1
|
Khan S, Zhong X, Das N, Yu JH, Natarajan A, Anders D, Pratx G. Efficient radiolabeling of mesoporous silica nanoparticles for single-cell PET imaging. Eur J Nucl Med Mol Imaging 2025; 52:1778-1790. [PMID: 39729092 PMCID: PMC11928280 DOI: 10.1007/s00259-024-07027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE Nanoparticles are highly efficient vectors for ferrying contrast agents across cell membranes, enabling ultra-sensitive in vivo tracking of single cells with positron emission tomography (PET). However, this approach must be fully characterized and understood before it can be reliably implemented for routine applications. METHODS We developed a Langmuir adsorption model that accurately describes the process of labeling mesoporous silica nanoparticles (MSNP) with 68Ga. We compared the binding efficiency of three different nanoparticle systems by fitting the model to experimental data. We then chose the MSNP with the highest affinity for 68Ga to study uptake and efflux kinetics in cancer cells. After intracardiac injection of 50-100 cells in mice, PET imaging was performed to test the effectiveness of cellular radiolabeling. RESULTS We found that highly porous mesoporous nanoparticles (d = 100 nm) with MCM-41 pore structures can achieve radiolabeling efficiency > 30 GBq/mg using 68Ga, without the need for any chelator. These 68Ga conjugated particles showed strong serum stability in vitro. In mice, the 68Ga-MSNPs predominantly accumulated in the liver with a high signal-to-background ratio and no bladder signal, indicating excellent stability of the labeled nanoparticles in vivo. Additionally, these MSNPs were efficiently taken up by B16F10 and MDA-MB-231 cancer cells, as confirmed by confocal imaging, flow cytometry analysis, and gamma counting. Finally, cardiac injection of < 100 68Ga-MSNP-labeled cells allowed PET/CT tracking of these cells in various organs in mice. CONCLUSION We characterized the critical parameters of MSNP-mediated direct cellular radiolabeling to improve the use of these nanoparticles as cellular labels for highly sensitive preclinical PET imaging.
Collapse
Affiliation(s)
- Syamantak Khan
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Xiaoxu Zhong
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Neeladrisingha Das
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Jung Ho Yu
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | | | - David Anders
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Michelotti FC, Bowden G, Eter W, Küppers A, Maurer A, Nischwitz V, Pichler BJ, Gotthardt M, Schmid AM. Longitudinal multimodal monitoring of transplanted islet β-cells. Nucl Med Biol 2024; 138-139:108962. [PMID: 39393206 DOI: 10.1016/j.nucmedbio.2024.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
PURPOSE Monitoring β-cell mass and function would provide a better understanding of diabetes, setting the stage for truly individualized therapies. We applied a combined PET/MRI protocol to monitor engrafted islets mass and function without pre-labeling of isolated cells. A PET tracer binding to GLP-1R quantifies β-cell mass, while Mn-CA characterizes β-cell function. Both parameters were assessed in transplanted and native β-cells in vivo and validated with autoradiography and mass spectrometry imaging. METHODS Islets were collected and transplanted into the calves of C3H-mice. Accumulation of [64Cu]Ex4 and Mn-CA was examined with a PET/MRI at 1 h post-injection between 1 and 4 weeks after the transplantation. A separate blocking study with diazoxide targeted the functionality of the transplanted islets. As validation, ex vivo autoradiography and LA-ICP-MS imaging were performed after the last imaging session. RESULTS PET/MRI monitored the engraftment of transplanted islets and visualized an increasing uptake of the PET tracer and Mn-CA. The Mn-CA accumulated at a higher islet-to-background ratio in the calf of mice than in the pancreas due to the high retention of Mn-CA in the exocrine pancreas. In vivo imaging data correlated well with autoradiography and LA-ICP-MS imaging, validating the in vivo approaches. CONCLUSION For the quantification of β-cell function, Mn-based contrast mechanisms between native and transplanted islets differ and require further studies for optimal biological readout. However, non-invasive PET/MRI nonetheless provides the tools to investigate the relationship between β-cell mass and function in pancreatic islets.
Collapse
Affiliation(s)
- Filippo C Michelotti
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Gregory Bowden
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Wael Eter
- Radboud University Nijmegen Medical Centre, Department of Radiology Nuclear Medicine, Nijmegen, the Netherlands.
| | - Astrid Küppers
- Forschungszentrum Jülich GmbH, Central Institute of Engineering, Electronics and Analytics, Jülich, Germany.
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Volker Nischwitz
- Forschungszentrum Jülich GmbH, Central Institute of Engineering, Electronics and Analytics, Jülich, Germany.
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Martin Gotthardt
- Radboud University Nijmegen Medical Centre, Department of Radiology Nuclear Medicine, Nijmegen, the Netherlands.
| | - Andreas M Schmid
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Li H, Lin WP, Zhang ZN, Sun ZJ. Tailoring biomaterials for monitoring and evoking tertiary lymphoid structures. Acta Biomater 2023; 172:1-15. [PMID: 37739247 DOI: 10.1016/j.actbio.2023.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Despite the remarkable clinical success of immune checkpoint blockade (ICB) in the treatment of cancer, the response rate to ICB therapy remains suboptimal. Recent studies have strongly demonstrated that intratumoral tertiary lymphoid structures (TLSs) are associated with a good prognosis and a successful clinical response to immunotherapy. However, there is still a shortage of efficient and wieldy approaches to image and induce intratumoral TLSs in vivo. Biomaterials have made great strides in overcoming the deficiencies of conventional diagnosis and therapies for cancer, and antitumor therapy has also benefited from biomaterial-based drug delivery models. In this review, we summarize the reported methods for TLS imaging and induction based on biomaterials and provide potential strategies that can further enhance the effectiveness of imaging and stimulating intratumoral TLSs to predict and promote the response rates of ICB therapies for patients. STATEMENT OF SIGNIFICANCE: In this review, we focused on the promising of biomaterials for imaging and induction of TLSs. We reviewed the applications of biomaterials in molecular imaging and immunotherapy, identified the biomaterials that may be suitable for TLS imaging and induction, and provided outlooks for further research. Accurate imaging and effective induction of TLSs are of great significance for understanding the mechanism and clinical application. We highlighted the need for multidisciplinary coordination and cooperation in this field, and proposed the possible future direction of noninvasive imaging and artificial induction of TLSs based on biomaterials. We believe that it can facilitate collaboration and galvanize a broader effort.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Wen-Ping Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Zhong-Ni Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
4
|
Maksymenko K, Maurer A, Aghaallaei N, Barry C, Borbarán-Bravo N, Ullrich T, Dijkstra TM, Hernandez Alvarez B, Müller P, Lupas AN, Skokowa J, ElGamacy M. The design of functional proteins using tensorized energy calculations. CELL REPORTS METHODS 2023; 3:100560. [PMID: 37671023 PMCID: PMC10475850 DOI: 10.1016/j.crmeth.2023.100560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/25/2023] [Accepted: 07/21/2023] [Indexed: 09/07/2023]
Abstract
In protein design, the energy associated with a huge number of sequence-conformer perturbations has to be routinely estimated. Hence, enhancing the throughput and accuracy of these energy calculations can profoundly improve design success rates and enable tackling more complex design problems. In this work, we explore the possibility of tensorizing the energy calculations and apply them in a protein design framework. We use this framework to design enhanced proteins with anti-cancer and radio-tracing functions. Particularly, we designed multispecific binders against ligands of the epidermal growth factor receptor (EGFR), where the tested design could inhibit EGFR activity in vitro and in vivo. We also used this method to design high-affinity Cu2+ binders that were stable in serum and could be readily loaded with copper-64 radionuclide. The resulting molecules show superior functional properties for their respective applications and demonstrate the generalizable potential of the described protein design approach.
Collapse
Affiliation(s)
- Kateryna Maksymenko
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University, 72076 Tübingen, Germany
| | - Narges Aghaallaei
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Caroline Barry
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Krieger School of Arts and Sciences, Johns Hopkins University, Washington, DC 20036, USA
| | - Natalia Borbarán-Bravo
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Timo Ullrich
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Tjeerd M.H. Dijkstra
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Department for Women’s Health, University Hospital Tübingen, 72076 Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, 72072 Tübingen, Germany
| | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Andrei N. Lupas
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Julia Skokowa
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Mohammad ElGamacy
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Hrynchak I, Cocioabă D, Fonseca AI, Leonte R, do Carmo SJC, Cornoiu R, Falcão A, Niculae D, Abrunhosa AJ. Antibody and Nanobody Radiolabeling with Copper-64: Solid vs. Liquid Target Approach. Molecules 2023; 28:4670. [PMID: 37375223 DOI: 10.3390/molecules28124670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Antibody and nanobody-based copper-64 radiopharmaceuticals are increasingly being proposed as theranostic tools in multiple human diseases. While the production of copper-64 using solid targets has been established for many years, its use is limited due to the complexity of solid target systems, which are available in only a few cyclotrons worldwide. In contrast, liquid targets, available in virtually in all cyclotrons, constitute a practical and reliable alternative. In this study, we discuss the production, purification, and radiolabeling of antibodies and nanobodies using copper-64 obtained from both solid and liquid targets. Copper-64 production from solid targets was performed on a TR-19 cyclotron with an energy of 11.7 MeV, while liquid target production was obtained by bombarding a nickel-64 solution using an IBA Cyclone Kiube cyclotron with 16.9 MeV on target. Copper-64 was purified from both solid and liquid targets and used to radiolabel NODAGA-Nb, NOTA-Nb, and DOTA-Trastuzumab conjugates. Stability studies were conducted on all radioimmunoconjugates in mouse serum, PBS, and DTPA. Irradiation of the solid target yielded 13.5 ± 0.5 GBq with a beam current of 25 ± 1.2 μA and an irradiation time of 6 h. On the other hand, irradiation of the liquid target resulted in 2.8 ± 1.3 GBq at the end of bombardment (EOB) with a beam current of 54.5 ± 7.8 μA and an irradiation time of 4.1 ± 1.3 h. Successful radiolabeling of NODAGA-Nb, NOTA-Nb, and DOTA-Trastuzumab with copper-64 from both solid and liquid targets was achieved. Specific activities (SA) obtained with the solid target were 0.11, 0.19, and 0.33 MBq/μg for NODAGA-Nb, NOTA-Nb, and DOTA-trastuzumab, respectively. For the liquid target, the corresponding SA values were 0.15, 0.12, and 0.30 MBq/μg. Furthermore, all three radiopharmaceuticals demonstrated stability under the testing conditions. While solid targets have the potential to produce significantly higher activity in a single run, the liquid process offers advantages such as speed, ease of automation, and the feasibility of back-to-back production using a medical cyclotron. In this study, successful radiolabeling of antibodies and nanobodies was achieved using both solid and liquid targets approaches. The radiolabeled compounds exhibited high radiochemical purity and specific activity, rendering them suitable for subsequent in vivo pre-clinical imaging studies.
