1
|
Gong J, Li Y, Di H, Li J, Dong J, He C, Cao P, Cai H, He J, Wang Y. Combined PET and near-infrared fluorescence probe based on lapatinib targeting HER2 for in vivo tumor imaging. Bioorg Chem 2025; 161:108550. [PMID: 40367797 DOI: 10.1016/j.bioorg.2025.108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025]
Abstract
Combination of PET and optical imaging techniques holds significant potential for complete tumor resection to optimize patient outcomes. In this study, we combined two lapatinib-based molecular probes for detecting HER2-overexoression tumors through PET and near-infrared (NIR) fluorescence imaging. HER2 receptor had been confirmed to be overexpressed in many types of tumors and had become a specific target for molecular imaging. The radiolabeled probe [68Ga] Ga-NOTA-lapatinib demonstrated superior imaging performance in micro-PET scans, achieving clear differentiation of subcutaneous tumors from adjacent tissues. Complementarily, the NIR fluorescent probe LP-S exhibited prolonged tumor retention (>72 h) with distinct signal demarcation between malignant and normal tissues in ex vivo analyses. Fluorescence microscopy further validated specific intra-tumoral accumulation of the probe at cellular resolution. This synchronized dual-probe strategy, leveraging identical targeting moieties, established a robust platform for multimodality cancer imaging that bridges preoperative detection with intraoperative visualization.
Collapse
Affiliation(s)
- Jingyao Gong
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunlong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Hui Di
- Zhangjiakou Food and Drug Inspection Center, Hebei, China
| | - Jiamin Li
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Junming Dong
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Congjie He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiming Cai
- Nanjing Nuoyuan Medical Devices Co. Ltd, Nanjing, China.
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Wyszatko K, Janzen N, Law N, Ventura M, Komal T, Savage N, Venugopal C, Kwiecien JM, Singh SK, Sadeghi S. Targeted Radionuclide Therapy Using a Lutetium-177 Labeled Human Anti-CD133 Antibody. Mol Imaging Biol 2025:10.1007/s11307-025-02013-4. [PMID: 40405046 DOI: 10.1007/s11307-025-02013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/24/2025] [Accepted: 04/23/2025] [Indexed: 05/24/2025]
Abstract
PURPOSE Targeted radionuclide therapy against cancer stem cell-specific markers, such as CD133, constitutes a promising strategy to eliminate resilient cancer stem cells for improved outcomes in refractory tumors. Here, we report the synthesis and evaluation of [177Lu]Lu-DOTA-RW03, a CD133-targeted radioimmunotherapy. PROCEDURES A fully human, anti-CD133 antibody (RW03) was conjugated with DOTA-NHS and radiolabeled with lutetium-177 to yield [177Lu]Lu-DOTA-RW03. Radioligand binding assays on [177Lu]Lu-DOTA-RW03 were performed using CD133 expressing HT-29 cells to determine binding affinity and immunoreactive fraction. Immunodeficient mice (n = 15) bearing HT-29 tumors were divided into 4 cohorts to establish the biodistribution of [177Lu]Lu-DOTA-RW03 at 24, 48, and 96 h post-injection (n = 5 per cohort). Additional biodistribution and SPECT imaging studies were performed to establish tumor specificity and dose-dependent tumor uptake. In a dose-escalation therapy study, HT-29 tumor bearing mice (n = 20) were treated with either 4.0 ± 0.1, 9.6 ± 0.1, or 14.1 ± 0.2 MBq of [177Lu]Lu-DOTA-RW03 or a vehicle control (n = 5 mice per cohort). Tumors from the therapy study were processed ex vivo for immunohistochemical and histopathological analysis. RESULTS Radioimmunoconjugate [177Lu]Lu-DOTA-RW03 (4.4 ± 0.1 DOTA per antibody) was isolated in 50 ± 10% radiochemical yield, 17-28 GBq/µmol molar activity, and in > 98% radiochemical purity. In vitro, the radiolabeled antibody exhibited excellent binding affinity (0.30 ± 0.03 nM) and > 75% immunoreactivity. The biodistribution of [177Lu]Lu-DOTA-RW03 revealed notable tumor uptake (65 ± 5%ID/g, 96 h post-injection) and a favorable tumor-to-blood ratio (5:1, 96 h post-injection). In vivo antigen specificity was confirmed by a significant reduction (75%) in tumor uptake when [177Lu]Lu-DOTA-RW03 was co-administered with a 200-fold molar excess of unlabeled RW03. The radioimmunoconjugate exhibited promising therapeutic efficacy in the treatment of CD133 expressing colorectal xenograft mouse model, with dose-dependent reductions in tumor growth rate and increased survival time. Histopathological and immunohistochemical analyses revealed elevated cell proliferation and extensive liquefactive necrosis at late stages into treatment, which provides an opportunity for multidosing and combination treatment strategies. CONCLUSIONS These findings underscore the potential of [177Lu]Lu-DOTA-RW03 as an effective therapy through targeting CD133 expressing cancer cells.
Collapse
Affiliation(s)
- Kevin Wyszatko
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Napoleon Law
- Spatio-Temporal Targeting and Amplification of Radiation Response Innovation Centre (STTARR), University Health Network, Toronto, ON, Canada
| | - Manuela Ventura
- Spatio-Temporal Targeting and Amplification of Radiation Response Innovation Centre (STTARR), University Health Network, Toronto, ON, Canada
| | - Teesha Komal
- Spatio-Temporal Targeting and Amplification of Radiation Response Innovation Centre (STTARR), University Health Network, Toronto, ON, Canada
| | - Neil Savage
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Surgery, McMaster University, Hamilton, Canada
| | - Jacek M Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Surgery, McMaster University, Hamilton, Canada
| | - Saman Sadeghi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Awais M, Rehman A, Bukhari SS. Advances in liquid biopsy and virtual biopsy for care of patients with glioma: a narrative review. Expert Rev Anticancer Ther 2025; 25:529-550. [PMID: 40183671 DOI: 10.1080/14737140.2025.2489629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
INTRODUCTION The World Health Organization's 2021 classification of central nervous system neoplasms incorporated molecular and genetic features for classifying gliomas. Classification of gliomas located in deep-seated structures became a clinical conundrum given the absence of crucial pathological and molecular data. Advances in noninvasive imaging modalities offered virtual biopsy as a novel solution to this problem by identifying surrogate radiomic signatures. Liquid biopsies of blood or cerebrospinal fluid provided another enormous opportunity for identifying genomic, metabolomic and proteomic signatures. AREAS COVERED We summarize and appraise the current state of evidence with regards to virtual biopsy and liquid biopsy in the care of patients with gliomas. PubMed, Embase and Google Scholar were searched on 7/30/2024 for relevant articles published after the year 2013 in the English language. EXPERT OPINION A large body of preclinical and preliminary clinical evidence suggests that virtual biopsy is possible with the combined use of multiple novel imaging modalities in conjunction with machine learning and radiomics. Likewise, liquid biopsy in conjunction with focused ultrasound may be a valuable tool to obtain proteomic and genomic data regarding glioma in a minimally invasive manner. These modalities will likely become an integral part of care for patients with glioma in the future.
Collapse
Affiliation(s)
- Muhammad Awais
- Department of Radiology, The Aga Khan University, Karachi, Pakistan
| | - Abdul Rehman
- Department of Medicine, Tidal Health Peninsula Regional, Salisbury, MD, USA
| | - Syed Sarmad Bukhari
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
4
|
Hakala S, Hämäläinen A, Sandelin S, Giannareas N, Närvä E. Detection of Cancer Stem Cells from Patient Samples. Cells 2025; 14:148. [PMID: 39851576 PMCID: PMC11764358 DOI: 10.3390/cells14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
The existence of cancer stem cells (CSCs) in various tumors has become increasingly clear in addition to their prominent role in therapy resistance, metastasis, and recurrence. For early diagnosis, disease progression monitoring, and targeting, there is a high demand for clinical-grade methods for quantitative measurement of CSCs from patient samples. Despite years of active research, standard measurement of CSCs has not yet reached clinical settings, especially in the case of solid tumors. This is because detecting this plastic heterogeneous population of cells is not straightforward. This review summarizes various techniques, highlighting their benefits and limitations in detecting CSCs from patient samples. In addition, methods designed to detect CSCs based on secreted and niche-associated signaling factors are reviewed. Spatial and single-cell methods for analyzing patient tumor tissues and noninvasive techniques such as liquid biopsy and in vivo imaging are discussed. Additionally, methods recently established in laboratories, preclinical studies, and clinical assays are covered. Finally, we discuss the characteristics of an ideal method as we look toward the future.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Närvä
- Institute of Biomedicine and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (S.H.); (A.H.); (S.S.); (N.G.)
| |
Collapse
|
5
|
Sun S, Yang Q, Jiang D, Zhang Y. Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment. J Nanobiotechnology 2024; 22:176. [PMID: 38609981 PMCID: PMC11015566 DOI: 10.1186/s12951-024-02432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent both a key driving force and therapeutic target of tumoral carcinogenesis, tumor evolution, progression, and recurrence. CSC-guided tumor diagnosis, treatment, and surveillance are strategically significant in improving cancer patients' overall survival. Due to the heterogeneity and plasticity of CSCs, high sensitivity, specificity, and outstanding targeting are demanded for CSC detection and targeting. Nanobiotechnologies, including biosensors, nano-probes, contrast enhancers, and drug delivery systems, share identical features required. Implementing these techniques may facilitate the overall performance of CSC detection and targeting. In this review, we focus on some of the most recent advances in how nanobiotechnologies leverage the characteristics of CSC to optimize cancer diagnosis and treatment in liquid biopsy, clinical imaging, and CSC-guided nano-treatment. Specifically, how nanobiotechnologies leverage the attributes of CSC to maximize the detection of circulating tumor DNA, circulating tumor cells, and exosomes, to improve positron emission computed tomography and magnetic resonance imaging, and to enhance the therapeutic effects of cytotoxic therapy, photodynamic therapy, immunotherapy therapy, and radioimmunotherapy are reviewed.
