1
|
Cai T. Hyperbaric oxygen therapy as an adjunt treatment for glioma and brain metastasis: a literature review. Med Gas Res 2025; 15:420-426. [PMID: 39923138 PMCID: PMC12054668 DOI: 10.4103/mgr.medgasres-d-24-00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/10/2024] [Accepted: 12/06/2024] [Indexed: 02/10/2025] Open
Abstract
The incidence and mortality rates of malignant tumors are increasing annually, with gliomas and brain metastases linked to a poor prognosis. Hyperbaric oxygen therapy is a promising treatment modality for both gliomas and brain metastases. It can alleviate tumor hypoxia and enhance radiosensitivity. When combined with other treatments for gliomas, this therapy has the potential to enhance survival rates. This review addresses the progress in research on the use of hyperbaric oxygen therapy combined with radiotherapy. For brain metastases, the combination of hyperbaric oxygen therapy and stereotactic radiosurgery is both feasible and advantagenous. This combination not only offers protection against radiation-induced brain injury but also supports the recovery of neurological and motor functions. The incidence of adverse reactions to hyperbaric oxygen therapy is relatively low, and it is safe and manageable. Future efforts should be made to investigate the mechanisms by which hyperbaric oxygen therapy combined with radiotherapy treats gliomas and brain metastases, optimize protection of the combined treatment against brain injury, minimizing adverse reactions, conducting multidisciplinary research and clinical trials, and training healthcare providers to facilitate broader clinical application.
Collapse
Affiliation(s)
- Tengteng Cai
- Department of Radiotherapy, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Lavarti R, Alvarez-Diaz T, Marti K, Kar P, Raju RP. The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging. Ageing Res Rev 2025; 109:102760. [PMID: 40318767 PMCID: PMC12145239 DOI: 10.1016/j.arr.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Aging is characterized by a steady loss of physiological integrity, leading to impaired function and increased vulnerability to death. Cell senescence is a biological process that progresses with aging and is believed to be a key driver of age-related diseases. Senescence, a hallmark of aging, also demonstrates its beneficial physiological aspects as an anti-cancer, pro-regenerative, homeostatic, and developmental mechanism. A transitory response in which the senescent cells are quickly formed and cleared may promote tissue regeneration and organismal fitness. At the same time, senescence-related secretory phenotypes associated with extended senescence can have devastating effects. The fact that the interaction between senescent cells and their surroundings is very context-dependent may also help to explain this seemingly opposing pleiotropic function. Further, mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. This review summarizes the mechanism of cellular senescence and the significance of acute senescence. We concisely introduced the context-dependent role of senescent cells and SASP, aspects of mitochondrial biology altered in the senescent cells, and their impact on the senescent phenotype. Finally, we conclude with recent therapeutic advancements targeting cellular senescence, focusing on acute injuries and age-associated diseases. Collectively, these insights provide a future roadmap for the role of senescence in organismal fitness and life span extension.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tatiana Alvarez-Diaz
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kyarangelie Marti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Parmita Kar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
3
|
Yan QQ, Liu TL, Liu LL, Wei YS, Zhao YD, Yu C, Zhong ZG, Huang JL, Wu DP. Mitochondrial Treatment Improves Cognitive Impairment Induced by Lipopolysaccharide in Mice. Mol Neurobiol 2025; 62:6703-6714. [PMID: 39037529 DOI: 10.1007/s12035-024-04368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Neuroinflammation has been proven to drive cognitive impairment associated with neurodegenerative diseases. It has been demonstrated that mitochondrial dysfunction is associated with cognitive impairment caused by neuroinflammation. We hypothesized that the transfer of exogenous mitochondria may be beneficial to the therapy of cognitive impairment induced by neuroinflammation. In the study, the effect of exogenous mitochondria on cognitive impairment induced by neuroinflammation was investigated. The results showed that mitochondrial treatment ameliorated the cognitive performance of lipopolysaccharide (LPS)-treated mice. Additionally, mitochondrial therapy attenuated neuronal injury and down-regulated the expression of proinflammatory cytokines, including TNF-α and pro- and cleaved IL-1β, and the expression of Iba-1 and GFAP in the hippocampus and cortex of LPS-treated mice. Additionally, mitochondrial treatment increased mitochondrial ΔΨm, ATP level, and SOD activity and attenuated MDA level and ROS production in the brains of LPS-treated mice. The study reports the beneficial effect of mitochondrial treatment against cognitive impairment of LPS-treated mice, thereby providing a potential strategy for the treatment of cognitive impairment caused by neuroinflammation.
Collapse
Affiliation(s)
- Qiu-Qing Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tian-Long Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ling-Ling Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yan-Su Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuan-Dan Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chao Yu
- School of Basic Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zhen-Guo Zhong
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002, Jiangsu, China.
| | - Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
4
|
Zeng Y, Antoniou A. Regulation of synaptic mitochondria by extracellular vesicles and its implications for neuronal metabolism and synaptic plasticity. J Cereb Blood Flow Metab 2025:271678X251337630. [PMID: 40367393 PMCID: PMC12078259 DOI: 10.1177/0271678x251337630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 05/16/2025]
Abstract
Mitochondrial metabolism in neurons is necessary for energetically costly processes like synaptic transmission and plasticity. As post-mitotic cells, neurons are therefore faced with the challenge of maintaining healthy functioning mitochondria throughout lifetime. The precise mechanisms of mitochondrial maintenance in neurons, and particularly in morphologically complex dendrites and axons, are not fully understood. Evidence from several biological systems suggests the regulation of cellular metabolism by extracellular vesicles (EVs), secretory lipid-enclosed vesicles that have emerged as important mediators of cell communication. In the nervous system, neuronal and glial EVs were shown to regulate neuronal circuit development and function, at least in part via the transfer of protein and RNA cargo. Interestingly, EVs have been implicated in diseases characterized by altered metabolism, such as cancer and neurodegenerative diseases. Furthermore, nervous system EVs were shown to contain proteins related to metabolic processes, mitochondrial proteins and even intact mitochondria. Here, we present the current knowledge of the mechanisms underlying neuronal mitochondrial maintenance, and highlight recent evidence suggesting the regulation of synaptic mitochondria by neuronal and glial cell EVs. We further discuss the potential implications of EV-mediated regulation of mitochondrial maintenance and function in neuronal circuit development and synaptic plasticity.
Collapse
Affiliation(s)
- Yuzhou Zeng
- Medical Faculty, University of Bonn, Bonn, Germany
| | - Anna Antoniou
- Medical Faculty, University of Bonn, Bonn, Germany
- Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Wang M, Wang W, Chopp M, Zhang ZG, Zhang Y. Therapeutic and diagnostic potential of extracellular vesicle (EV)-mediated intercellular transfer of mitochondria and mitochondrial components. J Cereb Blood Flow Metab 2025:271678X251338971. [PMID: 40367392 PMCID: PMC12078269 DOI: 10.1177/0271678x251338971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/20/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
Extracellular vesicles (EVs) facilitate the transfer of biological materials between cells throughout the body. Mitochondria, membrane-bound organelles present in the cytoplasm of nearly all eukaryotic cells, are vital for energy production and cellular homeostasis. Recent studies highlight the critical role of the transport of diverse mitochondrial content, such as mitochondrial DNA (mt-DNA), mitochondrial RNA (mt-RNA), mitochondrial proteins (mt-Prots), and intact mitochondria by small EVs (<200 nm) and large EVs (>200 nm) to recipient cells, where these cargos contribute to cellular and mitochondrial homeostasis. The interplay between EVs and mitochondrial components has significant implications for health, metabolic regulation, and potential as biomarkers. Despite advancements, the mechanisms governing EV-mitochondria crosstalk and the regulatory effect of mitochondrial EVs remain poorly understood. This review explores the roles of EVs and their mitochondrial cargos in health and disease, examines potential mechanisms underlying their interactions, and emphasizes the therapeutic potential of EVs for neurological and systemic conditions associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mingjin Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Weida Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | | | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
6
|
Di Lorenzo R, Marzetti E, Coelho-Junior HJ, Calvani R, Pesce V, Landi F, Leeuwenburgh C, Picca A. Iron Metabolism and Muscle Aging: Where Ferritinophagy Meets Mitochondrial Quality Control. Cells 2025; 14:672. [PMID: 40358196 PMCID: PMC12072144 DOI: 10.3390/cells14090672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
In older adults with reduced physical performance, an increase in the labile iron pool within skeletal muscle is observed. This accumulation is associated with an altered expression of mitochondrial quality control (MQC) markers and increased mitochondrial DNA damage, supporting the hypothesis that impaired MQC contributes to muscle dysfunction during aging. The autophagy-lysosome system plays a critical role in MQC by tagging and engulfing proteins and organelles for degradation in lysosomes. The endolysosomal system is also instrumental in transferrin recycling, which, in turn, regulates cellular iron uptake. In the neuromuscular system, the autophagy-lysosome system supports the structural integrity of neuromuscular junctions, and its dysfunction contributes to muscle atrophy. While MQC was thought to protect against iron-induced cell death, the discovery of ferroptosis, a form of iron-dependent cell death, has highlighted a complex interplay between MQC and iron-inflicted damage. Ferritinophagy, the autophagic degradation of ferritin, if overactivated, can induce ferroptosis. Alternatively, aging may impair ferritinophagy, leading to ferritin accumulation and the release of toxic labile iron under stress, exacerbating oxidative damage and cellular senescence. Physical activity supports muscle health also by preserving mitochondrial quantity and quality and enhancing bioenergetics. However, therapeutic strategies for preventing or reversing physical function decline in aging are still lacking due to the insufficient understanding of the underlying mechanisms. Unveiling how disruptions in iron homeostasis impact muscle quality in older adults may allow for the development of therapeutic strategies targeting iron handling to alleviate age-associated muscle decline.
Collapse
Affiliation(s)
- Rosa Di Lorenzo
- Department of Biosciences, Biotechnologies, and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (R.D.L.); (V.P.)
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (H.J.C.-J.); (A.P.)
| | - Helio José Coelho-Junior
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (H.J.C.-J.); (A.P.)
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (H.J.C.-J.); (A.P.)
| | - Vito Pesce
- Department of Biosciences, Biotechnologies, and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (R.D.L.); (V.P.)
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (H.J.C.-J.); (A.P.)
| | - Christiaan Leeuwenburgh
- Department of Physiology and Aging, University of Florida, 2004 Mowry Road, Gainesville, FL 32611, USA
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (H.J.C.-J.); (A.P.)
