Protein Trimer. Biochemistry 2016; 55:6100-6114. [PMID: 27731975 DOI: 10.1021/acs.biochem.6b00570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently reported the discovery of a recombinant chimera, denoted DAVEI (dual-acting virucidal entry inhibitor), which is able to selectively cause specific and potent lytic inactivation of both pseudotyped and fully infectious human immunodeficiency virus (HIV-1) virions. The chimera is composed of the lectin cyanovirin-N (CVN) fused to the 20-residue membrane-proximal external region (MPER) of HIV-1 gp41. Because the Env gp120-binding CVN domain on its own is not lytic, we sought here to determine how the MPER(DAVEI) domain is able to endow the chimera with virolytic activity. We used a protein engineering strategy to identify molecular determinants of MPER(DAVEI) that are important for function. Recombinant mutagenesis and truncation demonstrated that the MPER(DAVEI) domain could be significantly minimized without loss of function. The dependence of lysis on specific MPER sequences of DAVEI, determination of minimal linker length, and competition by a simplified MPER surrogate peptide suggested that the MPER domain of DAVEI interacts with the Env spike trimer, likely with the gp41 region. This conclusion was further supported by observations from binding of the biotinylated MPER surrogate peptide to Env protein expressed on cells, monoclonal antibody competition, a direct binding enzyme-linked immunosorbent assay on viruses with varying numbers of trimeric spikes on their surfaces, and comparison of maximal interdomain spacing in DAVEI to that in high-resolution structures of Env. The finding that MPER(DAVEI) in CVN-MPER linker sequences can be minimized without loss of virolytic function provides an improved experimental path for constructing size-minimized DAVEI chimeras and molecular tools for determining how simultaneous engagement of gp120 and gp41 by these chimeras can disrupt the metastable virus Env spike.
Collapse
Affiliation(s)
- Bibek Parajuli
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Kriti Acharya
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Reina Yu
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Brendon Ngo
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Cameron F Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States.,Department of Chemical and Biological Engineering, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Irwin M Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
19
|
Gainza P, Nisonoff HM, Donald BR. Algorithms for protein design. Curr Opin Struct Biol 2016; 39:16-26. [PMID: 27086078 PMCID: PMC5065368 DOI: 10.1016/j.sbi.2016.03.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/15/2016] [Accepted: 03/22/2016] [Indexed: 02/05/2023]
Abstract
Computational structure-based protein design programs are becoming an increasingly important tool in molecular biology. These programs compute protein sequences that are predicted to fold to a target structure and perform a desired function. The success of a program's predictions largely relies on two components: first, the input biophysical model, and second, the algorithm that computes the best sequence(s) and structure(s) according to the biophysical model. Improving both the model and the algorithm in tandem is essential to improving the success rate of current programs, and here we review recent developments in algorithms for protein design, emphasizing how novel algorithms enable the use of more accurate biophysical models. We conclude with a list of algorithmic challenges in computational protein design that we believe will be especially important for the design of therapeutic proteins and protein assemblies.
Collapse
Affiliation(s)
- Pablo Gainza
- Department of Computer Science, Duke University, Durham, NC, United States
| | - Hunter M Nisonoff
- Department of Computer Science, Duke University, Durham, NC, United States
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, NC, United States; Department of Biochemistry, Duke University Medical Center, Durham, NC, United States; Department of Chemistry, Duke University, Durham, NC, United States.
| |
Collapse
|
20
|
An immunogen containing four tandem 10E8 epitope repeats with exposed key residues induces antibodies that neutralize HIV-1 and activates an ADCC reporter gene. Emerg Microbes Infect 2016; 5:e65. [PMID: 27329850 PMCID: PMC4932654 DOI: 10.1038/emi.2016.86] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 01/08/2023]
Abstract
After three decades of intensive research efforts, an effective vaccine against HIV-1 remains to be developed. Several broadly neutralizing antibodies to HIV-1, such as 10E8, recognize the membrane proximal external region (MPER) of the HIV-1 gp41 protein. Thus, the MPER is considered to be a very important target for vaccine design. However, the MPER segment has very weak immunogenicity and tends to insert its epitope residues into the cell membrane, thereby avoiding antibody binding. To address this complication in vaccine development, we herein designed a peptide, designated 10E8-4P, containing four copies of the 10E8 epitope as an immunogen. As predicted by structural simulation, 10E8-4P exhibits a well-arranged tandem helical conformation, with the key residues in the 10E8 epitope oriented at different angles, thus suggesting that some of these key residues may be exposed outside of the lipid membrane. Compared with a peptide containing a single 10E8 epitope (10E8-1P), 10E8-4P not only exhibited better antigenicity but also elicited neutralizing antibody response against HIV-1 pseudoviruses, whereas 10E8-1P could not induce detectable neutralizing antibody response. Importantly, antibodies elicited by 10E8-4P also possessed a strong ability to activate an antibody-dependent cell-mediated cytotoxicity (ADCC) reporter gene, thus suggesting that they may have ADCC activity. Therefore, this strategy shows promise for further optimization and application in future HIV-1 vaccine design.
