1
|
Sereno-Uribe AL, López-Jiménez A, González-García MT, Ortega-Olivares MP, García-Varela M. A phylogeographic approach of three species of Clinostomum Leidy, 1856, (Trematoda: Clinostomidae) from the Neotropical region of Mexico, with the description of a new species from Ardea herodias (Ardeidae). Parasitol Int 2025; 108:103067. [PMID: 40122452 DOI: 10.1016/j.parint.2025.103067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/13/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Clinostomum Leidy, 1856 is a globally distributed group of endoparasites that reside attached to the mucosa of the mouth cavity and oesophagus of fish-eating birds (mainly herons) in the adult stage, whereas larvae known as metacercariae ("yellow grubs") damage freshwater fish and amphibians that serve as secondary intermediate hosts. In the Nearctic and Neotropical regions of Mexico, species of the genus Clinostomum have been intensively studied, revealing seven species that share a common ancestor. In the present study, sequences of the ITS from nuclear ribosomal DNA and cox 1 from mitochondrial DNA were generated for C. tataxumui, C. cichlidorum, and an unidentified species identified as lineage 3 sensu Pérez-Ponce de León et al. 2026, which is distributed sympatrically in Mexico and Middle America. The objectives of the present study were to 1) describe a new species of Clinostomum, named herein as Clinostomum chaacci n. sp., which combines morphological and molecular characters; 2) analyse the population genetic structure of two previously described species in addition to C. chaacci n. sp.; and 3) infer phylogeographic patterns using cox 1 sequences. The inferred phylogeographic results indicated that the populations of C. tataxumui, and C. cichlidorum lack a geographic structure with high haplotype diversity, low nucleotide diversity, and low Fst values among the populations with negative values on the neutrality test, suggesting that the populations are expanding. In contrast, the populations of C. chaacci n. sp., are less connected and subdivided into smaller populations, leading to slight genetic differentiation, suggesting that the populations have undergone significant demographic changes, such as recent expansion or selection effects.
Collapse
Affiliation(s)
- Ana Lucia Sereno-Uribe
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria C.P. 04510, Ciudad de México, Mexico
| | - Alejandra López-Jiménez
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria C.P. 04510, Ciudad de México, Mexico
| | - Marcelo Tonatiuh González-García
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria C.P. 04510, Ciudad de México, Mexico
| | - Mirza Patricia Ortega-Olivares
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria C.P. 04510, Ciudad de México, Mexico
| | - Martín García-Varela
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria C.P. 04510, Ciudad de México, Mexico.
| |
Collapse
|
2
|
Yekani M, Dastgir M, Fattahi S, Shahi S, Maleki Dizaj S, Memar MY. Microbiological and molecular aspects of periodontitis pathogenesis: an infection-induced inflammatory condition. Front Cell Infect Microbiol 2025; 15:1533658. [PMID: 40406516 PMCID: PMC12095233 DOI: 10.3389/fcimb.2025.1533658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/07/2025] [Indexed: 05/26/2025] Open
Abstract
Periodontitis (PD) is the most common oral infectious disease. The primary etiologic cause of the onset and development of PD is dental plaque, which consists of bacterial biofilm domiciled within a complex extracellular mass. In PD patients, there is a progressive breakdown of the periodontal ligament and the alveolar bone. In more advanced stages, tooth loss occurs. The progression of this chronic inflammatory disease involves interactions among numerous microbial pathogens particularly, bacteria, the host's immune factors, and various environmental factors. Due to persistent infection by periodonto-pathogenic bacteria, there is an impairment of both innate and acquired immunity, leading to tissue destruction. Chronic inflammation in PD may be associated with several systemic diseases, including cardiovascular conditions, respiratory issues, diabetes, neurological diseases, cancer, and adverse pregnancy outcomes. Antibiotic treatment is one of the effective strategies for treating PD cases, although the emergence of some resistant strains may limit the effectiveness some antibiotics. In this review study, we discussed the main bacteria in PD, the interaction with the immune response, the pathogenesis of bacteria in PD and antibiotic treatment. We also outlined the emergence of resistance to antibiotics among these pathogens.
Collapse
Affiliation(s)
- Mina Yekani
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Dastgir
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Fattahi
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Zhao J, Shen X, Jin L, Ji S, Pan X. Resistance phenotypes and genomic features of Mycobacterium seoulense isolates. Front Cell Infect Microbiol 2025; 15:1553591. [PMID: 40260112 PMCID: PMC12009822 DOI: 10.3389/fcimb.2025.1553591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/13/2025] [Indexed: 04/23/2025] Open
Abstract
Background Mycobacterium seoulense (M. seoulense) is an emerging pathogen increasingly associated with infections; however, its resistance phenotypes and genomic characteristics remain largely unknown. Methods Seven M. seoulense isolates were collected from clinical samples. Drug susceptibility testing was conducted using Sensititre™ SLOMYCO2 susceptibility plates. Whole genome sequencing and supporting bioinformatics analyses were performed to analyze the genomic features. Results All M. seoulense isolates (n=7) exhibited growth on 7H10 agar medium containing thiophenecarboxylic acid hydrazide or p-Nitrobenzoic acid, with marked diversity in growth rates in liquid culture. All strains exhibited high minimum inhibitor concentrations (MICs) for minocycline (>8 μg/mL), doxycycline (>8 μg/mL), and amikacin (16-32 μg/mL). The MICs for linezolid, rifabutin, moxifloxacin, ciprofloxacin, streptomycin, clarithromycin, and rifampicin varied among the isolates. High levels of genomic diversity were noted among these strains concerning genome-called single nucleotide polymorphisms and average nucleotide identity. In total, 4,282 genes were shared across all genomes, while 315 unique genes were restricted to one strain. Comparative genomic analysis identified two unique virulence genes encoding a catalase enzyme and a protein involved in capsule biosynthesis and transport. Additionally, all M. seoulense strains demonstrated the ability to survive within macrophages. Conclusion The clinical M. seoulense isolates analyzed in this study exhibited varying levels of antibiotic susceptibility, suggesting the potential need for susceptibility testing to guide clinical treatment. Genomic features of these isolates indicated that they are likely pathogenic non-tuberculous mycobacterium, highlighting a need for closer epidemiological monitoring.
Collapse
Affiliation(s)
| | | | | | | | - Xinling Pan
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| |
Collapse
|
4
|
Xiao L, Pu Y, Cui Y, Chen C, Xiao Q, Wang Y, Wei Y, Feng M, Zhang T, Yang S, Zhou J, Ni Y, Zhang J, Liao H, Wu J, Zhang Y. Elongation factor Tu promotes the onset of periodontitis through mediating bacteria adhesion. NPJ Biofilms Microbiomes 2025; 11:47. [PMID: 40113820 PMCID: PMC11926244 DOI: 10.1038/s41522-025-00680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
Periodontitis, a leading cause of adult tooth loss and linked to various systemic diseases, is promoted by subgingival plaque biofilms, with Streptococci as early colonizers responsible for surface adhesion. Current studies of Streptococci adhesion have focused on bacteria surface adhesins with acquired protein membranes on the tooth surface, yet no critical proteins with implications for the overall early adhesion of subgingival plaque have been reported. Here, we identified that the "Barrel-like adhesion domain" of streptococcal EF-Tu facilitates cell-surface attachment, promotes biofilm formation, and contributes to the development of periodontitis. In the adherent state, EF-Tu is transported from the cytoplasm to the cell surface through membrane vesicles. Furthermore, we first found that simeprevir, an FDA-approved drug, binds to the "Barrel-like adhesion domain" of EF-Tu and effectively inhibits the protein's surface adhesion and secretory pathways. Simeprevir showed the ability to inhibit dental plaque formation and provided prevention and treatments for periodontitis.
Collapse
Affiliation(s)
- Leyi Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yingying Pu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
- Medical Research Institute School of Medicine Wuhan University, 430071, Wuhan, China
| | - Yu Cui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Chen Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Qi Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yulan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yan Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Mengge Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Tiange Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Shanyi Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Jingxuan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Jinglun Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Hebin Liao
- Medical Research Institute School of Medicine Wuhan University, 430071, Wuhan, China
| | - Jingwen Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China.
- Medical Research Institute School of Medicine Wuhan University, 430071, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
5
|
Gannon AD, Matlack J, Darch SE. Exploring aggregation genes in a P. aeruginosa chronic infection model. J Bacteriol 2025; 207:e0042924. [PMID: 39660900 PMCID: PMC11784459 DOI: 10.1128/jb.00429-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Bacterial aggregates are observed in both natural and artificial environments. In the context of disease, aggregates have been isolated from chronic and acute infections. Pseudomonas aeruginosa (Pa) aggregates contribute significantly to chronic infections, particularly in the lungs of people with cystic fibrosis (CF). Unlike the large biofilm structures observed in vitro, Pa in CF sputum forms smaller aggregates (~10-1,000 cells), and the mechanisms behind their formation remain underexplored. This study aims to identify genes essential and unique to Pa aggregate formation in a synthetic CF sputum media (SCFM2). We cultured Pa strain PAO1 in SCFM2 and LB, both with and without mucin, and used RNA sequencing (RNA-seq) to identify differentially expressed genes. The presence of mucin revealed 13 significantly differentially expressed (DE) genes, predominantly downregulated, with 40% encoding hypothetical proteins unique to aggregates. Using high-resolution microscopy, we assessed the ability of mutants to form aggregates. Notably, no mutant exhibited a completely planktonic phenotype. Instead, we identified multiple spatial phenotypes described as "normal," "entropic," or "impaired." Entropic mutants displayed tightly packed, raft-like structures, while impaired mutants had loosely packed cells. Predictive modeling linked the prioritized genes to metabolic shifts, iron acquisition, surface modification, and quorum sensing. Co-culture experiments with wild-type PAO1 revealed further spatial heterogeneity and the ability to "rescue" some mutant phenotypes, suggesting cooperative interactions during growth. This study enhances our understanding of Pa aggregate biology, specifically the genes and pathways unique to aggregation in CF-like environments. Importantly, it provides insights for developing therapeutic strategies targeting aggregate-specific pathways. IMPORTANCE This study identifies genes essential for the formation of Pseudomonas aeruginosa (Pa) aggregates in cystic fibrosis (CF) sputum, filling a critical gap in understanding their specific biology. Using a synthetic CF sputum model (SCFM2) and RNA sequencing, 13 key genes were identified, whose disruption led to distinct spatial phenotypes observed through high-resolution microscopy. The addition of wild-type cells either rescued the mutant phenotype or increased spatial heterogeneity, suggesting cooperative interactions are involved in aggregate formation. This research advances our knowledge of Pa aggregate biology, particularly the unique genes and pathways involved in CF-like environments, offering valuable insights for developing targeted therapeutic strategies against aggregate-specific pathways.
