1
|
Dofash LNH, Miles LB, Saito Y, Rivas E, Calcinotto V, Oveissi S, Serrano RJ, Templin R, Ramm G, Rodger A, Haywood J, Ingley E, Clayton JS, Taylor RL, Folland CL, Groth D, Hock DH, Stroud DA, Gorokhova S, Donkervoort S, Bönnemann CG, Sud M, VanNoy GE, Mangilog BE, Pais L, O’Donnell-Luria A, Madruga-Garrido M, Scala M, Fiorillo C, Baratto S, Traverso M, Malfatti E, Bruno C, Zara F, Paradas C, Ogata K, Nishino I, Laing NG, Bryson-Richardson RJ, Cabrera-Serrano M, Ravenscroft G. HMGCS1 variants cause rigid spine syndrome amenable to mevalonic acid treatment in an animal model. Brain 2025; 148:1707-1722. [PMID: 39531736 PMCID: PMC12073982 DOI: 10.1093/brain/awae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 09/19/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Rigid spine syndrome is a rare childhood-onset myopathy characterized by slowly progressive or non-progressive scoliosis, neck and spine contractures, hypotonia and respiratory insufficiency. Biallelic variants in SELENON account for most cases of rigid spine syndrome, however, the underlying genetic cause in some patients remains unexplained. We used exome and genome sequencing to investigate the genetic basis of rigid spine syndrome in patients without a genetic diagnosis. In five patients from four unrelated families, we identified biallelic variants in HMGCS1 (3-hydroxy-3-methylglutaryl-coenzyme A synthase). These included six missense variants and one frameshift variant distributed throughout HMGCS1. All patients presented with spinal rigidity primarily affecting the cervical and dorso-lumbar regions, scoliosis and respiratory insufficiency. Creatine kinase levels were variably elevated. The clinical course worsened with intercurrent disease or certain drugs in some patients; one patient died from respiratory failure following infection. Muscle biopsies revealed irregularities in oxidative enzyme staining with occasional internal nuclei and rimmed vacuoles. HMGCS1 encodes a critical enzyme of the mevalonate pathway and has not yet been associated with disease. Notably, biallelic hypomorphic variants in downstream enzymes including HMGCR and GGPS1 are associated with muscular dystrophy resembling our cohort's presentation. Analyses of recombinant human HMGCS1 protein and four variants (p.S447P, p.Q29L, p.M70T, p.C268S) showed that all mutants maintained their dimerization state. Three of the four mutants exhibited reduced thermal stability, and two mutants showed subtle changes in enzymatic activity compared to the wildtype. Hmgcs1 mutant zebrafish displayed severe early defects, including immobility at 2 days and death by Day 3 post-fertilisation and were rescued by HMGCS1 mRNA. We demonstrate that the four variants tested (S447P, Q29L, M70T and C268S) have reduced function compared to wild-type HMGCS1 in zebrafish rescue assays. Additionally, we demonstrate the potential for mevalonic acid supplementation to reduce phenotypic severity in mutant zebrafish. Overall, our analyses suggest that these missense variants in HMGCS1 act through a hypomorphic mechanism. Here, we report an additional component of the mevalonate pathway associated with disease and suggest biallelic variants in HMGCS1 should be considered in patients presenting with an unresolved rigid spine myopathy phenotype. Additionally, we highlight mevalonoic acid supplementation as a potential treatment for patients with HMGCS1-related disease.
Collapse
Affiliation(s)
- Lein N H Dofash
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Perth, WA 6009, Australia
| | - Lee B Miles
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Eloy Rivas
- Department of Pathology, Hospital Universitario Virgen del Rocío Sevilla, Sevilla 41013, Spain
| | - Vanessa Calcinotto
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Sara Oveissi
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Rita J Serrano
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Rachel Templin
- Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Georg Ramm
- Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Alison Rodger
- School of Natural Sciences, Macquarie University, Sydney, NSW 2113, Australia
| | - Joel Haywood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Evan Ingley
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Perth, WA 6009, Australia
| | - Joshua S Clayton
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Perth, WA 6009, Australia
| | - Rhonda L Taylor
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Perth, WA 6009, Australia
| | - Chiara L Folland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Perth, WA 6009, Australia
| | - David Groth
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Svetlana Gorokhova
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, U1251, 13385 Marseille, France
- Medical Genetics Department, Timone Children’s Hospital, APHM, 13385 Marseille, France
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS, NIH, Bethesda, MD 20892, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS, NIH, Bethesda, MD 20892, USA
| | - Malika Sud
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Grace E VanNoy
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brian E Mangilog
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lynn Pais
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anne O’Donnell-Luria
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Mendelian Genomics, Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa 16148, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa 16147, Italy
| | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa 16148, Italy
- Child Neuropsichiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa 16147, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova 16147, Italy
| | - Monica Traverso
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa 16147, Italy
| | - Edoardo Malfatti
- APHP-Henri Mondor Hospital, Centre de Référence de Pathologie Neuromusculaire, Créteil 94000, France
| | - Claudio Bruno
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa 16148, Italy
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova 16147, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa 16148, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa 16147, Italy
| | - Carmen Paradas
- Department of Neurology, Neuromuscular Unit and Instituto de Biomedicina de Sevilla/CSIC, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla 41092, Spain
| | - Katsuhisa Ogata
- Department of Neurology, National Hospital Organization Higashisaitama National Hospital, Hasuda, Saitama 349-0196, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Perth, WA 6009, Australia
| | | | - Macarena Cabrera-Serrano
- Department of Neurology, Neuromuscular Unit and Instituto de Biomedicina de Sevilla/CSIC, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla 41092, Spain
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Yang QT, Wu RX, Liang YS, Niu SF, Miao BB, Liang ZB, Shen YX. Liver transcriptome changes in pearl gentian grouper in response to acute high-temperature stress. AQUACULTURE 2024; 593:741336. [DOI: 10.1016/j.aquaculture.2024.741336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Zhang Y, Samuelson AV. Antiviral defense in aged Caenorhabditis elegans declines due to loss of DRH-1/RIG-I deSUMOylation via ULP-4/SENP7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623310. [PMID: 39605404 PMCID: PMC11601531 DOI: 10.1101/2024.11.12.623310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Innate host defense mechanisms require posttranslational modifications (PTM) to protect against viral infection. Age-associated immunosenescence results in increased pathogenesis and mortality in the elderly, but the contribution of altered PTM regulation to immunosenescence is unknown. SUMOylation is a rapid and reversible post-translational modification that has been implicated in age-associated disease and plays conflicting roles in viral replication and antiviral defenses in mammals. We have discovered in Caenorhabditis elegans that induction of antiviral defense is regulated through SUMOylation of DRH-1, the ortholog of the DEAD/H-box helicase and cytosolic pattern recognition receptor RIG-I, and that this regulation breaks down during aging. We find the SUMO isopeptidase ULP-4 is essential for deSUMOylation of DRH-1 and activation of the intracellular pathogen response (IPR) after exposure to Orsay virus (OV), a natural enteric C. elegans pathogen. ULP-4 promotes stabilization of DRH-1, which translocates to the mitochondria to activate the IPR in young animals exposed to virus. Loss of either drh-1 or ulp-4 compromises antiviral defense resulting in a failure to clear the virus and signs of intestinal pathogenesis. During aging, expression of ulp-4 decreases, which results in increased proteosomal degradation of DRH-1 and loss of the IPR. Mutating the DRH-1 SUMOylated lysines resulted in the constitutive activation of the IPR in young animals and partially rescued the age-associated lost inducibility of the IPR. Our work establishes that aging results in dysregulated SUMOylation and loss of DRH-1, which compromises antiviral defense and creates a physiological shift to favor chronic pathological infection in older animals.
Collapse
|
4
|
Wang Q, Lan X, Ke H, Xu S, Huang C, Wang J, Wang X, Huang T, Wu X, Chen M, Guo Y, Zeng L, Tian X, Xiang Y. Histone β-hydroxybutyrylation is critical in reversal of sarcopenia. Aging Cell 2024; 23:e14284. [PMID: 39076122 PMCID: PMC11561670 DOI: 10.1111/acel.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Sarcopenia, a leading cause for global disability and mortality, is an age-related muscular disorder, characterized by accelerated muscle mass loss and functional decline. It is known that caloric restriction (CR), ketogenic diet or endurance exercise lessen sarcopenia and elevate circulating β-hydroxybutyrate (β-HB) levels. Whether the elevated β-HB is essential to the reversal of sarcopenia, however, remains unclear. Here we show in both Caenorhabditis elegans and mouse models that an increase of β-HB reverse myofiber atrophy and improves motor functions at advanced ages. β-HB-induced histone lysine β-hydroxybutyrylation (Kbhb) is indispensable for the reversal of sarcopenia. Histone Kbhb enhances transcription of genes associated with mitochondrial pathways, including oxidative phosphorylation, ATP metabolic process and aerobic respiration. This ultimately leads to improve mitochondrial integrity and enhance mitochondrial respiration. The histone Kbhb are validated in mouse model with CR. Thus, we demonstrate that β-HB induces histone Kbhb, increases mitochondrial function, and reverses sarcopenia.
