1
|
Boršić E, Ramuta TŽ, Orehek S, Kreft ME, Geyer M, Jerala R, Hafner-Bratkovič I. Clustering of NLRP3 induced by membrane or protein scaffolds promotes inflammasome assembly. Nat Commun 2025; 16:4887. [PMID: 40425567 PMCID: PMC12117088 DOI: 10.1038/s41467-025-60277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
NLRP3 is a pattern recognition receptor forming an inflammasome in response to diverse pathogen and self-derived triggers, but molecular insights on NLRP3 activation are still lacking. Here, we drive ectopic NLRP3 to different subcellular locations in NLRP3-deficient macrophages to map the spatial activation profile of NLRP3, and find that NLRP3 variants enriched at the organellar membranes respond to canonical triggers similarly to wild-type NLRP3; however, unlike wild-type, these NLRP3 variants can be activated even in the absence of the polybasic phospholipid-binding segment. Mechanistically, membrane or protein scaffolds mediate NLRP3 clustering, which leads to the unfastening of the inactive NACHT domain conformation preceding the activated NLRP3 oligomer formation. Our data thus suggest that scaffold-promoted clustering is an important step in NLRP3 activation, enabling NLRP3 to sense distinct activator-induced cellular anomalies exhibited via lipid or protein assemblies, thereby establishing NLRP3 as the master sensor of perturbations in cell homeostasis.
Collapse
Affiliation(s)
- Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary Doctoral Study of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matthias Geyer
- Institute of Structural Biology, University Clinics Bonn, University of Bonn, Bonn, Germany
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, SI-1000, Slovenia.
| |
Collapse
|
2
|
Bahriz HA, Abdelaziz RR, El-Kashef DH. Allopurinol abates hepatocellular carcinoma in rats via modulation of NLRP3 inflammasome and NF-κB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6043-6058. [PMID: 39636403 DOI: 10.1007/s00210-024-03666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
The present research was performed to examine the possible capability of allopurinol to prevent developing hepatocellular carcinoma (HCC) and to explore the fundamental mechanisms that control the hepatoprotective effect considering the enormous impact of HCC on patients' quality of life. Male Sprague Dawely rats were given i.p. injection of thioacetamide (TAA) (200 mg/kg) twice a week for 16 weeks in order to induce HCC. The histological analysis and assessment of the serum levels of liver function indicators verified the development of HCC. Two regimens of allopurinol (100 mg/kg, p.o.) were used; the first involved giving it concurrently with TAA from week 13 to week 16, and the second regimen started from week 9 to week 16. Chronic TAA damage was associated with considerable overexpression of the profibrogenic cytokine TGF-β, degradation and nuclear translocation of NF-κB, which released a number of inflammatory mediators, and upregulation of the NLRP3/caspase1 pathway. Administration of allopurinol demonstrated considerable enhancements in liver function and oxidative balance. Moreover, pathological characteristics like cirrhosis, dysplastic changes, and HCC nodules were greatly diminished. Allopurinol via suppressing TGF-β expression, inhibiting NF-κB nuclear translocation, and restricting inflammatory NLRP3/caspase1/IL-1β pathway was able to protect against TAA-induced liver damage, and it could be a promising therapy for HCC.
Collapse
MESH Headings
- Animals
- Allopurinol/pharmacology
- Allopurinol/therapeutic use
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Male
- NF-kappa B/metabolism
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/prevention & control
- Inflammasomes/metabolism
- Rats, Sprague-Dawley
- Thioacetamide
- Signal Transduction/drug effects
- Rats
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/chemically induced
- Liver Neoplasms/drug therapy
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/prevention & control
- Liver Neoplasms, Experimental/drug therapy
- Liver/drug effects
- Liver/pathology
- Liver/metabolism
Collapse
Affiliation(s)
- Heba A Bahriz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Poppenborg T, Saljic A, Bruns F, Abu-Taha I, Dobrev D, Fender AC. A short history of the atrial NLRP3 inflammasome and its distinct role in atrial fibrillation. J Mol Cell Cardiol 2025; 202:13-23. [PMID: 40057301 DOI: 10.1016/j.yjmcc.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 04/23/2025]
Abstract
Inflammasomes are multiprotein complexes of the innate immune system that mediate inflammatory responses to infection and to local and systemic stress and tissue injury. The principal function is to facilitate caspase-1 auto-activation and subsequently maturation and release of the effectors interleukin (IL)-1β and IL-18. The atrial-specific NLRP3 inflammasome is a unifying causal feature of atrial fibrillation (AF) development, progression and recurrence after ablation. Many AF-associated risk factors and co-morbidities converge mechanistically on the activation of this central inflammatory signaling platform. This review presents the historical conceptual development of a distinct atrial inflammasome and its potential causal involvement in AF. We follow the early observations linking systemic and local inflammation with AF, to the emergence of an atrial-intrinsic NLRP3 inflammasome operating within not just immune cells but also in resident atrial fibroblasts and cardiomyocytes. We outline the key developments in understanding how the atrial NLRP3 inflammasome and its effector IL-1β contribute causally to cellular and tissue-level arrhythmogenesis in different pathological settings, and outline candidate therapeutic concepts verified in preclinical models of atrial cardiomyopathy and AF.
Collapse
Affiliation(s)
| | - Arnela Saljic
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Florian Bruns
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
| | - Issam Abu-Taha
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA; Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Anke C Fender
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
4
|
Lai Y, Yang X, Wei D, Wang X, Sun R, Li Y, Ji P, Bao Y, Chu T, Zhang C, Liang Q, Xu J, Zhang X, Chen Y, Wang Y. BCG-trained macrophages couple LDLR upregulation to type I IFN responses and antiviral immunity. Cell Rep 2025; 44:115493. [PMID: 40178982 DOI: 10.1016/j.celrep.2025.115493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/08/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Trained immunity refers to memory-like responses of innate immune cells when they re-encounter pathogenic stimuli. Bacillus Calmette-Guérin (BCG) vaccination implies enhanced antiviral immunity, whereas the underlying mechanisms remain unclear. Herein, we have uncovered elevated expression of low-density lipoprotein receptor (LDLR) on BCG-trained macrophages with robust type I interferon (IFNI) production and antiviral effects both in vivo and in vitro. Consequently, cholesterol is accumulated in BCG-trained macrophages, leading to the augmentation of NFE2L1 expression and the formation of NFE2L1/IRAK1/TRIM25 complex where TRIM25 mediates IRAK1 K63 polyubiquitination to exaggerate IFNI responses in an RIG-I-dependent manner. We have also observed LDLR+ macrophages displaying heightened IFNI responses in BCG-treated human macrophages. To antagonize LDLR degradation by PCSK9 inhibitors increases IFNI responses in the macrophages and accelerated viral clearance. Our study thus couples LDLR upregulation to antiviral activity in BCG-trained macrophages, making commercial PCSK9 inhibitors potential antiviral indications in clinic.
Collapse
Affiliation(s)
- Yangdian Lai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxu Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Wei
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiming Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunfei Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Ji
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Bao
- Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiancheng Chu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxing Zhang
- Department of Nephrology, Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiming Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xu
- Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Barbero-Úriz Ó, Valenti M, Molina M, Fernández-Acero T, Cid VJ. Modeling Necroptotic and Pyroptotic Signaling in Saccharomyces cerevisiae. Biomolecules 2025; 15:530. [PMID: 40305268 PMCID: PMC12025182 DOI: 10.3390/biom15040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
The yeast Saccharomyces cerevisiae is the paradigm of a eukaryotic model organism. In virtue of a substantial degree of functional conservation, it has been extensively exploited to understand multiple aspects of the genetic, molecular, and cellular biology of human disease. Many aspects of cell signaling in cancer, aging, or metabolic diseases have been tackled in yeast. Here, we review the strategies undertaken throughout the years for the development of humanized yeast models to study regulated cell death (RCD) pathways in general, and specifically, those related to innate immunity and inflammation, with an emphasis on pyroptosis and necroptosis. Such pathways involve the assembly of distinct modular signaling complexes such as the inflammasome and the necrosome. Like other supramolecular organizing centers (SMOCs), such intricate molecular arrangements trigger the activity of enzymes, like caspases or protein kinases, culminating in the activation of lytic pore-forming final effectors, respectively, Gasdermin D (GSDMD) in pyroptosis and MLKL in necroptosis. Even though pathways related to those governing innate immunity and inflammation in mammals are missing in fungi, the heterologous expression of their components in the S. cerevisiae model provides a "cellular test tube" to readily study their properties and interactions, thus constituting a valuable tool for finding novel therapies.
Collapse
Affiliation(s)
| | | | | | | | - Víctor J. Cid
- Department of Microbiology and Parasitology, School of Pharmacy, Universidad Complutense de Madrid, Pza. de Ramón y Cajal s/n, 28040 Madrid, Spain; (Ó.B.-Ú.); (M.V.); (M.M.); (T.F.-A.)
| |
Collapse
|
6
|
Davoodi Karsalari P, Asna Ashari K, Rezaei N. NLRP3 inflammasome: significance and potential therapeutic targets to advance solid organ transplantation. Expert Opin Ther Targets 2025; 29:281-301. [PMID: 40317257 DOI: 10.1080/14728222.2025.2500425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome, integral to innate immunity, has become a pivotal figure in the inflammatory cascade. AREAS COVERED This article provides an overview of the NLRP3 inflammasome, reviewing its complicated structure, as well as the diverse signals that trigger its assembly. Furthermore, we explored the intricate relationship between the NLRP3 inflammasome and acute and chronic rejection in solid organ transplantation. Solid organ transplantation stands as a crucial medical intervention, yet its efficacy is challenged by immune-mediated complications, including acute rejection, ischemia-reperfusion injury, and chronic allograft rejection. We also investigated the encouraging potential of immunosuppressive therapies targeting NLRP3 signaling to alleviate inflammatory responses linked to transplantation. EXPERT OPINION In recent years, the NLRP3 inflammasome has garnered considerable attention owing to its critical functions spanning diverse fields. This study highlights the critical function of the NLRP3 inflammasome and presents insights, offering fresh perspectives on how its modulation might help to improve the outcomes among patients who undergo solid organ transplantations.
Collapse
Affiliation(s)
- Pershia Davoodi Karsalari
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kosar Asna Ashari
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Fischer FA, Demarco B, Min FCH, Yeap HW, De Nardo D, Chen KW, Bezbradica JS. TBK1 and IKKε prevent premature cell death by limiting the activity of both RIPK1 and NLRP3 death pathways. SCIENCE ADVANCES 2025; 11:eadq1047. [PMID: 40053580 PMCID: PMC11887814 DOI: 10.1126/sciadv.adq1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
The loss of TBK1, or both TBK1 and the related kinase IKKε, results in uncontrolled cell death-driven inflammation. Here, we show that the pathway leading to cell death depends on the nature of the activating signal. Previous models suggest that in steady state, TBK1/IKKε-deficient cells die slowly and spontaneously predominantly by uncontrolled tumor necrosis factor-RIPK1-driven death. However, upon infection of cells that express the NLRP3 inflammasome, (e.g., macrophages), with pathogens that activate this pathway (e.g., Listeria monocytogenes), TBK1/IKKε-deficient cells die rapidly, prematurely, and exclusively by enhanced NLRP3-driven pyroptosis. Even infection with the RIPK1-activating pathogen, Yersinia pseudotuberculosis, results in enhanced RIPK1-caspase-8 activation and enhanced secondary NLRP3 activation. Mechanistically, TBK1/IKKε control endosomal traffic, and their loss disrupts endosomal homeostasis, thereby signaling cell stress. This results in premature NLRP3 activation even upon sensing "signal 2" alone, without the obligatory "signal 1." Collectively, TBK1/IKKε emerge as a central brake in limiting death-induced inflammation by both RIPK1 and NLRP3 death-inducing pathways.