Collapse
Affiliation(s)
- Alexa D. Gannon
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jenet Matlack
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sophie E. Darch
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Rumbaugh KP, Whiteley M. Towards improved biofilm models. Nat Rev Microbiol 2025; 23:57-66. [PMID: 39112554 DOI: 10.1038/s41579-024-01086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 12/13/2024]
Abstract
Biofilms are complex microbial communities that have a critical function in many natural ecosystems, industrial settings as well as in recurrent and chronic infections. Biofilms are highly heterogeneous and dynamic assemblages that display complex responses to varying environmental factors, and those properties present substantial challenges for their study and control. In recent years, there has been a growing interest in developing improved biofilm models to offer more precise and comprehensive representations of these intricate systems. However, an objective assessment for ascertaining the ability of biofilms in model systems to recapitulate those in natural environments has been lacking. In this Perspective, we focus on medical biofilms to delve into the current state-of-the-art in biofilm modelling, emphasizing the advantages and limitations of different approaches and addressing the key challenges and opportunities for future research. We outline a framework for quantitatively assessing model accuracy. Ultimately, this Perspective aims to provide a comprehensive and critical overview of medically focused biofilm models, with the intent of inspiring future research aimed at enhancing the biological relevance of biofilm models.
Collapse
Affiliation(s)
- Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center and Burn Center of Research Excellence, Lubbock, TX, USA.
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Emory Children's Cystic Fibrosis Center, and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
7
|
Geng F, Liu J, Liu J, Lu Z, Pan Y. Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm. Crit Rev Microbiol 2024:1-19. [PMID: 39648406 DOI: 10.1080/1040841x.2024.2438117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Dental biofilm is a highly complicated and dynamic structure comprising not only microbial communities but also the surrounding matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA (eDNA) and other biopolymers. In recent years, the important role of bacterial eDNA in dental biofilms has gradually attracted attention. In this review, we present recent studies on the presence, dynamic conformation and release of oral bacterial eDNA. Moreover, updated information on functions associated with oral bacterial eDNA in biofilm formation, antibiotic resistance, activation of the immune system and immune evasion is highlighted. Finally, we summarize the role of oral bacterial eDNA as a promising target for the treatment of oral diseases. Increasing insight into the versatile roles of bacterial eDNA in dental biofilms will facilitate the prevention and treatment of biofilm-induced oral infections.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jinwen Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ze Lu
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Lewin GR, Evans ER, Whiteley M. Microbial interactions impact stress tolerance in a model oral community. Microbiol Spectr 2024; 12:e0100524. [PMID: 39269155 PMCID: PMC11448157 DOI: 10.1128/spectrum.01005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Understanding the molecular mechanisms governing microbial interactions is crucial for unraveling the complexities of microbial communities and their ecological impacts. Here, we employed a two-species model system comprising the oral bacteria Aggregatibacter actinomycetemcomitans and Streptococcus gordonii to investigate how synergistic and antagonistic interactions between microbes impact their resilience to environmental change and invasion by other microbes. We used an in vitro colony biofilm model and focused on two S. gordonii-produced extracellular molecules, L-lactate and H2O2, which are known to impact fitness of this dual-species community. While the ability of A. actinomycetemcomitans to cross-feed on S. gordonii-produced L-lactate enhanced its fitness during co-culture, this function showed little impact on the ability of co-cultures to resist environmental change. In fact, the ability of A. actinomycetemcomitans to catabolize L-lactate may be detrimental in the presence of tetracycline, highlighting the complexity of interactions under antimicrobial stress. Furthermore, H2O2, known for its antimicrobial properties, had negative impacts on both species in our model system. However, H2O2 production by S. gordonii enhanced A. actinomycetemcomitans tolerance to tetracycline, suggesting a protective role under antibiotic pressure. Finally, S. gordonii significantly inhibited the bacterium Serratia marcescens from invading in vitro biofilms, but this inhibition was lost during co-culture with A. actinomycetemcomitans and in a murine abscess model, where S. gordonii actually promoted S. marcescens invasion. These data indicate that microbial interactions can impact fitness of a bacterial community upon exposure to stresses, but these impacts are highly environment dependent. IMPORTANCE Microbial interactions are critical modulators of the emergence of microbial communities and their functions. However, how these interactions impact the fitness of microbes in established communities upon exposure to environmental stresses is poorly understood. Here, we utilized a two-species community consisting of Aggregatibacter actinomycetemcomitans and Streptococcus gordonii to examine the impact of synergistic and antagonistic interactions on microbial resilience to environmental fluctuations and susceptibility to microbial invasion. We focused on the S. gordonii-produced extracellular molecules, L-lactate and H2O2, which have been shown to mediate interactions between these two microbes. We discovered that seemingly beneficial functions, such as A. actinomycetemcomitans cross-feeding on S. gordonii-produced L-Lactate, can paradoxically exacerbate vulnerabilities, such as susceptibility to antibiotics. Moreover, our data highlight the context-dependent nature of microbial interactions, emphasizing that a seemingly potent antimicrobial, such as H2O2, can have both synergistic and antagonistic effects on a microbial community dependent on the environment.
Collapse
Affiliation(s)
- Gina R. Lewin
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Emma R. Evans
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Marvin Whiteley
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Ryder MI, Fine DH, Barron AE. From Global to Nano: A Geographical Perspective of Aggregatibacter actinomycetemcomitans. Pathogens 2024; 13:837. [PMID: 39452709 PMCID: PMC11510556 DOI: 10.3390/pathogens13100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The periodontal disease pathobiont Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) may exert a range of detrimental effects on periodontal diseases in general and, more specifically, with the initiation and progression of Localized Stage III Grade C periodontitis (molar-incisor pattern). In this review of the biogeography of this pathobiont, the full range of geographical scales for A. actinomycetemcomitans, from global origins and transmission to local geographical regions, to more locally exposed probands and families, to the individual host, down to the oral cavity, and finally, to spatial interactions with other commensals and pathobionts within the plaque biofilms at the micron/nanoscale, are reviewed. Using the newest technologies in genetics, imaging, in vitro cultures, and other research disciplines, investigators may be able to gain new insights to the role of this pathobiont in the unique initial destructive patterns of Localized Stage III Grade C periodontitis. These findings may incorporate the unique features of the microbiome that are influenced by variations in the geographic environment within the entire mouth. Additional insights into the geographic distribution of molar-incisor periodontal breakdown for Localized Stage III Grade C periodontitis may derive from the spatial interactions between A. actinomycetemcomitans and other pathobionts such as Porphyromonas gingivalis, Filifactor aclocis, and commensals such as Streptococcus gordonii. In addition, while the association of A. actinomycetemcomitans in systemic diseases is limited at the present time, future studies into possible periodontal disease-systemic disease links may also find A. actinomycetemcomitans and its geographical interactions with other microbiome members to provide important clues as to implications of pathobiological communications.
Collapse
Affiliation(s)
- Mark I. Ryder
- Department of Bioengineering, School of Medicine and School of Engineering, Stanford University, Stanford, CA 94143, USA;
- Division of Periodontology, Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 443 Via Ortega, Stanford, CA 94305, USA
| | - Annelise E. Barron
- Department of Bioengineering, School of Medicine and School of Engineering, Stanford University, Stanford, CA 94143, USA;
| |
Collapse
|
10
|
de Campos Kajimoto N, de Paiva Buischi Y, Mohamadzadeh M, Loomer P. The Oral Microbiome of Peri-Implant Health and Disease: A Narrative Review. Dent J (Basel) 2024; 12:299. [PMID: 39452426 PMCID: PMC11506630 DOI: 10.3390/dj12100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Peri-implantitis disease has increased significantly over the last years, resulting in increased failure of implants. Many factors may play a role in implant complications and failure, including ones related to the oral microbiota. This literature review aims to summarize the current knowledge of microbiome of implants in health and disease, focusing not only on the presence/absence of specific microbiota or on their relative abundance, but also on their phenotypic expression and their complex relationships with the host. The authors examined the MEDLINE database and identified key topics about peri-implant oral microbiome in health and disease. The peri-implant microbiome differs from that of the tooth, both in health and disease, as they are structurally and chemically different. The adhesion and formation of the peri-implant biofilm can be affected by the surface energy, topography, wettability, and electrochemical charges of the implant surface. In addition, the morphogenesis of the tissues surrounding the dental implant also differs from the tooth, making the dental implant more susceptible to bacterial infection. This interplay between the microbiome and the host immune system in peri-implant infections still needs to be elucidated.
Collapse
Affiliation(s)
- Natalia de Campos Kajimoto
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (N.d.C.K.); (Y.d.P.B.)
| | - Yvonne de Paiva Buischi
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (N.d.C.K.); (Y.d.P.B.)
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Peter Loomer
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (N.d.C.K.); (Y.d.P.B.)
| |
Collapse
|
11
|
Kaplan JB, Sukhishvili SA, Sailer M, Kridin K, Ramasubbu N. Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme. Pathogens 2024; 13:668. [PMID: 39204268 PMCID: PMC11357414 DOI: 10.3390/pathogens13080668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The extracellular matrix of most bacterial biofilms contains polysaccharides, proteins, and nucleic acids. These biopolymers have been shown to mediate fundamental biofilm-related phenotypes including surface attachment, intercellular adhesion, and biocide resistance. Enzymes that degrade polymeric biofilm matrix components, including glycoside hydrolases, proteases, and nucleases, are useful tools for studying the structure and function of biofilm matrix components and are also being investigated as potential antibiofilm agents for clinical use. Dispersin B is a well-studied, broad-spectrum antibiofilm glycoside hydrolase produced by Aggregatibacter actinomycetemcomitans. Dispersin B degrades poly-N-acetylglucosamine, a biofilm matrix polysaccharide that mediates biofilm formation, stress tolerance, and biocide resistance in numerous Gram-negative and Gram-positive pathogens. Dispersin B has been shown to inhibit biofilm and pellicle formation; detach preformed biofilms; disaggregate bacterial flocs; sensitize preformed biofilms to detachment by enzymes, detergents, and metal chelators; and sensitize preformed biofilms to killing by antiseptics, antibiotics, bacteriophages, macrophages, and predatory bacteria. This review summarizes the results of nearly 100 in vitro and in vivo studies that have been carried out on dispersin B since its discovery 20 years ago. These include investigations into the biological function of the enzyme, its structure and mechanism of action, and its in vitro and in vivo antibiofilm activities against numerous bacterial species. Also discussed are potential clinical applications of dispersin B.
Collapse
Affiliation(s)
- Jeffrey B. Kaplan
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya 2210001, Israel;
| | - Svetlana A. Sukhishvili
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA;
| | | | - Khalaf Kridin
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya 2210001, Israel;
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Narayanan Ramasubbu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA;
| |
Collapse
|
12
|
Rocha CM, Kawamoto D, Martins FH, Bueno MR, Ishikawa KH, Ando-Suguimoto ES, Carlucci AR, Arroteia LS, Casarin RV, Saraiva L, Simionato MRL, Mayer MPA. Experimental Inoculation of Aggregatibacter actinomycetemcomitans and Streptococcus gordonii and Its Impact on Alveolar Bone Loss and Oral and Gut Microbiomes. Int J Mol Sci 2024; 25:8090. [PMID: 39125663 PMCID: PMC11312116 DOI: 10.3390/ijms25158090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 08/12/2024] Open
Abstract
Oral bacteria are implicated not only in oral diseases but also in gut dysbiosis and inflammatory conditions throughout the body. The periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa) often occurs in complex oral biofilms with Streptococcus gordonii (Sg), and this interaction might influence the pathogenic potential of this pathogen. This study aims to assess the impact of oral inoculation with Aa, Sg, and their association (Aa+Sg) on alveolar bone loss, oral microbiome, and their potential effects on intestinal health in a murine model. Sg and/or Aa were orally administered to C57Bl/6 mice, three times per week, for 4 weeks. Aa was also injected into the gingiva three times during the initial experimental week. After 30 days, alveolar bone loss, expression of genes related to inflammation and mucosal permeability in the intestine, serum LPS levels, and the composition of oral and intestinal microbiomes were determined. Alveolar bone resorption was detected in Aa, Sg, and Aa+Sg groups, although Aa bone levels did not differ from that of the SHAM-inoculated group. Il-1β expression was upregulated in the Aa group relative to the other infected groups, while Il-6 expression was downregulated in infected groups. Aa or Sg downregulated the expression of tight junction genes Cldn 1, Cldn 2, Ocdn, and Zo-1 whereas infection with Aa+Sg led to their upregulation, except for Cldn 1. Aa was detected in the oral biofilm of the Aa+Sg group but not in the gut. Infections altered oral and gut microbiomes. The oral biofilm of the Aa group showed increased abundance of Gammaproteobacteria, Enterobacterales, and Alloprevotella, while Sg administration enhanced the abundance of Alloprevotella and Rothia. The gut microbiome of infected groups showed reduced abundance of Erysipelotrichaceae. Infection with Aa or Sg disrupts both oral and gut microbiomes, impacting oral and gut homeostasis. While the combination of Aa with Sg promotes Aa survival in the oral cavity, it mitigates the adverse effects of Aa in the gut, suggesting a beneficial role of Sg associations in gut health.