- Department of Medicine and Surgery, LUM University, Str. Statale 100, 70010 Casamassima, Italy
| |
Collapse
|
7
|
Chen Z, Xu L, Yuan Y, Zhang S, Xue R. Metabolic crosstalk between platelets and cancer: Mechanisms, functions, and therapeutic potential. Semin Cancer Biol 2025; 110:65-82. [PMID: 39954752 DOI: 10.1016/j.semcancer.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Platelets, traditionally regarded as passive mediators of hemostasis, are now recognized as pivotal regulators in the tumor microenvironment, establishing metabolic feedback loops with tumor and immune cells. Tumor-derived signals trigger platelet activation, which induces rapid metabolic reprogramming, particularly glycolysis, to support activation-dependent functions such as granule secretion, morphological changes, and aggregation. Beyond self-regulation, platelets influence the metabolic processes of adjacent cells. Through direct mitochondrial transfer, platelets reprogram tumor and immune cells, promoting oxidative phosphorylation. Additionally, platelet-derived cytokines, granules, and extracellular vesicles drive metabolic alterations in immune cells, fostering suppressive phenotypes that facilitate tumor progression. This review examines three critical aspects: (1) the distinctive metabolic features of platelets, particularly under tumor-induced activation; (2) the metabolic crosstalk between activated platelets and other cellular components; and (3) the therapeutic potential of targeting platelet metabolism to disrupt tumor-promoting networks. By elucidating platelet metabolism, this review highlights its essential role in tumor biology and its therapeutic implications.
Collapse
Affiliation(s)
- Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Xu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yejv Yuan
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Cai J, Chen Y, She Y, He X, Feng H, Sun H, Yin M, Gao J, Sheng C, Li Q, Xiao M. Aerobic exercise improves astrocyte mitochondrial quality and transfer to neurons in a mouse model of Alzheimer's disease. Brain Pathol 2025; 35:e13316. [PMID: 39462160 PMCID: PMC11961210 DOI: 10.1111/bpa.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Mitochondrial dysfunction is a well-established hallmark of Alzheimer's disease (AD). Despite recent documentation of transcellular mitochondrial transfer, its role in the pathogenesis of AD remains unclear. In this study, we report an impairment of mitochondrial quality within the astrocytes and neurons of adult 5 × FAD mice. Following treatment with mitochondria isolated from aged astrocytes induced by exposure to amyloid protein or extended cultivation, cultured neurons exhibited an excessive generation of reactive oxygen species and underwent neurite atrophy. Notably, aerobic exercise enhanced mitochondrial quality by upregulating CD38 within hippocampal astrocytes of 5 × FAD mice. Conversely, the knockdown of CD38 diminished astrocytic-neuronal mitochondrial transfer, thereby abolishing the ameliorative effects of aerobic exercise on neuronal oxidative stress, β-amyloid plaque deposition, and cognitive dysfunction in 5 × FAD mice. These findings unveil an unexpected mechanism through which aerobic exercise facilitates the transference of healthy mitochondria from astrocytes to neurons, thus countering the AD-like progression.
Collapse
Affiliation(s)
- Jiachen Cai
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Yan Chen
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Yuzhu She
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Xiaoxin He
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Hu Feng
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Huaiqing Sun
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Mengmei Yin
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Junying Gao
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Department of AnatomyNanjing Medical UniversityNanjingChina
| | - Chengyu Sheng
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Qian Li
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Ming Xiao
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| |
Collapse
|
9
|
Basak B, Holzbaur ELF. Mitophagy in Neurons: Mechanisms Regulating Mitochondrial Turnover and Neuronal Homeostasis. J Mol Biol 2025:169161. [PMID: 40268233 DOI: 10.1016/j.jmb.2025.169161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Mitochondrial quality control is instrumental in regulating neuronal health and survival. The receptor-mediated clearance of damaged mitochondria by autophagy, known as mitophagy, plays a key role in controlling mitochondrial homeostasis. Mutations in genes that regulate mitophagy are causative for familial forms of neurological disorders including Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). PINK1/Parkin-dependent mitophagy is the best studied mitophagy pathway, while more recent work has brought to light additional mitochondrial quality control mechanisms that operate either in parallel to or independent of PINK1/Parkin mitophagy. Here, we discuss our current understanding of mitophagy mechanisms operating in neurons to govern mitochondrial homeostasis. We also summarize progress in our understanding of the links between mitophagic dysfunction and neurodegeneration, and highlight the potential for therapeutic interventions to maintain mitochondrial health and neuronal function.
Collapse
Affiliation(s)
- Bishal Basak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
10
|
Sackmann V, Nassir N, Tanikawa S, Forrest SL, Chasiotis H, Li J, Hanif S, Martinez-Valbuena I, Tartaglia MC, Lang AE, Uddin M, Verkhratsky A, Kovacs GG. Cell-specific mitochondrial response in progressive supranuclear palsy. Mitochondrion 2025; 84:102043. [PMID: 40254117 DOI: 10.1016/j.mito.2025.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/28/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Progressive supranuclear palsy (PSP) is a main form of idiopathic tauopathy characterized neuropathologically by subcortical neurofibrillary tangles in neurons, oligodendroglial coiled bodies, and tufted astrocytes, which follow sequential distribution in the human brain. Mitochondrial dysfunction is thought to be a contributor to many neurodegenerative diseases, but its role in PSP at the cellular level remains incompletely understood. To address this, we performed cell-specific morphometric analysis of mitochondrial markers in post-mortem tissues from motor cortex of PSP patients and non-diseased controls (n = 5 each) followed by single-nuclear transcriptomics (n = 3 each) to identify changes in genes that regulate mitochondrial function. We treated iCell astrocytes with PSP brain homogenates and isolated viable astrocytes from multiple regions of PSP-affected brains. We found that PSP is characterized by significant mitochondrial changes in neurons and astrocytes at the immunohistochemical level, particularly in complex I, with distinct transcriptomic responses across cell types. Glial cells exhibited upregulation of pathways associated with mitochondrial function. In contrast, excitatory and inhibitory neurons showed downregulation in these pathways, indicating impaired mitochondrial function. Astrocytes derived from different human brain regions express varied levels of GFAP and EAAT1 immunoreactivity. Astrocytic tau pathology in cell culture derived from postmortem PSP brains mirrors that seen in corresponding brain tissue histology. Tau pathology in human astrocyte cell culture is associated with clumps of mitochondria potentially associated with impairment in their neuron supportive function. Our results underscore selective complex I damage and cell-type specific patterns that differentiate PSP from other neurodegenerative diseases.
Collapse
Affiliation(s)
- Valerie Sackmann
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Nasna Nassir
- Centre for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, United Arab Emirates
| | - Satoshi Tanikawa
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Krembil Brain Institute, University Health Network, Toronto M5T 0S8 Ontario, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Helen Chasiotis
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Shehzad Hanif
- Centre for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, United Arab Emirates
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Krembil Brain Institute, University Health Network, Toronto M5T 0S8 Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Krembil Brain Institute, University Health Network, Toronto M5T 0S8 Ontario, Canada; Rossy Centre for PSP, Toronto Western Hospital, Toronto M5T 2S8 Ontario, Canada; Department of Neurology, University of Toronto, Toronto M5T 1A8 Ontario, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Rossy Centre for PSP, Toronto Western Hospital, Toronto M5T 2S8 Ontario, Canada; Department of Neurology, University of Toronto, Toronto M5T 1A8 Ontario, Canada; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, M5T 2S8 Toronto, Ontario, Canada
| | - Mohammed Uddin
- Centre for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, United Arab Emirates; GenomeArc Inc., Mississauga, ON, Canada
| | | | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Krembil Brain Institute, University Health Network, Toronto M5T 0S8 Ontario, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Rossy Centre for PSP, Toronto Western Hospital, Toronto M5T 2S8 Ontario, Canada; Department of Neurology, University of Toronto, Toronto M5T 1A8 Ontario, Canada; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, M5T 2S8 Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Laboratory Medicine Program, University Health Network, Toronto, Canada.
| |
Collapse
|
11
|
Gaweda-Walerych K, Aragona V, Lodato S, Sitek EJ, Narożańska E, Buratti E. Progranulin deficiency in the brain: the interplay between neuronal and non-neuronal cells. Transl Neurodegener 2025; 14:18. [PMID: 40234992 PMCID: PMC12001433 DOI: 10.1186/s40035-025-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Heterozygous mutations in GRN gene lead to insufficient levels of the progranulin (PGRN) protein, resulting in frontotemporal dementia (FTD) with TAR DNA-binding protein 43 (TDP-43) inclusions, classified pathologically as frontotemporal lobar degeneration (FTLD-TDP). Homozygous GRN mutations are exceedingly rare and cause neuronal ceroid lipofuscinosis 11, a lysosomal storage disease with onset in young adulthood, or an FTD syndrome with late-onset manifestations. In this review, we highlight the broad spectrum of clinical phenotypes associated with PGRN deficiency, including primary progressive aphasia and behavioral variant of frontotemporal dementia. We explore these phenotypes alongside relevant rodent and in vitro human models, ranging from the induced pluripotent stem cell-derived neural progenitors, neurons, microglia, and astrocytes to genetically engineered heterotypic organoids containing both neurons and astrocytes. We summarize advantages and limitations of these models in recapitulating the main FTLD-GRN hallmarks, highlighting the role of non-cell-autonomous mechanisms in the formation of TDP-43 pathology, neuroinflammation, and neurodegeneration. Data obtained from patients' brain tissues and biofluids, in parallel with single-cell transcriptomics, demonstrate the complexity of interactions among the highly heterogeneous cellular clusters present in the brain, including neurons, astrocytes, microglia, oligodendroglia, endothelial cells, and pericytes. Emerging evidence has revealed that PGRN deficiency is associated with cell cluster-specific, often conserved, genetic and molecular phenotypes in the central nervous system. In this review, we focus on how these distinct cellular populations and their dysfunctional crosstalk contribute to neurodegeneration and neuroinflammation in FTD-GRN. Specifically, we characterize the phenotypes of lipid droplet-accumulating microglia and alterations of myelin lipid content resulting from lysosomal dysfunction caused by PGRN deficiency. Additionally, we consider how the deregulation of glia-neuron communication affects the exchange of organelles such as mitochondria, and the removal of excess toxic products such as protein aggregates, in PGRN-related neurodegeneration.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Vanessa Aragona
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Emilia J Sitek
- Division of Neurological and Psychiatric Nursing, Laboratory of Clinical Neuropsychology, Neurolinguistics, and Neuropsychotherapy, Faculty of Health Sciences, Medical University of Gdansk, 80-210, Gdansk, Poland.
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland.
| | - Ewa Narożańska
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149, Trieste, Italy
| |
Collapse
|
12
|
Liao Y, Octaviani S, Tian Z, Wang SR, Huang C, Huang J. Mitochondrial quality control in hematopoietic stem cells: mechanisms, implications, and therapeutic opportunities. Stem Cell Res Ther 2025; 16:180. [PMID: 40234908 PMCID: PMC12001479 DOI: 10.1186/s13287-025-04304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Mitochondrial quality control (MQC) is a critical mechanism for maintaining mitochondrial function and cellular metabolic homeostasis, playing an essential role in the self-renewal, differentiation, and long-term stability of hematopoietic stem cells (HSCs). Recent research highlights the central importance of MQC in HSC biology, particularly the roles of mitophagy, mitochondrial biogenesis, fission, fusion and mitochondrial transfer in regulating HSC function. Mitophagy ensures the removal of damaged mitochondria, maintaining low levels of reactive oxygen species (ROS) in HSCs, thereby preventing premature aging and functional decline. Concurrently, mitochondrial biogenesis adjusts key metabolic regulators such as mitochondrial transcription factor A (TFAM) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) to meet environmental demands, ensuring the metabolic needs of HSCs are met. Additionally, mitochondrial transfer, as an essential form of intercellular material exchange, facilitates the transfer of functional mitochondria from bone marrow stromal cells to HSCs, contributing to damage repair and metabolic support. Although existing studies have revealed the significance of MQC in maintaining HSC function, the precise molecular mechanisms and interactions among different regulatory pathways remain to be fully elucidated. Furthermore, the potential role of MQC dysfunction in hematopoietic disorders, including its involvement in disease progression and therapeutic resistance, is not yet fully understood. This review discusses the molecular mechanisms of MQC in HSCs, its functions under physiological and pathological conditions, and its potential therapeutic applications. By summarizing the current progress in this field, we aim to provide insights for further research and the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Yun Liao
- Coriell Institute for Medical Research, Camden, NJ, USA
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | | | - Zhen Tian
- Coriell Institute for Medical Research, Camden, NJ, USA
| | | | - Chunlan Huang
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, Sichuan, China.
