1
|
Ju M, Long B, Wei Y, Tang X, Xu L, Gan R, Cui H, Tang Y, Yi Z, Liu H, Wang Z, Chen T, Gao J, Hu Q, Zeng L, Li C, Wang J, Liu H, Zhang T. Cognitive impairments in first-episode psychosis patients with attenuated niacin response. Schizophr Res Cogn 2025; 40:100346. [PMID: 39925786 PMCID: PMC11803152 DOI: 10.1016/j.scog.2025.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Background Psychosis is a complex brain disorder with diverse biological subtypes influenced by various pathogenic mechanisms, which can affect treatment efficacy. The ANR(Attenuated Niacin Response) subtype is characterized by pronounced negative symptoms and functional impairments, suggesting a distinct clinical profile. However, research on the cognitive characteristics associated with the ANR subtype in drug-naïve first-episode psychosis(FEP) patients remains limited. Methods This observational study involved 54 FEP patients and 52 healthy controls(HC). Clinical psychopathology was assessed using the Positive and Negative Syndrome Scale(PANSS), while cognitive performance was evaluated through the Chinese version of the MATRICS Consensus Cognitive Battery(MCCB). Additionally, niacin response was measured using aqueous methylnicotinate patches, with responses quantified to classify participants into ANR or normal niacin response (NNR) groups. Results Among the FEP patients, 25.9 % were classified as having ANR, significantly higher than the 7.7 % in the HC group (χ 2 = 6.247, p = 0.012). The ANR group exhibited more severe negative symptoms and higher total PANSS scores compared to the NNR group, with significant differences in cognitive performance on the Trail Making test and the Brief Visuospatial Memory Test-Revised. Correlation analyses revealed a significant positive relationship between overall symptom severity and niacin response, as well as between cognitive performance and niacin response, particularly for the Trail Making and Symbol coding tests. Conclusions This study demonstrates that the ANR subtype in first-episode psychosis is linked to more severe negative symptoms and cognitive impairments. Targeted assessments and interventions for patients with ANR may improve treatment outcomes and enhance understanding of cognitive dysfunction in psychotic disorders.
Collapse
Affiliation(s)
- MingLiang Ju
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, China
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Bin Long
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - RanPiao Gan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - HuiRu Cui
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - YingYing Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - ZhengHui Yi
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - HaiChun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - ZiXuan Wang
- Shanghai Xinlianxin Psychological Counseling Center, Shanghai, China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Ontario, Canada
- Labor and Worklife Program, Harvard University, Cambridge, MA, United States
| | - Jin Gao
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Qiang Hu
- Department of Psychiatry, ZhenJiang Mental Health Center, Zhenjiang, China
| | - LingYun Zeng
- Department of Psychiatric Rehabilitation, Shenzhen Kangning Hospital, ShenZhen, GuangDong, China
| | - ChunBo Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
- Department of Psychiatry, Nantong Fourth People's Hospital & Nantong Brain Hospital, Suzhou 226000, China
| | - HuanZhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, China
| | - TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| |
Collapse
|
2
|
Davinelli S, Medoro A, Siracusano M, Savino R, Saso L, Scapagnini G, Mazzone L. Oxidative stress response and NRF2 signaling pathway in autism spectrum disorder. Redox Biol 2025; 83:103661. [PMID: 40324316 DOI: 10.1016/j.redox.2025.103661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025] Open
Abstract
The prevalence of autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by impairments in social communication and restricted/repetitive behavioral patterns, has increased significantly over the past few decades. The etiology of ASD involves a highly complex interplay of genetic, neurobiological, and environmental factors, contributing to significant heterogeneity in its clinical phenotype. In the evolving landscape of ASD research, increasing evidence suggests that oxidative stress, resulting from both intrinsic and extrinsic factors, may be a crucial pathophysiological driver in ASD, influencing neurodevelopmental processes that underlie behavioral abnormalities. Elevated levels of oxidative stress biomarkers, including lipid peroxides, protein oxidation products, and DNA damage markers, alongside deficient antioxidant enzyme activity, have been consistently linked to ASD. This may be attributed to dysregulated activity of nuclear factor erythroid 2-related factor 2 (NRF2), a pivotal transcription factor that maintains cellular redox homeostasis by orchestrating the expression of genes involved in antioxidant defenses. Here, we summarize the converging evidence that redox imbalance in ASD may result from NRF2 dysregulation, leading to reduced expression of its target genes. We also highlight the most promising antioxidant compounds under investigation, which may restore NRF2 activity and ameliorate ASD behavioral symptoms.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Martina Siracusano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Rosa Savino
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Luigi Mazzone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Child Neurology and Psychiatry Unit, Department of Wellbeing of Mental and Neurological, Dental and Sensory Organ Health, Policlinico Tor Vergata Hospital, Rome, Italy
| |
Collapse
|
3
|
Huang Y, Xie X, Liu M, Zhang Y, Yang J, Yang W, Hu Y, Qi S, Feng Y, Liu G, Lu S, Peng X, Ye J, Ma S, Sun J, Wang L, Hu L, Wang L, Zhu X, Cheng H, Sun Z, Chen J, Dong F, Zhang Y, Cheng T. Restoring mitochondrial function promotes hematopoietic reconstitution from cord blood following cryopreservation-related functional decline. J Clin Invest 2025; 135:e183607. [PMID: 40036065 PMCID: PMC12043090 DOI: 10.1172/jci183607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
Umbilical cord blood (UCB) plays substantial roles in hematopoietic stem cell (HSC) transplantation and regenerative medicine. UCB is usually cryopreserved for years before use. It remains unclear whether and how cryopreservation affects UCB function. We constructed a single-cell transcriptomics profile of CD34+ hematopoietic stem and progenitor cells (HSPCs) and mononuclear cells (MNCs) from fresh and cryopreserved UCB stored for 1, 5, 10, and 19 years. Compared with fresh UCB, cryopreserved HSCs and multipotent progenitors (MPPs) exhibited more active cell-cycle and lower expression levels of HSC and multipotent progenitor signature genes. Hematopoietic reconstitution of cryopreserved HSPCs gradually decreased during the first 5 years but stabilized thereafter, aligning with the negative correlation between clinical neutrophil engraftment and cryopreservation duration of UCB. Cryopreserved HSPCs also showed reduced megakaryocyte generation. In contrast, cryopreserved NK cells and T cells maintained a capacity for cytokine production and cytotoxicity comparable to that of fresh cells. Mechanistically, cryopreserved HSPCs exhibited elevated ROS, reduced ATP synthesis, and abnormal mitochondrial distribution, which collectively led to attenuated hematopoietic reconstitution. These effects could be ameliorated by sulforaphane (SF). Together, we elucidate the negative effect of cryopreservation on UCB HSPCs and identify SF as a mitigation strategy, broadening the temporal window and scope for clinical applications of cryopreserved UCB.
Collapse
Affiliation(s)
- Yaojin Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaowei Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yawen Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Junye Yang
- Tianjin Cord Blood Stem Cell Bank, Tianjin, China
- Union Stem Cell Genetic Engineering Co., Ltd., Tianjin, China
| | - Wenling Yang
- Tianjin Cord Blood Stem Cell Bank, Tianjin, China
- Union Stem Cell Genetic Engineering Co., Ltd., Tianjin, China
| | - Yu Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Guojun Liu
- Shandong Qilu Stem Cell Engineering Co., Ltd., Jinan, China
| | - Shihong Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xuemei Peng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jinhui Ye
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jiali Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Linping Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lin Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zimin Sun
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, China
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of the Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
4
|
Fahey JW, Liu H, Batt H, Panjwani AA, Tsuji P. Sulforaphane and Brain Health: From Pathways of Action to Effects on Specific Disorders. Nutrients 2025; 17:1353. [PMID: 40284217 PMCID: PMC12030691 DOI: 10.3390/nu17081353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
The brain accounts for about 2% of the body's weight, but it consumes about 20% of the body's energy at rest, primarily derived from ATP produced in mitochondria. The brain thus has a high mitochondrial density in its neurons because of its extensive energy demands for maintaining ion gradients, neurotransmission, and synaptic activity. The brain is also extremely susceptible to damage and dysregulation caused by inflammation (neuroinflammation) and oxidative stress. Many systemic challenges to the brain can be mitigated by the phytochemical sulforaphane (SF), which is particularly important in supporting mitochondrial function. SF or its biogenic precursor glucoraphanin, from broccoli seeds or sprouts, can confer neuroprotective and cognitive benefits via diverse physiological and biochemical mechanisms. SF is able to cross the blood-brain barrier as well as to protect it, and it mitigates the consequences of destructive neuroinflammation. It also protects against the neurotoxic effects of environmental pollutants, combats the tissue and cell damage wrought by advanced glycation end products (detoxication), and supports healthy glucose metabolism. These effects are applicable to individuals of all ages, from the developing brains in periconception and infancy, to cognitively, developmentally, and traumatically challenged brains, to those in later life as well as those who are suffering with multiple chronic conditions including Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Jed W. Fahey
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- iMIND Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute of Medicine, University of Maine, Orono, ME 04469, USA
| | - Hua Liu
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Holly Batt
- Anti-AGEs Foundation, Depew, NY 14043, USA;
| | - Anita A. Panjwani
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
- Center on Aging and the Life Course, Purdue University, West Lafayette, IN 47907, USA
| | - Petra Tsuji
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA;
| |
Collapse
|
5
|
Bessetti RN, Cobb M, Lilley RM, Johnson NZ, Perez DA, Koonce VM, McCoy K, Litwa KA. Sulforaphane protects developing neural networks from VPA-induced synaptic alterations. Mol Psychiatry 2025:10.1038/s41380-025-02967-5. [PMID: 40175519 DOI: 10.1038/s41380-025-02967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/13/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Prenatal brain development is particularly sensitive to chemicals that can disrupt synapse formation and cause neurodevelopmental disorders. In most cases, such chemicals increase cellular oxidative stress. For example, prenatal exposure to the anti-epileptic drug valproic acid (VPA), induces oxidative stress and synaptic alterations, promoting autism spectrum disorders (ASD) in humans and autism-like behaviors in rodents. Using VPA to model chemically induced ASD, we tested whether activation of cellular mechanisms that increase antioxidant gene expression would be sufficient to prevent VPA-induced synaptic alterations. As a master regulator of cellular defense pathways, the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) promotes expression of detoxification enzymes and antioxidant gene products. To increase NRF2 activity, we used the phytochemical and potent NRF2 activator, sulforaphane (SFN). In our models of human neurodevelopment, SFN activated NRF2, increasing expression of antioxidant genes and preventing oxidative stress. SFN also enhanced expression of genes associated with synapse formation. Consistent with these gene expression profiles, SFN protected developing neural networks from VPA-induced reductions in synapse formation. Furthermore, in mouse cortical neurons, SFN rescued VPA-induced reductions in neural activity. These results demonstrate the ability of SFN to protect developing neural networks during the vulnerable period of synapse formation, while also identifying molecular signatures of SFN-mediated neuroprotection that could be relevant for combatting other environmental toxicants.
Collapse
Affiliation(s)
- Riley N Bessetti
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Michelle Cobb
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Rosario M Lilley
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Noah Z Johnson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Daisy A Perez
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Virginia M Koonce
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
| | | | - Karen A Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA.
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA.
| |
Collapse
|
6
|
Chen H, Lu J, Zou T, Teng Z, Qin Y, Wu R, Yan Y, Fu K, Jiang W, Ju Y, Zhu R, Mo J, Lu J, Huang J. Effects of sulforaphane on negative symptoms and cognitive impairments in chronic schizophrenia patients: A randomized double-blind trial. J Psychiatr Res 2025; 184:464-472. [PMID: 40133020 DOI: 10.1016/j.jpsychires.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND The pathological mechanisms of negative symptoms and cognitive impairment in schizophrenia may involve oxidative stress and neuroinflammation. Sulforaphane is an organosulfur compound with antioxidant and anti-inflammatory properties. This study aimed to evaluate its efficacy in ameliorating negative symptoms and cognitive impairments in chronic schizophrenia patients. METHOD This 24-week double-blind randomised trial (NCT04521868) recruited schizophrenia patients with significant negative symptoms. Participants were randomly assigned to receive either sulforaphane or placebo and were required to complete at least one post-intervention assessment to evaluate changes in negative symptoms and cognitive functioning. Existing antipsychotic medication treatment regimens remained unchanged throughout the study. RESULTS A total of 42 patients were included in the statistical analysis, with 28 receiving sulforaphane and 14 assigned to placebo. Sulforaphane significantly reduced the Negative Symptom Score from the PANSS 5-Factor model between groups (p = 0.007) and exhibited a significant time-by-group interaction (p = 0.023), with more pronounced group differences observed after 12 weeks compared to 24 weeks of treatment. Sulforaphane also demonstrated a significant reduction in the original PANSS Negative Symptom Score between groups (p = 0.029). However, sulforaphane showed no significant effects on the MATRICS Consensus Cognitive Battery composite score or its subscores. CONCLUSION The significant improvements in the Negative Symptom Score from the PANSS 5-Factor model and the original PANSS Negative Symptom Score in the sulforaphane group suggest the potential of sulforaphane as an adjunctive treatment for ameliorating negative symptoms in chronic schizophrenia. Further research is warranted to explore the effects of sulforaphane on cognitive function.
