1
|
van Galen I, Birkisdóttir MB, Ozinga RA, Brandt RMC, Barnhoorn S, Imholz S, van Oostrom CT, van der Marel RWGN, Smit K, Rijksen YMA, Reiling E, van Steeg H, Hoeijmakers JHJ, Dollé MET, Vermeij WP. High protein intake causes gene-length-dependent transcriptional decline, shortens lifespan and accelerates ageing in progeroid DNA repair-deficient mice. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:20. [PMID: 40416846 PMCID: PMC12098121 DOI: 10.1038/s44324-025-00064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/16/2025] [Indexed: 05/27/2025]
Abstract
Dietary composition can significantly influence health and lifespan, however, robust knowledge on which food components, at what concentration exert which long-term health effects is still incomplete. Here, we explored the effects of dietary protein intake on Ercc1 Δ/- DNA-repair-deficient mice, which are an excellent model for accelerated ageing and are hyperresponsive to the anti-ageing effect of dietary restriction. Restricting dietary protein by 50% extended lifespan in male mice, but not in females. Restricting protein levels beyond 80% improved various neurological health parameters, while a further reduction to 95% affected appetite and became distinctly detrimental. Conversely, a near doubling of protein intake and isocaloric compensatory lowering with carbohydrates significantly shortened lifespan in both sexes. Gene expression analysis of liver from mice on a high-protein, low-carbohydrate diet to those on high-carbohydrate, low-protein revealed increased expression of oxidative phosphorylation, enrichment of processes associated with tissue injury, inflammation, and gene-length-dependent transcriptional decline (GLTD), recently shown to reflect DNA damage accumulation causing transcription stress, and cellular ageing. Finally, GLTD was also identified by reanalysis of publicly available data of wild-type mice, rats and humans on high-protein diets, suggesting that increased dietary protein enhances GLTD and accelerates systemic ageing. Together, our findings have implications for nutritional guidelines for progeroid DNA-repair-deficient human syndromes, warrant the use of excessive protein intake for sustaining health, and suggests GLTD as a sensitive read-out of overall health and predictor of biological ageing.
Collapse
Affiliation(s)
- Ivar van Galen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
- Laboratory for Experimental Orthopedics, Maastricht University, Maastricht, Netherlands
| | - Maria B. Birkisdóttir
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Rutger A. Ozinga
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Renata M. C. Brandt
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sandra Imholz
- Centre for Health Protection, National Institute for Public Health and the Environment, (RIVM), Bilthoven, Netherlands
| | - Conny T. van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment, (RIVM), Bilthoven, Netherlands
| | | | - Kimberly Smit
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Yvonne M. A. Rijksen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Erwin Reiling
- Centre for Health Protection, National Institute for Public Health and the Environment, (RIVM), Bilthoven, Netherlands
| | - Harry van Steeg
- Centre for Health Protection, National Institute for Public Health and the Environment, (RIVM), Bilthoven, Netherlands
| | - Jan H. J. Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
- CECAD forschungszentrum, Köln, Germany
| | - Martijn E. T. Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, (RIVM), Bilthoven, Netherlands
| | - Wilbert P. Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
2
|
Cai S, Xue B, Li S, Wang X, Zeng X, Zhu Z, Fan X, Zou Y, Yu H, Qiao S, Zeng X. Methionine regulates maternal-fetal immune tolerance and endometrial receptivity by enhancing embryonic IL-5 secretion. Cell Rep 2025; 44:115291. [PMID: 39937648 DOI: 10.1016/j.celrep.2025.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/25/2024] [Accepted: 01/17/2025] [Indexed: 02/14/2025] Open
Abstract
Endometrial receptivity and maternal-fetal immune tolerance are two crucial processes for a successful pregnancy. However, the molecular mechanisms of nutrition involved are largely unexplored. Here, we showed that maternal methionine supply significantly improved pregnancy outcomes, which was closely related to interleukin-5 (IL-5) concentration. Mechanistically, methionine induced embryonic IL-5 secretion, which enhanced the conversion of CD4+ T cells to IL-5+ Th2 cells in the uterus, thereby improving maternal-fetal immune tolerance. Meanwhile, methionine-mediated IL-5 secretion activated the nuclear factor κB (NF-κB) pathway and enhanced integrin αvβ3 expression in endometrial cells, which improved endometrial receptivity. Further, methionine strongly influenced the DNA methylation and transcription levels of the transcription factor eomesodermin (Eomes), which bound directly to the IL-5 promoter region and inhibited IL-5 transcription. Methionine modulated IL-5 transcription, maternal-fetal immune tolerance, and endometrial receptivity via its effects on Eomes. This study reveals the crucial functions of methionine and IL-5 and offers a potential nutritional strategy for successful pregnancy.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Bangxin Xue
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xinyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Zhekun Zhu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xinyin Fan
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Yijin Zou
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China.
| |
Collapse
|
3
|
Cui Z, Dong Y, Sholl J, Lu J, Raubenheimer D. The Rhesus Macaque as an Animal Model for Human Nutrition: An Ecological-Evolutionary Perspective. Annu Rev Anim Biosci 2025; 13:441-464. [PMID: 39556489 DOI: 10.1146/annurev-animal-111523-102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Nutrition is a complex and contested area in biomedicine, which requires diverse evidence sources. Nonhuman primate models are considered an important biomedical research tool because of their biological similarities to humans, but they are typically used with little explicit consideration of their ecology and evolution. Using the rhesus macaque (RM), we consider the potential of nutritional ecology for enriching the use of primates as models for human nutrition. We introduce some relevant aspects of RM evolutionary and social ecology and discuss two examples where they have been used in biomedical research: obesity and aging. We next consider how insights from nutritional ecology can help inform and direct the use of RM as a biomedical model. We conclude by illustrating how conceptual tools might inform the use of RM as a model for human nutrition and extracting insights from RM that might be relevant to broader theoretical considerations around animal model systems.
