1
|
Peng X, Liu Y, Peng F, Wang T, Cheng Z, Chen Q, Li M, Xu L, Man Y, Zhang Z, Tan Y, Liu Z. Aptamer-controlled stimuli-responsive drug release. Int J Biol Macromol 2024; 279:135353. [PMID: 39245104 DOI: 10.1016/j.ijbiomac.2024.135353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Aptamers have been widely researched and applied in nanomedicine due to their programmable, activatable, and switchable properties. However, there are few reviews on aptamer-controlled stimuli-responsive drug delivery. This article highlights the mechanisms and advantages of aptamers in the construction of stimuli-responsive drug delivery systems. We summarize the assembly/reconfiguration mechanisms of aptamers in controlled release systems. The assembly and drug release strategies of drug delivery systems are illustrated. Specifically, we focus on the binding mechanisms to the target and the factors that induce/inhibit the binding to the stimuli, such as strand, pH, light, and temperature. The applications of aptamer-based stimuli-responsive drug release are elaborated. The challenges are discussed, and the future directions are proposed.
Collapse
Affiliation(s)
- Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Feicheng Peng
- Hunan Institute for Drug Control, Changsha 410001, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhongyu Cheng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
2
|
Li QN, Wang DX, Chen DY, Lyu JA, Wang YX, Wu SL, Jiang HX, Kong DM. Photoactivatable CRISPR/Cas12a Sensors for Biomarkers Imaging and Point-of-Care Diagnostics. Anal Chem 2024; 96:2692-2701. [PMID: 38305871 DOI: 10.1021/acs.analchem.3c05497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In recent years, the CRISPR/Cas12a-based sensing strategy has shown significant potential for specific target detection due to its rapid and sensitive characteristics. However, the "always active" biosensors are often insufficient to manipulate nucleic acid sensing with high spatiotemporal control. It remains crucial to develop nucleic acid sensing devices that can be activated at the desired time and space by a remotely applied stimulus. Here, we integrated photoactivation with the CRISPR/Cas12a system for DNA and RNA detection, aiming to provide high spatiotemporal control for nucleic acid sensing. By rationally designing the target recognition sequence, this photoactivation CRISPR/Cas12a system could recognize HPV16 and survivin, respectively. We combined the lateral flow assay strip test with the CRISPR/Cas12a system to realize the visualization of nucleic acid cleavage signals, displaying potential instant test application capabilities. Additionally, we also successfully realized the temporary control of its fluorescent sensing activity for survivin by photoactivation in vivo, allowing rapid detection of target nucleic acids and avoiding the risk of contamination from premature leaks during storage. Our strategy suggests that the CRISPR/Cas12a platform can be triggered by photoactivation to sense various targets, expanding the technical toolbox for precise biological and medical analysis. This study represents a significant advancement in nucleic acid sensing and has potential applications in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Qing-Nan Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dan-Ye Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jia-Ao Lyu
- Admiral Farragut Academy Tianjin, Yantai Road, Heping District, Tianjin 300042, P. R. China
| | - Ya-Xin Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Shun-Li Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hong-Xin Jiang
- Agro-Environmental Protection Institute, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Laboratory of Environmental Factors Risk Assessment of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
3
|
Wang D, Li Y, Deng X, Torre M, Zhang Z, Li X, Zhang W, Cullion K, Kohane DS, Weldon CB. An aptamer-based depot system for sustained release of small molecule therapeutics. Nat Commun 2023; 14:2444. [PMID: 37117194 PMCID: PMC10147605 DOI: 10.1038/s41467-023-37002-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/24/2023] [Indexed: 04/30/2023] Open
Abstract
Delivery of hydrophilic small molecule therapeutics by traditional drug delivery systems is challenging. Herein, we have used the specific interaction between DNA aptamers and drugs to create simple and effective drug depot systems. The specific binding of a phosphorothioate-modified aptamer to drugs formed non-covalent aptamer/drug complexes, which created a sustained release system. We demonstrated the effectiveness of this system with small hydrophilic molecules, the site 1 sodium channel blockers tetrodotoxin and saxitoxin. The aptamer-based delivery system greatly prolonged the duration of local anesthesia and reduced systemic toxicity. The beneficial effects of the aptamers were restricted to the compounds they were specific to. These studies establish aptamers as a class of highly specific, modifiable drug delivery systems, and demonstrate potential usefulness in the management of postoperative pain.
Collapse
Affiliation(s)
- Dali Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaoran Deng
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew Torre
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Zipei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiyu Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kathleen Cullion
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Christopher B Weldon
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Younas T, Liu C, Struwe WB, Kukura P, He L. Engineer RNA-Protein Nanowires as Light-Responsive Biomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206513. [PMID: 36642821 DOI: 10.1002/smll.202206513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Indexed: 06/17/2023]
Abstract
RNA molecules have emerged as increasingly attractive biomaterials with important applications such as RNA interference (RNAi) for cancer treatment and mRNA vaccines against infectious diseases. However, it remains challenging to engineer RNA biomaterials with sophisticated functions such as non-covalent light-switching ability. Herein, light-responsive RNA-protein nanowires are engineered to have such functions. It first demonstrates that the high affinity of RNA aptamer enables the formation of long RNA-protein nanowires through designing a dimeric RNA aptamer and an engineered green fluorescence protein (GFP) that contains two TAT-derived peptides at N- and C- termini. GFP is then replaced with an optogenetic protein pair system, LOV2 (light-oxygen-voltage) protein and its binding partner ZDK (Z subunit of protein A), to confer blue light-controlled photo-switching ability. The light-responsive nanowires are long (>500 nm) in the dark, but small (20-30 nm) when exposed to light. Importantly, the co-assembly of this RNA-protein hybrid biomaterial does not rely on the photochemistry commonly used for light-responsive biomaterials, such as bond formation, cleavage, and isomerization, and is thus reversible. These RNA-protein structures can serve as a new class of light-controlled biocompatible frameworks for incorporating versatile elements such as RNA, DNA, and enzymes.
Collapse
Affiliation(s)
- Tayyaba Younas
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Chang Liu
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Lizhong He
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
5
|
Chen M, Zhou P, Kong Y, Li J, Li Y, Zhang Y, Ran J, Zhou J, Chen Y, Xie S. Inducible Degradation of Oncogenic Nucleolin Using an Aptamer-Based PROTAC. J Med Chem 2023; 66:1339-1348. [PMID: 36608275 DOI: 10.1021/acs.jmedchem.2c01557] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While proteolysis-targeting chimeras (PROTACs) are showing promise for targeting previously undruggable molecules, their application has been limited by difficulties in identifying suitable ligands and undesired on-target toxicity. Aptamers can virtually recognize any protein through their unique and switchable conformations. Here, by exploiting aptamers as targeting warheads, we developed a novel strategy for inducible degradation of undruggable proteins. As a proof of concept, we chose oncogenic nucleolin (NCL) as the target and generated a series of NCL degraders, and demonstrated that dNCL#T1 induced NCL degradation in a ubiquitin-proteasome-dependent manner, thereby inhibiting NCL-mediated breast cancer cell proliferation. To reduce on-target toxicity, we further developed a light-controllable PROTAC, opto-dNCL#T1, by introducing a photolabile complementary oligonucleotide to hybridize with dNCL#T1. UVA irradiation liberated dNCL#T1 from caged opto-dNCL#T1, leading to dNCL#T1 activation and NCL degradation. These results indicate that aptamer-based PROTACs are a viable alternative approach to degrade proteins of interest in a highly tunable manner.