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, NJ, USA.
- Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
13
|
Pal-Ghosh S, Datta-Majumdar H, Datta S, Dimri S, Hally J, Wehmeyer H, Chen Z, Watsky M, Ma JX, Liang W, Stepp MA. Corneal epithelial cells upregulate macropinocytosis to engulf metabolically active axonal mitochondria released by injured axons. Ocul Surf 2025; 37:173-188. [PMID: 40180030 DOI: 10.1016/j.jtos.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE To determine the mechanisms used to internalize mitochondria by corneal epithelial cells after in vivo corneal trephine injury and in vitro in corneal epithelial cells. METHODS Male and female mice were subjected to trephine injury and euthanized immediately, 6, and 24 h after injury. Macropinocytosis was quantified in vivo using 70 kD fluorescent dextran. Mitochondrial content was assessed by immunofluorescence and metabolic activity quantified by Seahorse assay immediately and 6 h after injury. In vitro experiments using human corneal and limbal epithelial (HCLE) cells and isolated mitochondria were performed to assess mitochondrial transfer in the presence of the gap junction inhibitor 18α-glycyrrhetinc acid and the macropincytosis inhibitor ethylisopropylamiloride. RESULTS Mitochondria accumulate within apical epithelial cell layers within minutes of trephine injury. Macropinocytosis also increases within minutes of trephine injury. Oxygen Consumption Rates increase in the corneal epithelium 6 h after trephine injury in males and females. Inhibiting gap junctions increases mitochondrial engulfment while inhibiting macropinocytosis prevents engulfment of mitochondria by corneal epithelial cells in vitro. CONCLUSIONS Molecules released by injured cells and severed axons induce macropinocytosis in corneal epithelial cells within minutes of trephine injury. An increase in oxygen consumption rate in the corneal epithelium after trephine injury indicates that axonal mitochondria can evade lysosomal degradation for at least 6 h. In vitro studies using isolated labeled and unlabeled mitochondria and control and mechanically stressed human corneal epithelial cells confirm the involvement of macropinocytosis in the engulfment of free and vesicle bound mitochondria by corneal epithelial cells.
Collapse
Affiliation(s)
- Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Himani Datta-Majumdar
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Soneha Datta
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Shelly Dimri
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Jordan Hally
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Hugo Wehmeyer
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Zhong Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mitchell Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University, School of Medicine, Winston-Salem, NC, 27101, USA
| | - Wentao Liang
- Department of Biochemistry, Wake Forest University, School of Medicine, Winston-Salem, NC, 27101, USA
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA; Department of Ophthalmology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA.
| |
Collapse
|
14
|
Wang LP, Liu TF, Dai TT, Deng X, Tong L, Zeng QC, He Q, Ren ZY, Zhang HL, Liu HS, Li YF, Li WZ, Zhang S, Du DS. Resveratrol reduces RVLM neuron activity via activating the AMPK/Sirt3 pathway in stress-induced hypertension. J Biol Chem 2025; 301:108394. [PMID: 40074082 PMCID: PMC12002922 DOI: 10.1016/j.jbc.2025.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Neuronal hyperexcitability in the rostral ventrolateral medulla (RVLM), driven by oxidative stress, plays a crucial role in stress-induced hypertension (SIH). While resveratrol (RSV) is known for its antioxidant properties, its effects on RVLM neurons in SIH remain unclear. We investigated this using an SIH rat model exposed to electric foot shocks and noise stimulation for 15 days. Analysis of RVLM tissue revealed increased mitochondrial damage, oxidative stress, apoptosis, and dysregulated ferroptosis in SIH rats. RSV microinjection into the RVLM reduced blood pressure, sympathetic vascular tone, and neuronal excitability. Both in vivo and in vitro studies showed that RSV treatment alleviated mitochondrial oxidative stress, apoptosis, and ferroptosis through AMPK activation and subsequent Sirt3 upregulation. These therapeutic effects were blocked by either AMPK inhibition or Sirt3 knockdown. Our findings demonstrate that RSV attenuates SIH by activating the AMPK/Sirt3 pathway, thereby reducing RVLM oxidative stress and cell death.
Collapse
Affiliation(s)
- Lin-Ping Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China; School of Life Sciences, Shanghai University, Shanghai, China
| | - Tian-Feng Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China; School of Life Sciences, Shanghai University, Shanghai, China
| | - Teng-Teng Dai
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xin Deng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Lei Tong
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qiang-Cheng Zeng
- College of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Qing He
- College of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Zhang-Yan Ren
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hai-Li Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Hai-Sheng Liu
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Yan-Fang Li
- Department of Preventive Medicine, Heze Medical College, Heze, Shandong, China
| | - Wen-Zhi Li
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Dong-Shu Du
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China; School of Life Sciences, Shanghai University, Shanghai, China; College of Life Sciences, Dezhou University, Dezhou, Shandong, China; College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China; Department of Preventive Medicine, Heze Medical College, Heze, Shandong, China.
| |
Collapse
|
15
|
Chen J, Chen J, Yu C, Xia K, Yang B, Wang R, Li Y, Shi K, Zhang Y, Xu H, Zhang X, Wang J, Chen Q, Liang C. Metabolic reprogramming: a new option for the treatment of spinal cord injury. Neural Regen Res 2025; 20:1042-1057. [PMID: 38989936 PMCID: PMC11438339 DOI: 10.4103/nrr.nrr-d-23-01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/27/2024] [Indexed: 07/12/2024] Open
Abstract
Spinal cord injuries impose a notably economic burden on society, mainly because of the severe after-effects they cause. Despite the ongoing development of various therapies for spinal cord injuries, their effectiveness remains unsatisfactory. However, a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming. In this review, we explore the metabolic changes that occur during spinal cord injuries, their consequences, and the therapeutic tools available for metabolic reprogramming. Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling. However, spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism, lipid metabolism, and mitochondrial dysfunction. These metabolic disturbances lead to corresponding pathological changes, including the failure of axonal regeneration, the accumulation of scarring, and the activation of microglia. To rescue spinal cord injury at the metabolic level, potential metabolic reprogramming approaches have emerged, including replenishing metabolic substrates, reconstituting metabolic couplings, and targeting mitochondrial therapies to alter cell fate. The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury. To further advance the metabolic treatment of the spinal cord injury, future efforts should focus on a deeper understanding of neurometabolism, the development of more advanced metabolomics technologies, and the design of highly effective metabolic interventions.
Collapse
Affiliation(s)
- Jiangjie Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jinyang Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chao Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Biao Yang
- Qiandongnan Prefecture People's Hospital, Kaili, Guizhou Province, China
| | - Ronghao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yi Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kesi Shi
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yuang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Haibin Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xuesong Zhang
- Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingkai Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Qixin Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chengzhen Liang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
16
|
Hermann DM, Wang C, Mohamud Yusuf A, Herz J, Doeppner TR, Giebel B. Extracellular vesicles lay the ground for neuronal plasticity by restoring mitochondrial function, cell metabolism and immune balance. J Cereb Blood Flow Metab 2025:271678X251325039. [PMID: 40072028 PMCID: PMC11904928 DOI: 10.1177/0271678x251325039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/15/2025] [Accepted: 02/14/2025] [Indexed: 03/15/2025]
Abstract
Extracellular vesicles (EVs) convey complex signals between cells that can be used to promote neuronal plasticity and neurological recovery in brain disease models. These EV signals are multimodal and context-dependent, making them unique therapeutic principles. This review analyzes how EVs released from various cell sources control neuronal metabolic function, neuronal survival and plasticity. Preferential sites of EV communication in the brain are interfaces between pre- and postsynaptic neurons at synapses, between astrocytes and neurons at plasma membranes or tripartite synapses, between oligodendrocytes and neurons at axons, between microglial cells/macrophages and neurons, and between cerebral microvascular cells and neurons. At each of these interfaces, EVs support mitochondrial function and cell metabolism under physiological conditions and orchestrate neuronal survival and plasticity in response to brain injury. In the injured brain, the promotion of neuronal survival and plasticity by EVs is tightly linked with EV actions on mitochondrial function, cell metabolism, oxidative stress and immune responses. Via the stabilization of cell metabolism and immune balance, neuronal plasticity responses are activated and functional neurological recovery is induced. As such, EV lay the ground for neuronal plasticity.
