1
|
Doktorova M, Symons JL, Zhang X, Wang HY, Schlegel J, Lorent JH, Heberle FA, Sezgin E, Lyman E, Levental KR, Levental I. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. Cell 2025; 188:2586-2602.e24. [PMID: 40179882 DOI: 10.1016/j.cell.2025.02.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
Membranes are molecular interfaces that compartmentalize cells to control the flow of nutrients and information. These functions are facilitated by diverse collections of lipids, nearly all of which are distributed asymmetrically between the two bilayer leaflets. Most models of biomembrane structure and function include the implicit assumption that these leaflets have similar abundances of phospholipids. Here, we show that this assumption is generally invalid and investigate the consequences of lipid abundance imbalances in mammalian plasma membranes (PMs). Using lipidomics, we report that cytoplasmic leaflets of human erythrocyte membranes have >50% overabundance of phospholipids compared with exoplasmic leaflets. This imbalance is enabled by an asymmetric interleaflet distribution of cholesterol, which regulates cellular cholesterol homeostasis. These features produce unique functional characteristics, including low PM permeability and resting tension in the cytoplasmic leaflet that regulates protein localization.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA; Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, 17165 Solna, Sweden.
| | - Jessica L Symons
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoxuan Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Jan Schlegel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Joseph H Lorent
- Department of Cellular and Molecular Pharmacology, TFAR, LDRI, UCLouvain, Avenue Mounier 73, B1.73.05, 1200 Brussels, Belgium
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Edward Lyman
- Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA.
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
2
|
Zhang S, Wang HY, Tao X, Chen Z, Levental I, Lin X. Palmitoylation of PD-L1 Regulates Its Membrane Orientation and Immune Evasion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5170-5178. [PMID: 39965093 DOI: 10.1021/acs.langmuir.4c04441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Recently identified palmitoylation of PD-L1 is essential for immune regulation. To elucidate the underlying molecular mechanism, we performed giant plasma membrane vesicle (GPMV) experiments, μs-scale all-atom molecular dynamics (MD) simulations, fluorescence resonance energy transfer (FRET) experiments, and immune killing experiments. GPMV experiments indicated that PD-L1 palmitoylation enhanced its lipid raft affinity. MD simulations revealed dramatically different membrane orientation states of PD-L1 in liquid-ordered (Lo, lipid raft) compared to liquid-disordered (Ld, nonraft) membrane environments, which was validated by FRET experiments. The Ld region promoted the "lie-down" orientation of PD-L1, which could inhibit its association with the PD-1 protein on immune cells and thus promote the immune killing of cancer cells. This hypothesis was supported by immune killing experiments using γδT cells as effector cells and NCI-H1299 lung cancer cells as target cells. In short, our study demonstrates that the palmitoylation affects PD-L1's membrane localization and then membrane orientation, which thus regulates its binding with T cell PD-1 and the immune regulation. These observations may guide therapeutic strategies by explicating the regulation of immune checkpoint proteins by post-translational modifications and membrane environments.
Collapse
Affiliation(s)
- Siya Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Xuan Tao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhongwen Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Sánchez-Sánchez L, Fernández R, Astigarraga E, Barreda-Gómez G, Ganfornina MD. Microarray-Based Methodology for Lipid Profiling, Enzymatic Activity, And Binding Assays in Printed Lipid Raft Membranes from Astrocytes and Neurons. Anal Chem 2025; 97:86-95. [PMID: 39718364 PMCID: PMC11740170 DOI: 10.1021/acs.analchem.4c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Lipid rafts are liquid-ordered domains in which specific enzymes and receptors are located. These membrane platforms play crucial roles in a variety of signaling pathways. Alterations in the lipid environment, such as those elicited by oxidative stress, can lead to important functional disruptions in membrane proteins. Cell membrane microarrays have emerged in the past decade as a powerful methodology for the study of both lipids and membrane proteins at large scales. Based on that technology and the importance of liquid-ordered subdomains, we have developed a new printed lipid raft technology with a preserved native protein structure and lipid environment. To validate this technology and evaluate its potential for different aims, raft membrane microarrays (RMMAs) containing two different cell types (astrocytes and neurons) and three different conditions (astrocytes in control situation, metabolic stress, and oxidative stress) were developed. To study differences in lipid profiles between raft domains, the MALDI-MS assay was performed on RMMAs. To evaluate the preservation of native protein activities (enzymatic activity and ligand binding) in the printed raft domains, differences in NADH oxidoreductase, GAPDH, cholinesterase activities, and sigma-1 and sigma-2 binding assays were performed. We demonstrate the performance of this new microarray technology, adapted to membrane subdomains, as valid to explore changes in lipid composition and protein activities in raft domains from brain cell lines under different stress conditions relevant for neuropathology.
Collapse
Affiliation(s)
- Laura Sánchez-Sánchez
- IMG
Pharma Biotech S.L, Zamudio 48170, Spain
- Instituto
de Biomedicina y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid 47003, Spain
| | | | | | | | - María Dolores Ganfornina
- Instituto
de Biomedicina y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid 47003, Spain
| |
Collapse
|
4
|
Volynsky PE, Urban AS, Pavlov KV, Bershatsky YV, Bocharova OV, Kryuchkova AK, Zlobina VV, Gavrilenkova AA, Dolotova SM, Kamynina AV, Zangieva OT, Taldaev A, Batishchev OV, Okhrimenko IS, Rakitina TV, Efremov RG, Bocharov EV. Diverse Interactions of Sterols with Amyloid Precursor Protein Transmembrane Domain Can Shift Distribution Between Alternative Amyloid-β Production Cascades in Manner Dependent on Local Lipid Environment. Int J Mol Sci 2025; 26:553. [PMID: 39859269 PMCID: PMC11764862 DOI: 10.3390/ijms26020553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles). In bicelles, spin-labeled sterol interacted with the peptide near the amphiphilic juxtamembrane region and N-terminal part of APP transmembrane helix, as described earlier for cholesterol. Upon transition into micellar environment, another interaction site appeared where sterol polar head was buried in the hydrophobic core near the hinge region. In MD simulations, sterol moved between three interaction sites, sliding along the polar groove formed by glycine residues composing the dimerization interfaces and flexible hinge of the APP transmembrane domain. Because the lipid environment modulates interactions, the role of lipids in the AD pathogenesis is defined by the state of the entire lipid subsystem rather than the effects of individual lipid species. Cholesterol can interplay with other lipids (polyunsaturated, gangliosides, etc.), determining the outcome of amyloid-β production cascades.
Collapse
Affiliation(s)
- Pavel E. Volynsky
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Anatoly S. Urban
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Konstantin V. Pavlov
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Yaroslav V. Bershatsky
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Olga V. Bocharova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Anastasia K. Kryuchkova
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Veronika V. Zlobina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Alina A. Gavrilenkova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Sofya M. Dolotova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Anna V. Kamynina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Olga T. Zangieva
- Pirogov National Medical and Surgical Center, 105203 Moscow, Russia;
| | - Amir Taldaev
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071 Moscow, Russia;
| | - Ivan S. Okhrimenko
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Tatiana V. Rakitina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Roman G. Efremov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Department of Applied Mathematics, National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Eduard V. Bocharov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| |
Collapse
|
5
|
Moon S, Zhao F, Uddin MN, Tucker CJ, Karmaus PW, Fessler MB. Flotillin-2 dampens T cell antigen sensitivity and functionality. JCI Insight 2024; 9:e182328. [PMID: 39499901 DOI: 10.1172/jci.insight.182328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/30/2024] [Indexed: 11/13/2024] Open
Abstract
T cell receptor (TCR) engagement triggers T cell responses, yet how TCR-mediated activation is regulated at the plasma membrane remains unclear. Here, we report that deleting the membrane scaffolding protein Flotillin-2 (Flot2) increases T cell antigen sensitivity, resulting in enhanced TCR signaling and effector function in response to weak TCR stimulation. T cell-specific Flot2-deficient mice exhibited reduced tumor growth and enhanced immunity to infection. Flot2-null CD4+ T cells exhibited increased Th1 polarization, proliferation, Nur77 induction, and phosphorylation of ZAP70 and ERK1/2 upon weak TCR stimulation, indicating a sensitized TCR-triggering threshold. Single-cell RNA-Seq suggested that Flot2-null CD4+ T cells follow a similar route of activation as WT CD4+ T cells but exhibit higher occupancy of a discrete activation state under weak TCR stimulation. Given prior reports that TCR clustering influences sensitivity of T cells to stimuli, we evaluated TCR distribution with super-resolution microscopy. Flot2 ablation increased the number of surface TCR nanoclusters on naive CD4+ T cells. Collectively, we posit that Flot2 modulates T cell functionality to weak TCR stimulation, at least in part, by regulating surface TCR clustering. Our findings have implications for improving T cell reactivity in diseases with poor antigenicity, such as cancer and chronic infections.