Collapse
Affiliation(s)
- Fabian A. Fischer
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Benjamin Demarco
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Felicia Chan Hui Min
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Wen Yeap
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kaiwen W. Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
8
|
Liu H, Wang J, Zhang W, Zhao X, Jin H. AjMALT1 promotes Vibrio splendidus-induced inflammation through the NF-κB pathway in Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 165:105346. [PMID: 39984065 DOI: 10.1016/j.dci.2025.105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), an intracellular signaling molecule, is widely expressed during inflammatory responses. To investigate the immune function of AjMALT1 in Apostichopus japonicus, the full length of AjMALT1 gene was cloned using transcriptome data and RACE technology. The results showed that AjMALT1 was distributed in all tissues, with higher expression found in coelomocytes and intestine. The expression of AjMALT1 was significantly upregulated in Vibrio splendidus-challenged sea cucumbers, as well as in coelomocytes exposed to inactive V. splendidus, and was positively correlated with the expression of the pro-inflammatory cytokine AjIL17 and the inflammasome component AjNLRP3. Further investigation using specific siRNA to silence AjMALT1 for 48 h revealed that the expression of AjIL17 and AjNLRP3 was reduced under V. splendidus stimulation. Additionally, histological observations showed a decrease in intestinal inflammation. Interference with AjMALT1 also led to downregulation of AjTRAF6 and AjRel expression, as well as inhibited nuclear translocation of AjRel. These findings suggest AjMALT1 exacerbates intestinal and coelomic inflammation by activating the AjTRAF6-dependent NF-κB pathway in A. japonicus.
Collapse
Affiliation(s)
- Haiping Liu
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China
| | - Jiping Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China
| | - Weiwei Zhang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China
| | - Xuelin Zhao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China.
| | - Heng Jin
- School of Mechatronics and Energy Engineering, NingboTech University, Ningbo, 315000, PR China
| |
Collapse
|
9
|
Zhou F, Lian W, Yuan X, Wang Z, Xia C, Yan Y, Wang W, Tong Z, Cheng Y, Xu J, He J, Zhang W. Cornuside alleviates cognitive impairments induced by Aβ 1-42 through attenuating NLRP3-mediated neurotoxicity by promoting mitophagy. Alzheimers Res Ther 2025; 17:47. [PMID: 39972387 PMCID: PMC11837312 DOI: 10.1186/s13195-025-01695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder in which mitochondrial dysfunction and neuroinflammation play crucial roles in its progression. Our previous studies found that cornuside from Cornus officinalis Sieb.Et Zucc is an anti-AD candidate, however, its underlying mechanism remains unknown. In the present study, AD mice were established by intracerebroventricular injection of Aβ1-42 and treated with cornuside (3, 10, 30 mg/kg) for 2 weeks. Cornuside significantly ameliorated behavioral deficits, protected synaptic plasticity and relieved neuronal damage in Aβ1-42 induced mice. Importantly, cornuside decreased NLRP3 inflammasome activation, characterized by decreased levels of NLRP3, ASC, Caspase-1, GSDMD, and IL-1β. Furthermore, cornuside promoted mitophagy accompanied by decreasing SQSTM1/p62 and promoting LC3B-I transforming into LC3B-II, via Pink1/Parkin signaling instead of FUNDC1 or BNIP3 pathways. In order to investigate the relationship between NLRP3 inflammasome and mitophagy in the neuroprotective mechanism of cornuside, we established an in-vitro model in BV2 cells exposed to LPS and Aβ1-42. And cornuside inhibited NLRP3 inflammasome activation and subsequent cytokine release, also protected neurons from damaging factors in microenvironment of conditional culture. Cornuside improved mitochondrial function by promoting oxidative phosphorylation and glycolysis, decreasing the production of ROS and mitochondrial membrane potential depolarization. Besides, mitophagy was also facilitated with increased colocalization of MitoTracker with LC3B and Parkin, and Pink1/Parkin, FUNDC1 and BNIP3 pathways were all involved in the mechanism of cornuside. By blocking the formation of autophagosomes by 3-MA, the protective effects on mitochondria, the inhibition on NLRP3 inflammasome as well as neuronal protection in conditional culture were eliminated. There is reason to believe that the promotion of mitophagy plays a key role in the NLRP3 inhibition of cornuside. In conclusion, cornuside re-establishes the mitophagy flux which eliminates damaged mitochondria and recovers mitochondrial function, both of them are in favor of inhibiting NLRP3 inflammasome activation, then alleviating neuronal and synaptic damage, and finally improving cognitive function.
Collapse
Affiliation(s)
- Fulin Zhou
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Wenwen Lian
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Xiaotang Yuan
- School of Life Science, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zexing Wang
- School of Life Science, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Congyuan Xia
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Wenping Wang
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zhuohang Tong
- School of Life Science, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Yungchi Cheng
- Department of Pharmacology, School of Medicine, Yale University, Connecticut, New Haven, USA
| | - Jiekun Xu
- School of Life Science, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Jun He
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Weiku Zhang
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
10
|
Turcotte EA, Kim K, Eislmayr KD, Goers L, Mitchell PS, Lesser CF, Vance RE. Shigella OspF blocks rapid p38-dependent priming of the NAIP-NLRC4 inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636075. [PMID: 39975412 PMCID: PMC11838452 DOI: 10.1101/2025.02.01.636075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The NAIP-NLRC4 inflammasome senses pathogenic bacteria by recognizing the cytosolic presence of bacterial proteins such as flagellin and type III secretion system (T3SS) subunits. In mice, the NAIP-NLRC4 inflammasome provides robust protection against bacterial pathogens that infect intestinal epithelial cells, including the gastrointestinal pathogen Shigella flexneri. By contrast, humans are highly susceptible to Shigella, despite the ability of human NAIP-NLRC4 to robustly detect Shigella T3SS proteins. Why the NAIP-NLRC4 inflammasome protects mice but not humans against Shigella infection remains unclear. We previously found that human THP-1 cells infected with Shigella lose responsiveness to NAIP-NLRC4 stimuli, while retaining sensitivity to other inflammasome agonists. Using mT3Sf, a "minimal Shigella" system, to express individual secreted Shigella effector proteins, we found that the OspF effector specifically suppresses NAIP-NLRC4-dependent cell death during infection. OspF was previously characterized as a phosphothreonine lyase that inactivates p38 and ERK MAP kinases. We found that p38 was critical for rapid priming of NAIP-NLRC4 activity, particularly in cells with low NAIP-NLRC4 expression. Overall, our results provide a mechanism by which Shigella evades inflammasome activation in humans, and describe a new mechanism for rapid priming of the NAIP-NLRC4 inflammasome.
Collapse
Affiliation(s)
- Elizabeth A Turcotte
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, Berkeley, United States
| | - Kyungsub Kim
- Department of Microbiology, Harvard Medical School, Boston, United States
| | - Kevin D Eislmayr
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, Berkeley, United States
| | - Lisa Goers
- Department of Microbiology, Harvard Medical School, Boston, United States
| | - Patrick S Mitchell
- Department of Microbiology, University of Washington, Seattle, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Cammie F Lesser
- Department of Microbiology, Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| | - Russell E Vance
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, Berkeley, United States
- Center for Emerging and Neglected Disease, University of California, Berkeley, United States
- Cancer Research Laboratory, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| |
Collapse
|
11
|
Liao Y, Kong Y, Chen H, Xia J, Zhao J, Zhou Y. Unraveling the priming phase of NLRP3 inflammasome activation: Molecular insights and clinical relevance. Int Immunopharmacol 2025; 146:113821. [PMID: 39674000 DOI: 10.1016/j.intimp.2024.113821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
The NLRP3 inflammasome plays a pivotal role in the innate immune response. Its activation involves a two-step mechanism that consists of priming and activation. The priming of the NLRP3 inflammasome is a vital initial phase necessary for its activation and subsequent involvement in the immune response, though its understanding varies across studies. Recent research has identified key proteins that influence the priming process, revealing a sophisticated regulatory network. This review provides a comprehensive review of the priming phase of NLRP3 inflammasome activation, with a particular focus on the underlying molecular mechanisms, including transcriptional regulation, orchestration of the phosphorylation status, deubiquitination and the relationships with the inflammation-associated diseases. Understanding the intricacies of NLRP3 inflammasome priming not only elucidates fundamental aspects of immune regulation, but also provides potential avenues for therapeutic intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Yonghong Liao
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China; National Center of Technology Innovation for Pigs, 402460, Rongchang, Chongqing, China
| | - Yueyao Kong
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China
| | - Hongyu Chen
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China
| | - Jing Xia
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China
| | - Jianjun Zhao
- College of Animal Science and Technology, Southwest University, 402460 Chongqing, China
| | - Yang Zhou
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China; National Center of Technology Innovation for Pigs, 402460, Rongchang, Chongqing, China.
| |
Collapse
|
12
|
Gao H, Sun M, Gao H, Sun Y, Chen W, Dong N. Genome-wide screen based on 2DG activated NLRP3 inflammasome reveals the priming signal of TLR2/4 to IKKβ but not IKKα. Int Immunopharmacol 2025; 145:113781. [PMID: 39657538 DOI: 10.1016/j.intimp.2024.113781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
NLRP3 inflammasome activation is a pivotal area of research in innate immunity, yet the precise priming and activation signal remain unclear. In this study, we demonstrate that glycolysis inhibitor 2-Deoxy-D-glucose (2DG) triggers NLRP3-driven pyroptosis in human leukemia monocyte THP-1 cells by interfering glycosylation rather than glycolysis, which occurs independent of potassium efflux but requires the involvement of glycolysis rate-limiting enzyme PFKP. Using a CRISPR-Cas9 mediated large-scale screen, with 2DG as a new tool for probing NLRP3 activation, we identified that TLR2, rather than TLR4, initiates a rapid and robust priming signal for NLRP3 inflammasome activation. Importantly, both TLR2 and TLR4 depend entirely on MyD88, but not TRIF, for signal transduction. Furthermore, we discovered that TAK1, IKKβ and NEMO, but not IKKα, are essential for the priming signal. Additionally, we observed that deficiency in the linear ubiquitin assembly complex (LUBAC) subunits HOIP and HOIL-1, but not SHARPIN, is sufficient to inhibit 2DG-induced pyroptotic cell death. Collectively, our study reveals some common mechanism in the NLRP3 priming signals, as well as specific mechanisms upstream of NLRP3 triggered by 2DG, and underscores the potential of 2DG as a trigger to facilitate further detailed analysis of the underlying mechanisms of NLRP3 inflammasome activation. One Sentence Summary: Priming signal by IKKβ is essential for NLRP3 activation.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Mengning Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Hang Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Yi Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Wenjuan Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Na Dong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| |
Collapse
|
13
|
Vervaeke A, Lamkanfi M. MAP Kinase Signaling at the Crossroads of Inflammasome Activation. Immunol Rev 2025; 329:e13436. [PMID: 39754394 DOI: 10.1111/imr.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/14/2024] [Indexed: 01/06/2025]
Abstract
Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation. Furthermore, we discuss novel insights into MAPK signaling in human NLRP1 inflammasome activation, focusing on the MAP3K member ZAKα as a key kinase linking ribosomal stress to inflammasome activation. Lastly, we review recent work elucidating how Bacillus anthracis lethal toxin (LeTx) manipulates host MAPK signaling to induce macrophage apoptosis as an immune evasion strategy, and the counteraction of this effect through genotype-specific Nlrp1b inflammasome activation in certain rodent strains.