Collapse
Affiliation(s)
- Haiyu Chen
- Department of Psychiatry, National Clinical Research Centre for Mental Disorders, National Centre for Mental Disorders, and China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan Province, China
| | - Jinjun Lu
- The Third People's Hospital of Jiangyin, Jiangyin 214442, Jiangsu Province, China
| | - Tianxiang Zou
- Department of Psychiatry, National Clinical Research Centre for Mental Disorders, National Centre for Mental Disorders, and China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan Province, China
| | - Ziwei Teng
- Department of Psychiatry, National Clinical Research Centre for Mental Disorders, National Centre for Mental Disorders, and China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan Province, China
| | - Yue Qin
- Department of Psychiatry, National Clinical Research Centre for Mental Disorders, National Centre for Mental Disorders, and China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan Province, China
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Centre for Mental Disorders, National Centre for Mental Disorders, and China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan Province, China
| | - Yeliang Yan
- The Third People's Hospital of Jiangyin, Jiangyin 214442, Jiangsu Province, China
| | - Kai Fu
- The Third People's Hospital of Jiangyin, Jiangyin 214442, Jiangsu Province, China
| | - Wenjuan Jiang
- The Third People's Hospital of Jiangyin, Jiangyin 214442, Jiangsu Province, China
| | - Yunxia Ju
- The Third People's Hospital of Jiangyin, Jiangyin 214442, Jiangsu Province, China
| | - Riyong Zhu
- The Third Hospital of Changsha County, Changsha, 410011, Hunan Province, China
| | - Jianzhong Mo
- The Third Hospital of Changsha County, Changsha, 410011, Hunan Province, China
| | - Jian Lu
- The Third People's Hospital of Jiangyin, Jiangyin 214442, Jiangsu Province, China.
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Centre for Mental Disorders, National Centre for Mental Disorders, and China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
7
|
Guo J, Wang Y, He W, Lou M, Peng Y, Shi H, Lian A. Effects of sulforaphane on ABC and SRS scales in patients with autism spectrum disorder: a meta-analysis. Brain Dev 2025; 47:104321. [PMID: 39951914 DOI: 10.1016/j.braindev.2025.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 02/17/2025]
Abstract
Autism spectrum disorder (ASD) has become an increasingly prominent global health issue. Sulforaphane is a phytochemical with multiple functions that target many of the same biochemical and molecular pathways (biomarkers) associated with ASD. This study aimed to conduct a meta-analysis based on sulforaphane's effect on Aberrant Behavior Checklist (ABC) and Social Responsiveness Scale (SRS) in patients with ASD. We conducted comprehensive searches in the PubMed, Medline, Cochrane, EMBASE, and Web of Science databases from their inception. The modified Cochrane risk of bias tool was used to check the risk of bias of the included studies. Review Manager 5.3 software was used to conduct this meta-analysis. The results of this meta-analysis showed that sulforaphane significantly improved irritability and hyperactivity symptoms, suggesting that sulforaphane has the potential for the combined treatment of autism. Additional studies are needed to confirm and explore the effect of sulforaphane.
Collapse
Affiliation(s)
- Jialing Guo
- Department of Pediatric Rehebilitation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Yichao Wang
- Department of Pediatric Rehebilitation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Weijun He
- Department of Pediatric Rehebilitation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Mingxing Lou
- Department of Pediatric Rehebilitation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Ying Peng
- Department of Pediatric Rehebilitation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Hui Shi
- Department of Pediatric Rehebilitation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Aojie Lian
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China.
| |
Collapse
|
8
|
Zhang DD. Thirty years of NRF2: advances and therapeutic challenges. Nat Rev Drug Discov 2025:10.1038/s41573-025-01145-0. [PMID: 40038406 DOI: 10.1038/s41573-025-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 03/06/2025]
Abstract
Over the last 30 years, NRF2 has evolved from being recognized as a transcription factor primarily involved in redox balance and detoxification to a well-appreciated master regulator of cellular proteostasis, metabolism and iron homeostasis. NRF2 plays a pivotal role in diverse pathologies, including cancer, and metabolic, inflammatory and neurodegenerative disorders. It exhibits a Janus-faced duality, safeguarding cellular integrity in normal cells against environmental insults to prevent disease onset, whereas in certain cancers, constitutively elevated NRF2 levels provide a tumour survival advantage, promoting progression, therapy resistance and metastasis. Advances in understanding the mechanistic regulation of NRF2 and its roles in human pathology have propelled the investigation of NRF2-targeted therapeutic strategies. This Review dissects the mechanistic intricacies of NRF2 signalling, its cross-talk with biological processes and its far-reaching implications for health and disease, highlighting key discoveries that have shaped innovative therapeutic approaches targeting NRF2.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Molecular Medicine, Center for Inflammation Science and Systems Medicine, UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Dell’Osso L, Bonelli C, Giovannoni F, Poli F, Anastasio L, Cerofolini G, Nardi B, Cremone IM, Pini S, Carpita B. Available Treatments for Autism Spectrum Disorder: From Old Strategies to New Options. Pharmaceuticals (Basel) 2025; 18:324. [PMID: 40143102 PMCID: PMC11944800 DOI: 10.3390/ph18030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 03/28/2025] Open
Abstract
Autism spectrum disorder (ASD) is a condition that is gaining increasing interest in research and clinical fields. Due to the improvement of screening programs and diagnostic procedures, an increasing number of cases are reaching clinical attention. Despite this, the available pharmacological options for treating ASD-related symptoms are still very limited, and while a wide number of studies are focused on children or adolescents, there is a need to increase research about the treatment of ASD in adult subjects. Given this framework, this work aims to review the available literature about pharmacological treatments for ASD, from older strategies to possible new therapeutic targets for this condition, which are often poorly responsive to available resources. The literature, besides confirming the efficacy of the approved drugs for ASD, shows a lack of adequate research for several psychopharmacological treatments despite possible promising results that need to be further investigated.
Collapse
Affiliation(s)
| | - Chiara Bonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 67 Via Roma, 56126 Pisa, Italy; (L.D.); (F.G.); (F.P.); (L.A.); (G.C.); (B.N.); (I.M.C.); (S.P.); (B.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kuźniar-Pałka A. The Role of Oxidative Stress in Autism Spectrum Disorder Pathophysiology, Diagnosis and Treatment. Biomedicines 2025; 13:388. [PMID: 40002801 PMCID: PMC11852718 DOI: 10.3390/biomedicines13020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Autism spectrum disorder (ASD) is a significant health problem with no known single cause. There is a vast number of evidence to suggest that oxidative stress plays an important role in this disorder. The author of this article reviewed the current literature in order to summarise the knowledge on the subject. In this paper, the role of oxidative stress is investigated in the context of its influence on pathogenesis, the use of oxidative stress biomarkers as diagnostic tools and the use of antioxidants in ASD treatment. Given the heterogeneity of ASD aetiology and inadequate treatment approaches, the search for common metabolic traits is essential to find more efficient diagnostic tools and treatment methods. There are increasing data to suggest that oxidative stress is involved in the pathogenesis of ASD, both directly and through its interplay with inflammation and mitochondrial dysfunction. Oxidative stress biomarkers appear to have good potential to be used as diagnostic tools to aid early diagnosis of ASD. The results are most promising for glutathione and its derivatives and also for isoprostanses. Probably, complex dedicated multi-parametric metabolic panels may be used in the future. Antioxidants show good potential in ASD-supportive treatment. In all described fields, the data support the importance of oxidative stress but also a need for further research, especially in the context of sample size and, preferably, with a multicentre approach.
Collapse
Affiliation(s)
- Aleksandra Kuźniar-Pałka
- Clinic of Pediatric and Adolescent Neurology, Institute of Mother and Child, 01-211 Warsaw, Poland
| |
Collapse
|
11
|
Joković N, Pešić S, Vitorović J, Bogdanović A, Sharifi-Rad J, Calina D. Glucosinolates and Their Hydrolytic Derivatives: Promising Phytochemicals With Anticancer Potential. Phytother Res 2025; 39:1035-1089. [PMID: 39726346 DOI: 10.1002/ptr.8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Recent research has increasingly focused on phytochemicals as promising anticancer agents, with glucosinolates (GSLs) and their hydrolytic derivatives playing a central role. These sulfur-containing compounds, found in plants of the Brassicales order, are converted by myrosinase enzymes into biologically active products, primarily isothiocyanates (ITCs) and indoles, which exhibit significant anticancer properties. Indole-3-carbinol, diindolylmethane, sulforaphane (SFN), phenethyl isothiocyanate (PEITC), benzyl isothiocyanate, and allyl isothiocyanate have shown potent anticancer effects in animal models, particularly in breast, prostate, lung, melanoma, bladder, hepatoma, and gastrointestinal cancers. Clinical studies further support the chemopreventive effects of SFN and PEITC, particularly in detoxifying carcinogens and altering biochemical markers in cancer patients. These compounds have demonstrated good bioavailability, low toxicity, and minimal adverse effects, supporting their potential therapeutic application. Their anticancer mechanisms include the modulation of reactive oxygen species, suppression of cancer-related signaling pathways, and direct interaction with tumor cell proteins. Additionally, semi-synthetic derivatives of GSLs have been developed to enhance anticancer efficacy. In conclusion, GSLs and their derivatives offer significant potential as both chemopreventive and therapeutic agents, warranting further clinical investigation to optimize their application in cancer treatment.
Collapse
Affiliation(s)
- Nataša Joković
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Strahinja Pešić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Jelena Vitorović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Andrija Bogdanović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
12
|
Długosz A, Wróblewski M, Błaszak B, Szulc J. The Role of Nutrition, Oxidative Stress, and Trace Elements in the Pathophysiology of Autism Spectrum Disorders. Int J Mol Sci 2025; 26:808. [PMID: 39859522 PMCID: PMC11765825 DOI: 10.3390/ijms26020808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and interaction, alongside repetitive behaviors, and atypical sensory-motor patterns. The growing prevalence of ASD has driven substantial advancements in research aimed at understanding its etiology, preventing its onset, and mitigating its impact. This ongoing effort necessitates continuous updates to the body of knowledge and the identification of previously unexplored factors. The present study addresses this need by examining the roles of nutrition, oxidative stress, and trace elements in the pathophysiology of ASD. In this review, an overview is provided of the key dietary recommendations for individuals with ASD, including gluten-free and casein-free (GFCF) diets, ketogenic diets (KDs), and other nutritional interventions. Furthermore, it explores the involvement of oxidative stress in ASD and highlights the significance of trace elements in maintaining neuropsychiatric health. The impact of these factors on molecular and cellular mechanisms was discussed, alongside therapeutic strategies and their efficacy in managing ASD.
Collapse
Affiliation(s)
- Anna Długosz
- Department of Food Industry Technology and Engineering, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna St., 85-326 Bydgoszcz, Poland; (B.B.); (J.S.)
| | - Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Błażej Błaszak
- Department of Food Industry Technology and Engineering, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna St., 85-326 Bydgoszcz, Poland; (B.B.); (J.S.)
| | - Joanna Szulc
- Department of Food Industry Technology and Engineering, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna St., 85-326 Bydgoszcz, Poland; (B.B.); (J.S.)
| |
Collapse
|
13
|
Persico AM, Asta L, Chehbani F, Mirabelli S, Parlatini V, Cortese S, Arango C, Vitiello B. The pediatric psychopharmacology of autism spectrum disorder: A systematic review - Part II: The future. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111176. [PMID: 39490514 DOI: 10.1016/j.pnpbp.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/31/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Part I of this systematic review summarized the state-of-the-art of pediatric psychopharmacology for Autism Spectrum Disorder (ASD), a severe and lifelong neurodevelopmental disorder. The purpose of this Part II follow-up article is to provide a systematic overview of the experimental psychopharmacology of ASD. To this aim, we have first identified in the Clinicaltrials.gov website all the 157 pharmacological and nutraceutical compounds which have been experimentally tested in children and adolescents with ASD using the randomized placebo-controlled trial (RCT) design. After excluding 24 drugs already presented in Part I, a systematic review spanning each of the remaining 133 compounds was registered on Prospero (ID: CRD42023476555), performed on PubMed (August 8, 2024), and completed with EBSCO, PsycINFO (psychology and psychiatry literature) and the Cochrane Database of Systematic reviews, yielding a total of 115 published RCTs, including 57 trials for 23 pharmacological compounds and 48 trials for 17 nutraceuticals/supplements. Melatonin and oxytocin were not included, because recent systematic reviews have been already published for both these compounds. RCTs of drugs with the strongest foundation in preclinical research, namely arbaclofen, balovaptan and bumetanide have all failed to reach their primary end-points, although efforts to target specific patient subgroups do warrant further investigation. For the vast majority of compounds, including cannabidiol, vasopressin, and probiotics, insufficient evidence of efficacy and safety is available. However, a small subset of compounds, including N-acetylcysteine, folinic acid, l-carnitine, coenzyme Q10, sulforaphane, and metformin may already be considered, with due caution, for clinical use, because there is promising evidence of efficacy and a high safety profile. For several other compounds, such as secretin, efficacy can be confidently excluded, and/or the data discourage undertaking new RCTs. Part I and Part II summarize "drug-based" information, which will be ultimately merged to provide clinicians with a "symptom-based" consensus statement in a conclusive Part III, with the overarching aim to foster evidence-based clinical practices and to organize new strategies for future clinical trials.