Collapse
Affiliation(s)
- Ivanna Hrynchak
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diana Cocioabă
- Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Măgurele, Romania
- Faculty of Physics, Doctoral School of Physics, University of Bucharest, 077125 Bucharest, Romania
| | - Alexandra I Fonseca
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Radu Leonte
- Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Măgurele, Romania
| | - Sérgio J C do Carmo
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Roxana Cornoiu
- Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Măgurele, Romania
- Faculty of Chemical Engineering and Biotechnologies, Doctoral School of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Amílcar Falcão
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Dana Niculae
- Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Măgurele, Romania
| | - Antero J Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
6
|
Schwenck J, Sonanini D, Seyfried D, Ehrlichmann W, Kienzle G, Reischl G, Krezer P, Wilson I, Korn R, Gonzalez-Menendez I, Quintanilla-Martinez L, Seith F, Forschner A, Eigentler T, Zender L, Röcken M, Pichler BJ, Flatz L, Kneilling M, la Fougere C. In vivo imaging of CD8 + T cells in metastatic cancer patients: first clinical experience with simultaneous [ 89Zr]Zr-Df-IAB22M2C PET/MRI. Theranostics 2023; 13:2408-2423. [PMID: 37215571 PMCID: PMC10196830 DOI: 10.7150/thno.79976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/04/2023] [Indexed: 05/24/2023] Open
Abstract
Aim/Introduction: Despite the spectacular success of immune checkpoint inhibitor therapy (ICT) in patients with metastatic cancer, only a limited proportion of patients benefit from ICT. CD8+ cytotoxic T cells are important gatekeepers for the therapeutic response to ICT and are able to recognize MHC class I-dependent tumor antigens and destroy tumor cells. The radiolabeled minibody [89Zr]Zr-Df-IAB22M2C has a high affinity for human CD8+ T cells and was successfully tested in a phase I study. Here, we aimed to gain the first clinical PET/MRI experience with the noninvasive assessment of the CD8+ T-cell distribution in cancer patients by in vivo [89Zr]Zr-Df-IAB22M2C with a distinct focus of identifying potential signatures of successful ICT. Material and Methods: We investigated 8 patients with metastasized cancers undergoing ICT. Radiolabeling of Df-IAB22M2C with Zr-89 was performed according to Good Manufacturing Practice. Multiparametric PET/MRI was acquired 24 h after injection of 74.2±17.9 MBq [89Zr]Zr-Df-IAB22M2C. We analyzed [89Zr]Zr-Df-IAB22M2C uptake within the metastases and within primary and secondary lymphatic organs. Results: [89Zr]Zr-Df-IAB22M2C injection was tolerated well without noticeable side effects. The CD8 PET/MRI data acquisitions 24 hours post-administration of [89Zr]Zr-Df-IAB22M2C revealed good image quality with a relatively low background signal due to only low unspecific tissue uptake and marginal blood pool retention. Only two metastatic lesions showed markedly increased tracer uptake in our cohort of patients. Furthermore, we observed high interpatient variability in [89Zr]Zr-Df-IAB22M2C uptake within the primary and secondary lymphoid organs. Four out of five ICT patients exhibited rather high [89Zr]Zr-Df-IAB22M2C uptake in the bone marrow. Two of these four patients as well as two other patients yielded pronounced [89Zr]Zr-Df-IAB22M2C uptake within nonmetastatic lymph nodes. Interestingly, cancer progression in ICT patients was associated with a relatively low [89Zr]Zr-Df-IAB22M2C uptake in the spleen compared to the liver in 4 out of the 6 patients. Lymph nodes with enhanced [89Zr]Zr-Df-IAB22M2C uptake revealed significantly reduced apparent diffusion coefficient (ADC) values in diffusion weighted MRI. Conclusion: Our first clinical experiences revealed the feasibility of [89Zr]Zr-Df-IAB22M2C PET/MRI in assessing potential immune-related changes in metastases and primary and secondary lymphatic organs. According to our results, we hypothesize that alterations in [89Zr]Zr-Df-IAB22M2C uptake in primary and secondary lymphoid organs might be associated with the response to ICT.
Collapse
Affiliation(s)
- Johannes Schwenck
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University, Tübingen, Germany
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Dominik Sonanini
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), Eberhard Karls University, Tübingen, Germany
| | - Dominik Seyfried
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Walter Ehrlichmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Gabriele Kienzle
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Pascal Krezer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | | | - Ron Korn
- ImaginAb, Inc., Inglewood, California
| | - Irene Gonzalez-Menendez
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
| | - Ferdinand Seith
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tübingen, Germany
| | - Andrea Forschner
- Department of Dermatology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Thomas Eigentler
- Department of Dermatology, Eberhard Karls University, 72076 Tübingen, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venereology and Allergology, Luisenstrasse 2, Berlin, 10177, Germany
| | - Lars Zender
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), Eberhard Karls University, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
| | - Martin Röcken
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- Department of Dermatology, Eberhard Karls University, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
| | - Lukas Flatz
- Department of Dermatology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- Department of Dermatology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Christian la Fougere
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Mayer KE, Gaa J, Biedermann T, Posch C. Bildgestützte Beurteilung des Ansprechens auf Immuntherapien bei Hauttumoren. J Dtsch Dermatol Ges 2023; 21:107-115. [PMID: 36808450 DOI: 10.1111/ddg.14941_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/23/2022] [Indexed: 02/22/2023]
Affiliation(s)
- Kristine E Mayer
- Klinik und Poliklinik für Dermatologie und Allergologie, Technische Universität München
| | - Jochen Gaa
- Institut für diagnostische und interventionelle Radiologie, Technische Universität München
| | - Tilo Biedermann
- Klinik und Poliklinik für Dermatologie und Allergologie, Technische Universität München
| | - Christian Posch
- Klinik und Poliklinik für Dermatologie und Allergologie, Technische Universität München.,Medizinische Fakultät, Sigmund Freud Universität Wien
| |
Collapse
|
8
|
Mayer KE, Gaa J, Biedermann T, Posch C. Image-based response assessment during immunotherapy in skin cancer. J Dtsch Dermatol Ges 2023; 21:107-114. [PMID: 36748647 DOI: 10.1111/ddg.14941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/23/2022] [Indexed: 02/08/2023]
Abstract
Immune-checkpoint inhibitors and further immunotherapeutic treatment strategies have significantly extended therapy options for melanoma and other skin cancer entities over the last decade. In the context of a broader application of immunotherapeutic approaches, sufficient ways to monitor the course of the disease during therapy are required. Immunotherapies are based on different ways of modulating the immune system. This leads to complex clinical response patterns including pseudoprogression and others, requiring an adaptation of conventional diagnostic imaging tools or the introduction of novel technologies. In this review, current non-invasive imaging approaches for response assessment during immunotherapies in skin cancers as well as their limitations are discussed. To overcome present hurdles, promising alternatives to better address novel imaging features during immunotherapy are depicted giving an outlook on what can be expected in the future.
Collapse
Affiliation(s)
- Kristine E Mayer
- Clinic and Polyclinic for Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - Jochen Gaa
- Institute for Diagnostic and Interventional Radiology, Technical University Munich, Munich, Germany
| | - Tilo Biedermann
- Clinic and Polyclinic for Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - Christian Posch
- Clinic and Polyclinic for Dermatology and Allergology, Technical University Munich, Munich, Germany.,Faculty of Medicine, Sigmund Freud University Vienna, Austria
| |
Collapse
|
9
|
Rhee JY, Ghannam JY, Choi BD, Gerstner ER. Labeling T Cells to Track Immune Response to Immunotherapy in Glioblastoma. Tomography 2023; 9:274-284. [PMID: 36828374 PMCID: PMC9959194 DOI: 10.3390/tomography9010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
While the advent of immunotherapy has revolutionized cancer treatment, its use in the treatment of glioblastoma (GBM) has been less successful. Most studies using immunotherapy in GBM have been negative and the reasons for this are still being studied. In clinical practice, interpreting response to immunotherapy has been challenging, particularly when trying to differentiate between treatment-related changes (i.e., pseudoprogression) or true tumor progression. T cell tagging is one promising technique to noninvasively monitor treatment efficacy by assessing the migration, expansion, and engagement of T cells and their ability to target tumor cells at the tumor site.
Collapse
Affiliation(s)
- John Y. Rhee
- Department of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Department of Neuro-Oncology, Dana Farber Cancer Institute, Brigham and Women’s Cancer Center, Boston, MA 02215, USA
| | - Jack Y. Ghannam
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Bryan D. Choi
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Elizabeth R. Gerstner
- Department of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| |
Collapse
|
10
|
Pruller J, Pham TT, Blower JE, Charoenphun P, Volpe A, Sunassee K, Mullen GED, Blower PJ, Smith RAG, Ma MT. An indium-111-labelled membrane-targeted peptide for cell tracking with radionuclide imaging. RSC Chem Biol 2023; 4:65-73. [PMID: 36685254 PMCID: PMC9811519 DOI: 10.1039/d2cb00164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Cell labelling agents that enable longitudinal in vivo tracking of administered cells will support the clinical development of cell-based therapies. Radionuclide imaging with gamma and positron-emitting radioisotopes can provide quantitative and longitudinal mapping of cells in vivo. To make this widely accessible and adaptable to a range of cell types, new, versatile and simple methods for directly radiolabelling cells are required. We have developed [111In]In-DTPA-CTP, the first example of a radiolabelled peptide that binds to the extracellular membrane of cells, for tracking cell distribution in vivo using Single Photon Emission Computed Tomography (SPECT). [111In]In-DTPA-CTP consists of (i) myristoyl groups for insertion into the phospholipid bilayer, (ii) positively charged lysine residues for electrostatic association with negatively charged phospholipid groups at the cell surface and (iii) a diethylenetriamine pentaacetate derivative that coordinates the γ-emitting radiometal, [111In]In3+. [111In]In-DTPA-CTP binds to 5T33 murine myeloma cells, enabling qualitative SPECT tracking of myeloma cells' accumulation in lungs immediately after intravenous administration. This is the first report of a radiolabelled cell-membrane binding peptide for use in cell tracking.
Collapse
Affiliation(s)
- Johanna Pruller
- Randall Division of Cell and Molecular Biophysics, King's College London UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Truc Thuy Pham
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Julia E Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Putthiporn Charoenphun
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University Bangkok Thailand
| | - Alessia Volpe
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Kavitha Sunassee
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Gregory E D Mullen
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Richard A G Smith
- MRC Centre for Transplantation, King's College London, Guy's Hospital London UK
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| |
Collapse
|
11
|
Ma X, Zhang MJ, Wang J, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Emerging Biomaterials Imaging Antitumor Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204034. [PMID: 35728795 DOI: 10.1002/adma.202204034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy is one of the most promising clinical modalities for the treatment of malignant tumors and has shown excellent therapeutic outcomes in clinical settings. However, it continues to face several challenges, including long treatment cycles, high costs, immune-related adverse events, and low response rates. Thus, it is critical to predict the response rate to immunotherapy by using imaging technology in the preoperative and intraoperative. Here, the latest advances in nanosystem-based biomaterials used for predicting responses to immunotherapy via the imaging of immune cells and signaling molecules in the immune microenvironment are comprehensively summarized. Several imaging methods, such as fluorescence imaging, magnetic resonance imaging, positron emission tomography imaging, ultrasound imaging, and photoacoustic imaging, used in immune predictive imaging, are discussed to show the potential of nanosystems for distinguishing immunotherapy responders from nonresponders. Nanosystem-based biomaterials aided by various imaging technologies are expected to enable the effective prediction and diagnosis in cases of tumors, inflammation, and other public diseases.