Collapse
|
21
|
Tang M, Mao K, Li S, Zhuang J, Diallo K. Paramagnetic effects on the NMR spectra of isotropic bicelles with headgroup modified chelator lipids and metal ions. Phys Chem Chem Phys 2016; 18:15524-7. [PMID: 27240538 DOI: 10.1039/c6cp01443g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We characterized the paramagnetic effects of nine metal ions on NMR signals of isotropic bicelles with headgroup-modified lipids. We found that Mn(2+), Gd(3+) and Dy(3+) show evidence for influencing NMR signals on the surface more than inside and on the disc edge, providing distance information in the bilayers.
Collapse
Affiliation(s)
- Ming Tang
- Department of Chemistry, College of Staten Island - PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
22
|
Reardon PN, Chacon SS, Walter ED, Bowden ME, Washton NM, Kleber M. Abiotic Protein Fragmentation by Manganese Oxide: Implications for a Mechanism to Supply Soil Biota with Oligopeptides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3486-3493. [PMID: 26974439 DOI: 10.1021/acs.est.5b04622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability of plants and microorganisms to take up organic nitrogen in the form of free amino acids and oligopeptides has received increasing attention over the last two decades, yet the mechanisms for the formation of such compounds in soil environments remain poorly understood. We used Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies to distinguish the reaction of a model protein with a pedogenic oxide (Birnessite, MnO2) from its response to a phyllosilicate (Kaolinite). Our data demonstrate that birnessite fragments the model protein while kaolinite does not, resulting in soluble peptides that would be available to soil biota and confirming the existence of an abiotic pathway for the formation of organic nitrogen compounds for direct uptake by plants and microorganisms. The absence of reduced Mn(II) in the solution suggests that birnessite acts as a catalyst rather than an oxidant in this reaction. NMR and EPR spectroscopies are shown to be valuable tools to observe these reactions and capture the extent of protein transformation together with the extent of mineral response.
Collapse
Affiliation(s)
- Patrick N Reardon
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Stephany S Chacon
- Department of Crop and Soil Science, Oregon State University , Corvallis, Oregon 97331, United States
| | - Eric D Walter
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Mark E Bowden
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Nancy M Washton
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Markus Kleber
- Department of Crop and Soil Science, Oregon State University , Corvallis, Oregon 97331, United States
- Institut für Bodenlandschaftsforschung, Leibniz Zentrum für Agrarlandschaftsforschung (ZALF) , Eberswalder Straße 84, 15374 Müncheberg, Germany
| |
Collapse
|
23
|
Hiruma-Shimizu K, Shimizu H, Thompson GS, Kalverda AP, Patching SG. Deuterated detergents for structural and functional studies of membrane proteins: Properties, chemical synthesis and applications. Mol Membr Biol 2016; 32:139-55. [DOI: 10.3109/09687688.2015.1125536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Hiroki Shimizu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido, Japan,
| | - Gary S. Thompson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK,
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK, and
| | - Arnout P. Kalverda
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK,
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK, and
| | | |
Collapse
|
24
|
Reardon PN, Marean-Reardon CL, Bukovec MA, Coggins BE, Isern NG. 3D TOCSY-HSQC NMR for Metabolic Flux Analysis Using Non-Uniform Sampling. Anal Chem 2016; 88:2825-31. [PMID: 26849182 DOI: 10.1021/acs.analchem.5b04535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(13)C-Metabolic Flux Analysis ((13)C-MFA) is rapidly being recognized as the authoritative method for determining fluxes through metabolic networks. Site-specific (13)C enrichment information obtained using NMR spectroscopy is a valuable input for (13)C-MFA experiments. Chemical shift overlaps in the 1D or 2D NMR experiments typically used for (13)C-MFA frequently hinder assignment and quantitation of site-specific (13)C enrichment. Here we propose the use of a 3D TOCSY-HSQC experiment for (13)C-MFA. We employ Non-Uniform Sampling (NUS) to reduce the acquisition time of the experiment to a few hours, making it practical for use in (13)C-MFA experiments. Our data show that the NUS experiment is linear and quantitative. Identification of metabolites in complex mixtures, such as a biomass hydrolysate, is simplified by virtue of the (13)C chemical shift obtained in the experiment. In addition, the experiment reports (13)C-labeling information that reveals the position specific labeling of subsets of isotopomers. The information provided by this technique will enable more accurate estimation of metabolic fluxes in large metabolic networks.