Collapse
Affiliation(s)
- Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Chen Wang
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Josephine Herz
- Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thorsten R Doeppner
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Department of Neurology, University Hospital Gießen and Marburg, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
17
|
Sobral AF, Costa I, Teixeira V, Silva R, Barbosa DJ. Molecular Motors in Blood-Brain Barrier Maintenance by Astrocytes. Brain Sci 2025; 15:279. [PMID: 40149801 PMCID: PMC11940747 DOI: 10.3390/brainsci15030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
The blood-brain barrier (BBB) comprises distinct cell types, including endothelial cells, pericytes, and astrocytes, and is essential for central nervous system (CNS) homeostasis by selectively regulating molecular transport and maintaining integrity. In particular, astrocytes are essential for BBB function, as they maintain BBB integrity through their end-feet, which form a physical and biochemical interface that enhances endothelial cell function and barrier selectivity. Moreover, they secrete growth factors like vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β), which regulate tight junction (TJ) proteins (e.g., claudins and occludins) crucial for limiting paracellular permeability. Molecular motors like kinesins, dynein, and myosins are essential for these astrocyte functions. By facilitating vesicular trafficking and protein transport, they are essential for various functions, including trafficking of junctional proteins to support BBB integrity, the proper mitochondria localization within astrocyte processes for efficient energy supply, the polarized distribution of aquaporin (AQP)-4 at astrocyte end-feet for regulating water homeostasis across the BBB, and the modulation of neuroinflammatory responses. Moreover, myosin motors modulate actomyosin dynamics to regulate astrocyte process outgrowth, adhesion, migration, and morphology, facilitating their functional roles. Thus, motor protein dysregulation in astrocytes can compromise BBB function and integrity, increasing the risk of neurodegeneration. This review explores the complex interplay between astrocytes and molecular motors in regulating BBB homeostasis, which represents an attractive but poorly explored area of research.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Inês Costa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.C.); (R.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Vanessa Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.C.); (R.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
18
|
Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y, Shen B. Engineered mitochondria in diseases: mechanisms, strategies, and applications. Signal Transduct Target Ther 2025; 10:71. [PMID: 40025039 PMCID: PMC11873319 DOI: 10.1038/s41392-024-02081-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Mitochondrial diseases represent one of the most prevalent and debilitating categories of hereditary disorders, characterized by significant genetic, biological, and clinical heterogeneity, which has driven the development of the field of engineered mitochondria. With the growing recognition of the pathogenic role of damaged mitochondria in aging, oxidative disorders, inflammatory diseases, and cancer, the application of engineered mitochondria has expanded to those non-hereditary contexts (sometimes referred to as mitochondria-related diseases). Due to their unique non-eukaryotic origins and endosymbiotic relationship, mitochondria are considered highly suitable for gene editing and intercellular transplantation, and remarkable progress has been achieved in two promising therapeutic strategies-mitochondrial gene editing and artificial mitochondrial transfer (collectively referred to as engineered mitochondria in this review) over the past two decades. Here, we provide a comprehensive review of the mechanisms and recent advancements in the development of engineered mitochondria for therapeutic applications, alongside a concise summary of potential clinical implications and supporting evidence from preclinical and clinical studies. Additionally, an emerging and potentially feasible approach involves ex vivo mitochondrial editing, followed by selection and transplantation, which holds the potential to overcome limitations such as reduced in vivo operability and the introduction of allogeneic mitochondrial heterogeneity, thereby broadening the applicability of engineered mitochondria.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Limin Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haibo Si
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuangang Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
19
|
Yang M, Shi Y, Song Q, Wei Z, Dun X, Wang Z, Wang Z, Qiu CW, Zhang H, Cheng X. Optical sorting: past, present and future. LIGHT, SCIENCE & APPLICATIONS 2025; 14:103. [PMID: 40011460 DOI: 10.1038/s41377-024-01734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 02/28/2025]
Abstract
Optical sorting combines optical tweezers with diverse techniques, including optical spectrum, artificial intelligence (AI) and immunoassay, to endow unprecedented capabilities in particle sorting. In comparison to other methods such as microfluidics, acoustics and electrophoresis, optical sorting offers appreciable advantages in nanoscale precision, high resolution, non-invasiveness, and is becoming increasingly indispensable in fields of biophysics, chemistry, and materials science. This review aims to offer a comprehensive overview of the history, development, and perspectives of various optical sorting techniques, categorised as passive and active sorting methods. To begin, we elucidate the fundamental physics and attributes of both conventional and exotic optical forces. We then explore sorting capabilities of active optical sorting, which fuses optical tweezers with a diversity of techniques, including Raman spectroscopy and machine learning. Afterwards, we reveal the essential roles played by deterministic light fields, configured with lens systems or metasurfaces, in the passive sorting of particles based on their varying sizes and shapes, sorting resolutions and speeds. We conclude with our vision of the most promising and futuristic directions, including AI-facilitated ultrafast and bio-morphology-selective sorting. It can be envisioned that optical sorting will inevitably become a revolutionary tool in scientific research and practical biomedical applications.
Collapse
Affiliation(s)
- Meng Yang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| | - Qinghua Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zeyong Wei
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Xiong Dun
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
| | - Hui Zhang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| |
Collapse
|
20
|
Gildea HK, Liddelow SA. Mechanisms of astrocyte aging in reactivity and disease. Mol Neurodegener 2025; 20:21. [PMID: 39979986 PMCID: PMC11844071 DOI: 10.1186/s13024-025-00810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Normal aging alters brain functions and phenotypes. However, it is not well understood how astrocytes are impacted by aging, nor how they contribute to neuronal dysfunction and disease risk as organisms age. Here, we examine the transcriptional, cell biology, and functional differences in astrocytes across normal aging. Astrocytes at baseline are heterogenous, responsive to their environments, and critical regulators of brain microenvironments and neuronal function. With increasing age, astrocytes adopt different immune-related and senescence-associated states, which relate to organelle dysfunction and loss of homeostasis maintenance, both cell autonomously and non-cell autonomously. These perturbed states are increasingly associated with age-related dysfunction and the onset of neurodegeneration, suggesting that astrocyte aging is a compelling target for future manipulation in the prevention of disease.
Collapse
Affiliation(s)
- Holly K Gildea
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, USA.
| | - Shane A Liddelow
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, USA.
- Department of Neuroscience, NYU Grossman School of Medicine, New York, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, USA.
- Optimal Aging Institute, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
21
|
Maddineni P, Kodati B, Kaipa BR, Kesavan K, Cameron Millar J, Yacoub S, Kasetti RB, Clark AF, Zode GS. Genetic and pharmacological correction of impaired mitophagy in retinal ganglion cells rescues glaucomatous neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638142. [PMID: 39990391 PMCID: PMC11844533 DOI: 10.1101/2025.02.13.638142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Progressive loss of retinal ganglion cells (RGCs) and degeneration of optic nerve axons are the pathological hallmarks of glaucoma. Ocular hypertension (OHT) and mitochondrial dysfunction are linked to neurodegeneration and vision loss in glaucoma. However, the exact mechanism of mitochondrial dysfunction leading to glaucomatous neurodegeneration is poorly understood. Using multiple mouse models of OHT and human eyes from normal and glaucoma donors, we show that OHT induces impaired mitophagy in RGCs, resulting in the accumulation of dysfunctional mitochondria and contributing to glaucomatous neurodegeneration. Using mitophagy reporter mice, we show that impaired mitophagy precedes glaucomatous neurodegeneration. Notably, the pharmacological rescue of impaired mitophagy via Torin-2 or genetic upregulation of RGC-specific Parkin expression restores the structural and functional integrity of RGCs and their axons in mouse models of glaucoma and ex-vivo human retinal-explant cultures. Our study indicates that impaired mitophagy contributes to mitochondrial dysfunction and oxidative stress, leading to glaucomatous neurodegeneration. Enhancing mitophagy in RGCs represents a promising therapeutic strategy to prevent glaucomatous neurodegeneration.
Collapse
|
22
|
King DE, Copeland WC. DNA repair pathways in the mitochondria. DNA Repair (Amst) 2025; 146:103814. [PMID: 39914164 PMCID: PMC11848857 DOI: 10.1016/j.dnarep.2025.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
Mitochondria contain their own small, circular genome that is present in high copy number. The mitochondrial genome (mtDNA) encodes essential subunits of the electron transport chain. Mutations in the mitochondrial genome are associated with a wide range of mitochondrial diseases and the maintenance and replication of mtDNA is crucial to cellular health. Despite the importance of maintaining mtDNA genomic integrity, fewer DNA repair pathways exist in the mitochondria than in the nucleus. However, mitochondria have numerous pathways that allow for the removal and degradation of DNA damage that may prevent accumulation of mutations. Here, we briefly review the DNA repair pathways present in the mitochondria, sources of mtDNA mutations, and discuss the passive role that mtDNA mutagenesis may play in cancer progression.
Collapse
Affiliation(s)
- Dillon E King
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
23
|
Kan Y, Wang H, Lin H, Li Y, Pei S, Cui Y, Xie K, Chen H, Yu Y. Transcript and Lipid Profile Alterations in Astrocyte-Neuron Mitochondrial Transfer Under Lipopolysaccharide Exposure: An In Vitro Study. J Neurochem 2025; 169:e70003. [PMID: 39902645 PMCID: PMC11791887 DOI: 10.1111/jnc.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 02/06/2025]
Abstract
Sepsis-associated encephalopathy (SAE) is a brain dysfunction for which no effective therapy currently exists. Recent studies suggest that transferring mitochondria from astrocytes to neurons may benefit SAE patients, though the underlying mechanism remains unclear. We cultured astrocytes and neurons from mice in vitro. Astrocytes were stimulated with lipopolysaccharide (LPS) for 24 h, and the astrocyte-conditioned medium (ACM) was collected. Neuronal cultures were then treated with ACM or mitochondria-depleted ACM (mdACM) for further analysis. Mitochondrial transfer was examined under a fluorescence microscope. Western blotting analyzed the protein expression of genes related to apoptosis and mitochondrial metabolism. RNA sequencing and mass spectrometry were employed to investigate the mechanisms underlying mitochondrial transfer. Astrocyte-derived mitochondria migrated toward and connected with LPS-exposed neurons. The addition of ACM significantly attenuated LPS-induced alterations in the proteins linked to apoptosis and mitochondrial dynamics. RNA sequencing revealed notable alterations in the transcript profile of neurons upon ACM treatment, highlighting the involvement of mitochondria metabolism, inflammation, and apoptosis-related factors. Additionally, mitochondrial transfer modified the lipid composition of neurons, increasing phosphatidylserine levels, which correlated with neuroinflammation and enriched pathways related to cytokine and MAPK signaling. Our findings suggest that astrocyte-neuron mitochondrial transfer holds therapeutic potential for alleviating SAE, possibly through the anti-inflammatory effects of lipids, particularly phosphatidylserine.
Collapse
Affiliation(s)
- Yufei Kan
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinPR China
| | - Hong Wang
- Department of AnesthesiologyShanxi Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical SciencesTaiyuanShanxi ProvincePR China
| | - Huaying Lin
- Department of AnesthesiologyChongqing University Cancer HospitalChongqingPR China
| | - Yongfa Li
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinPR China
| | - Shuaijie Pei
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinPR China
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinPR China
| | - Yan Cui
- Department of Pathogen BiologySchool of Basic Medical Sciences, Tianjin Medical UniversityTianjinPR China
| | - Keliang Xie
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinPR China
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinPR China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong ProvinceSchool of Anesthesiology, Shandong Second Medical UniversityWeifangShandongPR China
| | - Hongguang Chen
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinPR China
| | - Yonghao Yu
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinPR China
| |
Collapse
|
24
|
Yang SS, Brooks NAH, Da Silva DE, Gibon J, Islam H, Klegeris A. Extracellular ATP regulates phagocytic activity, mitochondrial respiration, and cytokine secretion of human astrocytic cells. Purinergic Signal 2025:10.1007/s11302-025-10066-x. [PMID: 39833586 DOI: 10.1007/s11302-025-10066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
The two main glial cell types of the central nervous system (CNS), astrocytes and microglia, are responsible for neuroimmune homeostasis. Recent evidence indicates astrocytes can participate in removal of pathological structures by becoming phagocytic under conditions of neurodegenerative disease when microglia, the professional phagocytes, are impaired. We hypothesized that adenosine triphosphate (ATP), which acts as damage-associated molecular pattern (DAMP), when released at high concentrations into extracellular space, upregulates phagocytic activity of human astrocytes. This study is the first to measure changes in phagocytic activity and mitochondrial respiration of human astrocytic cells in response to extracellular ATP. We demonstrate that ATP-induced phagocytic activity of U118 MG astrocytic cells is accompanied by upregulated mitochondrial oxidative phosphorylation, which likely supports this energy-dependent process. Application of a selective antagonist A438079 provides evidence identifying astrocytic purinergic P2X7 receptor (P2X7R) as the potential regulator of their phagocytic function. We also report a rapid ATP-induced increase in intracellular calcium ([Ca2+]i), which could serve as regulator of both the phagocytic activity and mitochondrial metabolism, but this hypothesis will need to be tested in future studies. Since ATP upregulates interleukin (IL)-8 secretion by astrocytes but has no effect on their cytotoxicity towards neuronal cells, we conclude that extracellular ATP affects only specific functions of astrocytes. The selectivity of P2X7R-dependent regulation of astrocyte functions by extracellular ATP could allow targeting this receptor-ligand interaction to upregulate their phagocytic function. This could have beneficial outcomes in neurodegenerative disorders, such as Alzheimer's disease, that are characterized by reactive astrocytes and defective phagocytic processes.