Collapse
Affiliation(s)
- Catarina Medeiros Rocha
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Fernando Henrique Martins
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Manuela Rocha Bueno
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Division of Periodontics, Faculdade São Leopoldo Mandic, São Leopoldo Mandic Research Institute, Campinas 13045-755, SP, Brazil
| | - Karin H. Ishikawa
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Ellen Sayuri Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Aline Ramos Carlucci
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Leticia Sandoli Arroteia
- Department of Prosthesis and Periodontology, School of Dentistry, University of Campinas, Campinas 13083-875, SP, Brazil; (L.S.A.); (R.V.C.)
| | - Renato V. Casarin
- Department of Prosthesis and Periodontology, School of Dentistry, University of Campinas, Campinas 13083-875, SP, Brazil; (L.S.A.); (R.V.C.)
| | - Luciana Saraiva
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Maria Regina Lorenzetti Simionato
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
13
|
Nadaf R, Kumbar VM, Ghagane S. Unravelling the intricacies of Porphyromonas gingivalis: virulence factors, lifecycle dynamics and phytochemical interventions for periodontal disease management. APMIS 2024. [PMID: 39030947 DOI: 10.1111/apm.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/14/2024] [Indexed: 07/22/2024]
Abstract
Porphyromonas gingivalis is a gram-negative anaerobic bacterium recognized for its pivotal role in the pathogenesis of periodontal diseases. This review covers an overview of the virulence factors and lifecycle stages of P. gingivalis, with a specific focus on attachment and colonization, biofilm formation, growth and multiplication, dormancy survival and dissemination. Additionally, we explore the significance of inter-bacterial cross-feeding within biofilms. Furthermore, we discuss potential phytochemical-based strategies to target P. gingivalis, including the use of curcumin, apigenin, quercetin and resveratrol. Understanding the virulence factors and lifecycle stages of P. gingivalis, along with the promising phytochemical-based interventions, holds promise for advancing strategies in periodontal disease management and oral health promotion.
Collapse
Affiliation(s)
- Rubeen Nadaf
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| | - Shridhar Ghagane
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| |
Collapse
|
14
|
Na HH, Kim S, Kim JS, Lee S, Kim Y, Kim SH, Lee CH, Kim D, Yoon SH, Jeong H, Kweon D, Seo HW, Ryu CM. Facemask acne attenuation through modulation of indirect microbiome interactions. NPJ Biofilms Microbiomes 2024; 10:50. [PMID: 38902263 PMCID: PMC11190265 DOI: 10.1038/s41522-024-00512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/28/2024] [Indexed: 06/22/2024] Open
Abstract
During the COVID-19 pandemic, facemasks played a pivotal role in preventing person-person droplet transmission of viral particles. However, prolonged facemask wearing causes skin irritations colloquially referred to as 'maskne' (mask + acne), which manifests as acne and contact dermatitis and is mostly caused by pathogenic skin microbes. Previous studies revealed that the putative causal microbes were anaerobic bacteria, but the pathogenesis of facemask-associated skin conditions remains poorly defined. We therefore characterized the role of the facemask-associated skin microbiota in the development of maskne using culture-dependent and -independent methodologies. Metagenomic analysis revealed that the majority of the facemask microbiota were anaerobic bacteria that originated from the skin rather than saliva. Previous work demonstrated direct interaction between pathogenic bacteria and antagonistic strains in the microbiome. We expanded this analysis to include indirect interaction between pathogenic bacteria and other indigenous bacteria classified as either 'pathogen helper (PH)' or 'pathogen inhibitor (PIn)' strains. In vitro screening of bacteria isolated from facemasks identified both strains that antagonized and promoted pathogen growth. These data were validated using a mouse skin infection model, where we observed attenuation of symptoms following pathogen infection. Moreover, the inhibitor of pathogen helper (IPH) strain, which did not directly attenuate pathogen growth in vitro and in vivo, functioned to suppress symptom development and pathogen growth indirectly through PH inhibitory antibacterial products such as phenyl lactic acid. Taken together, our study is the first to define a mechanism by which indirect microbiota interactions under facemasks can control symptoms of maskne by suppressing a skin pathogen.
Collapse
Affiliation(s)
- Han-Hee Na
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Department of Interdisciplinary Program in Biocosmetics, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Seil Kim
- Division of Metrology for Quality of Life, Center for Bioanalysis, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Soohyun Lee
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Yeseul Kim
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Functional Genomics Program, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Choong-Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, Republic of Korea
| | - Dohyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Haeyoung Jeong
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Daehyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hwi Won Seo
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea.
| | - Choong-Min Ryu
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea.
| |
Collapse
|
15
|
Shao L, Shen Z, Li M, Guan C, Fan B, Chai Y, Zhao Y. ccdC Regulates Biofilm Dispersal in Bacillus velezensis FZB42. Int J Mol Sci 2024; 25:5201. [PMID: 38791239 PMCID: PMC11120784 DOI: 10.3390/ijms25105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Bacillus velezensis FZB42 is a plant growth-promoting rhizobacterium (PGPR) and a model microorganism for biofilm studies. Biofilms are required for the colonization and promotion of plant growth in the rhizosphere. However, little is known about how the final stage of the biofilm life cycle is regulated, when cells regain their motility and escape the mature biofilm to spread and colonize new niches. In this study, the non-annotated gene ccdC was found to be involved in the process of biofilm dispersion. We found that the ccdC-deficient strain maintained a wrinkled state at the late stage of biofilm formation in the liquid-gas interface culture, and the bottom solution showed a clear state, indicating that no bacterial cells actively escaped, which was further evidenced by the formation of a cellular ring (biofilm pellicle) located on top of the preformed biofilm. It can be concluded that dispersal, a biofilm property that relies on motility proficiency, is also positively affected by the unannotated gene ccdC. Furthermore, we found that the level of cyclic diguanylate (c-di-GMP) in the ccdC-deficient strain was significantly greater than that in the wild-type strain, suggesting that B. velezensis exhibits a similar mechanism by regulating the level of c-di-GMP, the master regulator of biofilm formation, dispersal, and cell motility, which controls the fitness of biofilms in Pseudomonas aeruginosain. In this study, we investigated the mechanism regulating biofilm dispersion in PGPR.
Collapse
Affiliation(s)
- Lin Shao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zizhu Shen
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Meiju Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
| | - Chenyun Guan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Yinjuan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
16
|
Lamont RJ, Kuboniwa M. The polymicrobial pathogenicity of Porphyromonas gingivalis. FRONTIERS IN ORAL HEALTH 2024; 5:1404917. [PMID: 38736461 PMCID: PMC11082793 DOI: 10.3389/froh.2024.1404917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Accumulating microbiome data and mechanistic studies in vitro and in vivo have refined our understanding of the oral microbiota as a functionally integrated polymicrobial community. Emergent properties of these communities are driven to a large extent by interspecies communication which can be based on physical association, secreted small molecules or nutritional exchange. Porphyromonas gingivalis is a consensus periodontal pathogen; however, virulence is only expressed in the context of a polymicrobial community. Multivalent fimbriae mediate attachment to other oral species which can initiate a distinct transcriptional program in both constituents of the binding pair. P. gingivalis also responds to small molecules and nutritional cues produced by partner organisms. Physiological interdependence forms the basis of complex networks of cooperating organisms which begin to resemble an organismal entity exhibiting a spectrum of pathogenic potential.
Collapse
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
17
|
Bueno MR, Martins FH, Rocha CM, Kawamoto D, Ishikawa KH, Ando-Suguimoto ES, Carlucci AR, Arroteia LS, Casarin RV, Mayer MPA. Lactobacillus acidophilus LA-5 Ameliorates Inflammation and Alveolar Bone Loss Promoted by A. actinomycetemcomitans and S. gordonii in Mice and Impacts Oral and Gut Microbiomes. Microorganisms 2024; 12:836. [PMID: 38674780 PMCID: PMC11052184 DOI: 10.3390/microorganisms12040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The benefits of probiotics on dysbiotic microbiomes and inflammation are dependent on the tested strain, host factors, and the resident microbiome. There is limited knowledge on the effects of probiotics in A. actinomycetemcomitans-associated periodontitis. Thus, Lactobacillus acidophilus LA5 (LA5) was orally inoculated for 30 days in C57Bl/6 mice infected with A. actinomycetemcomitans JP2 (Aa) and S. gordonii (Sg). Alveolar bone loss, gingival gene expression, and oral and gut microbiomes were determined. LA5 controlled bone loss in Aa+Sg-infected mice, downregulated the expression of Il-1β and upregulated Il-10 in gingival tissues, and altered the oral and gut microbiomes. LA5 increased the diversity of the oral microbiome of Aa+Sg infected mice, and Aa+Sg and Aa+Sg+LA5 oral or gut microbiomes clustered apart. LA5 induced shifts in Aa+Sg infected mice by increasing the abundance of Muribaculaceae and decreasing Bifidobacteriaceae in the oral cavity and increasing the abundance of Verrucomicrobiae and Eggerthellales in the gut. In conclusion, LA5 oral administration controls experimental Aa-associated periodontitis by altering inflammatory gene expression and the oral and gut microbiomes.
Collapse
Affiliation(s)
- Manuela R. Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (F.H.M.); (M.P.A.M.)