Collapse
Affiliation(s)
- Alex Vervaeke
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Pazhouhesh Far N, Hajiheidari Varnousafaderani M, Faghihkhorasani F, Etemad S, Abdulwahid AHRR, Bakhtiarinia N, Mousaei A, Dortaj E, Karimi S, Ebrahimi N, Aref AR. Breaking the barriers: Overcoming cancer resistance by targeting the NLRP3 inflammasome. Br J Pharmacol 2025; 182:3-25. [PMID: 39394867 DOI: 10.1111/bph.17352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 10/14/2024] Open
Abstract
Inflammation has a pivotal role in the initiation and progression of various cancers, contributing to crucial processes such as metastasis, angiogenesis, cell proliferation and invasion. Moreover, the release of cytokines mediated by inflammation within the tumour microenvironment (TME) has a crucial role in orchestrating these events. The activation of inflammatory caspases, facilitated by the recruitment of caspase-1, is initiated by the activation of pattern recognition receptors on the immune cell membrane. This activation results in the production of proinflammatory cytokines, including IL-1β and IL-18, and participates in diverse biological processes with significant implications. The NOD-Like Receptor Protein 3 (NLRP3) inflammasome holds a central role in innate immunity and regulates inflammation through releasing IL-1β and IL-18. Moreover, it interacts with various cellular compartments. Recently, the mechanisms underlying NLRP3 inflammasome activation have garnered considerable attention. Disruption in NLRP3 inflammasome activation has been associated with a spectrum of inflammatory diseases, encompassing diabetes, enteritis, neurodegenerative diseases, obesity and tumours. The NLRP3 impact on tumorigenesis varies across different cancer types, with contrasting roles observed. For example, colorectal cancer associated with colitis can be suppressed by NLRP3, whereas gastric and skin cancers may be promoted by its activity. This review provides comprehensive insights into the structure, biological characteristics and mechanisms of the NLRP3 inflammasome, with a specific focus on the relationship between NLRP3 and tumour-related immune responses, and TME. Furthermore, the review explores potential strategies for targeting cancers via NLRP3 inflammasome modulation. This encompasses innovative approaches, including NLRP3-based nanoparticles, gene-targeted therapy and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | | | | | - Sareh Etemad
- Department of Pathology, Faculty of Anatomical Pathology, Ghaem Hospital, University of Medicine, Mashhad, Iran
| | | | | | - Afsaneh Mousaei
- Department of Biology, College of Science, Qaemshahr Branch, Islamic Azad University, Qaem Shahr, Iran
| | - Elahe Dortaj
- Department of Ergonomics, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soroush Karimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Wu YT, Li QZ, Wu YQ, Mu M, Wu H, Tian HY, Zhao XK. Nintedanib attenuates NLRP3 inflammasome-driven liver fibrosis by targeting Src signaling. Int Immunopharmacol 2024; 143:113630. [PMID: 39549551 DOI: 10.1016/j.intimp.2024.113630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Liver injury induces an inflammatory response that activates hepatic stellate cells, which is the initial factor of liver fibrosis. Nintedanib, a multi-targeted tyrosine kinase inhibitor targeting the Src signalling pathway, has been approved for the treatment of idiopathic pulmonary fibrosis. However, it is still not known whether nintedanib ameliorates liver fibrosis by inhibiting inflammasome activation. Here, a carbon tetrachloride (CCl4)-induced liver fibrosis model was used to assess the anti-fibrotic efficacy of nintedanib in vivo. Lipopolysaccharide and ATP were used to activate nucleotide oligomerisation domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes in LX-2 cells, and the efficacy of nintedanib on NLRP3 inflammasome activation was evaluated. Moreover, we used Src-overexpressing and Src-downregulating lentiviruses to transfect LX-2 cells to explore the targets of nintedanib. Nintedanib attenuated inflammation and extracellular matrix accumulation in CCl4-induced fibrotic livers and reduced the expression of NLRP3, fibrotic makers, and the phosphorylation of Src, epidermal growth factor receptor (EGFR), AKT, ERK1/2 in LX-2 cells. Furthermore, nintedanib thwarted NLRP3 inflammasome activation by suppressing the phosphorylation of Src and its downstream signalling pathway and reducing reactive oxygen species production. Our study indicates that nintedanib effectively suppresses NLRP3 inflammasome activation and has the potential for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Ye-Ting Wu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Qi-Zhe Li
- Department of Sport Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi-Qi Wu
- The Second Clinical College of Hainan Medical University, Hainan, Haikou, China
| | - Mao Mu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Huan Wu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hai-Ying Tian
- Department of Ultrasound Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xue-Ke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
16
|
Namin SS, Zhu YP, Croker BA, Tan Z. Turning Neutrophil Cell Death Deadly in the Context of Hypertensive Vascular Disease. Can J Cardiol 2024; 40:2356-2367. [PMID: 39326672 DOI: 10.1016/j.cjca.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Hypertensive vascular disease (HVD) is a major health burden globally and is a comorbidity commonly associated with other metabolic diseases. Many factors are associated with HVD including obesity, diabetes, smoking, chronic kidney disease, and sterile inflammation. Increasing evidence points to neutrophils as an important component of the chronic inflammatory response in HVD. Neutrophils are abundant in the circulation and can respond rapidly upon stimulation to deploy an armament of antimicrobial effector functions. One of the outcomes of neutrophil activation is the generation of neutrophil extracellular traps (NETs), a regulated extrusion of chromatin and proteases. Although neutrophils and NETs are well described as components of the innate immune response to infection, recent evidence implicates them in HVD. Endothelial cell activation can trigger neutrophil adhesion, activation, and production of NETs promoting vascular dysfunction, vessel remodelling, and loss of resistance. The regulated release of NETs can be controlled by the pore-forming activities of distinct cell death pathways. The best characterized pathways in this context are apoptosis, pyroptosis, and necroptosis. In this review, we discuss how inflammatory cell death signalling and NET formation contribute to hypertensive disease. We also examine novel therapeutic approaches to limit NET production and their future potential as therapeutic drugs for cardiovascular disorders.
Collapse
Affiliation(s)
- Sahand Salari Namin
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Yanfang Peipei Zhu
- Department of Biochemistry and Molecular Biology, Immunology Center of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Zhehao Tan
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
17
|
Ortega AJ, Daniel S, Renwick M, Kambhampati P, Thompson KN, Collier GE, Baker EL, Zaki H, Hulleman JD. Genetic removal of Nlrp3 protects against sporadic and R345W Efemp1-induced basal laminar deposit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618289. [PMID: 39464028 PMCID: PMC11507711 DOI: 10.1101/2024.10.14.618289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic, unresolved inflammation has long been speculated to serve as an initiating and propagating factor in numerous neurodegenerative diseases, including a leading cause of irreversible blindness in the elderly, age-related macular degeneration (AMD). Intracellular multiprotein complexes called inflammasomes in combination with activated caspases facilitate production of pro-inflammatory cytokines such as interleukin 1 beta. Specifically, the nucleotide-binding oligomerization (NOD)-like receptor protein 3 (NLRP3) has received heightened attention due to the wide range of stimuli to which it can respond and its potential involvement in AMD. In this study, we directly tested the role of Nlrp3 and its downstream effector, caspase 1 (Casp1) in mediating early AMD-like pathology (i.e., basal laminar deposits [BLamDs]) in wild-type (WT) mice and the Malattia Leventinese/Doyne honeycomb retinal dystrophy (ML/DHRD) mouse model (p.R345W mutation in Efemp1). Compared to aged-matched controls, R345W+/+ knockin mice demonstrated increased Muller cell gliosis, subretinal Iba-1+ microglial cells, higher Nlrp3 immunoreactivity in the retina, as well as significant transcriptional upregulation of complement component 3, Nlrp3, pro-Il1b, pro-caspase-1, and tissue inhibitor of matrix metalloproteinase 3 in the retinal pigmented epithelium (RPE)/choroid. These findings were accompanied by an age-related increase in BLamD formation in the R345W+/+ mice. Genetic elimination of either Nlrp3 or Casp1 significantly reduced both the size and coverage of BLamDs in the R345W+/+ background, highlighting an important and underappreciated pathway that could affect ML/DHRD onset and progression. Moreover, Nlrp3 knockout reduced spontaneous, idiopathic BLamDs in WT mice, suggesting translatability of our findings not only to rare inherited retinal dystrophies, but also potentially to AMD itself.
Collapse
Affiliation(s)
- Antonio J. Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Marian Renwick
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Pravallika Kambhampati
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Krista N. Thompson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Gracen E. Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Emily L. Baker
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Hasan Zaki
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - John D. Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
18
|
Li LR, Chen L, Sun ZJ. Igniting hope: Harnessing NLRP3 inflammasome-GSDMD-mediated pyroptosis for cancer immunotherapy. Life Sci 2024; 354:122951. [PMID: 39127315 DOI: 10.1016/j.lfs.2024.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In the contemporary landscape of oncology, immunotherapy, represented by immune checkpoint blockade (ICB) therapy, stands out as a beacon of innovation in cancer treatment. Despite its promise, the therapy's progression is hindered by suboptimal clinical response rates. Addressing this challenge, the modulation of the NLRP3 inflammasome-GSDMD-mediated pyroptosis pathway holds promise as a means to augment the efficacy of immunotherapy. In the pathway, the NLRP3 inflammasome serves as a pivotal molecular sensor that responds to inflammatory stimuli within the organism. Its activation leads to the release of cytokines interleukin 1β and interleukin 18 through the cleavage of GSDMD, thereby forming membrane pores and potentially resulting in pyroptosis. This cascade of processes exerts a profound impact on tumor development and progression, with its function and expression exhibiting variability across different tumor types and developmental stages. Consequently, understanding the specific roles of the NLRP3 inflammasome and GSDMD-mediated pyroptosis in diverse tumors is imperative for comprehending tumorigenesis and crafting precise therapeutic strategies. This review aims to elucidate the structure and activation mechanisms of the NLRP3 inflammasome, as well as the induction mechanisms of GSDMD-mediated pyroptosis. Additionally, we provide a comprehensive overview of the involvement of this pathway in various cancer types and its applications in tumor immunotherapy, nanotherapy, and other fields. Emphasis is placed on the feasibility of leveraging this approach to enhance ICB therapy within the field of immunotherapy. Furthermore, we discuss the potential applications of this pathway in other immunotherapy methods, such as chimeric antigen receptor T-cell (CAR-T) therapy and tumor vaccines.
Collapse
Affiliation(s)
- Ling-Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
19
|
Abstract
Inflammasomes are supramolecular complexes that form in the cytosol in response to pathogen-associated and damage-associated stimuli, as well as other danger signals that perturb cellular homoeostasis, resulting in host defence responses in the form of cytokine release and programmed cell death (pyroptosis). Inflammasome activity is closely associated with numerous human disorders, including rare genetic syndromes of autoinflammation, cardiovascular diseases, neurodegeneration and cancer. In recent years, a range of inflammasome components and their functions have been discovered, contributing to our knowledge of the overall machinery. Here, we review the latest advances in inflammasome biology from the perspective of structural and mechanistic studies. We focus on the most well-studied components of the canonical inflammasome - NAIP-NLRC4, NLRP3, NLRP1, CARD8 and caspase-1 - as well as caspase-4, caspase-5 and caspase-11 of the noncanonical inflammasome, and the inflammasome effectors GSDMD and NINJ1. These structural studies reveal important insights into how inflammasomes are assembled and regulated, and how they elicit the release of IL-1 family cytokines and induce membrane rupture in pyroptosis.