Collapse
Affiliation(s)
- Sijie Shirley Yang
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Noah A H Brooks
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Dylan E Da Silva
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Julien Gibon
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
25
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
26
|
Solimando AG, Di Palma F, Desantis V, Vacca A, Svelto M, Pisani F. Tunneling nanotubes between bone marrow stromal cells support transmitophagy and resistance to apoptosis in myeloma. Blood Cancer J 2025; 15:3. [PMID: 39788948 PMCID: PMC11717949 DOI: 10.1038/s41408-025-01210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Unit of Internal Medicine "Guido Baccelli", University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Francesco Di Palma
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Vanessa Desantis
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Section of Pharmacology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Angelo Vacca
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Unit of Internal Medicine "Guido Baccelli", University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Pisani
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy.
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
27
|
Brestoff JR, Singh KK, Aquilano K, Becker LB, Berridge MV, Boilard E, Caicedo A, Crewe C, Enríquez JA, Gao J, Gustafsson ÅB, Hayakawa K, Khoury M, Lee YS, Lettieri-Barbato D, Luz-Crawford P, McBride HM, McCully JD, Nakai R, Neuzil J, Picard M, Rabchevsky AG, Rodriguez AM, Sengupta S, Sercel AJ, Suda T, Teitell MA, Thierry AR, Tian R, Walker M, Zheng M. Recommendations for mitochondria transfer and transplantation nomenclature and characterization. Nat Metab 2025; 7:53-67. [PMID: 39820558 DOI: 10.1038/s42255-024-01200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025]
Abstract
Intercellular mitochondria transfer is an evolutionarily conserved process in which one cell delivers some of their mitochondria to another cell in the absence of cell division. This process has diverse functions depending on the cell types involved and physiological or disease context. Although mitochondria transfer was first shown to provide metabolic support to acceptor cells, recent studies have revealed diverse functions of mitochondria transfer, including, but not limited to, the maintenance of mitochondria quality of the donor cell and the regulation of tissue homeostasis and remodelling. Many mitochondria-transfer mechanisms have been described using a variety of names, generating confusion about mitochondria transfer biology. Furthermore, several therapeutic approaches involving mitochondria-transfer biology have emerged, including mitochondria transplantation and cellular engineering using isolated mitochondria. In this Consensus Statement, we define relevant terminology and propose a nomenclature framework to describe mitochondria transfer and transplantation as a foundation for further development by the community as this dynamic field of research continues to evolve.
Collapse
Affiliation(s)
- Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Keshav K Singh
- Department of Genetics, I Heersink School of Medicine, University of Alabama at Birmhingham, Birmingham, AL, USA.
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Lance B Becker
- Department of Emergency Medicine, Northwell Health, Manhassett, NY, USA
- Department of Emergency Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Michael V Berridge
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Eric Boilard
- Département de Microbiologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Québec, Canada
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina and Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Clair Crewe
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de salud Carlos III (CIBERFES), Madrid, Spain
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Åsa B Gustafsson
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Harvard Medical School, Massachusetts General Hospital East 149-2401, Charlestown, MA, USA
| | - Maroun Khoury
- IMPACT Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago, Chile
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | | | - Patricia Luz-Crawford
- IMPACT Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago, Chile
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - James D McCully
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ritsuko Nakai
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Alexander G Rabchevsky
- Department of Physiology & the Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Anne-Marie Rodriguez
- UMR CNRS 8263, INSERM U1345, Development, Adaptation and Ageing, Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | | | - Alexander J Sercel
- MitoWorld, National Laboratory for Education Transformation, Oakland, CA, USA
| | - Toshio Suda
- Institute of Hematology, Blood Diseases Hospital, Chinese Academy of Sciences and Peking Union Medical College, Tianjin, China
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine, Department of Bioengineering, and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Alain R Thierry
- Institute of Research in Cancerology of Montpellier, INSERM U1194, University of Montpellier, ICM, Institut du Cancer de Montpellier, Montpellier, France
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, USA
| | - Melanie Walker
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School of the University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
28
|
Ballester-Rosado CJ, Le JT, Lam TT, Anderson AE, Frost JD, Swann JW. IGF-1 impacts neocortical interneuron connectivity in epileptic spasm generation and resolution. Neurotherapeutics 2025; 22:e00477. [PMID: 39516073 PMCID: PMC11743118 DOI: 10.1016/j.neurot.2024.e00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Little is known about the mechanisms that generate epileptic spasms following perinatal brain injury. Recent studies have implicated reduced levels of Insulin-like Growth Factor 1 (IGF-1) in these patients' brains. Other studies have reported low levels of the inhibitory neurotransmitter, GABA. In the TTX brain injury model of epileptic spasms, we undertook experiments to evaluate the impact of IGF-1 deficiencies on neocortical interneurons and their role in spasms. Quantitative immunohistochemical analyses revealed that neocortical interneurons that express glutamic acid decarboxylase, parvalbumin, or synaptotagmin 2 co-express IGF-1. In epileptic rats, expression of these three interneuron markers were reduced in the neocortex. IGF-1 expression was also reduced, but surprisingly this loss was confined to interneurons. Interneuron connectivity was reduced in tandem with IGF-1 deficiencies. Similar changes were observed in surgically resected neocortex from infantile epileptic spasms syndrome (IESS) patients. To evaluate the impact of IGF-1 deficiencies on interneuron development, IGF-1R levels were reduced in the neocortex of neonatal conditional IGF-1R knock out mice by viral injections. Four weeks later, this experimental maneuver resulted in similar reductions in interneuron connectivity. Treatment with the IGF-1 derived tripeptide, (1-3)IGF-1, abolished epileptic spasms in most animals, rescued interneuron connectivity, and restored neocortical levels of IGF-1. Our results implicate interneuron IGF-1 deficiencies, possibly impaired autocrine IGF-1 signaling and a resultant interneuron dysmaturation in epileptic spasm generation. By restoring IGF-1 levels, (1-3)IGF-1 likely suppresses spasms by rescuing interneuron connectivity. Results point to (1-3)IGF-1 and its analogues as potential novel disease-modifying therapies for this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Carlos J Ballester-Rosado
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - John T Le
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Trang T Lam
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Anne E Anderson
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - James D Frost
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - John W Swann
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
29
|
Semyanov A, Verkhratsky A. Neuroglia in aging. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:49-67. [PMID: 40122631 DOI: 10.1016/b978-0-443-19104-6.00002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Aging is associated with morphologic and functional decline of the brain active milieu and, in particular, of the neuroglia, which compromises homeostatic support and neuroprotection. Astrocytes in aging undergo complex and region specific changes, manifested by morphologic atrophy and widespread functional asthenia. Aging leads to mitochondrial malfunction and reduced protein/lipid ratio in human astrocytes. Oligodendrocyte lineage cells are the most affected cells by the aging process, which limits myelinating capacity, thus leading to a substantial reduction in the white matter and deficient brain connectome. Finally, microglia undergo a morphologic functional dystrophy in the aged human brain which curtails brain defenses and increases brain vulnerability to neuropathology and especially to age-dependent neurodegenerative disorders. Lifestyle modifications, such as enriched environment, physical exercise, and healthy dieting, boost neuroglial support, thus improving cognitive longevity.
Collapse
Affiliation(s)
- Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, Jiaxing, Zhejiang, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
30
|
Wei Y, Du X, Guo H, Han J, Liu M. Mitochondrial dysfunction and Alzheimer's disease: pathogenesis of mitochondrial transfer. Front Aging Neurosci 2024; 16:1517965. [PMID: 39741520 PMCID: PMC11685155 DOI: 10.3389/fnagi.2024.1517965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
In recent years, mitochondrial transfer has emerged as a universal phenomenon intertwined with various systemic physiological and pathological processes. Alzheimer's disease (AD) is a multifactorial disease, with mitochondrial dysfunction at its core. Although numerous studies have found evidence of mitochondrial transfer in AD models, the precise mechanisms remain unclear. Recent studies have revealed the dynamic transfer of mitochondria in Alzheimer's disease, not only between nerve cells and glial cells, but also between nerve cells and glial cells. In this review, we explore the pathways and mechanisms of mitochondrial transfer in Alzheimer's disease and how these transfer activities contribute to disease progression.
Collapse
Affiliation(s)
- Yun Wei
- *Correspondence: Yun Wei, ; Meixia Liu,
| | | | | | | | - Meixia Liu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Ferrucci L, Guerra F, Bucci C, Marzetti E, Picca A. Mitochondria break free: Mitochondria-derived vesicles in aging and associated conditions. Ageing Res Rev 2024; 102:102549. [PMID: 39427885 DOI: 10.1016/j.arr.2024.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Mitophagy is the intracellular recycling system that disposes damaged/inefficient mitochondria and allows biogenesis of new organelles to ensure mitochondrial quality is optimized. Dysfunctional mitophagy has been implicated in human aging and diseases. Multiple evolutionarily selected, redundant mechanisms of mitophagy have been identified, but their specific roles in human health and their potential exploitation as therapeutic targets are unclear. Recently, the characterization of the endosomal-lysosomal system has revealed additional mechanisms of mitophagy and mitochondrial quality control that operate via the production of mitochondria-derived vesicles (MDVs). Circulating MDVs can be isolated and characterized to provide an unprecedented opportunity to study this type of mitochondrial recycling in vivo and to relate it to human physiology and pathology. Defining the role of MDVs in human physiology, pathology, and aging is hampered by the lack of standardized methods to isolate, validate, and characterize these vesicles. Hence, some basic questions about MDVs remain unanswered. While MDVs are generated directly through the extrusion of mitochondrial membranes within the cell, a set of circulating extracellular vesicles leaking from the endosomal-lysosomal system and containing mitochondrial portions have also been identified and warrant investigation. Preliminary research indicates that MDV generation serves multiple biological roles and contributes to restoring cell homeostasis. However, studies have shown that MDVs may also be involved in pathological conditions. Therefore, further research is warranted to establish when/whether MDVs are supporting disease progression and/or are extracting damaged mitochondrial components to alleviate cellular oxidative burden and restore redox homeoastasis. This information will be relevant for exploiting these vesicles for therapeutic purpose. Herein, we provide an overview of preclinical and clinical studies on MDVs in aging and associated conditions and discuss the interplay between MDVs and some of the hallmarks of aging (mitophagy, inflammation, and proteostasis). We also outline open questions on MDV research that should be prioritized by future investigations.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging, Baltimore, MD, USA.