- Department of Periodontology, Faculdade São Leopoldo Mandic, Campinas 13045-755, SP, Brazil
| | - Fernando H. Martins
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (F.H.M.); (M.P.A.M.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil (E.S.A.-S.)
| | - Catarina M. Rocha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (F.H.M.); (M.P.A.M.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil (E.S.A.-S.)
| | - Dione Kawamoto
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil (E.S.A.-S.)
| | - Karin H. Ishikawa
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil (E.S.A.-S.)
| | - Ellen S. Ando-Suguimoto
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil (E.S.A.-S.)
| | - Aline R. Carlucci
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (F.H.M.); (M.P.A.M.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil (E.S.A.-S.)
| | - Leticia S. Arroteia
- Department of Prosthesis and Periodontology, School of Dentistry, University of Campinas, Campinas 13083-875, SP, Brazil; (L.S.A.)
| | - Renato V. Casarin
- Department of Prosthesis and Periodontology, School of Dentistry, University of Campinas, Campinas 13083-875, SP, Brazil; (L.S.A.)
| | - Marcia P. A. Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (F.H.M.); (M.P.A.M.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil (E.S.A.-S.)
| |
Collapse
|
18
|
Liu Y, LaBonte S, Brake C, LaFayette C, Rosebrock AP, Caudy AA, Straight PD. MOB rules: Antibiotic Exposure Reprograms Metabolism to Mobilize Bacillus subtilis in Competitive Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585991. [PMID: 38562742 PMCID: PMC10983992 DOI: 10.1101/2024.03.20.585991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Antibiotics have dose-dependent effects on exposed bacteria. The medicinal use of antibiotics relies on their growth-inhibitory activities at sufficient concentrations. At subinhibitory concentrations, exposure effects vary widely among different antibiotics and bacteria. Bacillus subtilis responds to bacteriostatic translation inhibitors by mobilizing a population of cells (MOB-Mobilized Bacillus) to spread across a surface. How B. subtilis regulates the antibiotic-induced mobilization is not known. In this study, we used chloramphenicol to identify regulatory functions that B. subtilis requires to coordinate cell mobilization following subinhibitory exposure. We measured changes in gene expression and metabolism and mapped the results to a network of regulatory proteins that direct the mobile response. Our data reveal that several transcriptional regulators coordinately control the reprogramming of metabolism to support mobilization. The network regulates changes in glycolysis, nucleotide metabolism, and amino acid metabolism that are signature features of the mobilized population. Among the hundreds of genes with changing expression, we identified two, pdhA and pucA, where the magnitudes of their changes in expression, and in the abundance of associated metabolites, reveal hallmark metabolic features of the mobilized population. Using reporters of pdhA and pucA expression, we visualized the separation of major branches of metabolism in different regions of the mobilized population. Our results reveal a regulated response to chloramphenicol exposure that enables a population of bacteria in different metabolic states to mount a coordinated mobile response.
Collapse
Affiliation(s)
- Yongjin Liu
- Biochemistry and Biophysics Department, Texas A&M University, AgriLife Research, College Station, Texas, USA
| | - Sandra LaBonte
- Biochemistry and Biophysics Department, Texas A&M University, AgriLife Research, College Station, Texas, USA
- Interdisciplinary Program in Genetics and Genomics,Texas A&M University, College Station, Texas, USA
| | - Courtney Brake
- Department of Visualization, Institute for Applied Creativity, Texas A&M University, College Station, Texas, USA
| | - Carol LaFayette
- Department of Visualization, Institute for Applied Creativity, Texas A&M University, College Station, Texas, USA
| | | | - Amy A. Caudy
- Maple Flavored Solutions, LLC, Indianapolis, Indiana, USA
| | - Paul D. Straight
- Biochemistry and Biophysics Department, Texas A&M University, AgriLife Research, College Station, Texas, USA
- Interdisciplinary Program in Genetics and Genomics,Texas A&M University, College Station, Texas, USA
| |
Collapse
|
19
|
Klementiev AD, Garg N, Whiteley M. Identification of a glutathione transporter in A. actinomycetemcomitans. Microbiol Spectr 2024; 12:e0351123. [PMID: 38051055 PMCID: PMC10782972 DOI: 10.1128/spectrum.03511-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Microbes produce a large array of extracellular molecules, which serve as signals and cues to promote polymicrobial interactions and alter the function of microbial communities. This has been particularly well studied in the human oral microbiome, where key metabolites have been shown to impact both health and disease. Here, we used an untargeted mass spectrometry approach to comprehensively assess the extracellular metabolome of the pathogen Aggregatibacter actinomycetemcomitans and the commensal Streptococcus gordonii during mono- and co-culture. We generated and made publicly available a metabolomic data set that includes hundreds of potential metabolites and leveraged this data set to identify an operon important for glutathione secretion in A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Alexander D. Klementiev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Neha Garg
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Bujold AR, Barre AME, Kunkel E, MacInnes JI. Strain-dependent interactions of Streptococcus suis and Glaesserella parasuis in co-culture. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2023; 87:245-253. [PMID: 37790267 PMCID: PMC10542955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/01/2023] [Indexed: 10/05/2023]
Abstract
Streptococcus suis (S. suis) and Glaesserella parasuis (G. parasuis) are ubiquitous colonizers of swine tonsils that can cause systemic disease and death, under undefined conditions. It is not known, however, whether these 2 species interact during initial infection. To investigate whether such interactions occur, the objective of this study was to assess phenotypic differences between mono-and co-cultures of S. suis and G. parasuis when representative strains with different virulence potential were co-cultured in vitro. In cross-streak screening experiments, some G. parasuis (GP) serovar strains (GP3, GP4, GP5) exhibited altered morphology with some S. suis (SS) serovar strains, such as SS2, but not with SS1. Co-culture with GP5 reduced hemolytic activity of SS1, but not of SS2. Although both SS strains outgrew GP isolates in biofilm co-cultures, strain type affected the number of planktonic or sessile cells in co-culture biofilms. Numbers of sessile SS1 increased in co-cultures, but not of GP3. Both planktonic and sessile SS2 increased in co-culture, whereas GP5 decreased. Sessile SS1 increased, but planktonic GP5 decreased in co-culture and planktonic SS2 increased, but sessile GP3 decreased when grown together. The SS2 strain had a competitive advantage over GP3 during mid-exponential co-culture in broth. Streptococcus suis is predicted to use more unique carbon sources, suggesting that S. suis outcompetes G. parasuis in growth and nutrient consumption. This work provides direction for future studies of phenotypic and genotypic interactions between these and other swine tonsil co-colonizers.
Collapse
Affiliation(s)
- Adina R Bujold
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| | - Allison M E Barre
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| | - Elizabeth Kunkel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| | - Janet I MacInnes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| |
Collapse
|
21
|
Abstract
Microbial species colonizing host ecosystems in health or disease rarely do so alone. Organisms conglomerate into dynamic heterotypic communities or biofilms in which interspecies and interkingdom interactions drive functional specialization of constituent species and shape community properties, including nososymbiocity or pathogenic potential. Cell-to-cell binding, exchange of signaling molecules, and nutritional codependencies can all contribute to the emergent properties of these communities. Spatial constraints defined by community architecture also determine overall community function. Multilayered interactions thus occur between individual pairs of organisms, and the relative impact can be determined by contextual cues. Host responses to heterotypic communities and impact on host surfaces are also driven by the collective action of the community. Additionally, the range of interspecies interactions can be extended by bacteria utilizing host cells or host diet to indirectly or directly influence the properties of other organisms and the community microenvironment. In contexts where communities transition to a dysbiotic state, their quasi-organismal nature imparts adaptability to nutritional availability and facilitates resistance to immune effectors and, moreover, exploits inflammatory and acidic microenvironments for their persistence.
Collapse
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Oliveira M, Cunha E, Tavares L, Serrano I. P. aeruginosa interactions with other microbes in biofilms during co-infection. AIMS Microbiol 2023; 9:612-646. [PMID: 38173971 PMCID: PMC10758579 DOI: 10.3934/microbiol.2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2024] Open
Abstract
This review addresses the topic of biofilms, including their development and the interaction between different counterparts. There is evidence that various diseases, such as cystic fibrosis, otitis media, diabetic foot wound infections, and certain cancers, are promoted and aggravated by the presence of polymicrobial biofilms. Biofilms are composed by heterogeneous communities of microorganisms protected by a matrix of polysaccharides. The different types of interactions between microorganisms gives rise to an increased resistance to antimicrobials and to the host's defense mechanisms, with the consequent worsening of disease symptoms. Therefore, infections caused by polymicrobial biofilms affecting different human organs and systems will be discussed, as well as the role of the interactions between the gram-negative bacteria Pseudomonas aeruginosa, which is at the base of major polymicrobial infections, and other bacteria, fungi, and viruses in the establishment of human infections and diseases. Considering that polymicrobial biofilms are key to bacterial pathogenicity, it is fundamental to evaluate which microbes are involved in a certain disease to convey an appropriate and efficacious antimicrobial therapy.
Collapse
Affiliation(s)
- Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
23
|
Schmitz DA, Allen RC, Kümmerli R. Negative interactions and virulence differences drive the dynamics in multispecies bacterial infections. Proc Biol Sci 2023; 290:20231119. [PMID: 37491967 PMCID: PMC10369020 DOI: 10.1098/rspb.2023.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Bacterial infections are often polymicrobial, leading to intricate pathogen-pathogen and pathogen-host interactions. There is increasing interest in studying the molecular basis of pathogen interactions and how such mechanisms impact host morbidity. However, much less is known about the ecological dynamics between pathogens and how they affect virulence and host survival. Here we address these open issues by co-infecting larvae of the insect model host Galleria mellonella with one, two, three or four bacterial species, all of which are opportunistic human pathogens. We found that host mortality was always determined by the most virulent species regardless of the number of species and pathogen combinations injected. In certain combinations, the more virulent pathogen simply outgrew the less virulent pathogen. In other combinations, we found evidence for negative interactions between pathogens inside the host, whereby the more virulent pathogen typically won a competition. Taken together, our findings reveal positive associations between a pathogen's growth inside the host, its competitiveness towards other pathogens and its virulence. Beyond being generalizable across species combinations, our findings predict that treatments against polymicrobial infections should first target the most virulent species to reduce host morbidity, a prediction we validated experimentally.
Collapse
Affiliation(s)
- Désirée A. Schmitz
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Richard C. Allen
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Ancuta DL, Alexandru DM, Crivineanu M, Coman C. Induction of Periodontitis Using Bacterial Strains Isolated from the Human Oral Microbiome in an Experimental Rat Model. Biomedicines 2023; 11:2098. [PMID: 37626595 PMCID: PMC10452127 DOI: 10.3390/biomedicines11082098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontal disease is that condition resulting in the destruction of periodontal tissues, bone resorption, and tooth loss, the etiology of which is linked to immunological and microbiological factors. The aim of this study was to evaluate the potential trigger of periodontal disease in a rat model using bacterial species incriminated in the pathology of human periodontitis and to establish their optimal concentrations capable of reproducing the disease, with the idea of subsequently developing innovative treatments for the condition. In this study, we included 15 male Wistar rats, aged 20 weeks, which we divided into three groups. In each group, we applied ligatures with gingival retraction wire on the maxillary incisors. The ligature and the gingival sac were contaminated by oral gavage with a mixture of fresh cultures of Aggregatibacter actinomycetemcomitans (A.a), Fusobacterium nucleatum (F.n) and Streptococcus oralis (S.o) in concentrations of 108, 109, and 1010 CFU/mL each for 5 days a week for 4 weeks. During the clinical monitoring period of 28 days, overlapped with the period of oral contamination, we followed the expression of clinical signs specific to periodontitis. We also monitored the evolution of body weight and took weekly samples from the oral cavity for the microbiological identification of the tested bacteria and blood samples for hematological examination. At the end of the study, the animals were euthanized, and the ligated incisors were taken for histopathological analysis. The characteristic symptomatology of periodontal disease was expressed from the first week of the study and was maintained until the end, and we were able to identify the bacteria during each examination. Hematologically, the number of neutrophils decreased dramatically (p < 0.0001) in the case of the 109 group, unlike the other groups, as did the number of lymphocytes. Histopathologically, we identified neutrophilic infiltrate in all groups, as well as the presence of coccobacilli, periodontal tissue hyperplasia, and periodontal lysis. In the 109 group, we also observed pulpal tissue with necrotic bone fragments and pyogranulomatous inflammatory reaction. By corroborating the data, we can conclude that for the development of periodontal disease using A.a, F.n, and S.o, a concentration of 109 or 1010 CFU/mL is required, which must necessarily contaminate a ligature thread applied to the level of the rat's dental pack.