Collapse
Affiliation(s)
- Jianing Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
20
|
Wieske L, Michael MR, In 't Veld SGJG, Visser A, van Schaik IN, Eftimov F, Teunissen CE. Proximity extension assay-based discovery of biomarkers for disease activity in chronic inflammatory demyelinating polyneuropathy. J Neurol Neurosurg Psychiatry 2024; 95:595-604. [PMID: 37879899 DOI: 10.1136/jnnp-2023-332398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Objective disease activity biomarkers are lacking in chronic inflammatory demyelinating polyneuropathy (CIDP), impacting treatment decisions in clinical care and outcomes in clinical trials. Using a proximity extension assay, we aimed to identify candidate serum protein biomarkers for disease activity in CIDP. METHOD We collected clinical data and serum of 106 patients with CIDP. Patients starting induction treatment (n=53) and patients on maintenance treatment starting treatment withdrawal (n=40) were assessed at baseline and at 6 months (or at relapse). Patients in remission (n=13) were assessed once. Clinical disease activity was defined based on improvement or deterioration by the minimal clinically important difference on the inflammatory Rasch-built Overall Disability Scale in combination with either grip strength or the Medical Research Council sum score. Using a proximity extension assay (Olink Explore platform), 1472 protein levels were analysed in serum. Candidate proteins were selected based on fold change>0.5 or <-0.5 and p<0.05 between clinically active and inactive disease. Longitudinal changes of candidate proteins between baseline and follow-up were analysed. RESULTS We identified 48 candidate proteins that differed between clinically active and inactive disease on cross-sectional comparison. Five of these proteins (SUGT1, IRAK4, DCTN1, 5'-nucleotidase cytosolic IIIA (NT5C3A), glutaredoxin (GLRX)) also showed longitudinal changes consistent with disease activity changes. IRAK4 was also identified in a sensitivity analysis, using another definition for disease activity. CONCLUSION Our results indicate that IRAK4 and possibly SUGT1, DCTN1, NT5C3A and GLRX are candidate biomarkers for monitoring clinical disease activity in CIDP.
Collapse
Affiliation(s)
- Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, Amsterdam, Noord-Holland, The Netherlands
- Department of Clinical Neurophysiology, Sint Antonius Hospital, Nieuwegein, The Netherlands
| | - Milou R Michael
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, Amsterdam, Noord-Holland, The Netherlands
| | - Sjors G J G In 't Veld
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, Noord-Holland, The Netherlands
| | - Allerdien Visser
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, Noord-Holland, The Netherlands
| | - Ivo N van Schaik
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, Amsterdam, Noord-Holland, The Netherlands
- Sanquin Bloedvoorziening, Amsterdam, Noord-Holland, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, Amsterdam, Noord-Holland, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, Noord-Holland, The Netherlands
| |
Collapse
|
21
|
Zhang L, Tang Y, Huang P, Luo S, She Z, Peng H, Chen Y, Luo J, Duan W, Xiong J, Liu L, Liu L. Role of NLRP3 inflammasome in central nervous system diseases. Cell Biosci 2024; 14:75. [PMID: 38849934 PMCID: PMC11162045 DOI: 10.1186/s13578-024-01256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The central nervous system (CNS) is the most delicate system in human body, with the most complex structure and function. It is vulnerable to trauma, infection, neurodegeneration and autoimmune diseases, and activates the immune system. An appropriate inflammatory response contributes to defence against invading microbes, whereas an excessive inflammatory response can aggravate tissue damage. The NLRP3 inflammasome was the first one studied in the brain. Once primed and activated, it completes the assembly of inflammasome (sensor NLRP3, adaptor ASC, and effector caspase-1), leading to caspase-1 activation and increased release of downstream inflammatory cytokines, as well as to pyroptosis. Cumulative studies have confirmed that NLRP3 plays an important role in regulating innate immunity and autoimmune diseases, and its inhibitors have shown good efficacy in animal models of various inflammatory diseases. In this review, we will briefly discuss the biological characteristics of NLRP3 inflammasome, summarize the recent advances and clinical impact of the NLRP3 inflammasome in infectious, inflammatory, immune, degenerative, genetic, and vascular diseases of CNS, and discuss the potential and challenges of NLRP3 as a therapeutic target for CNS diseases.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China.
| |
Collapse
|
22
|
O'Keefe ME, Dubyak GR, Abbott DW. Post-translational control of NLRP3 inflammasome signaling. J Biol Chem 2024; 300:107386. [PMID: 38763335 PMCID: PMC11245928 DOI: 10.1016/j.jbc.2024.107386] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Inflammasomes serve as critical sensors for disruptions to cellular homeostasis, with inflammasome assembly leading to inflammatory caspase activation, gasdermin cleavage, and cytokine release. While the canonical pathways leading to priming, assembly, and pyroptosis are well characterized, recent work has begun to focus on the role of post-translational modifications (PTMs) in regulating inflammasome activity. A diverse array of PTMs, including phosphorylation, ubiquitination, SUMOylation, acetylation, and glycosylation, exert both activating and inhibitory influences on members of the inflammasome cascade through effects on protein-protein interactions, stability, and localization. Dysregulation of inflammasome activation is associated with a number of inflammatory diseases, and evidence is emerging that aberrant modification of inflammasome components contributes to this dysregulation. This review provides insight into PTMs within the NLRP3 inflammasome pathway and their functional consequences on the signaling cascade and highlights outstanding questions that remain regarding the complex web of signals at play.
Collapse
Affiliation(s)
- Meghan E O'Keefe
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
23
|
Raina S, Hübner E, Samuel E, Nagel G, Fuchs H. DT-13 attenuates inflammation by inhibiting NLRP3-inflammasome related genes in RAW264.7 macrophages. Biochem Biophys Res Commun 2024; 708:149763. [PMID: 38503169 DOI: 10.1016/j.bbrc.2024.149763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Plant derived saponins or other glycosides are widely used for their anti-inflammatory, antioxidant, and anti-viral properties in therapeutic medicine. In this study, we focus on understanding the function of the less known steroidal saponin from the roots of Liriope muscari L. H. Bailey - saponin C (also known as DT-13) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in comparison to the well-known saponin ginsenoside Rk1 and anti-inflammatory drug dexamethasone. We proved that DT-13 reduces LPS-induced inflammation by inhibiting nitric oxide (NO) production, interleukin-6 (IL-6) release, cycloxygenase-2 (COX-2), tumour necrosis factor-alpha (TNF-α) gene expression, and nuclear factor kappa-B (NFκB) translocation into the nucleus. It also inhibits the inflammasome component NOD-like receptor family pyrin domain containing protein 3 (NLRP3) regulating the inflammasome activation. This was supported by the significant inhibition of caspase-1 and interleukin-1 beta (IL-1β) expression and release. This study demonstrates the anti-inflammatory effect of saponins on LPS-stimulated macrophages. For the first time, an in vitro study shows the attenuating effect of DT-13 on NLRP3-inflammasome activation. In comparison to the existing anti-inflammatory drug, dexamethasone, and triterpenoid saponin Rk1, DT-13 more efficiently inhibits inflammation in the applied cell culture model. Therefore, DT-13 may serve as a lead compound for the development of new more effective anti-inflammatory drugs with minimised side effects.
Collapse
Affiliation(s)
- Shikha Raina
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Emely Hübner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany; Hochschule Bonn-Rhein Sieg, 53359, Rheinbach, Germany; HAN University of Applied Sciences, Groenewoudseweg, 6524, Nijmegen, Netherlands
| | - Esther Samuel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Gregor Nagel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Hendrik Fuchs
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany.
| |
Collapse
|
24
|
Marín-Palma D, Tabares-Guevara JH, Taborda N, Rugeles MT, Hernandez JC. Coarse particulate matter (PM10) induce an inflammatory response through the NLRP3 activation. J Inflamm (Lond) 2024; 21:15. [PMID: 38698414 PMCID: PMC11064351 DOI: 10.1186/s12950-024-00388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
INTRODUCTION PM exposure can induce inflammatory and oxidative responses; however, differences in these adverse effects have been reported depending on the chemical composition and size. Moreover, inflammatory mechanisms such as NLRP3 activation by PM10 have yet to be explored. OBJECTIVE To assess the impact of PM10 on cell cytotoxicity and the inflammatory response through in vitro and in vivo models. METHODOLOGY Peripheral blood mononuclear cells (PBMCs) from healthy donors were exposed to PM10. Cytotoxicity was determined using the LDH assay; the expression of inflammasome components and the production of pro-inflammatory cytokines were quantified through qPCR and ELISA, respectively; and the formation of ASC complexes was examined using confocal microscopy. For in vivo analysis, male C57BL6 mice were intranasally challenged with PM10 and bronchoalveolar lavage fluid was collected to determine cell counts and quantification of pro-inflammatory cytokines by ELISA. RNA was extracted from lung tissue, and the gene expression of inflammatory mediators was quantified. RESULTS PM10 exposure induced significant cytotoxicity at concentrations over 100 µg/mL. Moreover, PM10 enhances the gene expression and release of pro-inflammatory cytokines in PBMCs, particularly IL-1β; and induces the formation of ASC complexes in a dose-dependent manner. In vivo, PM10 exposure led to cell recruitment to the lungs, which was characterized by a significant increase in polymorphonuclear cells compared to control animals. Furthermore, PM10 induces the expression of several inflammatory response-related genes, such as NLRP3, IL-1β and IL-18, within lung tissue. CONCLUSION Briefly, PM10 exposure reduced the viability of primary cells and triggered an inflammatory response, involving NLRP3 inflammasome activation and the subsequent production of IL-1β. Moreover, PM10 induces the recruitment of cells to the lung and the expression of multiple cytokines; this phenomenon could contribute to epithelial damage and, thus to the development and exacerbation of respiratory diseases such as viral infections.