Collapse
Affiliation(s)
- Miao Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Ping Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yun Kong
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jingrui Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yan Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yao Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China.,College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yan Chen
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Songbo Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China.,Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
6
|
Liu LS, Leung HM, Morville C, Chu HC, Tee JY, Specht A, Bolze F, Lo PK. Wavelength-Dependent, Orthogonal Photoregulation of DNA Liberation for Logic Operations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1944-1957. [PMID: 36573551 DOI: 10.1021/acsami.2c20757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, we synthesized two phosphoramidites based on 2,7-bis-{4-nitro-8-[3-(2-propyl)-styryl]}-9,9-bis-[1-(3,6-dioxaheptyl)]-fluorene (BNSF) and 4,4'-bis-{8-[4-nitro-3-(2-propyl)-styryl]}-3,3'-di-methoxybiphenyl (BNSMB) structures as visible light-cleavable linkers for oligonucleotide conjugation. In addition to the commercial ultraviolet (UV) photocleavable (PC) linker, the BNSMB linker was further applied as a building component to construct photoregulated DNA devices as duplex structures, which are functionalized with fluorophores and quenchers. Selective cleavage of PC and BNSMB is achieved in response to ultraviolet (UV) and visible light irradiations as two inputs, respectively. This leads to controllable dissociation of pieces of DNA fragments, which is followed by changes of fluorescence emission as signal outputs of the system. By tuning the number and position of the photocleavable molecules, fluorophores, and quenchers, various DNA devices were developed, which mimic the functions of Boolean logic gates and achieve logic operations in AND, OR, NOR, and NAND gates in response to two different wavelengths of light inputs. By sequence design, the photolysis products can be precisely programmed in DNA devices and triggered to release in a selective and/or sequential manner. Thus, this photoregulated DNA device shows potential as a wavelength-dependent drug delivery system for selective control over the release of multiple individual therapeutic oligonucleotide-based drugs. We believe that our work not only enriches the library of photocleavable phosphoramidites available for bioconjugation but also paves the way for developing spatiotemporal-controlled, orthogonal-regulated DNA-based logic devices for a range of applications in materials science, polymers, chemistry, and biology.
Collapse
Affiliation(s)
- Ling Sum Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Hoi Man Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Clément Morville
- Conception et Applications des Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch 67401, France
| | - Hoi Ching Chu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jing Yi Tee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Alexandre Specht
- Conception et Applications des Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch 67401, France
| | - Frédéric Bolze
- Conception et Applications des Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch 67401, France
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
7
|
Chen L, Liu Y, Guo W, Liu Z. Light responsive nucleic acid for biomedical application. EXPLORATION (BEIJING, CHINA) 2022; 2:20210099. [PMID: 37325506 PMCID: PMC10190984 DOI: 10.1002/exp.20210099] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/03/2022] [Indexed: 06/16/2023]
Abstract
Nucleic acids are widely used in biomedical applications because of their programmability and biocompatibility. The light responsive nucleic acids have attracted wide attention due to their remote control and high spatiotemporal resolution. In this review, we summarized the latest developments in biomedicine of light responsive molecules. The molecules which confer light responsive properties to nucleic acids were summarized. The binding sites of molecules to nucleic acids, the induced structural changes, and functional regulation of nucleic acids were reviewed. Then, the biomedical applications of light responsive nucleic acids were listed, such as drug delivery, biosensing, optogenetics, gene editing, etc. Finally, the challenges were discussed and possible future directions of light-responsive nucleic acids were proposed.
Collapse
Affiliation(s)
- Liwei Chen
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Yanfei Liu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional RadiologyGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
| | - Zhenbao Liu
- Department of PharmaceuticsXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan ProvinceP. R. China
- Molecular Imaging Research Center of Central South UniversityChangshaHunan ProvinceP. R. China
| |
Collapse
|
8
|
Shin WR, Park DY, Kim JH, Lee JP, Thai NQ, Oh IH, Sekhon SS, Choi W, Kim SY, Cho BK, Kim SC, Min J, Ahn JY, Kim YH. Structure based innovative approach to analyze aptaprobe-GPC3 complexes in hepatocellular carcinoma. J Nanobiotechnology 2022; 20:204. [PMID: 35477501 PMCID: PMC9044640 DOI: 10.1186/s12951-022-01391-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, is a biomarker of hepatocellular carcinoma (HCC) progression. Aptamers specifically binding to target biomolecules have recently emerged as clinical disease diagnosis targets. Here, we describe 3D structure-based aptaprobe platforms for detecting GPC3, such as aptablotting, aptaprobe-based sandwich assay (ALISA), and aptaprobe-based imaging analysis. RESULTS For preparing the aptaprobe-GPC3 platforms, we obtained 12 high affinity aptamer candidates (GPC3_1 to GPC3_12) that specifically bind to target GPC3 molecules. Structure-based molecular interactions identified distinct aptatopic residues responsible for binding to the paratopic nucleotide sequences (nt-paratope) of GPC3 aptaprobes. Sandwichable and overlapped aptaprobes were selected through structural analysis. The aptaprobe specificity for using in HCC diagnostics were verified through Aptablotting and ALISA. Moreover, aptaprobe-based imaging showed that the binding property of GPC3_3 and their GPC3 specificity were maintained in HCC xenograft models, which may indicate a new HCC imaging diagnosis. CONCLUSION Aptaprobe has the potential to be used as an affinity reagent to detect the target in vivo and in vitro diagnosing system.
Collapse
Affiliation(s)
- Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Dae-Young Park
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Nguyen Quang Thai
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - In-Hwan Oh
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Wooil Choi
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung Yeon Kim
- College of Pharmacy, Wonkwang University, Shinyoung-dong 344-2, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
9
|
Xue C, Niu H, Hu S, Yang Z, Wang L, Wu ZS. Visually predicting microRNA-regulated tumor metastasis by intracellularly 3D counting of fluorescent spots based on in situ growth of DNA flares. J Adv Res 2022; 43:73-85. [PMID: 36585116 PMCID: PMC9811323 DOI: 10.1016/j.jare.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/02/2022] [Accepted: 03/01/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) have been revealed to be critical genetic regulators in various physiological processes and thus quantitative information on the expression level of critical miRNAs has important implications for the initiation and development of human diseases, including cancers. OBJECTIVES We herein develop three-dimensionally (3D) counting of intracellular fluorescent spots for accurately evaluating microRNA-21 (miRNA-21) expression in individual HeLa cells based on stimuli-activated in situ growth of optical DNA flares, grid-patterned DNA-protein hybrids (GDPHs). METHODS Target miRNA is sequence-specifically detected down to 10 pM owing to efficient signal amplification. Within living cells, GDPH flares are nuclease resistant and discrete objects with retarded mobility, enabling the screening of intracellular location and distribution of miRNAs and realizing in situ counting of target species with a high accuracy. RESULTS The quantitative results of intracellular miRNAs by 3D fluorescence counts are consistent with qPCR gold standard assay, exhibiting the superiority over 2D counts. By screening the expression of intracellular miR-21 that can down-regulate the programmed cell death 4 (PDCD4) protein, the proliferation and migration of HeLa cells, including artificially-regulated ones, were well estimated, thus enabling the prediction of cancer metastasis in murine tumor models. CONCLUSION The experiments in vitro, ex vivo and in vivo demonstrate that GDPH-based 3D fluorescence counts at the single cell level provide a valuable molecular tool for understanding biological function of miRNAs and especially for recognizing aggressive CTCs, offering a design blueprint for further expansion of DNA structural nanotechnology in predicting distant metastasis and prevention of tumor recurrence after primary resection.
Collapse
Affiliation(s)
- Chang Xue
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huimin Niu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China,Fujian Key Laboratory of Aptamers Technology, The 900 Hospital of Joint Logistics Support Force, Fuzhou 350025, China
| | - Shuyao Hu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhe Yang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lei Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China,Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China,Corresponding author.
| |
Collapse
|
10
|
Ugarte La Torre D, Takada S. Modeling lipid-protein interactions for coarse-grained lipid and Cα protein models. J Chem Phys 2021; 155:155101. [PMID: 34686048 DOI: 10.1063/5.0057278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Biological membranes that play major roles in diverse functions are composed of numerous lipids and proteins, making them an important target for coarse-grained (CG) molecular dynamics (MD) simulations. Recently, we have developed the CG implicit solvent lipid force field (iSoLF) that has a resolution compatible with the widely used Cα protein representation [D. Ugarte La Torre and S. Takada, J. Chem. Phys. 153, 205101 (2020)]. In this study, we extended it and developed a lipid-protein interaction model that allows the combination of the iSoLF and the Cα protein force field, AICG2+. The hydrophobic-hydrophilic interaction is modeled as a modified Lennard-Jones potential in which parameters were tuned partly to reproduce the experimental transfer free energy and partly based on the free energy profile normal to the membrane surface from previous all-atom MD simulations. Then, the obtained lipid-protein interaction is tested for the configuration and placement of transmembrane proteins, water-soluble proteins, and peripheral proteins, showing good agreement with prior knowledge. The interaction is generally applicable and is implemented in the publicly available software, CafeMol.