Collapse
Affiliation(s)
- Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiang Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Wyszatko K, Janzen N, Silva LR, Kwon L, Komal T, Ventura M, Venugopal C, Singh SK, Valliant JF, Sadeghi S. 89Zr-labeled ImmunoPET targeting the cancer stem cell antigen CD133 using fully-human antibody constructs. EJNMMI Res 2024; 14:29. [PMID: 38498285 PMCID: PMC10948676 DOI: 10.1186/s13550-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Cancer stem cells play an important role in driving tumor growth and treatment resistance, which makes them a promising therapeutic target to prevent cancer recurrence. Emerging cancer stem cell-targeted therapies would benefit from companion diagnostic imaging probes to aid in patient selection and monitoring response to therapy. To this end, zirconium-89-radiolabeled immunoPET probes that target the cancer stem cell-antigen CD133 were developed using fully human antibody and antibody scFv-Fc scaffolds. RESULTS ImmunoPET probes [89Zr]-DFO-RW03IgG (CA = 0.7 ± 0.1), [89Zr]-DFO-RW03IgG (CA = 3.0 ± 0.3), and [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) were radiolabeled with zirconium-89 (radiochemical yield 42 ± 5%, 97 ± 2%, 86 ± 12%, respectively) and each was isolated in > 97% radiochemical purity with specific activities of 120 ± 30, 270 ± 90, and 200 ± 60 MBq/mg, respectively. In vitro binding assays showed a low-nanomolar binding affinity of 0.6 to 1.1 nM (95% CI) for DFO-RW03IgG (CA = 0.7 ± 0.1), 0.3 to 1.9 nM (95% CI) for DFO-RW03IgG (CA = 3.0 ± 0.3), and 1.5 to 3.3 nM (95% CI) for DFO-RW03scFv - Fc (C/A = 0.3). Biodistribution studies found that [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) exhibited the highest tumor uptake (23 ± 4, 21 ± 2, and 23 ± 4%ID/g at 24, 48, and 72 h, respectively) and showed low uptake (< 6%ID/g) in all off-target organs at each timepoint (24, 48, and 72 h). Comparatively, [89Zr]-DFO-RW03IgG (CA = 0.7 ± 0.1) and [89Zr]-DFO-RW03IgG (CA = 3.0 ± 0.3) both reached maximum tumor uptake (16 ± 3%ID/g and 16 ± 2%ID/g, respectively) at 96 h p.i. and showed higher liver uptake (10.2 ± 3%ID/g and 15 ± 3%ID/g, respectively) at that timepoint. Region of interest analysis to assess PET images of mice administered [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) showed that this probe reached a maximum tumor uptake of 22 ± 1%ID/cc at 96 h, providing a tumor-to-liver ratio that exceeded 1:1 at 48 h p.i. Antibody-antigen mediated tumor uptake was demonstrated through biodistribution and PET imaging studies, where for each probe, co-injection of excess unlabeled RW03IgG resulted in > 60% reduced tumor uptake. CONCLUSIONS Fully human CD133-targeted immunoPET probes [89Zr]-DFO-RW03IgG and [89Zr]-DFO-RW03scFv - Fc accumulate in CD133-expressing tumors to enable their delineation through PET imaging. Having identified [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) as the most attractive construct for CD133-expressing tumor delineation, the next step is to evaluate this probe using patient-derived tumor models to test its detection limit prior to clinical translation.
Collapse
Affiliation(s)
- Kevin Wyszatko
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Luis Rafael Silva
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Luke Kwon
- Spatio-Temporal Targeting and Amplification of Radiation Response Innovation Centre (STTARR), University Health Network, Toronto, ON, Canada
| | - Teesha Komal
- Spatio-Temporal Targeting and Amplification of Radiation Response Innovation Centre (STTARR), University Health Network, Toronto, ON, Canada
| | - Manuela Ventura
- Spatio-Temporal Targeting and Amplification of Radiation Response Innovation Centre (STTARR), University Health Network, Toronto, ON, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Saman Sadeghi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
7
|
Yun WS, Cho H, Jeon SI, Lim DK, Kim K. Fluorescence-Based Mono- and Multimodal Imaging for In Vivo Tracking of Mesenchymal Stem Cells. Biomolecules 2023; 13:1787. [PMID: 38136656 PMCID: PMC10742164 DOI: 10.3390/biom13121787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The advancement of stem cell therapy has offered transformative therapeutic outcomes for a wide array of diseases over the past decades. Consequently, stem cell tracking has become significant in revealing the mechanisms of action and ensuring safe and effective treatments. Fluorescence stands out as a promising choice for stem cell tracking due to its myriad advantages, including high resolution, real-time monitoring, and multi-fluorescence detection. Furthermore, combining fluorescence with other tracking modalities-such as bioluminescence imaging (BLI), positron emission tomography (PET), photoacoustic (PA), computed tomography (CT), and magnetic resonance (MR)-can address the limitations of single fluorescence detection. This review initially introduces stem cell tracking using fluorescence imaging, detailing various labeling strategies such as green fluorescence protein (GFP) tagging, fluorescence dye labeling, and nanoparticle uptake. Subsequently, we present several combinations of strategies for efficient and precise detection.
Collapse
Affiliation(s)
- Wan Su Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; (W.S.Y.); (D.-K.L.)
| | - Hanhee Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| | - Seong Ik Jeon
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; (W.S.Y.); (D.-K.L.)
| | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| |
Collapse
|
8
|
Hoque S, Dhar R, Kar R, Mukherjee S, Mukherjee D, Mukerjee N, Nag S, Tomar N, Mallik S. Cancer stem cells (CSCs): key player of radiotherapy resistance and its clinical significance. Biomarkers 2023; 28:139-151. [PMID: 36503350 DOI: 10.1080/1354750x.2022.2157875] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are self-renewing and slow-multiplying micro subpopulations in tumour microenvironments. CSCs contribute to cancer's resistance to radiation (including radiation) and other treatments. CSCs control the heterogeneity of the tumour. It alters the tumour's microenvironment cellular singling and promotes epithelial-to-mesenchymal transition (EMT). Current research decodes the role of extracellular vesicles (EVs) and CSCs interlink in radiation resistance. Exosome is a subpopulation of EVs and originated from plasma membrane. It is secreted by several active cells. It involed in cellular communication and messenger of healthly and multiple pathological complications. Exosomal biological active cargos (DNA, RNA, protein, lipid and glycan), are capable to transform recipient cells' nature. The molecular signatures of CSCs and CSC-derived exosomes are potential source of cancer theranostics development. This review discusse cancer stem cells, radiation-mediated CSCs development, EMT associated with CSCs, the role of exosomes in radioresistance development, the current state of radiation therapy and the use of CSCs and CSCs-derived exosomes biomolecules as a clinical screening biomarker for cancer. This review gives new researchers a reason to keep an eye on the next phase of scientific research into cancer theranostics that will help mankind.
Collapse
Affiliation(s)
- Saminur Hoque
- Department of Radiology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Rajib Dhar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Rishav Kar
- Department of Medical Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute
| | - Sayantanee Mukherjee
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | | | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Kolkata, West Bengal, India.,Department of Health Sciences, Novel Global Community Educational Foundation, Australia
| | - Sagnik Nag
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tamil Nadu, India
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Saurav Mallik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
9
|
Predicting tumour radiosensitivity to deliver precision radiotherapy. Nat Rev Clin Oncol 2023; 20:83-98. [PMID: 36477705 DOI: 10.1038/s41571-022-00709-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
Owing to advances in radiotherapy, the physical properties of radiation can be optimized to enable individualized treatment; however, optimization is rarely based on biological properties and, therefore, treatments are generally planned with the assumption that all tumours respond similarly to radiation. Radiation affects multiple cellular pathways, including DNA damage, hypoxia, proliferation, stem cell phenotype and immune response. In this Review, we summarize the effect of these pathways on tumour responses to radiotherapy and the current state of research on genomic classifiers designed to exploit these variations to inform treatment decisions. We also discuss whether advances in genomics have generated evidence that could be practice changing and whether advances in genomics are now ready to be used to guide the delivery of radiotherapy alone or in combination.
Collapse
|
10
|
Marcu LG, Moghaddasi L, Bezak E. Cannot Target What Cannot Be Seen: Molecular Imaging of Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24021524. [PMID: 36675033 PMCID: PMC9864237 DOI: 10.3390/ijms24021524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cancer stem cells are known to play a key role in tumour development, proliferation, and metastases. Their unique properties confer resistance to therapy, often leading to treatment failure. It is believed that research into the identification, targeting, and eradication of these cells can revolutionise oncological treatment. Based on the principle that what cannot be seen, cannot be targeted, a primary step in cancer management is the identification of these cells. The current review aims to encompass the state-of-the-art functional imaging techniques that enable the identification of cancer stem cells via various pathways and mechanisms. The paper presents in vivo molecular techniques that are currently available or await clinical implementation. Challenges and future prospects are highlighted to open new research avenues in cancer stem cell imaging.
Collapse
Affiliation(s)
- Loredana G. Marcu
- Faculty of Informatics and Science, University of Oradea, 1 Universitatii Str., 410087 Oradea, Romania
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence:
| | - Leyla Moghaddasi
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
11
|
Sabu A, Liu TI, Ng SS, Doong RA, Huang YF, Chiu HC. Nanomedicines Targeting Glioma Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:158-181. [PMID: 35544684 DOI: 10.1021/acsami.2c03538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM), classified as a grade IV glioma, is a rapidly growing, aggressive, and most commonly occurring tumor of the central nervous system. Despite the therapeutic advances, it carries an ominous prognosis, with a median survival of 14.6 months after diagnosis. Accumulating evidence suggests that cancer stem cells in GBM, termed glioma stem cells (GSCs), play a crucial role in tumor propagation, treatment resistance, and tumor recurrence. GSCs, possessing the capacity for self-renewal and multilineage differentiation, are responsible for tumor growth and heterogeneity, leading to primary obstacles to current cancer therapy. In this respect, increasing efforts have been devoted to the development of anti-GSC strategies based on targeting GSC surface markers, blockage of essential signaling pathways of GSCs, and manipulating the tumor microenvironment (GSC niches). In this review, we will discuss the research knowledge regarding GSC-based therapy and the underlying mechanisms for the treatment of GBM. Given the rapid progression in nanotechnology, innovative nanomedicines developed for GSC targeting will also be highlighted from the perspective of rationale, advantages, and limitations. The goal of this review is to provide broader understanding and key considerations toward the future direction of GSC-based nanotheranostics to fight against GBM.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Te-I Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Siew Suan Ng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
12
|
Kunihiro AG, Sarrett SM, Lastwika KJ, Solan JL, Pisarenko T, Keinänen O, Rodriguez C, Taverne LR, Fitzpatrick AL, Li CI, Houghton AM, Zeglis BM, Lampe PD. CD133 as a Biomarker for an Autoantibody-to-ImmunoPET Paradigm for the Early Detection of Small Cell Lung Cancer. J Nucl Med 2022; 63:1701-1707. [PMID: 35483965 PMCID: PMC9635686 DOI: 10.2967/jnumed.121.263511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Small cell lung cancer (SCLC) is a deadly neuroendocrine tumor for which there are no screening methods sensitive enough to facilitate early, effective intervention. We propose targeting the neuroendocrine tumor neoantigen CD133 via antibody-based early detection and PET (immunoPET) to facilitate earlier and more accurate detection of SCLC. Methods: RNA sequencing datasets, immunohistochemistry, flow cytometry, and Western blots were used to quantify CD133 expression in healthy and SCLC patients. CD133 was imaged in vivo using near-infrared fluorescence (NIRF) immunoimaging, and 89Zr immunoPET. Anti(α)-CD133 autoantibody levels were measured in SCLC patient plasma using antibody microarrays. Results: Across 6 publicly available datasets, CD133 messenger RNA was found to be higher in SCLC tumors than in other tissues, including healthy or normal adjacent lung and non-SCLC samples. Critically, the upregulation of CD133 messenger RNA in SCLC was associated with a significant increase (hazard ratio, 2.62) in death. CD133 protein was expressed in primary human SCLC, in SCLC patient-derived xenografts, and in both SCLC cell lines tested (H82 and H69). Using an H82 xenograft mouse model, we first imaged CD133 expression with NIRF. Both in vivo and ex vivo NIRF clearly showed that a fluorophore-tagged αCD133 homed to lung tumors. Next, we validated the noninvasive visualization of subcutaneous and orthotopic H82 xenografts via immunoPET. An αCD133 antibody labeled with the positron-emitting radiometal 89Zr demonstrated significant accumulation in tumor tissue while producing minimal uptake in healthy organs. Finally, plasma αCD133 autoantibodies were found in subjects from cohort studies up to 1 year before SCLC diagnosis. Conclusion: In light of these findings, we conclude that the presence of αCD133 autoantibodies in a blood sample followed by CD133-targeted 89Zr-immunoPET could be an effective early detection screening strategy for SCLC.