Collapse
Affiliation(s)
- P N Reardon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 3335 Innovation Boulevard, Richland, Washington 99352, United States
| | - C L Marean-Reardon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 3335 Innovation Boulevard, Richland, Washington 99352, United States.,Department of Environmental Sciences, Washington State University , Richland, Washington 99354, United States
| | - M A Bukovec
- Department of Chemical, Paper and Biomedical Engineering, Miami University , Oxford, Ohio 45056, United States
| | - B E Coggins
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - N G Isern
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 3335 Innovation Boulevard, Richland, Washington 99352, United States
| |
Collapse
|
25
|
Bolhassani A, Kardani K, Vahabpour R, Habibzadeh N, Aghasadeghi MR, Sadat SM, Agi E. Prime/boost immunization with HIV-1 MPER-V3 fusion construct enhances humoral and cellular immune responses. Immunol Lett 2015; 168:366-373. [PMID: 26518142 DOI: 10.1016/j.imlet.2015.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 01/15/2023]
Abstract
Development of an effective vaccine against HIV-1 infection is a main concern in worldwide. A potent vaccine for HIV-1 requires the induction and maintenance of both humoral and cellular immunity. In this study, the levels of humoral and cellular immune responses were compared using MPER-V3 injection in three immunization strategies such as DNA/DNA, peptide/peptide, and DNA/peptide (prime-boost). MPG peptide and Montanide 720 were used as a DNA delivery system, and as a peptide adjuvant, respectively. Our results demonstrated that MPG forms stable non-covalent nanoparticles with plasmid DNA at N/P ratio of 10:1 (∼ 110-130 nm). The in vitro transfection efficiency of MPER-V3 DNA using MPG was comparable with lipofectamine and turbofect reagents as a common delivery system. In vivo prime-boost immunization using HIV-1 MPER-V3 could significantly enhance humoral and cellular immune responses as compared to control groups. The mixture of IgG1 and IgG2a was observed for each strategy, but IFN-γ production was significantly higher in prime-boost and peptide immunizations than that in DNA immunizations, inducing Th1 response. Moreover, our data showed that prime immunization with low dose of the nanoparticles (MPER-V3 DNA: MPG at ratio of 1:10) followed by MPER-V3 peptide drives T cell responses towards a Th1-type similar to high dose of the naked DNA prime/peptide boost immunization. Generally, the prime-boost strategy could improve both immune responses against MPER and especially V3 peptides suggesting its application as a promising HIV vaccine candidate in future.
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Kimia Kardani
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | - Nourieh Habibzadeh
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Elnaz Agi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
26
|
Gallerano D, Cabauatan CR, Sibanda EN, Valenta R. HIV-Specific Antibody Responses in HIV-Infected Patients: From a Monoclonal to a Polyclonal View. Int Arch Allergy Immunol 2015; 167:223-41. [PMID: 26414324 DOI: 10.1159/000438484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIV infections represent a major global health threat, affecting more than 35 million individuals worldwide. High infection rates and problems associated with lifelong antiretroviral treatment emphasize the need for the development of prophylactic and therapeutic immune intervention strategies. It is conceivable that insights for the design of new immunogens capable of eliciting protective immune responses may come from the analysis of HIV-specific antibody responses in infected patients. Using sophisticated technologies, several monoclonal neutralizing antibodies were isolated from HIV-infected individuals. However, the majority of polyclonal antibody responses found in infected patients are nonneutralizing. Comprehensive analyses of the molecular targets of HIV-specific antibody responses identified that during natural infection antibodies are mainly misdirected towards gp120 epitopes outside of the CD4-binding site and against regions and proteins that are not exposed on the surface of the virus. We therefore argue that vaccines aiming to induce protective responses should include engineered immunogens, which are capable of focusing the immune response towards protective epitopes.
Collapse
Affiliation(s)
- Daniela Gallerano
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
27
|
Biophysical Characterization of a Vaccine Candidate against HIV-1: The Transmembrane and Membrane Proximal Domains of HIV-1 gp41 as a Maltose Binding Protein Fusion. PLoS One 2015; 10:e0136507. [PMID: 26295457 PMCID: PMC4546420 DOI: 10.1371/journal.pone.0136507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/05/2015] [Indexed: 11/19/2022] Open
Abstract
The membrane proximal region (MPR, residues 649-683) and transmembrane domain (TMD, residues 684-705) of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM). Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.
Collapse
|
28
|
Membrane-Active Sequences within gp41 Membrane Proximal External Region (MPER) Modulate MPER-Containing Peptidyl Fusion Inhibitor Activity and the Biosynthesis of HIV-1 Structural Proteins. PLoS One 2015; 10:e0134851. [PMID: 26230322 PMCID: PMC4521866 DOI: 10.1371/journal.pone.0134851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/14/2015] [Indexed: 12/04/2022] Open
Abstract
The membrane proximal external region (MPER) is a highly conserved membrane-active region located at the juxtamembrane positions within class I viral fusion glycoproteins and essential for membrane fusion events during viral entry. The MPER in the human immunodeficiency virus type I (HIV-1) envelope protein (Env) interacts with the lipid bilayers through a cluster of tryptophan (Trp) residues and a C-terminal cholesterol-interacting motif. The inclusion of the MPER N-terminal sequence contributes to the membrane reactivity and anti-viral efficacy of the first two anti-HIV peptidyl fusion inhibitors T20 and T1249. As a type I transmembrane protein, Env also interacts with the cellular membranes during its biosynthesis and trafficking. Here we investigated the roles of MPER membrane-active sequences during both viral entry and assembly, specifically, their roles in the design of peptidyl fusion inhibitors and the biosynthesis of viral structural proteins. We found that elimination of the membrane-active elements in MPER peptides, namely, penta Trp→alanine (Ala) substitutions and the disruption of the C-terminal cholesterol-interacting motif through deletion inhibited the anti-viral effect against the pseudotyped HIV-1. Furthermore, as compared to C-terminal dimerization, N-terminal dimerization of MPER peptides and N-terminal extension with five helix-forming residues enhanced their anti-viral efficacy substantially. The secondary structure study revealed that the penta-Trp→Ala substitutions also increased the helical content in the MPER sequence, which prompted us to study the biological relevance of such mutations in pre-fusion Env. We observed that Ala mutations of Trp664, Trp668 and Trp670 in MPER moderately lowered the intracellular and intraviral contents of Env while significantly elevating the content of another viral structural protein, p55/Gag and its derivative p24/capsid. The data suggest a role of the gp41 MPER in the membrane-reactive events during both viral entry and budding, and provide insights into the future development of anti-viral therapeutics.