Collapse
Affiliation(s)
- Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Jingting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
12
|
Volpe A, Adusumilli PS, Schöder H, Ponomarev V. Imaging cellular immunotherapies and immune cell biomarkers: from preclinical studies to patients. J Immunother Cancer 2022; 10:jitc-2022-004902. [PMID: 36137649 PMCID: PMC9511655 DOI: 10.1136/jitc-2022-004902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 01/26/2023] Open
Abstract
Cellular immunotherapies have emerged as a successful therapeutic approach to fight a wide range of human diseases, including cancer. However, responses are limited to few patients and tumor types. An in-depth understanding of the complexity and dynamics of cellular immunotherapeutics, including what is behind their success and failure in a patient, the role of other immune cell types and molecular biomarkers in determining a response, is now paramount. As the cellular immunotherapy arsenal expands, whole-body non-invasive molecular imaging can shed a light on their in vivo fate and contribute to the reliable assessment of treatment outcome and prediction of therapeutic response. In this review, we outline the non-invasive strategies that can be tailored toward the molecular imaging of cellular immunotherapies and immune-related components, with a focus on those that have been extensively tested preclinically and are currently under clinical development or have already entered the clinical trial phase. We also provide a critical appraisal on the current role and consolidation of molecular imaging into clinical practice.
Collapse
Affiliation(s)
- Alessia Volpe
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
13
|
Gawne P, Man F, Blower PJ, T. M. de Rosales R. Direct Cell Radiolabeling for in Vivo Cell Tracking with PET and SPECT Imaging. Chem Rev 2022; 122:10266-10318. [PMID: 35549242 PMCID: PMC9185691 DOI: 10.1021/acs.chemrev.1c00767] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 02/07/2023]
Abstract
The arrival of cell-based therapies is a revolution in medicine. However, its safe clinical application in a rational manner depends on reliable, clinically applicable methods for determining the fate and trafficking of therapeutic cells in vivo using medical imaging techniques─known as in vivo cell tracking. Radionuclide imaging using single photon emission computed tomography (SPECT) or positron emission tomography (PET) has several advantages over other imaging modalities for cell tracking because of its high sensitivity (requiring low amounts of probe per cell for imaging) and whole-body quantitative imaging capability using clinically available scanners. For cell tracking with radionuclides, ex vivo direct cell radiolabeling, that is, radiolabeling cells before their administration, is the simplest and most robust method, allowing labeling of any cell type without the need for genetic modification. This Review covers the development and application of direct cell radiolabeling probes utilizing a variety of chemical approaches: organic and inorganic/coordination (radio)chemistry, nanomaterials, and biochemistry. We describe the key early developments and the most recent advances in the field, identifying advantages and disadvantages of the different approaches and informing future development and choice of methods for clinical and preclinical application.
Collapse
Affiliation(s)
- Peter
J. Gawne
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Francis Man
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
- Institute
of Pharmaceutical Science, School of Cancer
and Pharmaceutical Sciences, King’s College London, London, SE1 9NH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| |
Collapse
|
14
|
Lauwerys L, Smits E, Van den Wyngaert T, Elvas F. Radionuclide Imaging of Cytotoxic Immune Cell Responses to Anti-Cancer Immunotherapy. Biomedicines 2022; 10:biomedicines10051074. [PMID: 35625811 PMCID: PMC9139020 DOI: 10.3390/biomedicines10051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer immunotherapy is an evolving and promising cancer treatment that takes advantage of the body’s immune system to yield effective tumor elimination. Importantly, immunotherapy has changed the treatment landscape for many cancers, resulting in remarkable tumor responses and improvements in patient survival. However, despite impressive tumor effects and extended patient survival, only a small proportion of patients respond, and others can develop immune-related adverse events associated with these therapies, which are associated with considerable costs. Therefore, strategies to increase the proportion of patients gaining a benefit from these treatments and/or increasing the durability of immune-mediated tumor response are still urgently needed. Currently, measurement of blood or tissue biomarkers has demonstrated sampling limitations, due to intrinsic tumor heterogeneity and the latter being invasive. In addition, the unique response patterns of these therapies are not adequately captured by conventional imaging modalities. Consequently, non-invasive, sensitive, and quantitative molecular imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using specific radiotracers, have been increasingly used for longitudinal whole-body monitoring of immune responses. Immunotherapies rely on the effector function of CD8+ T cells and natural killer cells (NK) at tumor lesions; therefore, the monitoring of these cytotoxic immune cells is of value for therapy response assessment. Different immune cell targets have been investigated as surrogate markers of response to immunotherapy, which motivated the development of multiple imaging agents. In this review, the targets and radiotracers being investigated for monitoring the functional status of immune effector cells are summarized, and their use for imaging of immune-related responses are reviewed along their limitations and pitfalls, of which multiple have already been translated to the clinic. Finally, emerging effector immune cell imaging strategies and future directions are provided.
Collapse
Affiliation(s)
- Louis Lauwerys
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Nuclear Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Correspondence:
| |
Collapse
|
15
|
89Zr Immuno-PET Imaging of Tumor PD-1 Reveals That PMA Upregulates Lymphoma PD-1 through NFκB and JNK Signaling. Mol Imaging 2022; 2022:5916692. [PMID: 35250391 PMCID: PMC8865856 DOI: 10.1155/2022/5916692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Immune therapy of T-cell lymphoma requires assessment of tumor-expressed programmed cell death protein-1 (PD-1). Herein, we developed an immuno-PET technique that quantitatively images and monitors regulation of PD-1 expression on T-cell lymphomas. Methods. Anti-PD-1 IgG underwent sulfhydryl moiety-specific conjugation with maleimide-deferoxamine and 89Zr labeling. Binding assays and Western blotting were performed in EL4 murine T-cell lymphoma cells. In vivo pharmacokinetics, biodistribution, and PET were performed in mice. Results. 89Zr-PD-1 IgG binding to EL4 cells was completely blocked by cold antibodies, confirming excellent target specificity. Following intravenous injection into mice, 89Zr-PD-1 IgG showed biexponential blood clearance and relatively low normal organ uptake after five days. PET/CT and biodistribution demonstrated high EL4 tumor uptake that was suppressed by cold antibodies. In EL4 cells, phorbol 12-myristate 13-acetate (PMA) increased 89Zr-PD-1 IgG binding (
%) and dose-dependent augmentation of PD-1 expression (
of controls by 200 ng/ml). FACS showed strong PD-1 expression on all EL4 cells and positive but weaker expression on
% of the mouse spleen lymphocytes. PMA stimulation led to
-fold increase in the proportion of the strongest PD-1 expressing EL4 cells but failed to influence that of PD-1+ mouse lymphocytes. In mice, PMA treatment increased 89Zr-PD-1 IgG uptake in EL4 lymphomas from
to
%ID/g (
), and tumor uptake closely correlated with PD-1 level (
,
). On immunohistochemistry of tumor sections, infiltrating CD8α+ T lymphocytes constituted a small fraction of tumor cells. The entire tumor section showed strong PD-1 staining that was even stronger for PMA-treated mice. Investigation of involved signaling revealed that PMA increased EL4 cell and tumor HIF-1α accumulation and NFκB and JNK activation. Conclusion. 89Zr-PD-1 IgG offered high-contrast PET imaging of tumor PD-1 in mice. This was found to mostly represent binding to EL4 tumor cells, although infiltrating T lymphocytes may also have contributed. PD-1 expression on T-cell lymphomas was upregulated by PMA stimulation, and this was reliably monitored by 89Zr-PD-1 IgG PET. This technique may thus be useful for understanding the mechanisms of PD-1 regulation in lymphomas of living subjects.
Collapse
|
16
|
Gosmann D, Russelli L, Weber WA, Schwaiger M, Krackhardt AM, D'Alessandria C. Promise and challenges of clinical non-invasive T-cell tracking in the era of cancer immunotherapy. EJNMMI Res 2022; 12:5. [PMID: 35099641 PMCID: PMC8804060 DOI: 10.1186/s13550-022-00877-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
In the last decades, our understanding of the role of the immune system in cancer has significantly improved and led to the discovery of new immunotherapeutic targets and tools, which boosted the advances in cancer immunotherapy to fight a growing number of malignancies. Approved immunotherapeutic approaches are currently mainly based on immune checkpoint inhibitors, antibody-derived targeted therapies, or cell-based immunotherapies. In essence, these therapies induce or enhance the infiltration and function of tumor-reactive T cells within the tumors, ideally resulting in complete tumor eradication. While the clinical application of immunotherapies has shown great promise, these therapies are often accompanied either by a variety of side effects as well as partial or complete unresponsiveness of a number of patients. Since different stages of disease progression elicit different local and systemic immune responses, the ability to longitudinally interrogate the migration and expansion of immune cells, especially T cells, throughout the whole body might greatly facilitate disease characterization and understanding. Furthermore, it can serve as a tool to guide development as well as selection of appropriate treatment regiments. This review provides an overview about a variety of immune-imaging tools available to characterize and study T-cell responses induced by anti-cancer immunotherapy. Moreover, challenges are discussed that must be taken into account and overcome to use immune-imaging tools as predictive and surrogate markers to enhance assessment and successful application of immunotherapies.
Collapse
Affiliation(s)
- Dario Gosmann
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Lisa Russelli
- Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Wolfgang A Weber
- Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Markus Schwaiger
- Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Angela M Krackhardt
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. .,German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Calogero D'Alessandria
- Klinik und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
17
|
Van Hoeck J, Vanhove C, De Smedt SC, Raemdonck K. Non-invasive cell-tracking methods for adoptive T cell therapies. Drug Discov Today 2021; 27:793-807. [PMID: 34718210 DOI: 10.1016/j.drudis.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
Adoptive T cell therapies (ACT) have demonstrated groundbreaking results in blood cancers and melanoma. Nevertheless, their significant cost, the occurrence of severe adverse events, and their poor performance in solid tumors are important hurdles hampering more widespread applicability. In vivo cell tracking allows instantaneous and non-invasive monitoring of the distribution, tumor homing, persistence, and redistribution to other organs of infused T cells in patients. Furthermore, cell tracking could aid in the clinical management of patients, allowing the detection of non-responders or severe adverse events at an early stage. This review provides a concise overview of the main principles and potential of cell tracking, followed by a discussion of the clinically relevant labeling strategies and their application in ACT.
Collapse
Affiliation(s)
- Jelter Van Hoeck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Christian Vanhove
- Infinity Lab, Medical Imaging and Signal Processing Group-IBiTech, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
18
|
Ellingson BM, Wen PY, Cloughesy TF. Therapeutic Response Assessment of High-Grade Gliomas During Early-Phase Drug Development in the Era of Molecular and Immunotherapies. Cancer J 2021; 27:395-403. [PMID: 34570454 PMCID: PMC8480435 DOI: 10.1097/ppo.0000000000000543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Several new therapeutic strategies have emerged over the past decades to address unmet clinical needs in high-grade gliomas, including targeted molecular agents and various forms of immunotherapy. Each of these strategies requires addressing fundamental questions, depending on the stage of drug development, including ensuring drug penetration into the brain, engagement of the drug with the desired target, biologic effects downstream from the target including metabolic and/or physiologic changes, and identifying evidence of clinical activity that could be expanded upon to increase the likelihood of a meaningful survival benefit. The current review article highlights these strategies and outlines how imaging technology can be used for therapeutic response evaluation in both targeted and immunotherapies in early phases of drug development in high-grade gliomas.