Collapse
Affiliation(s)
- Andrew G Kunihiro
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Samantha M Sarrett
- Department of Chemistry, Hunter College, City University of New York, New York, New York
- Ph.D. Program in Biochemistry, City University of New York, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kristin J Lastwika
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Joell L Solan
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Tatyana Pisarenko
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Outi Keinänen
- Department of Chemistry, Hunter College, City University of New York, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College, City University of New York, New York, New York
- Ph.D. Program in Biochemistry, City University of New York, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lydia R Taverne
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Annette L Fitzpatrick
- Department of Family Medicine, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Christopher I Li
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - A McGarry Houghton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; and
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, New York;
- Ph.D. Program in Biochemistry, City University of New York, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Paul D Lampe
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington;
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; and
| |
Collapse
|
13
|
Lineage Tracing and Molecular Real-Time Imaging of Cancer Stem Cells. BIOSENSORS 2022; 12:bios12090703. [PMID: 36140088 PMCID: PMC9496355 DOI: 10.3390/bios12090703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
The cancer stem cells (CSC) are the roots of cancer. The CSC hypothesis may provide a model to explain the tumor cell heterogeneity. Understand the biological mechanism of CSC will help the early detection and cure of cancer. The discovery of the dynamic changes in CSC will be possible by the using of bio-engineering techniques-lineage tracing. However, it is difficult to obtain real-time, continuous, and dynamic live-imaging information using the traditional approaches that take snapshots of time points from different animals. The goal of molecular imaging is to monitor the in situ, continuous molecular changes of cells in vivo. Therefore, the most advanced bioengineering lineage tracing approach, while using a variety of molecular detection methods, will maximize the presentation of CSC. In this review, we first introduce the method of lineage tracing, and then introduce the various components of molecular images to dynamic detect the CSC. Finally, we analyze the current situation and look forward the future of CSC detection.
Collapse
|
14
|
Jin C, Luo X, Li X, Zhou R, Zhong Y, Xu Z, Cui C, Xing X, Zhang H, Tian M. Positron emission tomography molecular imaging-based cancer phenotyping. Cancer 2022; 128:2704-2716. [PMID: 35417604 PMCID: PMC9324101 DOI: 10.1002/cncr.34228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
During the past several decades, numerous studies have provided insights into biological characteristics of cancer cells and identified various hallmarks of cancer acquired in the tumorigenic processes. However, it is still challenging to image these distinctive traits of cancer to facilitate the management of patients in clinical settings. The rapidly evolving field of positron emission tomography (PET) imaging has provided opportunities to investigate cancer's biological characteristics in vivo. This article reviews the current status of PET imaging on characterizing hallmarks of cancer and discusses the future directions of PET imaging strategies facilitating in vivo cancer phenotyping.
Collapse
Affiliation(s)
- Chentao Jin
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Xiaoyun Luo
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Xiaoyi Li
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Rui Zhou
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Yan Zhong
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Zhoujiao Xu
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Chunyi Cui
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Xiaoqing Xing
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Hong Zhang
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
- College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
- Key Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhouChina
| | - Mei Tian
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
15
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
16
|
Hu K, Ma X, Xie L, Zhang Y, Hanyu M, Obata H, Zhang L, Nagatsu K, Suzuki H, Shi R, Wang W, Zhang MR. Development of a Stable Peptide-Based PET Tracer for Detecting CD133-Expressing Cancer Cells. ACS OMEGA 2022; 7:334-341. [PMID: 35036703 PMCID: PMC8756568 DOI: 10.1021/acsomega.1c04711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/09/2021] [Indexed: 05/08/2023]
Abstract
CD133 has been recognized as a prominent biomarker for cancer stem cells (CSCs), which promote tumor relapse and metastasis. Here, we developed a clinically relevant, stable, and peptide-based positron emission tomography (PET) tracer, [64Cu]CM-2, for mapping CD133 protein in several kinds of cancers. Through the incorporation of a 6-aminohexanoic acid (Ahx) into the N terminus of a CM peptide, we constructed a stable peptide tracer [64Cu]CM-2, which exhibited specific binding to CD133-positive CSCs in multiple preclinical tumor models. Both PET imaging and ex vivo biodistribution verified the superb performance of [64Cu]CM-2. Furthermore, the matched physical and biological half-life of [64Cu]CM-2 makes it a state-of-the-art PET tracer for CD133. Therefore, [64Cu]CM-2 PET may not only enable the longitudinal tracking of CD133 dynamics in the cancer stem cell niche but also provide a powerful and noninvasive imaging tool to track down CSCs in refractory cancers.
Collapse
Affiliation(s)
- Kuan Hu
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Xiaohui Ma
- Department
of Vascular Surgery, General Hospital of
People’s Liberation Army, Beijing 100853, P. R.
China
| | - Lin Xie
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Masayuki Hanyu
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Honoka Obata
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Lulu Zhang
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Kotaro Nagatsu
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Hisashi Suzuki
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| | - Rui Shi
- Institute
of Traumatology and Orthopaedics Beijing
Jishuitan Hospital Beijing Laboratory of Biomedical Materials, Beijing 100035, P. R. China
| | - Weizhi Wang
- School
of Chemistry and Chemical Engineering, Beijing
Institute of Technology, Beijing 100081, P. R. China
| | - Ming-Rong Zhang
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
17
|
Celecoxib-Induced Modulation of Colon Cancer CD133 Expression Occurs through AKT Inhibition and Is Monitored by 89Zr Immuno-PET. Mol Imaging 2022; 2022:4906934. [PMID: 35115900 PMCID: PMC8791662 DOI: 10.1155/2022/4906934] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 01/21/2023] Open
Abstract
We developed an immuno-PET technique that monitors modulation of tumor CD133 expression, which is required for the success of CD133-targeted therapies. Methods. Anti-CD133 antibodies were subjected to sulfhydryl moiety-specific 89Zr conjugation. 89Zr-CD133 IgG was evaluated for specific activity and radiolabel stability. Colon cancer cells underwent binding assays and Western blotting. Biodistribution and PET studies were performed in mice. Results. 89Zr-CD133 IgG showed excellent target specificity with 97.2 ± 0.7% blocking of HT29 cell binding by an excess antibody. Intravenous 89Zr-CD133 IgG followed biexponential blood clearance and showed CD133-specific uptake in HT29 tumors. 89Zr-CD133 IgG PET/CT and biodistribution studies confirmed high HT29 tumor uptake with lower activities in the blood and normal organs. In HT29 cells, celecoxib dose-dependently decreased CD133 expression and 89Zr-CD133 IgG binding that reached 19.9 ± 2.1% (P < 0.005) and 50.3 ± 10.9% (P < 0.001) of baseline levels by 50 μM, respectively. Celecoxib treatment of mice significantly suppressed tumor CD133 expression to 67.5 ± 7.8% of controls (P < 0.005) and reduced tumor 89Zr-CD133 IgG uptake from 15.5 ± 1.4% at baseline to 12.3 ± 2.0%ID/g (P < 0.01). Celecoxib-induced CD133 reduction in HT29 cells and tumors was associated with substantial suppression of AKT activation. There were also reduced HIF-1α accumulation and IκBα/NFκB phosphorylation. Conclusion. 89Zr-CD133 IgG PET provides high-contrast tumor imaging and monitors celecoxib treatment-induced modulation of tumor CD133 expression, which was found to occur through AKT inhibition. This technique may thus be useful for screening drugs that can effectively suppress colon cancer stem cells.
Collapse
|
18
|
Diagnosis of Glioblastoma by Immuno-Positron Emission Tomography. Cancers (Basel) 2021; 14:cancers14010074. [PMID: 35008238 PMCID: PMC8750680 DOI: 10.3390/cancers14010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neuroimaging has transformed the way brain tumors are diagnosed and treated. Although different non-invasive modalities provide very helpful information, in some situations, they present a limited value. By merging the specificity of antibodies with the resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry”, like a “virtual biopsy”. This review provides and focuses on immuno-PET applications and future perspectives of this promising imaging approach for glioblastoma. Abstract Neuroimaging has transformed neuro-oncology and the way that glioblastoma is diagnosed and treated. Magnetic Resonance Imaging (MRI) is the most widely used non-invasive technique in the primary diagnosis of glioblastoma. Although MRI provides very powerful anatomical information, it has proven to be of limited value for diagnosing glioblastomas in some situations. The final diagnosis requires a brain biopsy that may not depict the high intratumoral heterogeneity present in this tumor type. The revolution in “cancer-omics” is transforming the molecular classification of gliomas. However, many of the clinically relevant alterations revealed by these studies have not yet been integrated into the clinical management of patients, in part due to the lack of non-invasive biomarker-based imaging tools. An innovative option for biomarker identification in vivo is termed “immunotargeted imaging”. By merging the high target specificity of antibodies with the high spatial resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry” in patients. This review provides the state of the art of immuno-PET applications and future perspectives on this imaging approach for glioblastoma.
