1
|
Bottura B, McConnell G, Florek LC, Smiley MK, Martin R, Foylan S, Eana A, Dayton HT, Eckartt KN, Price-Whelan AM, Hoskisson PA, Gould GW, Dietrich LE, Rooney LM. Oxygen microenvironments in Escherichia coli biofilm nutrient transport channels: insights from complementary sensing approaches. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001543. [PMID: 40327388 PMCID: PMC12056250 DOI: 10.1099/mic.0.001543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/03/2025] [Indexed: 05/07/2025]
Abstract
Chemical gradients and the emergence of distinct microenvironments in biofilms are vital to the stratification, maturation and overall function of microbial communities. These gradients have been well characterized throughout the biofilm mass, but the microenvironment of recently discovered nutrient transporting channels in Escherichia coli biofilms remains unexplored. This study employs three different oxygen sensing approaches to provide a robust quantitative overview of the oxygen gradients and microenvironments throughout the biofilm transport channel networks formed by E. coli macrocolony biofilms. Oxygen nanosensing combined with confocal laser scanning microscopy established that the oxygen concentration changes along the length of biofilm transport channels. Electrochemical sensing provided precise quantification of the oxygen profile in the transport channels, showing similar anoxic profiles compared with the adjacent cells. Anoxic biosensing corroborated these approaches, providing an overview of the oxygen utilization throughout the biomass. The discovery that transport channels maintain oxygen gradients contradicts the previous literature that channels are completely open to the environment along the apical surface of the biofilm. We provide a potential mechanism for the sustenance of channel microenvironments via orthogonal visualizations of biofilm thin sections showing thin layers of actively growing cells. This complete overview of the oxygen environment in biofilm transport channels primes future studies aiming to exploit these emergent structures for new bioremediation approaches.
Collapse
Affiliation(s)
- Beatrice Bottura
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Gail McConnell
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Lindsey C. Florek
- Department of Biological Sciences, University of Columbia, New York City, NY, 10027, USA
| | - Marina K. Smiley
- Department of Biological Sciences, University of Columbia, New York City, NY, 10027, USA
| | - Ross Martin
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Shannan Foylan
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Ash Eana
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Hannah T. Dayton
- Department of Biological Sciences, University of Columbia, New York City, NY, 10027, USA
| | - Kelly N. Eckartt
- Department of Biological Sciences, University of Columbia, New York City, NY, 10027, USA
| | - Alexa M. Price-Whelan
- Department of Biological Sciences, University of Columbia, New York City, NY, 10027, USA
| | - Paul A. Hoskisson
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Gwyn W. Gould
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Lars E.P. Dietrich
- Department of Biological Sciences, University of Columbia, New York City, NY, 10027, USA
| | - Liam M. Rooney
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
- Department of Bacteriology, School of Infection & Immunity, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
2
|
Dey S, Nayak AK, Rajaram H, Das S. Exploitative stress within Bacillus subtilis biofilm determines the spatial distribution of pleomorphic cells. Microbiol Res 2025; 292:128034. [PMID: 39729737 DOI: 10.1016/j.micres.2024.128034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Bacteria commonly live in a spatially organized biofilm assemblage. The metabolic activity inside the biofilm leads to segmented physiological microenvironments. In nature, bacteria possess several pleomorphic forms to withstand certain ecological alterations. We hypothesized that pleomorphism also exists within the biofilm, which can be considered as the fundamental niche for bacteria. We report a distinct pattern of cell size variation throughout the biofilm of Bacillus subtilis. Cell size heterogeneity was observed in biofilm development, wherein the frequency of long cells is higher in outer regions, whereas lower in inner regions. Moreover, compared to planktonic cells, bacteria in the biofilm mode reduce their geometric ratio from 8.34 to 3.69 and 2.65 in the outer and inner regions, respectively. There were no significant differences observed in nutrient diffusion from the outer to the inner region, and more than 73 % of cells in the inner region were viable. However, the inner and middle regions were more acidic than the outer of the biofilm. Conclusively, growth rate-independent cell size reduction at low pH suggests that the resulting phenotype switching within biofilm was observed due to the pH gradient of neutral to acidic from the outer to the core of the biofilm. This gradient of H+ ions concentration may create exploitative stress within the biofilm, which could favor specific pleomorphic cells to thrive in their specialized niches. By understanding the cell size variation in response to the local environment, we propose a model of biofilm formation by pleomorphic cells.
Collapse
Affiliation(s)
- Sumon Dey
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ankit Kumar Nayak
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Institute, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
3
|
van Hoogstraten SWG, Kuik C, Arts JJC, Cillero-Pastor B. Molecular imaging of bacterial biofilms-a systematic review. Crit Rev Microbiol 2024; 50:971-992. [PMID: 37452571 PMCID: PMC11523921 DOI: 10.1080/1040841x.2023.2223704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
The formation of bacterial biofilms in the human body and on medical devices is a serious human health concern. Infections related to bacterial biofilms are often chronic and difficult to treat. Detailed information on biofilm formation and composition over time is essential for a fundamental understanding of the underlying mechanisms of biofilm formation and its response to anti-biofilm therapy. However, information on the chemical composition, structural components of biofilms, and molecular interactions regarding metabolism- and communication pathways within the biofilm, such as uptake of administered drugs or inter-bacteria communication, remains elusive. Imaging these molecules and their distribution in the biofilm increases insight into biofilm development, growth, and response to environmental factors or drugs. This systematic review provides an overview of molecular imaging techniques used for bacterial biofilm imaging. The techniques included mass spectrometry-based techniques, fluorescence-labelling techniques, spectroscopic techniques, nuclear magnetic resonance spectroscopy (NMR), micro-computed tomography (µCT), and several multimodal approaches. Many molecules were imaged, such as proteins, lipids, metabolites, and quorum-sensing (QS) molecules, which are crucial in intercellular communication pathways. Advantages and disadvantages of each technique, including multimodal approaches, to study molecular processes in bacterial biofilms are discussed, and recommendations on which technique best suits specific research aims are provided.
Collapse
Affiliation(s)
- S. W. G. van Hoogstraten
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - C. Kuik
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
| | - J. J. C. Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - B. Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, The MERLN Institute for Technology-Inspired Regenerative Medicine, University of Maastricht, Maastricht, the Netherlands
| |
Collapse
|
4
|
Flores P, Luo J, Mueller DW, Muecklich F, Zea L. Space biofilms - An overview of the morphology of Pseudomonas aeruginosa biofilms grown on silicone and cellulose membranes on board the international space station. Biofilm 2024; 7:100182. [PMID: 38370151 PMCID: PMC10869243 DOI: 10.1016/j.bioflm.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/22/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024] Open
Abstract
Microorganisms' natural ability to live as organized multicellular communities - also known as biofilms - provides them with unique survival advantages. For instance, bacterial biofilms are protected against environmental stresses thanks to their extracellular matrix, which could contribute to persistent infections after treatment with antibiotics. Bacterial biofilms are also capable of strongly attaching to surfaces, where their metabolic by-products could lead to surface material degradation. Furthermore, microgravity can alter biofilm behavior in unexpected ways, making the presence of biofilms in space a risk for both astronauts and spaceflight hardware. Despite the efforts to eliminate microorganism contamination from spacecraft surfaces, it is impossible to prevent human-associated bacteria from eventually establishing biofilm surface colonization. Nevertheless, by understanding the changes that bacterial biofilms undergo in microgravity, it is possible to identify key differences and pathways that could be targeted to significantly reduce biofilm formation. The bacterial component of Space Biofilms project, performed on the International Space Station in early 2020, contributes to such understanding by characterizing the morphology and gene expression of bacterial biofilms formed in microgravity with respect to ground controls. Pseudomonas aeruginosa was used as model organism due to its relevance in biofilm studies and its ability to cause urinary tract infections as an opportunistic pathogen. Biofilm formation was characterized at one, two, and three days of incubation (37 °C) over six different materials. Materials reported in this manuscript include catheter grade silicone, selected due to its medical relevance in hospital acquired infections, catheter grade silicone with ultrashort pulsed direct laser interference patterning, included to test microtopographies as a potential biofilm control strategy, and cellulose membrane to replicate the column and canopy structure previously reported from a microgravity study. We here present an overview of the biofilm morphology, including 3D images of the biofilms to represent the distinctive morphology observed in each material tested, and some of the key differences in biofilm thickness, mass, and surface area coverage. We also present the impact of the surface microtopography in biofilm formation across materials, incubation time, and gravitational conditions. The Space Biofilms project (bacterial side) is supported by the National Aeronautics and Space Administration under Grant No. 80NSSC17K0036 and 80NSSC21K1950.
Collapse
Affiliation(s)
- Pamela Flores
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado, 3775 Discovery Drive, Boulder, CO, USA, 80309
| | - Jiaqi Luo
- Saarland University, 66123, Saarbrücken, Saarland, Germany
| | | | | | - Luis Zea
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado, 3775 Discovery Drive, Boulder, CO, USA, 80309
| |
Collapse
|
5
|
Hadjifrangiskou M. Sampling the rainbow. Nat Chem Biol 2023:10.1038/s41589-023-01305-6. [PMID: 37055615 DOI: 10.1038/s41589-023-01305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Affiliation(s)
- Maria Hadjifrangiskou
- Department of Pathology, Microbiology & Immunology at Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Abstract
Extracellular electron transfer (EET) is a process via which certain microorganisms, such as bacteria, exchange electrons with extracellular materials by creating an electrical link across their membranes. EET has been studied for the reactions on solid materials such as minerals and electrodes with implication in geobiology and biotechnology. EET-capable bacteria exhibit broad phylogenetic diversity, and some are found in environments with various types of electron acceptors/donors not limited to electrodes or minerals. Oxygen has also been shown to serve as the terminal electron acceptor for EET of Pseudomonas aeruginosa and Faecalibacterium prausnitzii. However, the physiological significance of such oxygen-terminating EETs, as well as the mechanisms underlying them, remain unclear. In order to understand the physiological advantage of oxygen-terminating EET and its link with energy metabolism, in this review, we compared oxygen-terminating EET with aerobic respiration, fermentation, and electrode-terminating EET. We also summarized benefits and limitations of oxygen-terminating EET in a biofilm setting, which indicate that EET capability enables bacteria to create a niche in the anoxic zone of aerobic biofilms, thereby remodeling bacterial metabolic activities in biofilms.