Collapse
Affiliation(s)
- Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - Timothy F. Cloughesy
- UCLA Neuro Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
19
|
Islam A, Pishesha N, Harmand TJ, Heston H, Woodham AW, Cheloha RW, Bousbaine D, Rashidian M, Ploegh HL. Converting an Anti-Mouse CD4 Monoclonal Antibody into an scFv Positron Emission Tomography Imaging Agent for Longitudinal Monitoring of CD4 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1468-1477. [PMID: 34408009 PMCID: PMC8387391 DOI: 10.4049/jimmunol.2100274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Immuno-positron emission tomography (PET), a noninvasive imaging modality, can provide a dynamic approach for longitudinal assessment of cell populations of interest. Transformation of mAbs into single-chain variable fragment (scFv)-based PET imaging agents would allow noninvasive tracking in vivo of a wide range of possible targets. We used sortase-mediated enzymatic labeling in combination with PEGylation to develop an anti-mouse CD4 scFv-based PET imaging agent constructed from an anti-mouse CD4 mAb. This anti-CD4 scFv can monitor the in vivo distribution of CD4+ T cells by immuno-PET. We tracked CD4+ and CD8+ T cells in wild-type mice, in immunodeficient recipients reconstituted with monoclonal populations of OT-II and OT-I T cells, and in a B16 melanoma model. Anti-CD4 and -CD8 immuno-PET showed that the persistence of both CD4+ and CD8+ T cells transferred into immunodeficient mice improved when recipients were immunized with OVA in CFA. In tumor-bearing animals, infiltration of both CD4+ and CD8+ T cells increased as the tumor grew. The approach described in this study should be readily applicable to convert clinically useful Abs into the corresponding scFv PET imaging agents.
Collapse
Affiliation(s)
- Ashraful Islam
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Society of Fellows, Harvard University, Cambridge, MA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Hailey Heston
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Andrew W Woodham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Djenet Bousbaine
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA; and
- Department of Radiology, Harvard Medical School, Boston, MA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA;
- Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Sonanini D, Griessinger CM, Schörg BF, Knopf P, Dittmann K, Röcken M, Pichler BJ, Kneilling M. Low-dose total body irradiation facilitates antitumoral Th1 immune responses. Theranostics 2021; 11:7700-7714. [PMID: 34335959 PMCID: PMC8315067 DOI: 10.7150/thno.61459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/16/2021] [Indexed: 12/16/2022] Open
Abstract
CD4+ T helper cells are capable of mediating long-term antitumoral immune responses. We developed a combined immunotherapy (COMBO) using tumor antigen-specific T helper 1 cells (Tag-Th1), dual PD-L1/LAG-3 immune checkpoint blockade, and a low-dose total body irradiation (TBI) of 2 Gy, that was highly efficient in controlling the tumor burden of non-immunogenic RIP1-Tag2 mice with late-stage endogenous pancreatic islet carcinomas. In this study, we aimed to explore the impact of 2 Gy TBI on the treatment efficacy and the underlying mechanisms to boost CD4+ T cell-based immunotherapies. Methods: Heavily progressed RIP1-Tag2 mice underwent COMBO treatment and their survival was compared to a cohort without 2 Gy TBI. Positron emission tomography/computed tomography (PET/CT) with radiolabeled anti-CD3 monoclonal antibodies and flow cytometry were applied to investigate 2 Gy TBI-induced alterations in the biodistribution of endogenous T cells of healthy C3H mice. Migration and homing properties of Cy5-labeled adoptive Tag-Th1 cells were monitored by optical imaging and flow cytometric analyses in C3H and tumor-bearing RIP1-Tag2 mice. Splenectomy or sham-surgery of late-stage RIP1-Tag2 mice was performed before onset of COMBO treatment to elucidate the impact of the spleen on the therapy response. Results: First, we determined a significant longer survival of RIP1-Tag2 mice and an increased CD4+ T cell tumor infiltrate when 2 Gy TBI was applied in addition to Tag-Th1 cell PD-L1/LAG-3 treatment. In non-tumor-bearing C3H mice, TBI induced a moderate host lymphodepletion and a tumor antigen-independent accumulation of Tag-Th1 cells in lymphoid and non-lymphoid organs. In RIP1-Tag2, we found increased numbers of effector memory-like Tag-Th1 and endogenous CD4+ T cells in the pancreatic tumor tissue after TBI, accompanied by a tumor-specific Th1-driven immune response. Furthermore, the spleen negatively regulated T cell effector function by upregulation PD-1/LAG-3/TIM-3 immune checkpoints, providing a further rationale for this combined treatment approach. Conclusion: Low-dose TBI represents a powerful tool to foster CD4+ T cell-based cancer immunotherapies by favoring Th1-driven antitumoral immunity. As TBI is a clinically approved and well-established technique it might be an ideal addition for adoptive cell therapy with CD4+ T cells in the clinical setting.
Collapse
|
21
|
Lu D, Wang Y, Zhang T, Wang F, Li K, Zhou S, Zhu H, Yang Z, Liu Z. Metabolic radiolabeling and in vivo PET imaging of cytotoxic T lymphocytes to guide combination adoptive cell transfer cancer therapy. J Nanobiotechnology 2021; 19:175. [PMID: 34112200 PMCID: PMC8194184 DOI: 10.1186/s12951-021-00924-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/02/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Adoptive T cell transfer-based immunotherapy yields unsatisfactory results in the treatment of solid tumors, partially owing to limited tumor infiltration and the immunosuppressive microenvironment in solid tumors. Therefore, strategies for the noninvasive tracking of adoptive T cells are critical for monitoring tumor infiltration and for guiding the development of novel combination therapies. METHODS We developed a radiolabeling method for cytotoxic T lymphocytes (CTLs) that comprises metabolically labeling the cell surface glycans with azidosugars and then covalently conjugating them with 64Cu-1,4,7-triazacyclononanetriacetic acid-dibenzo-cyclooctyne (64Cu-NOTA-DBCO) using bioorthogonal chemistry. 64Cu-labeled control-CTLs and ovalbumin-specific CTLs (OVA-CTLs) were tracked using positron emission tomography (PET) in B16-OVA tumor-bearing mice. We also investigated the effects of focal adhesion kinase (FAK) inhibition on the antitumor efficacy of OVA-CTLs using a poly(lactic-co-glycolic) acid (PLGA)-encapsulated nanodrug (PLGA-FAKi). RESULTS CTLs can be stably radiolabeled with 64Cu with a minimal effect on cell viability. PET imaging of 64Cu-OVA-CTLs enables noninvasive mapping of their in vivo behavior. Moreover, 64Cu-OVA-CTLs PET imaging revealed that PLGA-FAKi induced a significant increase in OVA-CTL infiltration into tumors, suggesting the potential for a combined therapy comprising OVA-CTLs and PLGA-FAKi. Further combination therapy studies confirmed that the PLGA-FAKi nanodrug markedly improved the antitumor effects of adoptive OVA-CTLs transfer by multiple mechanisms. CONCLUSION These findings demonstrated that metabolic radiolabeling followed by PET imaging can be used to sensitively profile the early-stage migration and tumor-targeting efficiency of adoptive T cells in vivo. This strategy presents opportunities for predicting the efficacy of cell-based adoptive therapies and for guiding combination regimens.
Collapse
Affiliation(s)
- Dehua Lu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanpu Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ting Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Kui Li
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shixin Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China. .,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China. .,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China. .,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
22
|
Xiao Z, Puré E. Imaging of T-cell Responses in the Context of Cancer Immunotherapy. Cancer Immunol Res 2021; 9:490-502. [PMID: 33941536 DOI: 10.1158/2326-6066.cir-20-0678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/18/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022]
Abstract
Immunotherapy, which promotes the induction of cytotoxic T lymphocytes and enhances their infiltration into and function within tumors, is a rapidly expanding and evolving approach to treating cancer. However, many of the critical denominators for inducing effective anticancer immune responses remain unknown. Efforts are underway to develop comprehensive ex vivo assessments of the immune landscape of patients prior to and during response to immunotherapy. An important complementary approach to these efforts involves the development of noninvasive imaging approaches to detect immune targets, assess delivery of immune-based therapeutics, and evaluate responses to immunotherapy. Herein, we review the merits and limitations of various noninvasive imaging modalities (MRI, PET, and single-photon emission tomography) and discuss candidate targets for cellular and molecular imaging for visualization of T-cell responses at various stages along the cancer-immunity cycle in the context of immunotherapy. We also discuss the potential use of these imaging strategies in monitoring treatment responses and predicting prognosis for patients treated with immunotherapy.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
23
|
Sakemura R, Can I, Siegler EL, Kenderian SS. In vivo CART cell imaging: Paving the way for success in CART cell therapy. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:625-633. [PMID: 33816781 PMCID: PMC7995489 DOI: 10.1016/j.omto.2021.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chimeric antigen receptor T (CART) cells are a promising immunotherapy that has induced dramatic anti-tumor responses in certain B cell malignancies. However, CART cell expansion and trafficking are often insufficient to yield long-term remissions, and serious toxicities can arise after CART cell administration. Visualizing CART cell expansion and trafficking in patients can detect an inadequate CART cell response or serve as an early warning for toxicity development, allowing CART cell treatment to be tailored accordingly to maximize therapeutic benefits. To this end, various imaging platforms are being developed to track CART cells in vivo, including nonspecific strategies to image activated T cells and reporter systems to specifically detect engineered T cells. Many of these platforms are clinically applicable and hold promise to provide valuable information and guide improved CART cell treatment.
Collapse
Affiliation(s)
- Reona Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.,Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.,Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.,Division of Hematology, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
24
|
Wolf G, Singh NJ. Modular Approaches to Understand the Immunobiology of Human Immunodeficiency Virus Latency. Viral Immunol 2021; 34:365-375. [PMID: 33600238 DOI: 10.1089/vim.2020.0171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite advances in slowing the progression of acquired immunodeficiency syndrome (AIDS), there is no viable cure for human immunodeficiency virus (HIV). The challenge toward a cure is mainly the formation and maintenance of a latent reservoir of cells that harbor the virus in both replication-competent and replication-defective states. This small niche of quiescent cells has been identified to reside primarily in quiescent and memory CD4+ T cells, but parameters that could reliably distinguish an infected T cell from an uninfected one, if any, are not clear. In addition, the migratory properties and specific anatomical reservoirs of latent T cells are difficult to measure at a high resolution in humans. A functional cure of HIV would require targeting this population using innovative new clinical strategies. One constraint toward the empirical development of such approaches is the absence of a native small animal model for AIDS. Since HIV does not efficiently infect murine cells, probing molecular-genetic questions involving latently infected T cells homing to deep tissue sites, interacting with stroma and persisting through different treatment regimens, is challenging. The goal of this article is to discuss how examining the dynamics of T cells in mouse models can provide a framework for effectively studying these questions, even without infecting mice with HIV. The inflammatory and cytokine milieu found in early human HIV infections are being increasingly understood as a result of clinical measurements. Mouse studies that recreate this milieu can potentially be used to subsequently map the fate of T cells activated in this context as well as their migratory routes. In essence, such a framework could allow complementary studies in mice to enhance our understanding of aspects of the biology of HIV latency. This can be the basis of a modular approach to small animal HIV modeling, amenable to preclinical curative strategy development.
Collapse
Affiliation(s)
- Gideon Wolf
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nevil J Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Pietrobon V, Cesano A, Marincola F, Kather JN. Next Generation Imaging Techniques to Define Immune Topographies in Solid Tumors. Front Immunol 2021; 11:604967. [PMID: 33584676 PMCID: PMC7873485 DOI: 10.3389/fimmu.2020.604967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, cancer immunotherapy experienced remarkable developments and it is nowadays considered a promising therapeutic frontier against many types of cancer, especially hematological malignancies. However, in most types of solid tumors, immunotherapy efficacy is modest, partly because of the limited accessibility of lymphocytes to the tumor core. This immune exclusion is mediated by a variety of physical, functional and dynamic barriers, which play a role in shaping the immune infiltrate in the tumor microenvironment. At present there is no unified and integrated understanding about the role played by different postulated models of immune exclusion in human solid tumors. Systematically mapping immune landscapes or "topographies" in cancers of different histology is of pivotal importance to characterize spatial and temporal distribution of lymphocytes in the tumor microenvironment, providing insights into mechanisms of immune exclusion. Spatially mapping immune cells also provides quantitative information, which could be informative in clinical settings, for example for the discovery of new biomarkers that could guide the design of patient-specific immunotherapies. In this review, we aim to summarize current standard and next generation approaches to define Cancer Immune Topographies based on published studies and propose future perspectives.