Collapse
Affiliation(s)
- Antonio M Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Modena, Italy.
| | - Lisa Asta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fethia Chehbani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvestro Mirabelli
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy
| | - Valeria Parlatini
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK
| | - Samuele Cortese
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA; DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University "Aldo Moro", Bari, Italy
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Benedetto Vitiello
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Clack G, Moore C, Ruston L, Wilson D, Koch A, Webb D, Mallard N. A Phase 1 Randomized, Placebo-Controlled Study Evaluating the Safety, Tolerability, and Pharmacokinetics of Enteric-Coated Stabilized Sulforaphane (SFX-01) in Male Participants. Adv Ther 2025; 42:216-232. [PMID: 39520658 PMCID: PMC11782309 DOI: 10.1007/s12325-024-03018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Sulforaphane (SFN) is a naturally occurring isothiocyanate associated with various health benefits, including reduced cancer risk, and has been extensively explored as a potential therapeutic. However, its inherent instability presents challenges in formulation, storage, and administration as a medicinal product. SFX-01 (Sulforadex®) is a patented synthetic form of d,l-SFN stabilized within a biologically inert alpha-cyclodextrin complex. METHODS The safety, tolerability, and pharmacokinetics of an enteric-coated tablet formulation of SFX-01 were evaluated in a randomized, double-blind, placebo-controlled, dose-escalation study [300 mg once daily (46.2 mg SFN), 300 mg twice daily or 600 mg once daily (92.4 mg SFN)] over 7 days in healthy male participants. RESULTS Treatment-emergent adverse events (TEAEs) occurred in 94% of participants who received SFX-01 and were most commonly gastrointestinal events, which were mild in severity and related to treatment. Following ingestion of SFX-01 tablets, SFN was rapidly absorbed, with a timescale consistent with the enteric coating, and subsequently metabolized. The observed peak blood concentration (Cmax) for the sum of SFN and metabolites (total thiol) across all treatment cohorts ranged from 0.43 to 2.12 µmol/L in 3-6 h. Cmax data were considered inconclusive with respect to dose-proportionality and there was minimal evidence of accumulation of SFN and metabolites. Urinary excretion of SFN and individual metabolites ranged from < 1 to 41%, and the proportion excreted did not appear to be influenced by the dose. CONCLUSION This study demonstrated the safety and tolerability of SFX-01 over 7 days and indicated that the pharmacokinetic behavior of SFX-01 enteric-coated tablets was in line with expectations. TRIAL REGISTRATION European Union Drug Regulating Authorities Clinical Trials Database (EudraCT) number: 2022-001601-43; ISRCTN Study Registration number: ISRCTN9628565.
Collapse
Affiliation(s)
- Glen Clack
- TheraCryf PLC (Formerly Evgen Pharma PLC), Block 24, Alderley Park, Congleton Road, Nether Alderley, Cheshire, SK10 4TG, UK.
| | | | | | | | | | | | - Nicholas Mallard
- TheraCryf PLC (Formerly Evgen Pharma PLC), Block 24, Alderley Park, Congleton Road, Nether Alderley, Cheshire, SK10 4TG, UK
| |
Collapse
|
15
|
Herrera ML, Paraíso-Luna J, Bustos-Martínez I, Barco Á. Targeting epigenetic dysregulation in autism spectrum disorders. Trends Mol Med 2024; 30:1028-1046. [PMID: 38971705 DOI: 10.1016/j.molmed.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Autism spectrum disorders (ASD) comprise a range of neurodevelopmental pathologies characterized by deficits in social interaction and repetitive behaviors, collectively affecting almost 1% of the worldwide population. Deciphering the etiology of ASD has proven challenging due to the intricate interplay of genetic and environmental factors and the variety of molecular pathways affected. Epigenomic alterations have emerged as key players in ASD etiology. Their research has led to the identification of biomarkers for diagnosis and pinpointed specific gene targets for therapeutic interventions. This review examines the role of epigenetic alterations, resulting from both genetic and environmental influences, as a central causative factor in ASD, delving into its contribution to pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Macarena L Herrera
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Juan Paraíso-Luna
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Isabel Bustos-Martínez
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Ángel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain.
| |
Collapse
|
16
|
Lu XY, Li MQ, Li YT, Yao JY, Zhang LX, Zeng ZH, Yu-Liu, Chen ZR, Li CQ, Zhou XF, Li F. Oral edaravone ameliorates behavioral deficits and pathologies in a valproic acid-induced rat model of autism spectrum disorder. Neuropharmacology 2024; 258:110089. [PMID: 39033904 DOI: 10.1016/j.neuropharm.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Autism spectrum disorder (ASD) is neurodevelopmental disorder with a high incidence rate, characterized by social deficits and repetitive behaviors. There is currently no effective management available to treat the core symptoms of ASD; however, oxidative stress has been implicated in its pathogenesis. Edaravone (EDA), a free-radical scavenger, is used to treat amyotrophic lateral sclerosis (ALS) and acute ischemic stroke (AIS). Here, we hypothesized that an oral formula of EDA may have therapeutic efficacy in the treatment of core ASD symptoms. A rat model of autism was established by prenatal exposure to valproic acid (VPA), and the offsprings were orally treated with EDA at low (3 mg/kg), medium (10 mg/kg), and high (30 mg/kg) doses once daily for 28 days starting from postnatal day 25 (PND25). Oral EDA administration alleviated the core symptoms in VPA rats in a dose-dependent manner, including repetitive stereotypical behaviors and impaired social interaction. Furthermore, oral administration of EDA significantly reduced oxidative stress in a dose-dependent manner, as evidenced by a reduction in oxidative stress markers and an increase in antioxidants in the blood and brain. In addition, oral EDA significantly attenuated downstream pathologies, including synaptic and mitochondrial damage in the brain. Proteomic analysis further revealed that EDA corrected the imbalance in brain oxidative reduction and mitochondrial proteins induced by prenatal VPA administration. Overall, these findings demonstrate that oral EDA has therapeutic potential for ASD by targeting the oxidative stress pathway of disease pathogenesis and paves the way towards clinical studies.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Meng-Qing Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | | | - Jia-Yu Yao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Lin-Xuan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Ze-Hao Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Zhao-Rong Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Fu Zhou
- Suzhou Auzone Biotechnology, Suzhou, China; Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China.
| |
Collapse
|
17
|
Lang W, Shu D, Liu S, Sun C, Liu H, Huang Q, Mao G, Yang S, Xing B. Enzyme-Responsive Fluorescent Labeling Strategy for In Vivo Imaging of Gut Bacteria. J Org Chem 2024; 89:14641-14649. [PMID: 38607989 DOI: 10.1021/acs.joc.3c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Myrosinase (Myr), as a unique β-thioglucosidase enzyme capable of converting natural and gut bacterial metabolite glucosinolates into bioactive agents, has recently attracted a great deal of attention because of its essential functions in exerting homeostasis dynamics and promoting human health. Such nutraceutical and biomedical significance demands unique and reliable strategies for specific identification of Myr enzymes of gut bacterial origin in living systems, whereas the dearth of methods for bacterial Myr detection and visualization remains a challenging concern. Herein, we present a series of unique molecular probes for specific identification and imaging of Myr-expressing gut bacterial strains. Typically, an artificial glucosinolate with an azide group in aglycone was synthesized and sequentially linked with the probe moieties of versatile channels through simple click conjugation. Upon gut bacterial enzymatic cleavage, the as-prepared probe molecules could be converted into reactive isothiocyanate forms, which can further act as reactive electrophiles for the covalent labeling of gut bacteria, thus realizing their localized fluorescent imaging within a wide range of wavelength channels in live bacterial strains and animal models. Overall, our proposed method presents a novel technology for selective gut bacterial Myr enzyme labeling in vitro and in vivo. We envision that such a rational probe design would serve as a promising solution for chemoprevention assessment, microflora metabolic mechanistic study, and gut bacterium-mediated physiopathological exploration.
Collapse
Affiliation(s)
- Wenchao Lang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Dunji Shu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Songhan Liu
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Caixia Sun
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Huihong Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qianqian Huang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Sheng Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Bengang Xing
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| |
Collapse
|
18
|
Wei SM, Huang YM. Effect of sulforaphane on testicular ischemia-reperfusion injury induced by testicular torsion-detorsion in rats. Sci Rep 2024; 14:23420. [PMID: 39379457 PMCID: PMC11461801 DOI: 10.1038/s41598-024-74756-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Testicular ischemia-reperfusion induces enhanced concentration of reactive oxygen species. The increased reactive oxygen species harm cellular lipids, nucleic acids, proteins, and carbohydrates, and ultimately cause testicular injury. Sulforaphane, a kind of natural dietary isothiocyanate, exists predominantly in some cruciferous vegetables, like broccoli and cabbage. It can protect tissues from oxidative stress-induced damage. Herein, we analyzed the effectiveness of sulforaphane in treating ischemia-reperfusion injury occurring after testicular torsion-detorsion. Male rats (n = 60) were grouped as follows: sham-operated group, unilateral testicular ischemia-reperfusion group, and unilateral testicular ischemia-reperfusion group receiving sulforaphane treatment at 5 mg/kg. No testicular torsion-detorsion was performed in the sham group. Unilateral testicular ischemia-reperfusion model was created by detorsion after 2 h of left testicular torsion. In the sulforaphane-treated group, intraperitoneal sulforaphane (5 mg/kg) was administered at left testicular detorsion. Biochemical assay, Western blot, and hematoxylin and eosin staining were used to evaluate testicular malondialdehyde content (an important marker of reactive oxygen species), protein levels of superoxide dismutase and catalase (intracellular antioxidant defense mechanism), and testicular reproductive function, respectively. In testicular tissues, malondialdehyde content was significantly promoted, while protein levels of superoxide dismutase and catalase, and testicular reproductive function were significantly reduced in ipsilateral testes by testicular ischemia-reperfusion. Nevertheless, sulforaphane administration partially reversed the effect of testicular ischemia-reperfusion on these indexes. It can be concluded that sulforaphane elevates protein levels of superoxide dismutase and catalase, and suppresses reactive oxygen species content, thereby preventing ischemia-reperfusion injury in testis.
Collapse
Affiliation(s)
- Si-Ming Wei
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou City, 310015, Zhejiang Province, China.
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou City, 310053, Zhejiang Province, China.
| | - Yu-Min Huang
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou City, 310058, Zhejiang Province, China
| |
Collapse
|
19
|
Ramakrishnan M, Fahey JW, Zimmerman AW, Zhou X, Panjwani AA. The role of isothiocyanate-rich plants and supplements in neuropsychiatric disorders: a review and update. Front Nutr 2024; 11:1448130. [PMID: 39421616 PMCID: PMC11484503 DOI: 10.3389/fnut.2024.1448130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Neuroinflammation in response to environmental stressors is an important common pathway in a number of neurological and psychiatric disorders. Responses to immune-mediated stress can lead to epigenetic changes and the development of neuropsychiatric disorders. Isothiocyanates (ITC) have shown promise in combating oxidative stress and inflammation in the nervous system as well as organ systems. While sulforaphane from broccoli is the most widely studied ITC for biomedical applications, ITC and their precursor glucosinolates are found in many species of cruciferous and other vegetables including moringa. In this review, we examine both clinical and pre-clinical studies of ITC on the amelioration of neuropsychiatric disorders (neurodevelopmental, neurodegenerative, and other) from 2018 to the present, including documentation of protocols for several ongoing clinical studies. During this time, there have been 16 clinical studies (9 randomized controlled trials), most of which reported on the effect of sulforaphane on autism spectrum disorder and schizophrenia. We also review over 80 preclinical studies examining ITC treatment of brain-related dysfunctions and disorders. The evidence to date reveals ITC have great potential for treating these conditions with minimal toxicity. The authors call for well-designed clinical trials to further the translation of these potent phytochemicals into therapeutic practice.