Collapse
Affiliation(s)
- Diana Larisa Ancuta
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
| | - Diana Mihaela Alexandru
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
| | - Maria Crivineanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
| | - Cristin Coman
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
25
|
Pandey SD, Perpich JD, Stocke KS, Mansfield JM, Kikuchi Y, Yakoumatos L, Muszyński A, Azadi P, Tettelin H, Whiteley M, Uriarte SM, Bagaitkar J, Vickerman M, Lamont RJ. Impact of Polymicrobial Infection on Fitness of Streptococcus gordonii In Vivo. mBio 2023; 14:e0065823. [PMID: 37042761 PMCID: PMC10294625 DOI: 10.1128/mbio.00658-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Pathogenic microbial ecosystems are often polymicrobial, and interbacterial interactions drive emergent properties of these communities. In the oral cavity, Streptococcus gordonii is a foundational species in the development of plaque biofilms, which can contribute to periodontal disease and, after gaining access to the bloodstream, target remote sites such as heart valves. Here, we used a transposon sequencing (Tn-Seq) library of S. gordonii to identify genes that influence fitness in a murine abscess model, both as a monoinfection and as a coinfection with an oral partner species, Porphyromonas gingivalis. In the context of a monoinfection, conditionally essential genes were widely distributed among functional pathways. Coinfection with P. gingivalis almost completely changed the nature of in vivo gene essentiality. Community-dependent essential (CoDE) genes under the coinfection condition were primarily related to DNA replication, transcription, and translation, indicating that robust growth and replication are required to survive with P. gingivalis in vivo. Interestingly, a group of genes in an operon encoding streptococcal receptor polysaccharide (RPS) were associated with decreased fitness of S. gordonii in a coinfection with P. gingivalis. Individual deletion of two of these genes (SGO_2020 and SGO_2024) resulted in the loss of RPS production by S. gordonii and increased susceptibility to killing by neutrophils. P. gingivalis protected the RPS mutants by inhibiting neutrophil recruitment, degranulation, and neutrophil extracellular trap (NET) formation. These results provide insight into genes and functions that are important for S. gordonii survival in vivo and the nature of polymicrobial synergy with P. gingivalis. Furthermore, we show that RPS-mediated immune protection in S. gordonii is dispensable and detrimental in the presence of a synergistic partner species that can interfere with neutrophil killing mechanisms. IMPORTANCE Bacteria responsible for diseases originating at oral mucosal membranes assemble into polymicrobial communities. However, we know little regarding the fitness determinants of the organisms that initiate community formation. Here, we show that the extracellular polysaccharide of Streptococcus gordonii, while important for streptococcal survival as a monoinfection, is detrimental to survival in the context of a coinfection with Porphyromonas gingivalis. We found that the presence of P. gingivalis compensates for immune protective functions of extracellular polysaccharide, rendering production unnecessary. The results show that fitness determinants of bacteria in communities differ substantially from those of individual species in isolation. Furthermore, constituents of communities can undertake activities that relieve the burden of energetically costly biosynthetic reactions on partner species.
Collapse
Affiliation(s)
- Satya D. Pandey
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - John D. Perpich
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmaceutical Science, Sullivan University, Louisville, Kentucky, USA
| | - Kendall S. Stocke
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Jillian M. Mansfield
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, USA
| | - Yuichiro Kikuchi
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Lan Yakoumatos
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Artur Muszyński
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marvin Whiteley
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State College of Medicine, Columbus, Ohio, USA
| | - Margaret Vickerman
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, USA
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
26
|
Hajishengallis G. Illuminating the oral microbiome and its host interactions: animal models of disease. FEMS Microbiol Rev 2023; 47:fuad018. [PMID: 37113021 PMCID: PMC10198557 DOI: 10.1093/femsre/fuad018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis and caries are driven by complex interactions between the oral microbiome and host factors, i.e. inflammation and dietary sugars, respectively. Animal models have been instrumental in our mechanistic understanding of these oral diseases, although no single model can faithfully reproduce all aspects of a given human disease. This review discusses evidence that the utility of an animal model lies in its capacity to address a specific hypothesis and, therefore, different aspects of a disease can be investigated using distinct and complementary models. As in vitro systems cannot replicate the complexity of in vivo host-microbe interactions and human research is typically correlative, model organisms-their limitations notwithstanding-remain essential in proving causality, identifying therapeutic targets, and evaluating the safety and efficacy of novel treatments. To achieve broader and deeper insights into oral disease pathogenesis, animal model-derived findings can be synthesized with data from in vitro and clinical research. In the absence of better mechanistic alternatives, dismissal of animal models on fidelity issues would impede further progress to understand and treat oral disease.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104-6030, USA
| |
Collapse
|
27
|
Lewin GR, Kapur A, Cornforth DM, Duncan RP, Diggle FL, Moustafa DA, Harrison SA, Skaar EP, Chazin WJ, Goldberg JB, Bomberger JM, Whiteley M. Application of a quantitative framework to improve the accuracy of a bacterial infection model. Proc Natl Acad Sci U S A 2023; 120:e2221542120. [PMID: 37126703 PMCID: PMC10175807 DOI: 10.1073/pnas.2221542120] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
Laboratory models are critical to basic and translational microbiology research. Models serve multiple purposes, from providing tractable systems to study cell biology to allowing the investigation of inaccessible clinical and environmental ecosystems. Although there is a recognized need for improved model systems, there is a gap in rational approaches to accomplish this goal. We recently developed a framework for assessing the accuracy of microbial models by quantifying how closely each gene is expressed in the natural environment and in various models. The accuracy of the model is defined as the percentage of genes that are similarly expressed in the natural environment and the model. Here, we leverage this framework to develop and validate two generalizable approaches for improving model accuracy, and as proof of concept, we apply these approaches to improve models of Pseudomonas aeruginosa infecting the cystic fibrosis (CF) lung. First, we identify two models, an in vitro synthetic CF sputum medium model (SCFM2) and an epithelial cell model, that accurately recapitulate different gene sets. By combining these models, we developed the epithelial cell-SCFM2 model which improves the accuracy of over 500 genes. Second, to improve the accuracy of specific genes, we mined publicly available transcriptome data, which identified zinc limitation as a cue present in the CF lung and absent in SCFM2. Induction of zinc limitation in SCFM2 resulted in accurate expression of 90% of P. aeruginosa genes. These approaches provide generalizable, quantitative frameworks for microbiological model improvement that can be applied to any system of interest.
Collapse
Affiliation(s)
- Gina R. Lewin
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30332
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30332
| | - Ananya Kapur
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15219
| | - Daniel M. Cornforth
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30332
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30332
| | - Rebecca P. Duncan
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30332
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA30322
| | - Frances L. Diggle
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30332
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30332
| | - Dina A. Moustafa
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30332
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA30322
| | - Simone A. Harrison
- Department of Biochemistry, Vanderbilt University, Nashville, TN37232
- Department of Chemistry, Vanderbilt University, Nashville, TN37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN37232
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
| | - Walter J. Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN37232
- Department of Chemistry, Vanderbilt University, Nashville, TN37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN37232
| | - Joanna B. Goldberg
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30332
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA30322
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15219
| | - Marvin Whiteley
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30332
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30332
| |
Collapse
|
28
|
Wang X, Jiang C, Wang D, Yang Y, Fan L, Xu S, Zhuang X. Quorum sensing responses of activated sludge to free nitrous acid: Zoogloea deformation, AHL redistribution, and microbiota acclimatization. WATER RESEARCH 2023; 238:119993. [PMID: 37146395 DOI: 10.1016/j.watres.2023.119993] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Free nitrous acid (FNA) has been widely employed for improvement of wastewater management by altering sludge characteristic and function based on its polymer lysing and biocidal capacity. Sludge characteristic and function are commonly considered as the joint consequence of microbial individual behaviors and quorum sensing (QS) involved collective behaviours, but the role of the latter in FNA treatment was still as-yet-unidentified and addressed in this research. The results of sludge morphology and component characterized FNA-induced zoogloea deformation, including inner cell exposure, half of extracellular polymeric substances (EPS) reduction and adsorption site depletion. During zoogloea deformation, four acyl-homoserine lactones (AHLs), including C4-HSL, C8-HSL, C10-HSL and C12-HSL, transferred inward of microbiota, and their total contents reduced by 66% because of depressed signal production, augmented decomposer and recognition. Transcriptome analysis revealed that differentially expressed QS driven by AHL redistribution facilitated microbiota acclimatization including cellular motility and hydrolase synthesis for EPS consumption. Boosted motility may favor escaping from stress spot and moderating intercellular acidity based on cell motility test. Feasible EPS consumption provided nutrition for heterotrophic metabolisms testified by pure culture with EPS as sole nutrition. Our work thus comprehensively revealed QS behaviours responding to FNA and deepened the understanding to FNA treatment performance in wastewater management.
Collapse
Affiliation(s)
- Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Danhua Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yang Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Lijing Fan
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
29
|
Hajishengallis G, Lamont RJ, Koo H. Oral polymicrobial communities: Assembly, function, and impact on diseases. Cell Host Microbe 2023; 31:528-538. [PMID: 36933557 PMCID: PMC10101935 DOI: 10.1016/j.chom.2023.02.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Oral microbial communities assemble into complex spatial structures. The sophisticated physical and chemical signaling systems underlying the community enable their collective functional regulation as well as the ability to adapt by integrating environmental information. The combined output of community action, as shaped by both intra-community interactions and host and environmental variables, dictates homeostatic balance or dysbiotic disease such as periodontitis and dental caries. Oral polymicrobial dysbiosis also exerts systemic effects that adversely affect comorbidities, in part due to ectopic colonization of oral pathobionts in extra-oral tissues. Here, we review new and emerging concepts that explain the collective functional properties of oral polymicrobial communities and how these impact health and disease both locally and systemically.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Park B, Koh H, Patatanian M, Reyes-Caballero H, Zhao N, Meinert J, Holbrook JT, Leinbach LI, Biswal S. The mediating roles of the oral microbiome in saliva and subgingival sites between e-cigarette smoking and gingival inflammation. BMC Microbiol 2023; 23:35. [PMID: 36732713 PMCID: PMC9893987 DOI: 10.1186/s12866-023-02779-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Electronic cigarettes (ECs) have been widely used by young individuals in the U.S. while being considered less harmful than conventional tobacco cigarettes. However, ECs have increasingly been regarded as a health risk, producing detrimental chemicals that may cause, combined with poor oral hygiene, substantial inflammation in gingival and subgingival sites. In this paper, we first report that EC smoking significantly increases the odds of gingival inflammation. Then, through mediation analysis, we seek to identify and explain the mechanism that underlies the relationship between EC smoking and gingival inflammation via the oral microbiome. METHODS We collected saliva and subgingival samples from 75 EC users and 75 non-users between 18 and 34 years in age and profiled their microbial compositions via 16S rRNA amplicon sequencing. We conducted raw sequence data processing, denoising and taxonomic annotations using QIIME2 based on the expanded human oral microbiome database (eHOMD). We then created functional annotations (i.e., KEGG pathways) using PICRUSt2. RESULTS We found significant increases in α-diversity for EC users and disparities in β-diversity between EC users and non-users. We also found significant disparities between EC users and non-users in the relative abundance of 36 microbial taxa in the saliva site and 71 microbial taxa in the subgingival site. Finally, we found that 1 microbial taxon in the saliva site and 18 microbial taxa in the subgingival site significantly mediated the effects of EC smoking on gingival inflammation. The mediators on the genus level, for example, include Actinomyces, Rothia, Neisseria, and Enterococcus in the subgingival site. In addition, we report significant disparities between EC users and non-users in the relative abundance of 71 KEGG pathways in the subgingival site. CONCLUSIONS These findings reveal that continued EC use can further increase microbial dysbiosis that may lead to periodontal disease. Our findings also suggest that continued surveillance for the effect of ECs on the oral microbiome and its transmission to oral diseases is needed.