Collapse
MESH Headings
- Animals
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Lymphocyte Activation/immunology
- Mice, Knockout
- CD4-Positive T-Lymphocytes/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Signal Transduction/immunology
- Mice, Inbred C57BL
- Phosphorylation
Collapse
Affiliation(s)
- Sookjin Moon
- Immunity, Inflammation and Disease Laboratory and
| | - Fei Zhao
- Immunity, Inflammation and Disease Laboratory and
| | | | - Charles J Tucker
- Fluorescence Microscopy and Imaging Center, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | | | | |
Collapse
|
6
|
Ikenouchi J, Shigetomi K. Role of lipids in the organization of tight junction. Microscopy (Oxf) 2024; 73:457-462. [PMID: 39185601 DOI: 10.1093/jmicro/dfae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Cell membrane structures are supramolecular complexes that require the ordered assembly of membrane proteins and lipids. The morphology of various cell adhesion structures in multicellular organisms, such as those between epithelial cells, neural synapses and immune synapses, was initially described through electron microscopic analyses. Subsequent studies aimed to catalog their constituent proteins, which encompass transmembrane cell adhesion molecules, cytoskeletal proteins and scaffolding proteins that bind the two components. However, the diversity of plasma membrane lipids and their significance in the organization of cell adhesion structures were underappreciated until recently. It is now understood that phase separation of lipids and liquid-liquid phase separation of proteins are important driving forces for such self-assembly. In this review, we summarized recent findings on the role of lipids as scaffolds for supramolecular complexes using tight junctions in epithelial cells as an example.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Zimmer SE, Giang W, Levental I, Kowalczyk AP. The transmembrane domain of the desmosomal cadherin desmoglein-1 governs lipid raft association to promote desmosome adhesive strength. Mol Biol Cell 2024; 35:ar152. [PMID: 39504468 PMCID: PMC11656464 DOI: 10.1091/mbc.e24-05-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024] Open
Abstract
Cholesterol- and sphingolipid-enriched domains called lipid rafts are hypothesized to selectively coordinate protein complex assembly within the plasma membrane to regulate cellular functions. Desmosomes are mechanically resilient adhesive junctions that associate with lipid raft membrane domains, yet the mechanisms directing raft association of the desmosomal proteins, particularly the transmembrane desmosomal cadherins, are poorly understood. We identified the desmoglein-1 (DSG1) transmembrane domain (TMD) as a key determinant of desmoglein lipid raft association and designed a panel of DSG1TMD variants to assess the contribution of TMD physicochemical properties (length, bulkiness, and palmitoylation) to DSG1 lipid raft association. Sucrose gradient fractionations revealed that TMD length and bulkiness, but not palmitoylation, govern DSG1 lipid raft association. Further, DSG1 raft association determines plakoglobin recruitment to raft domains. Super-resolution imaging and functional assays uncovered a strong relationship between the efficiency of DSG1TMD lipid raft association and the formation of morphologically and functionally robust desmosomes. Lipid raft association regulated both desmosome assembly dynamics and DSG1 cell surface stability, indicating that DSG1 lipid raft association is required for both desmosome formation and maintenance. These studies identify the biophysical properties of desmoglein transmembrane domains as key determinants of lipid raft association and desmosome adhesive function.
Collapse
Affiliation(s)
- Stephanie E. Zimmer
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - William Giang
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Andrew P. Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
8
|
Kwon S, Majumder A, Straub JE. Exploring Free Energy Landscapes for Protein Partitioning into Membrane Domains in All-Atom and Coarse-Grained Simulations. J Chem Theory Comput 2024; 20:9687-9698. [PMID: 39484915 DOI: 10.1021/acs.jctc.4c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
It is known that membrane environment can impact the structure and function of integral membrane proteins. As such, elucidation of the thermodynamic driving forces governing protein partitioning between membrane domains of varying lipid composition is a fundamental topic in membrane biophysics. Molecular dynamics simulations provide valuable tools for quantitatively characterizing the free energy landscapes governing protein partitioning at the molecular level. In this study, we propose an efficient simulation methodology for the calculation of free energies for the partitioning of transmembrane proteins between liquid-disorder (Ld) and liquid-ordered (Lo) domains in all-atom (AA) phase-separated lipid bilayers. The computed potential of mean force defining the equilibrium partition coefficients is compared for AA and coarse-grained systems. Energy decomposition is used to identify differences in the underlying thermodynamics. Our findings highlight the importance of employing AA models to accurately estimate relevant free energy changes during protein translation between membrane domains.
Collapse
Affiliation(s)
- Seulki Kwon
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Ayan Majumder
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
9
|
Zimmer SE, Kowalczyk AP. The desmosome as a dynamic membrane domain. Curr Opin Cell Biol 2024; 90:102403. [PMID: 39079221 DOI: 10.1016/j.ceb.2024.102403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 09/14/2024]
Abstract
Cell junctions integrate extracellular signals with intracellular responses to polarize tissues, pattern organs, and maintain tissue architecture by promoting cell-cell adhesion and communication. In this review, we explore the mechanisms whereby the adhesive junctions, adherens junctions and desmosomes, co-assemble and then segregate into unique plasma membrane domains. In addition, we highlight emerging evidence that these junctions are spatially and functionally integrated with the endoplasmic reticulum to mediate stress sensing and calcium homeostasis. We conclude with a discussion of the role of the endoplasmic reticulum in the mechanical stress response and how disruption of these connections may cause disease.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
10
|
Cortada E, Brugada R, Verges M. Role of protein domains in trafficking and localization of the voltage-gated sodium channel β2 subunit. J Biol Chem 2024; 300:107833. [PMID: 39343005 PMCID: PMC11532958 DOI: 10.1016/j.jbc.2024.107833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
The voltage-gated sodium (NaV) channel is critical for cardiomyocyte function since it is responsible for action potential initiation and its propagation throughout the cell. It consists of a protein complex made of a pore forming α subunit and associated β subunits, which regulate α subunit function and subcellular localization. We previously showed the implication of N-linked glycosylation and S-acylation of β2 in its polarized trafficking. Here, we present evidence of β2 dimerization. Moreover, we demonstrate the implication of the cytoplasmic tail, extracellular loop, and transmembrane domain on proper β2 folding and export to the cell surface of polarized Madin-Darby canine kidney cells. Substantial alteration, or lack of any of these domains, leads to accumulation of β2 in the endoplasmic reticulum, along with impaired complex N-glycosylation, which is needed for its efficient surface delivery. We also show that these alterations to β2 affected to a certain extent NaV1.5 surface localization. Conversely, however, NaV1.5 had little or no influence on β2 trafficking, its localization to the surface, or homodimer formation. Altogether, our data link the architecture of the β2 domains to the establishment of its proper subcellular localization. These findings could provide valuable insights to gain a deeper comprehension of the elusive biology of β subunits in excitable cells, such as neurons and cardiomyocytes.
Collapse
Affiliation(s)
- Eric Cortada
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Edifici IDIBGI, Salt, Province of Girona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Salt, Province of Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Edifici IDIBGI, Salt, Province of Girona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Salt, Province of Girona, Spain; Department of Medical Sciences, University of Girona Medical School, Girona, Spain; Department of Cardiology, Hospital Josep Trueta, University of Girona, Girona, Spain
| | - Marcel Verges
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Edifici IDIBGI, Salt, Province of Girona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Salt, Province of Girona, Spain; Department of Medical Sciences, University of Girona Medical School, Girona, Spain.
| |
Collapse
|
11
|
Peruzzi JA, Gunnels TF, Edelstein HI, Lu P, Baker D, Leonard JN, Kamat NP. Enhancing extracellular vesicle cargo loading and functional delivery by engineering protein-lipid interactions. Nat Commun 2024; 15:5618. [PMID: 38965227 PMCID: PMC11224323 DOI: 10.1038/s41467-024-49678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/13/2024] [Indexed: 07/06/2024] Open
Abstract
Naturally generated lipid nanoparticles termed extracellular vesicles (EVs) hold significant promise as engineerable therapeutic delivery vehicles. However, active loading of protein cargo into EVs in a manner that is useful for delivery remains a challenge. Here, we demonstrate that by rationally designing proteins to traffic to the plasma membrane and associate with lipid rafts, we can enhance loading of protein cargo into EVs for a set of structurally diverse transmembrane and peripheral membrane proteins. We then demonstrate the capacity of select lipid tags to mediate increased EV loading and functional delivery of an engineered transcription factor to modulate gene expression in target cells. We envision that this technology could be leveraged to develop new EV-based therapeutics that deliver a wide array of macromolecular cargo.
Collapse
Affiliation(s)
- Justin A Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor F Gunnels
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hailey I Edelstein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Peilong Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA.
| | - Neha P Kamat
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
12
|
Krogman WL, Woodard T, McKay RSF. Anesthetic Mechanisms: Synergistic Interactions With Lipid Rafts and Voltage-Gated Sodium Channels. Anesth Analg 2024; 139:92-106. [PMID: 37968836 DOI: 10.1213/ane.0000000000006738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Despite successfully utilizing anesthetics for over 150 years, the mechanism of action remains relatively unknown. Recent studies have shown promising results, but due to the complex interactions between anesthetics and their targets, there remains a clear need for further mechanistic research. We know that lipophilicity is directly connected to anesthetic potency since lipid solubility relates to anesthetic partition into the membrane. However, clinically relevant concentrations of anesthetics do not significantly affect lipid bilayers but continue to influence various molecular targets. Lipid rafts are derived from liquid-ordered phases of the plasma membrane that contain increased concentrations of cholesterol and sphingomyelin and act as staging platforms for membrane proteins, including ion channels. Although anesthetics do not perturb membranes at clinically relevant concentrations, they have recently been shown to target lipid rafts. In this review, we summarize current research on how different types of anesthetics-local, inhalational, and intravenous-bind and affect both lipid rafts and voltage-gated sodium channels, one of their major targets, and how those effects synergize to cause anesthesia and analgesia. Local anesthetics block voltage-gated sodium channel pores while also disrupting lipid packing in ordered membranes. Inhalational anesthetics bind to the channel pore and the voltage-sensing domain while causing an increase in the number, size, and diameter of lipid rafts. Intravenous anesthetics bind to the channel primarily at the voltage-sensing domain and the selectivity filter, while causing lipid raft perturbation. These changes in lipid nanodomain structure possibly give proteins access to substrates that have translocated as a result of these structural alterations, resulting in lipid-driven anesthesia. Overall, anesthetics can impact channel activity either through direct interaction with the channel, indirectly through the lipid raft, or both. Together, these result in decreased sodium ion flux into the cell, disrupting action potentials and producing anesthetic effects. However, more research is needed to elucidate the indirect mechanisms associated with channel disruption through the lipid raft, as not much is known about anionic lipid products and their influence over voltage-gated sodium channels. Anesthetics' effect on S-palmitoylation, a promising mechanism for direct and indirect influence over voltage-gated sodium channels, is another auspicious avenue of research. Understanding the mechanisms of different types of anesthetics will allow anesthesiologists greater flexibility and more specificity when treating patients.