Collapse
Affiliation(s)
- Monica Ramakrishnan
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Jed W. Fahey
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Institute of Medicine, University of Maine, Orono, ME, United States
| | - Andrew W. Zimmerman
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, United States
| | - Xinyi Zhou
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
- Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| | - Anita A. Panjwani
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
- Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
20
|
Rahman M, Khatun A, Liu L, Barkla BJ. Brassicaceae Mustards: Phytochemical Constituents, Pharmacological Effects, and Mechanisms of Action against Human Disease. Int J Mol Sci 2024; 25:9039. [PMID: 39201724 PMCID: PMC11354652 DOI: 10.3390/ijms25169039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The Brassicaceae genus consists of many economically important mustards of value for food and medicinal purposes, namely Asian mustard (Brassica juncea), ball mustard (Neslia paniculata), black mustard (B. nigra), garlic mustard (Alliaria petiolata), hedge mustard (Sisymbrium officinale), Asian hedge mustard (S. orientale), oilseed rape (B. napus), rapeseed (B. rapa), treacle mustard (Erysimum repandum), smooth mustard (S. erysimoides), white ball mustard (Calepina irregularis), white mustard (Sinapis alba), and Canola. Some of these are commercially cultivated as oilseeds to meet the global demand for a healthy plant-derived oil, high in polyunsaturated fats, i.e., B. napus and B. juncea. Other species are foraged from the wild where they grow on roadsides and as a weed of arable land, i.e., E. repandum and S. erysimoides, and harvested for medicinal uses. These plants contain a diverse range of bioactive natural products including sulfur-containing glucosinolates and other potentially valuable compounds, namely omega-3-fatty acids, terpenoids, phenylpropanoids, flavonoids, tannins, S-methyl cysteine sulfoxide, and trace-elements. Various parts of these plants and many of the molecules that are produced throughout the plant have been used in traditional medicines and more recently in the mainstream pharmaceutical and food industries. This study relates the uses of mustards in traditional medicines with their bioactive molecules and possible mechanisms of action and provides an overview of the current knowledge of Brassicaceae oilseeds and mustards, their phytochemicals, and their biological activities.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Amina Khatun
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Bronwyn J. Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| |
Collapse
|
21
|
Rehman M, Qaiser A, Khan HS, Manzoor S, Ashraf J. Enhancing CAR T cells function: role of immunomodulators in cancer immunotherapy. Clin Exp Med 2024; 24:180. [PMID: 39105978 PMCID: PMC11303469 DOI: 10.1007/s10238-024-01442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
CAR T-cell therapy is a promising immunotherapy, providing successful results for cancer patients who are unresponsive to standard and traditional therapeutic approaches. However, there are limiting factors which create a hurdle in the therapy performing its role optimally. CAR T cells get exhausted, produce active antitumor responses, and might even produce toxic reactions. Specifically, in the case of solid tumors, chimeric antigen receptor T (CAR-T) cells fail to produce the desired outcomes. Then, the need to use supplementary agents such as immune system modifying immunomodulatory agents comes into play. A series of the literature was studied to evaluate the role of immunomodulators including a phytochemical, Food and Drug Administration (FDA)-approved targeted drugs, and ILs in support of their achievements in boosting the efficiency of CAR-T cell therapy. Some of the most promising out of them are reported in this article. It is expected that by using the right combinations of immunotherapy, immunomodulators, and traditional cancer treatments, the best possible cancer defying results may be produced in the future.
Collapse
Affiliation(s)
- Maheen Rehman
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ariba Qaiser
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Hassan Sardar Khan
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sobia Manzoor
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javed Ashraf
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.
- Riphah International University, Islamabad, Pakistan.
| |
Collapse
|
22
|
Doherty M, Foley KR, Schloss J. Complementary and Alternative Medicine for Autism - A Systematic Review. J Autism Dev Disord 2024:10.1007/s10803-024-06449-5. [PMID: 38972931 DOI: 10.1007/s10803-024-06449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Complementary and Alternative Medicine (CAM) is a therapeutic option currently used by autistic people with continued interest and uptake. There remains limited evidence regarding the efficacy of CAM use in autism. The aim of this systematic review is to comprehensively review published clinical trials to explore the efficacy of CAM in autism. A systematic literature review of available research published from June 2013 to March 2023 was conducted. Our literature search identified 1826 eligible citations, and duplications removed (n = 694) with 102 articles eligible for title/abstract screening. After full text review, 39 studies were included. The results of this systematic review identified that for autistic people, vitamin and mineral supplements may only be of benefit if there is a deficiency. The results also found that the main interventions used were dietary interventions and nutraceuticals, including targeted supplements, vitamins and minerals, omega 3 s and prebiotics, probiotics and digestive enzymes. The evidence does not support some of the most frequently utilised dietary interventions, such as a Gluten Free Casein Free (GFCF) diet, and the use of targeted nutraceutical supplements may be of benefit, but more conclusive research is still required to direct safe and effective treatment.
Collapse
Affiliation(s)
- Monica Doherty
- Faculty of Health, National Centre for Naturopathic Medicine, Southern Cross University, 1 Military Road, Lismore, NSW, 2480, Australia.
| | - Kitty-Rose Foley
- Faculty of Health, Southern Cross University, Gold Coast, Qld, 4225, Australia
| | - Janet Schloss
- Faculty of Health, National Centre for Naturopathic Medicine, Southern Cross University, 1 Military Road, Lismore, NSW, 2480, Australia
| |
Collapse
|
23
|
Zhang Y, Zhang W, Zhao Y, Peng R, Zhang Z, Xu Z, Simal-Gandara J, Yang H, Deng J. Bioactive sulforaphane from cruciferous vegetables: advances in biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications. Crit Rev Food Sci Nutr 2024; 65:3027-3047. [PMID: 38841734 DOI: 10.1080/10408398.2024.2354937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chronic inflammation-induced diseases (CID) are the dominant cause of death worldwide, contributing to over half of all global deaths. Sulforaphane (SFN) derived from cruciferous vegetables has been extensively studied for its multiple functional benefits in alleviating CID. This work comprehensively reviewed the biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications of SFN and its potential mechanisms against CID (e.g., cancer, obesity, type 2 diabetes, et al.), and neurological disorders based on a decade of research. SFN exerts its biological functions through the hydrolysis of glucosinolates by gut microbiota, and exhibits rapid metabolism and excretion characteristics via metabolization of mercapturic acid pathway. Microencapsulation is an important way to improve the stability and targeted delivery of SFN. The health benefits of SNF against CID are attributed to the multiple regulatory mechanisms including modulating oxidative stress, inflammation, apoptosis, immune response, and intestinal homeostasis. The clinical applications of SFN and related formulations show promising potential; however, further exploration is required regarding the sources, dosages, toxicity profiles, and stability of SFN. Together, SFN is a natural product with great potential for development and application, which is crucial for the development of functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Renjie Peng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Zhou ZJ, Dong JY, Qiu Y, Zhang GL, Wei K, He LH, Sun YN, Jiang HZ, Zhang SS, Guo XR, Wang JY, Chen DP. Sulforaphane decreases oxidative stress and inhibits NLRP3 inflammasome activation in a mouse model of ulcerative colitis. Biomed Pharmacother 2024; 175:116706. [PMID: 38713944 DOI: 10.1016/j.biopha.2024.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024] Open
Abstract
Excessive oxidative stress and NLRP3 inflammasome activation are considered the main drivers of inflammatory bowel disease (IBD), and inhibition of inflammasomes ameliorates clinical symptoms and morphological manifestations of IBD. Herein, we examined the roles of NLRP3 activation in IBD and modulation of NLRP3 by sulforaphane (SFN), a compound with multiple pharmacological activities that is extracted from cruciferous plants. To simulate human IBD, we established a mouse colitis model by administering dextran sodium sulfate in the drinking water. SFN (25, 50 mg·kg-1·d-1, ig) or the positive control sulfasalazine (500 mg/kg, ig) was administered to colitis-affected mice for 7 days. Model mice displayed pathological alterations in colon tissue as well as classic symptoms of colitis beyond substantial tissue inflammation. Expression of NLRP3, ASC, and caspase-1 was significantly elevated in the colonic epithelium. The expression of NLRP3 inflammasomes led to activation of downstream proteins and increases in the cytokines IL-18 and IL-1β. SFN administration either fully or partially reversed these changes, thus restoring IL-18 and IL-1β, substantially inhibiting NLRP3 activation, and decreasing inflammation. SFN alleviated the inflammation induced by LPS and NLRP3 agonists in RAW264.7 cells by decreasing the levels of reactive oxygen species. In summary, our results revealed the pathological roles of oxidative stress and NLRP3 in colitis, and indicated that SFN might serve as a natural NLRP3 inhibitor, thereby providing a new strategy for alternative colitis treatment.
Collapse
Affiliation(s)
- Zi-Juan Zhou
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jian-Yi Dong
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yang Qiu
- Dalian Medical University, Dalian, Liaoning 116044, China
| | - Guo-Lin Zhang
- Dalian Medical University, Dalian, Liaoning 116044, China
| | - Kun Wei
- Dalian Medical University, Dalian, Liaoning 116044, China
| | - Li-Heng He
- Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yi-Ning Sun
- Dalian Medical University, Dalian, Liaoning 116044, China
| | | | - Shuang-Shuang Zhang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xin-Rui Guo
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jing-Yu Wang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Da-Peng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
25
|
Liu S, Wang B, Chen T, Wang H, Liu J, Zhao X, Zhang Y. Two new and effective food-extracted immunomodulatory agents exhibit anti-inflammatory response activity in the hACE2 acute lung injury murine model of COVID-19. Front Immunol 2024; 15:1374541. [PMID: 38807598 PMCID: PMC11130445 DOI: 10.3389/fimmu.2024.1374541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVE The coronavirus disease 2019 (COVID-19) spread rapidly and claimed millions of lives worldwide. Acute respiratory distress syndrome (ARDS) is the major cause of COVID-19-associated deaths. Due to the limitations of current drugs, developing effective therapeutic options that can be used rapidly and safely in clinics for treating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections is necessary. This study aims to investigate the effects of two food-extracted immunomodulatory agents, ajoene-enriched garlic extract (AGE) and cruciferous vegetables-extracted sulforaphane (SFN), on anti-inflammatory and immune responses in a SARS-CoV-2 acute lung injury mouse model. METHODS In this study, we established a mouse model to mimic the SARS-CoV-2 infection acute lung injury model via intratracheal injection of polyinosinic:polycytidylic acid (poly[I:C]) and SARS-CoV-2 recombinant spike protein (SP). After the different agents treatment, lung sections, bronchoalveolar lavage fluid (BALF) and fresh faeces were harvested. Then, H&E staining was used to examine symptoms of interstitial pneumonia. Flow cytometry was used to examine the change of immune cell populations. Multiplex cytokines assay was used to examine the inflammatory cytokines.16S rDNA high-throughput sequencing was used to examine the change of gut microbiome. RESULTS Our results showed that AGE and SFN significantly suppressed the symptoms of interstitial pneumonia, effectively inhibited the production of inflammatory cytokines, decreased the percentage of inflammatory cell populations, and elevated T cell populations in the mouse model. Furthermore, we also observed that the gut microbiome of genus Paramuribaculum were enriched in the AGE-treated group. CONCLUSION Here, for the first time, we observed that these two novel, safe, and relatively inexpensive immunomodulatory agents exhibited the same effects on anti-inflammatory and immune responses as neutralizing monoclonal antibodies (mAbs) against interleukin 6 receptor (IL-6R), which have been suggested for treating COVID-19 patients. Our results revealed the therapeutic ability of these two immunomodulatory agents in a mouse model of SARS-CoV-2 acute lung injury by promoting anti-inflammatory and immune responses. These results suggest that AGE and SFN are promising candidates for the COVID-19 treatment.
Collapse
Affiliation(s)
- Shasha Liu
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baiqiao Wang
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tianran Chen
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Wang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinbo Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuan Zhao
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
- Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, China
| |
Collapse
|
26
|
Pérez-Cano L, Boccuto L, Sirci F, Hidalgo JM, Valentini S, Bosio M, Liogier D’Ardhuy X, Skinner C, Cascio L, Srikanth S, Jones K, Buchanan CB, Skinner SA, Gomez-Mancilla B, Hyvelin JM, Guney E, Durham L. Characterization of a Clinically and Biologically Defined Subgroup of Patients with Autism Spectrum Disorder and Identification of a Tailored Combination Treatment. Biomedicines 2024; 12:991. [PMID: 38790952 PMCID: PMC11117897 DOI: 10.3390/biomedicines12050991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders (NDDs) with a high unmet medical need. The diagnosis of ASD is currently based on behavior criteria, which overlooks the diversity of genetic, neurophysiological, and clinical manifestations. Failure to acknowledge such heterogeneity has hindered the development of efficient drug treatments for ASD and other NDDs. DEPI® (Databased Endophenotyping Patient Identification) is a systems biology, multi-omics, and machine learning-driven platform enabling the identification of subgroups of patients with NDDs and the development of patient-tailored treatments. In this study, we provide evidence for the validation of a first clinically and biologically defined subgroup of patients with ASD identified by DEPI, ASD Phenotype 1 (ASD-Phen1). Among 313 screened patients with idiopathic ASD, the prevalence of ASD-Phen1 was observed to be ~24% in 84 patients who qualified to be enrolled in the study. Metabolic and transcriptomic alterations differentiating patients with ASD-Phen1 were consistent with an over-activation of NF-κB and NRF2 transcription factors, as predicted by DEPI. Finally, the suitability of STP1 combination treatment to revert such observed molecular alterations in patients with ASD-Phen1 was determined. Overall, our results support the development of precision medicine-based treatments for patients diagnosed with ASD.