Collapse
|
7
|
Formation of unique T-shape budding and differential impacts of low surface water on Bacillus mycoides rhizoidal colony. Arch Microbiol 2022; 204:528. [PMID: 35896814 DOI: 10.1007/s00203-022-03141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
Abstract
Bacillus mycoides Ko01 strain grows rapidly and forms extensive rhizoidal colonies on hard agar despite limited surface water availability. The agar concentrations affect the handedness of the colonies as well as other colony architectures. In this study, we found that the local curvature of cell chains in the developing colonies did not vary based on the agar concentration, while concentration does affect the handedness of chirality at the macroscale. This result suggests independence between the microscale filament curvature and macroscale colony chirality. In addition, we discovered a novel microscopic property of cells that has not been observed before: T-shaped budding under extremely low surface water availability conditions. We propose that this feature gives rise to chaotic colony morphology. Together with bundling of chains, cells form a unique set of spatial arrangements under different surface water availability. These properties appear to impact the structural features of thick tendrils, and thereby the overall morphology of colonies. Our study provides additional insights as to how bacteria proliferate, spread, and develop macroscale colony architecture under water-limited conditions.
Collapse
|
8
|
Geisel S, Secchi E, Vermant J. The role of surface adhesion on the macroscopic wrinkling of biofilms. eLife 2022; 11:e76027. [PMID: 35723588 PMCID: PMC9208754 DOI: 10.7554/elife.76027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
Biofilms, bacterial communities of cells encased by a self-produced matrix, exhibit a variety of three-dimensional structures. Specifically, channel networks formed within the bulk of the biofilm have been identified to play an important role in the colonies' viability by promoting the transport of nutrients and chemicals. Here, we study channel formation and focus on the role of the adhesion of the biofilm matrix to the substrate in Pseudomonas aeruginosa biofilms grown under constant flow in microfluidic channels. We perform phase contrast and confocal laser scanning microscopy to examine the development of the biofilm structure as a function of the substrates' surface energy. The formation of the wrinkles and folds is triggered by a mechanical buckling instability, controlled by biofilm growth rate and the film's adhesion to the substrate. The three-dimensional folding gives rise to hollow channels that rapidly increase the effective volume occupied by the biofilm and facilitate bacterial movement inside them. The experiments and analysis on mechanical instabilities for the relevant case of a bacterial biofilm grown during flow enable us to predict and control the biofilm morphology.
Collapse
Affiliation(s)
- Steffen Geisel
- Laboratory for Soft Materials, Department of Materials, ETH ZurichZurichSwitzerland
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, ETH ZurichZurichSwitzerland
| | - Jan Vermant
- Laboratory for Soft Materials, Department of Materials, ETH ZurichZurichSwitzerland
| |
Collapse
|
9
|
Lu J, Şimşek E, Silver A, You L. Advances and challenges in programming pattern formation using living cells. Curr Opin Chem Biol 2022; 68:102147. [PMID: 35472832 PMCID: PMC9158282 DOI: 10.1016/j.cbpa.2022.102147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
Spatial patterning of cell populations is a ubiquitous phenomenon in nature. Patterns occur at various length and time scales and exhibit immense diversity. In addition to offering a deeper understanding of the emergence of patterns in nature, the ability to program synthetic patterns using living cells has the potential for broad applications. To date, however, progress in engineering pattern formation has been hampered by technical challenges. In this Review, we discuss recent advances in programming pattern formation in terms of biological insights, experimental and computational tool development, and potential applications.
Collapse
Affiliation(s)
- Jia Lu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Emrah Şimşek
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Anita Silver
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27708, USA.
| |
Collapse
|
10
|
Exploratory Growth in Streptomyces venezuelae Involves a Unique Transcriptional Program, Enhanced Oxidative Stress Response, and Profound Acceleration in Response to Glycerol. J Bacteriol 2022; 204:e0062321. [PMID: 35254103 DOI: 10.1128/jb.00623-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exploration is a recently discovered mode of growth and behavior exhibited by some Streptomyces species that is distinct from their classical sporulating life cycle. While much has been uncovered regarding initiating environmental conditions and phenotypic outcomes of exploratory growth, how this process is coordinated at a genetic level remains unclear. We used RNA sequencing to survey global changes in the transcriptional profile of exploring cultures over time in the model organism Streptomyces venezuelae. Transcriptomic analyses revealed widespread changes in gene expression impacting diverse cellular functions. Investigations into differentially expressed regulatory elements revealed specific groups of regulatory factors to be impacted, including the expression of several extracytoplasmic function (ECF) sigma factors, second messenger signaling pathways, and members of the whiB-like (wbl) family of transcription factors. Dramatic changes were observed among primary metabolic pathways, especially among respiration-associated genes and the oxidative stress response; enzyme assays confirmed that exploring cultures exhibit an enhanced oxidative stress response compared with classically growing cultures. Changes in the expression of the glycerol catabolic genes in S. venezuelae led to the discovery that glycerol supplementation of the growth medium promotes a dramatic acceleration of exploration. This effect appears to be unique to glycerol as an alternative carbon source, and this response is broadly conserved across other exploration-competent species. IMPORTANCE Exploration represents an alternative growth strategy for Streptomyces bacteria and is initiated in response to other microbes or specific environmental conditions. Here, we show that entry into exploration involves comprehensive transcriptional reprogramming, with an emphasis on changes in primary metabolism and regulatory/signaling functions. Intriguingly, a number of transcription factor classes were downregulated upon entry into exploration. In contrast, respiration-associated genes were strongly induced, and this was accompanied by an enhanced oxidative stress response. Notably, our transcriptional analyses suggested that glycerol may play a role in exploration, and we found that glycerol supplementation dramatically enhanced the exploration response in many streptomycetes. This work sheds new light on the regulatory and metabolic cues that influence a fascinating new microbial behavior.
Collapse
|
11
|
Choi H, Zaki FR, Monroy GL, Won J, Boppart SA. Imaging and characterization of transitions in biofilm morphology via anomalous diffusion following environmental perturbation. BIOMEDICAL OPTICS EXPRESS 2022; 13:1654-1670. [PMID: 35414993 PMCID: PMC8973182 DOI: 10.1364/boe.449131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Microorganisms form macroscopic structures for the purpose of environmental adaptation. Sudden environmental perturbations induce dynamics that cause bacterial biofilm morphology to transit to another equilibrium state, thought to be related to anomalous diffusion processes. Here, detecting the super-diffusion characteristics would offer a long-sought goal for a rapid detection method of biofilm phenotypes based on their dynamics, such as growth or dispersal. In this paper, phase-sensitive Doppler optical coherence tomography (OCT) and dynamic light scattering (DLS) are combined to demonstrate wide field-of-view and label-free internal dynamic imaging of biofilms. The probability density functions (PDFs) of phase displacement of the backscattered light and the dynamic characteristics of the PDFs are estimated by a simplified mixed Cauchy and Gaussian model. This model can quantify the super-diffusion state and estimate the dynamic characteristics and macroscopic responses in biofilms that may further describe dispersion and growth in biofilm models.
Collapse
Affiliation(s)
- Honggu Choi
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Farzana R. Zaki
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Guillermo L. Monroy
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jungeun Won
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Radhakrishnan MP, Suryaletha K, Shankar A, Savithri AV, George S, Thomas S. Insights into Peptide Mediated Antibiofilm Treatment in Chronic Wound: A Bench to Bedside Approach. Curr Protein Pept Sci 2021; 22:50-59. [PMID: 33143623 DOI: 10.2174/1389203721666201103084727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/08/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
Chronic wound biofilm infections are a threat to the population with respect to morbidity and mortality. The presence of multidrug-resistant bacterial pathogens in chronic wound renders the action of antibiotics and antibiofilm agents difficult. Therefore an alternative therapy is essential for reducing bacterial biofilm burden. In this scenario, the peptide-based antibiofilm therapy for chronic wound biofilm management seeks more attention. A synthetic peptide with a broad range of antibiofilm activity against preformed and established biofilms, having the ability to kill multispecies bacteria within biofilms and possessing combinatorial activity with other antimicrobial agents, provides significant insights. In this review, we portray the possibilities and difficulties of peptide-mediated treatment in chronic wounds biofilm management and how it can be clinically translated into a product.