Collapse
Affiliation(s)
- William L Krogman
- From the Department of Anesthesiology, University of Kansas School of Medicine - Wichita, Wichita, Kansas
| | | | | |
Collapse
|
13
|
Castello-Serrano I, Heberle FA, Diaz-Rohrer B, Ippolito R, Shurer CR, Lujan P, Campelo F, Levental KR, Levental I. Partitioning to ordered membrane domains regulates the kinetics of secretory traffic. eLife 2024; 12:RP89306. [PMID: 38837189 PMCID: PMC11152573 DOI: 10.7554/elife.89306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
The organelles of eukaryotic cells maintain distinct protein and lipid compositions required for their specific functions. The mechanisms by which many of these components are sorted to their specific locations remain unknown. While some motifs mediating subcellular protein localization have been identified, many membrane proteins and most membrane lipids lack known sorting determinants. A putative mechanism for sorting of membrane components is based on membrane domains known as lipid rafts, which are laterally segregated nanoscopic assemblies of specific lipids and proteins. To assess the role of such domains in the secretory pathway, we applied a robust tool for synchronized secretory protein traffic (RUSH, Retention Using Selective Hooks) to protein constructs with defined affinity for raft phases. These constructs consist solely of single-pass transmembrane domains (TMDs) and, lacking other sorting determinants, constitute probes for membrane domain-mediated trafficking. We find that while raft affinity can be sufficient for steady-state PM localization, it is not sufficient for rapid exit from the endoplasmic reticulum (ER), which is instead mediated by a short cytosolic peptide motif. In contrast, we find that Golgi exit kinetics are highly dependent on raft affinity, with raft preferring probes exiting the Golgi ~2.5-fold faster than probes with minimal raft affinity. We rationalize these observations with a kinetic model of secretory trafficking, wherein Golgi export can be facilitated by protein association with raft domains. These observations support a role for raft-like membrane domains in the secretory pathway and establish an experimental paradigm for dissecting its underlying machinery.
Collapse
Affiliation(s)
- Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| | | | | | - Rossana Ippolito
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| | - Carolyn R Shurer
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| | - Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
14
|
Tripathy M, Srivastava A. Non-affine deformation analysis and 3D packing defects: A new way to probe membrane heterogeneity in molecular simulations. Methods Enzymol 2024; 701:541-577. [PMID: 39025582 DOI: 10.1016/bs.mie.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here, we discuss a new framework developed over the last 5 years in our group to probe nanoscale membrane heterogeneity. The framework is based on the idea of characterizing lateral heterogeneity through non-affine deformation (NAD) measurements, transverse heterogeneity through three dimensional (3D) lipid packing defects, and using these approaches to formalize the seemingly trivial correlation between lateral organization and lipid packing in biological membranes. We find that measurements from NAD analysis, a prescription which is borrowed from Physics of glasses and granular material, can faithfully distinguish between liquid-ordered and disordered phases in membranes at molecular length scales and, can also be used to identify phase boundaries with high precision. Concomitantly, 3D-packing defects can not only distinguish between the two co-existing fluid phases based on their molecular scale packing (or membrane free volume), but also provide a route to connect the membrane domains to their functionality, such as exploring the molecular origins of inter-leaflet domain registration and peptide partitioning. The correlation between lateral membrane order and transverse packing presents novel molecular design-level features that can explain functions such as protein/peptide partitioning and small-molecule permeation dynamics in complex and heterogeneous membranes with high-fidelity. The framework allows us to explore the nature of lateral organization and molecular packing as a manifestation of intricate molecular interactions among a chemically rich variety of lipids and other molecules in a membrane with complex membrane composition and asymmetry across leaflets.
Collapse
Affiliation(s)
- Madhusmita Tripathy
- Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany.
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Karnataka, India.
| |
Collapse
|
15
|
Moon S, Zhao F, Uddin MN, Tucker CJ, Karmaus PWF, Fessler MB. Flotillin-2 dampens T cell antigen-sensitivity and functionality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591344. [PMID: 38746431 PMCID: PMC11092481 DOI: 10.1101/2024.04.26.591344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
T cell receptor (TCR) engagement triggers T cell responses, yet how TCR-mediated activation is regulated at the plasma membrane remains unclear. Here, we report that deleting the membrane scaffolding protein Flotillin-2 (Flot2) increases T cell antigen sensitivity, resulting in enhanced TCR signaling and effector function to weak TCR stimulation. T cell-specific Flot2-deficient mice exhibited reduced tumor growth and enhanced immunity to infection. Flot2-null CD4 + T cells exhibited increased T helper 1 polarization, proliferation, Nur77 induction, and phosphorylation of ZAP70 and LCK upon weak TCR stimulation, indicating a sensitized TCR-triggering threshold. Single cell-RNA sequencing suggested that Flot2 - null CD4 + T cells follow a similar route of activation as wild-type CD4 + T cells but exhibit higher occupancy of a discrete activation state under weak TCR stimulation. Given prior reports that TCR clustering influences sensitivity of T cells to stimuli, we evaluated TCR distribution with super-resolution microscopy. Flot2 ablation increased the number of surface TCR nanoclusters on naïve CD4 + T cells. Collectively, we posit that Flot2 modulates T cell functionality to weak TCR stimulation, at least in part, by regulating surface TCR clustering. Our findings have implications for improving T cell reactivity in diseases with poor antigenicity, such as cancer and chronic infections.
Collapse
|
16
|
Zimmer SE, Giang W, Levental I, Kowalczyk AP. The transmembrane domain of the desmosomal cadherin desmoglein-1 governs lipid raft association to promote desmosome adhesive strength. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590936. [PMID: 38712246 PMCID: PMC11071526 DOI: 10.1101/2024.04.24.590936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cholesterol- and sphingolipid-enriched domains called lipid rafts are hypothesized to selectively coordinate protein complex assembly within the plasma membrane to regulate cellular functions. Desmosomes are mechanically resilient adhesive junctions that associate with lipid raft membrane domains, yet the mechanisms directing raft association of the desmosomal proteins, particularly the transmembrane desmosomal cadherins, are poorly understood. We identified the desmoglein-1 (DSG1) transmembrane domain (TMD) as a key determinant of desmoglein lipid raft association and designed a panel of DSG1 TMD variants to assess the contribution of TMD physicochemical properties (length, bulkiness, and palmitoylation) to DSG1 lipid raft association. Sucrose gradient fractionations revealed that TMD length and bulkiness, but not palmitoylation, govern DSG1 lipid raft association. Further, DSG1 raft association determines plakoglobin recruitment to raft domains. Super-resolution imaging and functional assays uncovered a strong relationship between the efficiency of DSG1 TMD lipid raft association and the formation of morphologically and functionally robust desmosomes. Lipid raft association regulated both desmosome assembly dynamics and DSG1 cell surface stability, indicating that DSG1 lipid raft association is required for both desmosome formation and maintenance. These studies identify the biophysical properties of desmoglein transmembrane domains as key determinants of lipid raft association and desmosome adhesive function.
Collapse
|
17
|
Park S, Pastor RW, Im W. Binary bilayer simulations for partitioning within membranes. Methods Enzymol 2024; 701:123-156. [PMID: 39025570 DOI: 10.1016/bs.mie.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Membrane proteins (MPs) often show preference for one phase over the other, which is characterized by the partition coefficient, Kp. The physical mechanisms underlying Kp have been only inferred indirectly from experiments due to the unavailability of detailed structures and compositions of ordered phases. Molecular dynamics (MD) simulations can complement these details and thus, in principle, provide further insights into the partitioning of MPs between two phases. However, the application of MD has remained difficult due to long time scales required for equilibration and large system size for the phase stability, which have not been fully resolved even in free energy simulations. This chapter describes the recently developed binary bilayer simulation method, where the membrane is composed of two laterally attached membrane patches. The binary bilayer system (BBS) is designed to preserve the lateral packing of both phases in a significantly smaller size compared to that required for macroscopic phase separation. These characteristics are advantageous in partitioning simulations, as the length scale for diffusion across the system can be significantly smaller. Hence the BBS can be efficiently employed in both conventional MD and free energy simulations, though sampling in ordered phases remains difficult due to slow diffusion. Development of efficient lipid swapping methods and its combination with the BBS would be a useful approach for partitioning in coexisting phases.