Collapse
Affiliation(s)
| | | | | | - Jakob Nikolas Kather
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
26
|
Advancing Biomarker Development Through Convergent Engagement: Summary Report of the 2nd International Danube Symposium on Biomarker Development, Molecular Imaging and Applied Diagnostics; March 14-16, 2018; Vienna, Austria. Mol Imaging Biol 2021; 22:47-65. [PMID: 31049831 DOI: 10.1007/s11307-019-01361-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we report on the outcome of the 2nd International Danube Symposium on advanced biomarker development that was held in Vienna, Austria, in early 2018. During the meeting, cross-speciality participants assessed critical aspects of non-invasive, quantitative biomarker development in view of the need to expand our understanding of disease mechanisms and the definition of appropriate strategies both for molecular diagnostics and personalised therapies. More specifically, panelists addressed the main topics, including the current status of disease characterisation by means of non-invasive imaging, histopathology and liquid biopsies as well as strategies of gaining new understanding of disease formation, modulation and plasticity to large-scale molecular imaging as well as integrative multi-platform approaches. Highlights of the 2018 meeting included dedicated sessions on non-invasive disease characterisation, development of disease and therapeutic tailored biomarkers, standardisation and quality measures in biospecimens, new therapeutic approaches and socio-economic challenges of biomarker developments. The scientific programme was accompanied by a roundtable discussion on identification and implementation of sustainable strategies to address the educational needs in the rapidly evolving field of molecular diagnostics. The central theme that emanated from the 2nd Donau Symposium was the importance of the conceptualisation and implementation of a convergent approach towards a disease characterisation beyond lesion-counting "lumpology" for a cost-effective and patient-centric diagnosis, therapy planning, guidance and monitoring. This involves a judicious choice of diagnostic means, the adoption of clinical decision support systems and, above all, a new way of communication involving all stakeholders across modalities and specialities. Moreover, complex diseases require a comprehensive diagnosis by converging parameters from different disciplines, which will finally yield to a precise therapeutic guidance and outcome prediction. While it is attractive to focus on technical advances alone, it is important to develop a patient-centric approach, thus asking "What can we do with our expertise to help patients?"
Collapse
|
27
|
|
28
|
Abousaway O, Rakhshandehroo T, Van den Abbeele AD, Kircher MF, Rashidian M. Noninvasive Imaging of Cancer Immunotherapy. Nanotheranostics 2021; 5:90-112. [PMID: 33391977 PMCID: PMC7738948 DOI: 10.7150/ntno.50860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of several malignancies. Notwithstanding the encouraging results, many patients do not respond to treatments. Evaluation of the efficacy of treatments is challenging and robust methods to predict the response to treatment are not yet available. The outcome of immunotherapy results from changes that treatment evokes in the tumor immune landscape. Therefore, a better understanding of the dynamics of immune cells that infiltrate into the tumor microenvironment may fundamentally help in addressing this challenge and provide tools to assess or even predict the response. Noninvasive imaging approaches, such as PET and SPECT that provide whole-body images are currently seen as the most promising tools that can shed light on the events happening in tumors in response to treatment. Such tools can provide critical information that can be used to make informed clinical decisions. Here, we review recent developments in the field of noninvasive cancer imaging with a focus on immunotherapeutics and nuclear imaging technologies and will discuss how the field can move forward to address the challenges that remain unresolved.
Collapse
Affiliation(s)
- Omar Abousaway
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Taha Rakhshandehroo
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Annick D. Van den Abbeele
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Mohammad Rashidian
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
29
|
Harmsen S, Medine EI, Moroz M, Nurili F, Lobo J, Dong Y, Turkekul M, Pillarsetty NVK, Ting R, Ponomarev V, Akin O, Aras O. A dual-modal PET/near infrared fluorescent nanotag for long-term immune cell tracking. Biomaterials 2020; 269:120630. [PMID: 33395580 DOI: 10.1016/j.biomaterials.2020.120630] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023]
Abstract
Adoptive cell transfer of targeted chimeric antigen receptor (CAR) T cells has emerged as a highly promising cancer therapy. The pharmacodynamic action or CAR T cells is closely related to their pharmacokinetic profile; because of this as well as the risk of non-specific action, it is important to monitor their biodistribution and fate following infusion. To this end, we developed a dual-modal PET/near infrared fluorescent (NIRF) nanoparticle-based imaging agent for non-genomic labeling of human CAR T cells. Since the PET/NIRF nanoparticles did not affect cell viability or cytotoxic functionality and enabled long-term whole-body CAR T cell tracking using PET and NIRF in an ovarian peritoneal carcinomatosis model, this platform is a viable imaging technology to be applied in other cancer models.
Collapse
Affiliation(s)
- Stefan Harmsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States; Department of Pediatrics, Stanford University, Stanford, CA, 94305, United States
| | - Emin Ilker Medine
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States
| | - Maxim Moroz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States
| | - Fuad Nurili
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, United States
| | - Jose Lobo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States
| | - Yiyu Dong
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States
| | - Mezruh Turkekul
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States
| | | | - Richard Ting
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, United States
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States; Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States.
| |
Collapse
|
30
|
Li X, Yin G, Ji W, Liu J, Zhang Y, Wang J, Zhu X, Zhu L, Dai D, Ma W, Xu W. 18F-FHBG PET-CT Reporter Gene Imaging of Adoptive CIK Cell Transfer Immunotherapy for Breast Cancer in a Mouse Model. Onco Targets Ther 2020; 13:11659-11668. [PMID: 33223839 PMCID: PMC7671474 DOI: 10.2147/ott.s271657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background To further improve the efficiency of adoptively transferred cytokine-induced killer (CIK) cell immunotherapy in breast cancer (BC), a reliable imaging method is required to visualize and monitor these transferred cells in vivo. Methods Herpes simplex virus 1-thymidine kinase (HSV1-TK) and 9-(4-[18F]fluoro-3-(hydroxymethyl)butyl)guanine (18F-FHBG) were used as a pair of reporter gene/reporter probe for positron emission tomography (PET) imaging in this study. Following the establishment of subcutaneous BC xenograft-bearing nude mice models, induced human CIK cells expressing reporter gene HSV1-TK through lentiviral transduction were intravenously injected to nude mice. γ-radioimmunoassay was used to determine the specific uptake of 18F-FHBG by these genetically engineered CIK cells expressing HSV1-TK in vitro, and 18F-FHBG micro positron emission tomography-computed tomography (PET-CT) imaging was performed to visualize these adoptively transferred CIK cells in tumor-bearing nude mice. Results Specific uptake of 18F-FHBG by CIK cells expressing HSV1-TK was clearly observed in vitro. Consistently, the localization of adoptively transferred CIK cells in tumor target could be effectively visualized by 18F-FHBG micro PET-CT reporter gene imaging. Conclusion PET-CT reporter gene imaging using 18F-FHBG as a reporter probe enables the visualization and monitoring of adoptively transferred CIK cells in vivo.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Guotao Yin
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Wei Ji
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Yufan Zhang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Jian Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Xiang Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Wenchao Ma
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| |
Collapse
|
31
|
Bu L, Sun Y, Han G, Tu N, Xiao J, Wang Q. Outcome Prediction and Evaluation by Imaging the Key Elements of Therapeutic Responses to Cancer Immunotherapies Using PET. Curr Pharm Des 2020; 26:675-687. [PMID: 31465273 DOI: 10.2174/1381612825666190829150302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022]
Abstract
Cancer immunotherapy (also known as immuno-oncology), a promising anti-cancer strategy by harnessing the body's own immune system against cancer, has emerged as the "fifth therapeutic pilla" in the field of cancer treatment since surgery, chemotherapy, radiation and targeted therapy. Clinical efficacy of several immunotherapies has been demonstrated in clinical settings, however, only a small subset of patients exhibit dramatic or durable responses, with the highest reported frequency about 10-40% from single-agent PD-L1/PD-1 inhibitors, suggesting the urgent need of consistent objective response biomarkers for monitoring therapeutic response accurately, predicting therapeutic efficacy and selecting responders. Key elements of therapeutic responses to cancer immunotherapies contain the cancer cell response and the alternation of inherent immunological characteristics. Here, we document the literature regarding imaging the key elements of therapeutic responses to cancer immunotherapies using PET. We discussed PET imaging approaches according to different response mechanisms underlying diverse immune-therapeutic categories, and also highlight the ongoing efforts to identify novel immunotherapeutic PET imaging biomarkers. In this article, we show that PET imaging of the key elements of therapeutic responses to cancer immunotherapies using PET can allow for more precise prediction, earlier therapy response monitoring, and improved management. However, all of these strategies need more preclinical study and clinical validation before further development as imaging indicators of the immune response.
Collapse
Affiliation(s)
- Lihong Bu
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| | - Yanqiu Sun
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Guang Han
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Tu
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| | - Jiachao Xiao
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| | - Qi Wang
- The 1st Department of Gastrointestinal Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| |
Collapse
|
32
|
Positron Emission Tomography for Response Evaluation in Microenvironment-Targeted Anti-Cancer Therapy. Biomedicines 2020; 8:biomedicines8090371. [PMID: 32972006 PMCID: PMC7556039 DOI: 10.3390/biomedicines8090371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Therapeutic response is evaluated using the diameter of tumors and quantitative parameters of 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET). Tumor response to molecular-targeted drugs and immune checkpoint inhibitors is different from conventional chemotherapy in terms of temporal metabolic alteration and morphological change after the therapy. Cancer stem cells, immunologically competent cells, and metabolism of cancer are considered targets of novel therapy. Accumulation of FDG reflects the glucose metabolism of cancer cells as well as immune cells in the tumor microenvironment, which differs among patients according to the individual immune function; however, FDG-PET could evaluate the viability of the tumor as a whole. On the other hand, specific imaging and cell tracking of cancer cell or immunological cell subsets does not elucidate tumor response in a complexed interaction in the tumor microenvironment. Considering tumor heterogeneity and individual variation in therapeutic response, a radiomics approach with quantitative features of multimodal images and deep learning algorithm with reference to pathologic and genetic data has the potential to improve response assessment for emerging cancer therapy.