Collapse
|
19
|
Liu Y, Yao X, Wang C, Wang M, Wang Y, Ye M, Liu Y. Peptide-based 68Ga-PET radiotracer for imaging CD133 expression in colorectal cancer. Nucl Med Commun 2021; 42:1144-1150. [PMID: 33958535 DOI: 10.1097/mnm.0000000000001435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE CD133 is a demonstrated cancer stem cell marker. A small peptide LS7, screened by a phage display technique, was identified to specifically target CD133. The purpose of this study was to develop a novel and specific peptide-based PET imaging agent for CD133 imaging in colorectal cancer. METHODS The peptide LS7 was conjugated with 1,4,7,20-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and radiolabeled with 68Ga. The cellular uptake was assessed in vitro. In vivo small-animal PET/CT and ex vivo biodistribution evaluations were performed in mice bearing CD133-positive HCT116 and Lovo cell-derived tumors as well as CD133-negative DLD1 cell-derived tumors. Nonspecific uptake of the tracer in HCT116 cell-derived tumor cells and tumor models was determined by coincubation or coinjection with an excess of unlabeled DOTA-LS7 along with radiolabeled tracers. RESULTS 68Ga-DOTA-LS7 was produced with 80.0% yield and the radiochemical purity was greater than 95.0%. In vitro, 68Ga-DOTA-LS7 was selectively taken up by HCT116 and Lovo cells but not by DLD1 cells. Small-animal PET/CT clearly revealed deposition of 68Ga-DOTA-LS7 in HCT116 and Lovo cell-derived tumors with excellent contrast. Biodistribution demonstrated that the tumor uptakes were 2.24 ± 0.16, 1.76 ± 0.42, and 0.69 ± 0.28% ID/g in HCT116, Lovo and DLD1 cell-derived tumors, respectively, at 90 min post-injection. Uptake of 68Ga-DOTA-LS7 in HCT116 tumors was significantly inhibited by coinjection of excess DOTA-LS7. CONCLUSION Rapid tumor CD133 detection and selectivity were demonstrated in vitro and in vivo with PET using the specific CD133 binding peptide 68Ga-DOTA-LS7. A robust correlation was detected in vivo between tumor signals from mouse xenograft models with different cell lines and CD133 expression. The favorable characteristics of 68Ga-DOTA-LS7, such as convenient synthesis and specific uptake, warrant its further investigation for CD133 expression imaging.
Collapse
Affiliation(s)
| | - Xiaobo Yao
- Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Auhui, China
| | | | | | | | | | | |
Collapse
|
20
|
Oe M, Miki K, Ueda Y, Mori Y, Okamoto A, Funakoshi Y, Minami H, Ohe K. Deep-Red/Near-Infrared Turn-On Fluorescence Probes for Aldehyde Dehydrogenase 1A1 in Cancer Stem Cells. ACS Sens 2021; 6:3320-3329. [PMID: 34445866 DOI: 10.1021/acssensors.1c01136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accumulating evidence supports that cancer stem cells (CSCs) are responsible for cancer proliferation, metastasis, and therapy resistance; therefore, an effective strategy to identify and isolate CSCs is required urgently. Because of their low invasiveness and high signal/noise ratio, "turn-on" fluorescence probes working in the deep-red/near-infrared (DR/NIR) region are one of the most attractive yet undeveloped tools for CSC detection. Herein, we report DR/NIR turn-on fluorescence probes, CS5-A and CS7-A, targeted to aldehyde dehydrogenase 1A1 as an intracellular CSC marker. In contrast to the conventional "always-on" green-fluorescent ALDEFLUOR, we succeeded in generating high-contrast (signal/noise ratio > 8.3) and wash-free in vitro CSC imaging with the DR probe C5S-A. This probe can facilitate CSC isolation with minimal contamination by autofluorescence from other tissues through fluorescence-activated cell sorting. Furthermore, the NIR absorbance/emission and turn-on properties of C7S-A allow simple and rapid CSC detection in vivo within 15 min.
Collapse
Affiliation(s)
- Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshifumi Ueda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Aoi Okamoto
- Division of Breast and Endocrine Surgery, Department of Surgery, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yohei Funakoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Cancer Center, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
21
|
She X, Qin S, Jing B, Jin X, Sun X, Lan X, An R. Radiotheranostic Targeting Cancer Stem Cells in Human Colorectal Cancer Xenografts. Mol Imaging Biol 2021; 22:1043-1053. [PMID: 32125599 DOI: 10.1007/s11307-019-01467-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim of this study was to perform radiotheranostics with radioiodinated monoclonal antibodies (mAbs) for targeting cancer stem cells (CSCs) in human colorectal cancer xenografts and evaluate the relative advantage of a cocktail containing both [131I]CD133 mAb and [131I]CD44 mAb. PROCEDURES Tumor-bearing mice were randomly divided into eight groups: [131I]CD133mAb, [131I]CD44 mAb, [131I]IgG isotype control, radioiodinated mAb cocktail, CD133 mAb, CD44 mAb, unradioiodinated mAb cocktail, and saline groups. In vivo single photon emission computed tomography (SPECT) imaging was used to monitor dynamically changes in the CSC population after treatment. The radioactivity uptake of tumors was quantified ex vivo. The expression of CD133 and CD44 after treatment was also assessed by immunohistochemistry and western blot. Tumor growth curves and survival curves were generated to assess treatment efficacy. Cell apoptosis and proliferation in xenografts 30 days after treatment were measured by TdT-mediated dUTP-biotin nick end labeling (aka, TUNEL) and Ki67 staining. The expression levels of biomarkers in xenografts 30 days after treatment were measured by flow cytometry. RESULTS The radioimmunoimaging (RII) with in vivo SPECT showed that the CSC-targeting radioimmunotherapy (RIT) groups ([131I]CD133 mAb, [131I]CD44 mAb, and radioiodinated mAb cocktail groups) had intense accumulations of radiolabeled agents in the tumor areas. The ex vivo biodistribution confirmed these findings. In the CSC-targeting RIT groups, immunohistochemistry and western blot indicated significant reduction of specific target expression in the xenografts. The tumor growth curves and survival curves showed that the CSC-targeting RIT significantly inhibited tumor growth and prolonged mean survival, respectively. Significantly increased apoptosis and decreased proliferation in xenografts further confirmed the therapeutic efficacy of CSC-targeting RIT. Flow cytometry showed that the decreases in CSCs correlated with the presence of the corresponding antibodies. CONCLUSIONS Our results suggest that the CSC-targeting RIT can effectively reduce CSCs which consequently inhibits tumor development. The radioiodinated mAb cocktail may generate enhanced CSC-targeting specificity.
Collapse
Affiliation(s)
- Xianliang She
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Ave., Wuhan, 430022, Hubei Province, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Saimei Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Ave., Wuhan, 430022, Hubei Province, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Boping Jing
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Ave., Wuhan, 430022, Hubei Province, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xueyan Jin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Ave., Wuhan, 430022, Hubei Province, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xun Sun
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Ave., Wuhan, 430022, Hubei Province, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Ave., Wuhan, 430022, Hubei Province, China. .,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Ave., Wuhan, 430022, Hubei Province, China. .,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
22
|
Bolcaen J, Kleynhans J, Nair S, Verhoeven J, Goethals I, Sathekge M, Vandevoorde C, Ebenhan T. A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma. Theranostics 2021; 11:7911-7947. [PMID: 34335972 PMCID: PMC8315062 DOI: 10.7150/thno.56639] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Despite numerous clinical trials and pre-clinical developments, the treatment of glioblastoma (GB) remains a challenge. The current survival rate of GB averages one year, even with an optimal standard of care. However, the future promises efficient patient-tailored treatments, including targeted radionuclide therapy (TRT). Advances in radiopharmaceutical development have unlocked the possibility to assess disease at the molecular level allowing individual diagnosis. This leads to the possibility of choosing a tailored, targeted approach for therapeutic modalities. Therapeutic modalities based on radiopharmaceuticals are an exciting development with great potential to promote a personalised approach to medicine. However, an effective targeted radionuclide therapy (TRT) for the treatment of GB entails caveats and requisites. This review provides an overview of existing nuclear imaging and TRT strategies for GB. A critical discussion of the optimal characteristics for new GB targeting therapeutic radiopharmaceuticals and clinical indications are provided. Considerations for target selection are discussed, i.e. specific presence of the target, expression level and pharmacological access to the target, with particular attention to blood-brain barrier crossing. An overview of the most promising radionuclides is given along with a validation of the relevant radiopharmaceuticals and theranostic agents (based on small molecules, peptides and monoclonal antibodies). Moreover, toxicity issues and safety pharmacology aspects will be presented, both in general and for the brain in particular.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Janke Kleynhans
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | | | - Ingeborg Goethals
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Mike Sathekge
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
23
|
Corradini S, Niyazi M, Verellen D, Valentini V, Walsh S, Grosu AL, Lauber K, Giaccia A, Unger K, Debus J, Pieters BR, Guckenberger M, Senan S, Budach W, Rad R, Mayerle J, Belka C. X-change symposium: status and future of modern radiation oncology-from technology to biology. Radiat Oncol 2021; 16:27. [PMID: 33541387 PMCID: PMC7863262 DOI: 10.1186/s13014-021-01758-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Future radiation oncology encompasses a broad spectrum of topics ranging from modern clinical trial design to treatment and imaging technology and biology. In more detail, the application of hybrid MRI devices in modern image-guided radiotherapy; the emerging field of radiomics; the role of molecular imaging using positron emission tomography and its integration into clinical routine; radiation biology with its future perspectives, the role of molecular signatures in prognostic modelling; as well as special treatment modalities such as brachytherapy or proton beam therapy are areas of rapid development. More clinically, radiation oncology will certainly find an important role in the management of oligometastasis. The treatment spectrum will also be widened by the rational integration of modern systemic targeted or immune therapies into multimodal treatment strategies. All these developments will require a concise rethinking of clinical trial design. This article reviews the current status and the potential developments in the field of radiation oncology as discussed by a panel of European and international experts sharing their vision during the "X-Change" symposium, held in July 2019 in Munich (Germany).
