1
|
Chen Z, Kalhori D, Rakhshani F, El Baraka O, Qu L, Kolle SN, Andre V, Deisenroth T, Kumacheva E. Hydrodynamically generated multilayer skin spheroids enable in vitro screening of biologically active ingredients and toxicity tests. SCIENCE ADVANCES 2025; 11:eadu1251. [PMID: 40333986 PMCID: PMC12057684 DOI: 10.1126/sciadv.adu1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/26/2025] [Indexed: 05/09/2025]
Abstract
Human tissues often have a multilayer structure, with each layer performing a distinct physiological task. Reconstructing layered tissue structures with their respective functions is crucial for disease modeling, screening biologically active ingredients, and performing toxicology tests; however, multicellular spheroids used for these purposes generally lack a well-defined multilayer architecture. Here, to recapitulate a multilayer structure of the skin, we developed a hydrodynamically mediated approach to the generation of large arrays of fibroblast spheroids (a dermal core) that were engulfed with an epidermal layer of keratinocytes. These spheroids expressed biomarkers of the epidermis, epidermal-dermal junction, and dermis, and exhibited skin-like barrier properties. Screening of the synergistic effect of vitamins and peptides on protein synthesis by the spheroids and evaluation of skin toxicity with chemical agents showed a correlation with clinical results or existing standards. This approach offers enhanced control over spatial cell distribution in spheroids for advanced in vitro models of multilayer tissues.
Collapse
Affiliation(s)
- Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Dianoosh Kalhori
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Faeze Rakhshani
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | | | - Liangliang Qu
- BASF Advanced Formulation Research North America, Tarrytown, NY, USA
| | - Susanne N. Kolle
- BASF SE Experimental Toxicity and Ecology, Ludwigshafen am Rhein, Germany
| | - Valerie Andre
- BASF Beauty Care Solutions France S.A.S, Lyon, France
| | - Ted Deisenroth
- BASF Advanced Formulation Research North America, Tarrytown, NY, USA
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Coulombe PA. A "second hit" impacts disease severity in a dominantly inherited genetic skin disorder. J Exp Med 2025; 222:e20242377. [PMID: 39976599 PMCID: PMC11841682 DOI: 10.1084/jem.20242377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025] Open
Abstract
In this issue of JEM, Bergson et al. (https://doi.org/10.1084/jem.20240827) identified variants in HMCN1 that co-segregate with and account for variations in disease severity in individuals with a diagnosis of epidermolysis bullosa simplex (EBS) resulting from pathogenic variants in KRT14. The authors show that hemicentin-1 binds keratin 14 at the protein level and that silencing HMCN1 expression disrupts the organization of K14-containing filaments in epidermal keratinocytes and their attachment to the extracellular matrix. These findings address the clinical heterogeneity observed in EBS, a rare genetic skin disorder, with general implications for all genodermatoses.
Collapse
Affiliation(s)
- Pierre A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Guan D, Bruce AEE. In preprints: expanded insight into epithelial spreading during zebrafish epiboly. Development 2025; 152:dev204890. [PMID: 40337795 DOI: 10.1242/dev.204890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Affiliation(s)
- Donna Guan
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| | - Ashley E E Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| |
Collapse
|
4
|
Gerner-Mauro KN, Vila Ellis L, Wang G, Nayak R, Lwigale PY, Poché RA, Chen J. Morphogenic, molecular and cellular adaptations for unidirectional airflow in the chicken lung. Development 2025; 152:dev204346. [PMID: 40177910 PMCID: PMC12070062 DOI: 10.1242/dev.204346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Unidirectional airflow in the avian lung enables gas exchange during both inhalation and exhalation. The underlying developmental process and how it deviates from that of the bidirectional mammalian lung are poorly understood. Sampling key developmental stages with multiscale 3D imaging and single-cell transcriptomics, we delineate morphogenic, molecular and cellular features that accommodate the unidirectional airflow in the chicken lung. Primary termini of hyper-elongated branches undergo proximal-short and distal-long fusions, forming parabronchi for air conduction. Through the parabronchial smooth muscle, neoform termini extend radially to form gas-exchanging alveoli. Supporting this radial alveologenesis, branch stalks halt their proximalization, defined by SOX9-SOX2 transition, and become SOX9low parabronchi. Primary and secondary vascular plexi interface with primary and neoform termini, respectively. Single-cell and Stereo-seq spatial transcriptomics reveal a third, chicken-specific alveolar cell type expressing KRT14, hereby named luminal cells. Luminal, alveolar type 2 and alveolar type 1 cells sequentially occupy concentric zones radiating from the parabronchial lumen. Our study explores the evolutionary space of lung diversification and lays the foundation for functional analysis of species-specific genetic determinants.
Collapse
Affiliation(s)
- Kamryn N. Gerner-Mauro
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lisandra Vila Ellis
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guolun Wang
- Department of Pediatrics, Perinatal Institute Division of Pulmonary Biology, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Richa Nayak
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Peter Y. Lwigale
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Ross A. Poché
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pediatrics, Perinatal Institute Division of Pulmonary Biology, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
5
|
Bulteau R, Barbier L, Lamour G, Lemseffer Y, Verlhac MH, Tessandier N, Labrune E, Lenz M, Terret ME, Campillo C. Atomic Force Microscopy Reveals Differences In Mechanical Properties Linked To Cortical Structure In Mouse And Human Oocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500221. [PMID: 40159757 DOI: 10.1002/smll.202500221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2025] [Revised: 11/03/2025] [Indexed: 04/02/2025]
Abstract
Cell mechanical properties regulate biological processes such as oocyte development. Cortical tension is regulated via actomyosin cortex remodeling to ensure optimal oocyte quality. However, the evolution of other mechanical parameters and their relationship with cortex structure remain poorly understood in mammalian oocytes. In this work, a methodology combining multiple mechanical parameters measured through Atomic Force Microscopy is proposed to investigate the relationship between oocyte mechanical properties and cortex organization. By studying mouse oocytes at various stages of development, along with engineered ones with specific cortex organization, it is demonstrated that a thin actin cortex corresponds to stiff oocytes while a thick one is associated with softer oocytes. It is further revealed that maternal age, a critical factor for fertility, affects mouse oocytes mechanics, correlating with alterations in their cortex structure. Finally, it is shown that the evolution of mechanical properties differs between human and mouse oocyte development, highlighting species-specific differences in cortex organization.
Collapse
Affiliation(s)
- Rose Bulteau
- LAMBE, Univ Evry, CNRS, Université Paris-Saclay, Évry-Courcouronnes, 91025, France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, 75005, France
| | - Lucie Barbier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, 75005, France
| | - Guillaume Lamour
- LAMBE, Univ Evry, CNRS, Université Paris-Saclay, Évry-Courcouronnes, 91025, France
| | - Yassir Lemseffer
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité; Inserm U1208, SBRI, Université Claude Bernard Lyon 1, faculté de médecine, Laennec, France
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, 75005, France
| | - Nicolas Tessandier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, 75005, France
| | - Elsa Labrune
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité; Inserm U1208, SBRI, Université Claude Bernard Lyon 1, faculté de médecine, Laennec, France
| | - Martin Lenz
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, 75005, France
| | - Clément Campillo
- LAMBE, Univ Evry, CNRS, Université Paris-Saclay, Évry-Courcouronnes, 91025, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| |
Collapse
|
6
|
Redmond CJ, Steiner SN, Cohen E, Johnson CN, Özlü N, Coulombe PA. Keratin 15 promotes a progenitor cell state in basal keratinocytes of skin epidermis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640633. [PMID: 40060679 PMCID: PMC11888442 DOI: 10.1101/2025.02.27.640633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
The type I intermediate filament proteins keratin 14 (K14) and keratin 15 (K15) are common to all complex epithelia. K14 is highly expressed by progenitor keratinocytes, in which it provides essential mechanical integrity and gates keratinocyte entry into differentiation by sequestering YAP1, a transcriptional effector of Hippo signaling, to the cytoplasm. K15 has long been used as a marker of hair bulge stem cells though its specific role in skin epithelia is unknown. Here we show that the lack of two biochemical determinants, a cysteine residue within the stutter motif of the central rod domain and a 14-3-3 binding site in the N-terminal head domain, renders K15 unable to effectively sequester YAP1 in the cytoplasm. We combine insight obtained from cell culture and transgenic mouse models with computational analyses of transcriptomics data and propose a model in which the K15:K14 ratio promotes a progenitor state and antagonizes differentiation in keratinocytes of the epidermis.
Collapse
|
7
|
Nai R, Zhang C, Xie Y, Man D, Li H, Ma L, Mi L, Zhao M, Mu Q, Gao L, Liu Z, Li J. A comparative proteomic-based study identifies essential factors involved in hair follicle growth in inner Mongolia cashmere goats. BMC Vet Res 2025; 21:118. [PMID: 40011909 PMCID: PMC11866830 DOI: 10.1186/s12917-025-04608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
Renowned for its invaluable undercoat, the cashmere goat is well known. The growth of cashmere fibre initiates when the relatively inactive telogen stage transitions to the anagen stage, which involves active proliferation. However, the molecular mechanisms responsible for this process are still unclear. Here, SWATH mass spectrometry (MS), a comparative proteomic analysis, was conducted to examine the proteomic alterations in Inner Mongolia cashmere goat skin samples at two different developmental stages (anagen and telogen). In total, 2414 proteins were detected, with 631 proteins showing differential regulation (503 upregulated proteins and 128 downregulated proteins). Bioinformatic analysis revealed that these proteins, which are differentially regulated, play crucial roles in the pathways associated with metabolism and fatty acids according to the GO and KEGG analyses. Furthermore, interactome analysis revealed that differentially regulated keratins have a crucial impact. The localization of KRT25, KRT71, and KRT82 using immunohistochemistry revealed that these proteins were expressed in the secondary hair follicles of cashmere goat skin. The keratin family plays an irreplaceable and important role in the process of hair follicle growth.
Collapse
Affiliation(s)
- Rile Nai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- College of Agriculture, Hulunbuir University, Hulunbuir, 021008, China
| | - Chongyan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction, Hohhot, 010018, China
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture, Hohhot, 010018, China
| | - Yuchun Xie
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Duhu Man
- College of Agriculture, Hulunbuir University, Hulunbuir, 021008, China
| | - Haijun Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lina Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Fengxin Pharmaceutical Co., Ltd., Hohhot, 010010, China
| | - Lu Mi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Meng Zhao
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, 010018, China
| | - Qier Mu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lixia Gao
- Baotou Light Industry Vocational Technical College, Baotou, 014035, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction, Hohhot, 010018, China.