Collapse
Affiliation(s)
- Laura Pérez-Cano
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; (F.S.); (J.M.H.); (S.V.); (M.B.); (E.G.)
| | - Luigi Boccuto
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29649, USA; (L.B.); (C.S.); (L.C.); (S.S.); (K.J.); (C.B.B.); (S.A.S.)
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Francesco Sirci
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; (F.S.); (J.M.H.); (S.V.); (M.B.); (E.G.)
| | - Jose Manuel Hidalgo
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; (F.S.); (J.M.H.); (S.V.); (M.B.); (E.G.)
| | - Samuel Valentini
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; (F.S.); (J.M.H.); (S.V.); (M.B.); (E.G.)
| | - Mattia Bosio
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; (F.S.); (J.M.H.); (S.V.); (M.B.); (E.G.)
| | - Xavier Liogier D’Ardhuy
- Drug Development Unit (DDU), STALICLA SA, Avenue de Sécheron 15, 1202 Geneva, Switzerland; (X.L.D.); (B.G.-M.); (J.-M.H.)
| | - Cindy Skinner
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29649, USA; (L.B.); (C.S.); (L.C.); (S.S.); (K.J.); (C.B.B.); (S.A.S.)
| | - Lauren Cascio
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29649, USA; (L.B.); (C.S.); (L.C.); (S.S.); (K.J.); (C.B.B.); (S.A.S.)
- Research and Education in Disease Diagnosis and Interventions (REDDI) Lab, Center for Innovative Medical Devices and Sensors (CIMeDS), Clemson University, Clemson, SC 29634, USA
| | - Sujata Srikanth
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29649, USA; (L.B.); (C.S.); (L.C.); (S.S.); (K.J.); (C.B.B.); (S.A.S.)
- Research and Education in Disease Diagnosis and Interventions (REDDI) Lab, Center for Innovative Medical Devices and Sensors (CIMeDS), Clemson University, Clemson, SC 29634, USA
| | - Kelly Jones
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29649, USA; (L.B.); (C.S.); (L.C.); (S.S.); (K.J.); (C.B.B.); (S.A.S.)
- Research and Education in Disease Diagnosis and Interventions (REDDI) Lab, Center for Innovative Medical Devices and Sensors (CIMeDS), Clemson University, Clemson, SC 29634, USA
| | - Caroline B. Buchanan
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29649, USA; (L.B.); (C.S.); (L.C.); (S.S.); (K.J.); (C.B.B.); (S.A.S.)
| | - Steven A. Skinner
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29649, USA; (L.B.); (C.S.); (L.C.); (S.S.); (K.J.); (C.B.B.); (S.A.S.)
| | - Baltazar Gomez-Mancilla
- Drug Development Unit (DDU), STALICLA SA, Avenue de Sécheron 15, 1202 Geneva, Switzerland; (X.L.D.); (B.G.-M.); (J.-M.H.)
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Jean-Marc Hyvelin
- Drug Development Unit (DDU), STALICLA SA, Avenue de Sécheron 15, 1202 Geneva, Switzerland; (X.L.D.); (B.G.-M.); (J.-M.H.)
| | - Emre Guney
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; (F.S.); (J.M.H.); (S.V.); (M.B.); (E.G.)
| | - Lynn Durham
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; (F.S.); (J.M.H.); (S.V.); (M.B.); (E.G.)
- Drug Development Unit (DDU), STALICLA SA, Avenue de Sécheron 15, 1202 Geneva, Switzerland; (X.L.D.); (B.G.-M.); (J.-M.H.)
| |
Collapse
|
27
|
Aishworiya R, Valica T, Hagerman R, Restrepo B. An Update on Psychopharmacological Treatment of Autism Spectrum Disorder. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2024; 22:198-211. [PMID: 38680976 PMCID: PMC11046717 DOI: 10.1176/appi.focus.24022006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
While behavioral interventions remain the mainstay of treatment of autism spectrum disorder (ASD), several potential targeted treatments addressing the underlying neurophysiology of ASD have emerged in the last few years. These are promising for the potential to, in future, become part of the mainstay treatment in addressing the core symptoms of ASD. Although it is likely that the development of future targeted treatments will be influenced by the underlying heterogeneity in etiology, associated genetic mechanisms influencing ASD are likely to be the first targets of treatments and even gene therapy in the future for ASD. In this article, we provide a review of current psychopharmacological treatment in ASD including those used to address common comorbidities of the condition and upcoming new targeted approaches in autism management. Medications including metformin, arbaclofen, cannabidiol, oxytocin, bumetanide, lovastatin, trofinetide, and dietary supplements including sulforophane and N-acetylcysteine are discussed. Commonly used medications to address the comorbidities associated with ASD including atypical antipsychotics, serotoninergic agents, alpha-2 agonists, and stimulant medications are also reviewed. Targeted treatments in Fragile X syndrome (FXS), the most common genetic disorder leading to ASD, provide a model for new treatments that may be helpful for other forms of ASD. Appeared originally in Neurotherapeutics 2022; 19:248-262.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| | - Tatiana Valica
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| | - Bibiana Restrepo
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| |
Collapse
|
28
|
Kakarla R, Karuturi P, Siakabinga Q, Kasi Viswanath M, Dumala N, Guntupalli C, Nalluri BN, Venkateswarlu K, Prasanna VS, Gutti G, Yadagiri G, Gujjari L. Current understanding and future directions of cruciferous vegetables and their phytochemicals to combat neurological diseases. Phytother Res 2024; 38:1381-1399. [PMID: 38217095 DOI: 10.1002/ptr.8122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
Neurological disorders incidences are increasing drastically due to complex pathophysiology, and the nonavailability of disease-modifying agents. Several attempts have been made to identify new potential chemicals to combat these neurological abnormalities. At present, complete abolishment of neurological diseases is not attainable except for symptomatic relief. However, dietary recommendations to help brain development or improvement have increased over the years. In recent times, cruciferous vegetables and their phytochemicals have been identified from preclinical and clinical investigations as potential neuroprotective agents. The present review highlights the beneficial effects and molecular mechanisms of phytochemicals such as indole-3-carbinol, diindolylmethane, sulforaphane, kaempferol, selenium, lutein, zeaxanthin, and vitamins of cruciferous vegetables against neurological diseases including Parkinson's disease, Alzheimer's disease, stroke, Huntington's disease, autism spectra disorders, anxiety, depression, and pain. Most of these cruciferous phytochemicals protect the brain by eliciting antioxidant, anti-inflammatory, and antiapoptotic properties. Regular dietary intake of cruciferous vegetables may benefit the prevention and treatment of neurological diseases. The present review suggests that there is a lacuna in identifying the clinical efficacy of these phytochemicals. Therefore, high-quality future studies should firmly establish the efficacy of the above-mentioned cruciferous phytochemicals in clinical settings.
Collapse
Affiliation(s)
- Ramakrishna Kakarla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Praditha Karuturi
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Queen Siakabinga
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Naresh Dumala
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Kojja Venkateswarlu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Varanasi, India
| | - Vani Sai Prasanna
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, India
| | - Gopichand Gutti
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Ganesh Yadagiri
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Lohitha Gujjari
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
29
|
Shamabadi A, Karimi H, Arabzadeh Bahri R, Motavaselian M, Akhondzadeh S. Emerging drugs for the treatment of irritability associated with autism spectrum disorder. Expert Opin Emerg Drugs 2024; 29:45-56. [PMID: 38296815 DOI: 10.1080/14728214.2024.2313650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is an early-onset disorder with a prevalence of 1% among children and reported disability-adjusted life years of 4.31 million. Irritability is a challenging behavior associated with ASD, for which medication development has lagged. More specifically, pharmacotherapy effectiveness may be limited against high adverse effects (considering side effect profiles and patient medication sensitivity); thus, the possible benefits of pharmacological interventions must be balanced against potential adverse events in each patient. AREAS COVERED After reviewing the neuropathophysiology of ASD-associated irritability, the benefits and tolerability of emerging medications in its treatment based on randomized controlled trials were detailed in light of mechanisms and targets of action. EXPERT OPINION Succeeding risperidone and aripiprazole, monotherapy with memantine may be beneficial. In addition, N-acetylcysteine, galantamine, sulforaphane, celecoxib, palmitoylethanolamide, pentoxifylline, simvastatin, minocycline, amantadine, pregnenolone, prednisolone, riluzole, propentofylline, pioglitazone, and topiramate, all adjunct to risperidone, and clonidine and methylphenidate outperformed placebo. These effects were through glutamatergic, γ-aminobutyric acidergic, inflammatory, oxidative, cholinergic, dopaminergic, and serotonergic systems. All medications were reported to be safe and tolerable. Considering sample size, follow-up, and effect size, further studies are necessary. Along with drug development, repositioning and combining existing drugs supported by the mechanism of action is recommended.
Collapse
Affiliation(s)
- Ahmad Shamabadi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanie Karimi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Razman Arabzadeh Bahri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Ou J, Smith RC, Tobe RH, Lin J, Arriaza J, Fahey JW, Liu R, Zeng Y, Liu Y, Huang L, Shen Y, Li Y, Cheng D, Cornblatt B, Davis JM, Zhao J, Wu R, Jin H. Efficacy of Sulforaphane in Treatment of Children with Autism Spectrum Disorder: A Randomized Double-Blind Placebo-Controlled Multi-center Trial. J Autism Dev Disord 2024; 54:628-641. [PMID: 36427174 DOI: 10.1007/s10803-022-05784-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
Abstract
Sulforaphane has been reported to possibly improve core symptoms associated with autism spectrum disorders from mostly small size studies. Here we present results of a larger randomized clinical trial (N = 108) in China. There were no significant changes in caregiver rated scales between sulforaphane and placebo groups. However, clinician rated scales showed a significant improvement in the sulforaphane group, and one third of participants showed at least a 30% decrease in score by 12 weeks treatment. The effects of sulforaphane were seen across the full range of intelligence and greater in participants over 10 years. Sulforaphane was safe and well-tolerated even for young children. The inconsistent results between caregiver and clinician rated scales suggest more clinical trials are needed to confirm our findings.
Collapse
Affiliation(s)
- Jianjun Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China
| | - Robert C Smith
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Russell H Tobe
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Jingjing Lin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China
| | - Jen Arriaza
- School of Professional Studies, New York University, New York, NY, USA
| | - Jed W Fahey
- Departments of Medicine, Psychiatry and Behavioral Sciences, and Pharmacology & Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ruiting Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China
| | - Ying Zeng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China
| | - Yanan Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China
| | - Lian Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China
| | - Yidong Shen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China
| | - Yamin Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China
| | - Daomeng Cheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, Guangdong, China
| | - Brian Cornblatt
- Nutramax Laboratories, Consumer Care, Inc., Edgewood, MD, USA
| | - John M Davis
- Department of Psychiatry, University of Illinois, Psychiatric Institute, Chicago, IL, USA
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Medical Center for Mental Health, Changsha, 410011, Hunan, China.
- China National Technology Institute on Mental Disorders, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China.
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Medical Center for Mental Health, Changsha, 410011, Hunan, China.
- China National Technology Institute on Mental Disorders, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011, Hunan, China.
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hua Jin
- Department of Psychiatry, University of California San Diego and Psychiatric Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
31
|
Ligor M, Szultka-Młyńska M, Rafińska K, Cwudzińska A. Comparative Studies of Extracts Obtained from Brassica oleracea L. Plants at Different Stages of Growth by Isolation and Determination of Isothiocyanates: An Assessment of Chemopreventive Properties of Broccoli. Molecules 2024; 29:519. [PMID: 38276596 PMCID: PMC11154519 DOI: 10.3390/molecules29020519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The main goal of this work was to develop analytical procedures for the isolation and determination of selected isothiocyanates. As an example, particularly sulforaphane from plants of the Brassicaceae Burnett or Cruciferae Juss family. The applied methodology was mainly based on classical extraction methods and high-performance liquid chromatography coupled with tandem mass spectrometry. Moreover, the effect of temperature on the release of isothiocyanates from plant cells was considered. The cytotoxic activity of the obtained plant extracts against a selected cancer cell line has also been included. The results allow evaluating the usefulness of obtained plant extracts and raw sprouts regarding their content of isothiocyanates-bioactive compounds with chemopreventive properties.