Collapse
Affiliation(s)
- Megha P Radhakrishnan
- Cholera and Biofilm Research Laboratory, Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology, Govt. of India, Trivandrum - 695 014, Kerala, India
| | - Karthika Suryaletha
- Cholera and Biofilm Research Laboratory, Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology, Govt. of India, Trivandrum - 695 014, Kerala, India
| | - Aparna Shankar
- Cholera and Biofilm Research Laboratory, Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology, Govt. of India, Trivandrum - 695 014, Kerala, India
| | - Akhila Velappan Savithri
- Cholera and Biofilm Research Laboratory, Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology, Govt. of India, Trivandrum - 695 014, Kerala, India
| | - Sanil George
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum - 695 014, Kerala, India
| | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology, Govt. of India, Trivandrum - 695 014, Kerala, India
| |
Collapse
|
13
|
Luo N, Wang S, Lu J, Ouyang X, You L. Collective colony growth is optimized by branching pattern formation in Pseudomonas aeruginosa. Mol Syst Biol 2021; 17:e10089. [PMID: 33900031 PMCID: PMC8073002 DOI: 10.15252/msb.202010089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 01/11/2023] Open
Abstract
Branching pattern formation is common in many microbes. Extensive studies have focused on addressing how such patterns emerge from local cell-cell and cell-environment interactions. However, little is known about whether and to what extent these patterns play a physiological role. Here, we consider the colonization of bacteria as an optimization problem to find the colony patterns that maximize colony growth efficiency under different environmental conditions. We demonstrate that Pseudomonas aeruginosa colonies develop branching patterns with characteristics comparable to the prediction of modeling; for example, colonies form thin branches in a nutrient-poor environment. Hence, the formation of branching patterns represents an optimal strategy for the growth of Pseudomonas aeruginosa colonies. The quantitative relationship between colony patterns and growth conditions enables us to develop a coarse-grained model to predict diverse colony patterns under more complex conditions, which we validated experimentally. Our results offer new insights into branching pattern formation as a problem-solving social behavior in microbes and enable fast and accurate predictions of complex spatial patterns in branching colonies.
Collapse
Affiliation(s)
- Nan Luo
- Department of Biomedical EngineeringDuke UniversityDurhamNCUSA
| | - Shangying Wang
- Department of Biomedical EngineeringDuke UniversityDurhamNCUSA
| | - Jia Lu
- Department of Biomedical EngineeringDuke UniversityDurhamNCUSA
| | | | - Lingchong You
- Department of Biomedical EngineeringDuke UniversityDurhamNCUSA
- Center for Genomic and Computational BiologyDuke UniversityDurhamNCUSA
- Department of Molecular Genetics and MicrobiologyDuke University School of MedicineDurhamNCUSA
| |
Collapse
|
14
|
Kowalski CH, Morelli KA, Stajich JE, Nadell CD, Cramer RA. A Heterogeneously Expressed Gene Family Modulates the Biofilm Architecture and Hypoxic Growth of Aspergillus fumigatus. mBio 2021; 12:e03579-20. [PMID: 33593969 PMCID: PMC8545126 DOI: 10.1128/mbio.03579-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
The genus Aspergillus encompasses human pathogens such as Aspergillus fumigatus and industrial powerhouses such as Aspergillus niger In both cases, Aspergillus biofilms have consequences for infection outcomes and yields of economically important products. However, the molecular components influencing filamentous fungal biofilm development, structure, and function remain ill defined. Macroscopic colony morphology is an indicator of underlying biofilm architecture and fungal physiology. A hypoxia-locked colony morphotype of A. fumigatus has abundant colony furrows that coincide with a reduction in vertically oriented hyphae within biofilms and increased low oxygen growth and virulence. Investigation of this morphotype has led to the identification of the causative gene, biofilm architecture factor A (bafA), a small cryptic open reading frame within a subtelomeric gene cluster. BafA is sufficient to induce the hypoxia-locked colony morphology and biofilm architecture in A. fumigatus Analysis across a large population of A. fumigatus isolates identified a larger family of baf genes, all of which have the capacity to modulate hyphal architecture, biofilm development, and hypoxic growth. Furthermore, introduction of A. fumigatusbafA into A. niger is sufficient to generate the hypoxia-locked colony morphology, biofilm architecture, and increased hypoxic growth. Together, these data indicate the potential broad impacts of this previously uncharacterized family of small genes to modulate biofilm architecture and function in clinical and industrial settings.IMPORTANCE The manipulation of microbial biofilms in industrial and clinical applications remains a difficult task. The problem is particularly acute with regard to filamentous fungal biofilms for which molecular mechanisms of biofilm formation, maintenance, and function are only just being elucidated. Here, we describe a family of small genes heterogeneously expressed across Aspergillus fumigatus strains that are capable of modifying colony biofilm morphology and microscopic hyphal architecture. Specifically, these genes are implicated in the formation of a hypoxia-locked colony morphotype that is associated with increased virulence of A. fumigatus Synthetic introduction of these gene family members, here referred to as biofilm architecture factors, in both A. fumigatus and A. niger additionally modulates low oxygen growth and surface adherence. Thus, these genes are candidates for genetic manipulation of biofilm development in aspergilli.
Collapse
Affiliation(s)
- Caitlin H Kowalski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Kaesi A Morelli
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
15
|
Emerging Roles of Functional Bacterial Amyloids in Gene Regulation, Toxicity, and Immunomodulation. Microbiol Mol Biol Rev 2020; 85:85/1/e00062-20. [PMID: 33239434 DOI: 10.1128/mmbr.00062-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria often reside in multicellular communities, called biofilms, held together by an extracellular matrix. In many bacteria, the major proteinaceous component of the biofilm are amyloid fibers. Amyloids are highly stable and structured protein aggregates which were known mostly to be associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. In recent years, microbial amyloids were identified also in other species and shown to play major roles in microbial physiology and virulence. For example, amyloid fibers assemble on the bacterial cell surface as a part of the extracellular matrix and are extremely important to the scaffolding and structural integrity of biofilms, which contribute to microbial resilience and resistance. Furthermore, microbial amyloids play fundamental nonscaffold roles that contribute to the development of biofilms underlying numerous persistent infections. Here, we review several nonscaffold roles of bacterial amyloid proteins, including bridging cells during collective migration, acting as regulators of cell fate, as toxins against other bacteria or against host immune cells, and as modulators of the hosts' immune system. These overall points on the complexity of the amyloid fold in encoding numerous activities, which offer approaches for the development of a novel repertoire of antivirulence therapeutics.
Collapse
|
16
|
Rooney LM, Amos WB, Hoskisson PA, McConnell G. Intra-colony channels in E. coli function as a nutrient uptake system. THE ISME JOURNAL 2020; 14:2461-2473. [PMID: 32555430 PMCID: PMC7490401 DOI: 10.1038/s41396-020-0700-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
The ability of microorganisms to grow as aggregated assemblages has been known for many years, however their structure has remained largely unexplored across multiple spatial scales. The development of the Mesolens, an optical system which uniquely allows simultaneous imaging of individual bacteria over a 36 mm2 field of view, has enabled the study of mature Escherichia coli macro-colony biofilm architecture like never before. The Mesolens enabled the discovery of intra-colony channels on the order of 10 μm in diameter, that are integral to E. coli macro-colony biofilms and form as an emergent property of biofilm growth. These channels have a characteristic structure and re-form after total mechanical disaggregation of the colony. We demonstrate that the channels are able to transport particles and play a role in the acquisition of and distribution of nutrients through the biofilm. These channels potentially offer a new route for the delivery of dispersal agents for antimicrobial drugs to biofilms, ultimately lowering their impact on public health and industry.
Collapse
Affiliation(s)
- Liam M Rooney
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - William B Amos
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Gail McConnell
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| |
Collapse
|
17
|
Pruteanu M, Hernández Lobato JI, Stach T, Hengge R. Common plant flavonoids prevent the assembly of amyloid curli fibres and can interfere with bacterial biofilm formation. Environ Microbiol 2020; 22:5280-5299. [PMID: 32869465 DOI: 10.1111/1462-2920.15216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023]
Abstract
Like all macroorganisms, plants have to control bacterial biofilm formation on their surfaces. On the other hand, biofilms are highly tolerant against antimicrobial agents and other stresses. Consequently, biofilms are also involved in human chronic infectious diseases, which generates a strong demand for anti-biofilm agents. Therefore, we systematically explored major plant flavonoids as putative anti-biofilm agents using different types of biofilms produced by Gram-negative and Gram-positive bacteria. In Escherichia coli macrocolony biofilms, the flavone luteolin and the flavonols myricetin, morin and quercetin were found to strongly reduce the extracellular matrix. These agents directly inhibit the assembly of amyloid curli fibres by driving CsgA subunits into an off-pathway leading to SDS-insoluble oligomers. In addition, they can interfere with cellulose production by still unknown mechanisms. Submerged biofilm formation, however, is hardly affected. Moreover, the same flavonoids tend to stimulate macrocolony and submerged biofilm formation by Pseudomonas aeruginosa. For Bacillus subtilis, the flavonone naringenin and the chalcone phloretin were found to inhibit growth. Thus, plant flavonoids are not general anti-biofilm compounds but show species-specific effects. However, based on their strong and direct anti-amyloidogenic activities, distinct plant flavonoids may provide an attractive strategy to specifically combat amyloid-based biofilms of some relevant pathogens.
Collapse
Affiliation(s)
- Mihaela Pruteanu
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | | | - Thomas Stach
- Institut für Biologie/Zoologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| |
Collapse
|
18
|
Saunders SH, Tse ECM, Yates MD, Otero FJ, Trammell SA, Stemp EDA, Barton JK, Tender LM, Newman DK. Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms. Cell 2020; 182:919-932.e19. [PMID: 32763156 DOI: 10.1016/j.cell.2020.07.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/19/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
Abstract
Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm.