Collapse
Affiliation(s)
- Qiquan Wang
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Xinqiang Lan
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Hao Ke
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Siman Xu
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Chunping Huang
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Jiali Wang
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Xiang Wang
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Tiane Huang
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Xia Wu
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Mengxin Chen
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Yingqi Guo
- Institutional Center for Shared Technologies and Facilities of the Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Lin Zeng
- Institutional Center for Shared Technologies and Facilities of the Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Xiao‐Li Tian
- Aging and Vascular DiseasesHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| | - Yang Xiang
- Metabolic Control and AgingHuman Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and DiseasesNanchangChina
| |
Collapse
|
5
|
Wang D, Cao Y, Meng M, Qiu J, Ni C, Guo X, Li Y, Liu S, Yu J, Guo M, Wang J, Du B, Qiu W, Xie C, Zhao B, Ma X, Cheng X, Xu L. FOXA3 regulates cholesterol metabolism to compensate for low uptake during the progression of lung adenocarcinoma. PLoS Biol 2024; 22:e3002621. [PMID: 38805565 PMCID: PMC11161053 DOI: 10.1371/journal.pbio.3002621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/07/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
Cholesterol metabolism is vital for multiple cancer progression, while how cholesterol affects lung, a low-cholesterol tissue, for cancer metastasis and the underlying mechanism remain unclear. In this study, we found that metastatic lung adenocarcinoma cells acquire cellular dehydrocholesterol and cholesterol by endogenous cholesterol biosynthesis, instead of uptake upon cholesterol treatment. Besides, we demonstrated that exogenous cholesterol functions as signaling molecule to induce FOXA3, a key transcription factor for lipid metabolism via GLI2. Subsequently, ChIP-seq analysis and molecular studies revealed that FOXA3 transcriptionally activated Hmgcs1, an essential enzyme of cholesterol biosynthesis, to induce endogenous dehydrocholesterol and cholesterol level for membrane composition change and cell migration. Conversely, FOXA3 knockdown or knockout blocked cholesterol biosynthesis and lung adenocarcinoma metastasis in mice. In addition, the potent FOXA3 inhibitor magnolol suppressed metastatic gene programs in lung adenocarcinoma patient-derived organoids (PDOs). Altogether, our findings shed light onto unique cholesterol metabolism and FOXA3 contribution to lung adenocarcinoma metastasis.
Collapse
Affiliation(s)
- Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Department of Gastrointestinal Surgery, the Affiliated Changzhou, No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yuxiang Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chao Ni
- Institute of Organoid Technology, BioGenous Biotechnology, Inc., Suzhou, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenwei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhao
- Institute of Organoid Technology, BioGenous Biotechnology, Inc., Suzhou, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China
| | - Xinghua Cheng
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
6
|
Michaeli L, Spector E, Haeussler S, Carvalho CA, Grobe H, Abu-Shach UB, Zinger H, Conradt B, Broday L. ULP-2 SUMO protease regulates UPR mt and mitochondrial homeostasis in Caenorhabditis elegans. Free Radic Biol Med 2024; 214:19-27. [PMID: 38301974 PMCID: PMC10929073 DOI: 10.1016/j.freeradbiomed.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Mitochondria are the powerhouses of cells, responsible for energy production and regulation of cellular homeostasis. When mitochondrial function is impaired, a stress response termed mitochondrial unfolded protein response (UPRmt) is initiated to restore mitochondrial function. Since mitochondria and UPRmt are implicated in many diseases, it is important to understand UPRmt regulation. In this study, we show that the SUMO protease ULP-2 has a key role in regulating mitochondrial function and UPRmt. Specifically, down-regulation of ulp-2 suppresses UPRmt and reduces mitochondrial membrane potential without significantly affecting cellular ROS. Mitochondrial networks are expanded in ulp-2 null mutants with larger mitochondrial area and increased branching. Moreover, the amount of mitochondrial DNA is increased in ulp-2 mutants. Downregulation of ULP-2 also leads to alterations in expression levels of mitochondrial genes involved in protein import and mtDNA replication, however, mitophagy remains unaltered. In summary, this study demonstrates that ULP-2 is required for mitochondrial homeostasis and the UPRmt.
Collapse
Affiliation(s)
- Lirin Michaeli
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eyal Spector
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Cátia A Carvalho
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hanna Grobe
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ulrike Bening Abu-Shach
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hen Zinger
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Limor Broday
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
7
|
Ziegler DV, Czarnecka-Herok J, Vernier M, Scholtes C, Camprubi C, Huna A, Massemin A, Griveau A, Machon C, Guitton J, Rieusset J, Vigneron AM, Giguère V, Martin N, Bernard D. Cholesterol biosynthetic pathway induces cellular senescence through ERRα. NPJ AGING 2024; 10:5. [PMID: 38216569 PMCID: PMC10786911 DOI: 10.1038/s41514-023-00128-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/30/2023] [Indexed: 01/14/2024]
Abstract
Cellular senescence is a cell program induced by various stresses that leads to a stable proliferation arrest and to a senescence-associated secretory phenotype. Accumulation of senescent cells during age-related diseases participates in these pathologies and regulates healthy lifespan. Recent evidences point out a global dysregulated intracellular metabolism associated to senescence phenotype. Nonetheless, the functional contribution of metabolic homeostasis in regulating senescence is barely understood. In this work, we describe how the mevalonate pathway, an anabolic pathway leading to the endogenous biosynthesis of poly-isoprenoids, such as cholesterol, acts as a positive regulator of cellular senescence in normal human cells. Mechanistically, this mevalonate pathway-induced senescence is partly mediated by the downstream cholesterol biosynthetic pathway. This pathway promotes the transcriptional activity of ERRα that could lead to dysfunctional mitochondria, ROS production, DNA damage and a p53-dependent senescence. Supporting the relevance of these observations, increase of senescence in liver due to a high-fat diet regimen is abrogated in ERRα knockout mouse. Overall, this work unravels the role of cholesterol biosynthesis or level in the induction of an ERRα-dependent mitochondrial program leading to cellular senescence and related pathological alterations.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Joanna Czarnecka-Herok
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
- Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Mathieu Vernier
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
- Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
- Goodman Cancer Research Centre, McGill University, Quebec, Montreal, Canada
| | - Charlotte Scholtes
- Goodman Cancer Research Centre, McGill University, Quebec, Montreal, Canada
| | - Clara Camprubi
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Anda Huna
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
- Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Amélie Massemin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
- Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Audrey Griveau
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Christelle Machon
- Biochemistry and Pharmacology-Toxicology Laboratory, Lyon-Sud Hospital, Hospices Civils de Lyon, F-69495, Pierre Bénite, France
| | - Jérôme Guitton
- Biochemistry and Pharmacology-Toxicology Laboratory, Lyon-Sud Hospital, Hospices Civils de Lyon, F-69495, Pierre Bénite, France
| | | | - Arnaud M Vigneron
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Quebec, Montreal, Canada
- Departments of Biochemistry, Medicine and Oncology, McGill University, Montreal, Quebec, Montreal, Canada
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France.
- Equipe Labellisée la Ligue Contre le Cancer, Lyon, France.
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France.
- Equipe Labellisée la Ligue Contre le Cancer, Lyon, France.
| |
Collapse
|
8
|
Tzouanas CN, Sherman MS, Shay JE, Rubin AJ, Mead BE, Dao TT, Butzlaff T, Mana MD, Kolb KE, Walesky C, Pepe-Mooney BJ, Smith CJ, Prakadan SM, Ramseier ML, Tong EY, Joung J, Chi F, McMahon-Skates T, Winston CL, Jeong WJ, Aney KJ, Chen E, Nissim S, Zhang F, Deshpande V, Lauer GM, Yilmaz ÖH, Goessling W, Shalek AK. Chronic metabolic stress drives developmental programs and loss of tissue functions in non-transformed liver that mirror tumor states and stratify survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569407. [PMID: 38077056 PMCID: PMC10705501 DOI: 10.1101/2023.11.30.569407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Under chronic stress, cells must balance competing demands between cellular survival and tissue function. In metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD/NASH), hepatocytes cooperate with structural and immune cells to perform crucial metabolic, synthetic, and detoxification functions despite nutrient imbalances. While prior work has emphasized stress-induced drivers of cell death, the dynamic adaptations of surviving cells and their functional repercussions remain unclear. Namely, we do not know which pathways and programs define cellular responses, what regulatory factors mediate (mal)adaptations, and how this aberrant activity connects to tissue-scale dysfunction and long-term disease outcomes. Here, by applying longitudinal single-cell multi -omics to a mouse model of chronic metabolic stress and extending to human cohorts, we show that stress drives survival-linked tradeoffs and metabolic rewiring, manifesting as shifts towards development-associated states in non-transformed hepatocytes with accompanying decreases in their professional functionality. Diet-induced adaptations occur significantly prior to tumorigenesis but parallel tumorigenesis-induced phenotypes and predict worsened human cancer survival. Through the development of a multi -omic computational gene regulatory inference framework and human in vitro and mouse in vivo genetic perturbations, we validate transcriptional (RELB, SOX4) and metabolic (HMGCS2) mediators that co-regulate and couple the balance between developmental state and hepatocyte functional identity programming. Our work defines cellular features of liver adaptation to chronic stress as well as their links to long-term disease outcomes and cancer hallmarks, unifying diverse axes of cellular dysfunction around core causal mechanisms.