Collapse
Affiliation(s)
- Damariz Marín-Palma
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Jorge H Tabares-Guevara
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Natalia Taborda
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.
| |
Collapse
|
25
|
Huang P, Zhang Z, Zhang P, Feng J, Xie J, Zheng Y, Liang X, Zhu B, Chen Z, Feng S, Wang L, Lu J, Liu Y, Zhang Y. TREM2 Deficiency Aggravates NLRP3 Inflammasome Activation and Pyroptosis in MPTP-Induced Parkinson's Disease Mice and LPS-Induced BV2 Cells. Mol Neurobiol 2024; 61:2590-2605. [PMID: 37917301 PMCID: PMC11043123 DOI: 10.1007/s12035-023-03713-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Triggering receptor expressed on myeloid cells 2 (TREM2) confers strong neuroprotective effects in PD by regulating the phenotype of microglia. Recent studies suggest that TREM2 regulates high glucose-induced microglial inflammation through the NLRP3 signaling pathway. This study aimed to investigate the effect of TREM2 on NLRP3 inflammasome activation and neuroinflammation in PD. Mice were injected with AAV-TREM2-shRNA into both sides of the substantia nigra using a stereotactic injection method, followed by intraperitoneal injection of MPTP to establish chronic PD mouse model. Behavioral assessments including the pole test and rotarod test were conducted to evaluate the effects of TREM2 deficiency on MPTP-induced motor dysfunction. Immunohistochemistry of TREM2 and tyrosine hydroxylase (TH), immunohistochemistry and immunofluorescence Iba1, Western blot of NLRP3 inflammasome and its downstream inflammatory factors IL-1β and IL-18, and the key pyroptosis factors GSDMD and GSDMD-N were performed to explore the effect of TREM2 on NLRP3 inflammasome and neuroinflammation. In an in vitro experiment, lentivirus was used to interfere with the expression of TREM2 in BV2 microglia, and then lipopolysaccharide (LPS) and adenopterin nucleoside triphosphate (ATP) were used to stimulate inflammation to construct a cellular inflammation model. The expression differences of NLRP3 inflammasome and its components were detected by qPCR and Western blot. In vivo, TREM2 knockdown aggravated the loss of dopaminergic neuron and the decline of motor function. After TREM2 knockdown, the number of activated microglia was significantly increased, and the expression of cleaved caspase-1, NLRP3 inflammasome, IL-1β, GSDMD, and GSDMD-N was increased. In vitro, TREM2 knockdown aggravated the inflammatory response of BV2 cells stimulated by LPS and promoted the activation of NLRP3 inflammasome through the NF-κB pathway. In addition, TREM2 knockdown also promoted the expression of TLR4/MyD88, an upstream factor of the NF-κB pathway. Our vivo and vitro data showed that TREM2 knockdown promoted NLRP3 inflammasome activation and downstream inflammatory response, promoted pyroptosis, and aggravated dopaminergic neuron loss. TREM2 acts as an anti-inflammatory in PD through the TLR4/MyD88/NF-κB pathway, which extends previous findings and supports the notion that TREM2 ameliorates neuroinflammation in PD.
Collapse
Affiliation(s)
- Peiting Huang
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong Province, China
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Zhanyu Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong Province, China
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Jiezhu Feng
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong Province, China
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Jianwei Xie
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong Province, China
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Yinjuan Zheng
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong Province, China
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Xiaomei Liang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Baoyu Zhu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Zhenzhen Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Shujun Feng
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.
| | - Yuhu Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong Province, China.
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, China.
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China.
| |
Collapse
|
26
|
Duan Y, Zhu Y, Zhang L, Wang W, Zhang M, Tian J, Li Q, Ai J, Wang R, Xie Z. Activation of the NLRP3 inflammasome by human adenovirus type 7 L4 100-kilodalton protein. Front Immunol 2024; 15:1294898. [PMID: 38660301 PMCID: PMC11041921 DOI: 10.3389/fimmu.2024.1294898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Human adenovirus type 7 (HAdV-7) is a significant viral pathogen that causes respiratory infections in children. Currently, there are no specific antiviral drugs or vaccines for children targeting HAdV-7, and the mechanisms of its pathogenesis remain unclear. The NLRP3 inflammasome-driven inflammatory cascade plays a crucial role in the host's antiviral immunity. Our previous study demonstrated that HAdV-7 infection activates the NLRP3 inflammasome. Building upon this finding, our current study has identified the L4 100 kDa protein encoded by HAdV-7 as the primary viral component responsible for NLRP3 inflammasome activation. By utilizing techniques such as co-immunoprecipitation, we have confirmed that the 100 kDa protein interacts with the NLRP3 protein and facilitates the assembly of the NLRP3 inflammasome by binding specifically to the NACHT and LRR domains of NLRP3. These insights offer a deeper understanding of HAdV-7 pathogenesis and contribute to the development of novel antiviral therapies.
Collapse
Affiliation(s)
- Yali Duan
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
- Department of Infectious Diseases, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| | - Linlin Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pediatrics, Beijing Jingmei Group General Hospital, Beijing, China
| | - Meng Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pediatric Rehabilitation, Beijing Boai Hospital, School of Rehabilitation Medicine, Capital Medical University, China Rehabilitation Research Center, Beijing, China
| | - Jiao Tian
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Li
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| | - Junhong Ai
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
28
|
Li X, Ji LJ, Feng KD, Huang H, Liang MR, Cheng SJ, Meng XD. Emerging role of exosomes in ulcerative colitis: Targeting NOD-like receptor family pyrin domain containing 3 inflammasome. World J Gastroenterol 2024; 30:527-541. [PMID: 38463022 PMCID: PMC10921143 DOI: 10.3748/wjg.v30.i6.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease. Despite ongoing advances in our understanding of UC, its pathogenesis is yet unelucidated, underscoring the urgent need for novel treatment strategies for patients with UC. Exosomes are nanoscale membrane particles that mediate intercellular communication by carrying various bioactive molecules, such as proteins, RNAs, DNA, and metabolites. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytosolic tripartite protein complex whose activation induces the maturation and secretion of proinflammatory cytokines interleukin-1β (IL-1β) and IL-18, triggering the inflammatory response to a pathogenic agent or injury. Growing evidence suggests that exosomes are new modulators of the NLRP3 inflammasome, with vital roles in the pathological process of UC. Here, recent evidence is reviewed on the role of exosomes and NLRP3 inflammasome in UC. First, the dual role of exosomes on NLRP3 inflammasome and the effect of NLRP3 inflammasome on exosome secretion are summarized. Finally, an outlook on the directions of exosome-NLRP3 inflammasome crosstalk research in the context of UC is proposed and areas of further research on this topic are highlighted.
Collapse
Affiliation(s)
- Xin Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| | - Li-Jiang Ji
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Kai-Di Feng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hua Huang
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Mei-Rou Liang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shi-Jin Cheng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiu-Dong Meng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
29
|
Huang J, Li W. Molecular crosstalk between circadian clock and NLRP3 inflammasome signaling in Parkinson's disease. Heliyon 2024; 10:e24752. [PMID: 38268831 PMCID: PMC10803942 DOI: 10.1016/j.heliyon.2024.e24752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Research has recently found that both animal models and patients with PD have circadian dysfunction, accompanied by abnormal expression of circadian genes and proteins, which implies that the circadian clock plays a crucial role in PD etiopathogenesis. In addition, a strong relationship between NLRP3 inflammasome signaling and PD has been observed. Meanwhile, the activation of the NLRP3 inflammasome is highly relevant to dysfunctions of the molecular clock. Therefore, alleviating the neuroinflammation caused by NLRP3 inflammasome signaling by adjusting the abnormal molecular clock may be a potential strategy for preventing and treating PD. In this article, we have reviewed the potential or direct relationship between abnormalities of the circadian clock and NLRP3 inflammasome signaling in PD.
Collapse
Affiliation(s)
- Jiahua Huang
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, 201500, Shanghai, China
- Institute of Neurology, Institutes of Integrative Medicine, Fudan University, 201500, Shanghai, China
| | - Wenwei Li
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, 201500, Shanghai, China
- Institute of Neurology, Institutes of Integrative Medicine, Fudan University, 201500, Shanghai, China
| |
Collapse
|
30
|
More M, Chatterjee S, Saha P, Bose D, Trivedi A, Roy S, Chatterjee S. Host microbiome associated low intestinal acetate correlates with progressive NLRP3-dependent hepatic-immunotoxicity in early life microcystin-LR exposure. BMC Pharmacol Toxicol 2023; 24:78. [PMID: 38093299 PMCID: PMC10720243 DOI: 10.1186/s40360-023-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Microcystins (MCs), potent hepatotoxins pose a significant health risk to humans, particularly children, who are more vulnerable due to higher water intake and increased exposure during recreational activities. METHODS Here, we investigated the role of host microbiome-linked acetate in modulating inflammation caused by early-life exposure to the cyanotoxin Microcystin-LR (MC-LR) in a juvenile mice model. RESULTS Our study revealed that early-life MC-LR exposure disrupted the gut microbiome, leading to a depletion of key acetate-producing bacteria and decreased luminal acetate concentration. Consequently, the dysbiosis hindered the establishment of a gut homeostatic microenvironment and disrupted gut barrier function. The NOD-like receptor family pyrin domain - containing 3 (NLRP3) inflammasome, a key player in MC-induced hepatoxicity emerged as a central player in this process, with acetate supplementation effectively preventing NLRP3 inflammasome activation, attenuating hepatic inflammation, and decreasing pro-inflammatory cytokine production. To elucidate the mechanism underlying the association between early-life MC-LR exposure and the progression of metabolic dysfunction associated steatotic liver disease (MASLD), we investigated the role of acetate binding to its receptor -G-protein coupled receptor 43 (GPR43) on NLRP3 inflammasome activation. Our results demonstrated that acetate-GPR43 signaling was crucial for decreasing NLRP3 protein levels and inhibiting NLRP3 inflammasome assembly. Further, acetate-induced decrease in NLRP3 protein levels was likely mediated through proteasomal degradation rather than autophagy. Overall, our findings underscore the significance of a healthy gut microbiome and its metabolites, particularly acetate, in the progression of hepatotoxicity induced by early life toxin exposure, crucial for MASLD progression. CONCLUSIONS This study highlights potential therapeutic targets in gut dysbiosis and NLRP3 inflammasome activation for mitigating toxin-associated inflammatory liver diseases.
Collapse
Affiliation(s)
- Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California - Irvine, 92697, Irvine, CA, USA
| | | | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California - Irvine, 92697, Irvine, CA, USA
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California - Irvine, 92697, Irvine, CA, USA
| | - Ayushi Trivedi
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California - Irvine, 92697, Irvine, CA, USA
| | - Subhajit Roy
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California - Irvine, 92697, Irvine, CA, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California - Irvine, 92697, Irvine, CA, USA.
- Toxicology Core, NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental and Occupational Health, Program in Public Health, University of California - Irvine, 92697, Irvine, CA, USA.