Collapse
Affiliation(s)
- Soohyung Park
- Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wonpil Im
- Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA, United States.
| |
Collapse
|
18
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
19
|
Lujan P, Garcia-Cabau C, Wakana Y, Vera Lillo J, Rodilla-Ramírez C, Sugiura H, Malhotra V, Salvatella X, Garcia-Parajo MF, Campelo F. Sorting of secretory proteins at the trans-Golgi network by human TGN46. eLife 2024; 12:RP91708. [PMID: 38466628 PMCID: PMC10928510 DOI: 10.7554/elife.91708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Secretory proteins are sorted at the trans-Golgi network (TGN) for export into specific transport carriers. However, the molecular players involved in this fundamental process remain largely elusive. Here, we identified the human transmembrane protein TGN46 as a receptor for the export of secretory cargo protein PAUF in CARTS - a class of protein kinase D-dependent TGN-to-plasma membrane carriers. We show that TGN46 is necessary for cargo sorting and loading into nascent carriers at the TGN. By combining quantitative fluorescence microscopy and mutagenesis approaches, we further discovered that the lumenal domain of TGN46 encodes for its cargo sorting function. In summary, our results define a cellular function of TGN46 in sorting secretory proteins for export from the TGN.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Javier Vera Lillo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carmen Rodilla-Ramírez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Hideaki Sugiura
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
20
|
Castello-Serrano I, Heberle FA, Diaz-Rohrer B, Ippolito R, Shurer CR, Lujan P, Campelo F, Levental KR, Levental I. Partitioning to ordered membrane domains regulates the kinetics of secretory traffic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.18.537395. [PMID: 37131599 PMCID: PMC10153169 DOI: 10.1101/2023.04.18.537395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The organelles of eukaryotic cells maintain distinct protein and lipid compositions required for their specific functions. The mechanisms by which many of these components are sorted to their specific locations remain unknown. While some motifs mediating subcellular protein localization have been identified, many membrane proteins and most membrane lipids lack known sorting determinants. A putative mechanism for sorting of membrane components is based on membrane domains known as lipid rafts, which are laterally segregated nanoscopic assemblies of specific lipids and proteins. To assess the role of such domains in the secretory pathway, we applied a robust tool for synchronized secretory protein traffic (RUSH, Retention Using Selective Hooks) to protein constructs with defined affinity for raft phases. These constructs consist solely of single-pass transmembrane domains (TMDs) and, lacking other sorting determinants, constitute probes for membrane domain-mediated trafficking. We find that while raft affinity can be sufficient for steady-state PM localization, it is not sufficient for rapid exit from the endoplasmic reticulum (ER), which is instead mediated by a short cytosolic peptide motif. In contrast, we find that Golgi exit kinetics are highly dependent on raft affinity, with raft preferring probes exiting Golgi ~2.5-fold faster than probes with minimal raft affinity. We rationalize these observations with a kinetic model of secretory trafficking, wherein Golgi export can be facilitated by protein association with raft domains. These observations support a role for raft-like membrane domains in the secretory pathway and establish an experimental paradigm for dissecting its underlying machinery.
Collapse
|
21
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 PMCID: PMC11091651 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas “Margarita Salas”, Spanish National Research Council, Madrid, Spain
| | - Eric A. Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
Pinigin KV, Akimov SA. The Membrane-Mediated Interaction of Liquid-Ordered Lipid Domains in the Presence of Amphipathic Peptides. MEMBRANES 2023; 13:816. [PMID: 37887988 PMCID: PMC10608175 DOI: 10.3390/membranes13100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
The lipid membranes of living cells are composed of a large number of lipid types and can undergo phase separation with the formation of nanometer-scale liquid-ordered lipid domains, also called rafts. Raft coalescence, i.e., the fusion of lipid domains, is involved in important cell processes, such as signaling and trafficking. In this work, within the framework of the theory of elasticity of lipid membranes, we explore how amphipathic peptides adsorbed on lipid membranes may affect the domain-domain fusion processes. We show that the elastic deformations of lipid membranes drive amphipathic peptides to the boundary of lipid domains, which leads to an increase in the average energy barrier of the domain-domain fusion, even if the surface concentration of amphipathic peptides is low and the domain boundaries are only partially occupied by the peptides. This inhibition of the fusion of lipid domains may lead to negative side effects of using amphipathic peptides as antimicrobial agents.
Collapse
Affiliation(s)
- Konstantin V. Pinigin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
23
|
Abstract
T cell activation is initiated by the recognition of specific antigenic peptides and subsequently accomplished by complex signaling cascades. These aspects have been extensively studied for decades as pivotal factors in the establishment of adaptive immunity. However, how receptors or signaling molecules are organized in the resting state prior to encountering antigens has received less attention. Recent advancements in super-resolution microscopy techniques have revealed topographically controlled pre-formed organization of key molecules involved in antigen recognition and signal transduction on microvillar projections of T cells before activation and substantial effort has been dedicated to characterizing the topological structure of resting T cells over the past decade. This review will summarize our current understanding of how key surface receptors are pre-organized on the T-cell plasma membrane and discuss the potential role of these receptors, which are preassembled prior to ligand binding in the early activation events of T cells.
Collapse
Affiliation(s)
- Yunmin Jung
- Department of Nano-Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science, Seoul, Republic of Korea
| |
Collapse
|
24
|
Xu Y, Song D, Wang W, Li S, Yue T, Xia T, Shi Y. Clec12a inhibits MSU-induced immune activation through lipid raft expulsion. Life Sci Alliance 2023; 6:e202301938. [PMID: 37339805 PMCID: PMC10282328 DOI: 10.26508/lsa.202301938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Monosodium uric acid (MSU) crystal, the etiological agent of gout, has been shown to trigger innate immune responses via multiple pathways. It is known that MSU-induced lipid sorting on plasma membrane promotes the phosphorylation of Syk and eventually leads to the activation of phagocytes. However, whether this membrane lipid-centric mechanism is regulated by other processes is unclear. Previous studies showed that Clec12a, a member of the C-type lectin receptor family, is reported to recognize MSU and suppresses this crystalline structure-induced immune activation. How this scenario is integrated into the lipid sorting-mediated inflammatory responses by MSU, and particularly, how Clec12a intercepts lipid raft-originated signaling cascade remains to be elucidated. Here, we found that the ITIM motif of Clec12a is dispensable for its inhibition of MSU-mediated signaling; instead, the transmembrane domain of Clec12a disrupts MSU-induced lipid raft recruitment and thus attenuates downstream signals. Single amino acid mutagenesis study showed the critical role of phenylalanine in the transmembrane region for the interactions between C-type lectin receptors and lipid rafts, which is critical for the regulation of MSU-mediated lipid sorting and phagocyte activation. Overall, our study provides new insights for the molecular mechanisms of solid particle-induced immune activation and may lead to new strategies in inflammation control.
Collapse
Affiliation(s)
- Ying Xu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Dingka Song
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Shixin Li
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Tie Xia
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Yan Shi
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
25
|
Park S, Levental I, Pastor RW, Im W. Unsaturated Lipids Facilitate Partitioning of Transmembrane Peptides into the Liquid Ordered Phase. J Chem Theory Comput 2023; 19:5303-5314. [PMID: 37417947 PMCID: PMC10413867 DOI: 10.1021/acs.jctc.3c00398] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 07/08/2023]
Abstract
The affinity of single-pass transmembrane (TM) proteins for ordered membrane phases has been reported to depend on their lipidation, TM length, and lipid accessible surface area. In this work, the raft affinities of the TM domain of the linker for activation of T cells and its depalmitoylated variant are assessed using free energy simulations in a binary bilayer system composed of two laterally patched bilayers of ternary liquid ordered (Lo) and liquid disordered (Ld) phases. These phases are modeled by distinct compositions of distearoylphosphatidylcholine, palmitoyloleoylphosphatidylcholine (POPC), and cholesterol, and the simulations were carried out for 4.5 μs/window. Both peptides are shown to preferentially partition into the Ld phase in agreement with model membrane experiments and previous simulations on ternary lipid mixtures but not with measurements on giant plasma membrane vesicles where the Lo is slightly preferred. However, the 500 ns average relaxation time of lipid rearrangement around the peptide precluded a quantitative analysis of free energy differences arising from peptide palmitoylation and two different lipid compositions. When in the Lo phase, peptides reside in regions rich in POPC and interact preferentially with its unsaturated tail. Hence, the detailed substructure of the Lo phase is an important modulator of peptide partitioning, in addition to the inherent properties of the peptide.
Collapse
Affiliation(s)
- Soohyung Park
- Departments
of Biological Sciences and Chemistry, Lehigh
University, Bethlehem, Pennsylvania 18015, United States
| | - Ilya Levental
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903-1738, United States
| | - Richard W. Pastor
- Laboratory
of Computational Biology, National Heart,
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Wonpil Im
- Departments
of Biological Sciences and Chemistry, Lehigh
University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
26
|
Tripathy M, Srivastava A. Lipid packing in biological membranes governs protein localization and membrane permeability. Biophys J 2023; 122:2727-2743. [PMID: 37254482 PMCID: PMC10397809 DOI: 10.1016/j.bpj.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/18/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023] Open
Abstract
Plasma membrane (PM) heterogeneity has long been implicated in various cellular functions. However, mechanistic principles governing functional regulations of lipid environment are not well understood due to the inherent complexities associated with the relevant length and timescales that limit both direct experimental measurements and their interpretation. In this context, computer simulations hold immense potential to investigate molecular-level interactions and mechanisms that lead to PM heterogeneity and its functions. Herein, we investigate spatial and dynamic heterogeneity in model membranes with coexisting liquid ordered and liquid disordered phases and characterize the membrane order in terms of the local topological changes in lipid environment using the nonaffine deformation framework. Furthermore, we probe the packing defects in these membranes, which can be considered as the conjugate of membrane order assessed in terms of the nonaffine parameter. In doing so, we formalize the connection between membrane packing and local membrane order and use that to explore the mechanistic principles behind their functions. Our observations suggest that heterogeneity in mixed phase membranes is a consequence of local lipid topology and its temporal evolution, which give rise to disparate lipid packing in ordered and disordered domains. This in turn governs the distinct nature of packing defects in these domains that can play a crucial role in preferential localization of proteins in mixed phase membranes. Furthermore, we observe that lipid packing also leads to contrasting distribution of free volume in the membrane core region in ordered and disordered membranes, which can lead to distinctive membrane permeability of small molecules. Our results, thus, indicate that heterogeneity in mixed phase membranes closely governs the membrane functions that may emerge from packing-related basic design principles.