Collapse
Affiliation(s)
- Constantine N. Tzouanas
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These authors contributed equally
| | - Marc S. Sherman
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- These authors contributed equally
| | - Jessica E.S. Shay
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Adam J. Rubin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin E. Mead
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler T. Dao
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Titus Butzlaff
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Miyeko D. Mana
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kellie E. Kolb
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chad Walesky
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J. Pepe-Mooney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Colton J. Smith
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sanjay M. Prakadan
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle L. Ramseier
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evelyn Y. Tong
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Joung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Fangtao Chi
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Thomas McMahon-Skates
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolyn L. Winston
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Woo-Jeong Jeong
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine J. Aney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ethan Chen
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sahar Nissim
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Georg M. Lauer
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ömer H. Yilmaz
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- These senior authors contributed equally
| | - Wolfram Goessling
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA, USA
- These senior authors contributed equally
| | - Alex K. Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These senior authors contributed equally
| |
Collapse
|
9
|
ERRα Up-Regulates Invadopodia Formation by Targeting HMGCS1 to Promote Endometrial Cancer Invasion and Metastasis. Int J Mol Sci 2023; 24:ijms24044010. [PMID: 36835419 PMCID: PMC9964422 DOI: 10.3390/ijms24044010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Estrogen-related receptor alpha (ERRα) plays an important role in endometrial cancer (EC) progression. However, the biological roles of ERRα in EC invasion and metastasis are not clear. This study aimed to investigate the role of ERRα and 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) in regulating intracellular cholesterol metabolism to promote EC progression. ERRα and HMGCS1 interactions were detected by co-immunoprecipitation, and the effects of ERRα/HMGCS1 on the metastasis of EC were investigated by wound-healing and transwell chamber invasion assays. Cellular cholesterol content was measured to verify the relationship between ERRα and cellular cholesterol metabolism. Additionally, immunohistochemistry was performed to confirm that ERRα and HMGCS1 were related to EC progression. Furthermore, the mechanism was investigated using loss-of-function and gain-of-function assays or treatment with simvastatin. High expression levels of ERRα and HMGCS1 promoted intracellular cholesterol metabolism for invadopodia formation. Moreover, inhibiting ERRα and HMGCS1 expression significantly weakened the malignant progression of EC in vitro and in vivo. Our functional analysis showed that ERRα promoted EC invasion and metastasis through the HMGCS1-mediated intracellular cholesterol metabolism pathway, which was dependent on the epithelial-mesenchymal transition pathway. Our findings suggest that ERRα and HMGCS1 are potential targets to suppress EC progression.
Collapse
|
10
|
Zhang X, Sun C, Wan J, Zhang X, Jia Y, Zhou C. Compartmentalized activities of HMGCS1 control cervical cancer radiosensitivity. Cell Signal 2023; 101:110507. [PMID: 36328117 DOI: 10.1016/j.cellsig.2022.110507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
The underlying mechanisms by which cellular metabolism affects cervical cancer cell radiosensitivity remain poorly understood. Here, we found that loss of 3-hydroxy-3-methylglutaryl coenzyme A synthase 1 (HMGCS1), a key enzyme catalyzing the conversion of acetoacetyl-CoA to HMG-CoA in the cholesterol biosynthesis pathway, sensitizes the cervical cancer cells to radiation. We observed a compartmentalized cellular distribution of HMGCS1 in nuclei, cytosol, and mitochondria of cervical cancer cells and found that cytosolic HMGCS1 and mitochondrial HMGCS1 contribute together to the regulation of radiosensitivity. Mechanistically, we show that cytosolic HMGCS1 regulates radiosensitivity via manipulating the cholesterol metabolism, while mitochondrial HMGCS1 controls mitochondrial gene expression, thereby sustaining the mitochondrial function of cervical cancer cells. Together, our study identifies HMGCS1 as a novel regulator of radiosensitivty in cervical cancer cells, providing a molecular link between altered cholesterol metabolism, mitochondrial respiration, and radiosensitivity. Thus, targeting HMGCS1 may improve the therapeutic outcome of cervical cancer radiotherapy.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Congcong Sun
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Jinliang Wan
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Xiaoxue Zhang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Yanhan Jia
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Chao Zhou
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China.
| |
Collapse
|
11
|
Mondal P, Tiwary N, Sengupta A, Dhang S, Roy S, Das C. Epigenetic Reprogramming of the Glucose Metabolic Pathways by the Chromatin Effectors During Cancer. Subcell Biochem 2022; 100:269-336. [PMID: 36301498 DOI: 10.1007/978-3-031-07634-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glucose metabolism plays a vital role in regulating cellular homeostasis as it acts as the central axis for energy metabolism, alteration in which may lead to serious consequences like metabolic disorders to life-threatening diseases like cancer. Malignant cells, on the other hand, help in tumor progression through abrupt cell proliferation by adapting to the changed metabolic milieu. Metabolic intermediates also vary from normal cells to cancerous ones to help the tumor manifestation. However, metabolic reprogramming is an important phenomenon of cells through which they try to maintain the balance between normal and carcinogenic outcomes. In this process, transcription factors and chromatin modifiers play an essential role to modify the chromatin landscape of important genes related directly or indirectly to metabolism. Our chapter surmises the importance of glucose metabolism and the role of metabolic intermediates in the cell. Also, we summarize the influence of histone effectors in reprogramming the cancer cell metabolism. An interesting aspect of this chapter includes the detailed methods to detect the aberrant metabolic flux, which can be instrumental for the therapeutic regimen of cancer.
Collapse
Affiliation(s)
- Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Niharika Tiwary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Sinjini Dhang
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Siddhartha Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.
- Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
12
|
Krishna AP, John S, Shinde PL, Mishra R. Proteo-transcriptomics meta-analysis identifies SUMO2 as a promising target in glioblastoma multiforme therapeutics. Cancer Cell Int 2021; 21:575. [PMID: 34715855 PMCID: PMC8555349 DOI: 10.1186/s12935-021-02279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is a deadly brain tumour with minimal survival rates due to the ever-expanding heterogeneity, chemo and radioresistance. Kinases are known to crucially drive GBM pathology; however, a rationale therapeutic combination that can simultaneously inhibit multiple kinases has not yet emerged successfully. Results Here, we analyzed the GBM patient data from several publicly available repositories and deduced hub GBM kinases, most of which were identified to be SUMOylated by SUMO2/3 isoforms. Not only the hub kinases but a significant proportion of GBM upregulated genes involved in proliferation, metastasis, invasion, epithelial-mesenchymal transition, stemness, DNA repair, stromal and macrophages maintenance were also identified to be the targets of SUMO2 isoform. Correlatively, high expression of SUMO2 isoform was found to be significantly associated with poor patient survival. Conclusions Although many natural products and drugs are evidenced to target general SUMOylation, however, our meta-analysis strongly calls for the need to design SUMO2/3 or even better SUMO2 specific inhibitors and also explore the SUMO2 transcription inhibitors for universally potential, physiologically non-toxic anti-GBM drug therapy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02279-y. The major highlights of this study are as follows:Key upregulated hub kinases and coding genes in GBM are found to be targets of SUMO2 conjugation. SUMO2 is significantly expressed in adult primary and recurrent GBMs as well as in pediatric GBM tumours. Orthotropic xenografts from adult and pediatric GBMs confirm high expression of SUMO2 in GBM tumour samples. SUMO2 is significantly associated with patient survival plot and pan-cancer cell fitness. Rationale design of SUMO2 inhibitors or search for its transcriptional inhibitors is urgently required through industry-academia collaboration for an anti-GBM and potentially pan-cancer therapeutics.
Collapse
Affiliation(s)
- Aswani P Krishna
- Brain and Cerebro-Vascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Sebastian John
- Brain and Cerebro-Vascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Puja Laxmanrao Shinde
- Brain and Cerebro-Vascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Rashmi Mishra
- Brain and Cerebro-Vascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
13
|
Sharpe LJ, Coates HW, Brown AJ. Post-translational control of the long and winding road to cholesterol. J Biol Chem 2021; 295:17549-17559. [PMID: 33453997 DOI: 10.1074/jbc.rev120.010723] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
The synthesis of cholesterol requires more than 20 enzymes, many of which are intricately regulated. Post-translational control of these enzymes provides a rapid means for modifying flux through the pathway. So far, several enzymes have been shown to be rapidly degraded through the ubiquitin-proteasome pathway in response to cholesterol and other sterol intermediates. Additionally, several enzymes have their activity altered through phosphorylation mechanisms. Most work has focused on the two rate-limiting enzymes: 3-hydroxy-3-methylglutaryl CoA reductase and squalene monooxygenase. Here, we review current literature in the area to define some common themes in the regulation of the entire cholesterol synthesis pathway. We highlight the rich variety of inputs controlling each enzyme, discuss the interplay that exists between regulatory mechanisms, and summarize findings that reveal an intricately coordinated network of regulation along the cholesterol synthesis pathway. We provide a roadmap for future research into the post-translational control of cholesterol synthesis, and no doubt the road ahead will reveal further twists and turns for this fascinating pathway crucial for human health and disease.
Collapse
Affiliation(s)
- Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
The role of SUMOylation during development. Biochem Soc Trans 2021; 48:463-478. [PMID: 32311032 PMCID: PMC7200636 DOI: 10.1042/bst20190390] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
During the development of multicellular organisms, transcriptional regulation plays an important role in the control of cell growth, differentiation and morphogenesis. SUMOylation is a reversible post-translational process involved in transcriptional regulation through the modification of transcription factors and through chromatin remodelling (either modifying chromatin remodelers or acting as a ‘molecular glue’ by promoting recruitment of chromatin regulators). SUMO modification results in changes in the activity, stability, interactions or localization of its substrates, which affects cellular processes such as cell cycle progression, DNA maintenance and repair or nucleocytoplasmic transport. This review focuses on the role of SUMO machinery and the modification of target proteins during embryonic development and organogenesis of animals, from invertebrates to mammals.
Collapse
|
15
|
Xu J, Taubert S. Beyond Proteostasis: Lipid Metabolism as a New Player in ER Homeostasis. Metabolites 2021; 11:52. [PMID: 33466824 PMCID: PMC7830277 DOI: 10.3390/metabo11010052] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Biological membranes are not only essential barriers that separate cellular and subcellular structures, but also perform other critical functions such as the initiation and propagation of intra- and intercellular signals. Each membrane-delineated organelle has a tightly regulated and custom-made membrane lipid composition that is critical for its normal function. The endoplasmic reticulum (ER) consists of a dynamic membrane network that is required for the synthesis and modification of proteins and lipids. The accumulation of unfolded proteins in the ER lumen activates an adaptive stress response known as the unfolded protein response (UPR-ER). Interestingly, recent findings show that lipid perturbation is also a direct activator of the UPR-ER, independent of protein misfolding. Here, we review proteostasis-independent UPR-ER activation in the genetically tractable model organism Caenorhabditis elegans. We review the current knowledge on the membrane lipid composition of the ER, its impact on organelle function and UPR-ER activation, and its potential role in human metabolic diseases. Further, we summarize the bi-directional interplay between lipid metabolism and the UPR-ER. We discuss recent progress identifying the different respective mechanisms by which disturbed proteostasis and lipid bilayer stress activate the UPR-ER. Finally, we consider how genetic and metabolic disturbances may disrupt ER homeostasis and activate the UPR and discuss how using -omics-type analyses will lead to more comprehensive insights into these processes.