Collapse
Affiliation(s)
- Zhenwei Cui
- Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, Henan, China
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Yunlong Dong
- Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, Henan, China
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Jonathan Sholl
- ImmunoConcept Lab, Université de Bordeaux, Collège Sciences de la Santé, CNRS UMR 5164, Bordeaux, France
| | - Jiqi Lu
- Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, Henan, China
| | - David Raubenheimer
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia;
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Wali JA, Ni D, Raubenheimer D, Simpson SJ. Macronutrient interactions and models of obesity: Insights from nutritional geometry. Bioessays 2025; 47:e2400071. [PMID: 39506509 DOI: 10.1002/bies.202400071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
The global obesity epidemic results from a complex interplay of genetic and environmental factors, with diet being a prominent modifiable element driving weight gain and adiposity. Although excess intake of energetic macronutrients is implicated in causing obesity, ongoing debate centers on whether sugar or fat or both are driving the rising obesity rates. This has led to competing models of obesity such as the "Carbohydrate Insulin Model", the "Energy Balance Model", and the "Fructose Survival Hypothesis". Conflicting evidence from studies designed to focus on individual energetic macronutrients or energy rather than macronutrient mixtures underlies this disagreement. Recent research in humans and animals employing the nutritional geometry framework (NGF) emphasizes the importance of considering interactions among dietary components. Protein interacts with carbohydrates, fats, and dietary energy density to influence both calorie intake ("protein leverage") and, directly and indirectly, metabolic physiology and adiposity. Consideration of these interactions can help to reconcile different models of obesity, and potentially cast new light on obesity interventions.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Senior AM, Raubenheimer D, Couteur DGL, Simpson SJ. The Geometric Framework for Nutrition and Its Application to Rodent Models. Annu Rev Anim Biosci 2025; 13:389-410. [PMID: 39546416 DOI: 10.1146/annurev-animal-111523-102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Rodents have been the primary model for mammalian nutritional physiology for decades. Despite an extensive body of literature, controversies remain around the effects of specific nutrients and total energy intake on several aspects of nutritional biology, even in this well-studied model. One approach that is helping to bring clarity to the field is the geometric framework for nutrition (GFN). The GFN is a multidimensional paradigm that can be used to conceptualize nutrition and nutritional effects, design experiments, and interpret results. To date, more than 30 publications have applied the GFN to data from rodent models of nutrition. Here we review the major conclusions from these studies. We pay particular attention to the effects of macronutrients on satiety, glucose metabolism, lifespan and the biology of aging, reproductive function, immune function, and the microbiome. We finish by highlighting several knowledge gaps that became evident upon reviewing this literature.
Collapse
Affiliation(s)
- Alistair M Senior
- Sydney Precision Data Science Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - David Raubenheimer
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - David G Le Couteur
- ANZAC Research Institute, The Concord Hospital, Concord, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - Stephen J Simpson
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| |
Collapse
|
6
|
Liang J, Mei J, Chen D, Xiao Z, Hu M, Wei S, Wang Z, Huang R, Li L, Ye T, Deng J, Liu Y, Wang Y, Zhang L, Yang Y, Huang Y. The role of Sertoli cell-derived miR-143-3p in male fertility declines with age. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102369. [PMID: 39640010 PMCID: PMC11617286 DOI: 10.1016/j.omtn.2024.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
As delayed parenthood becomes more prevalent, understanding age-related testosterone decline and its impact on male fertility has gained importance. However, molecular mechanisms concerning testicular aging remain largely undiscovered. Our study highlights that miR-143-3p, present in aging Sertoli cells (SCs), is loaded into extracellular vesicles (EVs), affecting Leydig cells (LCs) and germ cells, thus disrupting testicular tissue homeostasis and spermatogenesis. Intriguingly, in SCs, transforming growth factor-β signaling promotes miR-143 precursors transcription, increasing mature miR-143-3p levels. This inhibits Smurf2, activating Smad2, and further enhancing miR-143-3p accumulation. EVs transporting miR-143-3p, originating from SCs, contribute to the age-related decline of testosterone and male fertility by targeting the luteinizing hormone receptor and retinoic acid receptor. Diminishing endogenous miR-143-3p in SCs postpones testis aging, preserving and prolonging male fertility. Thus, our study identified miR-143-3p as a key regulator of testicular function and fertility, revealing miR-143-3p as a potential therapeutic target for male abnormal sexual and reproductive function.
Collapse
Affiliation(s)
- Jinlian Liang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jiaxin Mei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Derong Chen
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ziyan Xiao
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Meirong Hu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Siying Wei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jingxian Deng
- Department of Pharmacology, Jinan University, Guangzhou 510632, China
| | - Yuan Liu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yuxin Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Lei Zhang
- Guangdong Provincial Institute of Biological Products and Materia Medica, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| |
Collapse
|
7
|
Balough JL, Dipali SS, Velez K, Kumar TR, Duncan FE. Hallmarks of female reproductive aging in physiologic aging mice. NATURE AGING 2024; 4:1711-1730. [PMID: 39672896 DOI: 10.1038/s43587-024-00769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
The female reproductive axis is one of the first organ systems to age, which has consequences for fertility and overall health. Here, we provide a comprehensive overview of the biological process of female reproductive aging across reproductive organs, tissues and cells based on research with widely used physiologic aging mouse models, and describe the mechanisms that underpin these phenotypes. Overall, aging is associated with dysregulation of the hypothalamic-pituitary-ovarian axis, perturbations of the ovarian stroma, reduced egg quantity and quality, and altered uterine morphology and function that contributes to reduced capacity for fertilization and impaired embryo development. Ultimately, these age-related phenotypes contribute to altered pregnancy outcomes and adverse consequences in offspring. Conserved mechanisms of aging, as well as those unique to the reproductive system, underlie these phenotypes. The knowledge of such mechanisms will lead to development of therapeutics to extend female reproductive longevity and support endocrine function and overall health.
Collapse
Affiliation(s)
- Julia L Balough
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| | - Shweta S Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca E Duncan
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA.
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
8
|
Yoshida N, Arikawa E, Kanazawa H, Kuniyoshi Y. Modeling long-term nutritional behaviors using deep homeostatic reinforcement learning. PNAS NEXUS 2024; 3:pgae540. [PMID: 39670260 PMCID: PMC11635831 DOI: 10.1093/pnasnexus/pgae540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
The continual generation of behaviors that satisfy all conflicting demands that cannot be satisfied simultaneously, is a situation that is seen naturally in autonomous agents such as long-term operating household robots, and in animals in the natural world. Homeostatic reinforcement learning (homeostatic RL) is known as a bio-inspired framework that achieves such multiobjective control through behavioral optimization. Homeostatic RL achieves autonomous behavior optimization using only internal body information in complex environmental systems, including continuous motor control. However, it is still unknown whether the resulting behaviors actually have the similar long-term properties as real animals. To clarify this issue, this study focuses on the balancing of multiple nutrients in animal foraging as a situation in which such multiobjective control is achieved in animals in the natural world. We then focus on the nutritional geometry framework, which can quantitatively handle the long-term characteristics of foraging strategies for multiple nutrients in nutritional biology, and construct a similar verification environment to show experimentally that homeostatic RL agents exhibit long-term foraging characteristics seen in animals in nature. Furthermore, numerical simulation results show that the long-term foraging characteristics of the agent can be controlled by changing the weighting for the agent's multiobjective motivation. These results show that the long-term behavioral characteristics of homeostatic RL agents that perform behavioral emergence at the motor control level can be predicted and designed based on the internal dynamics of the body and the weighting of motivation, which change in real time.