Collapse
Affiliation(s)
- Madhusmita Tripathy
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bangalore, Karnataka, India.
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bangalore, Karnataka, India.
| |
Collapse
|
27
|
Abstract
The formation of membrane vesicles is a common feature in all eukaryotes. Lipid rafts are the best-studied example of membrane domains for both eukaryotes and prokaryotes, and their existence also is suggested in Archaea membranes. Lipid rafts are involved in the formation of transport vesicles, endocytic vesicles, exocytic vesicles, synaptic vesicles and extracellular vesicles, as well as enveloped viruses. Two mechanisms of how rafts are involved in vesicle formation have been proposed: first, that raft proteins and/or lipids located in lipid rafts associate with coat proteins that form a budding vesicle, and second, vesicle budding is triggered by enzymatic generation of cone-shaped ceramides and inverted cone-shaped lyso-phospholipids. In both cases, induction of curvature is also facilitated by the relaxation of tension in the raft domain. In this Review, we discuss the role of raft-derived vesicles in several intracellular trafficking pathways. We also highlight their role in different pathways of endocytosis, and in the formation of intraluminal vesicles (ILVs) through budding inwards from the multivesicular body (MVB) membrane, because rafts inside MVB membranes are likely to be involved in loading RNA into ILVs. Finally, we discuss the association of glycoproteins with rafts via the glycocalyx.
Collapse
Affiliation(s)
- Karolina Sapoń
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Rafał Mańka
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Teresa Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Tadeusz Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| |
Collapse
|
28
|
Wang HY, Chan SH, Dey S, Castello-Serrano I, Rosen MK, Ditlev JA, Levental KR, Levental I. Coupling of protein condensates to ordered lipid domains determines functional membrane organization. SCIENCE ADVANCES 2023; 9:eadf6205. [PMID: 37126554 PMCID: PMC10132753 DOI: 10.1126/sciadv.adf6205] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
During T cell activation, the transmembrane adaptor protein LAT (linker for activation of T cells) forms biomolecular condensates with Grb2 and Sos1, facilitating signaling. LAT has also been associated with cholesterol-rich condensed lipid domains; However, the potential coupling between protein condensation and lipid phase separation and its role in organizing T cell signaling were unknown. Here, we report that LAT/Grb2/Sos1 condensates reconstituted on model membranes can induce and template lipid domains, indicating strong coupling between lipid- and protein-based phase separation. Correspondingly, activation of T cells induces cytoplasmic protein condensates that associate with and stabilize raft-like membrane domains. Inversely, lipid domains nucleate and stabilize LAT protein condensates in both reconstituted and living systems. This coupling of lipid and protein assembly is functionally important, as uncoupling of lipid domains from cytoplasmic protein condensates abrogates T cell activation. Thus, thermodynamic coupling between protein condensates and ordered lipid domains regulates the functional organization of living membranes.
Collapse
Affiliation(s)
- Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sze Ham Chan
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Simli Dey
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Michael K. Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathon A. Ditlev
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Molecular Medicine, Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
29
|
Moreno-Pescador G, Arastoo MR, Ruhoff VT, Chiantia S, Daniels R, Bendix PM. Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins. NANO LETTERS 2023; 23:3377-3384. [PMID: 37040311 PMCID: PMC10141563 DOI: 10.1021/acs.nanolett.3c00371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Many cellular processes involve the lateral organization of integral and peripheral membrane proteins into nanoscale domains. Despite the biological significance, the mechanisms that facilitate membrane protein clustering into nanoscale lipid domains remain enigmatic. In cells, the analysis of membrane protein phase affinity is complicated by the size and temporal nature of ordered and disordered lipid domains. To overcome these limitations, we developed a method for delivering membrane proteins from transfected cells into phase-separated model membranes that combines optical trapping with thermoplasmonic-mediated membrane fusion and confocal imaging. Using this approach, we observed clear phase partitioning into the liquid disordered phase following the transfer of GFP-tagged influenza hemagglutinin and neuraminidase from transfected cell membranes to giant unilamellar vesicles. The generic platform presented here allows investigation of the phase affinity of any plasma membrane protein which can be labeled or tagged with a fluorescent marker.
Collapse
Affiliation(s)
| | - Mohammad Reza Arastoo
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | | | - Salvatore Chiantia
- Institute
of Biochemistry and Biology, University
of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Robert Daniels
- Division
of Viral Products, Center for Biologics
Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Poul Martin Bendix
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
- Email
| |
Collapse
|
30
|
Diaz-Rohrer B, Castello-Serrano I, Chan SH, Wang HY, Shurer CR, Levental KR, Levental I. Rab3 mediates a pathway for endocytic sorting and plasma membrane recycling of ordered microdomains. Proc Natl Acad Sci U S A 2023; 120:e2207461120. [PMID: 36848577 PMCID: PMC10013782 DOI: 10.1073/pnas.2207461120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
The composition of the plasma membrane (PM) must be tightly controlled despite constant, rapid endocytosis, which requires active, selective recycling of endocytosed membrane components. For many proteins, the mechanisms, pathways, and determinants of this PM recycling remain unknown. We report that association with ordered, lipid-driven membrane microdomains (known as rafts) is sufficient for PM localization of a subset of transmembrane proteins and that abrogation of raft association disrupts their trafficking and leads to degradation in lysosomes. Using orthogonal, genetically encoded probes with tunable raft partitioning, we screened for the trafficking machinery required for efficient recycling of engineered microdomain-associated cargo from endosomes to the PM. Using this screen, we identified the Rab3 family as an important mediator of PM localization of microdomain-associated proteins. Disruption of Rab3 reduced PM localization of raft probes and led to their accumulation in Rab7-positive endosomes, suggesting inefficient recycling. Abrogation of Rab3 function also mislocalized the endogenous raft-associated protein Linker for Activation of T cells (LAT), leading to its intracellular accumulation and reduced T cell activation. These findings reveal a key role for lipid-driven microdomains in endocytic traffic and suggest Rab3 as a mediator of microdomain recycling and PM composition.
Collapse
Affiliation(s)
- Barbara Diaz-Rohrer
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Sze Ham Chan
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Carolyn R. Shurer
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| |
Collapse
|
31
|
Shigetomi K, Ono Y, Matsuzawa K, Ikenouchi J. Cholesterol-rich domain formation mediated by ZO proteins is essential for tight junction formation. Proc Natl Acad Sci U S A 2023; 120:e2217561120. [PMID: 36791108 PMCID: PMC9974431 DOI: 10.1073/pnas.2217561120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Tight junctions (TJs) are cell-adhesion structures responsible for the epithelial barrier. We reported that accumulation of cholesterol at the apical junctions is required for TJ formation [K. Shigetomi, Y. Ono, T. Inai, J. Ikenouchi, J. Cell Biol. 217, 2373-2381 (2018)]. However, it is unclear how cholesterol accumulates and informs TJ formation-and whether cholesterol enrichment precedes or follows the assembly of claudins in the first place. Here, we established an epithelial cell line (claudin-null cells) that lacks TJs by knocking out claudins. Despite the lack of TJs, cholesterol normally accumulated in the vicinity of the apical junctions. Assembly of claudins at TJs is thought to require binding to zonula occludens (ZO) proteins; however, a claudin mutant that cannot bind to ZO proteins still formed TJ strands. ZO proteins were however necessary for cholesterol accumulation at the apical junctions through their effect on the junctional actomyosin cytoskeleton. We propose that ZO proteins not only function as scaffolds for claudins but also promote TJ formation of cholesterol-rich membrane domains at apical junctions.