Collapse
Affiliation(s)
- Magdalena Ligor
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Street, 87-100 Toruń, Poland; (M.S.-M.); (K.R.); (A.C.)
| | | | | | | |
Collapse
|
32
|
Li X, Cai Z, Yang F, Wang Y, Pang X, Sun J, Li X, Lu Y. Broccoli Improves Lipid Metabolism and Intestinal Flora in Mice with Type 2 Diabetes Induced by HFD and STZ Diet. Foods 2024; 13:273. [PMID: 38254574 PMCID: PMC10814524 DOI: 10.3390/foods13020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, type 2 diabetes (T2DM) is on the rise. Maintaining a healthy diet is crucial for both treating and preventing T2DM.As a common vegetable in daily diet, broccoli has antioxidant, anti-inflammatory and anticarcoma physiological activities. We developed a mouse model of type 2 diabetes and carried out a systematic investigation to clarify the function of broccoli in reducing T2DM symptoms and controlling intestinal flora. The findings demonstrated that broccoli could successfully lower fasting blood glucose (FBG), lessen insulin resistance, regulate lipid metabolism, lower the levels of TC, TG, LDL-C, and MDA, stop the expression of IL-1β and IL-6, and decrease the harm that diabetes causes to the pancreas, liver, fat, and other organs and tissues. Furthermore, broccoli altered the intestinal flora's makeup in mice with T2DM. At the genus level, the relative abundance of Allobaculum decreased, and that of Odoribacter and Oscillospira increased; At the family level, the relative abundances of Odoribacteraceae, Rikenellaceae and S24-7 decreased, while the relative abundances of Erysipelotrichaceae and Rikenellaceae increased.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
- Priority Academic Program, Development of Jiangsu Higher Education Institutions (PAPD), Nanjing 210023, China
| | - Zifan Cai
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Feiyu Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yunfan Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| |
Collapse
|
33
|
Yang J, He L, Dai S, Zheng H, Cui X, Ou J, Zhang X. Therapeutic efficacy of sulforaphane in autism spectrum disorders and its association with gut microbiota: animal model and human longitudinal studies. Front Nutr 2024; 10:1294057. [PMID: 38260076 PMCID: PMC10800504 DOI: 10.3389/fnut.2023.1294057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Sulforaphane (SFN) has been found to alleviate complications linked with several diseases by regulating gut microbiota (GM), while the effect of GM on SFN for autism spectrum disorders (ASD) has not been studied. Therefore, this study aimed to investigate the relationship between the effects of SFN on childhood ASD and GM through animal model and human studies. Methods We evaluated the therapeutic effects of SFN on maternal immune activation (MIA) induced ASD-like rat model and pediatric autism patients using three-chamber social test and OSU Autism Rating Scale-DSM-IV (OARS-4), respectively, with parallel GM analysis using 16SrRNA sequencing. Results SFN significantly improved the sniffing times of ASD-like rats in the three-chamber test. For human participants, the average verbal or non-verbal communication (OSU-CO) scores of SFN group had changed significantly at the 12-wk endpoint. SFN was safe and no serious side effects after taking. GM changes were similar for both ASD-like rats and ASD patients, such as consistent changes in order Bacillales, family Staphylococcaceae and genus Staphylococcus. Although the gut microbiota composition was significantly altered in SFN-treated ASD-like rats, the alteration of GM was not evident in ASD patients after 12 weeks of SFN treatment. However, in the network analysis, we found 25 taxa correlated with rats' social behavior, 8 of which were associated with SFN treatment in ASD-like rats, For ASD patients, we found 35 GM abundance alterations correlated with improvements in ASD symptoms after SFN treatment. Moreover, family Pasteurellaceae and genus Haemophilus were found to be associated with SFN administration in the network analyses in both ASD-like rats and ASD patients. Discussion These findings suggest that SFN could provide a novel avenue for preventing and treating ASD, and its therapeutic effects might be related to gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianjun Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaojie Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
34
|
Yui K, Imataka G, Shiohama T. Lipid Peroxidation via Regulating the Metabolism of Docosahexaenoic Acid and Arachidonic Acid in Autistic Behavioral Symptoms. Curr Issues Mol Biol 2023; 45:9149-9164. [PMID: 37998751 PMCID: PMC10670603 DOI: 10.3390/cimb45110574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The association between the lipid peroxidation product malondialdehyde (MDA)-modified low-density lipoprotein (MDA-LDL) and the pathophysiology of autism spectrum disorder (ASD) is unclear. This association was studied in 17 children with ASD and seven age-matched controls regarding autistic behaviors. Behavioral symptoms were assessed using the Aberrant Behavior Checklist (ABC). To compensate for the small sample size, adaptive Lasso was used to increase the likelihood of accurate prediction, and a coefficient of variation was calculated for suitable variable selection. Plasma MDA-LDL levels were significantly increased, and plasma SOD levels were significantly decreased in addition to significantly increased plasma docosahexaenoic acid (DHA) levels and significantly decreased plasma arachidonic acid (ARA) levels in the 17 subjects with ASD as compared with those of the seven healthy controls. The total ABC scores were significantly higher in the ASD group than in the control group. The results of multiple linear regression and adaptive Lasso analyses revealed an association between increased plasma DHA levels and decreased plasma ARA levels, which were significantly associated with total ABC score and increased plasma MDA-LDL levels. Therefore, an imbalance between plasma DHA and ARA levels induces ferroptosis via lipid peroxidation. Decreased levels of α-linolenic acid and γ-linolenic acid may be connected to the total ABC scores with regard to lipid peroxidation.
Collapse
Affiliation(s)
- Kunio Yui
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
- Department of Urology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - George Imataka
- Department of Pediatrics, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| |
Collapse
|
35
|
Radwan K, Wu G, Banks-Word K, Rosenberger R. An Open-Label Case Series of Glutathione Use for Symptomatic Management in Children with Autism Spectrum Disorder. Med Sci (Basel) 2023; 11:73. [PMID: 37987328 PMCID: PMC10660524 DOI: 10.3390/medsci11040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder that has been diagnosed in an increasing number of children around the world. The existing data suggest that early diagnosis and intervention can improve ASD outcomes. The causes of ASD remain complex and unclear, and there are currently no clinical biomarkers for autism spectrum disorder. There is an increasing recognition that ASD might be associated with oxidative stress through several mechanisms including abnormal metabolism (lipid peroxidation) and the toxic buildup of reactive oxygen species (ROS). Glutathione acts as an antioxidant, a free radical scavenger and a detoxifying agent. This open-label pilot study investigates the tolerability and effectiveness of oral supplementation with OpitacTM gluthathione as a treatment for patients with ASD. The various aspects of glutathione OpitacTM glutathione bioavailability were examined when administered by oral routes. The absorption of glutathione from the gastrointestinal tract has been recently investigated. The results of this case series suggest that oral glutathione supplementation may improve oxidative markers, but this does not necessarily translate to the observed clinical improvement of subjects with ASD. The study reports a good safety profile of glutathione use, with stomach upset reported in four out of six subjects. This article discusses the role of the gut microbiome and redox balance in ASD and notes that a high baseline oxidative burden may make some patients poor responders to glutathione supplementation. In conclusion, an imbalance in redox reactions is only one of the many factors contributing to ASD, and further studies are necessary to investigate other factors, such as impaired neurotransmission, immune dysregulation in the brain, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Karam Radwan
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago Medical Center, Chicago, IL 60637, USA (R.R.)
| | - Gary Wu
- Department of Psychiatry & Behavioral Sciences, Rosalind Franklin University, North Chicago, IL 60064, USA;
| | - Kamilah Banks-Word
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago Medical Center, Chicago, IL 60637, USA (R.R.)
| | - Ryan Rosenberger
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago Medical Center, Chicago, IL 60637, USA (R.R.)
| |
Collapse
|
36
|
Sim HW, Lee WY, Lee R, Yang SY, Ham YK, Lim SD, Park HJ. The Anti-Inflammatory Effects of Broccoli ( Brassica oleracea L. var. italica) Sprout Extract in RAW 264.7 Macrophages and a Lipopolysaccharide-Induced Liver Injury Model. Curr Issues Mol Biol 2023; 45:9117-9131. [PMID: 37998749 PMCID: PMC10670196 DOI: 10.3390/cimb45110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Brassica oleracea var. italica (broccoli), a member of the cabbage family, is abundant with many nutrients, including vitamins, potassium, fiber, minerals, and phytochemicals. Consequently, it has been used as a functional food additive to reduce oxidative stress and inflammatory responses. In the current study, the effects of sulforaphane-rich broccoli sprout extract (BSE) on the inflammatory response were investigated in vitro and in vivo. Comparative high-performance liquid chromatography analysis of sulforaphane content from different extracts revealed that 70% ethanolic BSE contained more sulforaphane than the other extracts. qPCR and enzyme immunoassay analyses revealed that BSE markedly reduced the expression of proinflammatory cytokines and mediators, including cyclooxygenase 2, interleukin (IL)-1β, IL-6, IL-1, inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α), in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Pretreatment with BSE improved the survival rate and suppressed alanine aminotransferase and aspartate aminotransferase expression in LPS-induced endotoxemic mice, while proinflammatory cytokines such as IL-1β, TNF-α, IL-6, cyclooxygenase-2, and iNOS decreased dramatically in the LPS-induced liver injury model via BSE treatment. Additionally, F4/80 immunostaining showed that BSE suppressed hepatic macrophage infiltration in the liver after lipopolysaccharide injection. In conclusion, BSE may be a potential nutraceutical for preventing and regulating excessive immune responses in inflammatory disease.
Collapse
Affiliation(s)
- Hyeon Woo Sim
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea; (H.W.S.)
| | - Won-Yong Lee
- Department of Livestock, Korea National College of Agriculture and Fisheries, Jeonju-si 54874, Republic of Korea;
| | - Ran Lee
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea; (H.W.S.)
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Youn-Kyung Ham
- Department of Animal Science, Sangji University, Wonju-si 26339, Republic of Korea;
| | - Sung Don Lim
- Department of Plant Life and Resource Science, Sangji University, Wonju-si 26339, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea; (H.W.S.)
| |
Collapse
|
37
|
Fang Q, Bai Y, Hu S, Ding J, Liu L, Dai M, Qiu J, Wu L, Rao X, Wang Y. Unleashing the Potential of Nrf2: A Novel Therapeutic Target for Pulmonary Vascular Remodeling. Antioxidants (Basel) 2023; 12:1978. [PMID: 38001831 PMCID: PMC10669195 DOI: 10.3390/antiox12111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary vascular remodeling, characterized by the thickening of all three layers of the blood vessel wall, plays a central role in the pathogenesis of pulmonary hypertension (PH). Despite the approval of several drugs for PH treatment, their long-term therapeutic effect remains unsatisfactory, as they mainly focus on vasodilation rather than addressing vascular remodeling. Therefore, there is an urgent need for novel therapeutic targets in the treatment of PH. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor that regulates endogenous antioxidant defense and emerges as a novel regulator of pulmonary vascular remodeling. Growing evidence has suggested an involvement of Nrf2 and its downstream transcriptional target in the process of pulmonary vascular remodeling. Pharmacologically targeting Nrf2 has demonstrated beneficial effects in various diseases, and several Nrf2 inducers are currently undergoing clinical trials. However, the exact potential and mechanism of Nrf2 as a therapeutic target in PH remain unknown. Thus, this review article aims to comprehensively explore the role and mechanism of Nrf2 in pulmonary vascular remodeling associated with PH. Additionally, we provide a summary of Nrf2 inducers that have shown therapeutic potential in addressing the underlying vascular remodeling processes in PH. Although Nrf2-related therapies hold great promise, further research is necessary before their clinical implementation can be fully realized.
Collapse
Affiliation(s)
- Qin Fang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Bai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqing Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meiyan Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Qiu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
38
|
Treasure K, Harris J, Williamson G. Exploring the anti-inflammatory activity of sulforaphane. Immunol Cell Biol 2023; 101:805-828. [PMID: 37650498 DOI: 10.1111/imcb.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Dysregulation of innate immune responses can result in chronic inflammatory conditions. Glucocorticoids, the current frontline therapy, are effective immunosuppressive drugs but come with a trade-off of cumulative and serious side effects. Therefore, alternative drug options with improved safety profiles are urgently needed. Sulforaphane, a phytochemical derived from plants of the brassica family, is a potent inducer of phase II detoxification enzymes via nuclear factor-erythroid factor 2-related factor 2 (NRF2) signaling. Moreover, a growing body of evidence suggests additional diverse anti-inflammatory properties of sulforaphane through interactions with mediators of key signaling pathways and inflammatory cytokines. Multiple studies support a role for sulforaphane as a negative regulator of nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) activation and subsequent cytokine release, inflammasome activation and direct regulation of the activity of macrophage migration inhibitory factor. Significantly, studies have also highlighted potential steroid-sparing activity for sulforaphane, suggesting that it may have potential as an adjunctive therapy for some inflammatory conditions. This review discusses published research on sulforaphane, including proposed mechanisms of action, and poses questions for future studies that might help progress our understanding of the potential clinical applications of this intriguing molecule.