Collapse
Affiliation(s)
- Scott H Saunders
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA
| | - Edmund C M Tse
- Division of Chemistry and Chemical Engineering, Caltech, Pasadena, CA, USA; Department of Chemistry, University of Hong Kong, Hong Kong SAR, China
| | - Matthew D Yates
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | | | - Scott A Trammell
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Eric D A Stemp
- Department of Physical Sciences, Mt. Saint Mary's University, Los Angeles, CA, USA
| | | | - Leonard M Tender
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA.
| | - Dianne K Newman
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA; Division of Geological and Planetary Sciences, Caltech, Pasadena, CA, USA.
| |
Collapse
|
19
|
Cornell WC, Zhang Y, Bendebury A, Hartel AJ, Shepard KL, Dietrich LE. Phenazine oxidation by a distal electrode modulates biofilm morphogenesis. Biofilm 2020; 2:100025. [PMID: 33447810 PMCID: PMC7798475 DOI: 10.1016/j.bioflm.2020.100025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 11/20/2022] Open
Abstract
Microbes living in biofilms, dense assemblages of cells, experience limitation for resources such as oxygen when cellular consumption outpaces diffusion. The pathogenic bacterium Pseudomonas aeruginosa has strategies for coping with hypoxia that support cellular redox balancing in biofilms; these include (1) increasing access to oxygen by forming wrinkles in the biofilm surface and (2) electrochemically reducing endogenous compounds called phenazines, which can shuttle electrons to oxidants available at a distance. Phenazine-mediated extracellular electron transfer (EET) has been shown to support survival for P. aeruginosa cells in anoxic liquid cultures, but the physiological relevance of EET over a distance for P. aeruginosa biofilms has remained unconfirmed. Here, we use a custom-built electrochemistry setup to show that phenazine-mediated electron transfer at a distance inhibits wrinkle formation in P. aeruginosa biofilms. This result demonstrates that phenazine-dependent EET to a distal oxidant affects biofilm morphogenesis.
Collapse
Affiliation(s)
- William Cole Cornell
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Yihan Zhang
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Anastasia Bendebury
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Andreas J.W. Hartel
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
- Corresponding authors.
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
- Corresponding authors.
| |
Collapse
|
20
|
Ciemniecki JA, Newman DK. The Potential for Redox-Active Metabolites To Enhance or Unlock Anaerobic Survival Metabolisms in Aerobes. J Bacteriol 2020; 202:e00797-19. [PMID: 32071098 PMCID: PMC7221258 DOI: 10.1128/jb.00797-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Classifying microorganisms as "obligate" aerobes has colloquially implied death without air, leading to the erroneous assumption that, without oxygen, they are unable to survive. However, over the past few decades, more than a few obligate aerobes have been found to possess anaerobic energy conservation strategies that sustain metabolic activity in the absence of growth or at very low growth rates. Similarly, studies emphasizing the aerobic prowess of certain facultative aerobes have sometimes led to underrecognition of their anaerobic capabilities. Yet an inescapable consequence of the affinity both obligate and facultative aerobes have for oxygen is that the metabolism of these organisms may drive this substrate to scarcity, making anoxic survival an essential skill. To illustrate this, we highlight the importance of anaerobic survival strategies for Pseudomonas aeruginosa and Streptomyces coelicolor, representative facultative and obligate aerobes, respectively. Included among these strategies, we describe a role for redox-active secondary metabolites (RAMs), such as phenazines made by P. aeruginosa, in enhancing substrate-level phosphorylation. Importantly, RAMs are made by diverse bacteria, often during stationary phase in the absence of oxygen, and can sustain anoxic survival. We present a hypothesis for how RAMs may enhance or even unlock energy conservation pathways that facilitate the anaerobic survival of both RAM producers and nonproducers.
Collapse
Affiliation(s)
- John A Ciemniecki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
21
|
Metabolic Heterogeneity and Cross-Feeding in Bacterial Multicellular Systems. Trends Microbiol 2020; 28:732-743. [PMID: 32781027 DOI: 10.1016/j.tim.2020.03.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/25/2020] [Indexed: 01/19/2023]
Abstract
Cells in assemblages differentiate and perform distinct roles. Though many pathways of differentiation are understood at the molecular level in multicellular eukaryotes, the elucidation of similar processes in bacterial assemblages is recent and ongoing. Here, we discuss examples of bacterial differentiation, focusing on cases in which distinct metabolisms coexist and those that exhibit cross-feeding, with one subpopulation producing substrates that are metabolized by a second subpopulation. We describe several studies of single-species systems, then segue to studies of multispecies metabolic heterogeneity and cross-feeding in the clinical setting. Many of the studies described exemplify the application of new techniques and modeling approaches that provide insights into metabolic interactions relevant for bacterial growth outside the laboratory.
Collapse
|
22
|
Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates. Proc Natl Acad Sci U S A 2020; 117:7622-7632. [PMID: 32193350 DOI: 10.1073/pnas.1919607117] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During development, organisms acquire three-dimensional (3D) shapes with important physiological consequences. While basic mechanisms underlying morphogenesis are known in eukaryotes, it is often difficult to manipulate them in vivo. To circumvent this issue, here we present a study of developing Vibrio cholerae biofilms grown on agar substrates in which the spatiotemporal morphological patterns were altered by varying the agar concentration. Expanding biofilms are initially flat but later undergo a mechanical instability and become wrinkled. To gain mechanistic insights into this dynamic pattern-formation process, we developed a model that considers diffusion of nutrients and their uptake by bacteria, bacterial growth/biofilm matrix production, mechanical deformation of both the biofilm and the substrate, and the friction between them. Our model shows quantitative agreement with experimental measurements of biofilm expansion dynamics, and it accurately predicts two distinct spatiotemporal patterns observed in the experiments-the wrinkles initially appear either in the peripheral region and propagate inward (soft substrate/low friction) or in the central region and propagate outward (stiff substrate/high friction). Our results, which establish that nonuniform growth and friction are fundamental determinants of stress anisotropy and hence biofilm morphology, are broadly applicable to bacterial biofilms with similar morphologies and also provide insight into how other bacterial biofilms form distinct wrinkle patterns. We discuss the implications of forming undulated biofilm morphologies, which may enhance the availability of nutrients and signaling molecules and serve as a "bet hedging" strategy.
Collapse
|
23
|
Budell WC, Germain GA, Janisch N, McKie-Krisberg Z, Jayaprakash AD, Resnick AE, Quadri LEN. Transposon mutagenesis in Mycobacterium kansasii links a small RNA gene to colony morphology and biofilm formation and identifies 9,885 intragenic insertions that do not compromise colony outgrowth. Microbiologyopen 2020; 9:e988. [PMID: 32083796 PMCID: PMC7142372 DOI: 10.1002/mbo3.988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium kansasii (Mk) is a resilient opportunistic human pathogen that causes tuberculosis‐like chronic pulmonary disease and mortality stemming from comorbidities and treatment failure. The standard treatment of Mk infections requires costly, long‐term, multidrug courses with adverse side effects. The emergence of drug‐resistant isolates further complicates the already challenging drug therapy regimens and threatens to compromise the future control of Mk infections. Despite the increasingly recognized global burden of Mk infections, the biology of this opportunistic pathogen remains essentially unexplored. In particular, studies reporting gene function or generation of defined mutants are scarce. Moreover, no transposon (Tn) mutagenesis tool has been validated for use in Mk, a situation limiting the repertoire of genetic approaches available to accelerate the dissection of gene function and the generation of gene knockout mutants in this poorly characterized pathogen. In this study, we validated the functionality of a powerful Tn mutagenesis tool in Mk and used this tool in conjunction with a forward genetic screen to establish a previously unrecognized role of a conserved mycobacterial small RNA gene of unknown function in colony morphology features and biofilm formation. We also combined Tn mutagenesis with next‐generation sequencing to identify 12,071 Tn insertions that do not compromise viability in vitro. Finally, we demonstrated the susceptibility of the Galleria mellonella larva to Mk, setting the stage for further exploration of this simple and economical infection model system to the study of this pathogen.
Collapse
Affiliation(s)
- William C Budell
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Gabrielle A Germain
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Zaid McKie-Krisberg
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | | | - Andrew E Resnick
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | - Luis E N Quadri
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA.,Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| |
Collapse
|
24
|
Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14. J Bacteriol 2020; 202:JB.00700-19. [PMID: 31767778 DOI: 10.1128/jb.00700-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Extracellular electron transfer (EET), the reduction of compounds that shuttle electrons to distal oxidants, can support bacterial survival when preferred oxidants are not directly accessible. EET has been shown to contribute to virulence in some pathogenic organisms and is required for current generation in mediator-based fuel cells. In several species, components of the electron transport chain (ETC) have been implicated in electron shuttle reduction, raising the question of how shuttling-based metabolism is integrated with primary routes of metabolic electron flow. The clinically relevant bacterium Pseudomonas aeruginosa can utilize carbon sources (i.e., electron donors) covering a broad range of reducing potentials and possesses a branched ETC that can be modulated to optimize respiratory efficiency. It also produces electron shuttles called phenazines that facilitate intracellular redox balancing, increasing the complexity of its metabolic potential. In this study, we investigated the reciprocal influence of respiratory metabolism and phenazine-associated physiology in P. aeruginosa PA14. We found that phenazine production affects respiratory activity and terminal oxidase gene expression and that carbon source identity influences the mechanisms enabling phenazine reduction. Furthermore, we found that growth in biofilms, a condition for which phenazine metabolism is critical to normal development and redox balancing, affects the composition of the P. aeruginosa phenazine pool. Together, these findings can aid interpretation of P. aeruginosa behavior during host infection and provide inroads to understanding the cross talk between primary metabolism and shuttling-based physiology in the diverse bacteria that carry out EET.IMPORTANCE The clinically relevant pathogen Pseudomonas aeruginosa uses diverse organic compounds as electron donors and possesses multiple enzymes that transfer electrons from central metabolism to O2 These pathways support a balanced intracellular redox state and produce cellular energy. P. aeruginosa also reduces secondary metabolites called phenazines to promote redox homeostasis and virulence. In this study, we examined the reciprocal relationship between these primary and secondary routes of electron flow. We found that phenazines affect respiratory function and that the complement of phenazines produced is strongly affected by growth in assemblages called biofilms. These results provide a more nuanced understanding of P. aeruginosa redox metabolism and may inform strategies for treating persistent infections caused by this bacterium.