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture, Hohhot, 010018, China.
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction, Hohhot, 010018, China.
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture, Hohhot, 010018, China.
| |
Collapse
|
8
|
Oladejo EO, Gruhot TR, Park S, Ishak GM, Mote BE, Liao SF, Feugang JM. Dietary Arginine Supplementation Modulates the Proteome of Boar Seminal Plasma. Animals (Basel) 2025; 15:555. [PMID: 40003036 PMCID: PMC11852084 DOI: 10.3390/ani15040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/26/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigated the impact of an increased arginine (ARG) level in a boar diet on semen production, sperm quality, and seminal plasma proteome. Adult Nebraska Index Line boars were assigned to two groups, one receiving a control diet with 0.77% arginine (n = 4) and the other a high-arginine diet with 1.77% arginine (n = 5). Semen was collected twice a week over the whole experiment, including one week before, six weeks during, and six weeks after the supplementation. Parameters such as semen volume and concentration were assessed immediately after collection, alongside sperm motility and morphology. Centrifugation of raw semen samples yielded seminal plasma for a gel-based proteome analysis. The seminal plasma proteins were extracted, quantified, and separated via 2D gel electrophoresis, allowing protein identification through mass spectrometry. Data analysis involved two-way ANOVA for comparisons (p < 0.05). Results showed that arginine supplementation improved semen volume and total sperm counts, with averages of 21 ± 3 doses in the control group versus 24 ± 2 in the ARG group (p = 0.05). Although sperm motility and morphology remained unaffected (p > 0.05), dietary arginine upregulated ten proteins and downregulated two. In summary, increased dietary arginine did not significantly alter key parameters of semen output or sperm quality but significantly impacted seminal plasma proteome, warranting further research on sperm viability.
Collapse
Affiliation(s)
- Emmanuel O. Oladejo
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (E.O.O.); (S.P.); (S.F.L.)
| | - Tasha R. Gruhot
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (T.R.G.); (B.E.M.)
| | - Seongbin Park
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (E.O.O.); (S.P.); (S.F.L.)
| | - Ghassan M. Ishak
- School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Benny E. Mote
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (T.R.G.); (B.E.M.)
| | - Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (E.O.O.); (S.P.); (S.F.L.)
| | - Jean M. Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (E.O.O.); (S.P.); (S.F.L.)
| |
Collapse
|
9
|
Benito-Martínez S, Salavessa L, Macé AS, Lardier N, Fraisier V, Sirés-Campos J, Jani RA, Romao M, Gayrard C, Plessis M, Hurbain I, Nait-Meddour C, Morel E, Boniotto M, Manneville JB, Bernerd F, Duval C, Raposo G, Delevoye C. Keratin intermediate filaments mechanically position melanin pigments for genome photoprotection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.632531. [PMID: 39868182 PMCID: PMC11761041 DOI: 10.1101/2025.01.15.632531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Melanin pigments block genotoxic agents by positioning on the sun-exposed side of human skin keratinocytes' nucleus. How this position is regulated and its role in genome photoprotection remains unknown. By developing a model of human keratinocytes internalizing extracellular melanin into pigment organelles, we show that keratin 5/14 intermediate filaments mechanically control the 3D perinuclear position of pigments, shielding DNA from photodamage. Imaging and microrheology in human disease-related model identify structural keratin cages surrounding pigment organelles to stiffen their microenvironment and maintain their 3D position. Optimum pigment spatialization is required for DNA photoprotection and rely on the interplay between intermediate filaments and microtubules bridged by plectin cytolinkers. Thus, the mechanically-driven proximity of pigment organelles to the nucleus is a key photoprotective parameter. Uncovering how human skin counteracts solar radiation by positioning the melanin microparasol next to the genome anticipates that dynamic spatialization of organelles is a physiological UV stress response.
Collapse
Affiliation(s)
- Silvia Benito-Martínez
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
| | - Laura Salavessa
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Anne-Sophie Macé
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | - Nathan Lardier
- Institut Curie, PSL Research University, CNRS, UMR144, Molecular Mechanisms of Intracellular Transport, 75005 Paris, France
| | - Vincent Fraisier
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | - Julia Sirés-Campos
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
| | - Riddhi Atul Jani
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
| | - Maryse Romao
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | | | - Marion Plessis
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Ilse Hurbain
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | - Cécile Nait-Meddour
- Univ Paris Est Creteil, INSERM, IMRB, Translational Neuropsychiatry, F-94010 Creteil, France
| | - Etienne Morel
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Michele Boniotto
- Univ Paris Est Creteil, INSERM, IMRB, Translational Neuropsychiatry, F-94010 Creteil, France
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR144, Molecular Mechanisms of Intracellular Transport, 75005 Paris, France
- Laboratoire Matières et Systèmes Complexes (MSC), Université Paris Cité, CNRS, UMR7057, 10 rue Alice Domon et Léonie Duquet, F-75013, Paris, France
| | | | | | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| |
Collapse
|
10
|
Brauns F, Claussen NH, Lefebvre MF, Wieschaus EF, Shraiman BI. The geometric basis of epithelial convergent extension. eLife 2024; 13:RP95521. [PMID: 39699945 DOI: 10.7554/elife.95521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.
Collapse
Affiliation(s)
- Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, United States
| | - Nikolas H Claussen
- Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
| | - Matthew F Lefebvre
- Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
| | - Eric F Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, United States
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Boris I Shraiman
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, United States
- Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
11
|
Purewal JS, Doshi GM. RNAi in psoriasis: A melodic exploration of miRNA, shRNA, and amiRNA with a spotlight on siRNA. Eur J Pharmacol 2024; 985:177083. [PMID: 39481628 DOI: 10.1016/j.ejphar.2024.177083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Psoriasis (Pso) is an autoimmune inflammatory skin disease characterised by well-demarcated, red plaques covered in silver scales. It affects people of all ages and can be passed down through generations. Genetics play an important role in determining vulnerability to develop Pso. Several large-scale genome-wide association studies have identified over 80 genetic loci associated with Pso susceptibility. Gene expression can be regulated via RNA interference (RNAi). RNAi suppresses gene expression by degrading mRNA molecules. Since its discovery, RNAi has generated considerable excitement over its potential therapeutic benefits. RNAi is mediated by endogenous small RNA molecules like microRNA (miRNA) or exogenous small RNA molecules like small interfering RNA (siRNA), short hairpin RNA (shRNA), and artificial micro RNA (amiRNA). These small RNA molecules can silence a disease-related gene in a sequence-specific manner. Targeting RNAi pathways can help modify disease-related biological processes in various medical conditions, including autoimmune disorders. In Pso, RNAi can downregulate the expression of molecules involved in the pathophysiology of the disease. Significant progress has been made in the field of RNAi therapeutics. However, further research is needed to fine-tune the design and delivery of RNAi therapeutics in humans. In this review, we discuss various effectors of RNAi, some challenges related to RNAi therapeutics (emphasizing siRNA) and strategies to overcome these challenges. Furthermore, we have discussed some studies that employ RNAi therapeutics for Pso.
Collapse
|
12
|
Jessop E, Young N, Garcia-Del-Valle B, Crusher JT, Obara B, Karakesisoglou I. SIRT2 Inhibition by AGK2 Promotes Perinuclear Cytoskeletal Organisation and Reduces Invasiveness of MDA-MB-231 Triple-Negative Breast Cancer Cells in Confined In Vitro Models. Cells 2024; 13:2023. [PMID: 39682770 PMCID: PMC11639776 DOI: 10.3390/cells13232023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterised by the absence of targetable hormone receptors and increased metastatic rates. As nuclear softening strongly contributes to TNBC's enhanced metastatic capacity, increasing the nuclear stiffness of TNBC cells may present a promising therapeutic avenue. Previous evidence has demonstrated the ability of Sirtuin 2 (SIRT2) inhibition to induce cytoskeletal reorganisation, a key factor in regulating nuclear mechanics. Thus, our study aimed to investigate the effect of SIRT2 inhibition on the nuclear mechanics and migratory behaviour of TNBC cells. To achieve this, SIRT2 was pharmacologically inhibited in MDA-MB-231 cells using AGK2, a SIRT2-specific inhibitor. Although SIRT2 inhibition had no effect on LINC complex composition, the AGK2-treated MDA-MB-231 cells displayed more prominent perinuclear organisations of acetylated α-tubulin, vimentin, and F-actin. Additionally, the nuclei of the AGK2-treated MDA-MB-231 cells exhibited greater resistance to collapse under osmotic shock. Scratch-wound assays also revealed that SIRT2 inhibition led to polarity defects in the MDA-MB-231 cells, while in vitro space-restrictive invasion assays highlighted their reduced migratory capacity upon AGK2 treatment. Taken together, our findings suggest that SIRT2 inhibition promotes a perinuclear cytoskeletal organisation in MDA-MB-231 cells, which enhances their nuclear rigidity and impedes their invasion through confined spaces in vitro.