Collapse
Affiliation(s)
- Diego Ugarte La Torre
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: A Magical Tool for Controlled Drug Delivery. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005029. [PMID: 34483808 PMCID: PMC8415493 DOI: 10.1002/adfm.202005029] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 05/04/2023]
Abstract
Light is a particularly appealing tool for on-demand drug delivery due to its noninvasive nature, ease of application and exquisite temporal and spatial control. Great progress has been achieved in the development of novel light-driven drug delivery strategies with both breadth and depth. Light-controlled drug delivery platforms can be generally categorized into three groups: photochemical, photothermal, and photoisomerization-mediated therapies. Various advanced materials, such as metal nanoparticles, metal sulfides and oxides, metal-organic frameworks, carbon nanomaterials, upconversion nanoparticles, semiconductor nanoparticles, stimuli-responsive micelles, polymer- and liposome-based nanoparticles have been applied for light-stimulated drug delivery. In view of the increasing interest in on-demand targeted drug delivery, we review the development of light-responsive systems with a focus on recent advances, key limitations, and future directions.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Kam W Leong
- Department of Biomedical Engineering, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
12
|
Rangel AE, Hariri AA, Eisenstein M, Soh HT. Engineering Aptamer Switches for Multifunctional Stimulus-Responsive Nanosystems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003704. [PMID: 33165999 DOI: 10.1002/adma.202003704] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/19/2020] [Indexed: 05/15/2023]
Abstract
Although RNA and DNA are best known for their capacity to encode biological information, it has become increasingly clear over the past few decades that these biomolecules are also capable of performing other complex functions, such as molecular recognition (e.g., aptamers) and catalysis (e.g., ribozymes). Building on these foundations, researchers have begun to exploit the predictable base-pairing properties of RNA and DNA in order to utilize nucleic acids as functional materials that can undergo a molecular "switching" process, performing complex functions such as signaling or controlled payload release in response to external stimuli including light, pH, ligand-binding and other microenvironmental cues. Although this field is still in its infancy, these efforts offer exciting potential for the development of biologically based "smart materials". Herein, ongoing progress in the use of nucleic acids as an externally controllable switching material is reviewed. The diverse range of mechanisms that can trigger a stimulus response, and strategies for engineering those functionalities into nucleic acid materials are explored. Finally, recent progress is discussed in incorporating aptamer switches into more complex synthetic nucleic acid-based nanostructures and functionalized smart materials.
Collapse
Affiliation(s)
- Alexandra E Rangel
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Amani A Hariri
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| |
Collapse
|
13
|
Chen W, Xie Y, Wang M, Li C. Recent Advances on Rare Earth Upconversion Nanomaterials for Combined Tumor Near-Infrared Photoimmunotherapy. Front Chem 2020; 8:596658. [PMID: 33240857 PMCID: PMC7677576 DOI: 10.3389/fchem.2020.596658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/07/2020] [Indexed: 01/23/2023] Open
Abstract
Cancer has been threatening the safety of human life. In order to treat cancer, many methods have been developed to treat tumor, such as traditional therapies like surgery, chemotherapy, radiotherapy, as well as new strategies like photodynamic therapy, photothermal therapy, sonodynamic therapy, and other emerging therapies. Although there are so many ways to treat tumors, these methods all face the dilemma that they are incapable to cope with metastasis and recurrence of tumors. The emergence of immunotherapy has given the hope to conquer the challenge. Immunotherapy is to use the body's own immune system to stimulate and maintain a systemic immune response to form immunological memory, resist the metastasis and recurrence of tumors. At the same time, immunotherapy can combine with other treatments to exhibit excellent antitumor effects. Upconversion nanoparticles (UCNPs) can convert near-infrared (NIR) light into ultraviolet and visible light, thus have good performance in bioimaging and NIR triggered phototherapy. In this review paper, we summarize the design, fabrication, and application of UCNPs-based NIR photoimmunotherapy for combined cancer treatment, as well as put forward the prospect of future development.
Collapse
Affiliation(s)
- Weilin Chen
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| | - Yulin Xie
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| | - Man Wang
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| | - Chunxia Li
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
14
|
Di Z, Liu B, Zhao J, Gu Z, Zhao Y, Li L. An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment. SCIENCE ADVANCES 2020; 6:eaba9381. [PMID: 32596466 PMCID: PMC7299621 DOI: 10.1126/sciadv.aba9381] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/04/2020] [Indexed: 05/05/2023]
Abstract
Despite the potential of nanodevices for intelligent drug delivery, it remains challenging to develop controllable therapeutic devices with high spatial-temporal selectivity. Here, we report a DNA nanodevice that can achieve tumor recognition and treatment with improved spatiotemporal precision under the regulation of orthogonal near-infrared (NIR) light. The nanodevice is built by combining an ultraviolet (UV) light-activatable aptamer module and a photosensitizer (PS) with up-conversion nanoparticle (UCNP) that enables the operation of the nanodevice with deep tissue-penetrable NIR light. The UCNPs can convert two distinct NIR excitations into orthogonal UV and green emissions for programmable photoactivation of the aptamer modules and PSs, respectively, allowing spatiotemporally controlled target recognition and photodynamic antitumor effect. Furthermore, when combined with immune checkpoint blockade therapy, the nanodevice results in regression of untreated distant tumors. This work provides a new approach for regulation of diagnostic and therapeutic activity at the right time and place.
Collapse
Affiliation(s)
- Zhenghan Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
15
|
Zhao D, Yang G, Liu Q, Liu W, Weng Y, Zhao Y, Qu F, Li L, Huang Y. A photo-triggerable aptamer nanoswitch for spatiotemporal controllable siRNA delivery. NANOSCALE 2020; 12:10939-10943. [PMID: 32207496 DOI: 10.1039/d0nr00301h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A photo-triggerable aptamer nanoswitch was proposed for spatiotemporal regulation of siRNA delivery. Recognition between AS1411 and nucleolin was effectively blocked by a photo-labile complementary oligonucleotide, which could be reactivated with photo-irradiation, resulting in efficient tumor-targeted siRNA internalization and gene silencing in vitro and in vivo.
Collapse
Affiliation(s)
- Deyao Zhao
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China. and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China
| | - Ge Yang
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Qing Liu
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wenjing Liu
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Yi Zhao
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Feng Qu
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
16
|
Screening of Aptamer for Human IgG Fc Fragment by Capillary Electrophoresis-Systematic Evolution of Ligands by Exponential Enrichment. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60016-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Jia S, Yang S, Ji H, Peng S, Chen K, He Z, Zhou X. Systematic investigation of bioorthogonal cellular DNA metabolic labeling in a photo-controlled manner. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Zhao J, Li Y, Yu M, Gu Z, Li L, Zhao Y. Time-Resolved Activation of pH Sensing and Imaging in Vivo by a Remotely Controllable DNA Nanomachine. NANO LETTERS 2020; 20:874-880. [PMID: 31873031 DOI: 10.1021/acs.nanolett.9b03471] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Construction of probes or nanodevices capable of sensing pH with high spatial and temporal precision remains a challenge, despite their importance in monitoring of diverse physiological and pathological processes. Here we disclose the first remotely and noninvasively controlled DNA nanomachine that can monitor pH in live cells and animals in a temporally programmable manner. The nanomachine is designed by rational engineering of the DNA motif with a light-responsive element and further combination with an upconversion nanoparticle that works as a transducer to manipulate the nanomachine with the high precision of NIR light. The nanomachine not only allows for activated fluorescent imaging of intracellular pH, but it also can exert spatiotemporal control over its pH sensing activity in tumor-bearing mice by NIR light irradiation at a chosen time and place. This work illustrates the potential of combining DNA nanotechnology with upconversion tools to yield a precisely controlled nanomachine for temporally resolved pH sensing and imaging.