Collapse
Affiliation(s)
- Bongsoo Park
- Department of Environmental Health and Engineering, Johns Hopkins School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA
- Epigenetics and Stem Cell Aging, Translational Gerontology Branch, National Institute On Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Hyunwook Koh
- Department of Applied Mathematics and Statistics, The State University of New York, Korea, Incheon, 21985, South Korea
| | - Michael Patatanian
- Department of Environmental Health and Engineering, Johns Hopkins School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA
| | - Hermes Reyes-Caballero
- Department of Environmental Health and Engineering, Johns Hopkins School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Jill Meinert
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Janet T Holbrook
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Leah I Leinbach
- Department of Health Policy and Management, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA.
- Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
31
|
Kreth J, Merritt J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular ecological studies. FEMS Microbiol Rev 2023; 47:fuac052. [PMID: 36564013 PMCID: PMC9936263 DOI: 10.1093/femsre/fuac052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
A more comprehensive understanding of oral diseases like caries and periodontitis is dependent on an intimate understanding of the microbial ecological processes that are responsible for disease development. With this review, we provide a comprehensive overview of relevant molecular ecology techniques that have played critical roles in the current understanding of human oral biofilm development, interspecies interactions, and microbiome biogeography. The primary focus is on relevant technologies and examples available in the oral microbiology literature. However, most, if not all, of the described technologies should be readily adaptable for studies of microbiomes from other mucosal sites in the body. Therefore, this review is intended to serve as a reference guide used by microbiome researchers as they inevitably transition into molecular mechanistic studies of the many significant phenotypes observed clinically.
Collapse
Affiliation(s)
- Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, MRB433, 3181 SW Sam Jackson Park Rd., #L595, Portland, OR 97239, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, MRB433, 3181 SW Sam Jackson Park Rd., #L595, Portland, OR 97239, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
32
|
Koley D. Electrochemical sensors for oral biofilm-biomaterials interface characterization: A review. Mol Oral Microbiol 2022; 37:292-298. [PMID: 36300593 PMCID: PMC9759506 DOI: 10.1111/omi.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022]
Abstract
Important processes related to the interaction of the oral microbiome with the tooth surface happen directly at the interface. For example, the chemical microenvironment that exists at the interface of microbial biofilms and the native tooth structure is directly involved in caries development. Consequentially, a critical understanding of this interface and its chemical microenvironment would provide novel avenues in caries prevention, including secondary caries that often occurs at the interface of the dental biofilm, tooth structure, and dental material. Electrochemical sensors are a unique quantitative tool and have the inherent advantages of miniaturization, stability, and selectivity. That makes the electrochemical sensors ideal tools for studying these critical biofilm microenvironments with high precision. This review highlights the development and applications of several novel electrochemical sensors such as pH, Ca2+ , and hydrogen peroxide sensors as scanning electrochemical microscope probes in addition to flexible pH wire sensors for real-time bacterial biofilm-dental surface and dental materials interface studies.
Collapse
Affiliation(s)
- Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
33
|
Zhu J, Chen Y, Wu Y, Wang Y, Zhu K. Commensal bacteria contribute to the growth of multidrug-resistant Avibacterium paragallinarum in chickens. Front Microbiol 2022; 13:1010584. [PMID: 36406434 PMCID: PMC9672371 DOI: 10.3389/fmicb.2022.1010584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 07/30/2024] Open
Abstract
Avibacterium paragallinarum-associated infectious coryza (IC) is an important threat in commercial poultry. Previous studies about the characteristics of A. paragallinarum are succeeded in revealing the course of IC disease, but whether and how resident microbes contribute to the infection remains unclear. To understand the role of commensal bacteria, we isolated 467 commensal bacteria, including 38 A. paragallinarum, from the respiratory tract of IC chicken. The predominant commensal isolates were Gram-positive bacteria belonging to Staphylococcus spp. [33.19%, 95% confidence interval (CI): 28.93-37.66%], Enterococcus spp. (16.49%, 95% CI: 13.23-20.17%), and Bacillus spp. (16.27%, 95% CI: 13.04-19.94%). These isolates were closely correlated with the survival of A. paragallinarum. We examined and found that commensal bacteria aggravate A. paragallinarum-associated infections because certain commensal species (28.57%, 95% CI: 15.72-44.58%) induced hemolysis and promoted the growth of A. paragallinarum in vitro. Notably, A. paragallinarum showed high resistance to routine antibiotics such as erythromycin (84.21%, 95% CI: 68.75-93.98%), tetracycline (73.68%, 95% CI: 56.90-86.60%) and carried diverse mobile resistance gene clusters. Overall, we found commensal bacteria especially Gram-positive bacteria facilitate the survival of multidrug-resistant A. paragallinarum to exacerbate infections, suggesting that novel strategies may diminish A. paragallinarum-associated infections by modulating the population dynamics of commensal bacteria.
Collapse
Affiliation(s)
- Jiajia Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yunsheng Chen
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yifan Wu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
34
|
Essential Fitness Repertoire of Staphylococcus aureus during Co-infection with Acinetobacter baumannii In Vivo. mSystems 2022; 7:e0033822. [PMID: 36040021 PMCID: PMC9600432 DOI: 10.1128/msystems.00338-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus represents a major human pathogen that is frequently involved in polymicrobial infections. However, the prevalence and role of co-infectious microbes on the pathogenesis and fitness essentiality of S. aureus in vivo remain largely unknown. In this study, we firstly performed a retrospective surveillance of 760 clinical samples and revealed a notable predominance of co-infection with S. aureus and Acinetobacter baumannii. The high-density S. aureus transposon mutant library coupled to transposon insertion sequencing (Tn-Seq) further identified a core set of genes enriched in metabolism of inorganic ions, amino acids, and carbohydrates, which are essential for infection and tissue colonization of S. aureus in the murine systemic infection model. Notably, we revealed a differential requirement of fitness factors for S. aureus in tissue-specific (liver and kidney) and infection-type-specific manner (mono- and co-infection). Co-infection with A. baumannii dramatically altered the fitness requirements of S. aureus in vivo; 49% of the mono-infection fitness genes in S. aureus strain Newman were converted to non-essential, and the functionality of ATP-binding cassette (ABC) transporters was significantly elicited during co-infection. Furthermore, the number of genes essential during co-infection (503) outnumbers the genes essential during mono-infection (362). In addition, the roles of 3 infection-type-specific genes in S. aureus during mono-infection or co-infection with A. baumannii were validated with competitive experiments in vivo. Our data indicated a high incidence and clinical relevance of S. aureus and A. baumannii co-infection, and provided novel insights into establishing antimicrobial regimens to control co-infections. IMPORTANCE Polymicrobial infections are widespread in clinical settings, which potentially correlate with increased infection severity and poor clinical outcomes. Staphylococcus aureus is a formidable human pathogen that causes a variety of diseases in polymicrobial nature. Co-infection and interaction of S. aureus have been described with limited pathogens, mainly including Pseudomonas aeruginosa, Candida albicans, and influenza A virus. Thus far, the prevalence and role of co-infectious microbes on the pathogenesis and fitness essentiality of S. aureus in vivo remain largely unknown. Understanding the polymicrobial composition and interaction, from a community and genome-wide perspective, is thus crucial to shed light on S. aureus pathogenesis strategy. Here, our findings demonstrated, for the first time, that a high incidence rate and clinical relevance of co-infection was caused by S. aureus and Acinetobacter baumannii, illustrating the importance of polymicrobial nature in investigating S. aureus pathogenesis. The infection-type-specific genes likely serve as potential therapeutic targets to control S. aureus infections, either in mono- or co-infection situation, providing novel insights into the development of antimicrobial regimens to control co-infections.
Collapse
|
35
|
Shakya S, Danshiitsoodol N, Noda M, Inoue Y, Sugiyama M. 3-Phenyllactic acid generated in medicinal plant extracts fermented with plant-derived lactic acid bacteria inhibits the biofilm synthesis of Aggregatibacter actinomycetemcomitans. Front Microbiol 2022; 13:991144. [PMID: 36212837 PMCID: PMC9539679 DOI: 10.3389/fmicb.2022.991144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the present study, the effect of PLA on a periodontic pathogen, Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), the biofilm, and virulence-related genes was investigated. We confirmed that two lactic acid bacteria (LAB) strains isolated from plant sources, Lactiplantibacillus plantarum MSC-C2 and Pediococcus pentosaceus K40, secrete PLA into the de Man, Rogosa & Sharpe (MRS) broth when supplemented with phenyl pyruvic acid (PPA) as a precursor to PLA. Moreover, PLA was generated in the fermentation broths of two medicinal plant extracts, Paeonia lactiflora Pall (PR) and Carthamus tinctorius (CT), when used by each LAB strain and each extract supplemented with PPA. We determined that the minimum inhibitory concentration (MIC) of PLA against A. actinomycetemcomitans was 20 mM. PLA significantly decreased biofilm formation and suppressed the transcription of pgA, ltxA, and cdtB genes, which encode the poly-N-acetylglucosamine (PGA) polysaccharide of biofilm matrix and exotoxins leukotoxin and cytolethal distending toxin (CDT), respectively. The PLA produced by the MSC-C2 and K40 strains was increased several times by the addition of PPA to the MRS broth. The anti-biofilm effect of the extracts from the fermentation broth was proportional to the increasing PLA concentration, while a cumulatively higher effect than that of PLA alone suggested a combinational effect of PLA and the other metabolites, such as lactic acid (LA). Among the two medicinal plants, PLA, produced after the addition of PPA, was higher in PR extract in case of both the LAB strains. PLA production by the MSC-C2 strain in the PR extract reached 4.8 ± 0.23 mM, which was obviously higher than that in the MRS broth (3.88 ± 0.12 mM) supplemented with 1 mg/ml PPA. The activity to inhibit biofilm formation in the fermented PR extract was clearly high. PLA formed in the fermented PR extract downregulated the dispersin B encoding the dspB gene together with pgA, ltxA, and cdtB. In conclusion, this study shows a promising activity of PLA against the A. actinomycetemcomitans biofilm and virulence genes. In addition, the combinational effect of PLA and the medicinal plant extract can be achieved by fermentation with a specific plant-derived LAB strain.