Collapse
Affiliation(s)
- Jiaming Xu
- Graduate Program in Cell and Developmental Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Healthy Starts Theme, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Stefan Taubert
- Graduate Program in Cell and Developmental Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Healthy Starts Theme, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
16
|
Li P, Jing H, Wang Y, Yuan L, Xiao H, Zheng Q. SUMO modification in apoptosis. J Mol Histol 2020; 52:1-10. [PMID: 33225418 PMCID: PMC7790789 DOI: 10.1007/s10735-020-09924-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
Apoptosis and clearance of dead cells is highly evolutionarily conserved from nematode to humans, which is crucial to the growth and development of multicellular organism. Fail to remove apoptotic cells often lead to homeostasis imbalance, fatal autoimmune diseases, and neurodegenerative diseases. Small ubiquitin-related modifiers (SUMOs) modification is a post-translational modification of ubiquitin proteins mediated by the sentrin-specific proteases (SENPs) family. SUMO modification is widely involved in many cellular biological process, and abnormal SUMO modification is also closely related to many major human diseases. Recent researches have revealed that SUMO modification event occurs during apoptosis and clearance of apoptotic cells, and plays an important role in the regulation of apoptotic signaling pathways. This review summarizes some recent progress in the revelation of regulatory mechanisms of these pathways and provides some potential researching hotpots of the SUMO modification regulation to apoptosis.
Collapse
Affiliation(s)
- Peiyao Li
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Huiru Jing
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanzhe Wang
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lei Yuan
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Qian Zheng
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
17
|
Itani OA, Zhong X, Tang X, Scott BA, Yan JY, Flibotte S, Lim Y, Hsieh AC, Bruce JE, Van Gilst M, Crowder CM. Coordinate Regulation of Ribosome and tRNA Biogenesis Controls Hypoxic Injury and Translation. Curr Biol 2020; 31:128-137.e5. [PMID: 33157031 DOI: 10.1016/j.cub.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
The translation machinery is composed of a myriad of proteins and RNAs whose levels must be coordinated to efficiently produce proteins without wasting energy or substrate. However, protein synthesis is clearly not always perfectly tuned to its environment, as disruption of translation machinery components can lengthen lifespan and stress survival. While much has been learned from bacteria and yeast about translational regulation, much less is known in metazoans. In a screen for mutations protecting C. elegans from hypoxic stress, we isolated multiple genes impacting protein synthesis: a ribosomal RNA helicase gene, tRNA biosynthesis genes, and a gene controlling amino acid availability. To define better the mechanisms by which these genes impact protein synthesis, we performed a second screen for suppressors of the conditional developmental arrest phenotype of the RNA helicase mutant and identified genes involved in ribosome biogenesis. Surprisingly, these suppressor mutations restored normal hypoxic sensitivity and protein synthesis to the tRNA biogenesis mutants, but not to the mutant reducing amino acid uptake. Proteomic analysis demonstrated that reduced tRNA biosynthetic activity produces a selective homeostatic reduction in ribosomal subunits, thereby offering a mechanism for the suppression results. Our study uncovers an unrecognized higher-order-translation regulatory mechanism in a metazoan whereby ribosome biogenesis genes communicate with genes controlling tRNA abundance matching the global rate of protein synthesis with available resources.
Collapse
Affiliation(s)
- Omar A Itani
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA
| | - Xuefei Zhong
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Barbara A Scott
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA
| | - Jun Yi Yan
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA; Department of Anesthesiology, Central Hospital of Changdian, Dandong, Liaoning 118214, China
| | - Stephane Flibotte
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall Vancouver, BC V6T 1Z3, Canada
| | - Yiting Lim
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Andrew C Hsieh
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA; Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA; Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6420, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Marc Van Gilst
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA
| | - C Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA; Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA.
| |
Collapse
|
18
|
Sapir A. Not So Slim Anymore-Evidence for the Role of SUMO in the Regulation of Lipid Metabolism. Biomolecules 2020; 10:E1154. [PMID: 32781719 PMCID: PMC7466032 DOI: 10.3390/biom10081154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
One of the basic building blocks of all life forms are lipids-biomolecules that dissolve in nonpolar organic solvents but not in water. Lipids have numerous structural, metabolic, and regulative functions in health and disease; thus, complex networks of enzymes coordinate the different compositions and functions of lipids with the physiology of the organism. One type of control on the activity of those enzymes is the conjugation of the Small Ubiquitin-like Modifier (SUMO) that in recent years has been identified as a critical regulator of many biological processes. In this review, I summarize the current knowledge about the role of SUMO in the regulation of lipid metabolism. In particular, I discuss (i) the role of SUMO in lipid metabolism of fungi and invertebrates; (ii) the function of SUMO as a regulator of lipid metabolism in mammals with emphasis on the two most well-characterized cases of SUMO regulation of lipid homeostasis. These include the effect of SUMO on the activity of two groups of master regulators of lipid metabolism-the Sterol Regulatory Element Binding Protein (SERBP) proteins and the family of nuclear receptors-and (iii) the role of SUMO as a regulator of lipid metabolism in arteriosclerosis, nonalcoholic fatty liver, cholestasis, and other lipid-related human diseases.
Collapse
Affiliation(s)
- Amir Sapir
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon 36006, Israel
| |
Collapse
|
19
|
Otarigho B, Aballay A. Cholesterol Regulates Innate Immunity via Nuclear Hormone Receptor NHR-8. iScience 2020; 23:101068. [PMID: 32361270 PMCID: PMC7195545 DOI: 10.1016/j.isci.2020.101068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/09/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cholesterol is an essential nutrient for the function of diverse biological processes and for steroid biosynthesis across metazoans. However, the role of cholesterol in immune function remains understudied. Using the nematode Caenorhabditis elegans, which depends on the external environment for cholesterol, we studied the relationship between cholesterol and innate immunity. We found that the transporter CHUP-1 is required for the effect of cholesterol in the development of innate immunity and that the cholesterol-mediated immune response requires the nuclear hormone receptor NHR-8. Cholesterol acts through NHR-8 to transcriptionally regulate immune genes that are controlled by conserved immune pathways, including a p38/PMK-1 MAPK pathway, a DAF-2/DAF-16 insulin pathway, and an Nrf/SKN-1 pathway. Our results indicate that cholesterol plays a key role in the activation of conserved microbicidal pathways that are essential for survival against bacterial infections.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
20
|
Talamillo A, Ajuria L, Grillo M, Barroso-Gomila O, Mayor U, Barrio R. SUMOylation in the control of cholesterol homeostasis. Open Biol 2020; 10:200054. [PMID: 32370667 PMCID: PMC7276529 DOI: 10.1098/rsob.200054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SUMOylation—protein modification by the small ubiquitin-related modifier (SUMO)—affects several cellular processes by modulating the activity, stability, interactions or subcellular localization of a variety of substrates. SUMO modification is involved in most cellular processes required for the maintenance of metabolic homeostasis. Cholesterol is one of the main lipids required to preserve the correct cellular function, contributing to the composition of the plasma membrane and participating in transmembrane receptor signalling. Besides these functions, cholesterol is required for the synthesis of steroid hormones, bile acids, oxysterols and vitamin D. Cholesterol levels need to be tightly regulated: in excess, it is toxic to the cell, and the disruption of its homeostasis is associated with various disorders like atherosclerosis and cardiovascular diseases. This review focuses on the role of SUMO in the regulation of proteins involved in the metabolism of cholesterol.
Collapse
Affiliation(s)
- Ana Talamillo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Leiore Ajuria
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Marco Grillo
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Orhi Barroso-Gomila
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| |
Collapse
|
21
|
Wang IH, Huang TT, Chen JL, Chu LW, Ping YH, Hsu KW, Huang KH, Fang WL, Lee HC, Chen CF, Liao CC, Hsieh RH, Yeh TS. Mevalonate Pathway Enzyme HMGCS1 Contributes to Gastric Cancer Progression. Cancers (Basel) 2020; 12:1088. [PMID: 32349352 PMCID: PMC7281414 DOI: 10.3390/cancers12051088] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 01/26/2023] Open
Abstract
The 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) is a potential regulatory node in the mevalonate pathway that is frequently dysregulated in tumors. This study found that HMGCS1 expression is upregulated in stomach adenocarcinoma samples of patients and tumorspheres of gastric cancer cells. HMGCS1 elevates the expression levels of the pluripotency genes Oct4 and SOX-2 and contributes to tumorsphere formation ability in gastric cancer cells. HMGCS1 also promotes in vitro cell growth and progression and the in vivo tumor growth and lung metastasis of gastric cancer cells. After blocking the mevalonate pathway by statin and dipyridamole, HMGCS1 exerts nonmetabolic functions in enhancing gastric cancer progression. Furthermore, the level and nuclear translocation of HMGCS1 in gastric cancer cells are induced by serum deprivation. HMGCS1 binds to and activates Oct4 and SOX-2 promoters. HMGCS1 also enhances the integrated stress response (ISR) and interacts with the endoplasmic reticulum (ER) stress transducer protein kinase RNA-like endoplasmic reticulum kinase (PERK). Our results reveal that HMGCS1 contributes to gastric cancer progression in both metabolic and nonmetabolic manners.