- Division of Infectious Disease, Department of Medicine, UCI School of Medicine, University of California - Irvine, 92697, Irvine, CA, USA.
| |
Collapse
|
31
|
Ramalingam V. NLRP3 inhibitors: Unleashing their therapeutic potential against inflammatory diseases. Biochem Pharmacol 2023; 218:115915. [PMID: 37949323 DOI: 10.1016/j.bcp.2023.115915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the release of pro-inflammatory cytokines and is essential for innate defence against infection and danger signals. These secreted cytokines improve the inflammatory response caused by tissue damage and associated inflammation. Consequently, the development of NLRP3 inflammasome inhibitors are viable option for the treatment of diverse inflammatory disorders. The significant anti-inflammatory effects of the NLRP3 inhibitors have severe side effects. Hence, the application of NLRP3 inhibitors against inflammatory disease has not yet been understood and most of the developed inhibitors are unsuccessful in clinical trials. The processes behind the NLRP3 complex, priming, and activation are the main emphasis of this review, which also covers therapeutical inhibitors of the NLRP3 inflammasome and potential therapeutic strategies for directing the NLRP3 inflammasome towards clinical development.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
32
|
Xu Y, Yang Y, Chen X, Jiang D, Zhang F, Guo Y, Hu B, Xu G, Peng S, Wu L, Hu J. NLRP3 inflammasome in cognitive impairment and pharmacological properties of its inhibitors. Transl Neurodegener 2023; 12:49. [PMID: 37915104 PMCID: PMC10621314 DOI: 10.1186/s40035-023-00381-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Cognitive impairment is a multifactorial and multi-step pathological process that places a heavy burden on patients and the society. Neuroinflammation is one of the main factors leading to cognitive impairment. The inflammasomes are multi-protein complexes that respond to various microorganisms and endogenous danger signals, helping to initiate innate protective responses in inflammatory diseases. NLRP3 inflammasomes produce proinflammatory cytokines (interleukin IL-1β and IL-18) by activating caspase-1. In this review, we comprehensively describe the structure and functions of the NLRP3 inflammasome. We also explore the intrinsic relationship between the NLRP3 inflammasome and cognitive impairment, which involves immune cell activation, cell apoptosis, oxidative stress, mitochondrial autophagy, and neuroinflammation. Finally, we describe NLRP3 inflammasome antagonists as targeted therapies to improve cognitive impairment.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, Department of the Second Clinical Medical College of Nanchang University, Nanchang, 330006, China
| | - Yanling Yang
- The Second Affiliated Hospital of Nanchang University, Department of the Second Clinical Medical College of Nanchang University, Nanchang, 330006, China
| | - Xi Chen
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fei Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yao Guo
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
33
|
Ho LC, Chen YH, Wu TY, Kao LZ, Hung SY, Liou HH, Chen PC, Tsai PJ, Lin HK, Lee YC, Wang HH, Tsai YS. Phosphate burden induces vascular calcification through a NLRP3-caspase-1-mediated pyroptotic pathway. Life Sci 2023; 332:122123. [PMID: 37742736 DOI: 10.1016/j.lfs.2023.122123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
AIMS The aim of this study is to clarify the role of NLRP3 inflammasome in phosphate burden-induced vascular smooth muscle cell (VSMC) calcification. MAIN METHODS VSMC calcification was induced using a high concentration of inorganic phosphate. After pharmacological inhibition or genetic silencing of the NLRP3 inflammasome, pyroptosis, or potassium efflux, the cells were examined by RT-qPCR, immunofluorescence, and western blotting to identify the NLRP3-mediated pathway for VSMC calcification. KEY FINDINGS Calcified VSMCs with α-smooth muscle actin (α-SMA) disarray presented features of pyroptosis, including caspase-1 maturation, cleaved gasdermin D (GSDMD), and a high supernatant level of lactate dehydrogenase A. Pharmacological inhibitions of caspase-1 and pyroptosis attenuated VSMC calcification, whereas interleukin-1β receptor antagonism did not. Unlike canonical NLRP3 activation, osteogenic VSMCs did not upregulate NLRP3 expression. However, NLRP3 genetic silencing or inhibitions, which targets different domains of the NLRP3 protein, could ameliorate VSMC calcification by aborting caspase-1 and GSDMD activation. Furthermore, potassium efflux through the inward-rectifier potassium channel, and not through the P2X7 receptor, triggered NLRP3 inflammasome activation and VSMC calcification. SIGNIFICANCE In the present study, we identified a potassium efflux-triggered NLRP3-caspase-1-mediated pyroptotic pathway for VSMC calcification that is unique and different from the canonical NLRP3 inflammasome activation. Therefore, targeting this pathway may serve as a novel therapeutic strategy for vascular calcification.
Collapse
Affiliation(s)
- Li-Chun Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Division of General Medicine, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.
| | - Yu-Hsin Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yun Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Zhen Kao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Yuan Hung
- Division of Nephrology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hung-Hsiang Liou
- Division of Nephrology, Department of Internal Medicine, Hsin-Jen Hospital, New Taipei City, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Yi-Che Lee
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Hsi-Hao Wang
- Division of Nephrology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA; Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
34
|
Palumbo L, Carinci M, Guarino A, Asth L, Zucchini S, Missiroli S, Rimessi A, Pinton P, Giorgi C. The NLRP3 Inflammasome in Neurodegenerative Disorders: Insights from Epileptic Models. Biomedicines 2023; 11:2825. [PMID: 37893198 PMCID: PMC10604217 DOI: 10.3390/biomedicines11102825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Neuroinflammation represents a dynamic process of defense and protection against the harmful action of infectious agents or other detrimental stimuli in the central nervous system (CNS). However, the uncontrolled regulation of this physiological process is strongly associated with serious dysfunctional neuronal issues linked to the progression of CNS disorders. Moreover, it has been widely demonstrated that neuroinflammation is linked to epilepsy, one of the most prevalent and serious brain disorders worldwide. Indeed, NLRP3, one of the most well-studied inflammasomes, is involved in the generation of epileptic seizures, events that characterize this pathological condition. In this context, several pieces of evidence have shown that the NLRP3 inflammasome plays a central role in the pathophysiology of mesial temporal lobe epilepsy (mTLE). Based on an extensive review of the literature on the role of NLRP3-dependent inflammation in epilepsy, in this review we discuss our current understanding of the connection between NLRP3 inflammasome activation and progressive neurodegeneration in epilepsy. The goal of the review is to cover as many of the various known epilepsy models as possible, providing a broad overview of the current literature. Lastly, we also propose some of the present therapeutic strategies targeting NLRP3, aiming to provide potential insights for future studies.
Collapse
Affiliation(s)
- Laura Palumbo
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
| | - Annunziata Guarino
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
35
|
Dai Y, Zhou J, Shi C. Inflammasome: structure, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e391. [PMID: 37817895 PMCID: PMC10560975 DOI: 10.1002/mco2.391] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammasomes are a group of protein complex located in cytoplasm and assemble in response to a wide variety of pathogen-associated molecule patterns, damage-associated molecule patterns, and cellular stress. Generally, the activation of inflammasomes will lead to maturation of proinflammatory cytokines and pyroptotic cell death, both associated with inflammatory cascade amplification. A sensor protein, an adaptor, and a procaspase protein interact through their functional domains and compose one subunit of inflammasome complex. Under physiological conditions, inflammasome functions against pathogen infection and endogenous dangers including mtROS, mtDNA, and so on, while dysregulation of its activation can lead to unwanted results. In recent years, advances have been made to clarify the mechanisms of inflammasome activation, the structural details of them and their functions (negative/positive) in multiple disease models in both animal models and human. The wide range of the stimuli makes the function of inflammasome diverse and complex. Here, we review the structure, biological functions, and therapeutic targets of inflammasomes, while highlight NLRP3, NLRC4, and AIM2 inflammasomes, which are the most well studied. In conclusion, this review focuses on the activation process, biological functions, and structure of the most well-studied inflammasomes, summarizing and predicting approaches for disease treatment and prevention with inflammasome as a target. We aim to provide fresh insight into new solutions to the challenges in this field.
Collapse
Affiliation(s)
- Yali Dai
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| | - Jing Zhou
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
- Institute of ImmunologyArmy Medical UniversityChongqingChina
| | - Chunmeng Shi
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| |
Collapse
|
36
|
Abstract
The immune system of multicellular organisms protects them from harmful microbes. To establish an infection in the face of host immune responses, pathogens must evolve specific strategies to target immune defense mechanisms. One such defense is the formation of intracellular protein complexes, termed inflammasomes, that are triggered by the detection of microbial components and the disruption of homeostatic processes that occur during bacterial infection. Formation of active inflammasomes initiates programmed cell death pathways via activation of inflammatory caspases and cleavage of target proteins. Inflammasome-activated cell death pathways such as pyroptosis lead to proinflammatory responses that protect the host. Bacterial infection has the capacity to influence inflammasomes in two distinct ways: activation and perturbation. In this review, we discuss how bacterial activities influence inflammasomes, and we discuss the consequences of inflammasome activation or evasion for both the host and pathogen.
Collapse
Affiliation(s)
- Beatrice I Herrmann
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James P Grayczyk
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Current affiliation: Oncology Discovery, Abbvie, Inc., Chicago, Illinois, USA;
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Chen M, Yu S, Gao Y, Li J, Wang X, Wei B, Meng G. TRAF6-TAK1-IKKβ pathway mediates TLR2 agonists activating "one-step" NLRP3 inflammasome in human monocytes. Cytokine 2023; 169:156302. [PMID: 37480791 DOI: 10.1016/j.cyto.2023.156302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Gram-positive bacterial infection causes high morbidity and mortality worldwide, while the underlying mechanism for host sensing bacterial components and initiating immune responses remains elusive. The NLRP3 inflammasome is a cytosolic multi-protein complex sensing a broad spectrum of endogenous danger signals and environmental irritants. In contrast to canonical NLRP3 inflammasome activation that needs both priming and activation signals, Lipopolysaccharide (LPS) from gram-negative bacteria activates the "one-step" NLRP3 inflammasome in human monocytes, which relies on the TLR4-TRIF-Caspase-8 signaling. Here, we show that in human monocytes, TLR2 agonists such as heat-killed gram-positive bacteria, peptidoglycan (PGN) or synthetic bacterial lipoprotein analog Pam3CysSerLys4 (Pam3CSK4) are able to induce the "one-step" NLRP3 inflammasome activation. Using genetic targeting and pharmacological inhibition approaches, it was found that TLR2 propagates signal through TRAF6, TAK1 and IKKβ, ultimately activated NLRP3 independent of RelA. In addition, IKKβ interacts with NLRP3 directly and affects NLRP3 inflammasome activation. These results reveal the signaling cascade downstream of TLR2 upon sensing gram-positive bacterial infection and activating the "one-step" NLRP3 inflammasome in human monocytes, which provides clue for controlling gram-positive bacterial infection-related inflammation.
Collapse
Affiliation(s)
- Mengdan Chen
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shi Yu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuhui Gao
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiaxun Li
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xun Wang
- Shanghai Blood Center, Shanghai 200051, China
| | - Bin Wei
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China; Pasteurien College, Soochow University, Suzhou, Jiangsu 215006, China; Nanjing Advanced Academy of Life and Health, Nanjing, Jiangsu 211135, China.
| |
Collapse
|
38
|
Banerjee S, Park T, Kim YS, Kim HY. Exacerbating effects of single-dose acute ethanol exposure on neuroinflammation and amelioration by GPR110 (ADGRF1) activation. J Neuroinflammation 2023; 20:187. [PMID: 37580715 PMCID: PMC10426059 DOI: 10.1186/s12974-023-02868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Neuroinflammation is a widely studied phenomenon underlying various neurodegenerative diseases. Earlier study demonstrated that pharmacological activation of GPR110 in both central and peripheral immune cells cooperatively ameliorates neuroinflammation caused by systemic lipopolysaccharide (LPS) administration. Ethanol consumption has been associated with exacerbation of neurodegenerative and systemic inflammatory conditions. The goal of this study is to determine the effects of single-dose acute ethanol exposure and GPR110 activation on the neuro-inflammation mechanisms. METHODS For in vivo studies, GPR110 wild type (WT) and knockout (KO) mice at 10-12 weeks of age were given an oral gavage of ethanol (3 g/kg) or maltose (5.4 g/kg) at 1-4 h prior to the injection of LPS (1 mg/kg, i.p.) followed by the GPR110 ligand, synaptamide (5 mg/kg). After 2-24 h, brains were collected for the analysis of gene expression by RT-PCR or protein expression by western blotting and enzyme-linked immunosorbent assay (ELISA). Microglial activation was assessed by western blotting and immunohistochemistry. For in vitro studies, microglia and peritoneal macrophages were isolated from adult WT mice and treated with 25 mM ethanol for 4 h and then with LPS (100 ng/ml) followed by 10 nM synaptamide for 2 h for gene expression and 12 h for protein analysis. RESULTS Single-dose exposure to ethanol by gavage before LPS injection upregulated pro-inflammatory cytokine expression in the brain and plasma. The LPS-induced Iba-1 expression in the brain was significantly higher after ethanol pretreatment in both WT and GPR110KO mice. GPR110 ligand decreased the mRNA and/or protein expression of these cytokines and Iba-1 in the WT but not in GPR110KO mice. In the isolated microglia and peritoneal macrophages, ethanol also exacerbated the LPS-induced expression of pro-inflammatory cytokines which was mitigated at least partially by synaptamide. The expression of an inflammasome marker NLRP3 upregulated by LPS was further elevated with prior exposure to ethanol, especially in the brains of GPR110KO mice. Both ethanol and LPS reduced adenylate cyclase 8 mRNA expression which was reversed by the activation of GPR110. PDE4B expression at both mRNA and protein level in the brain increased after ethanol and LPS treatment while synaptamide suppressed its expression in a GPR110-dependent manner. CONCLUSION Single-dose ethanol exposure exacerbated LPS-induced inflammatory responses. The GPR110 ligand synaptamide ameliorated this effect of ethanol by counteracting on the cAMP system, the common target for synaptamide and ethanol, and by regulating NLRP3 inflammasome.