Collapse
|
25
|
Conceptual Model of Biofilm Antibiotic Tolerance That Integrates Phenomena of Diffusion, Metabolism, Gene Expression, and Physiology. J Bacteriol 2019; 201:JB.00307-19. [PMID: 31501280 DOI: 10.1128/jb.00307-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023] Open
Abstract
Transcriptomic, metabolomic, physiological, and computational modeling approaches were integrated to gain insight into the mechanisms of antibiotic tolerance in an in vitro biofilm system. Pseudomonas aeruginosa biofilms were grown in drip flow reactors on a medium composed to mimic the exudate from a chronic wound. After 4 days, the biofilm was 114 μm thick with 9.45 log10 CFU cm-2 These biofilms exhibited tolerance, relative to exponential-phase planktonic cells, to subsequent treatment with ciprofloxacin. The specific growth rate of the biofilm was estimated via elemental balances to be approximately 0.37 h-1 and with a reaction-diffusion model to be 0.32 h-1, or one-third of the maximum specific growth rate for planktonic cells. Global analysis of gene expression indicated lower transcription of ribosomal genes and genes for other anabolic functions in biofilms than in exponential-phase planktonic cells and revealed the induction of multiple stress responses in biofilm cells, including those associated with growth arrest, zinc limitation, hypoxia, and acyl-homoserine lactone quorum sensing. Metabolic pathways for phenazine biosynthesis and denitrification were transcriptionally activated in biofilms. A customized reaction-diffusion model predicted that steep oxygen concentration gradients will form when these biofilms are thicker than about 40 μm. Mutant strains that were deficient in Psl polysaccharide synthesis, the stringent response, the stationary-phase response, and the membrane stress response exhibited increased ciprofloxacin susceptibility when cultured in biofilms. These results support a sequence of phenomena leading to biofilm antibiotic tolerance, involving oxygen limitation, electron acceptor starvation and growth arrest, induction of associated stress responses, and differentiation into protected cell states.IMPORTANCE Bacteria in biofilms are protected from killing by antibiotics, and this reduced susceptibility contributes to the persistence of infections such as those in the cystic fibrosis lung and chronic wounds. A generalized conceptual model of biofilm antimicrobial tolerance with the following mechanistic steps is proposed: (i) establishment of concentration gradients in metabolic substrates and products; (ii) active biological responses to these changes in the local chemical microenvironment; (iii) entry of biofilm cells into a spectrum of states involving alternative metabolisms, stress responses, slow growth, cessation of growth, or dormancy (all prior to antibiotic treatment); (iv) adaptive responses to antibiotic exposure; and (v) reduced susceptibility of microbial cells to antimicrobial challenges in some of the physiological states accessed through these changes.
Collapse
|
26
|
Kumar SS, Penesyan A, Elbourne LDH, Gillings MR, Paulsen IT. Catabolism of Nucleic Acids by a Cystic Fibrosis Pseudomonas aeruginosa Isolate: An Adaptive Pathway to Cystic Fibrosis Sputum Environment. Front Microbiol 2019; 10:1199. [PMID: 31214142 PMCID: PMC6555301 DOI: 10.3389/fmicb.2019.01199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). We undertook Biolog Phenotype Microarray testing of P. aeruginosa CF isolates to investigate their catabolic capabilities compared to P. aeruginosa laboratory strains PAO1 and PA14. One strain, PASS4, displayed an unusual phenotype, only showing strong respiration on adenosine and inosine. Further testing indicated that PASS4 could grow on DNA as a sole carbon source, with a higher biomass production than PAO1. This suggested that PASS4 was specifically adapted to metabolize extracellular DNA, a substrate present at high concentrations in the CF lung. Transcriptomic and proteomic profiling of PASS4 and PAO1 when grown with DNA as a sole carbon source identified a set of upregulated genes, including virulence and host-adaptation genes. PASS4 was unable to utilize N-Acetyl-D-glucosamine, and when we selected PASS4 mutants able to grow on this carbon source, they also displayed a gain in ability to catabolize a broad range of other carbon sources. Genome sequencing of the mutants revealed they all contained mutations within the purK gene, encoding a key protein in the de novo purine biosynthesis pathway. This suggested that PASS4 was a purine auxotroph. Growth assays in the presence of 2 mM adenosine and the complementation of PASS4 with an intact purK gene confirmed this conclusion. Purine auxotrophy may represent a viable microbial strategy for adaptation to DNA-rich environments such as the CF lung.
Collapse
Affiliation(s)
| | - Anahit Penesyan
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
27
|
Recent Advances and Current Trends in Nucleotide Second Messenger Signaling in Bacteria. J Mol Biol 2019; 431:908-927. [PMID: 30668970 DOI: 10.1016/j.jmb.2019.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 02/01/2023]
Abstract
The "International Symposium on Nucleotide Second Messenger Signaling in Bacteria" (September 30-October 3, 2018, Berlin), which was organized within the framework of DFG Priority Programme 1879 (www.spp1879.de), brought together 125 participants from 20 countries to discuss recent progress and future trends in this field. Even 50 years after its discovery, (p)ppGpp is venturing into exciting new fields, especially in gram-positive bacteria. After triggering the current renaissance in bacterial second messenger research, c-di-GMP is becoming ever more global with abounding new molecular mechanisms of action and physiological functions. The more recently discovered c-di-AMP is rapidly catching up and has now been found even in archaea, with its function in osmotic homeostasis being conserved across kingdom boundaries. Small modules associated with mobile genetic elements, which make and react to numerous novel mixed cyclic dinucleotides, seem to roam around rather freely in the bacterial world. Finally, many novel and old nucleotide molecules are still lurking around in search of a function. Across many talks it became apparent that (p)ppGpp, c-di-GMP and GTP/ATP can share and compete for binding sites (e.g., the Walker A motif in GTP/ATPases) with intriguing regulatory consequences, thus contributing to the emergent trend of systemwide networks that interconnect diverse signaling nucleotides. Overall, this inspiring conference made it clear that second messenger signaling is currently one of the most dynamic and exciting areas in microbial molecular biology and physiology, with major impacts ranging from microbial systems biology and ecology to infection biology.
Collapse
|
28
|
Kan A, Del Valle I, Rudge T, Federici F, Haseloff J. Intercellular adhesion promotes clonal mixing in growing bacterial populations. J R Soc Interface 2018; 15:rsif.2018.0406. [PMID: 30232243 PMCID: PMC6170782 DOI: 10.1098/rsif.2018.0406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022] Open
Abstract
Dense bacterial communities, known as biofilms, can have functional spatial organization driven by self-organizing chemical and physical interactions between cells, and their environment. In this work, we investigated intercellular adhesion, a pervasive property of bacteria in biofilms, to identify effects on the internal structure of bacterial colonies. We expressed the self-recognizing ag43 adhesin protein in Escherichia coli to generate adhesion between cells, which caused aggregation in liquid culture and altered microcolony morphology on solid media. We combined the adhesive phenotype with an artificial colony patterning system based on plasmid segregation, which marked clonal lineage domains in colonies grown from single cells. Engineered E. coli were grown to colonies containing domains with varying adhesive properties, and investigated with microscopy, image processing and computational modelling techniques. We found that intercellular adhesion elongated the fractal-like boundary between cell lineages only when both domains within the colony were adhesive, by increasing the rotational motion during colony growth. Our work demonstrates that adhesive intercellular interactions can have significant effects on the spatial organization of bacterial populations, which can be exploited for biofilm engineering. Furthermore, our approach provides a robust platform to study the influence of intercellular interactions on spatial structure in bacterial populations.
Collapse
Affiliation(s)
- Anton Kan
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Ilenne Del Valle
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tim Rudge
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernán Federici
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Fondo de Desarrollo de Áreas Prioritarias, Center for Genome Regulation, Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB), Santiago, Chile
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
The Pseudomonas aeruginosa Complement of Lactate Dehydrogenases Enables Use of d- and l-Lactate and Metabolic Cross-Feeding. mBio 2018; 9:mBio.00961-18. [PMID: 30206167 PMCID: PMC6134097 DOI: 10.1128/mbio.00961-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lactate is thought to serve as a carbon and energy source during chronic infections. Sites of bacterial colonization can contain two enantiomers of lactate: the l-form, generally produced by the host, and the d-form, which is usually produced by bacteria, including the pulmonary pathogen Pseudomonas aeruginosa. Here, we characterize P. aeruginosa’s set of four enzymes that it can use to interconvert pyruvate and lactate, the functions of which depend on the availability of oxygen and specific enantiomers of lactate. We also show that anaerobic pyruvate fermentation triggers production of the aerobic d-lactate dehydrogenase in both liquid cultures and biofilms, thereby enabling metabolic cross-feeding of lactate over time and space between subpopulations of cells. These metabolic pathways might contribute to P. aeruginosa growth and survival in the lung. Pseudomonas aeruginosa is the most common cause of chronic, biofilm-based lung infections in patients with cystic fibrosis (CF). Sputum from patients with CF has been shown to contain oxic and hypoxic subzones as well as millimolar concentrations of lactate. Here, we describe the physiological roles and expression patterns of P. aeruginosa lactate dehydrogenases in the contexts of different growth regimes. P. aeruginosa produces four enzymes annotated as lactate dehydrogenases, three of which are known to contribute to anaerobic or aerobic metabolism in liquid cultures. These three are LdhA, which reduces pyruvate to d-lactate during anaerobic survival, and LldE and LldD, which oxidize d-lactate and l-lactate, respectively, during aerobic growth. We demonstrate that the fourth enzyme, LldA, performs redundant l-lactate oxidation during growth in aerobic cultures in both a defined MOPS (morpholinepropanesulfonic acid)-based medium and synthetic CF sputum media. However, LldA differs from LldD in that its expression is induced specifically by the l-enantiomer of lactate. We also show that the P. aeruginosa lactate dehydrogenases perform functions in colony biofilms that are similar to their functions in liquid cultures. Finally, we provide evidence that the enzymes LdhA and LldE have the potential to support metabolic cross-feeding in biofilms, where LdhA can catalyze the production of d-lactate in the anaerobic zone, which is then used as a substrate in the aerobic zone. Together, these observations further our understanding of the metabolic pathways that can contribute to P. aeruginosa growth and survival during CF lung infection.