Collapse
Affiliation(s)
- Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- College of Materials Science and Optoelectronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yinghao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Mingming Yu
- College of Chemistry , Zhengzhou University , Zhengzhou 450001 , China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- College of Materials Science and Optoelectronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- College of Materials Science and Optoelectronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
19
|
Ouyang C, Zhang S, Xue C, Yu X, Xu H, Wang Z, Lu Y, Wu ZS. Precision-Guided Missile-Like DNA Nanostructure Containing Warhead and Guidance Control for Aptamer-Based Targeted Drug Delivery into Cancer Cells in Vitro and in Vivo. J Am Chem Soc 2020; 142:1265-1277. [PMID: 31895985 DOI: 10.1021/jacs.9b09782] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is crucial to deliver anticancer drugs to target cells with high precision and efficiency. While nanomaterials have been shown to enhance the delivery efficiency once they reach the target, it remains challenging for precise drug delivery to overcome the nonspecific adsorption and off-target effect. To meet this challenge, we report herein the design of a novel DNA nanostructure to act as a DNA nanoscale precision-guided missile (D-PGM) for highly efficient loading and precise delivery of chemotherapeutic agents to specific target cells. The D-PGM consists of two parts: a warhead (WH) and a guidance/control (GC). The WH is a rod-like DNA nanostructure as a drug carrier, whose trunk is a three-dimensionally self-assembled DNA nanoscale architecture from the programmed hybridization among two palindromic DNA sequences in the x-y dimension and two common DNA oligonucleotides in the z direction, making the WH possess a high payload capacity of drugs. The GC is an aptamer-based logic gate assembled in a highly organized fashion capable of performing cell-subtype-specific recognition via the sequential disassembly, mediated by cell-anchored aptamers. Because of the cooperative effects between the WH and the GC, the GC logic gates operate like the guidance and control system in a precision-guided missile to steer the doxorubicin (DOX)-loaded DNA WH toward target cancer cells, leading to selective and enhanced therapeutic efficacy. Moreover, fluorophores attached to different locations of D-PGM and DOX fluorescence dequenching upon release enable intracellular tracing of the DNA nanostructures and drugs. The results demonstrate that by mimicking the functionalities of a military precision-guided missile to design the sequential disassembly of the GC system in multistimuli-responsive fashion, our intrinsically biocompatible and degradable D-PGM can accurately identify target cancer cells in complex biological milieu and achieve active targeted drug delivery. The success of this strategy paves the way for specific cell identity and targeted cancer therapy.
Collapse
Affiliation(s)
- Changhe Ouyang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Songbai Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350108 , China.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,College of Chemistry and Materials Engineering , Hunan University of Arts and Science , Changde 415000 , China
| | - Chang Xue
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Xin Yu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Huo Xu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Zhenmeng Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Yi Lu
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| |
Collapse
|
20
|
Li M, Zhao J, Chu H, Mi Y, Zhou Z, Di Z, Zhao M, Li L. Light-Activated Nanoprobes for Biosensing and Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804745. [PMID: 30276873 DOI: 10.1002/adma.201804745] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/08/2018] [Indexed: 05/24/2023]
Abstract
Fluorescent nanoprobes are indispensable tools to monitor and analyze biological species and dynamic biochemical processes in cells and living bodies. Conventional nanoprobes have limitations in obtaining imaging signals with high precision and resolution because of the interference with biological autofluorescence, off-target effects, and lack of spatiotemporal control. As a newly developed paradigm, light-activated nanoprobes, whose imaging and sensing activity can be remotely regulated with light irradiation, show good potential to overcome these limitations. Herein, recent research progress on the design and construction of light-activated nanoprobes to improve bioimaging and sensing performance in complex biological systems is introduced. First, recent innovative strategies and their underlying mechanisms for light-controlled imaging are reviewed, including photoswitchable nanoprobes and phototargeted nanosystems. Subsequently, a short highlight is provided on the development of light-activatable nanoprobes for biosensing, which offer possibilities for the remote control of biorecognition and sensing activity in a precise manner both temporally and spatially. Finally, perspectives and challenges in light-activated nanoprobes are commented.
Collapse
Affiliation(s)
- Mengyuan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Hongqian Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Yongsheng Mi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Zehao Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Zhenghan Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| |
Collapse
|
21
|
Zhang L, Linden G, Vázquez O. In search of visible-light photoresponsive peptide nucleic acids (PNAs) for reversible control of DNA hybridization. Beilstein J Org Chem 2019; 15:2500-2508. [PMID: 31728164 PMCID: PMC6839558 DOI: 10.3762/bjoc.15.243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Photoswitchable oligonucleotides can determine specific biological outcomes by light-induced conformational changes. In particular, artificial probes activated by visible-light irradiation are highly desired in biological applications. Here, we report two novel types of visible-light photoswitchable peptide nucleic acids (PNAs) based on the molecular transducers: hemithioindigo and tetra-ortho-fluoroazobenzene. Our study reveals that the tetra-ortho-fluoroazobenzene-PNA conjugates have promising properties (fast reversible isomerization, exceptional thermal stability, high isomer conversions and sensitivity to visible-light irradiation) as reversible modulators to control oligonucleotide hybridization in biological contexts. Furthermore, we verified that this switchable modification delivers a slightly different hybridization behavior in the PNA. Thus, both melting experiments and strand-displacement assays showed that in all the cases the trans-isomer is the one with superior binding affinities. Alternative versions, inspired by our first compounds here reported, may find applications in different fields such as chemical biology, nanotechnology and materials science.
Collapse
Affiliation(s)
- Lei Zhang
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany
| | - Greta Linden
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany
| | - Olalla Vázquez
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany
| |
Collapse
|
22
|
Dorsey PJ, Rubanov M, Wang W, Schulman R. Digital Maskless Photolithographic Patterning of DNA-Functionalized Poly(ethylene glycol) Diacrylate Hydrogels with Visible Light Enabling Photodirected Release of Oligonucleotides. ACS Macro Lett 2019; 8:1133-1140. [PMID: 35619455 DOI: 10.1021/acsmacrolett.9b00450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Soft biomaterials possessing structural hierarchy have growing applications in lab-on-chip devices, artificial tissues, and micromechanical and chemomechanical systems. The ability to integrate sets of biomolecules, specifically DNA, within hydrogel substrates at precise locations could offer the potential to form and modulate complex biochemical processes with DNA-based molecular switches in such materials and provide a means of creating dynamic spatial patterns, thus enabling spatiotemporal control of a wide array of reaction-diffusion phenomena prevalent in biological systems. Here we develop a means of photopatterning two-dimensional DNA-functionalized poly(ethylene glycol) diacrylate (PEGDA) hydrogel architectures with an aim toward these applications. While PEGDA photopatterning methods are well-established for the fabrication of hydrogels, including those containing oligonucleotides, the photoinitiators typically used have significant crosstalk with many UV-photoswitchable chemistries including nitrobenzyl derivatives. We demonstrate the digital photopatterning of PEGDA-co-DNA hydrogels using a blue light-absorbing (470 nm peak) photoinitiator system and macromer comprised of camphorquinone, triethanolamine, and poly(ethylene glycol) diacrylate (Mn = 575) that minimizes absorption in the UV-A wavelength range commonly used to trigger photoswitchable chemistries. We demonstrate this method using digital maskless photolithography within microfluidic devices that allows for the reliable construction of multidomain structures. The method achieves feature resolutions as small as 25 μm, and the resulting materials allow for lateral isotropic bulk diffusion of short single-stranded (ss) DNA oligonucleotides. Finally, we show how the use of these photoinitiators allows for orthogonal control of photopolymerization and UV-photoscission of acrylate-modified DNA containing a 1-(2-nitrophenyl) ethyl spacer to selectively cleave DNA from regions of a PEGDA substrate.