Collapse
Affiliation(s)
- Sharmistha Banerjee
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Rockville, MD, 20852, USA
| | - Taeyeop Park
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Rockville, MD, 20852, USA
| | - Yoo Sun Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Rockville, MD, 20852, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Rockville, MD, 20852, USA.
- National Institutes of Health, 5625 Fishers Lane, Rm. 3N-07, Bethesda, MD, 20892-9410, USA.
| |
Collapse
|
39
|
Vegivinti CTR, Keesari PR, Veeraballi S, Martins Maia CMP, Mehta AK, Lavu RR, Thakur RK, Tella SH, Patel R, Kakumani VK, Pulakurthi YS, Aluri S, Aggarwal RK, Ramachandra N, Zhao R, Sahu S, Shastri A, Verma A. Role of innate immunological/inflammatory pathways in myelodysplastic syndromes and AML: a narrative review. Exp Hematol Oncol 2023; 12:60. [PMID: 37422676 DOI: 10.1186/s40164-023-00422-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Dysregulation of the innate immune system and inflammatory-related pathways has been implicated in hematopoietic defects in the bone marrow microenvironment and associated with aging, clonal hematopoiesis, myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). As the innate immune system and its pathway regulators have been implicated in the pathogenesis of MDS/AML, novel approaches targeting these pathways have shown promising results. Variability in expression of Toll like receptors (TLRs), abnormal levels of MyD88 and subsequent activation of NF-κβ, dysregulated IL1-receptor associated kinases (IRAK), alterations in TGF-β and SMAD signaling, high levels of S100A8/A9 have all been implicated in pathogenesis of MDS/AML. In this review we not only discuss the interplay of various innate immune pathways in MDS pathogenesis but also focus on potential therapeutic targets from recent clinical trials including the use of monoclonal antibodies and small molecule inhibitors against these pathways.
Collapse
Affiliation(s)
- Charan Thej Reddy Vegivinti
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | | | | | | | - Ansh Krishnachandra Mehta
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Hematology and Oncology, Jacobi Medical Center/ Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Rohit Reddy Lavu
- Department of Oncology, Yashoda hospitals, Hyderabad, 500036, India
| | - Rahul Kumar Thakur
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Sri Harsha Tella
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, US
| | - Riya Patel
- Department of Hematology and Oncology, University of Buffalo - Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, US
| | | | | | - Srinivas Aluri
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | | | - Nandini Ramachandra
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Rongbao Zhao
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Srabani Sahu
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Aditi Shastri
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Blood Cancer Institute, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US.
- Department of Oncology, Blood Cancer Institute, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US.
| |
Collapse
|
40
|
Kinsella RL, Kimmey JM, Smirnov A, Woodson R, Gaggioli MR, Chavez SM, Kreamalmeyer D, Stallings CL. Autophagy prevents early proinflammatory responses and neutrophil recruitment during Mycobacterium tuberculosis infection without affecting pathogen burden in macrophages. PLoS Biol 2023; 21:e3002159. [PMID: 37319285 DOI: 10.1371/journal.pbio.3002159] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
The immune response to Mycobacterium tuberculosis infection determines tuberculosis disease outcomes, yet we have an incomplete understanding of what immune factors contribute to a protective immune response. Neutrophilic inflammation has been associated with poor disease prognosis in humans and in animal models during M. tuberculosis infection and, therefore, must be tightly regulated. ATG5 is an essential autophagy protein that is required in innate immune cells to control neutrophil-dominated inflammation and promote survival during M. tuberculosis infection; however, the mechanistic basis for how ATG5 regulates neutrophil recruitment is unknown. To interrogate what innate immune cells require ATG5 to control neutrophil recruitment during M. tuberculosis infection, we used different mouse strains that conditionally delete Atg5 in specific cell types. We found that ATG5 is required in CD11c+ cells (lung macrophages and dendritic cells) to control the production of proinflammatory cytokines and chemokines during M. tuberculosis infection, which would otherwise promote neutrophil recruitment. This role for ATG5 is autophagy dependent, but independent of mitophagy, LC3-associated phagocytosis, and inflammasome activation, which are the most well-characterized ways that autophagy proteins regulate inflammation. In addition to the increased proinflammatory cytokine production from macrophages during M. tuberculosis infection, loss of ATG5 in innate immune cells also results in an early induction of TH17 responses. Despite prior published in vitro cell culture experiments supporting a role for autophagy in controlling M. tuberculosis replication in macrophages, the effects of autophagy on inflammatory responses occur without changes in M. tuberculosis burden in macrophages. These findings reveal new roles for autophagy proteins in lung resident macrophages and dendritic cells that are required to suppress inflammatory responses that are associated with poor control of M. tuberculosis infection.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jacqueline M Kimmey
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Reilly Woodson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Margaret R Gaggioli
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
41
|
Wang M, Yu F, Chang W, Zhang Y, Zhang L, Li P. Inflammasomes: a rising star on the horizon of COVID-19 pathophysiology. Front Immunol 2023; 14:1185233. [PMID: 37251383 PMCID: PMC10213254 DOI: 10.3389/fimmu.2023.1185233] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a contagious respiratory virus that is the cause of the coronavirus disease 2019 (COVID-19) pandemic which has posed a serious threat to public health. COVID-19 is characterized by a wide spectrum of clinical manifestations, ranging from asymptomatic infection to mild cold-like symptoms, severe pneumonia or even death. Inflammasomes are supramolecular signaling platforms that assemble in response to danger or microbial signals. Upon activation, inflammasomes mediate innate immune defense by favoring the release of proinflammatory cytokines and triggering pyroptotic cell death. Nevertheless, abnormalities in inflammasome functioning can result in a variety of human diseases such as autoimmune disorders and cancer. A growing body of evidence has showed that SARS-CoV-2 infection can induce inflammasome assembly. Dysregulated inflammasome activation and consequent cytokine burst have been associated with COVID-19 severity, alluding to the implication of inflammasomes in COVID-19 pathophysiology. Accordingly, an improved understanding of inflammasome-mediated inflammatory cascades in COVID-19 is essential to uncover the immunological mechanisms of COVID-19 pathology and identify effective therapeutic approaches for this devastating disease. In this review, we summarize the most recent findings on the interplay between SARS-CoV-2 and inflammasomes and the contribution of activated inflammasomes to COVID-19 progression. We dissect the mechanisms involving the inflammasome machinery in COVID-19 immunopathogenesis. In addition, we provide an overview of inflammasome-targeted therapies or antagonists that have potential clinical utility in COVID-19 treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | | | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
42
|
Devi S, Indramohan M, Jäger E, Carriere J, Chu LH, de Almeida L, Greaves DR, Stehlik C, Dorfleutner A. CARD-only proteins regulate in vivo inflammasome responses and ameliorate gout. Cell Rep 2023; 42:112265. [PMID: 36930645 PMCID: PMC10151391 DOI: 10.1016/j.celrep.2023.112265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Inflammatory responses are crucial for controlling infections and initiating tissue repair. However, excessive and uncontrolled inflammation causes inflammatory disease. Processing and release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 depend on caspase-1 activation within inflammasomes. Assembly of inflammasomes is initiated upon activation of cytosolic pattern recognition receptors (PRRs), followed by sequential polymerization of pyrin domain (PYD)-containing and caspase recruitment domain (CARD)-containing proteins mediated by homotypic PYD and CARD interactions. Small PYD- or CARD-only proteins (POPs and COPs, respectively) evolved in higher primates to target these crucial interactions to limit inflammation. Here, we show the ability of COPs to regulate inflammasome activation by modulating homotypic CARD-CARD interactions in vitro and in vivo. CARD16, CARD17, and CARD18 displace crucial CARD interactions between caspase-1 proteins through competitive binding and ameliorate uric acid crystal-mediated NLRP3 inflammasome activation and inflammatory disease. COPs therefore represent an important family of inflammasome regulators and ameliorate inflammatory disease.
Collapse
Affiliation(s)
- Savita Devi
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mohanalaxmi Indramohan
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Elisabeth Jäger
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica Carriere
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lan H Chu
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucia de Almeida
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Christian Stehlik
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Andrea Dorfleutner
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
43
|
Dobrev D, Heijman J, Hiram R, Li N, Nattel S. Inflammatory signalling in atrial cardiomyocytes: a novel unifying principle in atrial fibrillation pathophysiology. Nat Rev Cardiol 2023; 20:145-167. [PMID: 36109633 PMCID: PMC9477170 DOI: 10.1038/s41569-022-00759-w] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 02/08/2023]
Abstract
Inflammation has been implicated in atrial fibrillation (AF), a very common and clinically significant cardiac rhythm disturbance, but its precise role remains poorly understood. Work performed over the past 5 years suggests that atrial cardiomyocytes have inflammatory signalling machinery - in particular, components of the NLRP3 (NACHT-, LRR- and pyrin domain-containing 3) inflammasome - that is activated in animal models and patients with AF. Furthermore, work in animal models suggests that NLRP3 inflammasome activation in atrial cardiomyocytes might be a sufficient and necessary condition for AF occurrence. In this Review, we evaluate the evidence for the role and pathophysiological significance of cardiomyocyte NLRP3 signalling in AF. We first summarize the evidence for a role of inflammation in AF and review the biochemical properties of the NLRP3 inflammasome, as defined primarily in studies of classic inflammation. We then briefly consider the broader evidence for a role of inflammatory signalling in heart disease, particularly conditions that predispose individuals to develop AF. We provide a detailed discussion of the available information about atrial cardiomyocyte NLRP3 inflammasome signalling in AF and related conditions and evaluate the possibility that similar signalling might be important in non-myocyte cardiac cells. We then review the evidence on the role of active resolution of inflammation and its potential importance in suppressing AF-related inflammatory signalling. Finally, we consider the therapeutic potential and broader implications of this new knowledge and highlight crucial questions to be addressed in future research.
Collapse
Affiliation(s)
- Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Roddy Hiram
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Na Li
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany.
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada.
- IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
44
|
Plitt T, Faith JJ. Seminars in immunology special issue: Nutrition, microbiota and immunity The unexplored microbes in health and disease. Semin Immunol 2023; 66:101735. [PMID: 36857892 PMCID: PMC10049858 DOI: 10.1016/j.smim.2023.101735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023]
Abstract
Functional characterization of the microbiome's influence on host physiology has been dominated by a few characteristic example strains that have been studied in detail. However, the extensive development of methods for high-throughput bacterial isolation and culture over the past decade is enabling functional characterization of the broader microbiota that may impact human health. Characterizing the understudied majority of human microbes and expanding our functional understanding of the diversity of the gut microbiota could enable new insights into diseases with unknown etiology, provide disease-predictive microbiome signatures, and advance microbial therapeutics. We summarize high-throughput culture-dependent platforms for characterizing bacterial strain function and host-interactions. We elaborate on the importance of these technologies in facilitating mechanistic studies of previously unexplored microbes, highlight new opportunities for large-scale in vitro screens of host-relevant microbial functions, and discuss the potential translational applications for microbiome science.
Collapse
Affiliation(s)
- Tamar Plitt
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
45
|
Shahi A, Afzali S, Firoozi Z, Mohaghegh P, Moravej A, Hosseinipour A, Bahmanyar M, Mansoori Y. Potential roles of NLRP3 inflammasome in the pathogenesis of Kawasaki disease. J Cell Physiol 2023; 238:513-532. [PMID: 36649375 DOI: 10.1002/jcp.30948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
There is a heterogeneous group of rare illnesses that fall into the vasculitis category and are characterized mostly by blood vessel inflammation. Ischemia and disrupted blood flow will cause harm to the organs whose blood arteries become inflamed. Kawasaki disease (KD) is the most prevalent kind of vasculitis in children aged 5 years or younger. Because KD's cardiovascular problems might persist into adulthood, it is no longer thought of as a self-limiting disease. KD is a systemic vasculitis with unknown initiating factors. Numerous factors, such as genetic predisposition and infectious pathogens, are implicated in the etiology of KD. As endothelial cell damage and inflammation can lead to coronary endothelial dysfunction in KD, some studies hypothesized the crucial role of pyroptosis in the pathogenesis of KD. Additionally, pyroptosis-related proteins like caspase-1, apoptosis-associated speck-like protein containing a CARD (ASC), proinflammatory cytokines like IL-1 and IL-18, lactic dehydrogenase, and Gasdermin D (GSDMD) have been found to be overexpressed in KD patients when compared to healthy controls. These occurrences may point to an involvement of inflammasomes and pyroptotic cell death in the etiology of KD and suggest potential treatment targets. Based on these shreds of evidence, in this review, we aim to focus on one of the well-defined inflammasomes, NLRP3, and its role in the pathophysiology of KD.
Collapse
Affiliation(s)
- Abbas Shahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Firoozi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Poopak Mohaghegh
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Moravej
- Department of Immunology, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Hosseinipour
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Bahmanyar
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
46
|
Upregulation of TLR4-Dependent ATP Production Is Critical for Glaesserella parasuis LPS-Mediated Inflammation. Cells 2023; 12:cells12050751. [PMID: 36899887 PMCID: PMC10001010 DOI: 10.3390/cells12050751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Glaesserella parasuis (G. parasuis), an important pathogenic bacterium, cause Glässer's disease, and has resulted in tremendous economic losses to the global swine industry. G. parasuis infection causes typical acute systemic inflammation. However, the molecular details of how the host modulates the acute inflammatory response induced by G. parasuis are largely unknown. In this study, we found that G. parasuis LZ and LPS both enhanced the mortality of PAM cells, and at the same time, the level of ATP was enhanced. LPS treatment significantly increased the expressions of IL-1β, P2X7R, NLRP3, NF-κB, p-NF-κB, and GSDMD, leading to pyroptosis. Furthermore, these proteins' expression was enhanced following extracellular ATP further stimulation. When reduced the production of P2X7R, NF-κB-NLRP3-GSDMS inflammasome signaling pathway was inhibited, and the mortality of cells was reduced. MCC950 treatment repressed the formation of inflammasome and reduced mortality. Further exploration found that the knockdown of TLR4 significantly reduced ATP content and cell mortality, and inhibited the expression of p-NF-κB and NLRP3. These findings suggested upregulation of TLR4-dependent ATP production is critical for G. parasuis LPS-mediated inflammation, provided new insights into the molecular pathways underlying the inflammatory response induced by G. parasuis, and offered a fresh perspective on therapeutic strategies.
Collapse
|
47
|
Pereira M, Gazzinelli RT. Regulation of innate immune signaling by IRAK proteins. Front Immunol 2023; 14:1133354. [PMID: 36865541 PMCID: PMC9972678 DOI: 10.3389/fimmu.2023.1133354] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
The Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1R) families are of paramount importance in coordinating the early immune response to pathogens. Signaling via most TLRs and IL-1Rs is mediated by the protein myeloid differentiation primary-response protein 88 (MyD88). This signaling adaptor forms the scaffold of the myddosome, a molecular platform that employs IL-1R-associated kinase (IRAK) proteins as main players for transducing signals. These kinases are essential in controlling gene transcription by regulating myddosome assembly, stability, activity and disassembly. Additionally, IRAKs play key roles in other biologically relevant responses such as inflammasome formation and immunometabolism. Here, we summarize some of the key aspects of IRAK biology in innate immunity.
Collapse
Affiliation(s)
- Milton Pereira
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States,*Correspondence: Milton Pereira, ; Ricardo T. Gazzinelli,
| | - Ricardo T. Gazzinelli
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States,Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil,Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, SP, Brazil,*Correspondence: Milton Pereira, ; Ricardo T. Gazzinelli,
| |
Collapse
|
48
|
Wang Y, Pei S, Liu Z, Ding Y, Qian T, Wen H, Hsu SW, Zhou Z, Zhang J, Wang H. IRAK-M suppresses the activation of microglial NLRP3 inflammasome and GSDMD-mediated pyroptosis through inhibiting IRAK1 phosphorylation during experimental autoimmune encephalomyelitis. Cell Death Dis 2023; 14:103. [PMID: 36765034 PMCID: PMC9918485 DOI: 10.1038/s41419-023-05621-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/12/2023]
Abstract
The activation of the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome triggers pyroptosis proinflammatory cell death in experimental autoimmune encephalomyelitis (EAE). However, the underlying mechanisms of the inflammatory processes of microglia in EAE remain unclear. Our previous studies suggested that interleukin-1 receptor-associated kinase (IRAK)-M down-regulates the toll-like receptor 4/interleukin-1 receptor signaling pathway. Here, we used IRAK-M knockout (IRAK-M-/-) mice and their microglia to dissect the role of IRAK-M in EAE. We found that deletion of IRAK-M increased the incidence rate and exacerbated the clinical symptoms in EAE mice. We then found that IRAK-M deficiency promoted the activation of microglia, activated NLRP3 inflammasomes, and enhanced GSDMD-mediated pyroptosis in the microglia of EAE. In contrast, over-expression of IRAK-M exerted inhibitory effects on neuroinflammation, NLRP3 activation, and pyroptosis. Moreover, IRAK-M deficiency enhanced the phosphorylation of IRAK1, while IRAK-M over-expression downregulated the level of phosphorylated IRAK1. Finally, we found upregulated binding of IRAK1 and TNF receptor-associated factor 6 (TRAF6) in IRAK-M-/- EAE mice compared to WT mice, which was blocked in AAVIRAK-M EAE mice. Our study reveals a complex signaling network of IRAK-M, which negatively regulates microglial NLRP3 inflammasomes and pyroptosis by inhibiting IRAK1 phosphorylation during EAE. These findings suggest a potential target for the novel therapeutic approaches of multiple sclerosis (MS)/EAE and NLRP3-related inflammatory diseases.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, China
| | - Shanshan Pei
- Department of Neurology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Zhuhe Liu
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, China
| | - Yuewen Ding
- Department of Neurology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Tinglin Qian
- Department of Neurology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Haixia Wen
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, China
| | - Ssu-Wei Hsu
- Department of Internal Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Zheyi Zhou
- Department of Neurology, Hospital of Liuzhou Traditional Chinese Medicine, 545001, Liuzhou, China.
| | - Jun Zhang
- Department of Internal Medicine, University of California at Davis, Davis, CA, 95616, USA.
- Comprehensive Cancer Center, University of California at Davis, Davis, CA, 95616, USA.
| | - Honghao Wang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, China.
- Department of Neurology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
49
|
Zhu P, Ke ZR, Chen JX, Li SJ, Ma TL, Fan XL. Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment. Front Immunol 2023; 14:1120034. [PMID: 36845112 PMCID: PMC9948402 DOI: 10.3389/fimmu.2023.1120034] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main features of pyroptosis, apoptosis, and necroptosis. Many variables, such as infection, injury, or self-defect, may be involved in the occurrence of PANoptosis, with the assembly and activation of the PANoptosome being the most critical. PANoptosis has been linked to the development of multiple systemic diseases in the human body, including infectious diseases, cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, it is necessary to clarify the process of occurrence, the regulatory mechanism of PANoptosis, and its relation to diseases. In this paper, we summarized the differences and relations between PANoptosis and the three types of programmed cell death, and emphatically expounded molecular mechanism and regulatory patterns of PANoptosis, with the expectation of facilitating the application of PANoptosis regulation in disease treatment.
Collapse
Affiliation(s)
- Peng Zhu
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhuo-Ran Ke
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing-Xian Chen
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Shi-Jin Li
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tian-Liang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Lei Fan
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
50
|
Schmacke NA, O'Duill F, Gaidt MM, Szymanska I, Kamper JM, Schmid-Burgk JL, Mädler SC, Mackens-Kiani T, Kozaki T, Chauhan D, Nagl D, Stafford CA, Harz H, Fröhlich AL, Pinci F, Ginhoux F, Beckmann R, Mann M, Leonhardt H, Hornung V. IKKβ primes inflammasome formation by recruiting NLRP3 to the trans-Golgi network. Immunity 2022; 55:2271-2284.e7. [PMID: 36384135 PMCID: PMC7614333 DOI: 10.1016/j.immuni.2022.10.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/17/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
The NLRP3 inflammasome plays a central role in antimicrobial defense as well as in the context of sterile inflammatory conditions. NLRP3 activity is governed by two independent signals: the first signal primes NLRP3, rendering it responsive to the second signal, which then triggers inflammasome formation. Our understanding of how NLRP3 priming contributes to inflammasome activation remains limited. Here, we show that IKKβ, a kinase activated during priming, induces recruitment of NLRP3 to phosphatidylinositol-4-phosphate (PI4P), a phospholipid enriched on the trans-Golgi network. NEK7, a mitotic spindle kinase that had previously been thought to be indispensable for NLRP3 activation, was redundant for inflammasome formation when IKKβ recruited NLRP3 to PI4P. Studying iPSC-derived human macrophages revealed that the IKKβ-mediated NEK7-independent pathway constitutes the predominant NLRP3 priming mechanism in human myeloid cells. Our results suggest that PI4P binding represents a primed state into which NLRP3 is brought by IKKβ activity.
Collapse
Affiliation(s)
- Niklas A Schmacke
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Fionan O'Duill
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Moritz M Gaidt
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Inga Szymanska
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Julia M Kamper
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jonathan L Schmid-Burgk
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sophia C Mädler
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Timur Mackens-Kiani
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology & Research (A∗STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648, Singapore
| | - Dhruv Chauhan
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Dennis Nagl
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Che A Stafford
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Hartmann Harz
- Faculty of Biology, Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Adrian L Fröhlich
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Francesca Pinci
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology & Research (A∗STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648, Singapore; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|