Collapse
Affiliation(s)
- Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Dirk Verellen
- Department of Radiotherapy, Iridium Network, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincenzo Valentini
- Department of Radiation Oncology and Hematology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica S. Cuore, Rome, Italy
| | | | - Anca-L Grosu
- Department of Radiation Oncology, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Amato Giaccia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, USA
| | - Kristian Unger
- Integrative Biology Group, Helmholtz Zentrum Munich, Munich, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Bradley R Pieters
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Wilfried Budach
- Department of Radiation Oncology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), TU Munich, Munich, Germany
| | - Julia Mayerle
- Department of Internal Medicine II, University Hospital, LMU, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
24
|
Klenner MA, Pascali G, Massi M, Fraser BH. Fluorine‐18 Radiolabelling and Photophysical Characteristics of Multimodal PET–Fluorescence Molecular Probes. Chemistry 2020; 27:861-876. [DOI: 10.1002/chem.202001402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Mitchell A. Klenner
- Human Health and National Deuteration Facility (NDF) Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road Lucas Heights NSW 2234 Australia
- School of Molecular and Life Sciences Curtin University Kent Street Bentley WA 6102 Australia
| | - Giancarlo Pascali
- Human Health and National Deuteration Facility (NDF) Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road Lucas Heights NSW 2234 Australia
- Prince of Wales Hospital Barker St Randwick NSW 2031 Australia
- University of New South Wales Sydney (UNSW) Kensington NSW 2052 Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences Curtin University Kent Street Bentley WA 6102 Australia
| | - Benjamin H. Fraser
- Human Health and National Deuteration Facility (NDF) Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road Lucas Heights NSW 2234 Australia
| |
Collapse
|
25
|
Li D, Patel CB, Xu G, Iagaru A, Zhu Z, Zhang L, Cheng Z. Visualization of Diagnostic and Therapeutic Targets in Glioma With Molecular Imaging. Front Immunol 2020; 11:592389. [PMID: 33193439 PMCID: PMC7662122 DOI: 10.3389/fimmu.2020.592389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/08/2020] [Indexed: 02/04/2023] Open
Abstract
Gliomas, particularly high-grade gliomas including glioblastoma (GBM), represent the most common and malignant types of primary brain cancer in adults, and carry a poor prognosis. GBM has been classified into distinct subgroups over the years based on cellular morphology, clinical characteristics, biomarkers, and neuroimaging findings. Based on these classifications, differences in therapeutic response and patient outcomes have been established. Recently, the identification of complex molecular signatures of GBM has led to the development of diverse targeted therapeutic regimens and translation into multiple clinical trials. Chemical-, peptide-, antibody-, and nanoparticle-based probes have been designed to target specific molecules in gliomas and then be visualized with multimodality molecular imaging (MI) techniques including positron emission tomography (PET), single-photon emission computed tomography (SPECT), near-infrared fluorescence (NIRF), bioluminescence imaging (BLI), and magnetic resonance imaging (MRI). Thus, multiple molecules of interest can now be noninvasively imaged to guide targeted therapies with a potential survival benefit. Here, we review developments in molecular-targeted diagnosis and therapy in glioma, MI of these targets, and MI monitoring of treatment response, with a focus on the biological mechanisms of these advanced molecular probes. MI probes have the potential to noninvasively demonstrate the pathophysiologic features of glioma for diagnostic, treatment, and response assessment considerations for various targeted therapies, including immunotherapy. However, most MI tracers are in preclinical development, with only integrin αVβ3 and isocitrate dehydrogenase (IDH)-mutant MI tracers having been translated to patients. Expanded international collaborations would accelerate translational research in the field of glioma MI.
Collapse
Affiliation(s)
- Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Chirag B. Patel
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
- Division of Neuro-Oncology, Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Guofan Xu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Andrei Iagaru
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
26
|
Simões JCS, Sarpaki S, Papadimitroulas P, Therrien B, Loudos G. Conjugated Photosensitizers for Imaging and PDT in Cancer Research. J Med Chem 2020; 63:14119-14150. [PMID: 32990442 DOI: 10.1021/acs.jmedchem.0c00047] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Early cancer detection and perfect understanding of the disease are imperative toward efficient treatments. It is straightforward that, for choosing a specific cancer treatment methodology, diagnostic agents undertake a critical role. Imaging is an extremely intriguing tool since it assumes a follow up to treatments to survey the accomplishment of the treatment and to recognize any conceivable repeating injuries. It also permits analysis of the disease, as well as to pursue treatment and monitor the possible changes that happen on the tumor. Likewise, it allows screening the adequacy of treatment and visualizing the state of the tumor. Additionally, when the treatment is finished, observing the patient is imperative to evaluate the treatment methodology and adjust the treatment if necessary. The goal of this review is to present an overview of conjugated photosensitizers for imaging and therapy.
Collapse
Affiliation(s)
- João C S Simões
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.,BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| | - Sophia Sarpaki
- BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| | | | - Bruno Therrien
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - George Loudos
- BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| |
Collapse
|
27
|
Positron Emission Tomography for Response Evaluation in Microenvironment-Targeted Anti-Cancer Therapy. Biomedicines 2020; 8:biomedicines8090371. [PMID: 32972006 PMCID: PMC7556039 DOI: 10.3390/biomedicines8090371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Therapeutic response is evaluated using the diameter of tumors and quantitative parameters of 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET). Tumor response to molecular-targeted drugs and immune checkpoint inhibitors is different from conventional chemotherapy in terms of temporal metabolic alteration and morphological change after the therapy. Cancer stem cells, immunologically competent cells, and metabolism of cancer are considered targets of novel therapy. Accumulation of FDG reflects the glucose metabolism of cancer cells as well as immune cells in the tumor microenvironment, which differs among patients according to the individual immune function; however, FDG-PET could evaluate the viability of the tumor as a whole. On the other hand, specific imaging and cell tracking of cancer cell or immunological cell subsets does not elucidate tumor response in a complexed interaction in the tumor microenvironment. Considering tumor heterogeneity and individual variation in therapeutic response, a radiomics approach with quantitative features of multimodal images and deep learning algorithm with reference to pathologic and genetic data has the potential to improve response assessment for emerging cancer therapy.
Collapse
|
28
|
Jariyal H, Gupta C, Bhat VS, Wagh JR, Srivastava A. Advancements in Cancer Stem Cell Isolation and Characterization. Stem Cell Rev Rep 2020; 15:755-773. [PMID: 31863337 DOI: 10.1007/s12015-019-09912-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Occurrence of stem cells (CSCs) in cancer is well established in last two decades. These rare cells share several properties including presence of common surface markers, stem cell markers, chemo- and radio- resistance and are highly metastatic in nature; thus, considered as valuable prognostic and therapeutic targets in cancer. However, the studies related to CSCs pave number of issues due to rare cell population and difficulties in their isolation ascribed to common stem cell marker. Various techniques including flow cytometry, laser micro-dissection, fluorescent nanodiamonds and microfluidics are used for the isolation of these rare cells. In this review, we have included the advance strategies adopted for the isolation of CSCs using above mentioned techniques. Furthermore, CSCs are primarily found in the core of the solid tumors and their microenvironment plays an important role in maintenance, self-renewal, division and tumor development. Therefore, in vivo tracking and model development become obligatory for functional studies of CSCs. Fluorescence and bioluminescence tagging has been widely used for transplantation assay and lineage tracking experiments to improve our understanding towards CSCs behaviour in their niche. Techniques such as Magnetic resonance imaging (MRI) and Positron emission tomography (PET) have proved useful for tracking of endogenous CSCs which could be helpful in their identification in clinical settings.
Collapse
Affiliation(s)
- Heena Jariyal
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Chanchal Gupta
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Vedika Sandeep Bhat
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Jayant Ramakant Wagh
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Device, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India.
| |
Collapse
|
29
|
Ghaffari H, Atashzar MR, Abdollahi H. Molecular imaging in tracking cancer stem cells: A review. Med J Islam Repub Iran 2020; 34:90. [PMID: 33306061 PMCID: PMC7711048 DOI: 10.34171/mjiri.34.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 11/05/2022] Open
Abstract
Cancer stem cells (CSCs) have critical roles in tumor development, progression, and recurrence. They are responsible for current cancer treatment failure and remain questionable for the design and development of new therapeutic strategies. With this issue, medical imaging provides several clues for finding biological mechanisms and strategies to treat CSCs. This review aims to summarize current molecular imaging approaches for detecting CSCs. In addition, some promising issues for CSCs finding and explaining biological mechanisms have been addressed. Among the molecular imaging approaches, modalities including Magnetic resonance imaging (MRI) and positron emission tomography (PET) have the greatest roles and several new approaches such as optical imaging are in progress.
Collapse
Affiliation(s)
- Hamed Ghaffari
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, School of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
30
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
31
|
Guan SS, Wu CT, Liao TZ, Luo TY, Lin KL, Liu SH. Indium-111-labeled CD166-targeted peptide as a potential nuclear imaging agent for detecting colorectal cancer stem-like cells in a xenograft mouse model. EJNMMI Res 2020; 10:13. [PMID: 32096011 PMCID: PMC7040160 DOI: 10.1186/s13550-020-0597-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are involved in drug resistance, metastasis, and relapse of cancers, which can significantly affect tumor therapy. Hence, to develop specifically therapeutic target probe at CSCs for improvement of survival and quality of life of cancer patients is urgently needed. The CD166 protein has been suggested to be involved in colorectal cancer (CRC) tumorigenesis and to be considered a marker for colorectal CSCs (CRCSCs) detection. In this study, therefore, we attend to apply a nuclear imaging agent probe, Glycine18-Cystine-linked CD166-targeted peptides (CD166tp-G18C), to detect the changes of CD166 level in a CRC xenograft mouse model. RESULTS We isolated the CD166-positive cells from the HCT15 CRC cell line (CD166+HCT15) and evaluated their morphology and ability of clone formation, migration, protein expression, and drug resistance. The CD166-positive HCT15 cells display the CSCs characteristics. We discovered and designed a CD166-targeted peptide (CD166tp-G18C) as a targeted probe of CRC stem-like cell for cell binding assay. The CD166tp-G18C confirmed the CD166 protein targeting ability in CD166+HCT15 cells. The diethylenetriaminopentaacetic acid (DTPA)-conjugated CD166tp-G18C further was labeled with indium-111 (111In-DTPA-CD166tp-G18C) as nuclear imaging agent for imaging and bio-distribution analysis in vivo. Finally, we observed that the 111In-DTPA-CD166tp-G18C was significantly enhanced in tumor tissues of CD166+HCT15 xenograft mice as compared to the non-CD166tp-G18C control. CONCLUSIONS Our results indicated that the indium-111-labeled CD166tp-G18C may be served as a powerful tool for colorectal CSCs nuclear imaging in the CRC patients.