Collapse
Affiliation(s)
- I-Han Wang
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 112, Taiwan;
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (T.-T.H.); (J.-L.C.)
| | - Tzu-Ting Huang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (T.-T.H.); (J.-L.C.)
| | - Ji-Lin Chen
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (T.-T.H.); (J.-L.C.)
| | - Li-Wei Chu
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (L.-W.C.); (Y.-H.P.); (H.-C.L.)
| | - Yueh-Hsin Ping
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (L.-W.C.); (Y.-H.P.); (H.-C.L.)
| | - Kai-Wen Hsu
- Research Center for Tumor Medical Science, China Medical University, Taichung 404, Taiwan;
- Graduate Institutes of New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Kuo-Hung Huang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (K.-H.H.); (W.-L.F.)
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Liang Fang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (K.-H.H.); (W.-L.F.)
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (L.-W.C.); (Y.-H.P.); (H.-C.L.)
| | - Chian-Feng Chen
- Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan;
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei 112, Taiwan;
| | - Rong-Hong Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan;
| | - Tien-Shun Yeh
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (T.-T.H.); (J.-L.C.)
- Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan;
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
22
|
Azevedo LF, Hornos Carneiro MF, Dechandt CRP, Cassoli JS, Alberici LC, Barbosa F. Global liver proteomic analysis of Wistar rats chronically exposed to low-levels of bisphenol A and S. ENVIRONMENTAL RESEARCH 2020; 182:109080. [PMID: 31901629 DOI: 10.1016/j.envres.2019.109080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 05/26/2023]
Abstract
Exposure to bisphenol A (BPA) and bisphenol S (BPS) has been associated with the development of metabolic disorders, such as obesity, dyslipidemias, and nonalcoholic fatty liver disease. Nonetheless, the associated mechanisms are still not fully understood. BPS is being used with no restrictions to replace BPA, which increases the concern regarding its safety and claims for further investigation on its potential mechanisms of toxicity. The present study aims to access liver molecular disturbances which could be associated with systemic metabolic disorders following exposure to BPA or BPS. Therefore, body weight gain and serum biochemical parameters were measured in male Wistar rats chronically exposed to 50 or 500 µg/kg/day of BPA or BPS, while an extensive evaluation of liver protein expression changes was conducted after exposure to 50 µg/kg/day of both compounds. Exposure to the lowest dose of BPA led to the development of hyperglycemia and hypercholesterolemia, while the BPS lowest dose led to the development of hypertriglyceridemia. Besides, exposure to 500 µg/kg/day of BPS significantly increased body weight gain and LDL-cholesterol levels. Hepatic proteins differentially expressed in BPA and BPS-exposed groups compared to the control group were mostly related to lipid metabolism and synthesis, with upregulation of glucokinase activity-related sequence 1 (1.8-fold in BPA and 2.4-fold in BPS), which is involved in glycerol triglycerides synthesis, and hydroxymethylglutaryl-CoA synthase cytoplasmic (2-fold in BPS), an enzyme involved in mevalonate biosynthesis. Essential mitochondrial proteins of the electron transport chain were upregulated after exposure to both contaminants. Also, BPA and BPS dysregulated expression of liver antioxidant enzymes, which are involved in cellular reactive oxygen species detoxification. Altogether, the results of the present study contribute to expand the scientific understanding of how BPA and BPS lead to the development of metabolic disorders and reinforce the risks associated with exposure to these contaminants.
Collapse
Affiliation(s)
- Lara Ferreira Azevedo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Maria Fernanda Hornos Carneiro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil; Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Carlos Roberto Porto Dechandt
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | | | - Luciane Carla Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil.
| |
Collapse
|
23
|
Jahn A, Scherer B, Fritz G, Honnen S. Statins Induce a DAF-16/Foxo-dependent Longevity Phenotype via JNK-1 through Mevalonate Depletion in C. elegans. Aging Dis 2020; 11:60-72. [PMID: 32010481 PMCID: PMC6961767 DOI: 10.14336/ad.2019.0416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/16/2019] [Indexed: 01/01/2023] Open
Abstract
Statins belong to the most pre-scribed cholesterol lowering drugs in western countries. Their competitive inhibition of the HMG-CoA reductase causes a reduction in the mevalonate pool, resulting in reduced cholesterol biosynthesis, impaired protein prenylation and glycosylation. Recently, a cohort study showed a decreased mortality rate in humans between age 78-90 going along with statin therapy, which is independent of blood cholesterol levels. As C. elegans harbors the mevalonate pathway, but is cholesterol-auxotroph, it is particularly suitable to study cholesterol-independent effects of statins on aging-associated phenotypes. Here, we show that low doses of lovastatin or a mild HMG-CoA reductase knockdown via hmgr-1(RNAi) in C. elegans substantially attenuate aging pigment accumulation, which is a well-established surrogate marker for biological age. Consistently, for two statins we found dosages, which prolonged the lifespan of C. elegans. Together with an observed reduced fertility, slower developmental timing and thermal stress resistance this complex of outcomes point to the involvement of DAF-16/hFOXO3a, the master regulator of stress resistance and longevity. Accordingly, prolonged low-dose statin exposure leads to an increased expression of jnk-1, a known activator of DAF-16. Moreover, the beneficial effects of statins on aging pigments and lifespan depend on DAF-16 and JNK-1, as shown in epistasis analyses. These effects can be reverted by mevalonate supplementation. In conclusion, we describe a lifespan extension in C. elegans, which is conferred via two well-conserved stress-related factors (JNK-1, DAF-16) and results from mevalonate depletion.
Collapse
Affiliation(s)
- Andreas Jahn
- Heinrich Heine University Dusseldorf, Medical Faculty, Institute of Toxicology, D-40225 Dusseldorf, Germany
| | - Bo Scherer
- Heinrich Heine University Dusseldorf, Medical Faculty, Institute of Toxicology, D-40225 Dusseldorf, Germany
| | - Gerhard Fritz
- Heinrich Heine University Dusseldorf, Medical Faculty, Institute of Toxicology, D-40225 Dusseldorf, Germany
| | - Sebastian Honnen
- Heinrich Heine University Dusseldorf, Medical Faculty, Institute of Toxicology, D-40225 Dusseldorf, Germany
| |
Collapse
|
24
|
Shen Y, Ding M, Xie Z, Liu X, Yang H, Jin S, Xu S, Zhu Z, Wang Y, Wang D, Xu L, Zhou X, Wang P, Bi J. Activation of Mitochondrial Unfolded Protein Response in SHSY5Y Expressing APP Cells and APP/PS1 Mice. Front Cell Neurosci 2020; 13:568. [PMID: 31969805 PMCID: PMC6960128 DOI: 10.3389/fncel.2019.00568] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/09/2019] [Indexed: 01/16/2023] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia. Amyloid β-peptide (Aβ) deposition is a major neuropathologic feature of AD. When unfolded or misfolded proteins accumulate in mitochondria, the unfolded protein responses (UPRmt) is initiated. Numerous lines of evidence show that AD pathogenesis involves mitochondrial dysfunction. However little is known about whether the UPRmt is engaged in the process of AD development. In this study, we investigated the UPRmt in mouse and cell models of AD. We found that UPRmt was activated in the brain of 3 and 9 months old APP/PS1 mice, and in the SHSY5Y cells after exposure to Aβ25–35, Aβ25–35 triggered UPRmt in SHSY5Y cells could be attenuated upon administration of simvastatin or siRNA for HMGCS-1 to inhibit the mevalonate pathway, and or upon knocking down Serine palmitoyltransferase long chain subunit 1 (SPTLC-1) to lower sphingolipid biosynthesis. We observed that inhibition of UPRmt aggravated cytotoxic effects of Aβ25–35 in SHSY5Y cells. Our research suggests that the UPRmt activation and two pathways necessary for this response, and further provides evidence for the cytoprotective effect of UPRmt during the AD process.