Collapse
Affiliation(s)
- Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University 774 Motooka,Nishi-ku, Fukuoka819-0395, Japan
| | - Yumiko Ono
- Department of Biology, Faculty of Sciences, Kyushu University 774 Motooka,Nishi-ku, Fukuoka819-0395, Japan
| | - Kenji Matsuzawa
- Department of Biology, Faculty of Sciences, Kyushu University 774 Motooka,Nishi-ku, Fukuoka819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University 774 Motooka,Nishi-ku, Fukuoka819-0395, Japan
| |
Collapse
|
32
|
Levental I, Lyman E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat Rev Mol Cell Biol 2023; 24:107-122. [PMID: 36056103 PMCID: PMC9892264 DOI: 10.1038/s41580-022-00524-4] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 02/04/2023]
Abstract
Transmembrane proteins comprise ~30% of the mammalian proteome, mediating metabolism, signalling, transport and many other functions required for cellular life. The microenvironment of integral membrane proteins (IMPs) is intrinsically different from that of cytoplasmic proteins, with IMPs solvated by a compositionally and biophysically complex lipid matrix. These solvating lipids affect protein structure and function in a variety of ways, from stereospecific, high-affinity protein-lipid interactions to modulation by bulk membrane properties. Specific examples of functional modulation of IMPs by their solvating membranes have been reported for various transporters, channels and signal receptors; however, generalizable mechanistic principles governing IMP regulation by lipid environments are neither widely appreciated nor completely understood. Here, we review recent insights into the inter-relationships between complex lipidomes of mammalian membranes, the membrane physicochemical properties resulting from such lipid collectives, and the regulation of IMPs by either or both. The recent proliferation of high-resolution methods to study such lipid-protein interactions has led to generalizable insights, which we synthesize into a general framework termed the 'functional paralipidome' to understand the mutual regulation between membrane proteins and their surrounding lipid microenvironments.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Molecular and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Ed Lyman
- Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
33
|
White MJ, Jacobs KA, Singh T, Kutys ML. Notch1 cortical signaling regulates epithelial architecture and cell-cell adhesion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.524428. [PMID: 36747830 PMCID: PMC9900753 DOI: 10.1101/2023.01.23.524428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Notch receptors control tissue morphogenic processes that involve coordinated changes in cell architecture and gene expression, but how a single receptor can produce these diverse biological outputs is unclear. Here we employ a 3D organotypic model of a ductal epithelium to reveal tissue morphogenic defects result from loss of Notch1, but not Notch1 transcriptional signaling. Instead, defects in duct morphogenesis are driven by dysregulated epithelial cell architecture and mitogenic signaling which result from loss of a transcription-independent Notch1 cortical signaling mechanism that ultimately functions to stabilize adherens junctions and cortical actin. We identify that Notch1 localization and cortical signaling are tied to apical-basal cell restructuring and discover a Notch1-FAM83H interaction underlies stabilization of adherens junctions and cortical actin. Together, these results offer new insights into Notch1 signaling and regulation, and advance a paradigm in which transcriptional and cell adhesive programs might be coordinated by a single receptor.
Collapse
Affiliation(s)
- Matthew J. White
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco CA, 94143, USA
| | - Kyle A. Jacobs
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco CA, 94143, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco CA, 94143, USA
| | - Tania Singh
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco CA, 94143, USA
- Joint Graduate Program in Bioengineering, University of California San Francisco, University of California Berkeley, San Francisco CA, 94143, USA
| | - Matthew L. Kutys
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco CA, 94143, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco CA, 94143, USA
- Joint Graduate Program in Bioengineering, University of California San Francisco, University of California Berkeley, San Francisco CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco CA, 94143, USA
| |
Collapse
|
34
|
Structural Analyses of the Glycolipids in Lipid Rafts. Methods Mol Biol 2023; 2613:145-152. [PMID: 36587077 DOI: 10.1007/978-1-0716-2910-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lipid rafts are usually isolated from cells or tissues using sucrose gradient ultracentrifugation in the presence of detergents such as Triton X-100 at 4 °C. Although detergents should be removed for further structural characterization following fractionation, these compounds are often difficult to completely remove, especially from the glycolipids. In this chapter, we describe a novel method for the fast and convenient removal of detergents from lipid raft glycolipids following fraction and describe the application of this method.
Collapse
|
35
|
Gurdap CO, Wedemann L, Sych T, Sezgin E. Influence of the extracellular domain size on the dynamic behavior of membrane proteins. Biophys J 2022; 121:3826-3836. [PMID: 36110044 PMCID: PMC9674980 DOI: 10.1016/j.bpj.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
The dynamic behavior of plasma membrane proteins mediates various cellular processes such as cellular motility, communication, and signaling. It is widely accepted that the dynamics of the membrane proteins is determined either by the interactions of the transmembrane domain with the surrounding lipids or by the interactions of the intracellular domain with cytosolic components such as cortical actin. Although initiation of different cellular signaling events at the plasma membrane has been attributed to the extracellular domain (ECD) properties recently, the impact of ECDs on the dynamic behavior of membrane proteins is rather unexplored. Here, we investigate how ECD properties influence protein dynamics in the lipid bilayer by reconstituting ECDs of different sizes or glycosylation in model membrane systems and analyzing ECD-driven protein sorting in lipid domains as well as protein mobility. Our data show that increasing the ECD mass or glycosylation leads to a decrease in ordered domain partitioning and diffusivity. Our data reconcile different mechanisms proposed for the initiation of cellular signaling by linking the ECD size of membrane proteins with their localization and diffusion dynamics in the plasma membrane.
Collapse
Affiliation(s)
- Cenk Onur Gurdap
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Linda Wedemann
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
36
|
Comprehensive characterization of Cysteine-rich protein-coding genes of Giardia lamblia and their role during antigenic variation. Genomics 2022; 114:110462. [PMID: 35998788 DOI: 10.1016/j.ygeno.2022.110462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022]
Abstract
Giardia lamblia encodes several families of cysteine-rich proteins, including the Variant-specific Surface Proteins (VSPs) involved in the process of antigenic variation. Their characteristics, definition and relationships are still controversial. An exhaustive analysis of the Cys-rich families including organization, features, evolution and levels of expression was performed, by combining pattern searches and predictions with massive sequencing techniques. Thus a new classification for Cys-rich proteins, genes and pseudogenes that better describes their involvement in Giardia's biology is presented. Moreover, three novel characteristics exclusive to the VSP genes, comprising an Initiator element/Kozak-like sequence, an extended polyadenylation signal and a unique pattern of mutually exclusive transcript accumulation is presented as well as the finding that High Cysteine Membrane Proteins, upregulated under stress, may protect the parasite during VSP switching. These results allow better interpretation of previous reports providing the basis for further studies of the biology of this early-branching eukaryote.
Collapse
|
37
|
Abstract
Lipid-protein interactions in cells are involved in various biological processes, including metabolism, trafficking, signaling, host-pathogen interactions, and transmembrane transport. At the plasma membrane, lipid-protein interactions play major roles in membrane organization and function. Several membrane proteins have motifs for specific lipid binding, which modulate protein conformation and consequent function. In addition to such specific lipid-protein interactions, protein function can be regulated by the dynamic, collective behavior of lipids in membranes. Emerging analytical, biochemical, and computational technologies allow us to study the influence of specific lipid-protein interactions, as well as the collective behavior of membranes on protein function. In this article, we review the recent literature on lipid-protein interactions with a specific focus on the current state-of-the-art technologies that enable novel insights into these interactions.
Collapse
Affiliation(s)
- Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden; ,
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA;
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden; ,
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Shrestha A, Kahraman O, Haselwandter CA. Mechanochemical coupling of lipid organization and protein function through membrane thickness deformations. Phys Rev E 2022; 105:054410. [PMID: 35706253 DOI: 10.1103/physreve.105.054410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Cell membranes are composed of a great variety of protein and lipid species with distinct unperturbed hydrophobic thicknesses. To achieve hydrophobic matching, the lipid bilayer tends to deform around membrane proteins so as to match the protein hydrophobic thickness at bilayer-protein interfaces. Such protein-induced distortions of the lipid bilayer hydrophobic thickness incur a substantial energy cost that depends critically on the bilayer-protein hydrophobic mismatch, while distinct conformational states of membrane proteins often show distinct hydrophobic thicknesses. As a result, hydrophobic interactions between membrane proteins and lipids can yield a rich interplay of lipid-protein organization and transitions in protein conformational state. We combine here the membrane elasticity theory of protein-induced lipid bilayer thickness deformations with the Landau-Ginzburg theory of lipid domain formation to systematically explore the coupling between local lipid organization, lipid and protein hydrophobic thickness, and protein-induced lipid bilayer thickness deformations in membranes with heterogeneous lipid composition. We allow for a purely mechanical coupling of lipid and protein composition through the energetics of protein-induced lipid bilayer thickness deformations as well as a chemical coupling driven by preferential interactions between particular lipid and protein species. We find that the resulting lipid-protein organization can endow membrane proteins with diverse and controlled mechanical environments that, via protein-induced lipid bilayer thickness deformations, can strongly influence protein function. The theoretical approach employed here provides a general framework for the quantitative prediction of how membrane thickness deformations influence the joint organization and function of lipids and proteins in cell membranes.
Collapse
Affiliation(s)
- Ahis Shrestha
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Osman Kahraman
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Christoph A Haselwandter
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
39
|
Ureña J, Knight A, Lee IH. Membrane Cargo Density-Dependent Interaction between Protein and Lipid Domains on the Giant Unilamellar Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4702-4712. [PMID: 35385290 DOI: 10.1021/acs.langmuir.2c00247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein cargos anchored on the lipid membrane can be segregated by fluidic domain phase separation. Lipid membranes at certain compositions may separate into lipid domains to segregate cargos, and protein cargos themselves may be involved in protein condensate domain formation with multivalent binding proteins to segregate cargos. Recent studies suggest that these two driving forces of phase separation closely interact on the lipid membranes to promote codomain formation. In this report, we studied the effect of cargo density on the outcome of the cargo phase separation on giant unilamellar vesicles. Proteins and lipids are connected only by the anchored cargos, so it was originally hypothesized that higher cargo density would increase the degree of interaction between the lipid and protein domains, promoting more phase separation. However, fluorescence image analysis on different cargo densities showed that the cooperative domain formation and steric pressure are at a tug of war opposing each other. Cooperative domain formation is dominant under lower anchor density conditions, and above a threshold density, steric pressure was dominant opposing the domain formation. The result suggests that the cargo density is a key parameter affecting the outcome of cargo organization on the lipid membranes by phase separation.