Collapse
|
30
|
Klauck G, Serra DO, Possling A, Hengge R. Spatial organization of different sigma factor activities and c-di-GMP signalling within the three-dimensional landscape of a bacterial biofilm. Open Biol 2018; 8:180066. [PMID: 30135237 PMCID: PMC6119863 DOI: 10.1098/rsob.180066] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022] Open
Abstract
Bacterial biofilms are large aggregates of cells embedded in an extracellular matrix of self-produced polymers. In macrocolony biofilms of Escherichia coli, this matrix is generated in the upper biofilm layer only and shows a surprisingly complex supracellular architecture. Stratified matrix production follows the vertical nutrient gradient and requires the stationary phase σS (RpoS) subunit of RNA polymerase and the second messenger c-di-GMP. By visualizing global gene expression patterns with a newly designed fingerprint set of Gfp reporter fusions, our study reveals the spatial order of differential sigma factor activities, stringent control of ribosomal gene expression and c-di-GMP signalling in vertically cryosectioned macrocolony biofilms. Long-range physiological stratification shows a duplication of the growth-to-stationary phase pattern that integrates nutrient and oxygen gradients. In addition, distinct short-range heterogeneity occurs within specific biofilm strata and correlates with visually different zones of the refined matrix architecture. These results introduce a new conceptual framework for the control of biofilm formation and demonstrate that the intriguing extracellular matrix architecture, which determines the emergent physiological and biomechanical properties of biofilms, results from the spatial interplay of global gene regulation and microenvironmental conditions. Overall, mature bacterial macrocolony biofilms thus resemble the highly organized tissues of multicellular organisms.
Collapse
Affiliation(s)
- Gisela Klauck
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Diego O Serra
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Alexandra Possling
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| |
Collapse
|
31
|
Jiang X, Zerfaß C, Feng S, Eichmann R, Asally M, Schäfer P, Soyer OS. Impact of spatial organization on a novel auxotrophic interaction among soil microbes. THE ISME JOURNAL 2018; 12:1443-1456. [PMID: 29572468 PMCID: PMC5955953 DOI: 10.1038/s41396-018-0095-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 01/21/2023]
Abstract
A key prerequisite to achieve a deeper understanding of microbial communities and to engineer synthetic ones is to identify the individual metabolic interactions among key species and how these interactions are affected by different environmental factors. Deciphering the physiological basis of species-species and species-environment interactions in spatially organized environments requires reductionist approaches using ecologically and functionally relevant species. To this end, we focus here on a defined system to study the metabolic interactions in a spatial context among the plant-beneficial endophytic fungus Serendipita indica, and the soil-dwelling model bacterium Bacillus subtilis. Focusing on the growth dynamics of S. indica under defined conditions, we identified an auxotrophy in this organism for thiamine, which is a key co-factor for essential reactions in the central carbon metabolism. We found that S. indica growth is restored in thiamine-free media, when co-cultured with B. subtilis. The success of this auxotrophic interaction, however, was dependent on the spatial and temporal organization of the system; the beneficial impact of B. subtilis was only visible when its inoculation was separated from that of S. indica either in time or space. These findings describe a key auxotrophic interaction in the soil among organisms that are shown to be important for plant ecosystem functioning, and point to the potential importance of spatial and temporal organization for the success of auxotrophic interactions. These points can be particularly important for engineering of minimal functional synthetic communities as plant seed treatments and for vertical farming under defined conditions.
Collapse
Affiliation(s)
- Xue Jiang
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Christian Zerfaß
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, The University of Warwick, Coventry, CV4 7AL, UK
| | - Song Feng
- Los Alamos National Laboratory, Theoretical Division (T-6), Center for Nonlinear Studies, Los Alamos, NM, 87545, USA
| | - Ruth Eichmann
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Munehiro Asally
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, The University of Warwick, Coventry, CV4 7AL, UK
| | - Patrick Schäfer
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Integrative Synthetic Biology Centre, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Orkun S Soyer
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Integrative Synthetic Biology Centre, The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
32
|
Hassanov T, Karunker I, Steinberg N, Erez A, Kolodkin-Gal I. Novel antibiofilm chemotherapies target nitrogen from glutamate and glutamine. Sci Rep 2018; 8:7097. [PMID: 29740028 PMCID: PMC5940852 DOI: 10.1038/s41598-018-25401-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
Bacteria in nature often reside in differentiated communities termed biofilms, which are an active interphase between uni-cellular and multicellular life states for bacteria. Here we demonstrate that the development of B. subtilis biofilms is dependent on the use of glutamine or glutamate as a nitrogen source. We show a differential metabolic requirement within the biofilm; while glutamine is necessary for the dividing cells at the edges, the inner cell mass utilizes lactic acid. Our results indicate that biofilm cells preserve a short-term memory of glutamate metabolism. Finally, we establish that drugs that target glutamine and glutamate utilization restrict biofilm development. Overall, our work reveals a spatial regulation of nitrogen and carbon metabolism within the biofilm, which contributes to the fitness of bacterial complex communities. This acquired metabolic division of labor within biofilm can serve as a target for novel anti-biofilm chemotherapies
Collapse
Affiliation(s)
- Tal Hassanov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Karunker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nitai Steinberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
33
|
Sporer AJ, Beierschmitt C, Bendebury A, Zink KE, Price-Whelan A, Buzzeo MC, Sanchez LM, Dietrich LEP. Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance. MICROBIOLOGY-SGM 2018; 164:790-800. [PMID: 29629858 DOI: 10.1099/mic.0.000657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The activities of critical metabolic and regulatory proteins can be altered by exposure to natural or synthetic redox-cycling compounds. Many bacteria, therefore, possess mechanisms to transport or transform these small molecules. The opportunistic pathogen Pseudomonas aeruginosa PA14 synthesizes phenazines, redox-active antibiotics that are toxic to other organisms but have beneficial effects for their producer. Phenazines activate the redox-sensing transcription factor SoxR and thereby induce the transcription of a small regulon, including the operon mexGHI-opmD, which encodes an efflux pump that transports phenazines, and PA14_35160 (pumA), which encodes a putative monooxygenase. Here, we provide evidence that PumA contributes to phenazine resistance and normal biofilm development, particularly during exposure to or production of strongly oxidizing N-methylated phenazines. We show that phenazine resistance depends on the presence of residues that are conserved in the active sites of other putative and characterized monooxygenases found in the antibiotic producer Streptomyces coelicolor. We also show that during biofilm growth, PumA is required for the conversion of phenazine methosulfate to unique phenazine metabolites. Finally, we compare ∆mexGHI-opmD and ∆pumA strains in assays for colony biofilm morphogenesis and SoxR activation, and find that these deletions have opposing phenotypic effects. Our results suggest that, while MexGHI-OpmD-mediated efflux has the effect of making the cellular phenazine pool more reducing, PumA acts on cellular phenazines to make the pool more oxidizing. We present a model in which these two SoxR targets function simultaneously to control the biological activity of the P. aeruginosa phenazine pool.
Collapse
Affiliation(s)
- Abigail J Sporer
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | - Katherine E Zink
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, IL, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marisa C Buzzeo
- Department of Chemistry, Barnard College, Columbia University, New York, NY, USA
| | - Laura M Sanchez
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, IL, USA
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
Phenazines Regulate Nap-Dependent Denitrification in Pseudomonas aeruginosa Biofilms. J Bacteriol 2018; 200:JB.00031-18. [PMID: 29463605 DOI: 10.1128/jb.00031-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/14/2018] [Indexed: 12/29/2022] Open
Abstract
Microbes in biofilms face the challenge of substrate limitation. In particular, oxygen often becomes limited for cells in Pseudomonas aeruginosa biofilms growing in the laboratory or during host colonization. Previously we found that phenazines, antibiotics produced by P. aeruginosa, balance the intracellular redox state of cells in biofilms. Here, we show that genes involved in denitrification are induced in phenazine-null (Δphz) mutant biofilms grown under an aerobic atmosphere, even in the absence of nitrate. This finding suggests that resident cells employ a bet-hedging strategy to anticipate the potential availability of nitrate and counterbalance their highly reduced redox state. Consistent with our previous characterization of aerobically grown colonies supplemented with nitrate, we found that the pathway that is induced in Δphz mutant colonies combines the nitrate reductase activity of the periplasmic enzyme Nap with the downstream reduction of nitrite to nitrogen gas catalyzed by the enzymes Nir, Nor, and Nos. This regulatory relationship differs from the denitrification pathway that functions under anaerobic growth, with nitrate as the terminal electron acceptor, which depends on the membrane-associated nitrate reductase Nar. We identified the sequences in the promoter regions of the nap and nir operons that are required for the effects of phenazines on expression. We also show that specific phenazines have differential effects on nap gene expression. Finally, we provide evidence that individual steps of the denitrification pathway are catalyzed at different depths within aerobically grown biofilms, suggesting metabolic cross-feeding between community subpopulations.IMPORTANCE An understanding of the unique physiology of cells in biofilms is critical to our ability to treat fungal and bacterial infections. Colony biofilms of the opportunistic pathogen Pseudomonas aeruginosa grown under an aerobic atmosphere but without nitrate express a denitrification pathway that differs from that used for anaerobic growth. We report that the components of this pathway are induced by electron acceptor limitation and that they are differentially expressed over the biofilm depth. These observations suggest that (i) P. aeruginosa exhibits "bet hedging," in that it expends energy and resources to prepare for nitrate availability when other electron acceptors are absent, and (ii) cells in distinct biofilm microniches may be able to exchange substrates to catalyze full denitrification.