Collapse
Affiliation(s)
- Naoto Yoshida
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
- Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Etsushi Arikawa
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hoshinori Kanazawa
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
- Next Generation Artificial Intelligence Research Center, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yasuo Kuniyoshi
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
- Next Generation Artificial Intelligence Research Center, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Gao H, Ying Y, Sun J, Huang Y, Li X, Zhang D. Genetically Determined Plasma Docosahexaenoic Acid Showed a Causal Association with Female Reproductive Longevity-Related Phenotype: A Mendelian Randomization Study. Nutrients 2024; 16:4103. [PMID: 39683497 DOI: 10.3390/nu16234103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Female reproductive aging remains irreversible. More evidence is needed on how polyunsaturated fatty acids (PUFAs) affect the female reproductive lifespan. OBJECTIVES To identify and validate specific PUFAs that can influence the timing of menarche and menopause in women. METHODS We utilized a two-sample Mendelian randomization (MR) framework to evaluate the causal relationships between various PUFAs and female reproductive longevity, defined by age at menarche (AAM) and age at natural menopause (ANM). Our analyses leveraged summary statistics from four genome-wide association studies (GWASs) on the plasma concentrations of 10 plasma PUFAs, including 8866 to 121,633 European individuals and 1361 East Asian individuals. Large-scale GWASs for reproductive traits provided the genetic data of AAM and ANM from over 202,323 European females and 43,861 East Asian females. Causal effects were estimated by beta coefficients, representing, for each increase in the standard deviation (SD) of plasma PUFA concentration, the yearly increase in AAM or ANM. Replications, meta-analyses, and cross-ancestry effects were assessed to validate the inference. CONCLUSIONS Higher plasma DHA was identified to be associated with delayed natural menopause without affecting menarche, offering a potential intervention target for extending reproductive longevity.
Collapse
Affiliation(s)
- Huajing Gao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yuewen Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jing Sun
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang Provincial Birth Defect Control and Prevention Research Center, Hangzhou 310006, China
| |
Collapse
|
10
|
Liu C, Tian N, Chang P, Zhang W. Mating reconciles fitness and fecundity by switching diet preference in flies. Nat Commun 2024; 15:9912. [PMID: 39548088 PMCID: PMC11568147 DOI: 10.1038/s41467-024-54369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Protein-rich diets shorten lifespan but increase fecundity in many organisms. Animals actively adjust their feeding behavior to meet their nutritional requirements. However, the neural mechanisms underlying the dynamic regulation of protein consumption remain unclear. Here we find that both sexes of fruit flies exhibit a preference for protein food before mating to prepare for reproduction. Mated female flies display an increased appetite for yeast to benefit their offspring, albeit at the cost of stress resistance and lifespan. In contrast, males show a momentarily reduced yeast appetite after mating likely to restore their fitness. This mating state-dependent switch between sexes is mediated by a sexually dimorphic neural circuit labeled with leucokinin in the anterior brain. Furthermore, intermittent yeast consumption benefits both the lifespan and fecundity of males, while maximizing female fecundity without compromising lifespan.
Collapse
Affiliation(s)
- Chenxi Liu
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Ning Tian
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Pei Chang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Selman C. The dietary exposome: a brief history of diet, longevity, and age-related health in rodents. Clin Sci (Lond) 2024; 138:1343-1356. [PMID: 39444221 DOI: 10.1042/cs20241248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
It has been recognized for over a century that feeding animals less food than they would normally eat increases lifespan and leads to broad-spectrum improvements in age-related health. A significant number of studies have subsequently shown that restricting total protein, branched chain amino acids or individual amino acids in the diet, as well as ketogenic diets, can elicit similar effects. In addition, it is becoming clear that fasting protocols, such as time-restricted-feeding or every-other-day feeding, without changes in overall energy intake can also profoundly affect rodent longevity and late-life health. In this review, I will provide a historical perspective on various dietary interventions that modulate ageing in rodents and discuss how this understanding of the dietary exposome may help identify future strategies to maintain late-life health and wellbeing in humans.
Collapse
Affiliation(s)
- Colin Selman
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom, G12 8QQ
| |
Collapse
|
12
|
Felton AM, Spitzer R, Raubenheimer D, Hedwall PO, Felton A, Nichols RV, O'Connell BL, Malmsten J, Löfmarck E, Wam HK. Increased intake of tree forage by moose is associated with intake of crops rich in nonstructural carbohydrates. Ecology 2024; 105:e4377. [PMID: 39046431 DOI: 10.1002/ecy.4377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/17/2024] [Indexed: 07/25/2024]
Abstract
Animals representing a wide range of taxonomic groups are known to select specific food combinations to achieve a nutritionally balanced diet. The nutrient balancing hypothesis suggests that, when given the opportunity, animals select foods to achieve a particular target nutrient balance, and that balancing occurs between meals and between days. For wild ruminants who inhabit landscapes dominated by human land use, nutritionally imbalanced diets can result from ingesting agricultural crops rich in starch and sugar (nonstructural carbohydrates [NCs]), which can be provided to them by people as supplementary feeds. Here, we test the nutrient balancing hypothesis by assessing potential effects that the ingestion of such crops by Alces alces (moose) may have on forage intake. We predicted that moose compensate for an imbalanced intake of excess NC by selecting tree forage with macro-nutritional content better suited for their rumen microbiome during wintertime. We applied DNA metabarcoding to identify plants in fecal and rumen content from the same moose during winter in Sweden. We found that the concentration of NC-rich crops in feces predicted the presence of Picea abies (Norway spruce) in rumen samples. The finding is consistent with the prediction that moose use tree forage as a nutritionally complementary resource to balance their intake of NC-rich foods, and that they ingested P. abies in particular (normally a forage rarely eaten by moose) because it was the most readily available tree. Our finding sheds new light on the foraging behavior of a model species in herbivore ecology, and on how habitat alterations by humans may change the behavior of wildlife.
Collapse
Affiliation(s)
- Annika M Felton
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Robert Spitzer
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David Raubenheimer
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Per-Ola Hedwall
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Adam Felton
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ruth V Nichols
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Brendan L O'Connell
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Jonas Malmsten
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Erik Löfmarck
- School of Humanities, Örebro University School of Business, Örebro, Sweden
| | - Hilde K Wam
- Division of Forestry and Forest Resources, NIBIO, Ås, Norway
| |
Collapse
|
13
|
Yu Q, Wang H, Qin L, Wang T, Zhang Y, Sun Y. Interpretable machine learning reveals microbiome signatures strongly associated with dairy cow milk urea nitrogen. iScience 2024; 27:109955. [PMID: 38840841 PMCID: PMC11152649 DOI: 10.1016/j.isci.2024.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/10/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
The gut microbiome plays an important role in the healthy and efficient farming of dairy cows. However, high-dimensional microbial information is difficult to interpret in a simplified manner. We collected fecal samples from 161 cows and performed 16S amplicon sequencing. We developed an interpretable machine learning framework to classify individuals based on their milk urea nitrogen (MUN) concentrations. In this framework, we address the challenge of handling high-dimensional microbial data imbalances and identify 9 microorganisms strongly correlated with MUN. We introduce the Shapley Additive Explanations (SHAP) method to provide insights into the machine learning predictions. The results of the study showed that the performance of the machine learning model improved (accuracy = 72.7%) after feature selection on high-dimensional data. Among the 9 microorganisms, g__Firmicutes_unclassified had the greatest impact in the model. This study provides a reference for precision animal husbandry.