Collapse
Affiliation(s)
- Juan Ureña
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Ashlynn Knight
- Department of Biology, Montclair State University, Montclair, New Jersey 07043, United States
| | - Il-Hyung Lee
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| |
Collapse
|
40
|
Self-organization and surface properties of hBest1 in models of biological membranes. Adv Colloid Interface Sci 2022; 302:102619. [PMID: 35276535 DOI: 10.1016/j.cis.2022.102619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 11/22/2022]
Abstract
The transmembrane Ca2+ - activated Cl- channel - human bestrophin-1 (hBest1) is expressed in retinal pigment epithelium and mutations of BEST1 gene cause ocular degenerative diseases colectivelly referred to as "bestrophinopathies". A large number of genetical, biochemical, biophysical and molecular biological studies have been performed to understand the relationship between structure and function of the hBest1 protein and its pathophysiological significance. Here, we review the current understanding of hBest1 surface organization, interactions with membrane lipids in model membranes, and its association with microdomains of cellular membranes. These highlights are significant for modulation of channel activity in cells.
Collapse
|
41
|
Gupta A, Lu D, Balasubramanian H, Chi Z, Wohland T. Heptanol-mediated phase separation determines phase preference of molecules in live cell membranes. J Lipid Res 2022; 63:100220. [PMID: 35490741 PMCID: PMC9160352 DOI: 10.1016/j.jlr.2022.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
The localization of many membrane proteins within cholesterol- and sphingolipid-containing microdomains is essential for proper cell signaling and function. These membrane domains, however, are too small and dynamic to be recorded, even with modern super-resolution techniques. Therefore, the association of membrane proteins with these domains can only be detected with biochemical assays that destroy the integrity of cells require pooling of many cells and take a long time to perform. Here, we present a simple membrane fluidizer–induced clustering approach to identify the phase-preference of membrane-associated molecules in individual live cells within 10–15 min. Experiments in phase-separated bilayers and live cells on molecules with known phase preference show that heptanol hyperfluidizes the membrane and stabilizes phase separation. This results in a transition from nanosized to micronsized clusters of associated molecules allowing their identification using routine microscopy techniques. Membrane fluidizer-induced clustering is an inexpensive and easy to implement method that can be conducted at large-scale and allows easy identification of protein partitioning in live cell membranes.
Collapse
|
42
|
Grava M, Helmy S, Gimona M, Parisse P, Casalis L, Brocca P, Rondelli V. Calorimetry of extracellular vesicles fusion to single phospholipid membrane. Biomol Concepts 2022; 13:148-155. [PMID: 35312244 DOI: 10.1515/bmc-2022-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs)-mediated communication relies not only on the delivery of complex molecular cargoes as lipids, proteins, genetic material, and metabolites to their target cells but also on the modification of the cell surface local properties induced by the eventual fusion of EVs' membranes with the cells' plasma membrane. Here we applied scanning calorimetry to study the phase transition of single phospholipid (DMPC) monolamellar vesicles, investigating the thermodynamical effects caused by the fusion of doping amounts of mesenchymal stem cells-derived EVs. Specifically, we studied EVs-induced consequences on the lipids distributed in the differently curved membrane leaflets, having different density and order. The effect of EV components was found to be not homogeneous in the two leaflets, the inner (more disordered one) being mainly affected. Fusion resulted in phospholipid membrane flattening associated with lipid ordering, while the transition cooperativity, linked to membrane domains' coexistence during the transition process, was decreased. Our results open new horizons for the investigation of the peculiar effects of EVs of different origins on target cell membrane properties and functionality.
Collapse
Affiliation(s)
- Miriam Grava
- Institute for Condensed Matter Physics, Department of Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sally Helmy
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Milano, Italy
- Biophysics Group, Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria
- Research Program "Nanovesicular Therapies", Paracelsus Medical University, Salzburg, Austria
| | - Pietro Parisse
- Istituto Officina dei Materiali, Department of Physical sciences and technologies of matter, Italian National Research Council, Trieste, Italy
| | | | - Paola Brocca
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Milano, Italy
| | - Valeria Rondelli
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
43
|
Tang S, Wang Z, Jiang J, Ge S, Tan G. Improved PBFT algorithm for high-frequency trading scenarios of alliance blockchain. Sci Rep 2022; 12:4426. [PMID: 35292707 PMCID: PMC8924173 DOI: 10.1038/s41598-022-08587-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
With the continuous development of blockchain technology, the application scenarios of alliance blockchain are also increasing. The consensus algorithm can achieve distributed consensus among nodes in the network. At present, the practical byzantine fault tolerance algorithm (PBFT) consensus algorithm commonly used in alliance blockchain requires all nodes in the network to participate in the consensus process. Experiments show that when the number of consensus nodes in the system exceeds 100, the bandwidth consumption and consensus delay will greatly increase, resulting in the inability of PBFT to be applied. In scenes with many nodes. How to improve the performance of alliance blockchains safely and efficiently has become an urgent problem to be solved at present. For the PBFT commonly used in alliance blockchains, there are some problems, such as large communication overhead, simple selection of master nodes, and inability to expand and exit nodes dynamically in the network. This paper proposes an improved algorithm tPBFT (trust-based practical Byzantine algorithm), which is suitable for high-frequency trading scenarios of consortium chains. By introducing a trust equity scoring mechanism between nodes in the network, the list of consensus nodes can be dynamically adjusted. tPBFT simplifies the pre-prepare stage of the PBFT consensus process, and realizes the verification of the hash transaction list in the reply stage, thereby reducing the interaction overhead between network nodes. Theoretical analysis and experiments show that when the number of nodes in the network is greater than 30, with the further increase of the number of nodes, the improved tPBFT algorithm has a relatively large performance in terms of node communication overhead, consensus efficiency and scalability outperforms the PBFT algorithm.
Collapse
Affiliation(s)
- Song Tang
- Institute of Applied Mathematics, Hebei Academy of Sciences, No. 46 South Youyi Street, Shijiazhuang, 050081, China.,Hebei Authentication Technology Engineering Research Center, No. 46 South Youyi Street, Shijiazhuang, 050081, China.,Julu Institute of Applied Technology, Guangming North Street, Xingtai, 055250, China
| | - Zhiqiang Wang
- Institute of Applied Mathematics, Hebei Academy of Sciences, No. 46 South Youyi Street, Shijiazhuang, 050081, China. .,Hebei Authentication Technology Engineering Research Center, No. 46 South Youyi Street, Shijiazhuang, 050081, China. .,Julu Institute of Applied Technology, Guangming North Street, Xingtai, 055250, China.
| | - Jian Jiang
- Talent Exchange Service Center of the Department of Human Resources and Social Security of Hebei Province, No. 9 Yuhua Road, Shijiazhuang, 050001, China
| | - Suli Ge
- Institute of Applied Mathematics, Hebei Academy of Sciences, No. 46 South Youyi Street, Shijiazhuang, 050081, China.,Hebei Authentication Technology Engineering Research Center, No. 46 South Youyi Street, Shijiazhuang, 050081, China
| | - GaiFang Tan
- Institute of Applied Mathematics, Hebei Academy of Sciences, No. 46 South Youyi Street, Shijiazhuang, 050081, China.,Hebei Authentication Technology Engineering Research Center, No. 46 South Youyi Street, Shijiazhuang, 050081, China
| |
Collapse
|
44
|
Zimmer SE, Takeichi T, Conway DE, Kubo A, Suga Y, Akiyama M, Kowalczyk AP. Differential Pathomechanisms of Desmoglein 1 Transmembrane Domain Mutations in Skin Disease. J Invest Dermatol 2022; 142:323-332.e8. [PMID: 34352264 PMCID: PMC9109890 DOI: 10.1016/j.jid.2021.07.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
Dominant and recessive mutations in the desmosomal cadherin, desmoglein (DSG) 1, cause the skin diseases palmoplantar keratoderma (PPK) and severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome, respectively. In this study, we compare two dominant missense mutations in the DSG1 transmembrane domain (TMD), G557R and G562R, causing PPK (DSG1PPK-TMD) and SAM syndrome (DSG1SAM-TMD), respectively, to determine the differing pathomechanisms of these mutants. Expressing the DSG1TMD mutants in a DSG-null background, we use cellular and biochemical assays to reveal the differences in the mechanistic behavior of each mutant. Super-resolution microscopy and functional assays showed a failure by both mutants to assemble desmosomes due to reduced membrane trafficking and lipid raft targeting. DSG1SAM-TMD maintained normal expression levels and turnover relative to wildtype DSG1, but DSG1PPK-TMD lacked stability, leading to increased turnover through lysosomal and proteasomal pathways and reduced expression levels. These results differentiate the underlying pathomechanisms of these disorders, suggesting that DSG1SAM-TMD acts dominant negatively, whereas DSG1PPK-TMD is a loss-of-function mutation causing the milder PPK disease phenotype. These mutants portray the importance of the DSG TMD in desmosome function and suggest that a greater understanding of the desmosomal cadherin TMDs will further our understanding of the role that desmosomes play in epidermal pathophysiology.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Department of Dermatology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daniel E Conway
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Akiharu Kubo
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasushi Suga
- Department of Dermatology, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrew P Kowalczyk
- Department of Dermatology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA; Department of Cellular & Molecular Physiology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA.
| |
Collapse
|
45
|
Li X, Shen L, Xu Z, Liu W, Li A, Xu J. Protein Palmitoylation Modification During Viral Infection and Detection Methods of Palmitoylated Proteins. Front Cell Infect Microbiol 2022; 12:821596. [PMID: 35155279 PMCID: PMC8829041 DOI: 10.3389/fcimb.2022.821596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 01/31/2023] Open
Abstract
Protein palmitoylation—a lipid modification in which one or more cysteine thiols on a substrate protein are modified to form a thioester with a palmitoyl group—is a significant post-translational biological process. This process regulates the trafficking, subcellular localization, and stability of different proteins in cells. Since palmitoylation participates in various biological processes, it is related to the occurrence and development of multiple diseases. It has been well evidenced that the proteins whose functions are palmitoylation-dependent or directly involved in key proteins’ palmitoylation/depalmitoylation cycle may be a potential source of novel therapeutic drugs for the related diseases. Many researchers have reported palmitoylation of proteins, which are crucial for host-virus interactions during viral infection. Quite a few explorations have focused on figuring out whether targeting the acylation of viral or host proteins might be a strategy to combat viral diseases. All these remarkable achievements in protein palmitoylation have been made to technological advances. This paper gives an overview of protein palmitoylation modification during viral infection and the methods for palmitoylated protein detection. Future challenges and potential developments are proposed.