Collapse
Affiliation(s)
- Yang Shen
- Medicine School, Shandong University, Jinan, China
| | - Mao Ding
- Medicine School, Shandong University, Jinan, China
| | - Zhaohong Xie
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | | | - Hui Yang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Suqin Jin
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Shunliang Xu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Zhengyu Zhu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Yun Wang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Dewei Wang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Linlin Xu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Xiaoyan Zhou
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Ping Wang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Jianzhong Bi
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
25
|
Findlay AR, Bengoechea R, Pittman SK, Chou TF, True HL, Weihl CC. Lithium chloride corrects weakness and myopathology in a preclinical model of LGMD1D. NEUROLOGY-GENETICS 2019; 5:e318. [PMID: 31123706 PMCID: PMC6510529 DOI: 10.1212/nxg.0000000000000318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
Objective To understand DNAJB6's function in skeletal muscle and identify therapeutic targets for limb-girdle muscular dystrophy 1D (LGMD1D). Methods DNAJB6 knockout (KO) myoblasts were generated with Crispr/cas9 technology, and differentially accumulated proteins were identified using stable isotope labeling, followed by quantitative mass spectrometry. Cultured KO myotubes and mouse muscle from DNAJB6b-WT or DNAJB6b-F93L mice were analyzed using histochemistry, immunohistochemistry, and immunoblot. Mouse functional strength measures included forelimb grip strength and inverted wire hang. Results DNAJB6 inactivation leads to the accumulation of sarcomeric proteins and hypertrophic myotubes with an enhanced fusion index. The increased fusion in DNAJB6 KO myotubes correlates with diminished glycogen synthase kinase-β (GSK3β) activity. In contrast, LGMD1D mutations in DNAJB6 enhance GSK3β activation and suppress β-catenin and NFAT3c signaling. GSK3β inhibition with lithium chloride improves muscle size and strength in an LGMD1D preclinical mouse model. Conclusions Our results suggest that DNAJB6 facilitates protein quality control and negatively regulates myogenic signaling. In addition, LGMD1D-associated DNAJB6 mutations inhibit myogenic signaling through augmented GSK3β activity. GSK3β inhibition with lithium chloride may be a therapeutic option in LGMD1D.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University School of Medicine (A.R.F., R.B., S.K.P., H.L.T., C.C.W); Department of Neurology (A.R.F., R.B., S.K.P., C.C.W), Hope Center for Neurological Diseases, St. Louis, MO; Harbor-UCLA Medical Center (T.-F.C.), Department of Pediatrics, Division of Medical Genetics, Torrance, CA; Department of Cell Biology and Physiology (H.L.T.), Saint Louis, MO
| | - Rocio Bengoechea
- Washington University School of Medicine (A.R.F., R.B., S.K.P., H.L.T., C.C.W); Department of Neurology (A.R.F., R.B., S.K.P., C.C.W), Hope Center for Neurological Diseases, St. Louis, MO; Harbor-UCLA Medical Center (T.-F.C.), Department of Pediatrics, Division of Medical Genetics, Torrance, CA; Department of Cell Biology and Physiology (H.L.T.), Saint Louis, MO
| | - Sara K Pittman
- Washington University School of Medicine (A.R.F., R.B., S.K.P., H.L.T., C.C.W); Department of Neurology (A.R.F., R.B., S.K.P., C.C.W), Hope Center for Neurological Diseases, St. Louis, MO; Harbor-UCLA Medical Center (T.-F.C.), Department of Pediatrics, Division of Medical Genetics, Torrance, CA; Department of Cell Biology and Physiology (H.L.T.), Saint Louis, MO
| | - Tsui-Fen Chou
- Washington University School of Medicine (A.R.F., R.B., S.K.P., H.L.T., C.C.W); Department of Neurology (A.R.F., R.B., S.K.P., C.C.W), Hope Center for Neurological Diseases, St. Louis, MO; Harbor-UCLA Medical Center (T.-F.C.), Department of Pediatrics, Division of Medical Genetics, Torrance, CA; Department of Cell Biology and Physiology (H.L.T.), Saint Louis, MO
| | - Heather L True
- Washington University School of Medicine (A.R.F., R.B., S.K.P., H.L.T., C.C.W); Department of Neurology (A.R.F., R.B., S.K.P., C.C.W), Hope Center for Neurological Diseases, St. Louis, MO; Harbor-UCLA Medical Center (T.-F.C.), Department of Pediatrics, Division of Medical Genetics, Torrance, CA; Department of Cell Biology and Physiology (H.L.T.), Saint Louis, MO
| | - Conrad C Weihl
- Washington University School of Medicine (A.R.F., R.B., S.K.P., H.L.T., C.C.W); Department of Neurology (A.R.F., R.B., S.K.P., C.C.W), Hope Center for Neurological Diseases, St. Louis, MO; Harbor-UCLA Medical Center (T.-F.C.), Department of Pediatrics, Division of Medical Genetics, Torrance, CA; Department of Cell Biology and Physiology (H.L.T.), Saint Louis, MO
| |
Collapse
|
26
|
Wu B, Xiao X, Li S, Zuo G. Transcriptomics and metabonomics of the anti-aging properties of total flavones of Epimedium in relation to lipid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:73-80. [PMID: 30278205 DOI: 10.1016/j.jep.2018.09.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Total flavones of Epimedium (TFE) is the main active ingredient in Herba Epimedii, which is a well-known Chinese herbal medicine that is widely used to treat certain age-related diseases in oriental countries. AIM OF THE STUDY The aim of this work was to investigate the anti-aging properties of TFE related to lipid metabolism. MATERIALS AND METHODS Both transcriptomics and metabonomics were applied in this work to investigate the anti-aging properties of TFE. Microarray and LC-MS analysis were conducted on liver samples of three groups of rats, including young (4 months), old (24 months), and old rats administrated TFE. RESULTS Transcriptomics analysis highlighted 287 transcripts related to the anti-aging effect of TFE, in which the expression ratio of 18 genes regulating lipid metabolism, including HMGCS1 and NR1H3, returned to normal levels after TFE treatment. In addition, 24 aging-related metabolites were discovered in a metabonomics study, and 15 of these were structurally identified, including palmitic amide, linoleamide, and oleamide. Bioinformatics and integral data analysis on the results of the transcriptomics and metabonomics suggest the involvement of 12 key metabolic pathways, half of which are highly related to lipid metabolism. CONCLUSIONS This study demonstrates that the role played by TFE in the lipid metabolism of aging rats is multifaceted and multi-layered.
Collapse
Affiliation(s)
- Bin Wu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, PR China
| | - Xue Xiao
- Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shasha Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China.
| | - Guoqing Zuo
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, PR China.
| |
Collapse
|
27
|
Gao K, Li Y, Hu S, Liu Y. SUMO peptidase ULP-4 regulates mitochondrial UPR-mediated innate immunity and lifespan extension. eLife 2019; 8:41792. [PMID: 30642431 PMCID: PMC6355198 DOI: 10.7554/elife.41792] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
Animals respond to mitochondrial stress with the induction of mitochondrial unfolded protein response (UPRmt). A cascade of events occur upon UPRmt activation, ultimately triggering a transcriptional response governed by two transcription factors: DVE-1 and ATFS-1. Here we identify SUMO-specific peptidase ULP-4 as a positive regulator of C. elegans UPRmt to control SUMOylation status of DVE-1 and ATFS-1. SUMOylation affects these two axes in the transcriptional program of UPRmt with distinct mechanisms: change of DVE-1 subcellular localization vs. change of ATFS-1 stability and activity. Our findings reveal a post-translational modification that promotes immune response and lifespan extension during mitochondrial stress. Most animal cells carry compartments called mitochondria. These tiny powerhouses produce the energy that fuels many life processes, but they also store important compounds and can even cause an infected or defective cell to kill itself. For a cell, keeping its mitochondria healthy is often a matter of life and death: failure to do so is linked with aging, cancer or diseases such as Alzheimer’s. The cell uses a surveillance program called the mitochondrial unfolded protein response to assess the health of its mitochondria. If something is amiss, the cell activates specific mechanisms to fix the problem, which involves turning on specific genes in its genome. A protein named ULP-4, which is found in the worm Caenorhabditis elegans but also in humans, participates in this process. This enzyme cuts off chemical ‘tags’ known as SUMO from proteins. Adding and removing these labels changes the place and role of a protein in the cell. However, it was still unclear how ULP-4 played a role in the mitochondrial unfolded protein response. Here, Gao et al. show that when mitochondria are in distress, ULP-4 removes SUMO from DVE-1 and ATFS-1, two proteins that control separate arms of the mitochondrial unfolded protein response. Without SUMO tags, DVE-1 can relocate to the area in the cell where it can turn on genes that protect and repair mitochondria; meanwhile SUMO-free ATFS-1 becomes more stable and can start acting on the genome. Finally, the experiments show that removing SUMO on DVE-1 and ATFS-1 is essential to keep the worms healthy and with a long lifespan under mitochondrial stress. The experiments by Gao et al. show that the mitochondrial unfolded protein response relies, at least in part, on SUMO tags. This knowledge opens new avenues of research, and could help fight diseases that emerge when mitochondria fail.
Collapse
Affiliation(s)
- Kaiyu Gao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yi Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shumei Hu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
28
|
Moll L, Roitenberg N, Bejerano-Sagie M, Boocholez H, Carvalhal Marques F, Volovik Y, Elami T, Siddiqui AA, Grushko D, Biram A, Lampert B, Achache H, Ravid T, Tzur YB, Cohen E. The insulin/IGF signaling cascade modulates SUMOylation to regulate aging and proteostasis in Caenorhabditis elegans. eLife 2018; 7:38635. [PMID: 30403374 PMCID: PMC6277199 DOI: 10.7554/elife.38635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/06/2018] [Indexed: 12/02/2022] Open
Abstract
Although aging-regulating pathways were discovered a few decades ago, it is not entirely clear how their activities are orchestrated, to govern lifespan and proteostasis at the organismal level. Here, we utilized the nematode Caenorhabditis elegans to examine whether the alteration of aging, by reducing the activity of the Insulin/IGF signaling (IIS) cascade, affects protein SUMOylation. We found that IIS activity promotes the SUMOylation of the germline protein, CAR-1, thereby shortening lifespan and impairing proteostasis. In contrast, the expression of mutated CAR-1, that cannot be SUMOylated at residue 185, extends lifespan and enhances proteostasis. A mechanistic analysis indicated that CAR-1 mediates its aging-altering functions, at least partially, through the notch-like receptor glp-1. Our findings unveil a novel regulatory axis in which SUMOylation is utilized to integrate the aging-controlling functions of the IIS and of the germline and provide new insights into the roles of SUMOylation in the regulation of organismal aging. Aging may seem inescapable, but there are many factors, from diet to genetic mutations, that can affect this process. In fact, scientists have started to uncover the mechanisms that control and influence this slow decline. For example, in the small worm Caenorhabditis elegans, removing the germs cells – which give rise to eggs – extends the lifespan. Similarly, interfering with the activity of the Insulin/IGF-1 signaling (IIS) pathway leads to a longer life for the animals. However, it is unclear whether these two mechanisms work together, or if they operate in parallel. To explore this, Moll, Roitenberg et al. first looked at how the IIS pathway regulates a type of protein modification known as SUMOylation in C. elegans. Reducing the activity of the IIS pathway slowed down aging in the worms. It also decreased the levels of SUMOylation of certain proteins, including CAR-1, which is found in the structures that produce germ cells. Further experiments showed that stopping the SUMOylation of CAR-1 extended the lifespan of the animals. In fact, replacing the protein with a mutated version of CAR-1 that cannot accept the SUMO element makes the worms live longer and resist a toxic protein that causes Alzheimer’s disease in humans. These results therefore show that, in C. elegans, the IIS pathway and a mechanism that involves CAR-1 in germ cells work together to determine the pace of aging. Further studies are now needed to dissect how the IIS pathway influences SUMOylation, and whether the findings hold true in mammals.