Collapse
|
35
|
Asymmetric adhesion of rod-shaped bacteria controls microcolony morphogenesis. Nat Commun 2018; 9:1120. [PMID: 29549338 PMCID: PMC5856753 DOI: 10.1038/s41467-018-03446-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 02/14/2018] [Indexed: 12/29/2022] Open
Abstract
Surface colonization underpins microbial ecology on terrestrial environments. Although factors that mediate bacteria–substrate adhesion have been extensively studied, their spatiotemporal dynamics during the establishment of microcolonies remains largely unexplored. Here, we use laser ablation and force microscopy to monitor single-cell adhesion during the course of microcolony formation. We find that adhesion forces of the rod-shaped bacteria Escherichia coli and Pseudomonas aeruginosa are polar. This asymmetry induces mechanical tension, and drives daughter cell rearrangements, which eventually determine the shape of the microcolonies. Informed by experimental data, we develop a quantitative model of microcolony morphogenesis that enables the prediction of bacterial adhesion strength from simple time-lapse measurements. Our results demonstrate how patterns of surface colonization derive from the spatial distribution of adhesive factors on the cell envelope. It is unclear how cell adhesion and elongation coordinate during formation of bacterial microcolonies. Here, Duvernoy et al. monitor microcolony formation in rod-shaped bacteria, and show that patterns of surface colonization derive from the spatial distribution of adhesive factors on the cell envelope.
Collapse
|
36
|
Yeakel JD, Kempes CP, Redner S. Dynamics of starvation and recovery predict extinction risk and both Damuth's law and Cope's rule. Nat Commun 2018; 9:657. [PMID: 29440734 PMCID: PMC5811595 DOI: 10.1038/s41467-018-02822-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/02/2018] [Indexed: 11/09/2022] Open
Abstract
The eco-evolutionary dynamics of species are fundamentally linked to the energetic constraints of their constituent individuals. Of particular importance is the interplay between reproduction and the dynamics of starvation and recovery. To elucidate this interplay, here we introduce a nutritional state-structured model that incorporates two classes of consumers: nutritionally replete, reproducing consumers, and undernourished, nonreproducing consumers. We obtain strong constraints on starvation and recovery rates by deriving allometric scaling relationships and find that population dynamics are typically driven to a steady state. Moreover, these rates fall within a "refuge" in parameter space, where the probability of population extinction is minimized. We also show that our model provides a natural framework to predict steady state population abundances known as Damuth's law, and maximum mammalian body size. By determining the relative stability of an otherwise homogeneous population to a competing population with altered percent body fat, this framework provides a principled mechanism for a selective driver of Cope's rule.
Collapse
Affiliation(s)
- Justin D Yeakel
- School of Natural Sciences, University of California, Merced, CA, 95340, USA. .,The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA.
| | | | - Sidney Redner
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA.
| |
Collapse
|
37
|
Zerfaß C, Chen J, Soyer OS. Engineering microbial communities using thermodynamic principles and electrical interfaces. Curr Opin Biotechnol 2017; 50:121-127. [PMID: 29268107 DOI: 10.1016/j.copbio.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 01/21/2023]
Abstract
Microbial communities present the next research frontier. We argue here that understanding and engineering microbial communities requires a holistic view that considers not only species-species, but also species-environment interactions, and feedbacks between ecological and evolutionary dynamics (eco-evo feedbacks). Due this multi-level nature of interactions, we predict that approaches aimed soley at altering specific species populations in a community (through strain enrichment or inhibition), would only have a transient impact, and species-environment and eco-evo feedbacks would eventually drive the microbial community to its original state. We propose a higher-level engineering approach that is based on thermodynamics of microbial growth, and that considers specifically microbial redox biochemistry. Within this approach, the emphasis is on enforcing specific environmental conditions onto the community. These are expected to generate higher-level thermodynamic bounds onto the system, which the community structure and function can then adapt to. We believe that the resulting end-state can be ecologically and evolutionarily stable, mimicking the natural states of complex communities. Toward designing the exact nature of the environmental enforcement, thermodynamics and redox biochemistry can act as coarse-grained principles, while the use of electrodes-as electron providing or accepting redox agents-can provide implementation with spatiotemporal control.
Collapse
Affiliation(s)
- Christian Zerfaß
- Warwick Integrative Synthetic Biology Center (WISB), University of Warwick, United Kingdom; School of Life Sciences, University of Warwick, United Kingdom
| | - Jing Chen
- School of Life Sciences, University of Warwick, United Kingdom
| | - Orkun S Soyer
- Warwick Integrative Synthetic Biology Center (WISB), University of Warwick, United Kingdom; School of Life Sciences, University of Warwick, United Kingdom.
| |
Collapse
|
38
|
Jo J, Cortez KL, Cornell WC, Price-Whelan A, Dietrich LEP. An orphan cbb3-type cytochrome oxidase subunit supports Pseudomonas aeruginosa biofilm growth and virulence. eLife 2017; 6:e30205. [PMID: 29160206 PMCID: PMC5697931 DOI: 10.7554/elife.30205] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/22/2017] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is a common challenge faced by bacteria during associations with hosts due in part to the formation of densely packed communities (biofilms). cbb3-type cytochrome c oxidases, which catalyze the terminal step in respiration and have a high affinity for oxygen, have been linked to bacterial pathogenesis. The pseudomonads are unusual in that they often contain multiple full and partial (i.e. 'orphan') operons for cbb3-type oxidases and oxidase subunits. Here, we describe a unique role for the orphan catalytic subunit CcoN4 in colony biofilm development and respiration in the opportunistic pathogen Pseudomonas aeruginosa PA14. We also show that CcoN4 contributes to the reduction of phenazines, antibiotics that support redox balancing for cells in biofilms, and to virulence in a Caenorhabditis elegans model of infection. These results highlight the relevance of the colony biofilm model to pathogenicity and underscore the potential of cbb3-type oxidases as therapeutic targets.
Collapse
Affiliation(s)
- Jeanyoung Jo
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | - Krista L Cortez
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | | | - Alexa Price-Whelan
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | - Lars EP Dietrich
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| |
Collapse
|
39
|
Abstract
Bacteria in nature reside in organized communities, termed biofilms, which are composed of multiple individual cells adhering to each other. Similarly, tumors are a multicellular mass with distinct cellular phenotypes. Both tumors and biofilms are considered to be an active interphase between unicellular and multicellular life states. Because both of these units depend on glutamine for growth and survival, we review here glutamine flux within them as a readout for intra- and inter-commensal metabolism. We suggest that the difference between glutamine fluxes in these cellular communities lies mainly in their global multicellular metabolic organization. Both the differences and similarities described here should be taken into account when considering glutamine-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
40
|
Abstract
Descriptions of the changeable, striking colors associated with secreted natural products date back well over a century. These molecules can serve as extracellular electron shuttles (EESs) that permit microbes to access substrates at a distance. In this review, we argue that the colorful world of EESs has been too long neglected. Rather than simply serving as a diagnostic attribute of a particular microbial strain, redox-active natural products likely play fundamental, underappreciated roles in the biology of their producers, particularly those that inhabit biofilms. Here, we describe the chemical diversity and potential distribution of EES producers and users, discuss the costs associated with their biosynthesis, and critically evaluate strategies for their economical usage. We hope this review will inspire efforts to identify and explore the importance of EES cycling by a wide range of microorganisms so that their contributions to shaping microbial communities can be better assessed and exploited.
Collapse
Affiliation(s)
- Nathaniel R Glasser
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| | - Scott H Saunders
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; , , .,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
41
|
Abstract
Biofilms are communities of microbial cells that are encapsulated within a self-produced polymeric matrix. The matrix is critical to the success of biofilms in diverse habitats; however, many details of the composition, structure, and function remain enigmatic. Biofilms formed by the Gram-positive bacterium Bacillus subtilis depend on the production of the secreted film-forming protein BslA. Here, we show that a gradient of electron acceptor availability through the depth of the biofilm gives rise to two distinct functional roles for BslA and that these roles can be genetically separated through targeted amino acid substitutions. We establish that monomeric BslA is necessary and sufficient to give rise to complex biofilm architecture, whereas dimerization of BslA is required to render the community hydrophobic. Dimerization of BslA, mediated by disulfide bond formation, depends on two conserved cysteine residues located in the C-terminal region. Our findings demonstrate that bacteria have evolved multiple uses for limited elements in the matrix, allowing for alternative responses in a complex, changing environment.
Collapse
|
42
|
Tasaki S, Nakayama M, Shoji W. Morphologies of Bacillus subtilis communities responding to environmental variation. Dev Growth Differ 2017; 59:369-378. [PMID: 28675458 DOI: 10.1111/dgd.12383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/24/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022]
Abstract
Bacterial communities exhibit a variety of growth morphologies in constructing robust systems under different environmental conditions. We review the diverse morphologies of Bacillus subtilis communities and their mechanisms of self-organization. B. subtilis uses different cell types to suit environmental conditions and cell density. The subpopulation of each cell type exhibits various environment-sensitive properties. Furthermore, division of labor among the subpopulations results in flexible development for the community as a whole. We review how B. subtilis community morphologies and growth strategies respond to environmental perturbations.