Collapse
|
33
|
Murty S, Labanieh L, Murty T, Gowrishankar G, Haywood T, Alam IS, Beinat C, Robinson E, Aalipour A, Klysz DD, Cochran JR, Majzner RG, Mackall CL, Gambhir SS. PET Reporter Gene Imaging and Ganciclovir-Mediated Ablation of Chimeric Antigen Receptor T Cells in Solid Tumors. Cancer Res 2020; 80:4731-4740. [DOI: 10.1158/0008-5472.can-19-3579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/30/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
|
34
|
Ashmore-Harris C, Iafrate M, Saleem A, Fruhwirth GO. Non-invasive Reporter Gene Imaging of Cell Therapies, including T Cells and Stem Cells. Mol Ther 2020; 28:1392-1416. [PMID: 32243834 PMCID: PMC7264441 DOI: 10.1016/j.ymthe.2020.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cell therapies represent a rapidly emerging class of new therapeutics. They are intended and developed for the treatment of some of the most prevalent human diseases, including cancer, diabetes, and for regenerative medicine. Currently, they are largely developed without precise assessment of their in vivo distribution, efficacy, or survival either clinically or preclinically. However, it would be highly beneficial for both preclinical cell therapy development and subsequent clinical use to assess these parameters in situ to enable enhancements in efficacy, applicability, and safety. Molecular imaging can be exploited to track cells non-invasively on the whole-body level and can enable monitoring for prolonged periods in a manner compatible with rapidly expanding cell types. In this review, we explain how in vivo imaging can aid the development and clinical translation of cell-based therapeutics. We describe the underlying principles governing non-invasive in vivo long-term cell tracking in the preclinical and clinical settings, including available imaging technologies, reporter genes, and imaging agents as well as pitfalls related to experimental design. Our emphasis is on adoptively transferred T cell and stem cell therapies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Madeleine Iafrate
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Adeel Saleem
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
35
|
Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, Signore A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J Exp Clin Cancer Res 2020; 39:89. [PMID: 32423420 PMCID: PMC7236372 DOI: 10.1186/s13046-020-01586-y] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor-infiltrating immune cells play a key role against cancer. However, malignant cells are able to evade the immune response and establish a very complex balance in which different immune subtypes may drive tumor progression, metastatization and resistance to therapy. New immunotherapeutic approaches aim at restoring the natural balance and increase immune response against cancer by different mechanisms. The complexity of these interactions and the heterogeneity of immune cell subpopulations are a real challenge when trying to develop new immunotherapeutics and evaluate or predict their efficacy in vivo. To this purpose, molecular imaging can offer non-invasive diagnostic tools like radiopharmaceuticals, contrast agents or fluorescent dyes. These agents can be useful for preclinical and clinical purposes and can overcome [18F]FDG limitations in discriminating between true-progression and pseudo-progression. This review provides a comprehensive overview of immune cells involved in microenvironment, available immunotherapies and imaging agents to highlight the importance of new therapeutic biomarkers and their in vivo evaluation to improve the management of cancer patients.
Collapse
Affiliation(s)
- Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, S. Andrea University Hospital, Roma, Italy.
| | - Jesus Vera Aguilera
- Department of oncology and Department of Immunology, Mayo Clinic, (MN), Rochester, USA
| | - Belinda Palermo
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Svetomir N Markovic
- Department of oncology and Department of Immunology, Mayo Clinic, (MN), Rochester, USA
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, S. Andrea University Hospital, Roma, Italy
| |
Collapse
|
36
|
Iafrate M, Fruhwirth GO. How Non-invasive in vivo Cell Tracking Supports the Development and Translation of Cancer Immunotherapies. Front Physiol 2020; 11:154. [PMID: 32327996 PMCID: PMC7152671 DOI: 10.3389/fphys.2020.00154] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy is a relatively new treatment regimen for cancer, and it is based on the modulation of the immune system to battle cancer. Immunotherapies can be classified as either molecular or cell-based immunotherapies, and both types have demonstrated promising results in a growing number of cancers. Indeed, several immunotherapies representing both classes are already approved for clinical use in oncology. While spectacular treatment successes have been reported, particularly for so-called immune checkpoint inhibitors and certain cell-based immunotherapies, they have also been accompanied by a variety of severe, sometimes life-threatening side effects. Furthermore, not all patients respond to immunotherapy. Hence, there is the need for more research to render these promising therapeutics more efficacious, more widely applicable, and safer to use. Whole-body in vivo imaging technologies that can interrogate cancers and/or immunotherapies are highly beneficial tools for immunotherapy development and translation to the clinic. In this review, we explain how in vivo imaging can aid the development of molecular and cell-based anti-cancer immunotherapies. We describe the principles of imaging host T-cells and adoptively transferred therapeutic T-cells as well as the value of traceable cancer cell models in immunotherapy development. Our emphasis is on in vivo cell tracking methodology, including important aspects and caveats specific to immunotherapies. We discuss a variety of associated experimental design aspects including parameters such as cell type, observation times/intervals, and detection sensitivity. The focus is on non-invasive 3D cell tracking on the whole-body level including aspects relevant for both preclinical experimentation and clinical translatability of the underlying methodologies.
Collapse
Affiliation(s)
| | - Gilbert O. Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
37
|
Abstract
Immunotherapy has changed the treatment landscape for many cancers; however, not all patients treated have a favorable response and others can develop immune-related adverse events. A method to predict the treatment response to immunotherapeutic agents could allow for improved selection of patients more likely to benefit from treatment while sparing those who would suffer serious complications. While this has been an active area of research and has resulted in significant insights, current proposed mechanisms do not fully explain responses to therapy. One problem is that our understanding relies mostly on tumor biopsy samples that do not account for the complex spatiotemporal heterogeneity of cancers and their microenvironment. Radiolabeled probes targeting immune biomarkers and imaged using positron emission tomography with computed tomography could provide in vivo, real-time and non-invasive imaging of these biomarkers. Here we review the current field of functional nuclear imaging agents in immuno-oncology including antibodies and small molecule tracers to image PD-1, PD-L1, CTLA-4, T-cell markers and other targets being studied for potential therapies. Treatment response of cancers to immunotherapy is difficult to predict. Positron emission tomography (PET) imaging may help predict treatment response. PET to evaluate immunotherapeutic targets or markers of immune activation shows promise. Antibodies and small molecules used for PET have different imaging characteristics. More studies are needed to better interpret and validate PET scans for this purpose.
Collapse
|
38
|
Ni JS, Li Y, Yue W, Liu B, Li K. Nanoparticle-based Cell Trackers for Biomedical Applications. Theranostics 2020; 10:1923-1947. [PMID: 32042345 PMCID: PMC6993224 DOI: 10.7150/thno.39915] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
The continuous or real-time tracking of biological processes using biocompatible contrast agents over a certain period of time is vital for precise diagnosis and treatment, such as monitoring tissue regeneration after stem cell transplantation, understanding the genesis, development, invasion and metastasis of cancer and so on. The rationally designed nanoparticles, including aggregation-induced emission (AIE) dots, inorganic quantum dots (QDs), nanodiamonds, superparamagnetic iron oxide nanoparticles (SPIONs), and semiconducting polymer nanoparticles (SPNs), have been explored to meet this urgent need. In this review, the development and application of these nanoparticle-based cell trackers for a variety of imaging technologies, including fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, magnetic particle imaging, positron emission tomography and single photon emission computing tomography are discussed in detail. Moreover, the further therapeutic treatments using multi-functional trackers endowed with photodynamic and photothermal modalities are also introduced to provide a comprehensive perspective in this promising research field.
Collapse
Affiliation(s)
- Jen-Shyang Ni
- Department of Biomedical Engineering, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Yaxi Li
- Department of Biomedical Engineering, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Wentong Yue
- Department of Biomedical Engineering, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Kai Li
- Department of Biomedical Engineering, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
39
|
Schwenck J, Schörg B, Fiz F, Sonanini D, Forschner A, Eigentler T, Weide B, Martella M, Gonzalez-Menendez I, Campi C, Sambuceti G, Seith F, Quintanilla-Martinez L, Garbe C, Pfannenberg C, Röcken M, Fougere CL, Pichler BJ, Kneilling M. Cancer immunotherapy is accompanied by distinct metabolic patterns in primary and secondary lymphoid organs observed by non-invasive in vivo 18F-FDG-PET. Am J Cancer Res 2020; 10:925-937. [PMID: 31903160 PMCID: PMC6929998 DOI: 10.7150/thno.35989] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose: Cancer immunotherapy depends on a systemic immune response, but the basic underlying mechanisms are still largely unknown. Despite the very successful and widespread use of checkpoint inhibitors in the clinic, the majority of cancer patients do not benefit from this type of treatment. In this translational study, we investigated whether noninvasive in vivo positron emission tomography (PET) imaging using 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG) is capable of detecting immunotherapy-associated metabolic changes in the primary and secondary lymphoid organs and whether this detection enables the prediction of a successful anti-cancer immune response. Methods: RIP1-Tag2 mice with progressed endogenous insular cell carcinomas underwent a combined cancer immunotherapy consisting of CD4+ T cells plus monoclonal antibodies (mAbs) against programmed death ligand-1 (PD-L1) and lymphocyte activation gene-3 (LAG-3) or a sham treatment after radiation-mediated immune cell depletion. A second cohort of RIP1-Tag2 mice underwent exclusive checkpoint inhibitor therapy (CIT) using anti-PD-L1/LAG-3 mAbs or sham treatment without initial immune cell depletion to mimic the clinical situation. All mice were monitored by 18F-FDG-PET combined with anatomical magnetic resonance imaging (MRI). In addition, we retrospectively analyzed PET / computed tomography (CT) scans (PET/CT) regarding 18F-FDG uptake of CIT-treated metastatic melanoma patients in the spleen (n=23) and bone marrow (BM; n=20) as well as blood parameters (n=17-21). Results: RIP1-Tag2 mice with advanced insular cell carcinomas treated with combination immunotherapy exhibited significantly increased 18F-FDG uptake in the spleen compared to sham-treated mice. Histopathology of the spleens from treated mice revealed atrophy of the white pulp with fewer germinal centers and an expanded red pulp with hyperplasia of neutrophils than those of sham-treated mice. Immunohistochemistry and flow cytometry analyses of the spleens revealed a lower number of T cells and a higher number of neutrophils compared to those in the spleens of sham-treated mice. Flow cytometry of the BM showed enhanced activation of T cells following the treatment schemes that included checkpoint inhibitors. The ratio of 18F-FDG uptake at baseline to the uptake at follow-up in the spleens of exclusively CIT-treated RIP1-Tag2 mice was significantly enhanced, but the ratio was not enhanced in the spleens of the sham-treated littermates. Flow cytometry analysis confirmed a reduced number of T cells in the spleens of exclusively CIT-treated mice compared to that of sham-treated mice. A retrospective analysis of clinical 18F-FDG-PET/CT scans revealed enhanced 18F-FDG uptake in the spleens of some successfully CIT-treated patients with metastatic melanoma, but there were no significant differences between responders and non-responders. The analysis of the BM in clinical 18F-FDG-PET/CT scans with a computational segmentation tool revealed significantly higher baseline 18F-FDG uptake in patients who responded to CIT than in non-responders, and this relationship was independent of bone metastasis, even in the baseline scan. Conclusions: Thus, we are presenting the first translational study of solid tumors focusing on the metabolic patterns of primary and secondary lymphoid organs induced by the systemic immune response after CIT. We demonstrate that the widely available 18F-FDG-PET modality is an applicable translational tool that has high potential to stratify patients at an early time point.
Collapse
|
40
|
Griessinger CM, Schmid AM, Sonanini D, Schörg BF, Jarboui MA, Bukala D, Mucha N, Fehrenbacher B, Steinhilber J, Martella M, Kohlhofer U, Schaller M, Zender L, Rammensee HG, Quintanilla-Martinez L, Röcken M, Kneilling M, Pichler BJ. The administration route of tumor-antigen-specific T-helper cells differentially modulates the tumor microenvironment and senescence. Carcinogenesis 2019; 40:289-302. [PMID: 30753335 DOI: 10.1093/carcin/bgy161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/05/2018] [Accepted: 11/22/2018] [Indexed: 01/07/2023] Open
Abstract
Cancer treatment with adoptively transferred tumor-associated antigen-specific CD4+ T-helper cells is a promising immunotherapeutic approach. In the pancreatic cancer model RIP-Tag2, the intraperitoneal (i.p.) application of Tag-specific TH1 cells exhibited a profound antitumoral efficiency. We investigated, whether an intravenous (i.v.) application of Tag-TH1 cells induces an equivalent therapeutic effect. Adoptively transferred fluorescent Tag-TH1 cells revealed a pronounced homing to the tumors after either i.p. or i.v. transfer, and both routes induced an almost equivalent therapeutic effect as demonstrated by magnetic resonance imaging, blood glucose level course and histology. The i.v. administration of Tag-TH1 cells induced p16INK4-positive/Ki67-negative tumor senescence more efficiently than i.p. administration. Both routes replenish host CD4+ T cells by transferred T cells and recruitment of B and dendritic cells to the tumors while reducing CD8+ T cells and depleting macrophages. Both administration routes efficiently induced a similar antitumoral efficiency despite the pronounced senescence induction after i.v. administration. Thus, a combinatory i.v./i.p. injection of therapeutic cells might overcome limitations of the individual routes and improve therapeutic efficacy in solid tumors.