Collapse
Affiliation(s)
- Qingyuan Yu
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin 150030, China
| | - Hui Wang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin 150030, China
| | - Linqing Qin
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin 150030, China
| | - Tianlin Wang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin 150030, China
| | - Yonggen Zhang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin 150030, China
| | - Yukun Sun
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin 150030, China
| |
Collapse
|
14
|
Bradshaw T, Simmons C, Ott RK, Armstrong AR. Ras/MAPK signaling mediates adipose tissue control of ovarian germline survival and ovulation in Drosophila melanogaster. Dev Biol 2024; 510:17-28. [PMID: 38423203 DOI: 10.1016/j.ydbio.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
From insects to humans, oogenesis is tightly linked to nutritional input, yet little is known about how whole organism physiology matches dietary changes with oocyte development. Considering that diet-induced adipose tissue dysfunction is associated with an increased risk for fertility problems, and other obesity-associated pathophysiologies, it is critical to decipher the cellular and molecular mechanisms linking adipose nutrient sensing to remote control of the ovary and other tissues. Our previous studies in Drosophila melanogaster have shown that amino acid sensing, via the amino acid response pathway and mTOR-mediated signaling function within adipocytes to control germline stem cell maintenance and ovulation, respectively. Additionally, we demonstrated that insulin/insulin-like growth factor signaling within adipocytes employs distinct effector axes, PI3K/Akt1-dependent and -independent, downstream of insulin receptor activity to mediate fat-to-ovary communication. Here, we report that the Ras/MAPK signaling axis functions in adipocytes to regulate early germline cyst survival and ovulation of mature oocytes but is not important for germline stem cell maintenance or the progression through vitellogenesis. Thus, these studies uncover the complexity of signaling pathway activity that mediates inter-organ communication.
Collapse
Affiliation(s)
- Tancia Bradshaw
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Chad Simmons
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Rachael K Ott
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | | |
Collapse
|
15
|
Balestrieri A, Gigliotti S, Caniglia R, Velli E, Zambuto F, De Giorgi E, Mucci N, Tremolada P, Gazzola A. Nutritional ecology of a prototypical generalist predator, the red fox (Vulpes vulpes). Sci Rep 2024; 14:7918. [PMID: 38575633 PMCID: PMC10995161 DOI: 10.1038/s41598-024-58711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024] Open
Abstract
Generalist species, which exploit a wide range of food resources, are expected to be able to combine available resources as to attain their specific macronutrient ratio (percentage of caloric intake of protein, lipids and carbohydrates). Among mammalian predators, the red fox Vulpes vulpes is a widespread, opportunistic forager: its diet has been largely studied, outlining wide variation according to geographic and climatic factors. We aimed to check if, throughout the species' European range, diets vary widely in macronutrient composition or foxes can combine complementary foods to gain the same nutrient intake. First, we assessed fox's intake target in the framework of nutritional geometry. Secondly, we aimed to highlight the effects of unbalanced diets on fox density, which was assumed as a proxy for Darwinian fitness, as assessed in five areas of the western Italian Alps. Unexpectedly, the target macronutrient ratio of the fox (52.4% protein-, 38.7% lipid- and 8.9% carbohydrate energy) was consistent with that of hypercarnivores, such as wolves and felids, except for carbohydrate intakes in urban and rural habitats. The inverse relation between density and the deviation of observed macronutrient ratios from the intake target suggests that fox capability of surviving in a wide range of habitats may not be exempt from fitness costs and that nutrient availability should be regarded among the biotic factors affecting animal abundance and distribution.
Collapse
Affiliation(s)
- A Balestrieri
- Dipartimento di Scienze e Politiche Ambientali, Università di Milano, via Celoria 26, 20133, Milan, Italy.
| | - S Gigliotti
- Dipartimento di Biologia, Università di Padova, via Ugo Bassi 58/B, 35131, Padua, Italy
- Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, 27100, Pavia, Italy
| | - R Caniglia
- Area per la Genetica della Conservazione, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Ca' Fornacetta 9, Ozzano Emilia, 40064, Bologna, Italy
| | - E Velli
- Area per la Genetica della Conservazione, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Ca' Fornacetta 9, Ozzano Emilia, 40064, Bologna, Italy
| | - F Zambuto
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, via C. Belgioioso 173, 20161, Milano, Italy
| | - E De Giorgi
- Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, 27100, Pavia, Italy
| | - N Mucci
- Area per la Genetica della Conservazione, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Ca' Fornacetta 9, Ozzano Emilia, 40064, Bologna, Italy
| | - P Tremolada
- Dipartimento di Scienze e Politiche Ambientali, Università di Milano, via Celoria 26, 20133, Milan, Italy
| | - A Gazzola
- Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, 27100, Pavia, Italy
| |
Collapse
|
16
|
Farris KM, Senior AM, Sobreira DR, Mitchell RM, Weber ZT, Ingerslev LR, Barrès R, Simpson SJ, Crean AJ, Nobrega MA. Dietary macronutrient composition impacts gene regulation in adipose tissue. Commun Biol 2024; 7:194. [PMID: 38365885 PMCID: PMC10873408 DOI: 10.1038/s42003-024-05876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Diet is a key lifestyle component that influences metabolic health through several factors, including total energy intake and macronutrient composition. While the impact of caloric intake on gene expression and physiological phenomena in various tissues is well described, the influence of dietary macronutrient composition on these parameters is less well studied. Here, we use the Nutritional Geometry framework to investigate the role of macronutrient composition on metabolic function and gene regulation in adipose tissue. Using ten isocaloric diets that vary systematically in their proportion of energy from fat, protein, and carbohydrates, we find that gene expression and splicing are highly responsive to macronutrient composition, with distinct sets of genes regulated by different macronutrient interactions. Specifically, the expression of many genes associated with Bardet-Biedl syndrome is responsive to dietary fat content. Splicing and expression changes occur in largely separate gene sets, highlighting distinct mechanisms by which dietary composition influences the transcriptome and emphasizing the importance of considering splicing changes to more fully capture the gene regulation response to environmental changes such as diet. Our study provides insight into the gene regulation plasticity of adipose tissue in response to macronutrient composition, beyond the already well-characterized response to caloric intake.
Collapse
Affiliation(s)
- Kathryn M Farris
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Débora R Sobreira
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Robert M Mitchell
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Zachary T Weber
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Lars R Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark.
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur & Centre National pour la Recherche Scientifique (CNRS), Valbonne, 06560, France.