Collapse
|
29
|
Cappelletti F, Clementi N, Mancini N, Clementi M, Burioni R. Virus-induced preferential antibody gene-usage and its importance in humoral autoimmunity. Semin Immunol 2015; 27:138-43. [PMID: 25857210 DOI: 10.1016/j.smim.2015.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/13/2015] [Indexed: 12/12/2022]
Abstract
It is known that even the adaptive components of the immune system are based on genetic traits common to all individuals, and that diversity is shaped by the lifelong contacts with different non-self antigens, including those found on infectious pathogens. Besides the individual differences, some of these common traits may be more prone to react against a given antigen, and this may be exploited by the infectious pathogens. Indeed, viral infections can deregulate immune response by subverting antibody (Ab) gene usage, leading to the overexpression of specific Ab subfamilies. This overexpression often results in a protective antiviral response but, in some cases, also correlates with a higher likelihood of developing humoral autoimmune disorders. These aspects of virus-induced autoimmunity have never been thoroughly reviewed, and this is the main purpose of this review. An accurate examination of virus specific Ab subfamilies elicited during infections may help further characterize the complex interplay between viruses and the humoral immune response, and be useful in the design of future monoclonal antibody (mAb)-based anti-infective prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Cappelletti
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Milano, Italy
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Milano, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Milano, Italy
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Milano, Italy
| | - Roberto Burioni
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Milano, Italy.
| |
Collapse
|
30
|
Roche J, Louis JM, Aniana A, Ghirlando R, Bax A. Complete dissociation of the HIV-1 gp41 ectodomain and membrane proximal regions upon phospholipid binding. JOURNAL OF BIOMOLECULAR NMR 2015; 61:235-48. [PMID: 25631354 PMCID: PMC4398632 DOI: 10.1007/s10858-015-9900-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/17/2015] [Indexed: 05/22/2023]
Abstract
The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. Strong lipid affinity of the ectodomain suggests that its heptad repeat regions play an active role in destabilizing membranes by directly binding to the lipid bilayers and thereby lowering the free-energy barrier for membrane fusion. In such a model, immediately following the shedding of gp120, the N-heptad and C-heptad helices dissociate and melt into the host cell and viral membranes, respectively, pulling the destabilized membranes into juxtaposition, ready for fusion. Post-fusion, reaching the final 6-helix bundle (6 HB) conformation then involves competition between intermolecular interactions needed for formation of the symmetric 6 HB trimer and the membrane affinity of gp41's ectodomain, including its membrane-proximal regions. Our solution NMR study of the structural and dynamic properties of three constructs containing the ectodomain of gp41 with and without its membrane-proximal regions suggests that these segments do not form inter-helical interactions until the very late steps of the fusion process. Interactions between the polar termini of the heptad regions, which are not associating with the lipid surface, therefore may constitute the main driving force initiating formation of the final post-fusion states. The absence of significant intermolecular ectodomain interactions in the presence of dodecyl phosphocholine highlights the importance of trimerization of gp41's transmembrane helix to prevent complete dissociation of the trimer during the course of fusion.
Collapse
Affiliation(s)
- Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | | | | | | | | |
Collapse
|
31
|
Apellániz B, Rujas E, Serrano S, Morante K, Tsumoto K, Caaveiro JMM, Jiménez MÁ, Nieva JL. The Atomic Structure of the HIV-1 gp41 Transmembrane Domain and Its Connection to the Immunogenic Membrane-proximal External Region. J Biol Chem 2015; 290:12999-3015. [PMID: 25787074 DOI: 10.1074/jbc.m115.644351] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 11/06/2022] Open
Abstract
The membrane-proximal external region (MPER) C-terminal segment and the transmembrane domain (TMD) of gp41 are involved in HIV-1 envelope glycoprotein-mediated fusion and modulation of immune responses during viral infection. However, the atomic structure of this functional region remains unsolved. Here, based on the high resolution NMR data obtained for peptides spanning the C-terminal segment of MPER and the TMD, we report two main findings: (i) the conformational variability of the TMD helix at a membrane-buried position; and (ii) the existence of an uninterrupted α-helix spanning MPER and the N-terminal region of the TMD. Thus, our structural data provide evidence for the bipartite organization of TMD predicted by previous molecular dynamics simulations and functional studies, but they do not support the breaking of the helix at Lys-683, as was suggested by some models to mark the initiation of the TMD anchor. Antibody binding energetics examined with isothermal titration calorimetry and humoral responses elicited in rabbits by peptide-based vaccines further support the relevance of a continuous MPER-TMD helix for immune recognition. We conclude that the transmembrane anchor of HIV-1 envelope is composed of two distinct subdomains: 1) an immunogenic helix at the N terminus also involved in promoting membrane fusion; and 2) an immunosuppressive helix at the C terminus, which might also contribute to the late stages of the fusion process. The unprecedented high resolution structural data reported here may guide future vaccine and inhibitor developments.