Collapse
Affiliation(s)
- Sohei Tasaki
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Japan.,Graduate School of Science, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Japan
| | - Madoka Nakayama
- Sendai National College of Technology, 48 Nodayama, Medeshima-Shiote, Natori, Miyagi, 981-1239, Japan
| | - Wataru Shoji
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Japan.,Institute of Development, Aging and Cancer, Tohoku University, 1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
43
|
Sporer AJ, Kahl LJ, Price-Whelan A, Dietrich LE. Redox-Based Regulation of Bacterial Development and Behavior. Annu Rev Biochem 2017; 86:777-797. [DOI: 10.1146/annurev-biochem-061516-044453] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abigail J. Sporer
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Lisa J. Kahl
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
44
|
Electron-shuttling antibiotics structure bacterial communities by modulating cellular levels of c-di-GMP. Proc Natl Acad Sci U S A 2017; 114:E5236-E5245. [PMID: 28607054 DOI: 10.1073/pnas.1700264114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Diverse organisms secrete redox-active antibiotics, which can be used as extracellular electron shuttles by resistant microbes. Shuttle-mediated metabolism can support survival when substrates are available not locally but rather at a distance. Such conditions arise in multicellular communities, where the formation of chemical gradients leads to resource limitation for cells at depth. In the pathogenic bacterium Pseudomonas aeruginosa PA14, antibiotics called phenazines act as oxidants to balance the intracellular redox state of cells in anoxic biofilm subzones. PA14 colony biofilms show a profound morphogenic response to phenazines resulting from electron acceptor-dependent inhibition of ECM production. This effect is reminiscent of the developmental responses of some eukaryotic systems to redox control, but for bacterial systems its mechanistic basis has not been well defined. Here, we identify the regulatory protein RmcA and show that it links redox conditions to PA14 colony morphogenesis by modulating levels of bis-(3',5')-cyclic-dimeric-guanosine (c-di-GMP), a second messenger that stimulates matrix production, in response to phenazine availability. RmcA contains four Per-Arnt-Sim (PAS) domains and domains with the potential to catalyze the synthesis and degradation of c-di-GMP. Our results suggest that phenazine production modulates RmcA activity such that the protein degrades c-di-GMP and thereby inhibits matrix production during oxidizing conditions. RmcA thus forms a mechanistic link between cellular redox sensing and community morphogenesis analogous to the functions performed by PAS-domain-containing regulatory proteins found in complex eukaryotes.
Collapse
|
45
|
Mauchline TH, Malone JG. Life in earth – the root microbiome to the rescue? Curr Opin Microbiol 2017; 37:23-28. [DOI: 10.1016/j.mib.2017.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/22/2017] [Indexed: 01/10/2023]
|
46
|
Omar A, Wright JB, Schultz G, Burrell R, Nadworny P. Microbial Biofilms and Chronic Wounds. Microorganisms 2017; 5:microorganisms5010009. [PMID: 28272369 PMCID: PMC5374386 DOI: 10.3390/microorganisms5010009] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/04/2017] [Indexed: 12/14/2022] Open
Abstract
Background is provided on biofilms, including their formation, tolerance mechanisms, structure, and morphology within the context of chronic wounds. The features of biofilms in chronic wounds are discussed in detail, as is the impact of biofilm on wound chronicity. Difficulties associated with the use of standard susceptibility tests (minimum inhibitory concentrations or MICs) to determine appropriate treatment regimens for, or develop new treatments for use in, chronic wounds are discussed, with alternate test methods specific to biofilms being recommended. Animal models appropriate for evaluating biofilm treatments are also described. Current and potential future therapies for treatment of biofilm-containing chronic wounds, including probiotic therapy, virulence attenuation, biofilm phenotype expression attenuation, immune response suppression, and aggressive debridement combined with antimicrobial dressings, are described.
Collapse
Affiliation(s)
- Amin Omar
- Innovotech Inc., Suite 101, 2011 94 Street, Edmonton, Alberta T6N 1H1, Canada.
| | - J Barry Wright
- Harkynn Consulting, P.O. Box 104, Albertville, Saskatchewan S0J 0A0, Canada.
| | - Gregory Schultz
- Department of Obstetrics and Gynecology, Institute for Wound Research, University of Florida, 1600 South West Archer Road, Room M337F, Gainesville, FL 32610-0294, USA.
| | - Robert Burrell
- Department of Biomedical Engineering, Faculties of Engineering and Medicine & Dentistry, 1101 Research Transition Facility, University of Alberta, Edmonton, Alberta T6G 2G6, Canada.
| | - Patricia Nadworny
- Innovotech Inc., Suite 101, 2011 94 Street, Edmonton, Alberta T6N 1H1, Canada.
| |
Collapse
|
47
|
Ghanbari A, Dehghany J, Schwebs T, Müsken M, Häussler S, Meyer-Hermann M. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms. Sci Rep 2016; 6:32097. [PMID: 27611778 PMCID: PMC5017200 DOI: 10.1038/srep32097] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.
Collapse
Affiliation(s)
- Azadeh Ghanbari
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jaber Dehghany
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Timo Schwebs
- Institute for Molecular Bacteriology, Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Mathias Müsken
- Institute for Molecular Bacteriology, Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
48
|
Madsen JS, Røder HL, Russel J, Sørensen H, Burmølle M, Sørensen SJ. Coexistence facilitates interspecific biofilm formation in complex microbial communities. Environ Microbiol 2016; 18:2565-74. [PMID: 27119650 DOI: 10.1111/1462-2920.13335] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Social interactions in which bacteria respond to one another by modifying their phenotype are central determinants of microbial communities. It is known that interspecific interactions influence the biofilm phenotype of bacteria; a phenotype that is central to the fitness of bacteria. However, the underlying role of fundamental ecological factors, specifically coexistence and phylogenetic history, in biofilm formation remains unclear. This study examines how social interactions affect biofilm formation in multi-species co-cultures from five diverse environments. We found prevalence of increased biofilm formation among co-cultured bacteria that have coexisted in their original environment. Conversely, when randomly co-culturing bacteria across these five consortia, we found less biofilm induction and a prevalence of biofilm reduction. Reduction in biofilm formation was even more predominant when co-culturing bacteria from environments where long-term coexistence was unlikely to have occurred. Phylogenetic diversity was not found to be a strong underlying factor but a relation between biofilm induction and phylogenetic history was found. The data indicates that biofilm reduction is typically correlated with an increase in planktonic cell numbers, thus implying a behavioral response rather than mere growth competition. Our findings suggest that an increase in biofilm formation is a common adaptive response to long-term coexistence.
Collapse
Affiliation(s)
- Jonas S Madsen
- Department of Biology, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Henriette L Røder
- Department of Biology, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Jakob Russel
- Department of Biology, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Helle Sørensen
- Department of Mathematical Sciences, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Mette Burmølle
- Department of Biology, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Søren J Sørensen
- Department of Biology, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
49
|
Crespo A, Pedraz L, Astola J, Torrents E. Pseudomonas aeruginosa Exhibits Deficient Biofilm Formation in the Absence of Class II and III Ribonucleotide Reductases Due to Hindered Anaerobic Growth. Front Microbiol 2016; 7:688. [PMID: 27242714 PMCID: PMC4860495 DOI: 10.3389/fmicb.2016.00688] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/26/2016] [Indexed: 01/11/2023] Open
Abstract
Chronic lung infections by the ubiquitous and extremely adaptable opportunistic pathogen Pseudomonas aeruginosa correlate with the formation of a biofilm, where bacteria grow in association with an extracellular matrix and display a wide range of changes in gene expression and metabolism. This leads to increased resistance to physical stress and antibiotic therapies, while enhancing cell-to-cell communication. Oxygen diffusion through the complex biofilm structure generates an oxygen concentration gradient, leading to the appearance of anaerobic microenvironments. Ribonucleotide reductases (RNRs) are a family of highly sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides, and they constitute the only de novo pathway for the formation of the building blocks needed for DNA synthesis and repair. P. aeruginosa is one of the few bacteria encoding all three known RNR classes (Ia, II, and III). Class Ia RNRs are oxygen dependent, class II are oxygen independent, and class III are oxygen sensitive. A tight control of RNR activity is essential for anaerobic growth and therefore for biofilm development. In this work we explored the role of the different RNR classes in biofilm formation under aerobic and anaerobic initial conditions and using static and continuous-flow biofilm models. We demonstrated the importance of class II and III RNR for proper cell division in biofilm development and maturation. We also determined that these classes are transcriptionally induced during biofilm formation and under anaerobic conditions. The molecular mechanism of their anaerobic regulation was also studied, finding that the Anr/Dnr system is responsible for class II RNR induction. These data can be integrated with previous knowledge about biofilms in a model where these structures are understood as a set of layers determined by oxygen concentration and contain cells with different RNR expression profiles, bringing us a step closer to the understanding of this complex growth pattern, essential for P. aeruginosa chronic infections.
Collapse
Affiliation(s)
- Anna Crespo
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia Barcelona, Spain
| | - Lucas Pedraz
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia Barcelona, Spain
| | - Josep Astola
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia Barcelona, Spain
| |
Collapse
|
50
|
Oppenheimer-Shaanan Y, Sibony-Nevo O, Bloom-Ackermann Z, Suissa R, Steinberg N, Kartvelishvily E, Brumfeld V, Kolodkin-Gal I. Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms. NPJ Biofilms Microbiomes 2016; 2:15031. [PMID: 28721240 PMCID: PMC5515261 DOI: 10.1038/npjbiofilms.2015.31] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/22/2015] [Accepted: 12/15/2015] [Indexed: 11/08/2022] Open
Abstract
Historically, multicellular bacterial communities, known as biofilms, have been thought to be held together solely by a self-produced extracellular matrix. Our study identified a novel mechanism maintaining Bacillus subtilis and Mycobacterium smegmatis biofilms-active production of calcite minerals. We studied, for the first time, the effects of mutants defective in biomineralization and calcite formation on biofilm development, resilience and morphology. We demonstrated that an intrinsic rise in carbon dioxide levels within the biofilm is a strong trigger for the initiation of calcite-dependent patterning. The calcite-dependent patterns provide resistance to environmental insults and increase the overall fitness of the microbial community. Our results suggest that it is highly feasible that the formation of mineral scaffolds plays a cardinal and conserved role in bacterial multicellularity.
Collapse
Affiliation(s)
| | - Odelia Sibony-Nevo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ronit Suissa
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nitai Steinberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Kartvelishvily
- Department of Chemical Research Support, Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|