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Angela J Crean
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Marcelo A Nobrega
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
17
|
Wu T, Baatar D, O' Connor AE, O'Bryan MK, Stringer JM, Hutt KJ, Malimige Aponso M, Monro K, Luo J, Zhu Y, Ernst A, Swindells EOK, Alesi LR, Tho Tony Nguyen N, Piper MDW, Bennett LE. Exome-informed formulations of food proteins enhance body growth and feed conversion efficiency in ad libitum-fed mice. Food Res Int 2024; 176:113819. [PMID: 38163720 DOI: 10.1016/j.foodres.2023.113819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Meeting requirements for dietary proteins, especially of essential amino acids (EAAs), is critical for the life-long health of living organisms. However, defining EAA targets for preparing biologically-matched nutrition that satisfies metabolic requirements for protein remains challenging. Previous research has shown the advantages of 'exome matching' in representing the specific requirement of dietary AAs, where the target dietary AA profile was derived from in silico translation of the genome of an organism, specifically responsible for protein expression (the 'exome'). However, past studies have assessed these effects in only one sex, for few parameters (body mass and composition), and have used purified diets in which protein is supplied as a mixture of individual AAs. Here, for the first time, we utilise a computational method to guide the formulation of custom protein blends and test if exome matching can be achieved at the intact protein level, through blending standard protein ingredients, ultimately leading to optimal growth, longevity and reproductive function. Mice were provided ad libitum (ad lib) access to one of the four iso-energetic protein-limited diets, two matched and two mis-matched to the mouse exome target, and fed at a fixed protein energy level of 6.2%. During or following 13-weeks of feeding, the food intake, body growth, composition and reproductive functions were measured. Compared to the two mis-matched diets, male and female animals on the exome-matched diet with protein digestibility correction applied, exhibited significantly improved growth rates and final body mass. The feed conversion efficiency in the same diet was also increased by 62% and 40% over the worst diets for males and females, respectively. Male, not female, exhibited higher accretion of lean body mass with the matched, digestibility-corrected diet. All reproductive function measures in both sexes were comparable among diets, with the exception of testicular daily sperm production in males, which was higher in the two matched diets versus the mis-matched diets. The results collectively demonstrate the pronounced advantages of exome-matching in supporting body growth and improving feed conversion efficiency in both sexes. However, the potential impact of this approach in enhancing fertility needs further investigation.
Collapse
Affiliation(s)
- Tong Wu
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Davaatseren Baatar
- School of Mathematics, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Anne E O' Connor
- School of BioScience and the Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Moira K O'Bryan
- School of BioScience and the Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Jessica M Stringer
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Karla J Hutt
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Minoli Malimige Aponso
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Keyne Monro
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Jiaqiang Luo
- School of Agriculture and Food, The University of Melbourne, Parkville, Australia
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Shanxi, China
| | - Andreas Ernst
- School of Mathematics, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Elyse O K Swindells
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Lauren R Alesi
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ngoc Tho Tony Nguyen
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew D W Piper
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Louise E Bennett
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
18
|
Schooling CM, Kwok MK, Zhao JV. The relationship of fatty acids to ischaemic heart disease and lifespan in men and women using Mendelian randomization. Int J Epidemiol 2023; 52:1845-1852. [PMID: 37536998 DOI: 10.1093/ije/dyad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Observationally, polyunsaturated fatty acids (PUFAs) have health benefits compared with saturated fatty acids (SFAs); randomized controlled trials suggest fewer benefits. We used uni- and multi-variable Mendelian randomization to assess the association of major fatty acids and their sub-species with ischaemic heart disease (IHD) overall and sex-specifically and with lifespan sex-specifically, given differing lifespan by sex. METHODS We obtained strong (P <5x10-8), independent (r2<0.001) genetic predictors of fatty acids from genome-wide association studies (GWAS) in a random subset of 114 999 UK Biobank participants. We applied these genetic predictors to the Cardiogram IHD GWAS (cases = 60 801, controls = 123 504) and to the Finngen consortium GWAS (cases = 31 640, controls = 187 152) for replication and to the UK Biobank for sex-specific IHD and for lifespan based on parental attained age (fathers = 415 311, mothers = 412 937). We used sensitivity analysis and assessed sex differences where applicable. RESULTS PUFAs were associated with IHD [odds ratio 1.23, 95% confidence interval (CI) 1.05 to 1.44] and lifespan in men (-0.76 years, 95% CI -1.34 to -0.17) but not women (0.20, 95% CI -0.32 to 0.70). Findings were similar for omega-6 fatty acids and linoleic acid. Independent associations of SFAs, mono-unsaturated fatty acids or omega-3 fatty acids with IHD overall or lifespan in men and women were limited. CONCLUSIONS PUFAs, via specific subspecies, may contribute to disparities in lifespan by sex. Sex-specific dietary advice might be a start towards personalized public health and addressing inequities.
Collapse
Affiliation(s)
- C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- City University of New York, Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Man Ki Kwok
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Goud PT, Goud AP, Camp OG, Bai D, Gonik B, Diamond MP, Abu-Soud HM. Chronological age enhances aging phenomena and protein nitration in oocyte. Front Endocrinol (Lausanne) 2023; 14:1251102. [PMID: 38149097 PMCID: PMC10749940 DOI: 10.3389/fendo.2023.1251102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Background The average age of childbearing has increased over the years contributing to infertility, miscarriages, and chromosomal abnormalities largely invoked by an age-related decline in oocyte quality. In this study, we investigate the role of nitric oxide (NO) insufficiency and protein nitration in oocyte chronological aging. Methods Mouse oocytes were retrieved from young breeders (YB, 8-14 weeks [w]), retired breeders (RB, 48-52w) and old animals (OA, 80-84w) at 13.5 and 17 hours after ovulation trigger. They were assessed for zona pellucida dissolution time (ZPDT); ooplasmic microtubule dynamics (OMD); cortical granule (CG) status and spindle morphology (SM), as markers of oocyte quality. Sibling oocytes from RB were exposed to NO supplementation and assessed for aging phenomena (AP). All oocyte cumulus complexes were subjected to fluorescence nitrotyrosine (NT) immunocytochemistry and confocal microscopy to assess morphology and protein nitration. Results At 13.5 h from hCG trigger, oocytes from RB compared to YB had significantly increased ZPDT (37.8 ± 11.9 vs 22.1 ± 4.1 seconds [s]), OMD (46.9 vs 0%), CG loss (39.4 vs 0%), and decreased normal SM (30.3 vs 81.3%), indicating premature AP that worsened among oocytes from RB at 17 hours post-hCG trigger. When exposed to SNAP, RB AP significantly decreased (ZPDT: 35.1 ± 5.5 vs 46.3 ± 8.9s, OMD: 13.3 vs 75.0% and CG loss: 50.0 vs 93.3%) and SM improved (80.0 vs 14.3%). The incidence of NT positivity was significantly higher in cumulus cells (13.5 h, 46.7 ± 4.5 vs 3.4 ± 0.7%; 17 h, 82.2 ± 2.9 vs 23.3 ± 3.6%) and oocytes (13.5 h, 57.1 vs 0%; 17 h, 100.0 vs 55.5%) from RB compared to YB. Oocytes retrieved decreased with advancing age (29.8 ± 4.1 per animal in the YB group compared to 10.2 ± 2.1 in RB and 4.0 ± 1.6 in OA). Oocytes from OA displayed increased ZPDT, major CG loss, increased OMD and spindle abnormalities, as well as pronuclear formation, confirming spontaneous meiosis to interphase transition. Conclusions Oocytes undergo zona pellucida hardening, altered spindle and ooplasmic microtubules, and premature cortical granule release, indicative of spontaneous meiosis-interphase transition, as a function of chronological aging. These changes are also associated with NO insufficiency and protein nitration and may be alleviated through supplementation with an NO-donor.