Collapse
Affiliation(s)
- Emily Jessop
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Natalie Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Beatriz Garcia-Del-Valle
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Jack T. Crusher
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Boguslaw Obara
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK;
| | - Iakowos Karakesisoglou
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| |
Collapse
|
13
|
Feng Y, Zhang Z, Tang J, Chen Y, Hu D, Huang X, Li F. Ferroptosis-related biomarkers for adamantinomatous craniopharyngioma treatment: conclusions from machine learning techniques. Front Endocrinol (Lausanne) 2024; 15:1362278. [PMID: 39605941 PMCID: PMC11598535 DOI: 10.3389/fendo.2024.1362278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Adamantinomatous craniopharyngioma (ACP) is difficult to cure completely and prone to recurrence after surgery. Ferroptosis as an iron-dependent programmed cell death, may be a critical process in ACP. The study aimed to screen diagnostic markers related to ferroptosis in ACP to improve diagnostic accuracy. Methods Gene expression profiles of ACP were obtained from the gene expression omnibus (GEO) database. Limma package was used to analyze the differently expressed genes (DEGs). The intersection of DEGs and ferroptosis-related factors was obtained as differently expressed ferroptosis-related genes (DEFRGs). Enrichment analysis was processed, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), disease ontology (DO), gene set enrichment analysis (GSEA), and Gene Set Variation Analysis (GSVA) analysis. Machine learning algorithms were undertaken for screening diagnostic markers associated with ferroptosis in ACP. The levels of DEFRGs were verified in ACP patients. A nomogram was drawn to predict the relationship between key DEFRG expression and risk of disease. The disease groups were then clustered by consensus clustering analysis. Results DEGs were screened between ACP and normal samples. Ferroptosis-related factors were obtained from the FerrDb V2 and GeneCard databases. The correlation between DEFRGs and ferroptosis markers was also confirmed. A total of 6 overlapped DEFRGs were obtained. Based on the results of the nomogram, CASP8, KRT16, KRT19, and TP63 were the protective factors of the risk of disease, while GOT1 and TFAP2C were the risk factors. According to screened DEFRGs, the consensus clustering matrix was differentiated, and the number of clusters was stable. CASP8, KRT16, KRT19, and TP63, were upregulated in ACP patients, while GOT1 was downregulated. CASP8, KRT16, KRT19, TP63, CASP8, and GOT1 affect multiple ferroptosis marker genes. The combination of these genes might be the biomarker for ACP diagnosis via participating ferroptosis process. Discussion Ferroptosis-related genes, including CASP8, KRT16, KRT19, TP63, and GOT1 were the potential markers for ACP, which lays the theoretical foundation for ACP diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fangping Li
- Department of Endocrinology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
14
|
Paavolainen O, Peurla M, Koskinen LM, Pohjankukka J, Saberi K, Tammelin E, Sulander SR, Valkonen M, Mourao L, Boström P, Brück N, Ruusuvuori P, Scheele CLGJ, Hartiala P, Peuhu E. Volumetric analysis of the terminal ductal lobular unit architecture and cell phenotypes in the human breast. Cell Rep 2024; 43:114837. [PMID: 39368089 DOI: 10.1016/j.celrep.2024.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
The major lactiferous ducts of the human breast branch out and end at terminal ductal lobular units (TDLUs). Despite their functional and clinical importance, the three-dimensional (3D) architecture of TDLUs has remained undetermined. Our quantitative and volumetric imaging of healthy human breast tissue demonstrates that highly branched TDLUs, which exhibit increased proliferation, are uncommon in the resting tissue regardless of donor age, parity, or hormonal contraception. Overall, TDLUs have a consistent shape and branch parameters, and they contain a main subtree that dominates in bifurcation events and exhibits a more duct-like keratin expression pattern. Simulation of TDLU branching morphogenesis in three dimensions suggests that evolutionarily conserved mechanisms regulate mammary gland branching in humans and mice despite their anatomical differences. In all, our data provide structural insight into 3D anatomy and branching of the human breast and exemplify the power of volumetric imaging in gaining a deeper understanding of breast biology.
Collapse
Affiliation(s)
- Oona Paavolainen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Markus Peurla
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Leena M Koskinen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jonna Pohjankukka
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Kamyab Saberi
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Ella Tammelin
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Suvi-Riitta Sulander
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Masi Valkonen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland
| | - Larissa Mourao
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Pia Boström
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Nina Brück
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Pekka Ruusuvuori
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Pauliina Hartiala
- University of Turku, 20520 Turku, Finland; Department of Plastic and General Surgery, Turku University Hospital, 20520 Turku, Finland; Medicity Research Laboratories and InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Emilia Peuhu
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland.
| |
Collapse
|
15
|
Gerner-Mauro KN, Ellis LV, Wang G, Nayak R, Lwigale PY, Poché RA, Chen J. Morphogenic, molecular, and cellular adaptations for unidirectional airflow in the chicken lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608866. [PMID: 39229219 PMCID: PMC11370416 DOI: 10.1101/2024.08.20.608866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Unidirectional airflow in the avian lung enables gas exchange during both inhalation and exhalation. The underlying developmental process and how it deviates from that of the bidirectional mammalian lung are poorly understood. Sampling key developmental stages with multiscale 3D imaging and single-cell transcriptomics, we delineate morphogenic, molecular, and cellular features that accommodate the unidirectional airflow in the chicken lung. Primary termini of hyper-elongated branches are eliminated via proximal-short and distal-long fusions, forming parabronchi. Neoform termini extend radially through parabronchial smooth muscle to form gas-exchanging alveoli. Supporting this radial alveologenesis, branch stalks halt their proximalization, defined by SOX9-SOX2 transition, and become SOX9 low parabronchi. Primary and secondary vascular plexi interface with primary and neoform termini, respectively. Single-cell and Stereo-seq spatial transcriptomics reveal a third, chicken-specific alveolar cell type expressing KRT14, hereby named luminal cells. Luminal, alveolar type 2, and alveolar type 1 cells sequentially occupy concentric zones radiating from the parabronchial lumen. Our study explores the evolutionary space of lung diversification and lays the foundation for functional analysis of species-specific genetic determinants.
Collapse
|
16
|
Coelho-Rato LS, Parvanian S, Andrs Salajkova S, Medalia O, Eriksson JE. Intermediate filaments at a glance. J Cell Sci 2024; 137:jcs261386. [PMID: 39206824 DOI: 10.1242/jcs.261386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Intermediate filaments (IFs) comprise a large family of versatile cytoskeletal proteins, divided into six subtypes with tissue-specific expression patterns. IFs have a wide repertoire of cellular functions, including providing structural support to cells, as well as active roles in mechanical support and signaling pathways. Consequently, defects in IFs are associated with more than 100 diseases. In this Cell Science at a Glance article, we discuss the established classes of IFs and their general features, their functions beyond structural support, and recent advances in the field. We also highlight their involvement in disease and potential use as clinical markers of pathological conditions. Finally, we provide our view on current knowledge gaps and the future directions of the IF field.
Collapse
Affiliation(s)
- Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Sarka Andrs Salajkova
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Euro-Bioimaging ERIC, 20520 Turku, Finland
| |
Collapse
|
17
|
Pereda J, Milde Khatib C, Kezic S, Christensen MO, Yang S, Thyssen JP, Chu CY, Riethmüller C, Liao HS, Akhtar I, Ungar B, Guttman-Yassky E, Hædersdal M, Hwu ET. A Review of Atomic-Force Microscopy in Skin Barrier Function Assessment. J Invest Dermatol 2024:S0022-202X(24)00357-9. [PMID: 38888524 DOI: 10.1016/j.jid.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 06/20/2024]
Abstract
Skin barrier function (SBF) disorders are a class of pathologies that affect a significant portion of the world population. These disorders cause skin lesions with intense itch, impacting patients' physical and psychological well-being as well as their social functioning. It is in the interest of patients that their disorder be monitored closely while under treatment to evaluate the effectiveness of the ongoing therapy and any potential adverse reactions. Symptom-based assessment techniques are widely used by clinicians; however, they carry some limitations. Techniques to assess skin barrier impairment are critical for understanding the nature of the disease and for helping personalize treatment. This review recalls the anatomy of the skin barrier and describes an atomic-force microscopy approach to quantitatively monitor its disorders and their response to treatment. We review a panel of studies that show that this technique is highly relevant for SBF disorder research, and we aim to motivate its adoption into clinical settings.
Collapse
Affiliation(s)
- Jorge Pereda
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Casper Milde Khatib
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Sanja Kezic
- Amsterdam UMC, Coronel Institute of Occupational Health, Amsterdam, The Netherlands
| | | | - Sara Yang
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Hsien-Shun Liao
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Imtisal Akhtar
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Benjamin Ungar
- The Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma Guttman-Yassky
- The Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Merete Hædersdal
- Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - En-Te Hwu
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
18
|
Ruiz WG, Clayton DR, Parakala-Jain T, Dalghi MG, Franks J, Apodaca G. The umbrella cell keratin network: organization as a tile-like mesh, formation of a girded layer in response to bladder filling, and dependence on the plectin cytolinker. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598498. [PMID: 38915686 PMCID: PMC11195278 DOI: 10.1101/2024.06.11.598498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The keratin cytoskeleton and associated desmosomes contribute to the mechanical stability of epithelial tissues, but their organization in bladder umbrella cells and their responses to bladder filling are poorly understood. Using super-resolution confocal microscopy, along with 3D image reconstruction and platinum replica electron microscopy, we observed that the apical keratin network of umbrella cells was organized as a dense tile-like mesh comprised of tesserae bordered on their edges by cortical actin filaments, filled with woven keratin filaments, and crosslinked by plectin. A band of keratin was also observed at the cell periphery that was linked to the junction-associated actin ring by plectin. During bladder filling, the junction-localized desmosomal necklace expanded, and a subjacent girded layer was formed that linked the keratin network to desmosomes, including those at the umbrella cell-intermediate cell interface. Disruption of plectin led to focal keratin network dissolution, loss of the junction-associated band of keratin, perturbation of tight junction continuity, and loss of cell-cell cohesion. Our studies reveal a novel tile-like organization of the umbrella cell keratin cytoskeleton that is dependent on plectin, that reorganizes in response to bladder filling, and that likely serves to maintain umbrella cell continuity in the face of mechanical distension.
Collapse
Affiliation(s)
- Wily G. Ruiz
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis R. Clayton
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tanmay Parakala-Jain
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marianela G. Dalghi
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Wu W, Wang Y, Chen J, Zhang F. The biomechanical proteins different between low myopic corneas and moderate to high myopic corneas in human. Cont Lens Anterior Eye 2024; 47:102134. [PMID: 38472014 DOI: 10.1016/j.clae.2024.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE To explore the biomechanical proteins different between low myopic corneas and moderate to high myopic corneas. METHODS A total of 27 myopic corneas were used for the Tandem Mass Tag (TMT) proteomics analysis. Differentially expressed proteins (DEPs) were clustered with fold changes > 1.20 or < 0.83 and p < 0.05. Proteins and Proteins Interactions (PPIs) were conducted to find hub proteins; Uniprot database was to screen proteins with biomechanical functions, and Parallel Reaction Monitoring (PRM) was performed to verify the TMT results. Pearson analysis was used to reveal the correlations between myopic degrees and biomechanical proteins. The Immunofluorescence (IF) staining was used to observe the protein distributions. RESULTS In total, 34 DEPs were observed between moderate myopic corneas and low myopic corneas; 103 DEPs were observed between high myopic corneas and low myopic corneas, 20 proteins overlapped. The PPIs analysis showed keratin 2, keratins 10 and PRSS1 were hub proteins. The Uniprot function analysis suggested keratin 2 and keratin 10 exhibited biomechanical functions. The PRM demonstrated keratin 2 and keratin 10 levels were significantly lower in moderate and high myopic corneas, which was consistent with the TMT proteomics results. IF staining also demonstrated keratin 2 and keratin 10 were less distributed in moderate and high myopic corneas than in low myopic corneas. CONCLUSIONS The levels of biomechanical proteins keratin 2 and keratin 10 are significantly lower in moderate and high myopic corneas than in low myopic corneas.