Collapse
Affiliation(s)
- Katie Treasure
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Monash University, Clayton, VIC, Australia
| | - James Harris
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Monash University, Clayton, VIC, Australia
| |
Collapse
|
39
|
Yui K, Imataka G, Shiohama T. Lipid Peroxidation of the Docosahexaenoic Acid/Arachidonic Acid Ratio Relating to the Social Behaviors of Individuals with Autism Spectrum Disorder: The Relationship with Ferroptosis. Int J Mol Sci 2023; 24:14796. [PMID: 37834244 PMCID: PMC10572946 DOI: 10.3390/ijms241914796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) undergo lipid peroxidation and conversion into malondialdehyde (MDA). MDA reacts with acetaldehyde to form malondialdehyde-modified low-density lipoprotein (MDA-LDL). We studied unsettled issues in the association between MDA-LDL and the pathophysiology of ASD in 18 individuals with autism spectrum disorders (ASD) and eight age-matched controls. Social behaviors were assessed using the social responsiveness scale (SRS). To overcome the problem of using small samples, adaptive Lasso was used to enhance the interpretability accuracy, and a coefficient of variation was used for variable selections. Plasma levels of the MDA-LDL levels (91.00 ± 16.70 vs. 74.50 ± 18.88) and the DHA/arachidonic acid (ARA) ratio (0.57 ± 0.16 vs. 0.37 ± 0.07) were significantly higher and the superoxide dismutase levels were significantly lower in the ASD group than those in the control group. Total SRS scores in the ASD group were significantly higher than those in the control group. The unbeneficial DHA/ARA ratio induced ferroptosis via lipid peroxidation. Multiple linear regression analysis and adaptive Lasso revealed an association of the DHA/ARA ratio with total SRS scores and increased MDA-LDL levels in plasma, resulting in neuronal deficiencies. This unbeneficial DHA/ARA-ratio-induced ferroptosis contributes to autistic social behaviors and is available for therapy.
Collapse
Affiliation(s)
- Kunio Yui
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan;
- Department of Pediatrics, Dokkyo Medical University, Mibu 321-0293, Japan;
| | - George Imataka
- Department of Pediatrics, Dokkyo Medical University, Mibu 321-0293, Japan;
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan;
| |
Collapse
|
40
|
Hirst K, Zamzow RM, Stichter JP, Beversdorf DQ. A Pilot Feasibility Study Assessing the Combined Effects of Early Behavioral Intervention and Propranolol on Autism Spectrum Disorder (ASD). CHILDREN (BASEL, SWITZERLAND) 2023; 10:1639. [PMID: 37892301 PMCID: PMC10605265 DOI: 10.3390/children10101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Autism spectrum disorder (ASD), a neurodevelopmental disorder typified by differences in social communication as well as restricted and repetitive behaviors, is often responsive to early behavioral intervention. However, there is limited information on whether such intervention can be augmented with pharmacological approaches. We conducted a double-blinded, placebo-controlled feasibility trial to examine the effects of the β-adrenergic antagonist propranolol combined with early intensive behavioral intervention (EIBI) for children with ASD. Nine participants with ASD, ages three to ten, undergoing EIBI were enrolled and randomized to a 12-week course of propranolol or placebo. Blinded assessments were conducted at baseline, 6 weeks, and 12 weeks. The primary outcome measures focusing on social interaction were the General Social Outcome Measure-2 (GSOM-2) and Social Responsiveness Scale-Second Edition (SRS-2). Five participants completed the 12-week visit. The sample size was insufficient to evaluate the treatment efficacy. However, side effects were infrequent, and participants were largely able to fully participate in the procedures. Conducting a larger clinical trial to investigate propranolol's effects on core ASD features within the context of behavioral therapy will be beneficial, as this will advance and individualize combined therapeutic approaches to ASD intervention. This initial study helps to understand feasibility constraints on performing such a study.
Collapse
Affiliation(s)
- Kathy Hirst
- Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO 65211, USA; (K.H.); (J.P.S.)
| | - Rachel M. Zamzow
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA;
| | - Janine P. Stichter
- Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO 65211, USA; (K.H.); (J.P.S.)
| | - David Q. Beversdorf
- Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO 65211, USA; (K.H.); (J.P.S.)
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA;
- Departments of Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
41
|
Fields NJ, Palmer KR, Nisi A, Marshall SA. Preeclampsia to COVID-19: A journey towards improved placental and vascular function using sulforaphane. Placenta 2023; 141:84-93. [PMID: 37591715 DOI: 10.1016/j.placenta.2023.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Excess inflammation and oxidative stress are common themes in many pathologies of pregnancy including preeclampsia and more recently severe COVID-19. The risk of preeclampsia increases following maternal infection with COVID-19, potentially relating to significant overlap in pathophysiology with endothelial, vascular and immunological dysfunction common to both. Identifying a therapy which addresses these injurious processes and stabilises the endothelial and vascular maternal system would help address the significant global burden of maternal and neonatal morbidity and mortality they cause. Sulforaphane is a naturally occurring phytonutrient found most densely within cruciferous vegetables. It has anti-inflammatory, antioxidant and immune modulating properties via upregulation of phase-II detoxification enzymes. This review will cover the common pathways shared by COVID-19 and preeclampsia and offer a potential therapeutic target via nuclear factor erythroid 2-related factor upregulation in the form of sulforaphane.
Collapse
Affiliation(s)
- Neville J Fields
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia; Monash Health, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, Australia.
| | - Kirsten R Palmer
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia; Monash Health, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, Australia
| | - Anthony Nisi
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Sarah A Marshall
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia
| |
Collapse
|
42
|
Mondal A, Sharma R, Abiha U, Ahmad F, Karan A, Jayaraj RL, Sundar V. A Spectrum of Solutions: Unveiling Non-Pharmacological Approaches to Manage Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1584. [PMID: 37763703 PMCID: PMC10536417 DOI: 10.3390/medicina59091584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that causes difficulty while socializing and communicating and the performance of stereotyped behavior. ASD is thought to have a variety of causes when accompanied by genetic disorders and environmental variables together, resulting in abnormalities in the brain. A steep rise in ASD has been seen regardless of the numerous behavioral and pharmaceutical therapeutic techniques. Therefore, using complementary and alternative therapies to treat autism could be very significant. Thus, this review is completely focused on non-pharmacological therapeutic interventions which include different diets, supplements, antioxidants, hormones, vitamins and minerals to manage ASD. Additionally, we also focus on complementary and alternative medicine (CAM) therapies, herbal remedies, camel milk and cannabiodiol. Additionally, we concentrate on how palatable phytonutrients provide a fresh glimmer of hope in this situation. Moreover, in addition to phytochemicals/nutraceuticals, it also focuses on various microbiomes, i.e., gut, oral, and vaginal. Therefore, the current comprehensive review opens a new avenue for managing autistic patients through non-pharmacological intervention.
Collapse
Affiliation(s)
- Arunima Mondal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda 151401, India
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi 110042, India
| | - Umme Abiha
- IDRP, Indian Institute of Technology, Jodhpur 342030, India
- All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi 110062, India
| | | | - Richard L. Jayaraj
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
43
|
Yan L, Yan Y. Therapeutic potential of sulforaphane in liver diseases: a review. Front Pharmacol 2023; 14:1256029. [PMID: 37705537 PMCID: PMC10495681 DOI: 10.3389/fphar.2023.1256029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
The burden of liver diseases such as metabolic-associated fatty liver diseases and hepatocellular carcinoma has increased rapidly worldwide over the past decades. However, pharmacological therapies for these liver diseases are insufficient. Sulforaphane (SFN), an isothiocyanate that is mainly found in cruciferous vegetables, has been found to have a broad spectrum of activities like antioxidation, anti-inflammation, anti-diabetic, and anticancer effects. Recently, a growing number of studies have reported that SFN could significantly ameliorate hepatic steatosis and prevent the development of fatty liver, improve insulin sensitivity, attenuate oxidative damage and liver injury, induce apoptosis, and inhibit the proliferation of hepatoma cells through multiple signaling pathways. Moreover, many clinical studies have demonstrated that SFN is harmless to the human body and well-tolerated by individuals. This emerging evidence suggests SFN to be a promising drug candidate in the treatment of liver diseases. Nevertheless, limitations exist in the development of SFN as a hepatoprotective drug due to its special properties, including instability, water insolubility, and high inter-individual variation of bioavailability when used from broccoli sprout extracts. Herein, we comprehensively review the recent progress of SFN in the treatment of common liver diseases and the underlying mechanisms, with the aim to provide a better understanding of the therapeutic potential of SFN in liver diseases.
Collapse
Affiliation(s)
- Liang Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | |
Collapse
|
44
|
Alshehri S, Ahmad SF, Albekairi NA, Alqarni SS, Al-Harbi NO, Al-Ayadhi LY, Attia SM, Alfardan AS, Bakheet SA, Nadeem A. Thioredoxin 1 and Thioredoxin Reductase 1 Redox System Is Dysregulated in Neutrophils of Subjects with Autism: In Vitro Effects of Environmental Toxicant, Methylmercury. TOXICS 2023; 11:739. [PMID: 37755749 PMCID: PMC10536321 DOI: 10.3390/toxics11090739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Autism spectrum disorder (ASD) is a complex developmental disorder in children that results in abnormal communicative and verbal behaviors. Exposure to heavy metals plays a significant role in the pathogenesis or progression of ASD. Mercury compounds pose significant risk for the development of ASD as children are more exposed to environmental toxicants. Increased concentration of mercury compounds has been detected in different body fluids/tissues in ASD children, which suggests an association between mercury exposure and ASD. Thioredoxin1 (Trx1) and thioredoxin reductase1 (TrxR1) redox system plays a crucial role in detoxification of oxidants generated in different immune cells. However, the effect of methylmercury and the Nrf2 activator sulforaphane on the Trx1/TrxR1 antioxidant system in neutrophils of ASD subjects has not been studied previously. Therefore, this study examined the effect of methylmercury on Trx1/TrxR1 expression, TrxR activity, nitrotyrosine, and ROS in neutrophils of ASD and TDC subjects. Our study shows that Trx1/TrxR1 protein expression is dysregulated in ASD subjects as compared to the TDC group. Further, methylmercury treatment significantly inhibits the activity of TrxR in both ASD and TDC groups. Inhibition of TrxR by mercury is associated with upregulation of the Trx1 protein in TDC neutrophils but not in ASD neutrophils. Furthermore, ASD neutrophils have exaggerated ROS production after exposure to methylmercury, which is much greater in magnitude than TDC neutrophils. Sulforaphane reversed methylmercury-induced effects on neutrophils through Nrf2-mediated induction of the Trx1/TrxR1 system. These observations suggest that exposure to the environmental toxicant methylmercury may elevate systemic oxidative inflammation due to a dysregulated Trx1/TrxR1 redox system in the neutrophils of ASD subjects, which may play a role in the progression of ASD.
Collapse
Affiliation(s)
- Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sana S. Alqarni
- Department of Medical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y. Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
45
|
Grosso C, Santos M, Barroso MF. From Plants to Psycho-Neurology: Unravelling the Therapeutic Benefits of Bioactive Compounds in Brain Disorders. Antioxidants (Basel) 2023; 12:1603. [PMID: 37627598 PMCID: PMC10451187 DOI: 10.3390/antiox12081603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The brain's sensitivity to oxidative stress and neuronal cell death requires effective pharmacotherapy approaches. Current pharmacological therapies are frequently ineffective and display negative side effects. Bioactive chemicals found in plants may provide a potential alternative due to their antioxidant and neuroprotective properties and can be used in therapy and the management of a variety of neuropsychiatric, neurodevelopmental, and neurodegenerative illnesses. Several natural products, including vitamin C, Cammelia sinensis polyphenols, Hypericum perforatum, and Crocus sativus have shown promise in lowering oxidative stress and treating symptoms of major depressive disorder (MDD). Similarly, bioactive compounds such as curcumin, luteolin, resveratrol, quercetin, and plants like Acorus gramineus, Rhodiola rosea, and Ginkgo biloba are associated with neuroprotective effects and symptom improvement in neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Furthermore, in neurodegenerative diseases, natural compounds from Rhodiola rosea, Morinda lucida, and Glutinous rehmannia provide neurological improvement. Further study in clinical samples is required to thoroughly investigate the therapeutic advantages of these bioactive substances for persons suffering from these illnesses.
Collapse
Affiliation(s)
- Clara Grosso
- REQUIMTE–LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Marlene Santos
- CISA|ESS, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal;
| | - M. Fátima Barroso
- REQUIMTE–LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| |
Collapse
|
46
|
Wang L, Hamouda HI, Dong Y, Jiang H, Quan Y, Chen Y, Liu Y, Wang J, Balah MA, Mao X. High-level and reusable preparation of sulforaphane by yeast cells expressing myrosinase. Food Chem X 2023; 18:100668. [PMID: 37091516 PMCID: PMC10114154 DOI: 10.1016/j.fochx.2023.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Myrosinase is a key tool for the fast and efficient preparation of sulforaphane which is one of the prominent natural ingredients found in brassicaceous vegetables. Here, the glucoraphanin-hydrolyzing activity of a Yarrowia lipolytica 20-8 harboring myrosinase reached 73.28 U/g dry cell weight, indicating that it had a potential application in sulforaphane preparation from glucoraphanin. An efficient and reusable process for sulforaphane preparation via myrosinase produced by Y. lipolytica 20-8 was constructed. In detail, as high as 10.32 mg sulforaphane could be produced from 1 g broccoli seed under the reaction of 40 U yeast whole-cell catalyst within 15 min with the conversion efficiency of 99.86%. Moreover, when the yeast whole-cell catalyst was reused 7 and 10 times, as high as 92.53% and 87.56% of sulforaphene yield of the initial level could be retained, respectively. Therefore, this yeast whole-cell is a potent biocatalyst for the efficient and reusable preparation of sulforaphane.