Collapse
Affiliation(s)
- Pravin T. Goud
- Laurel Fertility Center, San Francisco, CA, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of California Davis Medical School, Sacramento, CA, United States
- Department of Obstetrics and Gynecology, University of California Davis Medical School, Sacramento, CA, United States
| | - Anuradha P. Goud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Olivia G. Camp
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - David Bai
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Bernard Gonik
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Michael P. Diamond
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
20
|
Brown EB, Zhang J, Lloyd E, Lanzon E, Botero V, Tomchik S, Keene AC. Neurofibromin 1 mediates sleep depth in Drosophila. PLoS Genet 2023; 19:e1011049. [PMID: 38091360 PMCID: PMC10763969 DOI: 10.1371/journal.pgen.1011049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 11/03/2023] [Indexed: 01/04/2024] Open
Abstract
Neural regulation of sleep and metabolic homeostasis are critical in many aspects of human health. Despite extensive epidemiological evidence linking sleep dysregulation with obesity, diabetes, and metabolic syndrome, little is known about the neural and molecular basis for the integration of sleep and metabolic function. The RAS GTPase-activating gene Neurofibromin (Nf1) has been implicated in the regulation of sleep and metabolic rate, raising the possibility that it serves to integrate these processes, but the effects on sleep consolidation and physiology remain poorly understood. A key hallmark of sleep depth in mammals and flies is a reduction in metabolic rate during sleep. Here, we examine multiple measures of sleep quality to determine the effects of Nf1 on sleep-dependent changes in arousal threshold and metabolic rate. Flies lacking Nf1 fail to suppress metabolic rate during sleep, raising the possibility that loss of Nf1 prevents flies from integrating sleep and metabolic state. Sleep of Nf1 mutant flies is fragmented with a reduced arousal threshold in Nf1 mutants, suggesting Nf1 flies fail to enter deep sleep. The effects of Nf1 on sleep can be localized to a subset of neurons expressing the GABAA receptor Rdl. Sleep loss has been associated with changes in gut homeostasis in flies and mammals. Selective knockdown of Nf1 in Rdl-expressing neurons within the nervous system increases gut permeability and reactive oxygen species (ROS) in the gut, raising the possibility that loss of sleep quality contributes to gut dysregulation. Together, these findings suggest Nf1 acts in GABA-sensitive neurons to modulate sleep depth in Drosophila.
Collapse
Affiliation(s)
- Elizabeth B. Brown
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Jiwei Zhang
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Evan Lloyd
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Elizabeth Lanzon
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Seth Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
21
|
Yuan R, Hascup E, Hascup K, Bartke A. Relationships among Development, Growth, Body Size, Reproduction, Aging, and Longevity - Trade-Offs and Pace-Of-Life. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1692-1703. [PMID: 38105191 PMCID: PMC10792675 DOI: 10.1134/s0006297923110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/19/2023]
Abstract
Relationships of growth, metabolism, reproduction, and body size to the biological process of aging and longevity have been studied for decades and various unifying "theories of aging" have been proposed to account for the observed associations. In general, fast development, early sexual maturation leading to early reproductive effort, as well as production of many offspring, have been linked to shorter lifespans. The relationship of adult body size to longevity includes a remarkable contrast between the positive correlation in comparisons between different species and the negative correlation seen in comparisons of individuals within the same species. We now propose that longevity and presumably also the rate of aging are related to the "pace-of-life." A slow pace-of-life including slow growth, late sexual maturation, and a small number of offspring, predicts slow aging and long life. The fast pace of life (rapid growth, early sexual maturation, and major reproductive effort) is associated with faster aging and shorter life, presumably due to underlying trade-offs. The proposed relationships between the pace-of-life and longevity apply to both inter- and intra-species comparisons as well as to dietary, genetic, and pharmacological interventions that extend life and to evidence for early life programming of the trajectory of aging. Although available evidence suggests the causality of at least some of these associations, much further work will be needed to verify this interpretation and to identify mechanisms that are responsible.
Collapse
Affiliation(s)
- Rong Yuan
- Southern Illinois University School of Medicine, Department of Internal Medicine, Springfield, IL 19628, USA.
| | - Erin Hascup
- Southern Illinois University School of Medicine, Department of Medical, Microbial, Cellular Immunology and Biology, Springfield, IL 19628, USA.
| | - Kevin Hascup
- Southern Illinois University School of Medicine, Department of Medical, Microbial, Cellular Immunology and Biology, Springfield, IL 19628, USA.
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Andrzej Bartke
- Southern Illinois University School of Medicine, Department of Internal Medicine, Springfield, IL 19628, USA.
| |
Collapse
|
22
|
Simmons LW, Chan HL. Male responses to sperm competition risk associated with increased macronutrient intake and reduced lifespan. Biol Lett 2023; 19:20230336. [PMID: 37875160 PMCID: PMC10597675 DOI: 10.1098/rsbl.2023.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Increased expenditure on the ejaculate is a taxonomically widespread male response to sperm competition. Increased ejaculate expenditure is assumed to come at a cost to future reproduction, otherwise males should always invest maximally. However, the life-history costs of strategic ejaculation are not well documented. Macronutrient intake is known to affect the trade-off between reproduction and lifespan. Intakes of protein and carbohydrate that maximize reproduction often differ from those that maximize lifespan. Here, we asked whether strategic expenditure on the ejaculate by male crickets, Teleogryllus oceanicus, is mediated by macronutrient intake, and whether it comes at a cost of reduced lifespan. Males were exposed to rival song throughout their lifespan or were held in a silent non-competitive environment. Males exposed to song had a higher intake of both protein and carbohydrate, they reached adulthood sooner, produced ejaculates of higher quality, and died sooner than males living in a silent environment. Our findings provide a rare example of both the mechanisms and life-history costs associated with strategic ejaculation.
Collapse
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Hwei-Ling Chan
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
23
|
Firman RC, Ellis CM, Thorn S, Mawson PR. Parental effects on offspring sex ratio in the Numbat ( Myrmecobius fasciatus): does captivity influence paternal sex allocation? J Mammal 2023; 104:1036-1046. [PMID: 38033358 PMCID: PMC10682968 DOI: 10.1093/jmammal/gyad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 06/03/2023] [Indexed: 12/02/2023] Open
Abstract
Sex allocation theories predict that under different ecological conditions the production of sons and daughters will affect parental fitness differently. Skewed offspring sex ratios often occur under captive conditions where individuals are exposed to nutritional and social conditions that differ from nature. Here, we analyzed 29 years of offspring sex ratio data from a captive population of an endangered marsupial, the Numbat (Myrmecobius fasciatus). We partitioned variation in offspring sex ratio based on parental origin (captive- vs. wild-bred), parental weight, maternal age, and maternal reproductive history. Our analyses revealed no effect of parental weight or maternal origin on offspring sex ratio-however, there was a significant effect of paternal origin. Data visualization indicated that captive-bred males tended to produce male-biased litters. We discuss the result in relation to recent studies that have shown that male mammals have the capacity to be arbiters of sex allocation and highlight candidate mechanisms, but consider it with caution due to the small sample size from which the result was derived. We performed a population viability analysis (PVA) to explore the potential impact of a sex ratio skew on the sustainability of the captive Numbat population under hypothetical scenarios. Our PVA revealed that supplementation with wild individuals is critical to the persistence of the captive Numbat population and that a biased sex ratio will lead to extinction of the captive colony under certain conditions. Overall, our study demonstrates that covert sex ratio skews can persist undetected in captive populations, which have the potential to become impactful and compromise population sustainability under changed management processes.