Collapse
Affiliation(s)
- Lorna Moll
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Noa Roitenberg
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Michal Bejerano-Sagie
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Hana Boocholez
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Filipa Carvalhal Marques
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Yuli Volovik
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Tayir Elami
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Atif Ahmed Siddiqui
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Danielle Grushko
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Adi Biram
- Departments of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bar Lampert
- Departments of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hana Achache
- Departments of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tommer Ravid
- Departments of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonatan B Tzur
- Departments of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| |
Collapse
|
29
|
The UPR mt Protects Caenorhabditis elegans from Mitochondrial Dysfunction by Upregulating Specific Enzymes of the Mevalonate Pathway. Genetics 2018; 209:457-473. [PMID: 29599115 DOI: 10.1534/genetics.118.300863] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/23/2018] [Indexed: 01/13/2023] Open
Abstract
The mevalonate pathway is the primary target of the cholesterol-lowering drugs statins, some of the most widely prescribed medicines of all time. The pathway's enzymes not only catalyze the synthesis of cholesterol but also of diverse metabolites such as mitochondrial electron carriers and isoprenyls. Recently, it has been shown that one type of mitochondrial stress response, the UPRmt, can protect yeast, Caenorhabditis elegans, and cultured human cells from the deleterious effects of mevalonate pathway inhibition by statins. The mechanistic basis for this protection, however, remains unknown. Using C. elegans, we found that the UPRmt does not directly affect the levels of the statin target HMG-CoA reductase, the rate-controlling enzyme of the mevalonate pathway in mammals. Instead, in C. elegans the UPRmt upregulates the first dedicated enzyme of the pathway, HMG-CoA synthase (HMGS-1). A targeted RNA interference (RNAi) screen identified two UPRmt transcription factors, ATFS-1 and DVE-1, as regulators of HMGS-1 A comprehensive analysis of the pathway's enzymes found that, in addition to HMGS-1, the UPRmt upregulates enzymes involved with the biosynthesis of electron carriers and geranylgeranylation intermediates. Geranylgeranylation, in turn, is requisite for the full execution of the UPRmt 3response. Thus, the UPRmt acts in at least three coordinated, compensatory arms to upregulate specific branches of the mevalonate pathway, thereby alleviating mitochondrial stress. We propose that statin-mediated inhibition of the mevalonate pathway blocks this compensatory system of the UPRmt and consequentially impedes mitochondrial homeostasis. This effect is likely one of the principal bases for the adverse side effects of statins.
Collapse
|
30
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
31
|
Swamy SM, Rajasekaran NS, Thannickal VJ. Nuclear Factor-Erythroid-2-Related Factor 2 in Aging and Lung Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:1712-23. [PMID: 27338106 DOI: 10.1016/j.ajpath.2016.02.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/31/2016] [Accepted: 02/22/2016] [Indexed: 12/30/2022]
Abstract
Aging and age-related diseases have been associated with elevated oxidative stress, which may be related to increased production of reactive species and/or a deficiency in antioxidant defenses. The nuclear factor-erythroid-2-related factor 2 (Nrf2)-mediated antioxidant response pathway maintains cellular reduction-oxidation homeostasis by inducing the transcription of an array of cytoprotective genes. However, there is evidence of impaired Nrf2 response in aging contributing to age-related fibrotic diseases. Herein, we review mechanisms for the dysregulation of Nrf2 signaling in aging. This understanding will pave the way for the design of novel therapeutic strategies that restore Nrf2 signaling to reestablish cellular homeostasis in aging and age-related fibrotic diseases.
Collapse
Affiliation(s)
- Shobha M Swamy
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama School of Medicine, Birmingham, Alabama
| | - Namakkal S Rajasekaran
- Center of Free Radical Biology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama School of Medicine, Birmingham, Alabama.
| |
Collapse
|
32
|
Pelisch F, Tammsalu T, Wang B, Jaffray EG, Gartner A, Hay RT. A SUMO-Dependent Protein Network Regulates Chromosome Congression during Oocyte Meiosis. Mol Cell 2017; 65:66-77. [PMID: 27939944 PMCID: PMC5222697 DOI: 10.1016/j.molcel.2016.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/29/2016] [Accepted: 10/31/2016] [Indexed: 01/20/2023]
Abstract
During Caenorhabditis elegans oocyte meiosis, a multi-protein ring complex (RC) localized between homologous chromosomes, promotes chromosome congression through the action of the chromokinesin KLP-19. While some RC components are known, the mechanism of RC assembly has remained obscure. We show that SUMO E3 ligase GEI-17/PIAS is required for KLP-19 recruitment to the RC, and proteomic analysis identified KLP-19 as a SUMO substrate in vivo. In vitro analysis revealed that KLP-19 is efficiently sumoylated in a GEI-17-dependent manner, while GEI-17 undergoes extensive auto-sumoylation. GEI-17 and another RC component, the kinase BUB-1, contain functional SUMO interaction motifs (SIMs), allowing them to recruit SUMO modified proteins, including KLP-19, into the RC. Thus, dynamic SUMO modification and the presence of SIMs in RC components generate a SUMO-SIM network that facilitates assembly of the RC. Our results highlight the importance of SUMO-SIM networks in regulating the assembly of dynamic protein complexes.
Collapse
Affiliation(s)
- Federico Pelisch
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Triin Tammsalu
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Bin Wang
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Ellis G Jaffray
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
33
|
Wang F, Xiang H, Fischer G, Liu Z, Dupont MJ, Hogan QH, Yu H. HMG-CoA synthase isoenzymes 1 and 2 localize to satellite glial cells in dorsal root ganglia and are differentially regulated by peripheral nerve injury. Brain Res 2016; 1652:62-70. [PMID: 27671501 DOI: 10.1016/j.brainres.2016.09.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022]
Abstract
In dorsal root ganglia (DRG), satellite glial cells (SGCs) tightly ensheathe the somata of primary sensory neurons to form functional sensory units. SGCs are identified by their flattened and irregular morphology and expression of a variety of specific marker proteins. In this report, we present evidence that the 3-hydroxy-3-methylglutaryl coenzyme A synthase isoenzymes 1 and 2 (HMGCS1 and HMGCS2) are abundantly expressed in SGCs. Immunolabeling with the validated antibodies revealed that both HMGCS1 and HMGCS2 are highly colabeled with a selection of SGC markers, including GS, GFAP, Kir4.1, GLAST1, GDNF, and S100 but not with microglial cell marker Iba1, myelin sheath marker MBP, and neuronal marker β3-tubulin or phosphorylated CaMKII. HMGCS1 but not HMGCS2 immunoreactivity in SGCs is reduced in the fifth lumbar (L5) DRGs that contain axotomized neurons following L5 spinal nerve ligation (SNL) in rats. Western blot showed that HMGCS1 protein level in axotomized L5 DRGs is reduced after SNL to 66±8% at 3 days (p<0.01, n=4 animals in each group) and 58±13% at 28 days (p<0.001, n=9 animals in each group) of its level in control samples, whereas HMGCS2 protein was comparable between injured and control DRGs. These results identify HMGCSs as the alternative markers for SGCs in DRGs. Downregulated HMGCS1 expression in DRGs after spinal nerve injury may reflect a potential role of abnormal sterol metabolism of SGCs in the nerve injured-induced neuropathic pain.
Collapse
Affiliation(s)
- Fei Wang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Orthopedic Surgery, Affiliated Hospitals of Qingdao University, Qingdao 266000, PR China
| | - Gregory Fischer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Zhen Liu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J Dupont
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| |
Collapse
|
34
|
Goldman AR, Bitler BG, Schug Z, Conejo-Garcia JR, Zhang R, Speicher DW. The Primary Effect on the Proteome of ARID1A-mutated Ovarian Clear Cell Carcinoma is Downregulation of the Mevalonate Pathway at the Post-transcriptional Level. Mol Cell Proteomics 2016; 15:3348-3360. [PMID: 27654507 PMCID: PMC5098034 DOI: 10.1074/mcp.m116.062539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Indexed: 12/24/2022] Open
Abstract
Inactivating mutations in ARID1A, which encodes a subunit of the SWI/SNF chromatin-remodeling complex, are found in over half of ovarian clear cell carcinoma cases and more broadly across most types of cancers. To identify ARID1A-dependent changes in intracellular signaling pathways, we performed proteome analyses of isogenic ovarian clear cell carcinoma cell lines with or without ARID1A expression. Knockout of ARID1A in an ovarian clear cell carcinoma cell line with wild-type ARID1A, OVCA429, primarily resulted in downregulation of the mevalonate pathway, an important metabolic pathway involved in isoprenoid synthesis, cholesterol synthesis, and other downstream pathways. In a complementary experiment, expression of wild-type ARID1A in an ovarian clear cell carcinoma cell line containing mutated ARID1A, OVISE, affected the mevalonate pathway in a reciprocal manner. A striking aspect of these analyses was that, although only 5% of the detected proteome showed significant abundance changes, most proteins in the mevalonate pathway were coordinately affected by ARID1A status. There were generally corresponding changes when comparing the proteomics data to our previously published microarray data for ectopic expression of ARID1A in the OVISE cell line. However, ARID1A-dependent changes were not detected for genes within the mevalonate pathway. This discrepancy suggests that the mevalonate pathway is not regulated directly by ARID1A-mediated transcription and may be regulated post-transcriptionally. We conclude that ARID1A status indirectly influences the mevalonate pathway and probably influences other processes including glycogen metabolism and 14-3-3-mediated signaling. Further, our findings demonstrate that changes in mRNA levels are sometimes poor indicators of signaling pathways affected by gene manipulations in cancer cells.