Collapse
|
36
|
Ozuna H, Snider I, Belibasakis GN, Oscarsson J, Johansson A, Uriarte SM. Aggregatibacter actinomycetemcomitans and Filifactor alocis: Two exotoxin-producing oral pathogens. FRONTIERS IN ORAL HEALTH 2022; 3:981343. [PMID: 36046121 PMCID: PMC9420871 DOI: 10.3389/froh.2022.981343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is a dysbiotic disease caused by the interplay between the microbial ecosystem present in the disease with the dysregulated host immune response. The disease-associated microbial community is formed by the presence of established oral pathogens like Aggregatibacter actinomycetemcomitans as well as by newly dominant species like Filifactor alocis. These two oral pathogens prevail and grow within the periodontal pocket which highlights their ability to evade the host immune response. This review focuses on the virulence factors and potential pathogenicity of both oral pathogens in periodontitis, accentuating the recent description of F. alocis virulence factors, including the presence of an exotoxin, and comparing them with the defined factors associated with A. actinomycetemcomitans. In the disease setting, possible synergistic and/or mutualistic interactions among both oral pathogens might contribute to disease progression.
Collapse
Affiliation(s)
- Hazel Ozuna
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Ian Snider
- Department of Biology, School of Arts and Sciences, University of Louisville, Louisville, KY, United States
| | | | - Jan Oscarsson
- Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Silvia M. Uriarte
| |
Collapse
|
37
|
Development of a Versatile, Low-Cost Electrochemical System to Study Biofilm Redox Activity at the Micron Scale. Appl Environ Microbiol 2022; 88:e0043422. [PMID: 35758758 PMCID: PMC9328185 DOI: 10.1128/aem.00434-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spatially resolving chemical landscapes surrounding microbial communities can provide insight into chemical interactions that dictate cellular physiology. Electrochemical techniques provide an attractive option for studying these interactions due to their robustness and high sensitivity. Unfortunately, commercial electrochemical platforms that are capable of measuring chemical activity on the micron scale are often expensive and do not easily perform multiple scanning techniques. Here, we report development of an inexpensive electrochemical system that features a combined micromanipulator and potentiostat component capable of scanning surfaces while measuring molecular concentrations or redox profiles. We validate this experimental platform for biological use with a two-species biofilm model composed of the oral bacterial pathogen Aggregatibacter actinomycetemcomitans and the oral commensal Streptococcus gordonii. We measure consumption of H2O2 by A. actinomycetemcomitans biofilms temporally and spatially, providing new insights into how A. actinomycetemcomitans responds to this S. gordonii-produced metabolite. We advance our platform to spatially measure redox activity above biofilms. Our analysis supports that redox activity surrounding biofilms is species specific, and the region immediately above an S. gordonii biofilm is highly oxidized compared to that above an A. actinomycetemcomitans biofilm. This work provides description and validation of a versatile, quantitative framework for studying bacterial redox-mediated physiology in an integrated and easily adaptable experimental platform. IMPORTANCE Scanning electrochemical probe microscopy methods can provide information of the chemical environment along a spatial surface with micron-scale resolution. These methods often require expensive instruments that perform optimized and highly sensitive niche techniques. Here, we describe a novel system that combines a micromanipulator that scans micron-sized electrodes across the surface of bacterial biofilms and a potentiostat, which performs various electrochemical techniques. This platform allows for spatial measurement of chemical gradients above live bacteria in real time, and as proof of concept, we utilize this setup to map H2O2 detoxification above an oral pathogen biofilm. We increased the versatility of this platform further by mapping redox potentials of biofilms in real time on the micron scale. Together, this system provides a technical framework for studying chemical interactions among microbes.
Collapse
|
38
|
Abstract
The oral microbiota is enormously diverse, with over 700 microbial species identified across individuals that play a vital role in the health of our mouth and our overall well-being. In addition, as oral diseases such as caries (cavities) and periodontitis (gum disease) are mediated through interspecies microbial interactions, this community serves as an important model system to study the complexity and dynamics of polymicrobial interactions. Here, we review historical and recent progress in our understanding of the oral microbiome, highlighting how oral microbiome research has significantly contributed to our understanding of microbial communities, with broad implications in polymicrobial diseases and across microbial community ecology. Further, we explore innovations and challenges associated with analyzing polymicrobial systems and suggest future directions of study. Finally, we provide a conceptual framework to systematically study microbial interactions within complex communities, not limited to the oral microbiota.
Collapse
|
39
|
Zhang Y, Li Y, Yang Y, Wang Y, Cao X, Jin Y, Xu Y, Li SC, Zhou Q. Periodontal and Peri-Implant Microbiome Dysbiosis Is Associated With Alterations in the Microbial Community Structure and Local Stability. Front Microbiol 2022; 12:785191. [PMID: 35145492 PMCID: PMC8821947 DOI: 10.3389/fmicb.2021.785191] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontitis and peri-implantitis are common biofilm-mediated infectious diseases affecting teeth and dental implants and have been considered to be initiated with microbial dysbiosis. To further understand the essence of oral microbiome dysbiosis in terms of bacterial interactions, community structure, and microbial stability, we analyzed 64 plaque samples from 34 participants with teeth or implants under different health conditions using metagenomic sequencing. After taxonomical annotation, we computed the inter-species correlations, analyzed the bacterial community structure, and calculated the microbial stability in supra- and subgingival plaques from hosts with different health conditions. The results showed that when inflammation arose, the subgingival communities became less connective and competitive with fewer hub species. In contrast, the supragingival communities tended to be more connective and competitive with an increased number of hub species. Besides, periodontitis and peri-implantitis were associated with significantly increased microbial stability in subgingival microbiome. These findings indicated that the periodontal and peri-implant dysbiosis is associated with aberrant alterations in the bacterial correlations, community structures, and local stability. The highly connected hub species, as well as the major contributing species of negative correlations, should also be given more concern in future studies.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yinhu Li
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuguang Yang
- Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, China
| | - Yiqing Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Xiao Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yu Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yue Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of General Dentistry and Emergency Room, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qin Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
40
|
Azimi S, Lewin GR, Whiteley M. The biogeography of infection revisited. Nat Rev Microbiol 2022; 20:579-592. [PMID: 35136217 PMCID: PMC9357866 DOI: 10.1038/s41579-022-00683-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Many microbial communities, including those involved in chronic human infections, are patterned at the micron scale. In this Review, we summarize recent work that has defined the spatial arrangement of microorganisms in infection and begun to demonstrate how changes in spatial patterning correlate with disease. Advances in microscopy have refined our understanding of microbial micron-scale biogeography in samples from humans. These findings then serve as a benchmark for studying the role of spatial patterning in preclinical models, which provide experimental versatility to investigate the interplay between biogeography and pathogenesis. Experimentation using preclinical models has begun to show how spatial patterning influences the interactions between cells, their ability to coexist, their virulence and their recalcitrance to treatment. Future work to study the role of biogeography in infection and the functional biogeography of microorganisms will further refine our understanding of the interplay of spatial patterning, pathogen virulence and disease outcomes.
Collapse
Affiliation(s)
- Sheyda Azimi
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gina R Lewin
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | | |
Collapse
|
41
|
Luo A, Wang F, Sun D, Liu X, Xin B. Formation, Development, and Cross-Species Interactions in Biofilms. Front Microbiol 2022; 12:757327. [PMID: 35058893 PMCID: PMC8764401 DOI: 10.3389/fmicb.2021.757327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
Biofilms, which are essential vectors of bacterial survival, protect microbes from antibiotics and host immune attack and are one of the leading causes that maintain drug-resistant chronic infections. In nature, compared with monomicrobial biofilms, polymicrobial biofilms composed of multispecies bacteria predominate, which means that it is significant to explore the interactions between microorganisms from different kingdoms, species, and strains. Cross-microbial interactions exist during biofilm development, either synergistically or antagonistically. Although research into cross-species biofilms remains at an early stage, in this review, the important mechanisms that are involved in biofilm formation are delineated. Then, recent studies that investigated cross-species cooperation or synergy, competition or antagonism in biofilms, and various components that mediate those interactions will be elaborated. To determine approaches that minimize the harmful effects of biofilms, it is important to understand the interactions between microbial species. The knowledge gained from these investigations has the potential to guide studies into microbial sociality in natural settings and to help in the design of new medicines and therapies to treat bacterial infections.
Collapse
Affiliation(s)
- Aihua Luo
- Department of Stomatology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fang Wang
- Department of Pharmacy, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Degang Sun
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xueyu Liu
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China.,Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Bingchang Xin
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China.,Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| |
Collapse
|
42
|
Nogales J, Garmendia J. Bacterial metabolism and pathogenesis intimate intertwining: time for metabolic modelling to come into action. Microb Biotechnol 2022; 15:95-102. [PMID: 34672429 PMCID: PMC8719832 DOI: 10.1111/1751-7915.13942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 11/26/2022] Open
Abstract
We take a snapshot of the recent understanding of bacterial metabolism and the bacterial-host metabolic interplay during infection, and highlight key outcomes and challenges for the practical implementation of bacterial metabolic modelling computational tools in the pathogenesis field.
Collapse
Affiliation(s)
- Juan Nogales
- Department of Systems BiologyCentro Nacional de BiotecnologíaCSICMadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
| | - Junkal Garmendia
- Instituto de AgrobiotecnologíaConsejo Superior de Investigaciones Científicas (IdAB‐CSIC)‐Gobierno de NavarraMutilvaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)MadridSpain
| |
Collapse
|
43
|
Zanetti F, Zivkovic Semren T, Battey JND, Guy PA, Ivanov NV, van der Plas A, Hoeng J. A Literature Review and Framework Proposal for Halitosis Assessment in Cigarette Smokers and Alternative Nicotine-Delivery Products Users. FRONTIERS IN ORAL HEALTH 2021; 2:777442. [PMID: 35048075 PMCID: PMC8757736 DOI: 10.3389/froh.2021.777442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
Halitosis is a health condition which counts cigarette smoking (CS) among its major risk factors. Cigarette smoke can cause an imbalance in the oral bacterial community, leading to several oral diseases and conditions, including intraoral halitosis. Although the best approach to decrease smoking-related health risks is quitting smoking, this is not feasible for many smokers. Switching to potentially reduced-risk products, like electronic vapor products (EVP) or heated tobacco products (HTP), may help improve the conditions associated with CS. To date, there have been few systematic studies on the effects of CS on halitosis and none have assessed the effects of EVP and HTP use. Self-assessment studies have shown large limitations owing to the lack of reliability in the participants' judgment. This has compelled the scientific community to develop a strategy for meaningful assessment of these new products in comparison with cigarettes. Here, we compiled a review of the existing literature on CS and halitosis and propose a 3-layer approach that combines the use of the most advanced breath analysis techniques and multi-omics analysis to define the interactions between oral bacterial species and their role in halitosis both in vitro and in vivo. Such an approach will allow us to compare the effects of different nicotine-delivery products on oral bacteria and quantify their impact on halitosis. Defining the impact of alternative nicotine-delivery products on intraoral halitosis and its associated bacteria will help the scientific community advance a step further toward understanding the safety of these products and their potentiall risks for consumers.