Collapse
Affiliation(s)
- Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
| | - Connor M Ellis
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
| | - Sian Thorn
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
| | - Peter R Mawson
- School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
- Perth Zoo, Department of Biodiversity, Conservation and Attractions, 20 Labouchere Road, South Perth, Western Australia 6151, Australia
| |
Collapse
|
24
|
Kondo Y, Aoki H, Masuda M, Nishi H, Noda Y, Hakuno F, Takahashi SI, Chiba T, Ishigami A. Moderate protein intake percentage in mice for maintaining metabolic health during approach to old age. GeroScience 2023; 45:2707-2726. [PMID: 37118349 PMCID: PMC10651611 DOI: 10.1007/s11357-023-00797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Nutritional requirements for maintaining metabolic health may vary with each life stage, such as young, middle, and old age. To investigate the appropriate ratio of nutrients, particularly proteins, for maintaining metabolic health while approaching old age, young (6-month-old) and middle-aged (16-month-old) mice were fed isocaloric diets with varying protein percentages (5%, 15%, 25%, 35%, and 45% by calorie ratio) for two months. The low-protein diet developed mild fatty liver, with middle-aged mice showing more lipids than young mice, whereas the moderate-protein diet suppressed lipid contents and lowered the levels of blood glucose and lipids. Self-organizing map (SOM) analysis revealed that plasma amino acid profiles differed depending on age and difference in protein diet and were associated with hepatic triglyceride and cholesterol levels. Results indicate that the moderate protein intake percentages (25% and 35%) are required for maintaining metabolic health in middle-aged mice, which is similar to that in young mice.
Collapse
Affiliation(s)
- Yoshitaka Kondo
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Hitoshi Aoki
- Research and Development Division, Nichirei Foods Inc, Chiba, 261-0002, Japan
| | - Masato Masuda
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroki Nishi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Yoshihiro Noda
- Department of Animal Facility, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
25
|
Zimerman J, Niño OMS, da Costa CS, Zanol JF, Comério M, da Gama de Souza LN, Miranda-Alves L, Miranda RA, Lisboa PC, Camilo TA, Rorato R, Alves GA, Frazão R, Zomer HD, Freitas-Lima LC, Graceli JB. Subacute high-refined carbohydrate diet leads to abnormal reproductive control of the hypothalamic-pituitary axis in female rats. Reprod Toxicol 2023; 119:108410. [PMID: 37211340 DOI: 10.1016/j.reprotox.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
We previously reported that female rats placed on a diet containing refined carbohydrates (HCD) resulted in obesity and reproductive abnormalities, such as high serum LH concentration and abnormal ovarian function. However, the impacts at the hypothalamic-pituitary (HP) function, specifically regarding pathways linked to reproductive axis modulation are unknown. In this study, we assessed whether subacute feeding with HCD results in abnormal reproductive control in the HP axis. Female rats were fed with HCD for 15 days and reproductive HP axis morphophysiology was assessed. HCD reduced hypothalamic mRNA expression (Kiss1, Lepr, and Amhr2) and increased pituitary LHβ+ cells. These changes likely contribute to the increase in serum LH concentration observed in HCD. Blunted estrogen negative feedback was observed in HCD, with increased kisspeptin protein expression in the arcuate nucleus of the hypothalamus (ARH), lower LHβ+ cells and LH concentration in ovariectomized (OVX)+HCD rats. Thus, these data suggest that HCD feeding led to female abnormal reproductive control of HP axis.
Collapse
Affiliation(s)
- Jeanini Zimerman
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Oscar M S Niño
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil; Faculty of Human Sciences and Education, Universidad de los Llanos, Villavicencio, Meta, Colombia
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jordana F Zanol
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Milena Comério
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, UFRJ, RJ, Brazil
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patrícia C Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Tays A Camilo
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Rodrigo Rorato
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Guilherme Andrade Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Helena D Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | | | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
26
|
Klatt KC, Bass K, Speakman JR, Hall KD. Chowing down: diet considerations in rodent models of metabolic disease. LIFE METABOLISM 2023; 2:load013. [PMID: 37485302 PMCID: PMC10361708 DOI: 10.1093/lifemeta/load013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 07/25/2023]
Abstract
Diet plays a substantial role in the etiology, progression, and treatment of chronic disease and is best considered as a multifaceted set of modifiable input variables with pleiotropic effects on a variety of biological pathways spanning multiple organ systems. This brief review discusses key issues related to the design and conduct of diet interventions in rodent models of metabolic disease and their implications for interpreting experiments. We also make specific recommendations to improve rodent diet studies to help better understand the role of diet on metabolic physiology and thereby improve our understanding of metabolic disease.
Collapse
Affiliation(s)
- Kevin C Klatt
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, United States
| | - Kevin Bass
- Garrison Institute of Aging, Texas Tech University Health Science Center, Lubbock, TX 79430, United States
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
27
|
Crean AJ, Afrin S, Niranjan H, Pulpitel TJ, Ahmad G, Senior AM, Freire T, Mackay F, Nobrega MA, Barrès R, Simpson SJ, Pini T. Male reproductive traits are differentially affected by dietary macronutrient balance but unrelated to adiposity. Nat Commun 2023; 14:2566. [PMID: 37142562 PMCID: PMC10160019 DOI: 10.1038/s41467-023-38314-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Dietary factors influence male reproductive function in both experimental and epidemiological studies. However, there are currently no specific dietary guidelines for male preconception health. Here, we use the Nutritional Geometry framework to examine the effects of dietary macronutrient balance on reproductive traits in C57BL/6 J male mice. Dietary effects are observed in a range of morphological, testicular and spermatozoa traits, although the relative influence of protein, fat, carbohydrate, and their interactions differ depending on the trait being examined. Interestingly, dietary fat has a positive influence on sperm motility and antioxidant capacity, differing to typical high fat diet studies where calorie content is not controlled for. Moreover, body adiposity is not significantly correlated with any of the reproductive traits measured in this study. These results demonstrate the importance of macronutrient balance and calorie intake on reproductive function and support the need to develop specific, targeted, preconception dietary guidelines for males.