Collapse
|
23
|
NIR-light-mediated spatially selective triggering of anti-tumor immunity via upconversion nanoparticle-based immunodevices. Nat Commun 2019; 10:2839. [PMID: 31253798 PMCID: PMC6599017 DOI: 10.1038/s41467-019-10847-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/31/2019] [Indexed: 01/04/2023] Open
Abstract
Immunomodulatory therapies are becoming a paradigm-shifting treatment modality for cancer. Despite promising clinical results, cancer immunotherapy is accompanied with off-tumor toxicity and autoimmune adverse effects. Thus, the development of smarter systems to regulate immune responses with superior spatiotemporal precision and enhanced safety is urgently needed. Here we report an activatable engineered immunodevice that enables remote control over the antitumor immunity in vitro and in vivo with near-infrared (NIR) light. The immunodevice is composed of a rationally designed UV light-activatable immunostimulatory agent and upconversion nanoparticle, which acts as a transducer to shift the light sensitivity of the device to the NIR window. The controlled immune regulation allows the generation of effective immune response within tumor without disturbing immunity elsewhere in the body, thereby maintaining the antitumor efficacy while mitigating systemic toxicity. The present work illustrates the potential of the remote-controlled immunodevice for triggering of immunoactivity at the right time and site.
Collapse
|
24
|
Zhao J, Chu H, Zhao Y, Lu Y, Li L. A NIR Light Gated DNA Nanodevice for Spatiotemporally Controlled Imaging of MicroRNA in Cells and Animals. J Am Chem Soc 2019; 141:7056-7062. [DOI: 10.1021/jacs.9b01931] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hongqian Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ya Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Zhang J, Lan T, Lu Y. Molecular Engineering of Functional Nucleic Acid Nanomaterials toward In Vivo Applications. Adv Healthc Mater 2019; 8:e1801158. [PMID: 30725526 PMCID: PMC6426685 DOI: 10.1002/adhm.201801158] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/14/2019] [Indexed: 12/25/2022]
Abstract
Recent advances in nanotechnology and engineering have generated many nanomaterials with unique physical and chemical properties. Over the past decade, numerous nanomaterials are introduced into many research areas, such as sensors for environmental monitoring, food safety, point-of-care diagnostics, and as transducers for solar energy transfer. Meanwhile, functional nucleic acids (FNAs), including nucleic acid enzymes, aptamers, and aptazymes, have attracted major attention from the biomedical community due to their unique target recognition and catalytic properties. Benefiting from the recent progress of molecular engineering strategies, the physicochemical properties of nanomaterials are endowed by the target recognition and catalytic activity of FNAs in the presence of a target analyte, resulting in numerous smart nanoprobes for diverse applications including intracellular imaging, drug delivery, in vivo imaging, and tumor therapy. This progress report focuses on the recent advances in designing and engineering FNA-based nanomaterials, highlighting the functional outcomes toward in vivo applications. The challenges and opportunities for the future translation of FNA-based nanomaterials into clinical applications are also discussed.
Collapse
Affiliation(s)
- JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Tian Lan
- GlucoSentient, Inc., 2100 S. Oak Street Suite 101, Champaign, IL, 61820, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S. Mathews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
26
|
Abstract
This chapter provides a brief introduction to followed by discussion of recent preclinical studies on potential aptamer drugs grouped into two broad categories, namely, “aptamer structures” and “non-ocular diseases.” Examples of aptamer-based targeting of drugs are then described. Next is an overview of the status of nearly 30 clinical trials of aptamer drugs currently listed in ClinicalTrials.gov, which is a registry and results database of publicly and privately supported clinical studies of human participants conducted around the world, and is a service of the US National Institutes of Health. This overview includes brief descriptions of each study sponsor, aptamer drug, disease(s), and type of study, as well as separate tables for completed studies, withdrawn or terminated studies, and active studies. The final section discusses Conclusions and Prospects.
Collapse
Affiliation(s)
- G. Zon
- TriLink BioTechnologies 9955 Mesa Rim Road San Diego 92121 USA
| |
Collapse
|
27
|
Xue C, Zhang SX, Ouyang CH, Chang D, Salena BJ, Li Y, Wu ZS. Target-Induced Catalytic Assembly of Y-Shaped DNA and Its Application for In Situ Imaging of MicroRNAs. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chang Xue
- Cancer Metastasis Alert and Prevention Center; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy; Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 China
| | - Shu-Xin Zhang
- Cancer Metastasis Alert and Prevention Center; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy; Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 China
| | - Chang-He Ouyang
- Cancer Metastasis Alert and Prevention Center; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy; Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 China
| | - Dingran Chang
- Department of Biochemistry & Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Bruno J. Salena
- Department of Medicine; McMaster University; 1280 Main St. W. Hamilton ON L8S 4K1 Canada
| | - Yingfu Li
- Department of Biochemistry & Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy; Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 China
| |
Collapse
|
28
|
Xue C, Zhang SX, Ouyang CH, Chang D, Salena BJ, Li Y, Wu ZS. Target-Induced Catalytic Assembly of Y-Shaped DNA and Its Application for In Situ Imaging of MicroRNAs. Angew Chem Int Ed Engl 2018; 57:9739-9743. [PMID: 29901854 DOI: 10.1002/anie.201804741] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/04/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Chang Xue
- Cancer Metastasis Alert and Prevention Center; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy; Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 China
| | - Shu-Xin Zhang
- Cancer Metastasis Alert and Prevention Center; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy; Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 China
| | - Chang-He Ouyang
- Cancer Metastasis Alert and Prevention Center; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy; Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 China
| | - Dingran Chang
- Department of Biochemistry & Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Bruno J. Salena
- Department of Medicine; McMaster University; 1280 Main St. W. Hamilton ON L8S 4K1 Canada
| | - Yingfu Li
- Department of Biochemistry & Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy; Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 China
| |
Collapse
|
29
|
Abstract
External photocontrol over RNA function has emerged as a useful tool for studying nucleic acid biology. Most current methods rely on fully synthetic nucleic acids with photocaged nucleobases, limiting application to relatively short synthetic RNAs. Here we report a method to gain photocontrol over RNA by postsynthetic acylation of 2'-hydroxyls with photoprotecting groups. One-step introduction of these groups efficiently blocks hybridization, which is restored after light exposure. Polyacylation (termed cloaking) enables control over a hammerhead ribozyme, illustrating optical control of RNA catalytic function. Use of the new approach on a transcribed 237 nt RNA aptamer demonstrates the utility of this method to switch on RNA folding in a cellular context, and underlines the potential for application in biological studies.
Collapse
Affiliation(s)
- Willem A Velema
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anna M. Kietrys
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
30
|
Prusty DK, Adam V, Zadegan RM, Irsen S, Famulok M. Supramolecular aptamer nano-constructs for receptor-mediated targeting and light-triggered release of chemotherapeutics into cancer cells. Nat Commun 2018; 9:535. [PMID: 29416033 PMCID: PMC5803212 DOI: 10.1038/s41467-018-02929-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/09/2018] [Indexed: 12/01/2022] Open
Abstract
Platforms for targeted drug-delivery must simultaneously exhibit serum stability, efficient directed cell internalization, and triggered drug release. Here, using lipid-mediated self-assembly of aptamers, we combine multiple structural motifs into a single nanoconstruct that targets hepatocyte growth factor receptor (cMet). The nanocarrier consists of lipidated versions of a cMet-binding aptamer and a separate lipidated GC-rich DNA hairpin motif loaded with intercalated doxorubicin. Multiple 2',6'-dimethylazobenzene moieties are incorporated into the doxorubicin-binding motif to trigger the release of the chemotherapeutics by photoisomerization. The lipidated DNA scaffolds self-assemble into spherical hybrid-nanoconstructs that specifically bind cMet. The combined features of the nanocarriers increase serum nuclease resistance, favor their import into cells presumably mediated by endocytosis, and allow selective photo-release of the chemotherapeutic into the targeted cells. cMet-expressing H1838 tumor cells specifically internalize drug-loaded nanoconstructs, and subsequent UV exposure enhances cell mortality. This modular approach thus paves the way for novel classes of powerful aptamer-based therapeutics.