Collapse
Affiliation(s)
- Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Cheng-Tien Wu
- Department of Nutrition, China Medical University, Taichung, 40402, Taiwan.,Master Program of Food and Drug Safety, China Medical University, Taichung, 40402, Taiwan
| | - Tse-Zung Liao
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Tsai-Yueh Luo
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Kun-Liang Lin
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Section 1, Taipei, 10051, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
32
|
Arnold CR, Mangesius J, Skvortsova II, Ganswindt U. The Role of Cancer Stem Cells in Radiation Resistance. Front Oncol 2020; 10:164. [PMID: 32154167 PMCID: PMC7044409 DOI: 10.3389/fonc.2020.00164] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSC) are a distinct subpopulation within a tumor. They are able to self-renew and differentiate and possess a high capability to repair DNA damage, exhibit low levels of reactive oxygen species (ROS), and proliferate slowly. These features render CSC resistant to various therapies, including radiation therapy (RT). Eradication of all CSC is a requirement for an effective antineoplastic treatment and is therefore of utmost importance for the patient. This makes CSC the prime targets for any therapeutic approach. Albeit clinical data is still scarce, experimental data and first clinical trials give hope that CSC-targeted treatment has the potential to improve antineoplastic therapies, especially for tumors that are known to be treatment resistant, such as glioblastoma. In this review, we will discuss CSC in the context of RT, describe known mechanisms of resistance, examine the possibilities of CSC as biomarkers, and discuss possible new treatment approaches.
Collapse
Affiliation(s)
- Christoph Reinhold Arnold
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julian Mangesius
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria.,EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ute Ganswindt
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
33
|
Glumac PM, Gallant JP, Shapovalova M, Li Y, Murugan P, Gupta S, Coleman IM, Nelson PS, Dehm SM, LeBeau AM. Exploitation of CD133 for the Targeted Imaging of Lethal Prostate Cancer. Clin Cancer Res 2019; 26:1054-1064. [PMID: 31732520 DOI: 10.1158/1078-0432.ccr-19-1659] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/21/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Aggressive variant prostate cancer (AVPC) is a nonandrogen receptor-driven form of disease that arises in men in whom standard-of-care therapies have failed. Therapeutic options for AVPC are limited, and the development of novel therapeutics is significantly hindered by the inability to accurately quantify patient response to therapy by imaging. Imaging modalities that accurately and sensitively detect the bone and visceral metastases associated with AVPC do not exist. EXPERIMENTAL DESIGN This study investigated the transmembrane protein CD133 as a targetable cell surface antigen in AVPC. We evaluated the expression of CD133 by microarray and IHC analysis. The imaging potential of the CD133-targeted IgG (HA10 IgG) was evaluated in preclinical prostate cancer models using two different imaging modalities: near-infrared and PET imaging. RESULTS Evaluation of the patient data demonstrated that CD133 is overexpressed in a specific phenotype of AVPC that is androgen receptor indifferent and neuroendocrine differentiated. In addition, HA10 IgG was selective for CD133-expressing tumors in all preclinical imaging studies. PET imaging with [89Zr]Zr-HA10 IgG revealed a mean %ID/g of 24.30 ± 3.19 in CD133-positive metastatic lesions as compared with 11.82 ± 0.57 in CD133-negative lesions after 72 hours (P = 0.0069). Ex vivo biodistribution showed similar trends as signals were increased by nearly 3-fold in CD133-positive tumors (P < 0.0001). CONCLUSIONS To our knowledge, this is the first study to define CD133 as a targetable marker of AVPC. Similarly, we have developed a novel imaging agent, which is selective for CD133-expressing tumors, resulting in a noninvasive PET imaging approach to more effectively detect and monitor AVPC.
Collapse
Affiliation(s)
- Paige M Glumac
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Joseph P Gallant
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Mariya Shapovalova
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Yingming Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Paari Murugan
- Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Shilpa Gupta
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ilsa M Coleman
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Aaron M LeBeau
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota. .,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
34
|
Wang W, Hu Z. Targeting Peptide-Based Probes for Molecular Imaging and Diagnosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804827. [PMID: 30537222 DOI: 10.1002/adma.201804827] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/19/2018] [Indexed: 05/27/2023]
Abstract
A series of novel peptide-based molecular probes for different biomarkers is highlighted herein. These probes can provide targeted recognition with high affinity, high specificity, high penetration, and rapid excretion ability. These sensitive peptides can achieve rapid and specific detection when they are conjugated with imaging moieties or are formed into nanoprobes, which can be adapted for in vivo molecular imaging in targeted diagnosis and therapy.
Collapse
Affiliation(s)
- Weizhi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Centre for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, Fujian, P. R. China
| |
Collapse
|
35
|
Etrych T, Janoušková O, Chytil P. Fluorescence Imaging as a Tool in Preclinical Evaluation of Polymer-Based Nano-DDS Systems Intended for Cancer Treatment. Pharmaceutics 2019; 11:E471. [PMID: 31547308 PMCID: PMC6781319 DOI: 10.3390/pharmaceutics11090471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 01/04/2023] Open
Abstract
Targeted drug delivery using nano-sized carrier systems with targeting functions to malignant and inflammatory tissue and tailored controlled drug release inside targeted tissues or cells has been and is still intensively studied. A detailed understanding of the correlation between the pharmacokinetic properties and structure of the nano-sized carrier is crucial for the successful transition of targeted drug delivery nanomedicines into clinical practice. In preclinical research in particular, fluorescence imaging has become one of the most commonly used powerful imaging tools. Increasing numbers of suitable fluorescent dyes that are excitable in the visible to near-infrared (NIR) wavelengths of the spectrum and the non-invasive nature of the method have significantly expanded the applicability of fluorescence imaging. This chapter summarizes non-invasive fluorescence-based imaging methods and discusses their potential advantages and limitations in the field of drug delivery, especially in anticancer therapy. This chapter focuses on fluorescent imaging from the cellular level up to the highly sophisticated three-dimensional imaging modality at a systemic level. Moreover, we describe the possibility for simultaneous treatment and imaging using fluorescence theranostics and the combination of different imaging techniques, e.g., fluorescence imaging with computed tomography.
Collapse
Affiliation(s)
- Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic.
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
36
|
Logun MT, Wynens KE, Simchick G, Zhao W, Mao L, Zhao Q, Mukherjee S, Brat DJ, Karumbaiah L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion. FASEB J 2019; 33:11973-11992. [PMID: 31398290 DOI: 10.1096/fj.201802610rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Invasive spread of glioblastoma (GBM) is linked to changes in chondroitin sulfate (CS) proteoglycan (CSPG)-associated sulfated glycosaminoglycans (GAGs) that are selectively up-regulated in the tumor microenvironment (TME). We hypothesized that inhibiting CS-GAG signaling in the TME would stem GBM invasion. Rat F98 GBM cells demonstrated enhanced preferential cell invasion into oversulfated 3-dimensional composite of CS-A and CS-E [4- and 4,6-sulfated CS-GAG (COMP)] matrices compared with monosulfated (4-sulfated) and unsulfated hyaluronic acid matrices in microfluidics-based choice assays, which is likely influenced by differential GAG receptor binding specificities. Both F98 and human patient-derived glioma stem cells (GSCs) demonstrated a high degree of colocalization of the GSC marker CD133 and CSPGs. The small molecule sulfated GAG antagonist bis-2-methyl-4-amino-quinolyl-6-carbamide (surfen) reduced invasion and focal adhesions in F98 cells encapsulated in COMP matrices and blocked CD133 and antichondroitin sulfate antibody (CS-56) detection of respective antigens in F98 cells and human GSCs. Surfen-treated F98 cells down-regulated CSPG-binding receptor transcripts and protein, as well as total and activated ERK and protein kinase B. Lastly, rats induced with frontal lobe tumors and treated with a single intratumoral dose of surfen demonstrated reduced tumor burden and spread compared with untreated controls. These results present a first demonstration of surfen as an inhibitor of sulfated GAG signaling to stem GBM invasion.-Logun, M. T., Wynens, K. E., Simchick, G., Zhao, W., Mao, L., Zhao, Q., Mukherjee, S., Brat, D. J., Karumbaiah, L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion.
Collapse
Affiliation(s)
- Meghan T Logun
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA.,Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Kallie E Wynens
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Gregory Simchick
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia, USA
| | - Wujun Zhao
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Leidong Mao
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Qun Zhao
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Department of Physics and Astronomy, University of Georgia, Athens, Georgia, USA
| | - Subhas Mukherjee
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA.,Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
37
|
Martano G, Borroni EM, Lopci E, Cattaneo MG, Mattioli M, Bachi A, Decimo I, Bifari F. Metabolism of Stem and Progenitor Cells: Proper Methods to Answer Specific Questions. Front Mol Neurosci 2019; 12:151. [PMID: 31249511 PMCID: PMC6584756 DOI: 10.3389/fnmol.2019.00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/28/2019] [Indexed: 01/01/2023] Open
Abstract
Stem cells can stay quiescent for a long period of time or proliferate and differentiate into multiple lineages. The activity of stage-specific metabolic programs allows stem cells to best adapt their functions in different microenvironments. Specific cellular phenotypes can be, therefore, defined by precise metabolic signatures. Notably, not only cellular metabolism describes a defined cellular phenotype, but experimental evidence now clearly indicate that also rewiring cells towards a particular cellular metabolism can drive their cellular phenotype and function accordingly. Cellular metabolism can be studied by both targeted and untargeted approaches. Targeted analyses focus on a subset of identified metabolites and on their metabolic fluxes. In addition, the overall assessment of the oxygen consumption rate (OCR) gives a measure of the overall cellular oxidative metabolism and mitochondrial function. Untargeted approach provides a large-scale identification and quantification of the whole metabolome with the aim to describe a metabolic fingerprinting. In this review article, we overview the methodologies currently available for the study of invitro stem cell metabolism, including metabolic fluxes, fingerprint analyses, and single-cell metabolomics. Moreover, we summarize available approaches for the study of in vivo stem cell metabolism. For all of the described methods, we highlight their specificities and limitations. In addition, we discuss practical concerns about the most threatening steps, including metabolic quenching, sample preparation and extraction. A better knowledge of the precise metabolic signature defining specific cell population is instrumental to the design of novel therapeutic strategies able to drive undifferentiated stem cells towards a selective and valuable cellular phenotype.