Collapse
Affiliation(s)
- Wenjing Wu
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, China, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing 100730, China
| | - Yan Wang
- Tianjin Eye Hospital, Tianjin Ophthalmology and Visual Science Key Laboratory, Nankai University Eye Hospital, Nankai University Eye Institute, Tianjin, China, No 4. Gansu Rd, Heping District, Tianjin 300020, China
| | - Jingyi Chen
- Tianjin Eye Hospital, Tianjin Ophthalmology and Visual Science Key Laboratory, Nankai University Eye Hospital, Nankai University Eye Institute, Tianjin, China, No 4. Gansu Rd, Heping District, Tianjin 300020, China
| | - Fengju Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, China, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
20
|
Kida M, Abe J, Hori H, Hirai Y. PRSS3/mesotrypsin as a putative regulator of the biophysical characteristics of epidermal keratinocytes in superficial layers. Sci Rep 2024; 14:12383. [PMID: 38811772 PMCID: PMC11137022 DOI: 10.1038/s41598-024-63271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
Mesotrypsin, encoded by the PRSS3 gene, is a distinctive trypsin isoform renowned for its exceptional resistance to traditional trypsin inhibitors and unique substrate specificity. Within the skin epidermis, this protein primarily expresses in the upper layers of the stratified epidermis and plays a crucial role in processing pro-filaggrin (Pro-FLG). Although prior studies have partially elucidated its functions using primary cultured keratinocytes, challenges persist due to these cells' differentiation-activated cell death program. In the present study, HaCaT keratinocytes, characterized by minimal endogenous mesotrypsin expression and sustained proliferation in differentiated states, were utilized to further scrutinize the function of mesotrypsin. Despite the ready degradation of the intact form of active mesotrypsin in these cells, fusion with Venus, flanked by a peptide linker, enables evasion from the protein elimination machinery, thus facilitating activation of the Pro-FLG processing system. Inducing Venus-mesotrypsin expression in the cells resulted in a flattened phenotype and reduced proliferative capacity. Moreover, these cells displayed altered F-actin assembly, enhanced E-cadherin adhesive activity, and facilitated tight junction formation without overtly influencing epidermal differentiation. These findings underscore mesotrypsin's potentially pivotal role in shaping the characteristic cellular morphology of upper epidermal layers.
Collapse
Affiliation(s)
- Moeko Kida
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Junya Abe
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Haruna Hori
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Yohei Hirai
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan.
| |
Collapse
|
21
|
Brauns F, Claussen NH, Lefebvre MF, Wieschaus EF, Shraiman BI. The Geometric Basis of Epithelial Convergent Extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.30.542935. [PMID: 37398061 PMCID: PMC10312603 DOI: 10.1101/2023.05.30.542935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Shape changes of epithelia during animal development, such as convergent extension, are achieved through concerted mechanical activity of individual cells. While much is known about the corresponding large scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained timelapse imaging data of gastrulating Drosophila embryos. This analysis provides a systematic decomposition of cell shape changes and T1-rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.
Collapse
Affiliation(s)
- Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Nikolas H. Claussen
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Matthew F. Lefebvre
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Eric F. Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Boris I. Shraiman
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
22
|
Rathod M, Franz H, Beyersdorfer V, Wanuske MT, Leal-Fischer K, Hanns P, Stüdle C, Zimmermann A, Buczak K, Schinner C, Spindler V. DPM1 modulates desmosomal adhesion and epidermal differentiation through SERPINB5. J Cell Biol 2024; 223:e202305006. [PMID: 38477878 PMCID: PMC10937187 DOI: 10.1083/jcb.202305006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 03/14/2024] Open
Abstract
Glycosylation is essential to facilitate cell-cell adhesion and differentiation. We determined the role of the dolichol phosphate mannosyltransferase (DPM) complex, a central regulator for glycosylation, for desmosomal adhesive function and epidermal differentiation. Deletion of the key molecule of the DPM complex, DPM1, in human keratinocytes resulted in weakened cell-cell adhesion, impaired localization of the desmosomal components desmoplakin and desmoglein-2, and led to cytoskeletal organization defects in human keratinocytes. In a 3D organotypic human epidermis model, loss of DPM1 caused impaired differentiation with abnormally increased cornification, reduced thickness of non-corneal layers, and formation of intercellular gaps in the epidermis. Using proteomic approaches, SERPINB5 was identified as a DPM1-dependent interaction partner of desmoplakin. Mechanistically, SERPINB5 reduced desmoplakin phosphorylation at serine 176, which was required for strong intercellular adhesion. These results uncover a novel role of the DPM complex in connecting desmosomal adhesion with epidermal differentiation.
Collapse
Affiliation(s)
- Maitreyi Rathod
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Anatomy and Experimental Morphology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Henriette Franz
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Vivien Beyersdorfer
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Anatomy and Experimental Morphology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Pauline Hanns
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Chiara Stüdle
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Aude Zimmermann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Katarzyna Buczak
- Proteomics Core Facility, Biocentre, University of Basel, Basel, Switzerland
| | - Camilla Schinner
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Volker Spindler
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Anatomy and Experimental Morphology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Chatterjee S, Kon E, Sharma P, Peer D. Endosomal escape: A bottleneck for LNP-mediated therapeutics. Proc Natl Acad Sci U S A 2024; 121:e2307800120. [PMID: 38437552 PMCID: PMC10945858 DOI: 10.1073/pnas.2307800120] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Lipid nanoparticles (LNPs) have recently emerged as a powerful and versatile clinically approved platform for nucleic acid delivery, specifically for mRNA vaccines. A major bottleneck in the field is the release of mRNA-LNPs from the endosomal pathways into the cytosol of cells where they can execute their encoded functions. The data regarding the mechanism of these endosomal escape processes are limited and contradicting. Despite extensive research, there is no consensus regarding the compartment of escape, the cause of the inefficient escape and are currently lacking a robust method to detect the escape. Here, we review the currently known mechanisms of endosomal escape and the available methods to study this process. We critically discuss the limitations and challenges of these methods and the possibilities to overcome these challenges. We propose that the development of currently lacking robust, quantitative high-throughput techniques to study endosomal escape is timely and essential. A better understanding of this process will enable better RNA-LNP designs with improved efficiency to unlock new therapeutic modalities.
Collapse
Affiliation(s)
- Sushmita Chatterjee
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Edo Kon
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Preeti Sharma
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
24
|
Li P, Rietscher K, Jopp H, Magin TM, Omary MB. Posttranslational modifications of keratins and their associated proteins as therapeutic targets in keratin diseases. Curr Opin Cell Biol 2023; 85:102264. [PMID: 37925932 DOI: 10.1016/j.ceb.2023.102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 11/07/2023]
Abstract
The keratin cytoskeleton protects epithelia against mechanical, nonmechanical, and physical stresses, and participates in multiple signaling pathways that regulate cell integrity and resilience. Keratin gene mutations cause multiple rare monoallelic epithelial diseases termed keratinopathies, including the skin diseases Epidermolysis Bullosa Simplex (EBS) and Pachyonychia Congenita (PC), with limited available therapies. The disease-related keratin mutations trigger posttranslational modifications (PTMs) in keratins and their associated proteins that can aggravate the disease. Recent findings of drug high-throughput screening have led to the identification of compounds that may be repurposed, since they are used for other human diseases, to treat keratinopathies. These drugs target unique PTM pathways and sites, including phosphorylation and acetylation of keratins and their associated proteins, and have shed insights into keratin regulation and interactions. They also offer the prospect of testing the use of drug mixtures, with the long view of possible beneficial human use coupled with increased efficacy and lower side effects.
Collapse
Affiliation(s)
- Pei Li
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Katrin Rietscher
- Division of Cell and Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Henriette Jopp
- Division of Cell and Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Thomas M Magin
- Division of Cell and Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany.
| | - M Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
25
|
Pontecorvi P, Ceccarelli S, Cece F, Camero S, Lotti LV, Niccolai E, Nannini G, Gerini G, Anastasiadou E, Scialis ES, Romano E, Venneri MA, Amedei A, Angeloni A, Megiorni F, Marchese C. Assessing the Impact of Polyethylene Nano/Microplastic Exposure on Human Vaginal Keratinocytes. Int J Mol Sci 2023; 24:11379. [PMID: 37511139 PMCID: PMC10380279 DOI: 10.3390/ijms241411379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The global rise of single-use throw-away plastic products has elicited a massive increase in the nano/microplastics (N/MPLs) exposure burden in humans. Recently, it has been demonstrated that disposable period products may release N/MPLs with usage, which represents a potential threat to women's health which has not been scientifically addressed yet. By using polyethyl ene (PE) particles (200 nm to 9 μm), we showed that acute exposure to a high concentration of N/MPLs induced cell toxicity in vaginal keratinocytes after effective cellular uptake, as viability and apoptosis data suggest, along with transmission electron microscopy (TEM) observations. The internalised N/MPLs altered the expression of junctional and adherence proteins and the organisation of the actin cortex, influencing the level of genes involved in oxidative stress signalling pathways and that of miRNAs related to epithelial barrier function. When the exposure to PE N/MPLs was discontinued or became chronic, cells were able to recover from the negative effects on viability and differentiation/proliferation gene expression in a few days. However, in all cases, PE N/MPL exposure prompted a sustained alteration of DNA methyltransferase and DNA demethylase expression, which might impact epigenetic regulation processes, leading to accelerated cell ageing and inflammation, or the occurrence of malignant transformation.
Collapse
Affiliation(s)
- Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Fabrizio Cece
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Simona Camero
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Lavinia Vittoria Lotti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (E.N.); (G.N.); (A.A.)
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (E.N.); (G.N.); (A.A.)
| | - Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Elena Sofia Scialis
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti—Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Enrico Romano
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (E.N.); (G.N.); (A.A.)