Collapse
Affiliation(s)
- Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
44
|
Redman WK, Welch GS, Williams AC, Damron AJ, Northcut WO, Rumbaugh KP. Efficacy and safety of biofilm dispersal by glycoside hydrolases in wounds. Biofilm 2021; 3:100061. [PMID: 34825176 PMCID: PMC8605310 DOI: 10.1016/j.bioflm.2021.100061] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
Novel anti-biofilm and dispersal agents are currently being investigated in an attempt to combat biofilm-associated wound infections. Glycoside hydrolases (GHs) are enzymes that hydrolyze the glycosidic bonds between sugars, such as those found within the exopolysaccharides of the biofilm matrix. Previous studies have shown that GHs can weaken the matrix, inducing bacterial dispersal, and improving antibiotic clearance. Yet, the number of GH enzymes that have been examined for potential therapeutic effects is limited. In this study, we screened sixteen GHs for their ability to disperse mono-microbial and polymicrobial biofilms grown in different environments. Six GHs, α-amylase (source: A. oryzae), alginate lyase (source: various algae), pectinase (source: Rhizopus sp.), amyloglucosidase (source: A. niger), inulinase (source: A. niger), and xylanase (source: A. oryzae), exhibited the highest dispersal efficacy in vitro. Two GHs, α-amylase (source: Bacillus sp.) and cellulase (source: A. niger), used in conjunction with meropenem demonstrated infection clearing ability in a mouse wound model. GHs were also effective in improving antibiotic clearance in diabetic mice. To examine their safety, we screened the GHs for toxicity in cell culture. Overall, there was an inverse relationship between enzyme exposure time and cellular toxicity, with twelve out of sixteen GHs demonstrating some level of toxicity in cell culture. However, only one GH exhibited harmful effects in mice. These results further support the ability of GHs to improve antibiotic clearance of biofilm-associated infections and help lay a foundation for establishing GHs as therapeutic agents for chronic wound infections.
Collapse
Affiliation(s)
- Whitni K Redman
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Garrett S Welch
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,TTUHSC Surgery Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Avery C Williams
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Addyson J Damron
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,TTUHSC Surgery Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
45
|
Bjarnsholt T, Whiteley M, Rumbaugh KP, Stewart PS, Jensen PØ, Frimodt-Møller N. The importance of understanding the infectious microenvironment. THE LANCET. INFECTIOUS DISEASES 2021; 22:e88-e92. [PMID: 34506737 DOI: 10.1016/s1473-3099(21)00122-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Standard doses of antibiotics do not efficiently treat chronic infections of the soft tissue and bone. In this Personal View, we advocate for improving treatment of these infections by taking the infectious microenvironment into account. The infectious microenvironment can cause sensitive bacteria to lose their susceptibility to antibiotics that are effective in standard laboratory susceptibility testing. We propose that bacteria behave substantially different in standard laboratory conditions than they do in actual infections. The infectious microenvironment could impose changes in growth and metabolic activity that result in increased protection against antibiotics. Therefore, we advocate that improved antibiotic treatment of chronic infection is achievable when antibiotics are recommended on the basis of susceptibility testing in relevant in vitro conditions that resemble actual infectious microenvironments. We recommend establishing knowledge of the relevant conditions of the chemical and physical composition of the infectious microenvironment. Recent advances in RNA sequencing, metabolomics, and microscopy have made it possible for the characterisation of the microenvironment of infections and to validate the clinical relevance of in vitro conditions to actual infections.
Collapse
Affiliation(s)
- Thomas Bjarnsholt
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark; Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA; Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Peter Ø Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark; Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Frimodt-Møller
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
46
|
Regulation of olfactomedin 4 by Porphyromonas gingivalis in a community context. THE ISME JOURNAL 2021; 15:2627-2642. [PMID: 33731837 PMCID: PMC8397782 DOI: 10.1038/s41396-021-00956-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 02/05/2023]
Abstract
At mucosal barriers, the virulence of microbial communities reflects the outcome of both dysbiotic and eubiotic interactions with the host, with commensal species mitigating or potentiating the action of pathogens. We examined epithelial responses to the oral pathogen Porphyromonas gingivalis as a monoinfection and in association with a community partner, Streptococcus gordonii. RNA-Seq of oral epithelial cells showed that the Notch signaling pathway, including the downstream effector olfactomedin 4 (OLFM4), was differentially regulated by P. gingivalis alone; however, regulation was overridden by S. gordonii. OLFM4 was required for epithelial cell migratory, proliferative and inflammatory responses to P. gingivalis. Activation of Notch signaling was induced through increased expression of the Notch1 receptor and the Jagged1 (Jag1) agonist. In addition, Jag1 was released in response to P. gingivalis, leading to paracrine activation. Following Jag1-Notch1 engagement, the Notch1 extracellular domain was cleaved by P. gingivalis gingipain proteases. Antagonism by S. gordonii involved inhibition of gingipain activity by secreted hydrogen peroxide. The results establish a novel mechanism by which P. gingivalis modulates epithelial cell function which is dependent on community context. These interrelationships have relevance for innate inflammatory responses and epithelial cell fate decisions in oral health and disease.
Collapse
|
47
|
A Pseudomonas aeruginosa Antimicrobial Affects the Biogeography but Not Fitness of Staphylococcus aureus during Coculture. mBio 2021; 12:mBio.00047-21. [PMID: 33785630 PMCID: PMC8092195 DOI: 10.1128/mbio.00047-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many human infections result from the action of multispecies bacterial communities. Within these communities, bacteria have been proposed to directly interact via physical and chemical means, resulting in increased disease and antimicrobial tolerance. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common coinfecting bacteria in human infections, including the cystic fibrosis (CF) lung. There is emerging evidence that coinfection with these microbes enhances disease severity and antimicrobial tolerance through direct interactions. However, one of the challenges to studying microbial interactions relevant to human infection is the lack of experimental models with the versatility to investigate complex interaction dynamics while maintaining biological relevance. Here, we developed a model based on an in vitro medium that mimics human CF lung secretions (synthetic CF sputum medium [SCFM2]) and allows time-resolved assessment of fitness and community spatial structure at the micrometer scale. Our results reveal that P. aeruginosa and S. aureus coexist as spatially structured communities in SCFM2 under static growth conditions, with S. aureus enriched at a distance of 3.5 μm from P. aeruginosa. Multispecies aggregates were rare, and aggregate (biofilm) sizes resembled those in human CF sputum. Elimination of P. aeruginosa’s ability to produce the antistaphylococcal small molecule HQNO (2-heptyl-4-hydroxyquinoline N-oxide) had no effect on bacterial fitness but altered the spatial structure of the community by increasing the distance of S. aureus from P. aeruginosa to 7.6 μm. Lastly, we show that coculture with P. aeruginosa sensitizes S. aureus to killing by the antibiotic tobramycin compared to monoculture growth despite HQNO enhancing tolerance during coculture. Our findings reveal that SCFM2 is a powerful model for studying P. aeruginosa and S. aureus and that HQNO alters S. aureus biogeography and antibiotic susceptibility without affecting fitness.
Collapse
|
48
|
The Inhibitory Effects of Ficin on Streptococcus mutans Biofilm Formation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6692328. [PMID: 33860052 PMCID: PMC8009705 DOI: 10.1155/2021/6692328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 02/05/2023]
Abstract
To investigate the effects of ficin on biofilm formation of conditionally cariogenic Streptococcus mutans (S. mutans). Biomass and metabolic activity of biofilm were assessed using crystal violet assay, colony-forming unit (CFU) counting, and MTT assay. Extracellular polysaccharide (EPS) synthesis was displayed by SEM imaging, bacteria/EPS staining, and anthrone method while acid production was revealed by lactic acid assay. Growth curve and live/dead bacterial staining were conducted to monitor bacterial growth state in both planktonic and biofilm form. Total protein and extracellular proteins of S. mutans biofilm were analyzed by protein/bacterial staining and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), severally. qRT-PCR was conducted to detect acid production, acid tolerance, and biofilm formation associated genes. Crystal violet assay, CFU counting, and MTT assay showed that the suppression effect of ficin on S. mutans biofilm formation was concentration dependent. 4 mg/mL ficin had significant inhibitory effect on S. mutans biofilm formation including biomass, metabolic activity, EPS synthesis, and lactic acid production (p < 0.05). The growth curves from 0 mg/mL to 4 mg/mL ficin were aligned with each other. There was no significant difference among different ficin groups in terms of live/dead bacterial staining result (p > 0.05). Protein/bacterial staining outcome indicated that ficin inhibit both total protein and biofilm formation during the biofilm development. There were more relatively small molecular weight protein bands in extracellular proteins of 4 mg/mL ficin group when compared with the control. Generally, ficin could inhibit biofilm formation and reduce cariogenic virulence of S. mutans effectively in vitro; thus, it could be a potential anticaries agent.
Collapse
|
49
|
Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol 2000 2021; 86:32-56. [PMID: 33690911 PMCID: PMC9413593 DOI: 10.1111/prd.12361] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Graham P Stafford
- Integrated Biosciences, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
50
|
Bharti S, Maurya RK, Venugopal U, Singh R, Akhtar MS, Krishnan MY. Rv1717 Is a Cell Wall - Associated β-Galactosidase of Mycobacterium tuberculosis That Is Involved in Biofilm Dispersion. Front Microbiol 2021; 11:611122. [PMID: 33584576 PMCID: PMC7873859 DOI: 10.3389/fmicb.2020.611122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/16/2020] [Indexed: 01/12/2023] Open
Abstract
Understanding the function of conserved hypothetical protein (CHP)s expressed by a pathogen in the infected host can lead to better understanding of its pathogenesis. The present work describes the functional characterization of a CHP, Rv1717 of Mycobacterium tuberculosis (Mtb). Rv1717 has been previously reported to be upregulated in TB patient lungs. Rv1717 belongs to the cupin superfamily of functionally diverse proteins, several of them being carbohydrate handling proteins. Bioinformatic analysis of the amino acid sequence revealed similarity to glycosyl hydrolases. Enzymatic studies with recombinant Rv1717 purified from Escherichia coli showed that the protein is a β-D-galactosidase specific for pyranose form rather than the furanose form. We expressed the protein in Mycobacterium smegmatis (Msm), which lacks its ortholog. In MsmRv1717, the protein was found to localize to the cell wall (CW) with a preference to the poles. MsmRv1717 showed significant changes in colony morphology and cell surface properties. Most striking observation was its unusual Congo red colony morphotype, reduced ability to form biofilms, pellicles and autoagglutinate. Exogenous Rv1717 not only prevented biofilm formation in Msm, but also degraded preformed biofilms, suggesting that its substrate likely exists in the exopolysaccharides of the biofilm matrix. Presence of galactose in the extracellular polymeric substance (EPS) has not been reported before and hence we used the galactose-specific Wisteria floribunda lectin (WFL) to test the same. The lectin extensively bound to Msm and Mtb EPS, but not the bacterium per se. Purified Rv1717 also hydrolyzed exopolysaccharides extracted from Msm biofilm. Eventually, to decipher its role in Mtb, we downregulated its expression and demonstrate that the strain is unable to disperse from in vitro biofilms, unlike the wild type. Biofilms exposed to carbon starvation showed a sudden upregulation of Rv1717 transcripts supporting the potential role of Rv1717 in Mtb dispersing from a deteriorating biofilm.
Collapse
Affiliation(s)
- Suman Bharti
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rahul Kumar Maurya
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Radhika Singh
- Toxicology and Health Risk Assessment Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Md Sohail Akhtar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | |
Collapse
|