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Cecilia Bucci
- Department of Experimental Medicine, Università del Salento, Lecce, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| |
Collapse
|
32
|
Li H, Sun W, Gong W, Han Y. Transfer and fates of damaged mitochondria: role in health and disease. FEBS J 2024; 291:5342-5364. [PMID: 38545811 DOI: 10.1111/febs.17119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 12/19/2024]
Abstract
Intercellular communication is pivotal in mediating the transfer of mitochondria from donor to recipient cells. This process orchestrates various biological functions, including tissue repair, cell proliferation, differentiation and cancer invasion. Typically, dysfunctional and depolarized mitochondria are eliminated through intracellular or extracellular pathways. Nevertheless, increasing evidence suggests that intercellular transfer of damaged mitochondria is associated with the pathogenesis of diverse diseases. This review investigates the prevalent triggers of mitochondrial damage and the underlying mechanisms of mitochondrial transfer, and elucidates the role of directional mitochondrial transfer in both physiological and pathological contexts. Additionally, we propose potential previously unknown mechanisms mediating mitochondrial transfer and explore their prospective roles in disease prevention and therapy.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weiyun Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwen Gong
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Palumbos SD, Popolow J, Goldsmith J, Holzbaur EL. Autophagic stress activates distinct compensatory secretory pathways in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.621551. [PMID: 39574677 PMCID: PMC11580983 DOI: 10.1101/2024.11.07.621551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Autophagic dysfunction is a hallmark of neurodegenerative disease, leaving neurons vulnerable to the accumulation of damaged organelles and proteins. However, the late onset of diseases suggests that compensatory quality control mechanisms may be engaged to delay the deleterious effects induced by compromised autophagy. Neurons expressing common familial Parkinson's disease (PD)-associated mutations in LRRK2 kinase exhibit defective autophagy. Here, we demonstrate that both primary murine neurons and human iPSC-derived neurons harboring pathogenic LRRK2 upregulate the secretion of extracellular vesicles. We used unbiased proteomics to characterize the secretome of LRRK2G2019S neurons and found that autophagic cargos including mitochondrial proteins were enriched. Based on these observations, we hypothesized that autophagosomes are rerouted toward secretion when cell-autonomous degradation is compromised, likely to mediate clearance of undegraded cellular waste. Immunoblotting confirmed the release of autophagic cargos and immunocytochemistry demonstrated that secretory autophagy was upregulated in LRRK2G2019S neurons. We also found that LRRK2G2019S neurons upregulate the release of exosomes containing miRNAs. Live-cell imaging confirmed that this upregulation of exosomal release was dependent on hyperactive LRRK2 activity, while pharmacological experiments indicate that this release staves off apoptosis. Finally, we show that markers of both vesicle populations are upregulated in plasma from mice expressing pathogenic LRRK2. In sum, we find that neurons expressing pathogenic LRRK2 upregulate the compensatory release of secreted autophagosomes and exosomes, to mediate waste disposal and transcellular communication, respectively. We propose that this increased secretion contributes to the maintenance of cellular homeostasis, delaying neurodegenerative disease progression over the short term while potentially contributing to increased neuroinflammation over the longer term.
Collapse
Affiliation(s)
- Sierra D. Palumbos
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Jacob Popolow
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliet Goldsmith
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Erika L.F. Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
34
|
Pal-Ghosh S, Karpinski BA, Datta-Majumdar H, Datta S, Dimri S, Hally J, Wehmeyer H, Stepp MA. Mechanisms Regulating Mitochondrial Transfer in Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 39504055 PMCID: PMC11549930 DOI: 10.1167/iovs.65.13.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 11/11/2024] Open
Abstract
Purpose The intraepithelial corneal nerves (ICNs) innervating the cornea are essential to corneal epithelial cell homeostasis. Rho-associated kinase (ROCK) inhibitors (RIs) have been reported to play roles in neuron survival after injury and in mitochondrial transfer between corneal epithelial cells. In this study, the mechanisms human corneal limbal epithelial (HCLE) cells use to control intercellular mitochondrial transfer are assessed. Methods Mitotracker and AAV1 mitotag eGFPmCherry were used to allow us to study mitochondrial transfer between HCLE cells and neurons in co-cultures and in HCLE cultures. A mitochondrial transfer assay was developed using HCLE cells to quantify the impact of cell stress and inhibition of phagocytosis, gap junctions, and ROCK on mitochondrial transfer, cell adhesion, migration, matrix deposition, and mitochondrial content. Results Bidirectional mitochondrial transfer occurs between HCLE cells and neurons. Mitochondrial transfer among HCLE cells is inhibited when gap junction function is reduced and enhanced by acid stress and by inhibition of either phagocytosis or ROCK. Media conditioned by RI-treated cells stimulates cell adhesion and mitochondrial transfer. Conclusions Maximal mitochondrial transfer takes place when gap junctions are functional, when ROCK and phagocytosis are inhibited, and when cells are stressed by low pH media. Treatments that reduce mitochondrial content increase HCLE cell mitochondrial transfer. ROCK inhibition in co-cultures causes the release and adhesion of mitochondria to substrates where they can be engulfed by migrating HCLE cells and growing axons and their growth cones.
Collapse
Affiliation(s)
- Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Beverly A. Karpinski
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Himani Datta-Majumdar
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Soneha Datta
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Shelly Dimri
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Jordan Hally
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Hugo Wehmeyer
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
- Department of Ophthalmology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| |
Collapse
|
35
|
Cai C, Shen J. The roles of migrasomes in immunity, barriers, and diseases. Acta Biomater 2024; 189:88-102. [PMID: 39284502 DOI: 10.1016/j.actbio.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/14/2024]
Abstract
Migrasomes are recently identified extracellular vesicles and organelles formed in conjunction with cell migration. They are situated at the rear of migrating cells, exhibit a circular or elliptical membrane-enclosed structure, and function as a new organelle. Migrasomes selectively sort intercellular components, mediating a cell migration-dependent release mechanism known as migracytosis and modulating cell-cell communication. Accumulated evidence clarifies migrasome formation processes and indicates their diverse functional roles. Migrasomes may also be potentially correlated with the occurrence, progression, and prognosis of certain diseases. Migrasomes' involvement in physiological and pathological processes highlights their potential for expanding our understanding of biological procedures and as a target in clinical therapy. However, the precise mechanisms and full extent of their involvement in immunity, barriers, and diseases remain unclear. This review aimed to provide a comprehensive overview of the roles of migrasomes in human immunity and barriers, in addition to providing insights into their impact on human diseases. STATEMENT OF SIGNIFICANCE: Migrasomes, newly identified extracellular vesicles and organelles, form during cell migration and are located at the rear of migrating cells. These circular or elliptical structures mediate migracytosis, selectively sorting intercellular components and modulating cell-cell communication. Evidence suggests diverse functional roles for migrasomes, including potential links to disease occurrence, progression, and prognosis. Their involvement in physiological and pathological processes highlights their significance in understanding biological procedures and potential clinical therapies. However, their exact mechanisms in immunity, barriers, and diseases remain unclear. This review provides an overview of migrasomes' roles in human immunity and barriers, and their impact on diseases.
Collapse
Affiliation(s)
- Changsheng Cai
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China.
| |
Collapse
|
36
|
Dhar KS, Townsend B, Montgomery AP, Danon JJ, Pagan JK, Kassiou M. Enhancing CNS mitophagy: drug development and disease-relevant models. Trends Pharmacol Sci 2024; 45:982-996. [PMID: 39419743 DOI: 10.1016/j.tips.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Mitophagy, the selective degradation of mitochondria, is impaired in many neurodegenerative diseases (NDs), resulting in an accumulation of dysfunctional mitochondria and neuronal damage. Although enhancing mitophagy shows promise as a therapeutic strategy, the clinical significance of mitophagy activators remains uncertain due to limited understanding and poor representation of mitophagy in the central nervous system (CNS). This review explores recent insights into which mitophagy pathways to target and the extent of modulation necessary to be therapeutic towards NDs. We also highlight the complexities of mitophagy in the CNS, highlighting the need for disease-relevant models. Last, we outline crucial aspects of in vitro models to consider during drug discovery, aiming to bridge the gap between preclinical research and clinical applications in treating NDs through mitophagy modulation.
Collapse
Affiliation(s)
- Krishayant S Dhar
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Brendan Townsend
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Andrew P Montgomery
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan J Danon
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Julia K Pagan
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
37
|
Grosso Jasutkar H, Wasserlein EM, Ishola A, Litt N, Staniszewski A, Arancio O, Yamamoto A. Adult-onset deactivation of autophagy leads to loss of synapse homeostasis and cognitive impairment, with implications for alzheimer disease. Autophagy 2024; 20:2540-2555. [PMID: 38949671 PMCID: PMC11572145 DOI: 10.1080/15548627.2024.2368335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
A growing number of studies link dysfunction of macroautophagy/autophagy to the pathogenesis of diseases such as Alzheimer disease (AD). Given the global importance of autophagy for homeostasis, how its dysfunction can lead to specific neurological changes is puzzling. To examine this further, we compared the global deactivation of autophagy in the adult mouse using the atg7iKO with the impact of AD-associated pathogenic changes in autophagic processing of synaptic proteins. Isolated forebrain synaptosomes, rather than total homogenates, from atg7iKO mice demonstrated accumulation of synaptic proteins, suggesting that the synapse might be a vulnerable site for protein homeostasis disruption. Moreover, the deactivation of autophagy resulted in impaired cognitive performance over time, whereas gross locomotor skills remained intact. Despite deactivation of autophagy for 6.5 weeks, changes in cognition were in the absence of cell death or synapse loss. In the symptomatic APP PSEN1 double-transgenic mouse model of AD, we found that the impairment in autophagosome maturation coupled with diminished presence of discrete synaptic proteins in autophagosomes isolated from these mice, leading to the accumulation of one of these proteins in the detergent insoluble protein fraction. This protein, SLC17A7/Vglut, also accumulated in atg7iKO mouse synaptosomes. Taken together, we conclude that synaptic autophagy plays a role in maintaining protein homeostasis, and that while decreasing autophagy interrupts normal cognitive function, the preservation of locomotion suggests that not all circuits are affected similarly. Our data suggest that the disruption of autophagic activity in AD may have relevance for the cognitive impairment in this adult-onset neurodegenerative disease. Abbreviations: 2dRAWM: 2-day radial arm water maze; AD: Alzheimer disease; Aβ: amyloid-beta; AIF1/Iba1: allograft inflammatory factor 1; APP: amyloid beta precursor protein; ATG7: autophagy related 7; AV: autophagic vacuole; CCV: cargo capture value; Ctrl: control; DLG4/PSD-95: discs large MAGUK scaffold protein 4; GFAP: glial fibrillary acidic protein; GRIN2B/NMDAR2b: glutamate ionotropic receptor NMDA type subunit 2B; LTD: long-term depression; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; m/o: months-old; PNS: post-nuclear supernatant; PSEN1/PS1: presenilin 1; SHB: sucrose homogenization buffer; SLC32A1/Vgat: solute carrier family 32 member 1; SLC17A7/Vglut1: solute carrier family 17 member 7; SNAP25: synaptosome associated protein 25; SQSTM1/p62: sequestosome 1; SYN1: synapsin I; SYP: synaptophysin ; SYT1: synaptotagmin 1; Tam: tamoxifen; VAMP2: vesicle associated membrane protein 2; VCL: vinculin; wks: weeks.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | - Azeez Ishola
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Nicole Litt
- Department of Neurology, Columbia University, New York, NY, USA
| | - Agnieszka Staniszewski
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Ottavio Arancio
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
38
|
Iorio R, Petricca S, Di Emidio G, Falone S, Tatone C. Mitochondrial Extracellular Vesicles (mitoEVs): Emerging mediators of cell-to-cell communication in health, aging and age-related diseases. Ageing Res Rev 2024; 101:102522. [PMID: 39369800 DOI: 10.1016/j.arr.2024.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Mitochondria are metabolic and signalling hubs that integrate a plethora of interconnected processes to maintain cell homeostasis. They are also dormant mediators of inflammation and cell death, and with aging damages affecting mitochondria gradually accumulate, resulting in the manifestation of age-associated disorders. In addition to coordinate multiple intracellular functions, mitochondria mediate intercellular and inter-organ cross talk in different physiological and stress conditions. To fulfil this task, mitochondrial signalling has evolved distinct and complex conventional and unconventional routes of horizontal/vertical mitochondrial transfer. In this regard, great interest has been focused on the ability of extracellular vesicles (EVs), such as exosomes and microvesicles, to carry selected mitochondrial cargoes to target cells, in response to internal and external cues. Over the past years, the field of mitochondrial EVs (mitoEVs) has grown exponentially, revealing unexpected heterogeneity of these structures associated with an ever-expanding mitochondrial function, though the full extent of the underlying mechanisms is far from being elucidated. Therefore, emerging subsets of EVs encompass exophers, migrasomes, mitophers, mitovesicles, and mitolysosomes that can act locally or over long-distances to restore mitochondrial homeostasis and cell functionality, or to amplify disease. This review provides a comprehensive overview of our current understanding of the biology and trafficking of MitoEVs in different physiological and pathological conditions. Additionally, a specific focus on the role of mitoEVs in aging and the onset and progression of different age-related diseases is discussed.