Collapse
Affiliation(s)
- Aaron R Goldman
- From the ‡Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - Benjamin G Bitler
- §Gene Expression and Regulation Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - Zachary Schug
- From the ‡Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - Jose R Conejo-Garcia
- ¶Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - Rugang Zhang
- §Gene Expression and Regulation Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - David W Speicher
- From the ‡Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104; .,‖The Center for Systems and Computational Biology, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| |
Collapse
|
35
|
Abstract
The cell biology of sumoylation has mostly been studied using transformed cultured cells and yeast. In recent years, genetic analysis has demonstrated important roles for sumoylation in the biology of C. elegans. Here, we expand the existing set of tools making it possible to address the role of sumoylation in the nematode C. elegans using a combination of genetics, imaging, and biochemistry. Most importantly, the dynamics of SUMO conjugation and deconjugation can be followed very precisely both in space and time within living worms. Additionally, the biochemistry of SUMO conjugation and deconjugation can be addressed using recombinant purified components of the C. elegans sumoylation machinery, including E3 ligases and SUMO proteases. These tools and reagents will be useful to gain insights into the biological role of SUMO in the context of a multicellular organism.
Collapse
Affiliation(s)
- Federico Pelisch
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee, DD1 5EH, UK.
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| |
Collapse
|
36
|
Fischer A, Niklowitz P, Menke T, Döring F. Coenzyme Q regulates the expression of essential genes of the pathogen- and xenobiotic-associated defense pathway in C. elegans. J Clin Biochem Nutr 2015; 57:171-7. [PMID: 26566301 PMCID: PMC4639588 DOI: 10.3164/jcbn.15-46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/01/2015] [Indexed: 11/22/2022] Open
Abstract
Coenzyme Q (CoQ) is necessary for mitochondrial energy production and modulates the expression of genes that are important for inflammatory processes, growth and detoxification reactions. A cellular surveillance-activated detoxification and defenses (cSADDs) pathway has been recently identified in C. elegans. The down-regulation of the components of the cSADDs pathway initiates an aversion behavior of the nematode. Here we hypothesized that CoQ regulates genes of the cSADDs pathway. To verify this we generated CoQ-deficient worms ("CoQ-free") and performed whole-genome expression profiling. We found about 30% (120 genes) of the cSADDs pathway genes were differentially regulated under CoQ-deficient condition. Remarkably, 83% of these genes were down-regulated. The majority of the CoQ-sensitive cSADDs pathway genes encode for proteins involved in larval development (enrichment score (ES) = 38.0, p = 5.0E(-37)), aminoacyl-tRNA biosynthesis, proteasome function (ES 8.2, p = 5.9E(-31)) and mitochondria function (ES 3.4, p = 1.7E(-5)). 67% (80 genes) of these genes are categorized as lethal. Thus it is shown for the first time that CoQ regulates a substantial number of essential genes that function in the evolutionary conserved cellular surveillance-activated detoxification and defenses pathway in C. elegans.
Collapse
Affiliation(s)
- Alexandra Fischer
- Institute of Human Nutrition and Food Science, Division of Molecular Prevention, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Petra Niklowitz
- Children's Hospital of Datteln, Witten/Herdecke University, Dr.-Friedrich-Steiner Str. 5, 45711 Datteln, Germany
| | - Thomas Menke
- Children's Hospital of Datteln, Witten/Herdecke University, Dr.-Friedrich-Steiner Str. 5, 45711 Datteln, Germany
| | - Frank Döring
- Institute of Human Nutrition and Food Science, Division of Molecular Prevention, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| |
Collapse
|
37
|
Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 2015; 88:314-336. [PMID: 26066302 PMCID: PMC4628850 DOI: 10.1016/j.freeradbiomed.2015.05.036] [Citation(s) in RCA: 617] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 12/20/2022]
Abstract
Increasing oxidative stress, a major characteristic of aging, has been implicated in a variety of age-related pathologies. In aging, oxidant production from several sources is increased, whereas antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins, also decline. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels, including transcription, posttranslation, and interactions with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the changes in Nrf2 regulatory mechanisms with aging.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; School of Natural Science, University of California at Merced, Merced, CA 95344, USA.
| |
Collapse
|
38
|
Tsur A, Bening Abu-Shach U, Broday L. ULP-2 SUMO Protease Regulates E-Cadherin Recruitment to Adherens Junctions. Dev Cell 2015; 35:63-77. [PMID: 26412237 DOI: 10.1016/j.devcel.2015.08.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/29/2015] [Accepted: 08/26/2015] [Indexed: 12/20/2022]
Abstract
Adherens junctions (AJs) are membrane-anchored structures composed of E-cadherin and associated proteins, including catenins and actin. The unique plasticity of AJs mediates both the rigidity and flexibility of cell-cell contacts essential for embryonic morphogenesis and adult tissue remodeling. We identified the SUMO protease ULP-2 as a regulator of AJ assembly and show that dysregulated ULP-2 activity impairs epidermal morphogenesis in Caenorhabditis elegans embryos. The conserved cytoplasmic tail of HMR-1/E-cadherin is sumoylated and is a target of ULP-2 desumoylation activity. Coupled sumoylation and desumoylation of HMR-1 are required for its recruitment to the subapical membrane during AJ assembly and the formation of the linkages between AJs and the apical actin cytoskeleton. Sumoylation weakens HMR-1 binding to HMP-2/β-catenin. Our study provides a mechanistic link between the dynamic nature of the SUMO machinery and AJ plasticity and highlight sumoylation as a molecular switch that modulates the binding of E-cadherin to the actin cytoskeleton.
Collapse
Affiliation(s)
- Assaf Tsur
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ulrike Bening Abu-Shach
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
39
|
Cao S, Hepowit N, Maupin-Furlow JA. Ubiquitin-Like Protein SAMP1 and JAMM/MPN+ Metalloprotease HvJAMM1 Constitute a System for Reversible Regulation of Metabolic Enzyme Activity in Archaea. PLoS One 2015; 10:e0128399. [PMID: 26010867 PMCID: PMC4443979 DOI: 10.1371/journal.pone.0128399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/27/2015] [Indexed: 11/18/2022] Open
Abstract
Ubiquitin/ubiquitin-like (Ub/Ubl) proteins are involved in diverse cellular processes by their covalent linkage to protein substrates. Here, we provide evidence for a post-translational modification system that regulates enzyme activity which is composed of an archaeal Ubl protein (SAMP1) and a JAMM/MPN+ metalloprotease (HvJAMM1). Molybdopterin (MPT) synthase activity was found to be inhibited by covalent linkage of SAMP1 to the large subunit (MoaE) of MPT synthase. HvJAMM1 was shown to cleave the covalently linked inactive form of SAMP1-MoaE to the free functional individual SAMP1 and MoaE subunits of MPT synthase, suggesting reactivation of MPT synthase by this metalloprotease. Overall, this study provides new insight into the broad idea that Ub/Ubl modification is a post-translational process that can directly and reversibly regulate the activity of metabolic enzymes. In particular, we show that Ub/Ubl linkages on the active site residues of an enzyme (MPT synthase) can inhibit its catalytic activity and that the enzyme can be reactivated through cleavage by a JAMM/MPN+ metalloprotease.
Collapse
Affiliation(s)
- Shiyun Cao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Nathaniel Hepowit
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
40
|
RNAi Interrogation of Dietary Modulation of Development, Metabolism, Behavior, and Aging in C. elegans. Cell Rep 2015; 11:1123-33. [PMID: 25959815 DOI: 10.1016/j.celrep.2015.04.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/29/2015] [Accepted: 04/11/2015] [Indexed: 02/06/2023] Open
Abstract
Diet affects nearly every aspect of animal life such as development, metabolism, behavior, and aging, both directly by supplying nutrients and indirectly through gut microbiota. C. elegans feeds on bacteria, and like other animals, different bacterial diets induce distinct dietary responses in the worm. However, the lack of certain critical tools hampers the use of worms as a model for dietary signaling. Here, we genetically engineered the bacterial strain OP50, the standard laboratory diet for C. elegans, making it compatible for dsRNA production and delivery. Using this RNAi-compatible OP50 strain and the other bacterial strain HT115, we feed worms different diets while delivering RNAi to interrogate the genetic basis underlying diet-dependent differential modulation of development, metabolism, behavior, and aging. We show by RNAi that neuroendocrine and mTOR pathways are involved in mediating differential dietary responses. This genetic tool greatly facilitates the use of C. elegans as a model for dietary signaling.
Collapse
|
41
|
Fischer A, Klapper M, Onur S, Menke T, Niklowitz P, Döring F. Dietary restriction decreases coenzyme Q and ubiquinol potentially via changes in gene expression in the model organism C. elegans. Biofactors 2015; 41:166-74. [PMID: 25939481 DOI: 10.1002/biof.1210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/08/2015] [Indexed: 01/20/2023]
Abstract
Dietary restriction (DR) is a robust intervention that extends both health span and life span in many organisms. Ubiquinol and ubiquinone represent the reduced and oxidized forms of coenzyme Q (CoQ). CoQ plays a central role in energy metabolism and functions in several cellular processes including gene expression. Here we used the model organism Caenorhabditis elegans to determine level and redox state of CoQ and expression of genes in response to DR. We found that DR down-regulates the steady-state expression levels of several evolutionary conserved genes (i.e. coq-1) that encode key enzymes of the mevalonate and CoQ-synthesizing pathways. In line with this, DR decreases the levels of total CoQ and ubiquinol. This CoQ-reducing effect of DR is obvious in adult worms but not in L4 larvae and is also evident in the eat-2 mutant, a genetic model of DR. In conclusion, we propose that DR reduces the level of CoQ and ubiquinol via gene expression in the model organism C. elegans.
Collapse
Affiliation(s)
- Alexandra Fischer
- Division of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Maja Klapper
- Division of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Simone Onur
- Division of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Thomas Menke
- Children's Hospital of Datteln, Witten/Herdecke University, Datteln, Germany
| | - Petra Niklowitz
- Children's Hospital of Datteln, Witten/Herdecke University, Datteln, Germany
| | - Frank Döring
- Division of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|