Collapse
Affiliation(s)
- Christoph M Griessinger
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas M Schmid
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Dominik Sonanini
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Barbara F Schörg
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Mohamed Ali Jarboui
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Daniel Bukala
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Natalie Mucha
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Birgit Fehrenbacher
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julia Steinhilber
- Department of Pathology and Neuropathology, Eberhard Karls University Tübingen, Tübingen, Germany.,Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Manuela Martella
- Department of Pathology and Neuropathology, Eberhard Karls University Tübingen, Tübingen, Germany.,Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Ursula Kohlhofer
- Department of Pathology and Neuropathology, Eberhard Karls University Tübingen, Tübingen, Germany.,Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Lars Zender
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany.,Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, Tübingen, Germany.,Translational Gastrointestinal Oncology Group, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Eberhard Karls University, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Department of Pathology and Neuropathology, Eberhard Karls University Tübingen, Tübingen, Germany.,Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Martin Röcken
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
41
|
Krekorian M, Fruhwirth GO, Srinivas M, Figdor CG, Heskamp S, Witney TH, Aarntzen EHJG. Imaging of T-cells and their responses during anti-cancer immunotherapy. Theranostics 2019; 9:7924-7947. [PMID: 31656546 PMCID: PMC6814447 DOI: 10.7150/thno.37924] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy has proven to be an effective approach in a growing number of cancers. Despite durable clinical responses achieved with antibodies targeting immune checkpoint molecules, many patients do not respond. The common denominator for immunotherapies that have successfully been introduced in the clinic is their potential to induce or enhance infiltration of cytotoxic T-cells into the tumour. However, in clinical research the molecules, cells and processes involved in effective responses during immunotherapy remain largely obscure. Therefore, in vivo imaging technologies that interrogate T-cell responses in patients represent a powerful tool to boost further development of immunotherapy. This review comprises a comprehensive analysis of the in vivo imaging technologies that allow the characterisation of T-cell responses induced by anti-cancer immunotherapy, with emphasis on technologies that are clinically available or have high translational potential. Throughout we discuss their respective strengths and weaknesses, providing arguments for selecting the optimal imaging options for future research and patient management.
Collapse
Affiliation(s)
- Massis Krekorian
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Gilbert O Fruhwirth
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Kings' College London, London, United Kingdom
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Timothy H Witney
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Kings' College London, London, United Kingdom
| | - Erik H J G Aarntzen
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Hoffmann SHL, Reck DI, Maurer A, Fehrenbacher B, Sceneay JE, Poxleitner M, Öz HH, Ehrlichmann W, Reischl G, Fuchs K, Schaller M, Hartl D, Kneilling M, Möller A, Pichler BJ, Griessinger CM. Visualization and quantification of in vivo homing kinetics of myeloid-derived suppressor cells in primary and metastatic cancer. Am J Cancer Res 2019; 9:5869-5885. [PMID: 31534525 PMCID: PMC6735369 DOI: 10.7150/thno.33275] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immunosuppressive cells of the myeloid compartment and major players in the tumor microenvironment (TME). With increasing numbers of studies describing MDSC involvement in cancer immune escape, cancer metastasis and the dampening of immunotherapy responses, MDSCs are of high interest in current cancer therapy research. Although heavily investigated in the last decades, the in vivo migration dynamics of MDSC subpopulations in tumor- or metastases-bearing mice have not yet been studied extensively. Therefore, we have modified our previously reported intracellular cell labeling method and applied it to in vitro generated MDSCs for the quantitative in vivo monitoring of MDSC migration in primary and metastatic cancer. MDSC migration to primary cancers was further correlated to the frequency of endogenous MDSCs. Methods: Utilizing a 64Cu-labeled 1,4,7-triazacyclononane-triacetic acid (NOTA)-modified CD11b-specific monoclonal antibody (mAb) (clone M1/70), we were able to label in vitro generated polymorphonuclear (PMN-) and monocytic (M-) MDSCs for positron emission tomography (PET) imaging. Radiolabeled PMN- and M-MDSCs ([64Cu]PMN-MDSCs and [64Cu]M-MDSCs, respectively) were then adoptively transferred into primary and metastatic MMTV-PyMT-derived (PyMT-) breast cancer- and B16F10 melanoma-bearing experimental animals, and static PET and anatomical magnetic resonance (MR) images were acquired 3, 24 and 48 h post cell injection. Results: The internalization of the [64Cu]NOTA-mAb-CD11b-complex was completed within 3 h, providing moderately stable radiolabeling with little detrimental effect on cell viability and function as determined by Annexin-V staining and T cell suppression in flow cytometric assays. Further, we could non-invasively and quantitatively monitor the migration and tumor homing of both [64Cu]NOTA-αCD11b-mAb-labeled PMN- and M-MDSCs in mouse models of primary and metastatic breast cancer and melanoma by PET. We were able to visualize and quantify an increased migration of adoptively transferred [64Cu]M-MDSCs than [64Cu]PMN-MDSCs to primary breast cancer lesions. The frequency of endogenous MDSCs in the PyMT breast cancer and B16F10 melanoma model correlated to the uptake values of adoptively transferred MDSCs with higher frequencies of PMN- and M-MDSCs in the more aggressive B16F10 melanoma tumors. Moreover, aggressively growing melanomas and melanoma-metastatic lesions recruited higher percentages of both [64Cu]PMN- and [64Cu]M-MDSCs than primary and metastatic breast cancer lesions as early as 24 h post adoptive MDSC transfer, indicating an overall stronger recruitment of cancer-promoting immunosuppressive MDSCs. Conclusion: Targeting of the cell surface integrin CD11b with a radioactive mAb is feasible for labeling of murine MDSCs for PET imaging. Fast internalization of the [64Cu]NOTA-αCD11b-mAb provides presumably enhanced stability while cell viability and functionality was not significantly affected. Moreover, utilization of the CD11b-specific mAb allows for straightforward adaptation of the labeling approach for in vivo molecular imaging of other myeloid cells of interest in cancer therapy, including monocytes, macrophages or neutrophils.
Collapse
|
43
|
Akhavan D, Alizadeh D, Wang D, Weist MR, Shepphird JK, Brown CE. CAR T cells for brain tumors: Lessons learned and road ahead. Immunol Rev 2019; 290:60-84. [PMID: 31355493 PMCID: PMC6771592 DOI: 10.1111/imr.12773] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Malignant brain tumors, including glioblastoma, represent some of the most difficult to treat of solid tumors. Nevertheless, recent progress in immunotherapy, across a broad range of tumor types, provides hope that immunological approaches will have the potential to improve outcomes for patients with brain tumors. Chimeric antigen receptors (CAR) T cells, a promising immunotherapeutic modality, utilizes the tumor targeting specificity of any antibody or receptor ligand to redirect the cytolytic potency of T cells. The remarkable clinical response rates of CD19-targeted CAR T cells and early clinical experiences in glioblastoma demonstrating safety and evidence for disease modifying activity support the potential of further advancements ultimately providing clinical benefit for patients. The brain, however, is an immune specialized organ presenting unique and specific challenges to immune-based therapies. Remaining barriers to be overcome for achieving effective CAR T cell therapy in the central nervous system (CNS) include tumor antigenic heterogeneity, an immune-suppressive microenvironment, unique properties of the CNS that limit T cell entry, and risks of immune-based toxicities in this highly sensitive organ. This review will summarize preclinical and clinical data for CAR T cell immunotherapy in glioblastoma and other malignant brain tumors, including present obstacles to advancement.
Collapse
Affiliation(s)
- David Akhavan
- Department of Radiation OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Darya Alizadeh
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Dongrui Wang
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Michael R. Weist
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Molecular Imaging and TherapyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Jennifer K. Shepphird
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Christine E. Brown
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| |
Collapse
|
44
|
Parl C, Kolb A, Stricker-Shaver D, Pichler BJ. Dual layer doI detector modules for a dedicated mouse brain PET/MRI. Phys Med Biol 2019; 64:055004. [PMID: 30654339 DOI: 10.1088/1361-6560/aaff73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The outcome of preclinical imaging studies are enhanced by simultaneous, high-resolution anatomical and molecular data, which advanced PET/MRI systems provide. Nevertheless, mapping of neuroreceptors and accurate quantification of PET tracer distribution in mouse brains is not trivial. The restricted spatial resolution and sensitivity in commercial animal PET systems limits the image quality and the quantification accuracy. We are currently developing a PET/MRI system dedicated for mouse brain studies. The PET system will offer system dimensions of approx. 30 mm in diameter and an axial length of more than 38 mm. This work discusses two system geometries including their associated block detectors. Both configurations were based on a dual layer offset structure with small crystals sizes, in the order of 1 × 1 × 4/6 mm3, to provide discrete depth of interaction information. The detector for configuration 'A' was based on a 4 × 4 silicon photomultiplier (SiPM) array attached to an optical diffusor, and a 12 × 12 as well as a 9 × 11 LSO crystal array, to achieve optimal system sensitivity. This configuration was evaluated by a double layer of 12 × 12 crystals. Configuration 'B' was composed of three 2 × 2 SiPM arrays equipped with a 1 mm diffusor to read out an LSO stack of 20 × 6 and 19 × 5 individual crystals. The average peak-to-valley ratio of the inner/outer layer was 3.5/3.6 for detector 'A', and 3.4/2.8 for detector 'B'. The average full width at half maximum (FWHM) energy resolution of the block detectors were 22.24% ± 3.36% for 'A' and 30.67% ± 5.37% for 'B'. The FWHM of the full block timing resolution of the inner/outer layer was 1.4 ns/1.2 ns for detector 'A' and 1.8 ns/1.4 ns for 'B'. The performance of the crystal position profile, the energy, and timing resolution indicate that configuration 'A' is more appropriate for a mouse brain PET/MRI system.