Collapse
Affiliation(s)
- Roberto Iorio
- Dept. of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy.
| | - Sabrina Petricca
- Dept. of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Giovanna Di Emidio
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Stefano Falone
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Carla Tatone
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| |
Collapse
|
39
|
Liu Q, Zhang X, Zhu T, Xu Z, Dong Y, Chen B. Mitochondrial transfer from mesenchymal stem cells: Mechanisms and functions. Mitochondrion 2024; 79:101950. [PMID: 39218052 DOI: 10.1016/j.mito.2024.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/04/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Mesenchymal stem cells based therapy has been used in clinic for almost 20 years and has shown encouraging effects in treating a wide range of diseases. However, the underlying mechanism is far more complicated than it was previously assumed. Mitochondria transfer is one way that recently found to be employed by mesenchymal stem cells to exert its biological effects. As one way of exchanging mitochondrial components, mitochondria transfer determines both mesenchymal stem cells and recipient cell fates. In this review, we describe the factors that contribute to MSCs-MT. Then, the routes and mechanisms of MSCs-MT are summarized to provide a theoretical basis for MSCs therapy. Besides, the advantages and disadvantages of MSCs-MT in clinical application are analyzed.
Collapse
Affiliation(s)
- Qing Liu
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Xiaoxin Zhang
- Central laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Tongxin Zhu
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Zhonghan Xu
- Department of Oral Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yingchun Dong
- Department of Anesthesiology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Bin Chen
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
40
|
Ezan P, Hardy E, Bemelmans A, Taiel M, Dossi E, Rouach N. Retinal damage promotes mitochondrial transfer in the visual system of a mouse model of Leber hereditary optic neuropathy. Neurobiol Dis 2024; 201:106681. [PMID: 39332508 DOI: 10.1016/j.nbd.2024.106681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024] Open
Abstract
Lenadogene nolparvovec is a gene therapy which has been developed to treat Leber hereditary optic neuropathy (LHON) caused by a point mutation in the mitochondrial NADH dehydrogenase 4 (ND4) gene. Clinical trials have demonstrated a significant improvement of visual acuity up to 5 years after treatment by lenadogene nolparvovec but, surprisingly, unilateral treatment resulted in bilateral improvement of vision. This contralateral effect - similarly observed with other gene therapy products in development for MT-ND4-LHON - is supported by the migration of viral vector genomes and their transcripts to the contralateral eye, as reported in animals, and post-mortem samples from two patients. In this study, we used an AAV2 encoding fluorescent proteins targeting mitochondria to investigate whether these organelles themselves could transfer from the treated eye to the fellow one. We found that mitochondria travel along the visual system (optic chiasm and primary visual cortex) and reach the contralateral eye (optic nerve and retina) in physiological conditions. We also observed that, in a rotenone-induced model of retinal damage mimicking LHON, mitochondrial transfer from the healthy to the damaged eye was accelerated and enhanced. Our results thus provide a further explanation for the contralateral beneficial effect observed during clinical studies with lenadogene nolparvovec.
Collapse
Affiliation(s)
- Pascal Ezan
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Eléonore Hardy
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Alexis Bemelmans
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | | | - Elena Dossi
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| |
Collapse
|
41
|
Zhao M, Wang J, Zhu S, Wang M, Chen C, Wang L, Liu J. Mitochondrion-based organellar therapies for central nervous system diseases. Cell Commun Signal 2024; 22:487. [PMID: 39390521 PMCID: PMC11468137 DOI: 10.1186/s12964-024-01843-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
As most traditional drugs used to treat central nervous system (CNS) diseases have a single therapeutic target, many of them cannot treat complex diseases or diseases whose mechanism is unknown and cannot effectively reverse the root changes underlying CNS diseases. This raises the question of whether multiple functional components are involved in the complex pathological processes of CNS diseases. Organelles are the core functional units of cells, and the replacement of damaged organelles with healthy organelles allows the multitargeted and integrated modulation of cellular functions. The development of therapies that target independent functional units in the cell, specifically, organelle-based therapies, is rapidly progressing. This article comprehensively discusses the pathogenesis of mitochondrial homeostasis disorders, which involve mitochondria, one of the most important organelles in CNS diseases, and the machanisms of mitochondrion-based therapies, as well as current preclinical and clinical studies on the efficacy of therapies targeting mitochondrial to treat CNS diseases, to provide evidence for use of organelle-based treatment strategies in the future.
Collapse
Affiliation(s)
- Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Shuaiyu Zhu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Meina Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Chong Chen
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China.
| |
Collapse
|
42
|
Zhu Y, Zhang J, Deng Q, Chen X. Mitophagy-associated programmed neuronal death and neuroinflammation. Front Immunol 2024; 15:1460286. [PMID: 39416788 PMCID: PMC11479883 DOI: 10.3389/fimmu.2024.1460286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Mitochondria are crucial organelles that play a central role in cellular metabolism and programmed cell death in eukaryotic cells. Mitochondrial autophagy (mitophagy) is a selective process where damaged mitochondria are encapsulated and degraded through autophagic mechanisms, ensuring the maintenance of both mitochondrial and cellular homeostasis. Excessive programmed cell death in neurons can result in functional impairments following cerebral ischemia and trauma, as well as in chronic neurodegenerative diseases, leading to irreversible declines in motor and cognitive functions. Neuroinflammation, an inflammatory response of the central nervous system to factors disrupting homeostasis, is a common feature across various neurological events, including ischemic, infectious, traumatic, and neurodegenerative conditions. Emerging research suggests that regulating autophagy may offer a promising therapeutic avenue for treating certain neurological diseases. Furthermore, existing literature indicates that various small molecule autophagy regulators have been tested in animal models and are linked to neurological disease outcomes. This review explores the role of mitophagy in programmed neuronal death and its connection to neuroinflammation.
Collapse
Affiliation(s)
- Yanlin Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
43
|
Adekunbi DA, Huber HF, Li C, Nathanielsz PW, Cox LA, Salmon AB. Differential mitochondrial bioenergetics and cellular resilience in astrocytes, hepatocytes, and fibroblasts from aging baboons. GeroScience 2024; 46:4443-4459. [PMID: 38607532 PMCID: PMC11335705 DOI: 10.1007/s11357-024-01155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Biological resilience, broadly defined as the ability to recover from an acute challenge and return to homeostasis, is of growing importance to the biology of aging. At the cellular level, there is variability across tissue types in resilience and these differences are likely to contribute to tissue aging rate disparities. However, there are challenges in addressing these cell-type differences at regional, tissue, and subject level. To address this question, we established primary cells from aged male and female baboons between 13.3 and 17.8 years spanning across different tissues, tissue regions, and cell types including (1) fibroblasts from skin and from the heart separated into the left ventricle (LV), right ventricle (RV), left atrium (LA), and right atrium (RA); (2) astrocytes from the prefrontal cortex and hippocampus; and (3) hepatocytes. Primary cells were characterized by their cell surface markers and their cellular respiration was assessed with Seahorse XFe96. Cellular resilience was assessed by modifying a live-cell imaging approach; we previously reported that monitors proliferation of dividing cells following response and recovery to oxidative (50 µM-H2O2), metabolic (1 mM-glucose), and proteostasis (0.1 µM-thapsigargin) stress. We noted significant differences even among similar cell types that are dependent on tissue source and the diversity in cellular response is stressor-specific. For example, astrocytes had a higher oxygen consumption rate and exhibited greater resilience to oxidative stress (OS) than both fibroblasts and hepatocytes. RV and RA fibroblasts were less resilient to OS compared with LV and LA, respectively. Skin fibroblasts were less impacted by proteostasis stress compared to astrocytes and cardiac fibroblasts. Future studies will test the functional relationship of these outcomes to the age and developmental status of donors as potential predictive markers.
Collapse
Affiliation(s)
- Daniel A Adekunbi
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cun Li
- Department of Animal Science, Texas Pregnancy and Life-Course Health Research Center, University of Wyoming, Laramie, WY, USA
| | - Peter W Nathanielsz
- Department of Animal Science, Texas Pregnancy and Life-Course Health Research Center, University of Wyoming, Laramie, WY, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Adam B Salmon
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, Southwest Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
44
|
Girkin CA, Strickland RG, Somerville MM, Garner MA, Grossman GH, Blake A, Kumar N, Ianov L, Fazio MA, Clark ME, Gross AK. Acute ocular hypertension in the living human eye: Model description and initial cellular responses to elevated intraocular pressure. Vision Res 2024; 223:108465. [PMID: 39173459 PMCID: PMC11444249 DOI: 10.1016/j.visres.2024.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024]
Abstract
This initial methods study presents the initial immunohistochemical and transcriptomic changes in the optic nerve head and retina from three research-consented brain-dead organ donors following prolonged and transient intraocular pressure (IOP) elevation. In this initial study, research-consented brain-dead organ donors were exposed to unilateral elevation of IOP for 7.5 h (Donor 1), 30 h (Donor 2), and 1 h (Donor 3) prior to organ procurement. Optic nerve tissue and retinal tissue was obtained following organ procurement for immunohistological and transcriptomic analysis. Optic nerve sections in Donor 1 exposed to 7.5-hours of unilateral sub-ischemic IOP elevation demonstrated higher levels of protein expression of the astrocytic marker, glial fibrillary acidic protein (GFAP), within the lamina cribrosa with greatest expression inferior temporally in the treated eye compared to control. Spatial transcriptomic analysis performed on optic nerve head tissues from Donor 2 exposed to 30 h of unilateral IOP elevation demonstrated differential transcription of mRNA across laminar and scleral regions. Immunohistochemistry of retinal sections from Donor 2 exhibited higher GFAP and IBA1 expression in the treated eye compared with control, but this was not observed in Donor 3, which was exposed to only 1-hour of IOP elevation. While there were no differences in GFAP protein expression in the retina following the 1-hour IOP elevation in Donor 3, there were higher levels of transcription of GFAP in the inner nuclear layer, and CD44 in the retinal ganglion cell layer, indicative of astrocytic and Müller glial reactivity as well as an early inflammatory response, respectively. We found that transcriptomic differences can be observed across treated and control eyes following unilateral elevation of IOP in brain dead organ donors. The continued development of this model affords the unique opportunity to define the acute mechanotranscriptomic response of the optic nerve head, evaluate the injury and repair mechanisms in the retina in response to IOP elevation, and enable correlation of in vivo imaging and functional testing with ex vivo cellular responses for the first time in the living human eye.