Collapse
Affiliation(s)
| | - Elena Monica Borroni
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Egesta Lopci
- Nuclear Medicine Unit, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, Italy
| | - Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Milena Mattioli
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Ilaria Decimo
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
38
|
Hu B, Zou Y, Zhang L, Tang J, Niedermann G, Firat E, Huang X, Zhu X. Nucleofection with Plasmid DNA for CRISPR/Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells. Hum Gene Ther 2019; 30:446-458. [DOI: 10.1089/hum.2017.234] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Bian Hu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing, China
| | - Yan Zou
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Linlin Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing, China
| | - Jiaxing Tang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Firat
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xingxu Huang
- School of Life Science and Technology (SLST), ShanghaiTech University, Shanghai, China
| | - Xuekai Zhu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| |
Collapse
|
39
|
Peitzsch C, Kurth I, Ebert N, Dubrovska A, Baumann M. Cancer stem cells in radiation response: current views and future perspectives in radiation oncology. Int J Radiat Biol 2019; 95:900-911. [PMID: 30897014 DOI: 10.1080/09553002.2019.1589023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose: Despite technological improvement and advances in biology-driven patient stratification, many patients still fail radiotherapy resulting in loco-regional and distant recurrence. Tumor heterogeneity remains a key challenge to effective cancer treatment, and reliable stratification of cancer patients for prediction of outcomes is highly important. Intratumoral heterogeneity is manifested at the different levels, including different tumorigenic properties of cancer cells. Since John Dick et al. isolated leukemia initiating cells in 1990, the populations of tumor initiating or cancer stem cells (CSCs) were identified and characterized also for a broad spectrum of solid tumor types. The properties of CSCs are of considerable clinical relevance: CSCs have self-renewal and tumor initiating potential, and the metastases are initiated by the CSC clones with the ability to disseminate from the primary tumor site. Conclusion: Evidence from both, experimental and clinical studies demonstrates that the probability of achieving local tumor control by radiation therapy depends on the complete eradication of CSC populations. The number, properties and molecular signature of CSCs are highly predictive for clinical outcome of radiotherapy, whereas targeted therapies against CSCs combined with conventional treatment are expected to provide an improved clinical response and prevent tumor relapse. In this review, we discuss the modern methods to study CSCs in radiation biology, the role of CSCs in personalized cancer therapy as well as future directions for CSC research in translational radiooncology.
Collapse
Affiliation(s)
- Claudia Peitzsch
- a OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf , Dresden , Germany.,b National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz-Zentrum Dresden - Rossendorf (HZDR) , Dresden , Germany.,c German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Ina Kurth
- d German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Nadja Ebert
- d German Cancer Research Center (DKFZ) , Heidelberg , Germany.,f Department of Radiotherapy and Radiation Oncology , Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden , Dresden , Germany
| | - Anna Dubrovska
- a OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf , Dresden , Germany.,c German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) , Heidelberg , Germany.,e Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay , Dresden , Germany
| | - Michael Baumann
- d German Cancer Research Center (DKFZ) , Heidelberg , Germany.,f Department of Radiotherapy and Radiation Oncology , Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
40
|
Jing H, Hettich M, Gaedicke S, Firat E, Bartholomä M, Niedermann G. Combination treatment with hypofractionated radiotherapy plus IL-2/anti-IL-2 complexes and its theranostic evaluation. J Immunother Cancer 2019; 7:55. [PMID: 30808414 PMCID: PMC6390578 DOI: 10.1186/s40425-019-0537-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
Background Immunogenic radiotherapy (RT) can act synergistically with immune checkpoint blockers (ICBs). However, alternatives are needed for non-responding patients and those with pre-existing or ICB-induced autoimmune symptoms. Combination of RT with IL-2 could be an alternative. But IL-2 has a short half-life, and, by binding to its high-affinity receptor, it strongly stimulates immunosuppressive CD4+ Tregs and seems to promote potentially life-threatening vascular leakage. IL-2/anti-IL-2 complexes (IL-2c), which bind to the low-affinity receptor, have been reported to circumvent these disadvantages but they have not yet been thoroughly tested in conjunction with radiotherapy. Methods We evaluated, in three mouse models, the antitumoral effects induced by hypofractionated RT (hRT) plus IL-2c. We also used non-invasive imaging with a newly developed PET tracer based on therapeutically active IL-2c and a PD-L1 PET tracer for the theranostic evaluation of the treatment and its side effects. Results Treatment of mice bearing established B16 melanomas with hRT + IL-2c was superior to hRT + uncomplexed IL-2 or hRT alone; IL-2c alone was not effective. hRT + IL-2c was also synergistic in mice bearing C51 colon carcinomas or 4T1 mammary carcinomas. The better antitumor response correlated with increased tumor-specific CD8+ T cells and NK cells, but not CD4+ Tregs, in the irradiated tumor and in lymphoid organs. With the new PET tracer, we visualized the whole-body distribution of IL-2c and the bound receptors in naïve mice and tumor-bearing mice. Surprisingly, the tumor uptake was non-specific and only moderate. This prompted experiments demonstrating that specific IL-2c binding in the tumor is limited by IL-2 secreted by tumor-resident effector cells and that extratumorally expanded T and NK cells can infiltrate the irradiated tumor, which suggests that systemic immune activation considerably contributed to the reduction of tumor growth. Lastly, we show that a side effect of IL-2c treatment – a quite dramatic non-specific expansion of CD8+ T and NK cells – is only transient, and we visualized the associated splenomegaly as well as side effects on liver and lung by contrast-enhanced CT and PD-L1 PET. Conclusions Our results show that the combination of immunogenic RT with IL-2c that are directed towards the low-affinity IL-2 receptor can be synergistic and more effective than the combination with uncomplexed IL-2. In addition, our theranostic evaluation provided insights into the mechanism of action and the side effects of IL-2c treatment. Electronic supplementary material The online version of this article (10.1186/s40425-019-0537-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hua Jing
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ) , Heidelberg, Germany.,Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Michael Hettich
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Oncology Translational Imaging Science, Roche pRED, Basel, Switzerland
| | - Simone Gaedicke
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elke Firat
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mark Bartholomä
- Department of Nuclear Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany. .,German Cancer Research Center (DKFZ) , Heidelberg, Germany.
| |
Collapse
|
41
|
Zhang FR, Lu JY, Yao QF, Zhu QY, Zhang XX, Huang WT, Xia LQ, Ding XZ. Matter, energy and information network of a graphene-peptide-based fluorescent sensing system for molecular logic computing, detection and imaging of cancer stem cell marker CD133 in cells and tumor tissues. Analyst 2019; 144:1881-1891. [DOI: 10.1039/c8an02115e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A graphene-peptide-based fluorescent sensing system for molecular logic operations, sensing and imaging of CD133.
Collapse
Affiliation(s)
- Fu Rui Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| | - Jiao Yang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| | - Qing Feng Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| | - Qiu Yan Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| | - Xin Xing Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| | - Li Qiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| | - Xue Zhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| |
Collapse
|
42
|
Erhart F, Blauensteiner B, Zirkovits G, Printz D, Soukup K, Klingenbrunner S, Fischhuber K, Reitermaier R, Halfmann A, Lötsch D, Spiegl-Kreinecker S, Berger W, Visus C, Dohnal A. Gliomasphere marker combinatorics: multidimensional flow cytometry detects CD44+/CD133+/ITGA6+/CD36+ signature. J Cell Mol Med 2018; 23:281-292. [PMID: 30467961 PMCID: PMC6307809 DOI: 10.1111/jcmm.13927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma is the most dangerous brain cancer. One reason for glioblastoma's aggressiveness are glioblastoma stem‐like cells. To target them, a number of markers have been proposed (CD133, CD44, CD15, A2B5, CD36, CXCR4, IL6R, L1CAM, and ITGA6). A comprehensive study of co‐expression patterns of them has, however, not been performed so far. Here, we mapped the multidimensional co‐expression profile of these stemness‐associated molecules. Gliomaspheres – an established model of glioblastoma stem‐like cells – were used. Seven different gliomasphere systems were subjected to multicolor flow cytometry measuring the nine markers CD133, CD44, CD15, A2B5, CD36, CXCR4, IL6R, L1CAM, and ITGA6 all simultaneously based on a novel 9‐marker multicolor panel developed for this study. The viSNE dimensionality reduction algorithm was applied for analysis. All gliomaspheres were found to express at least five different glioblastoma stem‐like cell markers. Multi‐dimensional analysis showed that all studied gliomaspheres consistently harbored a cell population positive for the molecular signature CD44+/CD133+/ITGA6+/CD36+. Glioblastoma patients with an enrichment of this combination had a significantly worse survival outcome when analyzing the two largest available The Cancer Genome Atlas datasets (MIT/Harvard Affymetrix: P = 0.0015, University of North Carolina Agilent: P = 0.0322). In sum, we detected a previously unknown marker combination – demonstrating feasibility, usefulness, and importance of high‐dimensional gliomasphere marker combinatorics.
Collapse
Affiliation(s)
- Friedrich Erhart
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria.,Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Bernadette Blauensteiner
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Gabriel Zirkovits
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Dieter Printz
- FACS Core Unit, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Klara Soukup
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | | | | | | | - Angela Halfmann
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Daniela Lötsch
- Institute for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- University Clinic for Neurosurgery, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Walter Berger
- Institute for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Alexander Dohnal
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
43
|
Testa U, Castelli G, Pelosi E. Genetic Abnormalities, Clonal Evolution, and Cancer Stem Cells of Brain Tumors. Med Sci (Basel) 2018; 6:E85. [PMID: 30279357 PMCID: PMC6313628 DOI: 10.3390/medsci6040085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Brain tumors are highly heterogeneous and have been classified by the World Health Organization in various histological and molecular subtypes. Gliomas have been classified as ranging from low-grade astrocytomas and oligodendrogliomas to high-grade astrocytomas or glioblastomas. These tumors are characterized by a peculiar pattern of genetic alterations. Pediatric high-grade gliomas are histologically indistinguishable from adult glioblastomas, but they are considered distinct from adult glioblastomas because they possess a different spectrum of driver mutations (genes encoding histones H3.3 and H3.1). Medulloblastomas, the most frequent pediatric brain tumors, are considered to be of embryonic derivation and are currently subdivided into distinct subgroups depending on histological features and genetic profiling. There is emerging evidence that brain tumors are maintained by a special neural or glial stem cell-like population that self-renews and gives rise to differentiated progeny. In many instances, the prognosis of the majority of brain tumors remains negative and there is hope that the new acquisition of information on the molecular and cellular bases of these tumors will be translated in the development of new, more active treatments.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
44
|
Marcu LG, Reid P, Bezak E. The Promise of Novel Biomarkers for Head and Neck Cancer from an Imaging Perspective. Int J Mol Sci 2018; 19:E2511. [PMID: 30149561 PMCID: PMC6165113 DOI: 10.3390/ijms19092511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 01/25/2023] Open
Abstract
It is an agreed fact that overall survival among head and neck cancer patients has increased over the last decade. Several factors however, are still held responsible for treatment failure requiring more in-depth evaluation. Among these, hypoxia and proliferation-specific parameters are the main culprits, along with the more recently researched cancer stem cells. This paper aims to present the latest developments in the field of biomarkers for hypoxia, stemness and tumour proliferation, from an imaging perspective that includes both Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) as well as functional magnetic resonance imaging (MRI). Quantitative imaging of biomarkers is a prerequisite for accurate treatment response assessment, bringing us closer to the highly needed personalised therapy.