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| |
Collapse
|
26
|
Rübsam M, Püllen R, Tellkamp F, Bianco A, Peskoller M, Bloch W, Green KJ, Merkel R, Hoffmann B, Wickström SA, Niessen CM. Polarity signaling balances epithelial contractility and mechanical resistance. Sci Rep 2023; 13:7743. [PMID: 37173371 PMCID: PMC10182030 DOI: 10.1038/s41598-023-33485-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelia maintain a functional barrier during tissue turnover while facing varying mechanical stress. This maintenance requires both dynamic cell rearrangements driven by actomyosin-linked intercellular adherens junctions and ability to adapt to and resist extrinsic mechanical forces enabled by keratin filament-linked desmosomes. How these two systems crosstalk to coordinate cellular movement and mechanical resilience is not known. Here we show that in stratifying epithelia the polarity protein aPKCλ controls the reorganization from stress fibers to cortical actomyosin during differentiation and upward movement of cells. Without aPKC, stress fibers are retained resulting in increased contractile prestress. This aberrant stress is counterbalanced by reorganization and bundling of keratins, thereby increasing mechanical resilience. Inhibiting contractility in aPKCλ-/- cells restores normal cortical keratin networks but also normalizes resilience. Consistently, increasing contractile stress is sufficient to induce keratin bundling and enhance resilience, mimicking aPKC loss. In conclusion, our data indicate that keratins sense the contractile stress state of stratified epithelia and balance increased contractility by mounting a protective response to maintain tissue integrity.
Collapse
Affiliation(s)
- Matthias Rübsam
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany.
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany.
| | - Robin Püllen
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428, Jülich, Germany
| | - Frederik Tellkamp
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Alessandra Bianco
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marc Peskoller
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University of Cologne, Cologne, Germany
| | - Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rudolf Merkel
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428, Jülich, Germany
| | - Bernd Hoffmann
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428, Jülich, Germany
| | - Sara A Wickström
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Carien M Niessen
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
27
|
Wang C, Shang H, Zhang S, Wang X, Liu D, Shen M, Li N, Jiang Y, Wei K, Zhu R. Hexavalent chromium disrupts the skin barrier by targeting ROS-mediated mitochondrial pathway apoptosis in keratinocytes. Chem Biol Interact 2023; 379:110523. [PMID: 37146930 DOI: 10.1016/j.cbi.2023.110523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Hexavalent chromium (Cr(VI)), a toxic heavy metal, is ubiquitous in daily life. Exposure to this toxic substance in occupational settings can cause dermatitis and cancer. As the body's largest organ, the skin plays a crucial role in protecting the organism against external aggressions. While previous studies have focused on the effects of Cr(VI) on skin inflammation, this study investigates the potential toxicity of Cr(VI) from the skin barrier and integrity perspective. The in vivo results of this study showed that mice exposed to Cr(VI) experienced skin deterioration and hemorrhaging, as well as a reduction in the thickness of the collagen fiber layer. TUNEL and Occludin staining results revealed that Cr(VI)'s toxicity primarily targeted keratinocytes. Experiments in vitro demonstrated that Cr(VI) treatment decreased the activity of HaCaT cells, altered cell morphology, and increased LDH secretion. Further research revealed that Cr(VI) could modify membrane permeability, impair membrane integrity, and reduce the protein expression of ZO-1 and Occludin. In addition, it was discovered that Cr(VI) promoted cell apoptosis and inhibited AKT activation. However, the addition of a caspase inhibitor and an AKT activator prevented Cr(VI)-induced injury to the cell membrane barrier, indicating that apoptosis plays a crucial role in this process. The addition of three apoptotic pathway inhibitors, confirmed that Cr(VI) damaged the cell barrier through ROS-mediated mitochondrial pathway apoptosis. Moreover, the use of a ROS inhibitor significantly reduced Cr(VI)-induced apoptosis and cell barrier injury. In conclusion, this study provides an experimental foundation for the treatment of skin injury caused by Cr(VI).
Collapse
Affiliation(s)
- Cheng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Hongqi Shang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Shuyu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Xiangkun Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Defeng Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Mingyue Shen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Ning Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Yunxuan Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Kai Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| |
Collapse
|
28
|
Castaneda M, den Hollander P, Kuburich NA, Rosen JM, Mani SA. Mechanisms of cancer metastasis. Semin Cancer Biol 2022; 87:17-31. [PMID: 36354098 DOI: 10.1016/j.semcancer.2022.10.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Metastatic cancer is almost always terminal, and more than 90% of cancer deaths result from metastatic disease. Combating cancer metastasis and post-therapeutic recurrence successfully requires understanding each step of metastatic progression. This review describes the current state of knowledge of the etiology and mechanism of cancer progression from primary tumor growth to the formation of new tumors in other parts of the body. Open questions, avenues for future research, and therapeutic approaches with the potential to prevent or inhibit metastasis through personalization to each patient's mutation and/or immune profile are also highlighted.
Collapse
Affiliation(s)
- Maria Castaneda
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Petra den Hollander
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA; Legoretta Cancer Center, Brown University, Providence, RI 021912, USA
| | - Nick A Kuburich
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA; Legoretta Cancer Center, Brown University, Providence, RI 021912, USA
| | - Jeffrey M Rosen
- Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Sendurai A Mani
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA; Legoretta Cancer Center, Brown University, Providence, RI 021912, USA.
| |
Collapse
|
29
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
30
|
Kuburich NA, den Hollander P, Pietz JT, Mani SA. Vimentin and cytokeratin: Good alone, bad together. Semin Cancer Biol 2022; 86:816-826. [PMID: 34953942 PMCID: PMC9213573 DOI: 10.1016/j.semcancer.2021.12.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023]
Abstract
The cytoskeleton plays an integral role in maintaining the integrity of epithelial cells. Epithelial cells primarily employ cytokeratin in their cytoskeleton, whereas mesenchymal cells use vimentin. During the epithelial-mesenchymal transition (EMT), cytokeratin-positive epithelial cells begin to express vimentin. EMT induces stem cell properties and drives metastasis, chemoresistance, and tumor relapse. Most studies of the functions of cytokeratin and vimentin have relied on the use of either epithelial or mesenchymal cell types. However, it is important to understand how these two cytoskeleton intermediate filaments function when co-expressed in cells undergoing EMT. Here, we discuss the individual and shared functions of cytokeratin and vimentin that coalesce during EMT and how alterations in intermediate filament expression influence carcinoma progression.
Collapse
Affiliation(s)
- Nick A Kuburich
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Jordan T Pietz
- Department of Creative Services, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
31
|
Manzer HS, Nguyen DT, Park JY, Park N, Seo KS, Thornton JA, Nobbs AH, Doran KS. The Group B Streptococcal Adhesin BspC Interacts with Host Cytokeratin 19 To Promote Colonization of the Female Reproductive Tract. mBio 2022; 13:e0178122. [PMID: 36069447 PMCID: PMC9600255 DOI: 10.1128/mbio.01781-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/16/2022] [Indexed: 02/02/2023] Open
Abstract
Streptococcus agalactiae, otherwise known as Group B Streptococcus (GBS), is an opportunistic pathogen that vaginally colonizes approximately one third of healthy women. During pregnancy, this can lead to in utero infection, resulting in premature rupture of membranes, chorioamnionitis, and stillbirths. Furthermore, GBS causes serious infection in newborns, including sepsis, pneumonia, and meningitis. Previous studies have indicated that GBS antigen (Ag) I/II family proteins promote interaction with vaginal epithelial cells; thus, we hypothesized that the Ag I/II Group B streptococcal surface protein C (BspC) contributes to GBS colonization of the female reproductive tract (FRT). Here, we show that a ΔbspC mutant has decreased bacterial adherence to vaginal, ecto-, and endocervical cells, as well as decreased auto-aggregation and biofilm-like formation on cell monolayers. Using a murine model of vaginal colonization, we observed that the ΔbspC mutant strain exhibited a significant fitness defect compared to wild-type (WT) GBS and was less able to ascend to the cervix and uterus in vivo, resulting in reduced neutrophil chemokine signaling. Furthermore, we determined that BspC interacts directly with the host intermediate filament protein cytokeratin 19 (K19). Surface localization of K19 was increased during GBS infection, and interaction was mediated by the BspC variable (V) domain. Finally, mice treated with a drug that targets the BspC V-domain exhibited reduced bacterial loads in the vaginal lumen and reproductive tissues. These results demonstrate the importance of BspC in promoting GBS colonization of the FRT and that it may be targeted therapeutically to reduce GBS vaginal persistence and ascending infection. IMPORTANCE Group B Streptococcus (GBS) asymptomatically colonizes the female reproductive tract (FRT) of up to one third of women, but GBS carriage can lead to adverse pregnancy outcomes, including premature rupture of membranes, preterm labor, and chorioamnionitis. GBS colonization during pregnancy is also the largest predisposing factor for neonatal GBS disease, including pneumonia, sepsis, and meningitis. The molecular interactions between bacterial surface proteins and the host cell receptors that promote GBS colonization are vastly understudied, and a better understanding would facilitate development of novel therapeutics to prevent GBS colonization and disease. Here, we characterize the role of the GBS surface protein BspC in colonization of the FRT. We show for the first time that GBS infection induces cytokeratin 19 (K19) surface localization on vaginal epithelial cells; GBS then uses the BspC V-domain to interact with K19 to promote colonization and ascending infection. Furthermore, this interaction can be targeted therapeutically to reduce GBS carriage.
Collapse
Affiliation(s)
- Haider S. Manzer
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Dustin T. Nguyen
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Joo Youn Park
- Mississippi State University, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - Nogi Park
- Mississippi State University, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - Keun Seok Seo
- Mississippi State University, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - Justin A. Thornton
- Mississippi State University, Department of Biological Sciences, Mississippi State, Mississippi, USA
| | - Angela H. Nobbs
- University of Bristol, Bristol Dental School, Bristol, United Kingdom
| | - Kelly S. Doran
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| |
Collapse
|
32
|
Infante E, Etienne-Manneville S. Intermediate filaments: Integration of cell mechanical properties during migration. Front Cell Dev Biol 2022; 10:951816. [PMID: 35990612 PMCID: PMC9389290 DOI: 10.3389/fcell.2022.951816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Cell migration is a vital and dynamic process required for the development of multicellular organisms and for immune system responses, tissue renewal and wound healing in adults. It also contributes to a variety of human diseases such as cancers, autoimmune diseases, chronic inflammation and fibrosis. The cytoskeleton, which includes actin microfilaments, microtubules, and intermediate filaments (IFs), is responsible for the maintenance of animal cell shape and structural integrity. Each cytoskeletal network contributes its unique properties to dynamic cell behaviour, such as cell polarization, membrane protrusion, cell adhesion and contraction. Hence, cell migration requires the dynamic orchestration of all cytoskeleton components. Among these, IFs have emerged as a molecular scaffold with unique mechanical features and a key player in the cell resilience to mechanical stresses during migration through complex 3D environment. Moreover, accumulating evidence illustrates the participation of IFs in signalling cascades and cytoskeletal crosstalk. Teaming up with actin and microtubules, IFs contribute to the active generation of forces required for cell adhesion and mesenchymal migration and invasion. Here we summarize and discuss how IFs integrate mechanical properties and signalling functions to control cell migration in a wide spectrum of physiological and pathological situations.