Collapse
Affiliation(s)
- Beatriz Apellániz
- From the Biophysics Unit (Consejo Superior de Investigaciones Científicas, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Edurne Rujas
- From the Biophysics Unit (Consejo Superior de Investigaciones Científicas, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain, the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, 113-8656 Tokyo, Japan, and
| | - Soraya Serrano
- the Institute of Physical Chemistry "Rocasolano" (Consejo Superior de Investigaciones Científicas), Serrano 119, E-28006 Madrid, Spain
| | - Koldo Morante
- the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, 113-8656 Tokyo, Japan, and
| | - Kouhei Tsumoto
- the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, 113-8656 Tokyo, Japan, and
| | - Jose M M Caaveiro
- the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, 113-8656 Tokyo, Japan, and
| | - M Ángeles Jiménez
- the Institute of Physical Chemistry "Rocasolano" (Consejo Superior de Investigaciones Científicas), Serrano 119, E-28006 Madrid, Spain
| | - José L Nieva
- From the Biophysics Unit (Consejo Superior de Investigaciones Científicas, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain,
| |
Collapse
|
32
|
Yi HA, Diaz-Rohrer B, Saminathan P, Jacobs A. The membrane proximal external regions of gp41 from HIV-1 strains HXB2 and JRFL have different sensitivities to alanine mutation. Biochemistry 2015; 54:1681-93. [PMID: 25649507 DOI: 10.1021/bi501171r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The transmembrane subunit (gp41) of the HIV envelope protein complex (Env) mediates the viral fusion step of HIV entry. The membrane proximal external region (MPER), one of the functional domains of gp41, has been the focus of a great deal of research because it is a target for neutralizing antibodies. In this study, we examined 23 amino acid residues in the MPER (660-683) in both a CXCR4 coreceptor-utilizing strain (HXB2) and a CCR5-utilizing strain (JRFL) by alanine scanning mutagenesis. Despite the high degree of gp41 sequence conservation, the effects of alanine mutation in the MPER were different between the two strains. Most mutations in HXB2 had fusogenicity and protein expression levels not less than 50% of that of the wild type in the case of cell-cell fusion. However, ∼30% of the mutants in HXB2 showed a severe defect in fusogenicity in viral entry. Mutations in the MPER of strain JRFL had more dramatic effects than that in HXB2 in cell-cell fusion and viral entry. The fact that there are large differences in the effects of mutation between two strains suggests the potential for the interaction of the MPER with nonconserved sequences such as the fusion peptide and/or other NHR domains as well as potential long-range structural effects on the conformational changes that occur with the Env complex during membrane fusion.
Collapse
Affiliation(s)
- Hyun Ah Yi
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York , Buffalo, New York 14214, United States
| | | | | | | |
Collapse
|
33
|
Dai Z, Tao Y, Liu N, Brenowitz MD, Girvin ME, Lai JR. Conditional trimerization and lytic activity of HIV-1 gp41 variants containing the membrane-associated segments. Biochemistry 2015; 54:1589-99. [PMID: 25658332 DOI: 10.1021/bi501376f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fusion of host and viral membranes is a critical step during infection by membrane-bound viruses. The HIV-1 glycoproteins gp120 (surface subunit) and gp41 (fusion subunit) represent the prototypic system for studying this process; in the prevailing model, the gp41 ectodomain forms a trimeric six-helix bundle that constitutes a critical intermediate and provides the energetic driving force for overcoming barriers associated with membrane fusion. However, most structural studies of gp41 variants have been performed either on ectodomain constructs lacking one or more of the membrane-associated segments (the fusion peptide, FP, the membrane-proximal external region, MPER, and the transmembrane domain, TM) or on variants consisting of these isolated segments alone without the ectodomain. Several recent reports have suggested that the HIV-1 ectodomain, as well as larger construct containing the membrane-bound segments, dissociates from a trimer to a monomer in detergent micelles. Here we compare the properties of a series of gp41 variants to delineate the roles of the ectodomain, FP, and MPER and TM, all in membrane-mimicking environments. We find that these proteins are prone to formation of a monomer in detergent micelles. In one case, we observed exclusive monomer formation at pH 4 but conditional trimerization at pH 7 even at low micromolar (∼5 μM) protein concentrations. Liposome release assays demonstrate that these gp41-related proteins have the capacity to induce content leakage but that this activity is also strongly modulated by pH with much higher activity at pH 4. Circular dichroism, nuclear magnetic resonance, and binding assays with antibodies specific to the MPER provide insight into the structural and functional roles of the FP, MPER, and TM and their effect on structure within the larger context of the fusion subunit.