Collapse
Affiliation(s)
- Lili Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Hamed I. Hamouda
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
- Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt
| | - Yueyang Dong
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Hong Jiang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
- Corresponding author at: Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Yongyi Quan
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Yimiao Chen
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Yan Liu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiaqi Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Mohamed A. Balah
- Plant Protection Department, Desert Research Center, Cairo 11753, Egypt
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| |
Collapse
|
47
|
Manjunath SH, Nataraj P, Swamy VH, Sugur K, Dey SK, Ranganathan V, Daniel S, Leihang Z, Sharon V, Chandrashekharappa S, Sajeev N, Venkatareddy VG, Chuturgoon A, Kuppusamy G, Madhunapantula SV, Thimmulappa RK. Development of Moringa oleifera as functional food targeting NRF2 signaling: antioxidant and anti-inflammatory activity in experimental model systems. Food Funct 2023; 14:4734-4751. [PMID: 37114361 DOI: 10.1039/d3fo00572k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Pharmacological activation of nuclear factor erythroid 2 related factor 2 (NRF2) provides protection against several environmental diseases by inhibiting oxidative and inflammatory injury. Besides high in protein and minerals, Moringa oleifera leaves contain several bioactive compounds, predominantly isothiocyanate moringin and polyphenols, which are potent inducers of NRF2. Hence, M. oleifera leaves represent a valuable food source that could be developed as a functional food for targeting NRF2 signaling. In the current study, we have developed a palatable M. oleifera leaf preparation (henceforth referred as ME-D) that showed reproducibly a high potential to activate NRF2. Treatment of BEAS-2B cells with ME-D significantly increased NRF2-regulated antioxidant genes (NQO1, HMOX1) and total GSH levels. In the presence of brusatol (a NRF2 inhibitor), ME-D-induced increase in NQO1 expression was significantly diminished. Pre-treatment of cells with ME-D mitigated reactive oxygen species, lipid peroxidation and cytotoxicity induced by pro-oxidants. Furthermore, ME-D pre-treatment markedly inhibited nitric oxide production, secretory IL-6 and TNF-α levels, and transcriptional expression of Nos2, Il-6, and Tnf-α in macrophages exposed to lipopolysaccharide. Biochemical profiling by LC-HRMS revealed glucomoringin, moringin, and several polyphenols in ME-D. Oral administration of ME-D significantly increased NRF2-regulated antioxidant genes in the small intestine, liver, and lungs. Lastly, prophylactic administration of ME-D significantly mitigated lung inflammation in mice exposed to particulate matter for 3-days or 3-months. In conclusion, we have developed a pharmacologically active standardized palatable preparation of M. oleifera leaves as a functional food to activate NRF2 signaling, which can be consumed as a beverage (hot soup) or freeze-dried powder for reducing the risk from environmental respiratory disease.
Collapse
Affiliation(s)
- Souparnika H Manjunath
- Department of Biochemistry, Centre of Excellence in Molecular biology & Regenerative Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, Karnataka, 570015, India.
| | - Prabhakaran Nataraj
- Department of Studies in Environmental Sciences, University of Mysore, Mysore, Karnataka, 570005, India
| | - Vikas H Swamy
- Department of Biochemistry, School of Life Science, JSS AHER, Mysore, Karnataka, 570015, India
| | - Kavya Sugur
- Department of Biochemistry, Centre of Excellence in Molecular biology & Regenerative Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, Karnataka, 570015, India.
| | - Sumit K Dey
- Department of Biochemistry, Centre of Excellence in Molecular biology & Regenerative Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, Karnataka, 570015, India.
| | - Veena Ranganathan
- Department of Biochemistry, Centre of Excellence in Molecular biology & Regenerative Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, Karnataka, 570015, India.
| | - Shyni Daniel
- Department of Studies in Environmental Sciences, University of Mysore, Mysore, Karnataka, 570005, India
| | - Zonunsiami Leihang
- Department of Biochemistry, Centre of Excellence in Molecular biology & Regenerative Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, Karnataka, 570015, India.
| | - Veronica Sharon
- Department of Biochemistry, Centre of Excellence in Molecular biology & Regenerative Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, Karnataka, 570015, India.
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R) Raebareli, Transit Campus, Lucknow, UP 226002, India
| | - Nithin Sajeev
- SCIEX, DHR Holding India Pvt Ltd, Bangalore 562149, India
| | | | - Anil Chuturgoon
- Discipline of Medical Biochemistry, University of Kwa-Zulu Natal, Durban 4041, South Africa
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS AHER, Ooty, Nilgiris, Tamil Nadu 643001, India
| | - SubbaRao V Madhunapantula
- Department of Biochemistry, Centre of Excellence in Molecular biology & Regenerative Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, Karnataka, 570015, India.
| | - Rajesh K Thimmulappa
- Department of Biochemistry, Centre of Excellence in Molecular biology & Regenerative Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, Karnataka, 570015, India.
| |
Collapse
|
48
|
Tiberi J, Segatto M, Fiorenza MT, La Rosa P. Apparent Opportunities and Hidden Pitfalls: The Conflicting Results of Restoring NRF2-Regulated Redox Metabolism in Friedreich's Ataxia Pre-Clinical Models and Clinical Trials. Biomedicines 2023; 11:biomedicines11051293. [PMID: 37238963 DOI: 10.3390/biomedicines11051293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal, recessive, inherited neurodegenerative disease caused by the loss of activity of the mitochondrial protein frataxin (FXN), which primarily affects dorsal root ganglia, cerebellum, and spinal cord neurons. The genetic defect consists of the trinucleotide GAA expansion in the first intron of FXN gene, which impedes its transcription. The resulting FXN deficiency perturbs iron homeostasis and metabolism, determining mitochondrial dysfunctions and leading to reduced ATP production, increased reactive oxygen species (ROS) formation, and lipid peroxidation. These alterations are exacerbated by the defective functionality of the nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor acting as a key mediator of the cellular redox signalling and antioxidant response. Because oxidative stress represents a major pathophysiological contributor to FRDA onset and progression, a great effort has been dedicated to the attempt to restore the NRF2 signalling axis. Despite this, the beneficial effects of antioxidant therapies in clinical trials only partly reflect the promising results obtained in preclinical studies conducted in cell cultures and animal models. For these reasons, in this critical review, we overview the outcomes obtained with the administration of various antioxidant compounds and critically analyse the aspects that may have contributed to the conflicting results of preclinical and clinical studies.
Collapse
Affiliation(s)
- Jessica Tiberi
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Marco Segatto
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179 Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179 Rome, Italy
| |
Collapse
|
49
|
Ng MJ, Kong BH, Teoh KH, Yap YHY, Ng ST, Tan CS, Mohamad Razif MF, Fung SY. In vivo anti-tumor activity of Lignosus rhinocerus TM02® using a MCF7-xenograft NCr nude mice model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:115957. [PMID: 36509254 DOI: 10.1016/j.jep.2022.115957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lignosus rhinocerus (Cooke) Ryvarden (also known as Tiger Milk mushroom, TMM), is a basidiomycete belonging to the Polyporaceae family. It has been documented to be used by traditional Chinese physicians and indigenous people in Southeast Asia to treat a variety of illnesses, such as gastritis, arthritis, and respiratory conditions, as well as to restore patients' physical well-being. TMM has also been used in folk medicine to treat cancer. For example, people from the indigenous Kensiu tribe of northeast Kedah (Malaysia) apply shredded TMM sclerotium mixed with water directly onto breast skin to treat breast cancer, while Chinese practitioners from Hong Kong, China prescribe TMM sclerotium as a treatment for liver cancer. L. rhinocerus has previously been demonstrated to possess selective anti-proliferative properties in vitro, however pre-clinical in vivo research has not yet been conducted. AIM OF STUDY This study aimed to examine the anti-tumor activities of L. rhinocerus TM02®, using two different sample preparations [cold water extract (CWE) and fraction] via various routes of administration (oral and intraperitoneal) on an MCF7-xenograft nude mouse model. This study also investigated the inhibitory effect of TM02® CWE and its fractions against COX-2 in vitro using LPS-induced RAW264.7 macrophages, on the basis of the relationship between COX-2 and metastasis, apoptosis resistance, as well as the proliferation of cancer cells. MATERIALS AND METHODS The first preparation, L. rhinocerus TM02® sclerotium powder (TSP) was dissolved in cold water to obtain the cold water extract (CWE). It was further fractionated based on its molecular weight to obtain the high (HMW), medium (MMW) and low (LMW) molecular weight fractions. The second preparation, known as the TM02® rhinoprolycan fraction (TRF), was obtained by combining the HMW and MMW fractions. TSP was given orally to mimic the daily consumption of a supplement; TRF was administered intraperitoneally to mimic typical tumorous cancer treatment with a rapid and more thorough absorption through the peritoneal cavity. Another experiment was conducted to examine changes in COX-2 activity in LPS-induced RAW264.7 macrophages after a 1-h pre-treatment with CWE, HMW, and MMW. RESULTS Our results revealed that intraperitoneal TRF-injection (90 μg/g BW) for 20 days reduced initial tumor volume by ∼64.3% (n = 5). The percentage of apoptotic cells was marginally higher in TRF-treated mice vs. control, suggesting that induction of apoptosis as one of the factors that led to tumor shrinkage. TSP (500 μg/g BW) oral treatment (n = 5) for 63 days (inclusive of pre-treatment prior to tumor inoculation) effectively inhibited tumor growth. Four of the five tumors totally regressed, demonstrating the effectiveness of TSP ingestion in suppressing tumor growth. Although no significant changes were found in mouse serum cytokines (TNF-α, IL-5, IL-6 and CCL2), some increasing and decreasing trends were observed. This may suggest the immunomodulatory potential of these treatments that can directly or indirectly affect tumor growth. Pre-treatment with CWE, HMW and MMW significantly reduced COX-2 activity in RAW264.7 macrophages upon 24 h LPS-stimulation, suggesting the potential of L. rhinocerus TM02® extract and fractions in regulating M1/M2 polarization. CONCLUSION Based on the findings of our investigation, both the rhinoprolycan fraction and crude sclerotial powder from L. rhinocerus TM02® demonstrated tumor suppressive effects, indicating that they contain substances with strong anticancer potential. The antitumor effects of L. rhinocerus TM02® in our study highlights the potential for further explorations into its mechanism of action and future development as a prophylactic or adjunct therapeutic against tumorous cancer.
Collapse
Affiliation(s)
- Min Jia Ng
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Boon Hong Kong
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Centre of Excellence for Research in AIDS (CERiA), Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kean Hooi Teoh
- Department of Pathology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Laboratory, Sunway Medical Center, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Yeannie Hui-Yeng Yap
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - Szu Ting Ng
- LiGNO Biotech Sdn. Bhd, 43300, Balakong Jaya, Selangor, Malaysia
| | - Chon Seng Tan
- LiGNO Biotech Sdn. Bhd, 43300, Balakong Jaya, Selangor, Malaysia
| | - Muhammad Fazril Mohamad Razif
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Shin Yee Fung
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Center for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia; University of Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
50
|
Subasi Turgut F, Karadag M, Taysi S, Hangül Z, Gokcen C. NRF2, KEAP1 and GSK-3 levels in autism spectrum disorder: a case control study. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2023; 70:1441-1451. [PMID: 39713511 PMCID: PMC11660297 DOI: 10.1080/20473869.2023.2185959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 12/24/2024]
Abstract
Recent studies show that oxidative stress has an important role in the etiology of autism. In our study, Nrf2, which is the main regulator of cellular antioxidant response, and Keap1 and Gsk-3β, which are the main proteins that regulate this pathway, were compared between children with autism and healthy controls. To the best of our knowledge, our study is the first in which Nrf2, Keap1 and Gsk-3β levels were evaluated together in children with ASD. In our study, Nrf2 level was found to be lower and Keap1 level higher in children with autism. Although GSK-3β is increased in many psychiatric and neurodegenerative diseases, it was found to be low in the autistic group in accordance with the literature. In conclusion, considering the versatile modulation of the Nrf2 pathway, this article does not provide any mechanistic insight into the pathway, but it suggests that Nrf2, Keap1 and Gsk-3β, which have central roles in oxidative stress, may play a role in the pathophysiology of autism.
Collapse
Affiliation(s)
| | | | | | - Zehra Hangül
- Gaziantep Universitesi Tip Fakultesi, Gaziantep, Turkey
| | - Cem Gokcen
- Gaziantep Universitesi Tip Fakultesi, Gaziantep, Turkey
| |
Collapse
|