Collapse
Affiliation(s)
- C Parl
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076 Tuebingen, Germany
| | | | | | | |
Collapse
|
45
|
Mayer KE, Mall S, Yusufi N, Gosmann D, Steiger K, Russelli L, Bianchi HDO, Audehm S, Wagner R, Bräunlein E, Stelzl A, Bassermann F, Weichert W, Weber W, Schwaiger M, D'Alessandria C, Krackhardt AM. T-cell functionality testing is highly relevant to developing novel immuno-tracers monitoring T cells in the context of immunotherapies and revealed CD7 as an attractive target. Am J Cancer Res 2018; 8:6070-6087. [PMID: 30613283 PMCID: PMC6299443 DOI: 10.7150/thno.27275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/14/2018] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy has proven high efficacy in treating diverse cancer entities by immune checkpoint modulation and adoptive T-cell transfer. However, patterns of treatment response differ substantially from conventional therapies, and reliable surrogate markers are missing for early detection of responders versus non-responders. Current imaging techniques using 18F-fluorodeoxyglucose-positron-emmission-tomograpy (18F-FDG-PET) cannot discriminate, at early treatment times, between tumor progression and inflammation. Therefore, direct imaging of T cells at the tumor site represents a highly attractive tool to evaluate effective tumor rejection or evasion. Moreover, such markers may be suitable for theranostic imaging. Methods: We mainly investigated the potential of two novel pan T-cell markers, CD2 and CD7, for T-cell tracking by immuno-PET imaging. Respective antibody- and F(ab´)2 fragment-based tracers were produced and characterized, focusing on functional in vitro and in vivo T-cell analyses to exclude any impact of T-cell targeting on cell survival and antitumor efficacy. Results: T cells incubated with anti-CD2 and anti-CD7 F(ab´)2 showed no major modulation of functionality in vitro, and PET imaging provided a distinct and strong signal at the tumor site using the respective zirconium-89-labeled radiotracers. However, while T-cell tracking by anti-CD7 F(ab´)2 had no long-term impact on T-cell functionality in vivo, anti-CD2 F(ab´)2 caused severe T-cell depletion and failure of tumor rejection. Conclusion: This study stresses the importance of extended functional T-cell assays for T-cell tracer development in cancer immunotherapy imaging and proposes CD7 as a highly suitable target for T-cell immuno-PET imaging.
Collapse
|
46
|
Marciscano AE, Thorek DLJ. Role of noninvasive molecular imaging in determining response. Adv Radiat Oncol 2018; 3:534-547. [PMID: 30370353 PMCID: PMC6200886 DOI: 10.1016/j.adro.2018.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
The intersection of immunotherapy and radiation oncology is a rapidly evolving area of preclinical and clinical investigation. The strategy of combining radiation and immunotherapy to enhance local and systemic antitumor immune responses is intriguing yet largely unproven in the clinical setting because the mechanisms of synergy and the determinants of therapeutic response remain undefined. In recent years, several noninvasive molecular imaging approaches have emerged as a platform to interrogate the tumor immune microenvironment. These tools have the potential to serve as robust biomarkers for cancer immunotherapy and may hold several advantages over conventional anatomic imaging modalities and contemporary invasive tissue acquisition techniques. Given the key and expanding role of precision imaging in radiation oncology for patient selection, target delineation, image guided treatment delivery, and response assessment, noninvasive molecular-specific imaging may be uniquely suited to evaluate radiation/immunotherapy combinations. Herein, we describe several experimental imaging-based strategies that are currently being explored to characterize in vivo immune responses, and we review a growing body of preclinical data and nascent clinical experience with immuno-positron emission tomography molecular imaging as a putative biomarker for cancer immunotherapy. Finally, we discuss practical considerations for clinical translation to implement noninvasive molecular imaging of immune checkpoint molecules, immune cells, or associated elements of the antitumor immune response with a specific emphasis on its potential application at the interface of radiation oncology and immuno-oncology.
Collapse
Affiliation(s)
- Ariel E Marciscano
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel L J Thorek
- Radiological Chemistry and Imaging Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri.,Department of Biomedical Engineering, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
47
|
Abstract
The recent clinical success of cancer immunotherapy has renewed interest in the development of tools to image the immune system. In general, immunotherapies attempt to enable the body's own immune cells to seek out and destroy malignant disease. Molecular imaging of the cells and molecules that regulate immunity could provide unique insight into the mechanisms of action, and failure, of immunotherapies. In this article, we will provide a comprehensive overview of the current state-of-the-art immunoimaging toolbox with a focus on imaging strategies and their applications toward immunotherapy.
Collapse
Affiliation(s)
- Aaron T Mayer
- Department of Bioengineering, Stanford University, Stanford, California; and
| | - Sanjiv S Gambhir
- Department of Bioengineering, Stanford University, Stanford, California; and
- Department of Radiology, Department of Materials Science and Engineering, Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| |
Collapse
|
48
|
Markovic SN, Galli F, Suman VJ, Nevala WK, Paulsen AM, Hung JC, Gansen DN, Erickson LA, Marchetti P, Wiseman GA, Signore A. Non-invasive visualization of tumor infiltrating lymphocytes in patients with metastatic melanoma undergoing immune checkpoint inhibitor therapy: a pilot study. Oncotarget 2018; 9:30268-30278. [PMID: 30100988 PMCID: PMC6084386 DOI: 10.18632/oncotarget.25666] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/04/2018] [Indexed: 01/28/2023] Open
Abstract
Early in the course of immunotherapy there is frequently a transient enlargement of tumor masses (pseudo-progression) due to tumor infiltration by TILs. Current clinical imaging modalities are not able to distinguished pseudo-progression from true tumor progression. Thus, patients often remain on treatment 4-8 weeks longer to confirm disease progression. Nuclear medicine offers the possibility to image immune cells and potentially discriminate pseudo-progression and progression. We conducted a pilot study in patients with metastatic melanoma receiving ipilimumab (IPI) or pembrolizumab (PEMBRO) to assess safety and feasibility of SPECT/CT imaging with 99mTc- interleukin-2 (99mTc-HYNIC-IL2) to detect TILs and distinguish between true progression from pseudo- progression. Scans were performed prior to and after 12w treatment. After labelling,99mTc-HYNIC-IL2 was purified and diluted in 10 mL of 5% glucose with 0.1% human serum albumin. Of the 5 patients (2 treated with IPI and 3 with PEMBRO) enrolled, two failed to complete the second scan as they discontinued IPI due grade 3 colitis (1 patient) or patient refusal after developing multiple toxicities attributed to IPI (1 patient). Following the first scan, one patient reported to have a grade 1 pruritus with grade 1 pain. No other toxicities attributed to the radiopharmaceutical infusion were reported. Metastatic lesions could be visualized by 99mTc-IL2 imaging and there was positive correlation between size and 99mTc-HYNIC-IL2 uptake, both before and after 12 weeks of therapy. The results of this pilot study demonstrate the safety and feasibility of 99mTc-IL2 imaging and has led to a number of hypotheses to be tested in future studies.
Collapse
Affiliation(s)
- Svetomir N Markovic
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Vera J Suman
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Wendy K Nevala
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Andrew M Paulsen
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph C Hung
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | - Denise N Gansen
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Paolo Marchetti
- Oncology Unit, Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, and IDI-IRCCS, Rome, Italy
| | - Gregory A Wiseman
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
49
|
Freise AC, Zettlitz KA, Salazar FB, Lu X, Tavaré R, Wu AM. ImmunoPET Imaging of Murine CD4 + T Cells Using Anti-CD4 Cys-Diabody: Effects of Protein Dose on T Cell Function and Imaging. Mol Imaging Biol 2018; 19:599-609. [PMID: 27966069 DOI: 10.1007/s11307-016-1032-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Molecular imaging of CD4+ T cells throughout the body has implications for monitoring autoimmune disease and immunotherapy of cancer. Given the key role of these cells in regulating immunity, it is important to develop a biologically inert probe. GK1.5 cys-diabody (cDb), a previously developed anti-mouse CD4 antibody fragment, was tested at different doses to assess its effects on positron emission tomography (PET) imaging and CD4+ T cell viability, proliferation, CD4 expression, and function. PROCEDURES The effect of protein dose on image contrast (lymphoid tissue-to-muscle ratio) was assessed by administering different amounts of 89Zr-labeled GK1.5 cDb to mice followed by PET imaging and ex vivo biodistribution analysis. To assess impact of GK1.5 cDb on T cell biology, GK1.5 cDb was incubated with T cells in vitro or administered intravenously to C57BL/6 mice at multiple protein doses. CD4 expression and T cell proliferation were analyzed with flow cytometry and cytokines were assayed. RESULTS For immunoPET imaging, the lowest protein dose of 2 μg of 89Zr-labeled GK1.5 cDb resulted in significantly higher % injected dose/g in inguinal lymph nodes (ILN) and spleen compared to the 12-μg protein dose. In vivo administration of GK1.5 cDb at the high dose of 40 μg caused a transient decrease in CD4 expression in spleen, blood, lymph nodes, and thymus, which recovered within 3 days postinjection; this effect was reduced, although not abrogated, when 2 μg was administered. Proliferation was inhibited in vivo in ILN but not the spleen by injection of 40 μg GK1.5 cDb. Concentrations of GK1.5 cDb in excess of 25 nM significantly inhibited CD4+ T cell proliferation and interferon-γ production in vitro. Overall, using low-dose GK1.5 cDb minimized biological effects on CD4+ T cells. CONCLUSIONS Low-dose GK1.5 cDb yields high-contrast immunoPET images with minimal effects on T cell biology in vitro and in vivo and may be a useful tool for investigating CD4+ T cells in the context of preclinical disease models. Future approaches to minimizing biological effects may include the creation of monovalent fragments or selecting anti-CD4 antibodies which target alternative epitopes.
Collapse
Affiliation(s)
- Amanda C Freise
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Crump Institute for Molecular Imaging, University of California, 570 Westwood Plaza, CNSI, PO Box 951770, Los Angeles, CA, 90095-1770, USA
| | - Kirstin A Zettlitz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Crump Institute for Molecular Imaging, University of California, 570 Westwood Plaza, CNSI, PO Box 951770, Los Angeles, CA, 90095-1770, USA
| | - Felix B Salazar
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Crump Institute for Molecular Imaging, University of California, 570 Westwood Plaza, CNSI, PO Box 951770, Los Angeles, CA, 90095-1770, USA
| | - Xiang Lu
- Department of Internal Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,David Geffen School of Medicine at UCLA, Clinical Translational Science Institute, Los Angeles, CA, USA
| | - Richard Tavaré
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Crump Institute for Molecular Imaging, University of California, 570 Westwood Plaza, CNSI, PO Box 951770, Los Angeles, CA, 90095-1770, USA. .,Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10951, USA.
| | - Anna M Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Crump Institute for Molecular Imaging, University of California, 570 Westwood Plaza, CNSI, PO Box 951770, Los Angeles, CA, 90095-1770, USA.
| |
Collapse
|
50
|
Abstract
Purpose of Review Ischemic heart disease is caused by atherosclerosis, the build-up of plaque in the coronary arteries, which can lead to the development of heart attacks and heart muscle damage. Despite the advent of medical and surgical therapy to prevent and treat atherosclerosis and its adverse clinical effects, ischemic heart disease remains a leading cause of morbidity and mortality. Recent studies have suggested that the immune system may play a greater role in the development of plaque rupture and adverse left ventricular remodeling after myocardial infarction. Understanding the molecular processes by which inflammation contributes to the pathophysiology of ischemic heart disease is, therefore, worthwhile. This review focuses on new molecular imaging techniques to visualize immune cells to study their contribution to ischemic heart disease. Recent Findings A common technique applied to imaging inflammation in ischemic heart disease is targeting the up-regulation and trafficking of immune cells, which may contribute to the adverse consequences associated with atherosclerosis. In the past five years, advances in cell labeling for imaging with PET and MRI, including radioisotopes and nanoparticles, have confirmed that inflammatory cells can be visualized in vivo and in greater abundance in unstable cardiovascular disease and in areas of ischemic damage. The major criticisms of these studies to date include their small sample size, lack of histological correlation, limited association with long-term outcomes, and bias toward macrophage imaging. Summary While much progress has been made in imaging inflammation in ischemic heart disease over the past five years, additional studies in larger cohorts with histological validation and outcome correlation are needed. Nevertheless, imaging inflammation using PET or MRI has the potential to become an important adjunct tool to improve the diagnosis, risk stratification, and therapeutic monitoring of patients with ischemic heart disease.
Collapse
|