Collapse
Affiliation(s)
- Zhou Dai
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | | | | | | | | | | |
Collapse
|
34
|
Cassioli A, Bardiaux B, Bouvier G, Mucherino A, Alves R, Liberti L, Nilges M, Lavor C, Malliavin TE. An algorithm to enumerate all possible protein conformations verifying a set of distance constraints. BMC Bioinformatics 2015; 16:23. [PMID: 25627244 PMCID: PMC4384350 DOI: 10.1186/s12859-015-0451-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/05/2015] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The determination of protein structures satisfying distance constraints is an important problem in structural biology. Whereas the most common method currently employed is simulated annealing, there have been other methods previously proposed in the literature. Most of them, however, are designed to find one solution only. RESULTS In order to explore exhaustively the feasible conformational space, we propose here an interval Branch-and-Prune algorithm (iBP) to solve the Distance Geometry Problem (DGP) associated to protein structure determination. This algorithm is based on a discretization of the problem obtained by recursively constructing a search space having the structure of a tree, and by verifying whether the generated atomic positions are feasible or not by making use of pruning devices. The pruning devices used here are directly related to features of protein conformations. CONCLUSIONS We described the new algorithm iBP to generate protein conformations satisfying distance constraints, that would potentially allows a systematic exploration of the conformational space. The algorithm iBP has been applied on three α-helical peptides.
Collapse
Affiliation(s)
| | - Benjamin Bardiaux
- Institut Pasteur, Structural Bioinformatics Unit, 25, rue du Dr Roux, Paris, 75015, France. .,CNRS UMR3528, 25, rue du Dr Roux, Paris, 75015, France.
| | - Guillaume Bouvier
- Institut Pasteur, Structural Bioinformatics Unit, 25, rue du Dr Roux, Paris, 75015, France. .,CNRS UMR3528, 25, rue du Dr Roux, Paris, 75015, France.
| | | | - Rafael Alves
- LIX, Ecole Polytechnique, Palaiseau, 91128, France.
| | - Leo Liberti
- LIX, Ecole Polytechnique, Palaiseau, 91128, France. .,IBM TJ Watson Research Center, NY Yorktown Heights, 10598, USA.
| | - Michael Nilges
- Institut Pasteur, Structural Bioinformatics Unit, 25, rue du Dr Roux, Paris, 75015, France. .,CNRS UMR3528, 25, rue du Dr Roux, Paris, 75015, France.
| | - Carlile Lavor
- University of Campinas (IMECC-UNICAMP), Campinas-SP, 13083-859, Brasil.
| | - Thérèse E Malliavin
- Institut Pasteur, Structural Bioinformatics Unit, 25, rue du Dr Roux, Paris, 75015, France. .,CNRS UMR3528, 25, rue du Dr Roux, Paris, 75015, France.
| |
Collapse
|
35
|
Martin JW, Zhou P, Donald BR. Systematic solution to homo-oligomeric structures determined by NMR. Proteins 2015; 83:651-61. [PMID: 25620116 DOI: 10.1002/prot.24768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/12/2014] [Accepted: 01/12/2015] [Indexed: 11/07/2022]
Abstract
Protein structure determination by NMR has predominantly relied on simulated annealing-based conformational search for a converged fold using primarily distance constraints, including constraints derived from nuclear Overhauser effects, paramagnetic relaxation enhancement, and cysteine crosslinkings. Although there is no guarantee that the converged fold represents the global minimum of the conformational space, it is generally accepted that good convergence is synonymous to the global minimum. Here, we show such a criterion breaks down in the presence of large numbers of ambiguous constraints from NMR experiments on homo-oligomeric protein complexes. A systematic evaluation of the conformational solutions that satisfy the NMR constraints of a trimeric membrane protein, DAGK, reveals 9 distinct folds, including the reported NMR and crystal structures. This result highlights the fundamental limitation of global fold determination for homo-oligomeric proteins using ambiguous distance constraints and provides a systematic solution for exhaustive enumeration of all satisfying solutions.