Collapse
Affiliation(s)
- Xiaoling Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lingyi Shen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhao Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Aihua Li
- Clinical Lab, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Jun Xu, ;
| |
Collapse
|
46
|
Ma Z, Sun Y, Zhu X, Yang L, Chen X, Miao Y. Membrane nanodomains modulate formin condensation for actin remodeling in Arabidopsis innate immune responses. THE PLANT CELL 2022; 34:374-394. [PMID: 34726756 PMCID: PMC8774048 DOI: 10.1093/plcell/koab261] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/20/2021] [Indexed: 05/23/2023]
Abstract
The assembly of macromolecules on the plasma membrane concentrates cell surface biomolecules into nanometer- to micrometer-scale clusters (nano- or microdomains) that help the cell initiate or respond to signals. In plant-microbe interactions, the actin cytoskeleton undergoes rapid remodeling during pathogen-associated molecular pattern-triggered immunity (PTI). The nanoclustering of formin-actin nucleator proteins at the cell surface has been identified as underlying actin nucleation during plant innate immune responses. Here, we show that the condensation of nanodomain constituents and the self-assembly of remorin proteins enables this mechanism of controlling formin condensation and activity during innate immunity in Arabidopsis thaliana. Through intrinsically disordered region-mediated remorin oligomerization and formin interaction, remorin gradually recruits and condenses formins upon PTI activation in lipid bilayers, consequently increasing actin nucleation in a time-dependent manner postinfection. Such nanodomain- and remorin-mediated regulation of plant surface biomolecules is expected to be a general feature of plant innate immune responses that creates spatially separated biochemical compartments and fine tunes membrane physicochemical properties for transduction of immune signals in the host.
Collapse
Affiliation(s)
- Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yanbiao Sun
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Centre, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinlu Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Centre, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | |
Collapse
|
47
|
Kondrashov OV, Kuzmin PI, Akimov SA. Hydrophobic Mismatch Controls the Mode of Membrane-Mediated Interactions of Transmembrane Peptides. MEMBRANES 2022; 12:89. [PMID: 35054615 PMCID: PMC8781805 DOI: 10.3390/membranes12010089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 01/01/2023]
Abstract
Various cellular processes require the concerted cooperative action of proteins. The possibility for such synchronization implies the occurrence of specific long-range interactions between the involved protein participants. Bilayer lipid membranes can mediate protein-protein interactions via relatively long-range elastic deformations induced by the incorporated proteins. We considered the interactions between transmembrane peptides mediated by elastic deformations using the framework of the theory of elasticity of lipid membranes. An effective peptide shape was assumed to be cylindrical, hourglass-like, or barrel-like. The interaction potentials were obtained for membranes of different thicknesses and elastic rigidities. Cylindrically shaped peptides manifest almost neutral average interactions-they attract each other at short distances and repel at large ones, independently of membrane thickness or rigidity. The hourglass-like peptides repel each other in thin bilayers and strongly attract each other in thicker bilayers. On the contrary, the barrel-like peptides repel each other in thick bilayers and attract each other in thinner membranes. These results potentially provide possible mechanisms of control for the mode of protein-protein interactions in membrane domains with different bilayer thicknesses.
Collapse
Affiliation(s)
- Oleg V. Kondrashov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| | | | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| |
Collapse
|
48
|
Xu C, Abbas S, Qian H, Yu M, Zhang X, Li X, Cui Y, Lin J. Environmental Cues Contribute to Dynamic Plasma Membrane Organization of Nanodomains Containing Flotillin-1 and Hypersensitive Induced Reaction-1 Proteins in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:897594. [PMID: 35620697 PMCID: PMC9127874 DOI: 10.3389/fpls.2022.897594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Plasma membranes are heterogeneous and contain multiple functional nanodomains. Although several signaling proteins have been shown to function by moving into or out of nanodomains, little is known regarding the effects of environmental cues on nanodomain organization. In this study, we investigated the heterogeneity and organization of distinct nanodomains, including those containing Arabidopsis thaliana flotillin-1 (AtFlot1) and hypersensitive induced reaction-1 proteins (AtHIR1), in response to biotic and abiotic stress. Variable-angle total internal reflection fluorescence microscopy coupled with single-particle tracking (SPT) revealed that AtFlot1 and AtHIR1 exhibit different lateral dynamics and inhabit different types of nanodomains. Furthermore, via SPT and fluorescence correlation spectroscopy, we observed lower density and intensity of AtFlot1 fluorescence in the plasma membrane after biotic stress. In contrast, the density and intensity of signal indicating AtHIR1 markedly increased in response to biotic stress. In response to abiotic stress, the density and intensity of both AtFlot1 and AtHIR1 signals decreased significantly. Importantly, SPT coupled with fluorescence recovery after photobleaching revealed that biotic and abiotic stress can regulate the dynamics of AtFlot1; however, only the abiotic stress can regulate AtHIR1 dynamics. Taken together, these findings suggest that a plethora of highly distinct nanodomains coexist in the plasma membrane (PM) and that different nanodomains may perform distinct functions in response to biotic and abiotic stresses. These phenomena may be explained by the spatial clustering of plasma membrane proteins with their associated signaling components within dedicated PM nanodomains.
Collapse
Affiliation(s)
- Changwen Xu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Sammar Abbas
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hongping Qian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Meng Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xi Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaojuan Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yaning Cui
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Yaning Cui,
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Jinxing Lin,
| |
Collapse
|
49
|
Westra M, Gutierrez Y, MacGillavry HD. Contribution of Membrane Lipids to Postsynaptic Protein Organization. Front Synaptic Neurosci 2021; 13:790773. [PMID: 34887741 PMCID: PMC8649999 DOI: 10.3389/fnsyn.2021.790773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
The precise subsynaptic organization of proteins at the postsynaptic membrane controls synaptic transmission. In particular, postsynaptic receptor complexes are concentrated in distinct membrane nanodomains to optimize synaptic signaling. However, despite the clear functional relevance of subsynaptic receptor organization to synaptic transmission and plasticity, the mechanisms that underlie the nanoscale organization of the postsynaptic membrane remain elusive. Over the last decades, the field has predominantly focused on the role of protein-protein interactions in receptor trafficking and positioning in the synaptic membrane. In contrast, the contribution of lipids, the principal constituents of the membrane, to receptor positioning at the synapse remains poorly understood. Nevertheless, there is compelling evidence that the synaptic membrane is enriched in specific lipid species and that deregulation of lipid homeostasis in neurons severely affects synaptic functioning. In this review we focus on how lipids are organized at the synaptic membrane, with special emphasis on how current models of membrane organization could contribute to protein distribution at the synapse and synaptic transmission. Finally, we will present an outlook on how novel technical developments could be applied to study the dynamic interplay between lipids and proteins at the postsynaptic membrane.
Collapse
Affiliation(s)
- Manon Westra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Yolanda Gutierrez
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
50
|
Kondrashov OV, Pinigin KV, Akimov SA. Characteristic lengths of transmembrane peptides controlling their tilt and lateral distribution between membrane domains. Phys Rev E 2021; 104:044411. [PMID: 34781459 DOI: 10.1103/physreve.104.044411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 10/04/2021] [Indexed: 11/07/2022]
Abstract
Lipids and proteins of plasma membranes of eukaryotic cells are supposed to form protein-lipid domains, characterized by a different molecular order, bilayer thickness, and elastic parameters. Several mechanisms of preferable distribution of transmembrane proteins to the ordered or disordered membrane domains have been revealed. The mismatch between the length of the protein transmembrane domain and hydrophobic thickness of the lipid bilayer is considered to be an important driving force of protein lateral sorting. Utilizing the continuum theory of elasticity, we analyzed optimal configurations and preferable membrane domains for single-pass transmembrane peptides of various hydrophobic lengths and effective molecular shapes. We obtained that short transmembrane peptides stand perpendicularly to the membrane plane. The exceedance of a certain characteristic length leads to the tilt of the peptide. This length depends on the bilayer thickness. Thus, in the membrane with coexisting ordered (thicker) and disordered (thinner) phases tilting of the peptide in each phase is governed by its individual characteristic length. The lateral distribution of the peptides between ordered and disordered membrane domains is shown to be described by two additional characteristic lengths. The exceedance of the smaller one drives the peptide towards a more ordered and thicker membrane, while the exceedance of the larger characteristic length switches the preferable membrane domain from ordered and thicker to disordered and thinner. Thus, membrane proteins with long enough transmembrane domains are predicted to accumulate in the thinner disordered membrane as compared to the thicker ordered bilayer. For hourglass-like and barrel-like shaped transmembrane peptides the specific regime of sorting was obtained: the peptides distributed almost equally between the phases in a wide range of peptide lengths. This finding allowed explaining the experimental data on lateral distribution of transmembrane peptide tLAT.
Collapse
Affiliation(s)
- Oleg V Kondrashov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| | - Konstantin V Pinigin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| | - Sergey A Akimov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| |
Collapse
|