Collapse
Affiliation(s)
- Elvira Infante
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Université Paris-Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Université Paris-Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
33
|
Roles of Keratins in Intestine. Int J Mol Sci 2022; 23:ijms23148051. [PMID: 35887395 PMCID: PMC9317181 DOI: 10.3390/ijms23148051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Keratins make up a major portion of epithelial intermediate filament proteins. The widely diverse keratins are found in both the small and large intestines. The human intestine mainly expresses keratins 8, 18, 19, and 20. Many of the common roles of keratins are for the integrity and stability of the epithelial cells. The keratins also protect the cells and tissue from stress and are biomarkers for some diseases in the organs. Although an increasing number of studies have been performed regarding keratins, the roles of keratin in the intestine have not yet been fully understood. This review focuses on discussing the roles of keratins in the intestine. Diverse studies utilizing mouse models and samples from patients with intestinal diseases in the search for the association of keratin in intestinal diseases have been summarized.
Collapse
|
34
|
Shutova MS, Boehncke WH. Mechanotransduction in Skin Inflammation. Cells 2022; 11:2026. [PMID: 35805110 PMCID: PMC9265324 DOI: 10.3390/cells11132026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In the process of mechanotransduction, the cells in the body perceive and interpret mechanical stimuli to maintain tissue homeostasis and respond to the environmental changes. Increasing evidence points towards dysregulated mechanotransduction as a pathologically relevant factor in human diseases, including inflammatory conditions. Skin is the organ that constantly undergoes considerable mechanical stresses, and the ability of mechanical factors to provoke inflammatory processes in the skin has long been known, with the Koebner phenomenon being an example. However, the molecular mechanisms and key factors linking mechanotransduction and cutaneous inflammation remain understudied. In this review, we outline the key players in the tissue's mechanical homeostasis, the available data, and the gaps in our current understanding of their aberrant regulation in chronic cutaneous inflammation. We mainly focus on psoriasis as one of the most studied skin inflammatory diseases; we also discuss mechanotransduction in the context of skin fibrosis as a result of chronic inflammation. Even though the role of mechanotransduction in inflammation of the simple epithelia of internal organs is being actively studied, we conclude that the mechanoregulation in the stratified epidermis of the skin requires more attention in future translational research.
Collapse
Affiliation(s)
- Maria S. Shutova
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| |
Collapse
|
35
|
Büchau F, Vielmuth F, Waschke J, Magin TM. Bidirectional regulation of desmosome hyperadhesion by keratin isotypes and desmosomal components. Cell Mol Life Sci 2022; 79:223. [PMID: 35380280 PMCID: PMC8983532 DOI: 10.1007/s00018-022-04244-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022]
Abstract
Desmosomes are intercellular junctions which mediate cohesion and communication in tissues exposed to mechanical strain by tethering the intermediate filament cytoskeleton to the plasma membrane. While mature desmosomes are characterized by a hyperadhesive, Ca2+-independent state, they transiently loose this state during wound healing, pathogenesis and tissue regeneration. The mechanisms controlling the hyperadhesive state remain incompletely understood. Here, we show that upon Ca2+-induced keratinocyte differentiation, expression of keratin 17 (K17) prevents the formation of stable and hyperadhesive desmosomes, accompanied by a significant reduction of desmoplakin (DP), plakophilin-1 (PKP1), desmoglein-1 (Dsg1) and -3 (Dsg3) at intercellular cell borders. Atomic force microscopy revealed that both increased binding strength of desmoglein-3 molecules and amount of desmoglein-3 oligomers, known hallmarks of hyperadhesion, were reduced in K17- compared to K14-expressing cells. Importantly, overexpression of Dsg3 or DPII enhanced their localization at intercellular cell borders and increased the formation of Dsg3 oligomers, resulting in stable, hyperadhesive desmosomes despite the presence of K17. Notably, PKP1 was enriched in these desmosomes. Quantitative image analysis revealed that DPII overexpression contributed to desmosome hyperadhesion by increasing the abundance of K5/K17-positive keratin filaments in the proximity of desmosomes enriched in desmoglein-3. Thus, our data show that hyperadhesion can result from recruitment of keratin isotypes K5/K17 to desmosomes or from enhanced expression of DP and Dsg3 irrespective of keratin composition. The notion that hyperadhesive desmosomes failed to form in the absence of keratins underscores the essential role of keratins and suggest bidirectional control mechanisms at several levels.
Collapse
Affiliation(s)
- Fanny Büchau
- Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany.
| | - Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
| |
Collapse
|
36
|
Nahaboo W, Eski SE, Despin-Guitard E, Vermeersch M, Versaevel M, Saykali B, Monteyne D, Gabriele S, Magin TM, Schwarz N, Leube RE, Zwijsen A, Perez-Morga D, Singh SP, Migeotte I. Keratin filaments mediate the expansion of extra-embryonic membranes in the post-gastrulation mouse embryo. EMBO J 2022; 41:e108747. [PMID: 35266581 PMCID: PMC8982622 DOI: 10.15252/embj.2021108747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/22/2023] Open
Abstract
Mesoderm arises at gastrulation and contributes to both the mouse embryo proper and its extra-embryonic membranes. Two-photon live imaging of embryos bearing a keratin reporter allowed recording filament nucleation and elongation in the extra-embryonic region. Upon separation of amniotic and exocoelomic cavities, keratin 8 formed apical cables co-aligned across multiple cells in the amnion, allantois, and blood islands. An influence of substrate rigidity and composition on cell behavior and keratin content was observed in mesoderm explants. Embryos lacking all keratin filaments displayed a deflated extra-embryonic cavity, a narrow thick amnion, and a short allantois. Single-cell RNA sequencing of sorted mesoderm cells and micro-dissected amnion, chorion, and allantois, provided an atlas of transcriptomes with germ layer and regional information. It defined the cytoskeleton and adhesion expression profile of mesoderm-derived keratin 8-enriched cells lining the exocoelomic cavity. Those findings indicate a novel role for keratin filaments in the expansion of extra-embryonic structures and suggest mechanisms of mesoderm adaptation to the environment.
Collapse
Affiliation(s)
- Wallis Nahaboo
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Sema Elif Eski
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Evangéline Despin-Guitard
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Marie Versaevel
- Mechanobiology and Soft Matter Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Bechara Saykali
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Daniel Monteyne
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Sylvain Gabriele
- Mechanobiology and Soft Matter Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Thomas M Magin
- Division of Cell & Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | | | - David Perez-Morga
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium.,Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Sumeet Pal Singh
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
37
|
Rodríguez-Garzotto A, Iglesias-Docampo L, Díaz-García CV, Ruppen I, Ximénez-Embún P, Gómez C, Rodríguez-Peralto JL, de Frutos JO, Lopez-Martin JA, Grávalos C, Cortés-Funes H, Agulló-Ortuño MT. Topical heparin as an effective and safe treatment for patients with capecitabine-induced hand-foot syndrome: results of a phase IIA trial supported by proteomic profiling of skin biopsies. Ther Adv Med Oncol 2022; 14:17588359221086911. [PMID: 35356259 PMCID: PMC8958526 DOI: 10.1177/17588359221086911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Hand-foot syndrome (HFS) is a common adverse reaction associated with capecitabine chemotherapy that significantly affects the quality of life of patients. This study evaluates the safety and effectiveness of a topical heparin (TH) treatment on the clinical manifestations and anatomopathological alterations of capecitabine-induced HFS. In addition, we performed proteome profiling of skin biopsies obtained from patients with HFS at baseline and after heparin treatment. Methods: Patients with grade ⩽ 2 HFS associated with capecitabine were included in this study. The primary end point was the effectiveness of TH in reducing HFS of any grade. Clinical improvement was evaluated by clinicians, and an improvement was perceived by patients who performed a weekly visual analog scale questionnaire. Secondary end points included a comparative histological analysis and protein expression in skin biopsies at baseline and after 3 weeks of HT treatment. Proteomic profiling was carried out using quantitative isobaric labelling and subsequently validated by a T-array. Results: Twenty-one patients were included in the study. The median TH treatment time was 7.6 weeks (range = 3.6–41.6 weeks), and the median response time was 3.01 weeks (95% CI = 2.15–3.97). At the end of treatment, 19 of 21 patients (90.48%) responded to treatment with a decrease in one or more grades of HFS. None of the patients experienced adverse effects related to TH usage, nor did they suspend chemotherapy treatment. The main findings observed in skin biopsies after treatment were a decrease in hyperkeratosis and lymphocytic infiltrates. The proteomic analysis showed altered expression of 34 proteins that were mainly related to wound healing, cell growth, and the immune response. Conclusion: Based on our results, topical heparin is an effective and safe treatment for clinical manifestations of HFS, probably due to the restauration of skin homeostasis after heparin treatment, as supported by our proteomics-derived data. Trial registration: EudraCT 2009-018171-13
Collapse
Affiliation(s)
- Analia Rodríguez-Garzotto
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Madrid, Spain
- Roche Farma España, Madrid, Spain
| | - Lara Iglesias-Docampo
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Madrid, Spain
- Lung Cancer Group, Clinical Research Program, CNIO- H12O, Madrid, Spain
| | - C. Vanesa Díaz-García
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Isabel Ruppen
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carlos Gómez
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Jose A. Lopez-Martin
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Cristina Grávalos
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Hernán Cortés-Funes
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - M. Teresa Agulló-Ortuño
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Avda de Córdoba, s/n, 28041 Madrid, Spain
- Lung Cancer Group, Clinical Research Program, CNIO- H12O, Madrid, Spain
- Biomedical Research Networking Centre: Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nursing, Physiotherapy and Occupational Therapy, Facultad de Fisioterapia y Enfermería, Universidad de Castilla-La Mancha (UCLM), Toledo, Spain
| |
Collapse
|
38
|
Elbalasy I, Wilharm N, Herchenhahn E, Konieczny R, Mayr SG, Schnauß J. From Strain Stiffening to Softening—Rheological Characterization of Keratins 8 and 18 Networks Crosslinked via Electron Irradiation. Polymers (Basel) 2022; 14:polym14030614. [PMID: 35160604 PMCID: PMC8838340 DOI: 10.3390/polym14030614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Networks of crosslinked keratin filaments are abundant in epithelial cells and tissues, providing resilience against mechanical forces and ensuring cellular integrity. Although studies of in vitro models of reconstituted keratin networks have revealed important mechanical aspects, the mechanical properties of crosslinked keratin structures remain poorly understood. Here, we exploited the power of electron beam irradiation (EBI) to crosslink in vitro networks of soft epithelial keratins 8 and 18 (k8–k18) filaments with different irradiation doses (30 kGy, 50 kGy, 80 kGy, 100 kGy, and 150 kGy). We combined bulk shear rheology with confocal microscopy to investigate the impact of crosslinking on the mechanical and structural properties of the resultant keratin gels. We found that irradiated keratin gels display higher linear elastic modulus than the unirradiated, entangled networks at all doses tested. However, at the high doses (80 kGy, 100 kGy, and 150 kGy), we observed a remarkable drop in the elastic modulus compared to 50 kGy. Intriguingly, the irradiation drastically changed the behavior for large, nonlinear deformations. While untreated keratin networks displayed a strong strain stiffening, increasing irradiation doses shifted the system to a strain softening behavior. In agreement with the rheological behavior in the linear regime, the confocal microscopy images revealed fully isotropic networks with high percolation in 30 kGy and 50 kGy-treated keratin samples, while irradiation with 100 kGy induced the formation of thick bundles and clusters. Our results demonstrate the impact of permanent crosslinking on k8–k18 mechanics and provide new insights into the potential contribution of intracellular covalent crosslinking to the loss of mechanical resilience in some human keratin diseases. These insights will also provide inspiration for the synthesis of new keratin-based biomaterials.