Collapse
Affiliation(s)
- Jeffrey W Martin
- Department of Computer Science, Duke University, Durham, North Carolina, 27708
| | | | | |
Collapse
|
36
|
Apellániz B, Nieva JL. The Use of Liposomes to Shape Epitope Structure and Modulate Immunogenic Responses of Peptide Vaccines Against HIV MPER. PEPTIDE AND PROTEIN VACCINES 2015; 99:15-54. [DOI: 10.1016/bs.apcsb.2015.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Miglietta R, Pastori C, Venuti A, Ochsenbauer C, Lopalco L. Synergy in monoclonal antibody neutralization of HIV-1 pseudoviruses and infectious molecular clones. J Transl Med 2014; 12:346. [PMID: 25496375 PMCID: PMC4274758 DOI: 10.1186/s12967-014-0346-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/26/2014] [Indexed: 12/26/2022] Open
Abstract
Background Early events in HIV infection are still poorly understood; virus derived from acute infections, the transmitted/founders IMCs, could provide more reliable information as they represent strains that established HIV infection in vivo, and therefore are investigated to elucidate potentially shared biological features. Methods This study examined synergy in neutralization by six monoclonal antibodies targeting different domains in gp120 and gp41 and assayed in pairwise combination against 11 HIV-1 clade B strains, either Env pseudoviruses (PV, n = 5) or transmitted/founder infectious molecular clones (T/F IMCs, n = 6). Three of the early-infection env tested as PV were juxtaposed with T/F viruses derived from the same three patients, respectively. Results All antibodies reaching IC50 were assayed pairwise (n = 50). T/F IMCs showed overall lower sensitivity to neutralization by single antibodies than PV, including within the three patient-matched pairs. Remarkably, combination index (CI) calculated using the Chow and Talalay method indicated synergy (CI < 0.9) in 42 data sets, and occurred in T/F IMC at similar proportions (15 of 17 antibody-T/F IMC combinations tested) as in pseudoviruses (27 of 33). CI values indicative of additivity and low-level antagonism were seen in 5 and 3 cases, respectively. Most pairs showed comparable synergic neutralizing effects on both virus groups, with the 4E10 + PG16 pair achieving the best synergic effects. Variability in neutralization was mostly observed on pseudovirus isolates, suggesting that factors other than virus isolation technology, such as env conformation, epitope accessibility and antibody concentration, are likely to affect polyclonal neutralization. Conclusions The findings from this study suggest that inhibitory activity of bNAbs can be further augmented through appropriate combination, even against viruses representing circulating strains, which are likely to exhibit a less sensitive Tier 2 neutralization phenotype. This notion has important implications for the design and development of anti-Env bNAb-inducing vaccines and polyclonal sera for passive immunization. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0346-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Riccardo Miglietta
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy. .,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| | - Assunta Venuti
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA. .,CFAR, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
38
|
Lai RPJ, Hock M, Radzimanowski J, Tonks P, Hulsik DL, Effantin G, Seilly DJ, Dreja H, Kliche A, Wagner R, Barnett SW, Tumba N, Morris L, LaBranche CC, Montefiori DC, Seaman MS, Heeney JL, Weissenhorn W. A fusion intermediate gp41 immunogen elicits neutralizing antibodies to HIV-1. J Biol Chem 2014; 289:29912-26. [PMID: 25160627 PMCID: PMC4208001 DOI: 10.1074/jbc.m114.569566] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/01/2014] [Indexed: 11/06/2022] Open
Abstract
The membrane-proximal external region (MPER) of the human immunodeficiency virus, type 1 (HIV-1) envelope glycoprotein subunit gp41 is targeted by potent broadly neutralizing antibodies 2F5, 4E10, and 10E8. These antibodies recognize linear epitopes and have been suggested to target the fusion intermediate conformation of gp41 that bridges viral and cellular membranes. Anti-MPER antibodies exert different degrees of membrane interaction, which is considered to be the limiting factor for the generation of such antibodies by immunization. Here we characterize a fusion intermediate conformation of gp41 (gp41(int)-Cys) and show that it folds into an elongated ∼ 12-nm-long extended structure based on small angle x-ray scattering data. Gp41(int)-Cys was covalently linked to liposomes via its C-terminal cysteine and used as immunogen. The gp41(int)-Cys proteoliposomes were administered alone or in prime-boost regimen with trimeric envelope gp140(CA018) in guinea pigs and elicited high anti-gp41 IgG titers. The sera interacted with a peptide spanning the MPER region, demonstrated competition with broadly neutralizing antibodies 2F5 and 4E10, and exerted modest lipid binding, indicating the presence of MPER-specific antibodies. Although the neutralization potency generated solely by gp140(CA018) was higher than that induced by gp41(int)-Cys, the majority of animals immunized with gp41(int)-Cys proteoliposomes induced modest breadth and potency in neutralizing tier 1 pseudoviruses and replication-competent simian/human immunodeficiency viruses in the TZM-bl assay as well as responses against tier 2 HIV-1 in the A3R5 neutralization assay. Our data thus demonstrate that liposomal gp41 MPER formulation can induce neutralization activity, and the strategy serves to improve breadth and potency of such antibodies by improved vaccination protocols.
Collapse
Affiliation(s)
- Rachel P J Lai
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Miriam Hock
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Jens Radzimanowski
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Paul Tonks
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - David Lutje Hulsik
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Gregory Effantin
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - David J Seilly
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Hanna Dreja
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Alexander Kliche
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Susan W Barnett
- Novartis Vaccines and Diagnostics Inc., Cambridge, Massachusetts 02139
| | - Nancy Tumba
- National Institute for Communicable Diseases, Centre for HIV and Sexually Transmitted Infections, 1 Modderfontein Road, Sandringham 2131, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, Centre for HIV and Sexually Transmitted Infections, 1 Modderfontein Road, Sandringham 2131, South Africa
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, and
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, and
| | - Michael S Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115
| | - Jonathan L Heeney
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom,
| | - Winfried Weissenhorn
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France,
| |
Collapse
|
39
|
Hardy GJ, Wong GC, Nayak R, Anasti K, Hirtz M, Shapter JG, Alam SM, Zauscher S. HIV-1 antibodies and vaccine antigen selectively interact with lipid domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2662-9. [PMID: 25019685 DOI: 10.1016/j.bbamem.2014.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 01/22/2023]
Abstract
The rare, broadly neutralizing antibodies, 4E10 and 2F5, that target the HIV-1 membrane proximal external region also associate with HIV-1 membrane lipids as part of a required first-step in HIV-1 neutralization. HIV-1 virions have high concentration of cholesterol and sphingomyelin, which are able to organize into liquid-ordered domains (i.e., lipid rafts), and could influence the interaction of neutralizing antibodies with epitopes proximal to the membrane. The objective of this research is to understand how these lipid domains contribute to 2F5/4E10 membrane interactions and to antigen presentation in liposomal form of HIV-1 vaccines. To this end we have engineered biomimetic supported lipid bilayers and are able to use atomic force microscopy to visualize membrane domains, antigen clustering, and antibody-membrane interactions. Our results demonstrate that 2F5/4E10 do not interact with highly ordered gel and liquid-ordered domains and exclusively bind to a liquid-disordered lipid phase. This suggests that vaccine liposomes that contain key viral membrane components, such as high cholesterol content, may not be advantageous for 2F5/4E10 vaccine strategies. Rather, vaccine liposomes that primarily contain a liquid-disordered phase may be more likely to elicit production of lipid reactive, 2F5- and 4E10-like antibodies.