Collapse
Affiliation(s)
- Loredana G Marcu
- Faculty of Science, University of Oradea, 410087 Oradea, Romania.
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Paul Reid
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
- Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
45
|
Anorma C, Hedhli J, Bearrood TE, Pino NW, Gardner SH, Inaba H, Zhang P, Li Y, Feng D, Dibrell SE, Kilian KA, Dobrucki LW, Fan TM, Chan J. Surveillance of Cancer Stem Cell Plasticity Using an Isoform-Selective Fluorescent Probe for Aldehyde Dehydrogenase 1A1. ACS CENTRAL SCIENCE 2018; 4:1045-1055. [PMID: 30159402 PMCID: PMC6107868 DOI: 10.1021/acscentsci.8b00313] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 05/19/2023]
Abstract
Cancer stem cells (CSCs) are progenitor cells that contribute to treatment-resistant phenotypes during relapse. CSCs exist in specific tissue microenvironments that cell cultures and more complex models cannot mimic. Therefore, the development of new approaches that can detect CSCs and report on specific properties (e.g., stem cell plasticity) in their native environment have profound implications for studying CSC biology. Herein, we present AlDeSense, a turn-on fluorescent probe for aldehyde dehydrogenase 1A1 (ALDH1A1) and Ctrl-AlDeSense, a matching nonresponsive reagent. Although ALDH1A1 contributes to the detoxification of reactive aldehydes, it is also associated with stemness and is highly elevated in CSCs. AlDeSense exhibits a 20-fold fluorescent enhancement when treated with ALDH1A1. Moreover, we established that AlDeSense is selective against a panel of common ALDH isoforms and exhibits exquisite chemostability against a collection of biologically relevant species. Through the application of surface marker antibody staining, tumorsphere assays, and assessment of tumorigenicity, we demonstrate that cells exhibiting high AlDeSense signal intensity have properties of CSCs. Using these probes in tandem, we have identified CSCs at the cellular level via flow cytometry and confocal imaging, as well as monitored their states in animal models.
Collapse
Affiliation(s)
- Chelsea Anorma
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jamila Hedhli
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1304 W. Springfield Avenue, Urbana, Illinois 61801, United
States
- Beckman Institute
for Advanced Science and Technology, University
of Illinois at Urbana−Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas E. Bearrood
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nicholas W. Pino
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sarah H. Gardner
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hiroshi Inaba
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Pamela Zhang
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yanfen Li
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1304 W. Springfield Avenue, Urbana, Illinois 61801, United
States
| | - Daven Feng
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sara E. Dibrell
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kristopher A. Kilian
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1304 W. Springfield Avenue, Urbana, Illinois 61801, United
States
- School
of Materials Science and Engineering, School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lawrence W. Dobrucki
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1304 W. Springfield Avenue, Urbana, Illinois 61801, United
States
- Beckman Institute
for Advanced Science and Technology, University
of Illinois at Urbana−Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Timothy M. Fan
- Department
of Veterinary Clinical Medicine, University
of Illinois at Urbana−Champaign, 2001 S Lincoln Avenue, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute
for Advanced Science and Technology, University
of Illinois at Urbana−Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- E-mail:
| |
Collapse
|
46
|
Marcu LG, Moghaddasi L, Bezak E. Imaging of Tumor Characteristics and Molecular Pathways With PET: Developments Over the Last Decade Toward Personalized Cancer Therapy. Int J Radiat Oncol Biol Phys 2018; 102:1165-1182. [PMID: 29907486 DOI: 10.1016/j.ijrobp.2018.04.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE Improvements in personalized therapy are made possible by the advances in molecular biology that led to developments in molecular imaging, allowing highly specific in vivo imaging of biological processes. Positron emission tomography (PET) is the most specific and sensitive imaging technique for in vivo molecular targets and pathways, offering quantification and evaluation of functional properties of the targeted anatomy. MATERIALS AND METHODS This work is an integrative research review that summarizes and evaluates the accumulated current status of knowledge of recent advances in PET imaging for cancer diagnosis and treatment, concentrating on novel radiotracers and evaluating their advantages and disadvantages in cancer characterization. Medline search was conducted, limited to English publications from 2007 onward. Identified manuscripts were evaluated for most recent developments in PET imaging of cancer hypoxia, angiogenesis, proliferation, and clonogenic cancer stem cells (CSC). RESULTS There is an expansion observed from purely metabolic-based PET imaging toward antibody-based PET to achieve more information on cancer characteristics to identify hypoxia, proangiogenic factors, CSC, and others. 64Cu-ATSM, for example, can be used both as a hypoxia and a CSC marker. CONCLUSIONS Progress in the field of functional imaging will possibly lead to more specific tumor targeting and personalized treatment, increasing tumor control and improving quality of life.
Collapse
Affiliation(s)
- Loredana Gabriela Marcu
- Faculty of Science, University of Oradea, Oradea, Romania; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA, Australia
| | - Leyla Moghaddasi
- GenesisCare, Tennyson Centre, Adelaide SA, Australia; Department of Physics, University of Adelaide, Adelaide SA, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA, Australia; Department of Physics, University of Adelaide, Adelaide SA, Australia.
| |
Collapse
|
47
|
Zhao J, Chen J, Ma S, Liu Q, Huang L, Chen X, Lou K, Wang W. Recent developments in multimodality fluorescence imaging probes. Acta Pharm Sin B 2018; 8:320-338. [PMID: 29881672 PMCID: PMC5989919 DOI: 10.1016/j.apsb.2018.03.010] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI) probe integration with other imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and photoacoustic imaging (PAI). The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy.
Collapse
Affiliation(s)
- Jianhong Zhao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Junwei Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Shengnan Ma
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Qianqian Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Lixian Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Xiani Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyan Lou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
48
|
Wang W, Ma Z, Zhu S, Wan H, Yue J, Ma H, Ma R, Yang Q, Wang Z, Li Q, Qian Y, Yue C, Wang Y, Fan L, Zhong Y, Zhou Y, Gao H, Ruan J, Zhiyuan H, Liang Y, Hongjie D. Molecular Cancer Imaging in the Second Near-Infrared Window Using a Renal-Excreted NIR-II Fluorophore-Peptide Probe. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800106. [PMID: 29682821 PMCID: PMC6485425 DOI: 10.1002/adma.201800106] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/11/2018] [Indexed: 05/04/2023]
Abstract
In vivo molecular imaging of tumors targeting a specific cancer cell marker is a promising strategy for cancer diagnosis and imaging guided surgery and therapy. While targeted imaging often relies on antibody-modified probes, peptides can afford targeting probes with small sizes, high penetrating ability, and rapid excretion. Recently, in vivo fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) shows promise in reaching sub-centimeter depth with microscale resolution. Here, a novel peptide (named CP) conjugated NIR-II fluorescent probe is reported for molecular tumor imaging targeting a tumor stem cell biomarker CD133. The click chemistry derived peptide-dye (CP-IRT dye) probe afforded efficient in vivo tumor targeting in mice with a high tumor-to-normal tissue signal ratio (T/NT > 8). Importantly, the CP-IRT probes are rapidly renal excreted (≈87% excretion within 6 h), in stark contrast to accumulation in the liver for typical antibody-dye probes. Further, with NIR-II emitting CP-IRT probes, urethra of mice can be imaged fluorescently for the first time noninvasively through intact tissue. The NIR-II fluorescent, CD133 targeting imaging probes are potentially useful for human use in the clinic for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Weizhi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Zhuoran Ma
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Shoujun Zhu
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Hao Wan
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jingying Yue
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Huilong Ma
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China
| | - Rui Ma
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China
| | - Qinglai Yang
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China
| | - Zihua Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qian Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yixia Qian
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Chunyan Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuehua Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Linyang Fan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yeteng Zhong
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Ying Zhou
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Hongpeng Gao
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Junshan Ruan
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Hu Zhiyuan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Yongye Liang
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China
| | - Dai Hongjie
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
49
|
Discovery of cell surface vimentin targeting mAb for direct disruption of GBM tumor initiating cells. Oncotarget 2018; 7:72021-72032. [PMID: 27713131 PMCID: PMC5342141 DOI: 10.18632/oncotarget.12458] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/29/2016] [Indexed: 01/10/2023] Open
Abstract
Intracellular vimentin overexpression has been associated with epithelial–mesenchymal transition, metastasis, invasion, and proliferation, but cell surface vimentin (CSV) is less understood. Furthermore, it remains unknown whether CSV can serve as a therapeutic target in CSV-expressing tumor cells. We found that CSV was present on glioblastoma multiforme (GBM) cancer stem cells and that CSV expression was associated with spheroid formation in those cells. A newly developed monoclonal antibody against CSV, 86C, specifically and significantly induced apoptosis and inhibited spheroid formation in GBM cells in vitro. The addition of 86C to GBM cells in vitro also led to rapid internalization of vimentin and decreased GBM cell viability. These findings were associated with an increase in caspase-3 activity, indicating activation of apoptosis. Finally, treatment with 86C inhibited GBM progression in vivo. In conclusion, CSV-expressing GBM cells have properties of tumor initiating cells, and targeting CSV with the monoclonal antibody 86C is a promising approach in the treatment of GBM.
Collapse
|
50
|
Firat E, Niedermann G. FoxO proteins or loss of functional p53 maintain stemness of glioblastoma stem cells and survival after ionizing radiation plus PI3K/mTOR inhibition. Oncotarget 2018; 7:54883-54896. [PMID: 27448972 PMCID: PMC5342388 DOI: 10.18632/oncotarget.10702] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/12/2016] [Indexed: 01/08/2023] Open
Abstract
Dual PI3K/mTOR inhibitors do not effectively radiosensitize glioblastoma multiforme stem cells (GBM-SCs), but p53-proficient GBM-SCs are more responsive than p53-deficient ones. Here, we found that p53-proficient, but not p53-deficient, GBM-SCs lost stemness and differentiated after γ-irradiation combined with PI3K/mTOR inhibition; expression of FoxO proteins was also lost. FoxO overexpression inhibited the loss of stem cell markers under these conditions. Combined, but not single, FoxO1/3 deletion or pharmacological inhibition of FoxO transcriptional activity strongly reduced stem and progenitor marker expression, particularly that of Sox2. Binding of FoxO1 and FoxO3 to the sox2 regulatory regions was also found. However, combined FoxO1/3 knockdown strongly reduced self-renewal and post-treatment survival only in p53-proficient GBM-SCs. This suggests that FoxO1 and FoxO3 are crucial for functional stemness and post-treatment survival mainly in p53-proficient but not in p53-deficient GBM-SCs, and that these functions can be maintained through the loss of DNA damage-responsive p53 instead.
Collapse
Affiliation(s)
- Elke Firat
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|