Collapse
Affiliation(s)
- Christopher A Girkin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ryan G Strickland
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - McKenna M Somerville
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary Anne Garner
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Alan Blake
- Advancing Sight Network, Birmingham, AL, USA
| | - Nilesh Kumar
- IRCP-Biological Data Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lara Ianov
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; IRCP-Biological Data Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Massimo A Fazio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark E Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alecia K Gross
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
45
|
Crivelli SM, Gaifullina A, Chatton JY. Exploring the role of mitochondrial uncoupling protein 4 in brain metabolism: implications for Alzheimer's disease. Front Neurosci 2024; 18:1483708. [PMID: 39381683 PMCID: PMC11459774 DOI: 10.3389/fnins.2024.1483708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
The brain's high demand for energy necessitates tightly regulated metabolic pathways to sustain physiological activity. Glucose, the primary energy substrate, undergoes complex metabolic transformations, with mitochondria playing a central role in ATP production via oxidative phosphorylation. Dysregulation of this metabolic interplay is implicated in Alzheimer's disease (AD), where compromised glucose metabolism, oxidative stress, and mitochondrial dysfunction contribute to disease progression. This review explores the intricate bioenergetic crosstalk between astrocytes and neurons, highlighting the function of mitochondrial uncoupling proteins (UCPs), particularly UCP4, as important regulators of brain metabolism and neuronal function. Predominantly expressed in the brain, UCP4 reduces the membrane potential in the inner mitochondrial membrane, thereby potentially decreasing the generation of reactive oxygen species. Furthermore, UCP4 mitigates mitochondrial calcium overload and sustains cellular ATP levels through a metabolic shift from mitochondrial respiration to glycolysis. Interestingly, the levels of the neuronal UCPs, UCP2, 4 and 5 are significantly reduced in AD brain tissue and a specific UCP4 variant has been associated to an increased risk of developing AD. Few studies modulating the expression of UCP4 in astrocytes or neurons have highlighted protective effects against neurodegeneration and aging, suggesting that pharmacological strategies aimed at activating UCPs, such as protonophoric uncouplers, hold promise for therapeutic interventions in AD and other neurodegenerative diseases. Despite significant advances, our understanding of UCPs in brain metabolism remains in its early stages, emphasizing the need for further research to unravel their biological functions in the brain and their therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
46
|
Wang G, Guasp RJ, Salam S, Chuang E, Morera A, Smart AJ, Jimenez D, Shekhar S, Friedman E, Melentijevic I, Nguyen KC, Hall DH, Grant BD, Driscoll M. Mechanical force of uterine occupation enables large vesicle extrusion from proteostressed maternal neurons. eLife 2024; 13:RP95443. [PMID: 39255003 PMCID: PMC11386954 DOI: 10.7554/elife.95443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Large vesicle extrusion from neurons may contribute to spreading pathogenic protein aggregates and promoting inflammatory responses, two mechanisms leading to neurodegenerative disease. Factors that regulate the extrusion of large vesicles, such as exophers produced by proteostressed C. elegans touch neurons, are poorly understood. Here, we document that mechanical force can significantly potentiate exopher extrusion from proteostressed neurons. Exopher production from the C. elegans ALMR neuron peaks at adult day 2 or 3, coinciding with the C. elegans reproductive peak. Genetic disruption of C. elegans germline, sperm, oocytes, or egg/early embryo production can strongly suppress exopher extrusion from the ALMR neurons during the peak period. Conversely, restoring egg production at the late reproductive phase through mating with males or inducing egg retention via genetic interventions that block egg-laying can strongly increase ALMR exopher production. Overall, genetic interventions that promote ALMR exopher production are associated with expanded uterus lengths and genetic interventions that suppress ALMR exopher production are associated with shorter uterus lengths. In addition to the impact of fertilized eggs, ALMR exopher production can be enhanced by filling the uterus with oocytes, dead eggs, or even fluid, supporting that distention consequences, rather than the presence of fertilized eggs, constitute the exopher-inducing stimulus. We conclude that the mechanical force of uterine occupation potentiates exopher extrusion from proximal proteostressed maternal neurons. Our observations draw attention to the potential importance of mechanical signaling in extracellular vesicle production and in aggregate spreading mechanisms, making a case for enhanced attention to mechanobiology in neurodegenerative disease.
Collapse
Affiliation(s)
- Guoqiang Wang
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Ryan J Guasp
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Sangeena Salam
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Edward Chuang
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Andrés Morera
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Anna J Smart
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - David Jimenez
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Sahana Shekhar
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Emily Friedman
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Ilija Melentijevic
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Ken C Nguyen
- Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New JerseyPiscatawayUnited States
| |
Collapse
|
47
|
Tomasello DL, Barrasa MI, Mankus D, Alarcon KI, Lytton-Jean AKR, Liu XS, Jaenisch R. Mitochondrial dysfunction and increased reactive oxygen species production in MECP2 mutant astrocytes and their impact on neurons. Sci Rep 2024; 14:20565. [PMID: 39232000 PMCID: PMC11374804 DOI: 10.1038/s41598-024-71040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Studies on MECP2 function and its implications in Rett Syndrome (RTT) have traditionally centered on neurons. Here, using human embryonic stem cell (hESC) lines, we modeled MECP2 loss-of-function to explore its effects on astrocyte (AST) development and dysfunction in the brain. Ultrastructural analysis of RTT hESC-derived cerebral organoids revealed significantly smaller mitochondria compared to controls (CTRs), particularly pronounced in glia versus neurons. Employing a multiomics approach, we observed increased gene expression and accessibility of a subset of nuclear-encoded mitochondrial genes upon mutation of MECP2 in ASTs compared to neurons. Analysis of hESC-derived ASTs showed reduced mitochondrial respiration and altered key proteins in the tricarboxylic acid cycle and electron transport chain in RTT versus CTRs. Additionally, RTT ASTs exhibited increased cytosolic amino acids under basal conditions, which were depleted upon increased energy demands. Notably, mitochondria isolated from RTT ASTs exhibited increased reactive oxygen species and influenced neuronal activity when transferred to cortical neurons. These findings underscore MECP2 mutation's differential impact on mitochondrial and metabolic pathways in ASTs versus neurons, suggesting that dysfunctional AST mitochondria may contribute to RTT pathophysiology by affecting neuronal health.
Collapse
Affiliation(s)
| | | | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katia I Alarcon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abigail K R Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - X Shawn Liu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
48
|
Liao Z, Tong B, Ke W, Yang C, Wu X, Lei M. Extracellular vesicles as carriers for mitochondria: Biological functions and clinical applications. Mitochondrion 2024; 78:101935. [PMID: 39002687 DOI: 10.1016/j.mito.2024.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
In recent years, research has increasingly focused on the biogenesis of extracellular vesicles (EVs) and the sorting mechanisms for their contents. Mitochondria can be selectively loaded into EVs, serving as a way to maintain cellular mitochondrial homeostasis. EV-mediated mitochondrial transfer has also been shown to greatly impact the function of target cells. Based on the mechanism of EV-mediated mitochondrial transfer, therapies can be developed to treat human diseases. This review summarizes the recent advances in the biogenesis and molecular composition of EVs. It also highlights the sorting and trafficking mechanisms of mitochondrial components into EVs. Furthermore, it explores the current role of EV-mediated mitochondrial transfer in the development of human diseases, as well as its diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ming Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
49
|
Cullen PF, Gammerdinger WJ, Sui SJH, Mazumder AG, Sun D. Transcriptional profiling of retinal astrocytes identifies a specific marker and points to functional specialization. Glia 2024; 72:1604-1628. [PMID: 38785355 PMCID: PMC11262981 DOI: 10.1002/glia.24571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Astrocyte heterogeneity is an increasingly prominent research topic, and studies in the brain have demonstrated substantial variation in astrocyte form and function, both between and within regions. In contrast, retinal astrocytes are not well understood and remain incompletely characterized. Along with optic nerve astrocytes, they are responsible for supporting retinal ganglion cell axons and an improved understanding of their role is required. We have used a combination of microdissection and Ribotag immunoprecipitation to isolate ribosome-associated mRNA from retinal astrocytes and investigate their transcriptome, which we also compared to astrocyte populations in the optic nerve. Astrocytes from these regions are transcriptionally distinct, and we identified retina-specific astrocyte genes and pathways. Moreover, although they share much of the "classical" gene expression patterns of astrocytes, we uncovered unexpected variation, including in genes related to core astrocyte functions. We additionally identified the transcription factor Pax8 as a highly specific marker of retinal astrocytes and demonstrated that these astrocytes populate not only the retinal surface, but also the prelaminar region at the optic nerve head. These findings are likely to contribute to a revised understanding of the role of astrocytes in the retina.
Collapse
Affiliation(s)
- Paul F Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - William J Gammerdinger
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Shannan J Ho Sui
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
50
|
Javadpour P, Abbaszadeh F, Ahmadiani A, Rezaei M, Ghasemi R. Mitochondrial Transportation, Transplantation, and Subsequent Immune Response in Alzheimer's Disease: An Update. Mol Neurobiol 2024; 61:7151-7167. [PMID: 38368286 DOI: 10.1007/s12035-024-04009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by memory impairment and a progressive decline in cognitive function. Mitochondrial dysfunction has been identified as an important contributor to the development of AD, leading to oxidative stress and energy deficits within the brain. While current treatments for AD aim to alleviate symptoms, there is an urgent need to target the underlying mechanisms. The emerging field of mitotherapy, which involves the transplantation of healthy mitochondria into damaged cells, has gained substantial attention and has shown promising results. However, research in the context of AD remains limited, necessitating further investigations. In this review, we summarize the mitochondrial pathways that contribute to the progression of AD. Additionally, we discuss mitochondrial transfer among brain cells and mitotherapy, with a focus on different administration routes, various sources of mitochondria, and potential modifications to enhance transplantation efficacy. Finally, we review the limited available evidence regarding the immune system's response to mitochondrial transplantation in damaged brain regions.
Collapse
Affiliation(s)
- Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|