Collapse
Affiliation(s)
- Gregory J Hardy
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
| | - Gene C Wong
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
| | - Rahul Nayak
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
| | - Kara Anasti
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27708, United States
| | - Michael Hirtz
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Joseph G Shapter
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, South Australia 5042, Australia
| | - S Munir Alam
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27708, United States
| | - Stefan Zauscher
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
40
|
Molinos-Albert LM, Carrillo J, Curriu M, Rodriguez de la Concepción ML, Marfil S, García E, Clotet B, Blanco J. Anti-MPER antibodies with heterogeneous neutralization capacity are detectable in most untreated HIV-1 infected individuals. Retrovirology 2014; 11:44. [PMID: 24909946 PMCID: PMC4067070 DOI: 10.1186/1742-4690-11-44] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/26/2014] [Indexed: 11/10/2022] Open
Abstract
Background The MPER region of the HIV-1 envelope glycoprotein gp41 is targeted by broadly neutralizing antibodies. However, the localization of this epitope in a hydrophobic environment seems to hamper the elicitation of these antibodies in HIV infected individuals. We have quantified and characterized anti-MPER antibodies by ELISA and by flow cytometry using a collection of mini gp41-derived proteins expressed on the surface of 293T cells. Longitudinal plasma samples from 35 HIV-1 infected individuals were assayed for MPER recognition and MPER-dependent neutralizing capacity using HIV-2 viruses engrafted with HIV-1 MPER sequences. Results Miniproteins devoid of the cysteine loop of gp41 exposed the MPER on 293T cell membrane. Anti-MPER antibodies were identified in most individuals and were stable when analyzed in longitudinal samples. The magnitude of the responses was strongly correlated with the global response to the HIV-1 envelope glycoprotein, suggesting no specific limitation for anti-MPER antibodies. Peptide mapping showed poor recognition of the C-terminal MPER moiety and a wide presence of antibodies against the 2F5 epitope. However, antibody titers failed to correlate with 2F5-blocking activity and, more importantly, with the specific neutralization of HIV-2 chimeric viruses bearing the HIV-1 MPER sequence; suggesting a strong functional heterogeneity in anti-MPER humoral responses. Conclusions Anti-MPER antibodies can be detected in the vast majority of HIV-1 infected individuals and are generated in the context of the global anti-Env response. However, the neutralizing capacity is heterogeneous suggesting that eliciting neutralizing anti-MPER antibodies by immunization might require refinement of immunogens to skip nonneutralizing responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Julià Blanco
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, UAB, Badalona, 08916 Barcelona, Catalonia, Spain.
| |
Collapse
|
41
|
Chemically modified peptides based on the membrane-proximal external region of the HIV-1 envelope induce high-titer, epitope-specific nonneutralizing antibodies in rabbits. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1086-93. [PMID: 24872518 DOI: 10.1128/cvi.00320-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Broadly neutralizing monoclonal antibodies (bNAbs) 2F5 and 4E10 bind to the membrane proximal external region (MPER) of gp41 and also cross-react with phospholipids. In this study, we investigated if chemical modifications on the MPER adjacent to 2F5 and 4E10 epitopes using mimetics of inflammation-associated posttranslational modifications to induce 2F5- and 4E10-like bNAbs can break tolerance. We synthesized a series of chemically modified peptides spanning the MPER. The serine, threonine, and tyrosine residues in the peptides were modified with sulfate, phosphate, or nitrate moieties and presented in liposomes for rabbit immunizations. All immunizations resulted in high antisera titers directed toward both the modified and unmodified immunogens. Tyrosine modification was observed to significantly suppress antiepitope responses. Sera with strong anti-gp140 titers were purified by affinity chromatography toward the MPER peptide and found to possess a higher affinity toward the MPER than did the bNAbs 2F5 and 4E10. Modest neutralization was observed in the H9 neutralization assay, but neutralization was not observed in the TZM-bl cell or peripheral blood mononuclear cell (PBMC) neutralization assay platforms. Although neutralizing antibodies were not induced by this approach, we conclude that chemical modifications can increase the immune responses to poorly immunogenic antigens, suggesting that chemical modification in an appropriate immunization protocol should be explored further as an HIV-1 vaccine strategy.
Collapse
|