Collapse
Affiliation(s)
- Deepak K Prusty
- Life and Medical Sciences (LIMES) Institute, Chemical Biology & Medicinal Chemistry Unit, c/o Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
- Stiftung Caesar, Max-Planck-Fellowship Group Chemical Biology, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Volker Adam
- Life and Medical Sciences (LIMES) Institute, Chemical Biology & Medicinal Chemistry Unit, c/o Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Reza M Zadegan
- Nanoscale Materials & Device Group, Micron School of Materials Science and Engineering, Boise State University, Boise, USA
| | - Stephan Irsen
- Stiftung Caesar, Elektronenmikroskopie und Analytik, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Michael Famulok
- Life and Medical Sciences (LIMES) Institute, Chemical Biology & Medicinal Chemistry Unit, c/o Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany.
- Stiftung Caesar, Max-Planck-Fellowship Group Chemical Biology, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
31
|
Zhao J, Gao J, Xue W, Di Z, Xing H, Lu Y, Li L. Upconversion Luminescence-Activated DNA Nanodevice for ATP Sensing in Living Cells. J Am Chem Soc 2018; 140:578-581. [PMID: 29281270 DOI: 10.1021/jacs.7b11161] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Designer DNA nanodevices have attracted extensive interest for detection of specific targets in living cells. However, it still remains a great challenge to construct DNA sensing devices that can be activated at desired time with a remotely applied stimulus. Here we report a rationally designed, synthetic DNA nanodevice that can detect ATP in living cells in an upconversion luminescence-activatable manner. The nanodevice consists of a UV light-activatable aptamer probe and lanthanide-doped upconversion nanoparticles which acts as the nanotransducers to operate the device in response to NIR light. We demonstrate that the nanodevice not only enables efficient cellular delivery of the aptamer probe into live cells, but also allows the temporal control over its fluorescent sensing activity for ATP by NIR light irradiation in vitro and in vivo. Ultimately, with the availability of diverse aptamers selected in vitro, the DNA nanodevice platform will allow NIR-triggered sensing of various targets as well as modulation of biological functions in living systems.
Collapse
Affiliation(s)
- Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Jinhong Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Wenting Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Zhenghan Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University , Changsha, Hunan 410082, China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| |
Collapse
|
32
|
Singh S, Jha P, Singh V, Sinha K, Hussain S, Singh MK, Das P. A quantum dot-MUC1 aptamer conjugate for targeted delivery of protoporphyrin IX and specific photokilling of cancer cells through ROS generation. Integr Biol (Camb) 2017; 8:1040-1048. [PMID: 27723851 DOI: 10.1039/c6ib00092d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-targeted photosensitizers lack selectivity that undermines the potential use of photodynamic therapy (PDT). Herein, we report the DNA mediated assembly of a ZnSe/ZnS quantum dot (QD)-photosensitizer (PS)-Mucin 1(MUC1) aptamer conjugate for targeting the MUC1 cancer biomarker and simultaneous generation of reactive oxygen species (ROS). A photosensitizer, protoporphyrin IX (PpIX), was conjugated to a single stranded DNA and self-assembled to a complementary strand that was conjugated to a QD and harboring a MUC1 aptamer sequence. A multistep fluorescence resonance energy transfer (FRET) is shown that involves the QD, PpIX and covalently linked CF™ 633 amine dye (CF dye) to the MUC1 peptide that tracks the potency of the aptamer to attach itself with the MUC1 peptide. Since the absorption spectra of the CF dye overlap with the emission spectra of PpIX, the former acts as an acceptor to PpIX forming a second FRET pair when the dye labeled MUC1 binds to the aptamer. The binding of the QD-PpIX nanoassemblies with MUC1 through the aptamer was further confirmed by gel electrophoresis and circular dichroism studies. The selective photodamage of MUC1 expressing HeLa cervical cancer cells through ROS generation in the presence of the QD-PpIX FRET probe upon irradiation is successfully demonstrated.
Collapse
Affiliation(s)
- Seema Singh
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| | - Pravin Jha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844101, Bihar, India
| | - Vandana Singh
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| | - Kislay Sinha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844101, Bihar, India
| | - Sahid Hussain
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| | - Manoj K Singh
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| |
Collapse
|
33
|
Lucas T, Schäfer F, Müller P, Eming SA, Heckel A, Dimmeler S. Light-inducible antimiR-92a as a therapeutic strategy to promote skin repair in healing-impaired diabetic mice. Nat Commun 2017; 8:15162. [PMID: 28462946 PMCID: PMC5418571 DOI: 10.1038/ncomms15162] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/03/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRs) are small non-coding RNAs that post-transcriptionally control gene expression. Inhibition of miRs by antisense RNAs (antimiRs) might be a therapeutic option for many diseases, but systemic inhibition can have adverse effects. Here we show that light-activatable antimiRs efficiently and locally restricted target miR activity in vivo. We use an antimiR-92a and establish a therapeutic benefit in diabetic wound healing. AntimiR-92a is modified with photolabile protecting groups, so called ‘cages'. Irradiation activates intradermally injected caged antimiR-92a without substantially affecting miR-92a expression in other organs. Light activation of caged antimiR-92a improves healing in diabetic mice to a similar extent as conventional antimiRs and derepresses the miR-92a targets Itga5 and Sirt1, thereby regulating wound cell proliferation and angiogenesis. These data show that light can be used to locally activate therapeutically active antimiRs in vivo. Inhibition of microRNAs using antimiRs is a potential therapeutic option for a number of diseases, but systemic inhibition may cause adverse effects. Here the authors develop light-activated antimiRs directed against miR-92a, and show localized inhibition in the skin and improved wound healing in diabetic mice.
Collapse
Affiliation(s)
- Tina Lucas
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.,German Center for Cardiovascular Research (DZHK), RheinMain Oudenarder Str. 16, Berlin 13347, Germany
| | - Florian Schäfer
- Institute for Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Patricia Müller
- Institute for Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Kerpenerstr. 62, Cologne 50937, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.,German Center for Cardiovascular Research (DZHK), RheinMain Oudenarder Str. 16, Berlin 13347, Germany
| |
Collapse
|
34
|
DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin. Bioorg Med Chem Lett 2017; 27:954-957. [DOI: 10.1016/j.bmcl.2016.12.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 11/19/2022]
|
35
|
Alibolandi M, Mohammadi M, Taghdisi SM, Ramezani M, Abnous K. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr Polym 2017; 155:218-229. [DOI: 10.1016/j.carbpol.2016.08.046] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 11/29/2022]
|
36
|
Mishra RK, Nath S, Kumar S. Rupture of DNA aptamer: New insights from simulations. J Chem Phys 2016; 143:164902. [PMID: 26520549 DOI: 10.1063/1.4933948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Base-pockets (non-complementary base-pairs) in a double-stranded DNA play a crucial role in biological processes. Because of thermal fluctuations, it can lower the stability of DNA, whereas, in case of DNA aptamer, small molecules, e.g., adenosinemonophosphate and adenosinetriphosphate, form additional hydrogen bonds with base-pockets termed as "binding-pockets," which enhance the stability. Using the Langevin dynamics simulations of coarse grained model of DNA followed by atomistic simulations, we investigated the influence of base-pocket and binding-pocket on the stability of DNA aptamer. Striking differences have been reported here for the separation induced by temperature and force, which require further investigation by single molecule experiments.
Collapse
Affiliation(s)
| | - Shesh Nath
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | - Sanjay Kumar
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
37
|
Jain PK, Ramanan V, Schepers AG, Dalvie NS, Panda A, Fleming HE, Bhatia SN. Development of Light-Activated CRISPR Using Guide RNAs with Photocleavable Protectors. Angew Chem Int Ed Engl 2016; 55:12440-4. [PMID: 27554600 PMCID: PMC5864249 DOI: 10.1002/anie.201606123] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The ability to remotely trigger CRISPR/Cas9 activity would enable new strategies to study cellular events with greater precision and complexity. In this work, we have developed a method to photocage the activity of the guide RNA called "CRISPR-plus" (CRISPR-precise light-mediated unveiling of sgRNAs). The photoactivation capability of our CRISPR-plus method is compatible with the simultaneous targeting of multiple DNA sequences and supports numerous modifications that can enable guide RNA labeling for use in imaging and mechanistic investigations.