Collapse
Affiliation(s)
- Iman Elbalasy
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| | - Nils Wilharm
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Erik Herchenhahn
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
| | - Robert Konieczny
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
| | - Stefan G. Mayr
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| | - Jörg Schnauß
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
- Unconventional Computing Lab, Department of Computer Science and Creative Technologies, UWE, Bristol BS16 1QY, UK
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| |
Collapse
|
39
|
Zijl S, Salameti V, Louis B, Negri VA, Watt FM. Dynamic regulation of human epidermal differentiation by adhesive and mechanical forces. Curr Top Dev Biol 2022; 150:129-148. [DOI: 10.1016/bs.ctdb.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Villalobos Lizardi JC, Baranger J, Nguyen MB, Asnacios A, Malik A, Lumens J, Mertens L, Friedberg MK, Simmons CA, Pernot M, Villemain O. A guide for assessment of myocardial stiffness in health and disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:8-22. [PMID: 39196108 DOI: 10.1038/s44161-021-00007-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/10/2021] [Indexed: 08/29/2024]
Abstract
Myocardial stiffness is an intrinsic property of the myocardium that influences both diastolic and systolic cardiac function. Myocardial stiffness represents the resistance of this tissue to being deformed and depends on intracellular components of the cardiomyocyte, particularly the cytoskeleton, and on extracellular components, such as collagen fibers. Myocardial disease is associated with changes in myocardial stiffness, and its assessment is a key diagnostic marker of acute or chronic pathological myocardial disease with the potential to guide therapeutic decision-making. In this Review, we appraise the different techniques that can be used to estimate myocardial stiffness, evaluate their advantages and disadvantages, and discuss potential clinical applications.
Collapse
Affiliation(s)
- José Carlos Villalobos Lizardi
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jerome Baranger
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Minh B Nguyen
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - Aimen Malik
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Luc Mertens
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Pernot
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, Paris, France
| | - Olivier Villemain
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Onwudiwe K, Obayemi J, Hu J, Oparah J, Onyekanne C, Nwazojie C, Aina T, Uzonwanne V, Salifu A, Soboyejo W. Investigation of creep properties and the cytoskeletal structures of non-tumorigenic breast cells and triple-negative breast cancer cells. J Biomed Mater Res A 2021; 110:1004-1020. [PMID: 34967111 DOI: 10.1002/jbm.a.37348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/07/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023]
Abstract
This article presents the correlation of creep and viscoelastic properties to the cytoskeletal structure of both tumorigenic and non-tumorigenic cells. Unique shear assay and strain mapping techniques were used to study the creep and viscoelastic properties of single non-tumorigenic and tumorigenic cells. At least 20 individual cells, three locations per cell, were studied. From the results, lower densities in the volume of actin, and keratin 18 structures were observed with the progression of cancer and were correlated to the increased creep rates and reduced mechanical properties (Young's moduli and viscosities) of tumorigenic (MDA-MB-231) cells. The study reveals significant differences between the creep and viscoelastic properties of non-tumorigenic breast cells versus tumorigenic cells. The variations in the creep strain rates are shown to be well characterized by lognormal distributions, while the statistical variations in the viscoelastic properties are well-described by normal distributions. The implications of the results are discussed for the study of discrete cell behaviors, strain and viscoelastic responses of the cell, and the role of cell cytoskeleton in the onset and progression of cancers.
Collapse
Affiliation(s)
- Killian Onwudiwe
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Nigeria
| | - John Obayemi
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), Worcester, Massachusetts, USA.,Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), Worcester, Massachusetts, USA
| | - Jingjie Hu
- Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, Arizona, USA.,Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Josephine Oparah
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Nigeria
| | - Chinyerem Onyekanne
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Nigeria
| | - Chukwudalu Nwazojie
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Nigeria
| | - Toyin Aina
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Nigeria
| | - Vanessa Uzonwanne
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), Worcester, Massachusetts, USA
| | - Ali Salifu
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), Worcester, Massachusetts, USA
| | - Winston Soboyejo
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Nigeria.,Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), Worcester, Massachusetts, USA.,Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), Worcester, Massachusetts, USA
| |
Collapse
|
42
|
Gouveia M, Sorčan T, Zemljič-Jokhadar Š, Travasso RDM, Liović M. A mathematical model for the dependence of keratin aggregate formation on the quantity of mutant keratin expressed in EGFP-K14 R125P keratinocytes. PLoS One 2021; 16:e0261227. [PMID: 34962936 PMCID: PMC8714116 DOI: 10.1371/journal.pone.0261227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
We examined keratin aggregate formation and the possible mechanisms involved. With this aim, we observed the effect that different ratios between mutant and wild-type keratins expressed in cultured keratinocytes may have on aggregate formation in vitro, as well as how keratin aggregate formation affects the mechanical properties of cells at the cell cortex. To this end we prepared clones with expression rates as close as possible to 25%, 50% and 100% of the EGFP-K14 proteins (either WT or R125P and V270M mutants). Our results showed that only in the case of the 25% EGFP-K14 R125P mutant significant differences could be seen. Namely, we observed in this case the largest accumulation of keratin aggregates and a significant reduction in cell stiffness. To gain insight into the possible mechanisms behind this observation, we extended our previous mathematical model of keratin dynamics by implementing a more complex reaction network that considers the coexistence of wild-type and mutant keratins in the cell. The new model, consisting of a set of coupled, non-linear, ordinary differential equations, allowed us to draw conclusions regarding the relative amounts of intermediate filaments and aggregates in cells, and suggested that aggregate formation by asymmetric binding between wild-type and mutant keratins could explain the data obtained on cells grown in culture.
Collapse
Affiliation(s)
- Marcos Gouveia
- Department of Physics, CFisUC, Center of Physics of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- * E-mail: (MG); (RDMT); (ML)
| | | | - Špela Zemljič-Jokhadar
- Faculty of Medicine, Institute for Biophysics, University of Ljubljana, Ljubljana, Slovenia
| | - Rui D. M. Travasso
- Department of Physics, CFisUC, Center of Physics of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- * E-mail: (MG); (RDMT); (ML)
| | - Mirjana Liović
- Faculty of Medicine, Medical Center for Molecular Biology, Institute for Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (MG); (RDMT); (ML)
| |
Collapse
|
43
|
Cui S, Rouabhia M, Semlali A, Zhang Z. Effects of electrical stimulation on human skin keratinocyte growth and the secretion of cytokines and growth factors. Biomed Mater 2021; 16. [PMID: 34592730 DOI: 10.1088/1748-605x/ac2bba] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
Electrical stimulation (ES) has been widely explored and found effective in promoting wound healing. However, the role of ES on keratinocytes, a major player in wound healing, has not been well established. The present work investigated the cellular and molecular behaviors of human skin keratinocytes being exposed to ES. HaCaT keratinocytes were seeded on a novel electrically conductive and soft PPy-PU/PLLA membrane and cultured under electrical intensities of 100 or 200 mV mm-1for 6 and 24 h. The factors assessed after ES include cell proliferation, colony formation, cytokines, keratins, as well as phosphorylated ERK1/2 (pERK1/2) kinases. The results showed that the electrically stimulated cells exhibited a higher proliferative ability and secreted more IL-6, IL-1α, IL-8, GROα, FGF2, and VEGF-A. Interestingly, the 24 h ES induced a 'stimulus memory' by showing a significant rise in colony-forming efficiency in post-ES cells that were sub-cultured. Additionally, after stopping the 24 h ES, the productions of keratin 5 and keratin 14 were continuously increased for 3 d. The productions of keratin 10 and keratin 13 were significantly increased post the 6 h ES. Finally, the ES increased pERK1/2 kinases. The overall results demonstrated that the proliferation of keratinocytes and their secretion of cytokines and growth factors can be activated through appropriate ES to benefit skin wound healing.