Collapse
Affiliation(s)
- Piyush K Jain
- Institute for Medical Engineering & Science, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vyas Ramanan
- Institute for Medical Engineering & Science, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Arnout G Schepers
- Institute for Medical Engineering & Science, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nisha S Dalvie
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Apekshya Panda
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heather E Fleming
- Institute for Medical Engineering & Science, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sangeeta N Bhatia
- Institute for Medical Engineering & Science, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Electrical Engineering and Computer Science, Marble Center for Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Xiao H, Chen Y, Yuan E, Li W, Jiang Z, Wei L, Su H, Zeng W, Gan Y, Wang Z, Yuan B, Qin S, Leng X, Zhou X, Liu S, Zhou X. Obtaining More Accurate Signals: Spatiotemporal Imaging of Cancer Sites Enabled by a Photoactivatable Aptamer-Based Strategy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23542-23548. [PMID: 27550088 DOI: 10.1021/acsami.6b07450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Early cancer diagnosis is of great significance to relative cancer prevention and clinical therapy, and it is crucial to efficiently recognize cancerous tumor sites at the molecular level. Herein, we proposed a versatile and efficient strategy based on aptamer recognition and photoactivation imaging for cancer diagnosis. This is the first time that a visible light-controlled photoactivatable aptamer-based platform has been applied for cancer diagnosis. The photoactivatable aptamer-based strategy can accurately detect nucleolin-overexpressed tumor cells and can be used for highly selective cancer cell screening and tissue imaging. This strategy is available for both formalin-fixed paraffin-embedded tissue specimens and frozen sections. Moreover, the photoactivation techniques showed great progress in more accurate and persistent imaging to the use of traditional fluorophores. Significantly, the application of this strategy can produce the same accurate results in tissue specimen analysis as with classical hematoxylin-eosin staining and immunohistochemical technology.
Collapse
Affiliation(s)
- Heng Xiao
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jain PK, Ramanan V, Schepers AG, Dalvie NS, Panda A, Fleming HE, Bhatia SN. Development of Light-Activated CRISPR Using Guide RNAs with Photocleavable Protectors. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Piyush K. Jain
- Institute for Medical Engineering & Science; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Vyas Ramanan
- Institute for Medical Engineering & Science; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Arnout G. Schepers
- Institute for Medical Engineering & Science; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Nisha S. Dalvie
- Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Apekshya Panda
- Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Heather E. Fleming
- Institute for Medical Engineering & Science; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Sangeeta N. Bhatia
- Institute for Medical Engineering & Science; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Department of Electrical Engineering and Computer Science; Marble Center for Cancer Nanomedicine; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Department of Medicine; Brigham and Women's Hospital; Boston MA 02115 USA
- Broad Institute of MIT and Harvard; Cambridge MA 02139 USA
- Howard Hughes Medical Institute; Cambridge MA 02139 USA
| |
Collapse
|
40
|
Chu H, Kohane DS, Langer R. RNA therapeutics - The potential treatment for myocardial infarction. Regen Ther 2016; 4:83-91. [PMID: 31245491 PMCID: PMC6581817 DOI: 10.1016/j.reth.2016.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/05/2016] [Accepted: 03/05/2016] [Indexed: 01/19/2023] Open
Abstract
RNA therapeutics mainly control gene expression at the transcript level. In contrast to conventional gene therapy which solely increases production of a protein, delivered RNAs can enhance, reduce or abolish synthesis of a particular protein, which control its relevant activities in a more diverse fashion. Thus, they hold promise to treat many human diseases including myocardial infarction (MI). MI is a serious health burden that causes substantial morbidity and mortality. An unmet clinical need for treating MI is the recovery of cardiac function, which requires regeneration of the functional tissues including the vasculature, nerves, and myocardium. Several classes of RNA therapeutics have been investigated in preclinical MI models, and the results have demonstrated their benefits and encourage their future development. In this review, we summarize the common RNA therapeutic approaches and highlight their application in MI therapy.
Collapse
Affiliation(s)
- Hunghao Chu
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, United States
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
41
|
Ogura Y, Onishi A, Nishimura T, Tanida J. Optically controlled release of DNA based on nonradiative relaxation process of quenchers. BIOMEDICAL OPTICS EXPRESS 2016; 7:2142-53. [PMID: 27375933 PMCID: PMC4918571 DOI: 10.1364/boe.7.002142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 06/02/2023]
Abstract
Optically controlled release of a DNA strand based on a nonradiative relaxation process of black hole quenchers (BHQs), which are a sort of dark quenchers, is presented. BHQs act as efficient energy sources because they relax completely via a nonradiative process, i.e., without fluorescent emission-based energy losses. A DNA strand is modified with BHQs and the release of its complementary strand is controlled by excitation of the BHQs. Experimental results showed that up to 50% of the target strands were released, and these strands were capable of inducing subsequent reactions. The controlled release was localized on a substrate within an area of no more than 5 micrometers in diameter.
Collapse
Affiliation(s)
- Yusuke Ogura
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 5650871,
Japan
| | - Atsushi Onishi
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 5650871,
Japan
| | - Takahiro Nishimura
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 5650871,
Japan
| | - Jun Tanida
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 5650871,
Japan
| |
Collapse
|
42
|
Rosch JC, Hollmann EK, Lippmann ES. In vitro selection technologies to enhance biomaterial functionality. Exp Biol Med (Maywood) 2016; 241:962-71. [PMID: 27188514 DOI: 10.1177/1535370216647182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cells make decisions and fate choices based in part on cues they receive from their external environment. Factors that affect the interpretation of these cues include the soluble proteins that are present at any given time, the cell surface receptors that are available to bind these proteins, and the relative affinities of the soluble proteins for their cognate receptors. Researchers have identified many of the biological motifs responsible for the high-affinity interactions between proteins and their receptors, and subsequently incorporated these motifs into biomaterials to elicit control over cell behavior. Common modes of control include localized sequestration of proteins to improve bioavailability and direct inhibition or activation of a receptor by an immobilized peptide or protein. However, naturally occurring biological motifs often possess promiscuous affinity for multiple proteins and receptors or lack programmable actuation in response to dynamic stimuli, thereby limiting the amount of control they can exert over cellular decisions. These natural motifs only represent a small fraction of the biological diversity that can be assayed by in vitro selection strategies, and the discovery of "artificial" motifs with varying affinity, specificity, and functionality could greatly expand the repertoire of engineered biomaterial properties. This minireview provides a brief summary of classical and emerging techniques in peptide phage display and nucleic acid aptamer selections and discusses prospective applications in the areas of cell adhesion, angiogenesis, neural regeneration, and immune modulation.
Collapse
Affiliation(s)
- Jonah C Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Emma K Hollmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
43
|
Fontenete S, Leite M, Cappoen D, Santos R, Ginneken CV, Figueiredo C, Wengel J, Cos P, Azevedo NF. Fluorescence In Vivo Hybridization (FIVH) for Detection of Helicobacter pylori Infection in a C57BL/6 Mouse Model. PLoS One 2016; 11:e0148353. [PMID: 26848853 PMCID: PMC4743915 DOI: 10.1371/journal.pone.0148353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION In this study, we applied fluorescence in vivo hybridization (FIVH) using locked nucleic acid (LNA) probes targeting the bacterial rRNA gene for in vivo detection of H. pylori infecting the C57BL/6 mouse model. A previously designed Cy3_HP_LNA/2OMe_PS probe, complementary to a sequence of the H. pylori 16S rRNA gene, was used. First, the potential cytotoxicity and genotoxicity of the probe was assessed by commercial assays. Further, the performance of the probe for detecting H. pylori at different pH conditions was tested in vitro, using fluorescence in situ hybridization (FISH). Finally, the efficiency of FIVH to detect H. pylori SS1 strain in C57BL/6 infected mice was evaluated ex vivo in mucus samples, in cryosections and paraffin-embedded sections by epifluorescence and confocal microscopy. RESULTS H. pylori SS1 strain infecting C57BL/6 mice was successfully detected by the Cy3_HP_LNA/2OMe_PS probe in the mucus, attached to gastric epithelial cells and colonizing the gastric pits. The specificity of the probe for H. pylori was confirmed by microscopy. CONCLUSIONS In the future this methodology can be used in combination with a confocal laser endomicroscope for in vivo diagnosis of H. pylori infection using fluorescent LNA probes, which would be helpful to obtain an immediate diagnosis. Our results proved for the first time that FIVH method is applicable inside the body of a higher-order animal.
Collapse
Affiliation(s)
- Sílvia Fontenete
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
- ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Marina Leite
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Davie Cappoen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Rita Santos
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Gent, Belgium
| | - Chris Van Ginneken
- Laboratory of Applied Veterinary Morphology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Céu Figueiredo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, University, Porto, Portugal
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Nuno Filipe Azevedo
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
44
|
Wang X, Song P, Peng L, Tong A, Xiang Y. Aggregation-Induced Emission Luminogen-Embedded Silica Nanoparticles Containing DNA Aptamers for Targeted Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:609-16. [PMID: 26653325 DOI: 10.1021/acsami.5b09644] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Conventional fluorophores usually undergo aggregation-caused quenching (ACQ), which limits the loading amount of these fluorophores in nanoparticles for bright fluorescence imaging. On the contrary, fluorophores with aggregation-induced emission (AIE) characteristics are strongly fluorescent in their aggregate states and have been an ideal platform for developing highly fluorescent nanomaterials, such as fluorescent silica nanoparticles (FSNPs). In this work, AIE luminogens based on salicylaldehyde hydrazones were embedded in silica nanoparticles through a facile noncovalent approach, which afforded AIE-FSNPs emitting much brighter fluorescence than that of some commercial fluorescein-doped silica and polystyrene nanoparticles. These AIE-FSNPs displaying multiple fluorescence colors were fabricated by a general method, and they underwent much less fluorescence variation due to environmental pH changes compared with fluorescein-hybridized FSNPs. In addition, a DNA aptamer specific to nucleolin was functionalized on the surface of AIE-FSNPs for targeted cell imaging. Fluorescent microscopy and flow cytometry studies both revealed highly selective fluorescence staining of MCF-7 (a cancer cell line with nucleolin overexpression) over MCF-10A (normal) cells by the aptamer-functionalized AIE-FSNPs. The fluorescence imaging in different color channels was achieved using AIE-FSNPs containing each of the AIE luminogens, as well as photoactivatable fluorescent imaging of target cells by the caged AIE fluorophore.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University , Beijing 100084, China
| | - Panshu Song
- National Institute of Metrology , Beijing 100029, China
| | - Lu Peng
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University , Beijing 100084, China
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University , Beijing 100084, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University , Beijing 100084, China
| |
Collapse
|
45
|
Dudani JS, Jain PK, Kwong GA, Stevens KR, Bhatia SN. Photoactivated Spatiotemporally-Responsive Nanosensors of in Vivo Protease Activity. ACS NANO 2015; 9:11708-17. [PMID: 26565752 PMCID: PMC5588683 DOI: 10.1021/acsnano.5b05946] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Proteases play diverse and important roles in physiology and disease, including influencing critical processes in development, immune responses, and malignancies. Both the abundance and activity of these enzymes are tightly regulated and highly contextual; thus, in order to elucidate their specific impact on disease progression, better tools are needed to precisely monitor in situ protease activity. Current strategies for detecting protease activity are focused on functionalizing synthetic peptide substrates with reporters that emit detection signals following peptide cleavage. However, these activity-based probes lack the capacity to be turned on at sites of interest and, therefore, are subject to off-target activation. Here we report a strategy that uses light to precisely control both the location and time of activity-based sensing. We develop photocaged activity-based sensors by conjugating photolabile molecules directly onto peptide substrates, thereby blocking protease cleavage by steric hindrance. At sites of disease, exposure to ultraviolet light unveils the nanosensors to allow proteases to cleave and release a reporter fragment that can be detected remotely. We apply this spatiotemporally controlled system to probe secreted protease activity in vitro and tumor protease activity in vivo. In vitro, we demonstrate the ability to dynamically and spatially measure metalloproteinase activity in a 3D model of colorectal cancer. In vivo, veiled nanosensors are selectively activated at the primary tumor site in colorectal cancer xenografts to capture the tumor microenvironment-enriched protease activity. The ability to remotely control activity-based sensors may offer a valuable complement to existing tools for measuring biological activity.
Collapse
Affiliation(s)
- Jaideep S. Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Piyush K. Jain
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gabriel A. Kwong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kelly R. Stevens
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139
- Howard Hughes Medical Institute, Cambridge, MA 02139
| |
Collapse
|
46
|
Olejniczak J, Nguyen Huu VA, Lux J, Grossman M, He S, Almutairi A. Light-triggered chemical amplification to accelerate degradation and release from polymeric particles. Chem Commun (Camb) 2015; 51:16980-3. [PMID: 26445896 PMCID: PMC4819761 DOI: 10.1039/c5cc06143a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/25/2015] [Indexed: 11/23/2022]
Abstract
We describe a means of chemical amplification to accelerate triggered degradation of a polymer and particles composed thereof. We designed a light-degradable copolymer containing carboxylic acids masked by photolabile groups and ketals. Photolysis allows the unmasked acidic groups in the polymer backbone to accelerate ketal hydrolysis even at neutral pH.
Collapse
Affiliation(s)
- Jason Olejniczak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
| | - Viet Anh Nguyen Huu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA.
| | - Jacques Lux
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
| | - Madeleine Grossman
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
| | - Sha He
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA.
| | - Adah Almutairi
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA. and Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
| |
Collapse
|
47
|
Generation of Aptamers with an Expanded Chemical Repertoire. Molecules 2015; 20:16643-71. [PMID: 26389865 PMCID: PMC6332006 DOI: 10.3390/molecules200916643] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 01/03/2023] Open
Abstract
The enzymatic co-polymerization of modified nucleoside triphosphates (dN*TPs and N*TPs) is a versatile method for the expansion and exploration of expanded chemical space in SELEX and related combinatorial methods of in vitro selection. This strategy can be exploited to generate aptamers with improved or hitherto unknown properties. In this review, we discuss the nature of the functionalities appended to nucleoside triphosphates and their impact on selection experiments. The properties of the resulting modified aptamers will be described, particularly those integrated in the fields of biomolecular diagnostics, therapeutics, and in the expansion of genetic systems (XNAs).
Collapse
|
48
|
The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation. Proc Natl Acad Sci U S A 2015. [PMID: 26216949 DOI: 10.1073/pnas.1502159112] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p53, known as a tumor suppressor, is a DNA binding protein that regulates cell cycle, activates DNA repair proteins, and triggers apoptosis in multicellular animals. More than 50% of human cancers contain a mutation or deletion of the p53 gene, and p53R175 is one of the hot spots of p53 mutation. Nucleic acid aptamers are short single-stranded oligonucleotides that are able to bind various targets, and they are typically isolated from an experimental procedure called systematic evolution of ligand exponential enrichment (SELEX). Using a previously unidentified strategy of contrast screening with SELEX, we have isolated an RNA aptamer targeting p53R175H. This RNA aptamer (p53R175H-APT) has a significantly stronger affinity to p53R175H than to the wild-type p53 in both in vitro and in vivo assays. p53R175H-APT decreased the growth rate, weakened the migration capability, and triggered apoptosis in human lung cancer cells harboring p53R175H. Further analysis actually indicated that p53R175H-APT might partially rescue or correct the p53R175H to function more like the wild-type p53. In situ injections of p53R175H-APT to the tumor xenografts confirmed the effects of this RNA aptamer on p53R175H mutation in mice.
Collapse
|