Collapse
Affiliation(s)
- Shujun Cui
- Research Group on Oral Ecology, Faculty of Dentistry, Université Laval, Québec (QC), Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Québec (QC), Canada.,Division of Regenerative Medicine, Research Center of CHU-Université Laval, Québec (QC), Canada
| | - Mahmoud Rouabhia
- Research Group on Oral Ecology, Faculty of Dentistry, Université Laval, Québec (QC), Canada
| | - Abdelhabib Semlali
- Research Group on Oral Ecology, Faculty of Dentistry, Université Laval, Québec (QC), Canada
| | - Ze Zhang
- Department of Surgery, Faculty of Medicine, Université Laval, Québec (QC), Canada.,Division of Regenerative Medicine, Research Center of CHU-Université Laval, Québec (QC), Canada
| |
Collapse
|
44
|
Serum Proteomic Analysis of Cannabis Use Disorder in Male Patients. Molecules 2021; 26:molecules26175311. [PMID: 34500744 PMCID: PMC8434053 DOI: 10.3390/molecules26175311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Cannabis use has been growing recently and it is legally consumed in many countries. Cannabis has a variety of phytochemicals including cannabinoids, which might impair the peripheral systems responses affecting inflammatory and immunological pathways. However, the exact signaling pathways that induce these effects need further understanding. The objective of this study is to investigate the serum proteomic profiling in patients diagnosed with cannabis use disorder (CUD) as compared with healthy control subjects. The novelty of our study is to highlight the differentially changes proteins in the serum of CUD patients. Certain proteins can be targeted in the future to attenuate the toxicological effects of cannabis. Blood samples were collected from 20 male individuals: 10 healthy controls and 10 CUD patients. An untargeted proteomic technique employing two-dimensional difference in gel electrophoresis coupled with mass spectrometry was employed in this study to assess the differentially expressed proteins. The proteomic analysis identified a total of 121 proteins that showed significant changes in protein expression between CUD patients (experimental group) and healthy individuals (control group). For instance, the serum expression of inactive tyrosine protein kinase PEAK1 and tumor necrosis factor alpha-induced protein 3 were increased in CUD group. In contrast, the serum expression of transthyretin and serotransferrin were reduced in CUD group. Among these proteins, 55 proteins were significantly upregulated and 66 proteins significantly downregulated in CUD patients as compared with healthy control group. Ingenuity pathway analysis (IPA) found that these differentially expressed proteins are linked to p38MAPK, interleukin 12 complex, nuclear factor-κB, and other signaling pathways. Our work indicates that the differentially expressed serum proteins between CUD and control groups are correlated to liver X receptor/retinoid X receptor (RXR), farnesoid X receptor/RXR activation, and acute phase response signaling.
Collapse
|
45
|
Wiche G. Plectin-Mediated Intermediate Filament Functions: Why Isoforms Matter. Cells 2021; 10:cells10082154. [PMID: 34440923 PMCID: PMC8391331 DOI: 10.3390/cells10082154] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022] Open
Abstract
This essay focuses on the role of plectin and its various isoforms in mediating intermediate filament (IF) network functions. It is based on previous studies that provided comprehensive evidence for a concept where plectin acts as an IF recruiter, and plectin-mediated IF networking and anchoring are key elements in IF function execution. Here, plectin’s global role as modulator of IF functionality is viewed from different perspectives, including the mechanical stabilization of IF networks and their docking platforms, contribution to cellular viscoelasticity and mechanotransduction, compartmentalization and control of the actomyosin machinery, connections to the microtubule system, and mechanisms and specificity of isoform targeting. Arguments for IF networks and plectin acting as mutually dependent partners are also given. Lastly, a working model is presented that describes a unifying mechanism underlying how plectin–IF networks mechanically control and propagate actomyosin-generated forces, affect microtubule dynamics, and contribute to mechanotransduction.
Collapse
Affiliation(s)
- Gerhard Wiche
- Max Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
46
|
Bend, Push, Stretch: Remarkable Structure and Mechanics of Single Intermediate Filaments and Meshworks. Cells 2021; 10:cells10081960. [PMID: 34440729 PMCID: PMC8394331 DOI: 10.3390/cells10081960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
The cytoskeleton of the eukaryotic cell provides a structural and functional scaffold enabling biochemical and cellular functions. While actin and microtubules form the main framework of the cell, intermediate filament networks provide unique mechanical properties that increase the resilience of both the cytoplasm and the nucleus, thereby maintaining cellular function while under mechanical pressure. Intermediate filaments (IFs) are imperative to a plethora of regulatory and signaling functions in mechanotransduction. Mutations in all types of IF proteins are known to affect the architectural integrity and function of cellular processes, leading to debilitating diseases. The basic building block of all IFs are elongated α-helical coiled-coils that assemble hierarchically into complex meshworks. A remarkable mechanical feature of IFs is the capability of coiled-coils to metamorphize into β-sheets under stress, making them one of the strongest and most resilient mechanical entities in nature. Here, we discuss structural and mechanical aspects of IFs with a focus on nuclear lamins and vimentin.
Collapse
|
47
|
Abstract
The cytoskeleton - comprising actin filaments, microtubules and intermediate filaments - serves instructive roles in regulating cell function and behaviour during development. However, a key challenge in cell and developmental biology is to dissect how these different structures function and interact in vivo to build complex tissues, with the ultimate aim to understand these processes in a mammalian organism. The preimplantation mouse embryo has emerged as a primary model system for tackling this challenge. Not only does the mouse embryo share many morphological similarities with the human embryo during its initial stages of life, it also permits the combination of genetic manipulations with live-imaging approaches to study cytoskeletal dynamics directly within an intact embryonic system. These advantages have led to the discovery of novel cytoskeletal structures and mechanisms controlling lineage specification, cell-cell communication and the establishment of the first forms of tissue architecture during development. Here we highlight the diverse organization and functions of each of the three cytoskeletal filaments during the key events that shape the early mammalian embryo, and discuss how they work together to perform key developmental tasks, including cell fate specification and morphogenesis of the blastocyst. Collectively, these findings are unveiling a new picture of how cells in the early embryo dynamically remodel their cytoskeleton with unique spatial and temporal precision to drive developmental processes in the rapidly changing in vivo environment.
Collapse
|
48
|
Connelly JT, Gavara N, Sliogeryte K, Blowes LM. Research Techniques Made Simple: Analysis of Skin Cell and Tissue Mechanics Using Atomic Force Microscopy. J Invest Dermatol 2021; 141:1867-1871.e1. [PMID: 34303466 DOI: 10.1016/j.jid.2021.02.750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 02/19/2021] [Indexed: 11/27/2022]
Abstract
Atomic force microscopy (AFM) is a powerful technique for nanoscale imaging and mechanical analysis of biological specimens. It is based on the highly sensitive detection of forces and displacement of a sharp-tipped cantilever as it scans the surface of an object. Because it requires minimal sample processing and preparation, AFM is particularly advantageous for the analysis of cells and tissues in their near-native state. Moreover, recent advances in Bio-AFM systems and the combination with light microscopy imaging have greatly enhanced the application of AFM in biological research. In the field of dermatology, the method has led to important insights into our understanding of the biomechanics of normal healthy skin and the pathogenesis of a variety of skin diseases. In this Research Techniques Made Simple article, we review the fundamental principles of AFM, how AFM can be applied to the analysis of cell and tissue mechanics, and recent applications of AFM in skin science and dermatology.
Collapse
Affiliation(s)
- John T Connelly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| | - Núria Gavara
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; Serra-Hunter Program, Biophysics and Bioengineering Unit, Department of Biomedicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Kristina Sliogeryte
- Randall Division of Cell & Molecular Biophysics, King's College London, London, United Kingdom
| | - Liisa M Blowes
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
49
|
Intermediate Filaments from Tissue Integrity to Single Molecule Mechanics. Cells 2021; 10:cells10081905. [PMID: 34440673 PMCID: PMC8392029 DOI: 10.3390/cells10081905] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
Abstract
Cytoplasmic intermediate filaments (IFs), which together with actin and microtubules form the cytoskeleton, are composed of a large and diverse family of proteins. Efforts to elucidate the molecular mechanisms responsible for IF-associated diseases increasingly point towards a major contribution of IFs to the cell’s ability to adapt, resist and respond to mechanical challenges. From these observations, which echo the impressive resilience of IFs in vitro, we here discuss the role of IFs as master integrators of cell and tissue mechanics. In this review, we summarize our current understanding of the contribution of IFs to cell and tissue mechanics and explain these results in light of recent in vitro studies that have investigated physical properties of single IFs and IF networks. Finally, we highlight how changes in IF gene expression, network assembly dynamics, and post-translational modifications can tune IF properties to adapt cell and tissue mechanics to changing environments.
Collapse
|
50
|
Aermes C, Hayn A, Fischer T, Mierke CT. Cell mechanical properties of human breast carcinoma cells depend on temperature. Sci Rep 2021; 11:10771. [PMID: 34031462 PMCID: PMC8144563 DOI: 10.1038/s41598-021-90173-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
The knowledge of cell mechanics is required to understand cellular processes and functions, such as the movement of cells, and the development of tissue engineering in cancer therapy. Cell mechanical properties depend on a variety of factors, such as cellular environments, and may also rely on external factors, such as the ambient temperature. The impact of temperature on cell mechanics is not clearly understood. To explore the effect of temperature on cell mechanics, we employed magnetic tweezers to apply a force of 1 nN to 4.5 µm superparamagnetic beads. The beads were coated with fibronectin and coupled to human epithelial breast cancer cells, in particular MCF-7 and MDA-MB-231 cells. Cells were measured in a temperature range between 25 and 45 °C. The creep response of both cell types followed a weak power law. At all temperatures, the MDA-MB-231 cells were pronouncedly softer compared to the MCF-7 cells, whereas their fluidity was increased. However, with increasing temperature, the cells became significantly softer and more fluid. Since mechanical properties are manifested in the cell's cytoskeletal structure and the paramagnetic beads are coupled through cell surface receptors linked to cytoskeletal structures, such as actin and myosin filaments as well as microtubules, the cells were probed with pharmacological drugs impacting the actin filament polymerization, such as Latrunculin A, the myosin filaments, such as Blebbistatin, and the microtubules, such as Demecolcine, during the magnetic tweezer measurements in the specific temperature range. Irrespective of pharmacological interventions, the creep response of cells followed a weak power law at all temperatures. Inhibition of the actin polymerization resulted in increased softness in both cell types and decreased fluidity exclusively in MDA-MB-231 cells. Blebbistatin had an effect on the compliance of MDA-MB-231 cells at lower temperatures, which was minor on the compliance MCF-7 cells. Microtubule inhibition affected the fluidity of MCF-7 cells but did not have a significant effect on the compliance of MCF-7 and MDA-MB-231 cells. In summary, with increasing temperature, the cells became significant softer with specific differences between the investigated drugs and cell lines.
Collapse
Affiliation(s)
- Christian Aermes
- Biological Physics Division, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
| | - Alexander Hayn
- Biological Physics Division, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
| | - Tony Fischer
- Biological Physics Division, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
| | - Claudia Tanja Mierke
- Biological Physics Division, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany.
| |
Collapse
|