Collapse
Affiliation(s)
- A J Crean
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - S Afrin
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - H Niranjan
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - T J Pulpitel
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - G Ahmad
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
- Department of Andrology, Royal Women's and Children's Pathology, Royal Women's Hospital, Parkville, VIC, 3053, Australia
| | - A M Senior
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - T Freire
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - F Mackay
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - M A Nobrega
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - R Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DK-2200, Denmark
- Institut de Pharmacologie Mole´ culaire et Cellulaire, Universite´ Coˆ te d'Azur & Centre National pour la Recherche Scientifique (CNRS), Valbonne, 06560, France
| | - S J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - T Pini
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia.
| |
Collapse
|
28
|
Biosynthetic constraints on amino acid synthesis at the base of the food chain may determine their use in higher-order consumer genomes. PLoS Genet 2023; 19:e1010635. [PMID: 36780875 PMCID: PMC9956874 DOI: 10.1371/journal.pgen.1010635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/24/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
Dietary nutrient composition is essential for shaping important fitness traits and behaviours. Many organisms are protein limited, and for Drosophila melanogaster this limitation manifests at the level of the single most limiting essential Amino Acid (AA) in the diet. The identity of this AA and its effects on female fecundity is readily predictable by a procedure called exome matching in which the sum of AAs encoded by a consumer's exome is used to predict the relative proportion of AAs required in its diet. However, the exome matching calculation does not weight AA contributions to the overall profile by protein size or expression. Here, we update the exome matching calculation to include these weightings. Surprisingly, although nearly half of the transcriptome is differentially expressed when comparing male and female flies, we found that creating transcriptome-weighted exome matched diets for each sex did not enhance their fecundity over that supported by exome matching alone. These data indicate that while organisms may require different amounts of dietary protein across conditions, the relative proportion of the constituent AAs remains constant. Interestingly, we also found that exome matched AA profiles are generally conserved across taxa and that the composition of these profiles might be explained by energetic and elemental limitations on microbial AA synthesis. Thus, it appears that ecological constraints amongst autotrophs shape the relative proportion of AAs that are available across trophic levels and that this constrains biomass composition.
Collapse
|
29
|
Fibroblast growth factor 21 and dietary macronutrient intake in female mice. Physiol Behav 2022; 257:113995. [DOI: 10.1016/j.physbeh.2022.113995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
30
|
Cootes TA, Bhattacharyya ND, Huang SS, Daniel L, Bell-Anderson KS, Stifter SA, Chew T, Solon-Biet SM, Saraiva LR, Cai Y, Chen X, Simpson SJ, Feng CG. The quality of energy- and macronutrient-balanced diets regulates host susceptibility to influenza in mice. Cell Rep 2022; 41:111638. [DOI: 10.1016/j.celrep.2022.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/28/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
|
31
|
Jin T. Fibroblast growth factor 21 and dietary interventions: what we know and what we need to know next. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:524-530. [PMID: 37724164 PMCID: PMC10388781 DOI: 10.1515/mr-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/10/2022] [Indexed: 09/20/2023]
Abstract
Dietary interventions include the change of dietary styles, such as fasting and dietary or nutrient restrictions; or the addition of plant-derived compounds (such as polyphenols known as curcumin, resveratrol, or anthocyanin, or other nutraceuticals) into the diet. During the past a few decades, large number of studies have demonstrated therapeutic activities of these dietary interventions on metabolic and other diseases in human subjects or various animal models. Mechanisms underlying those versatile therapeutic activities, however, remain largely unclear. Interestingly, recent studies have shown that fibroblast growth factor 21 (FGF21), a liver-derived hormone or hepatokine, mediates metabolic beneficial effects of certain dietary polyphenols as well as protein restriction. Here I have briefly summarized functions of FGF21, highlighted related dietary interventions, and presented literature discussions on role of FGF21 in mediating function of dietary polyphenol intervention and protein restriction. This is followed by presenting my perspective view, with the involvement of gut microbiota. It is anticipated that further breakthroughs in this field in the near future will facilitate conceptual merge of classical medicine and modern medicine.
Collapse
Affiliation(s)
- Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, TorontoCanada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, TorontoCanada
| |
Collapse
|
32
|
Adherence to Mediterranean Diet and Soluble Klotho Level: The Value of Food Synergy in Aging. Nutrients 2022; 14:nu14193910. [PMID: 36235560 PMCID: PMC9573612 DOI: 10.3390/nu14193910] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 12/01/2022] Open
Abstract
Diets for healthy aging have long been an intriguing issue. The current study makes a head-to-head comparison of four dietary patterns and their associations with soluble Klotho (s-Klotho) levels, an aging-related marker. The dietary data of 7906 subjects were obtained from the National Health and Nutrition Examination Survey 2007−2016. Each participant was given a score or was grouped according to four dietary patterns, namely the Mediterranean adherence diet score (MDS), the low-carbohydrate-diet score, a low-fat diet, and a low-carbohydrate diet. Subsequently, the associations with s-Klotho were examined using linear regression analyses. In addition, we calculated the odds ratio (OR) for aging in different dietary patterns, taking the lowest quartile of s-Klotho as a reference for aging. The MDS was the only dietary pattern that revealed a relationship with s-Klotho levels. The positive association (β coefficient: 9.41, p < 0.001) remained significant when dividing the MDS into tertiles (Tertile 2: β coefficient: 36.87, p < 0.001; Tertile 3: β coefficient: 45.92, p < 0.001) and grouping participants into subsets by sex, age, and BMI. A lower OR for aging was observed in higher MDS groups (Tertile 2: OR = 0.86, p = 0.026; Tertile 3: OR = 0.77, p < 0.001). However, when analyzed separately, merely three out of nine components of the MDS, namely alcohol consumption (β coefficient: 42.54, p < 0.001), fruit (β coefficient: 11.59, p = 0.029), and dairy products (β coefficient: 8.55, p = 0.032), showed a significant association with s-Klotho. The Mediterranean diet adopts a food-based approach, which has the merit of valuing the complex interactions between foods and their constituents, and further brings benefits to healthy aging.
Collapse
|
33
|
Gardner DS, Gray C. Development and the art of nutritional maintenance. Br J Nutr 2022; 128:828-834. [PMID: 35587048 PMCID: PMC9361123 DOI: 10.1017/s0007114522001490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
Abstract
Development from early conceptus to a complex, multi-cellular organism is a highly ordered process that is dependent on an adequate supply of nutrients. During this process, the pattern of organ growth is robust, driven by a genetic blueprint and matched to anticipated body mass with high precision and with built-in physiological reserve capacity. This apparent canalisation of the developmental process is particularly sensitive to variation in environmental stimuli, such as inappropriate drug or hormone exposure, or pattern of nutrient delivery. Significant variation in any of these factors can profoundly affect fetal and neonatal growth patterns, with later detriment for physiological function and/or reserve capacity of the resultant adult, with potential health impact. This paradigm shift in science has become known as the Developmental Origins of Health and Disease (DOHaD). Over the last 30 years, many animal and clinical studies have vastly expanded our fundamental knowledge of developmental biology, particularly in the context of later effects on health. In this horizons article, we discuss DOHaD through the lens of nutritional quality (e.g. micronutrient, amino acid, NSP intake). The concept of ‘Quality’ was considered undefinable by Robert Persig in his book, ‘Zen and the Art of Motorcycle Maintenance’. Here, development and the art of nutritional maintenance will define quality in terms of the pattern of nutrient intake, the quality of development and how each interact to influence later health outcomes.
Collapse
Affiliation(s)
- David S. Gardner
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Bonington, LE12 5RDLoughborough, UK
| | - Clint Gray
- Gillies McIndoe Research Institute, Wellington, New Zealand
- University of Otago, Wellington, New Zealand
| |
Collapse
|
34
|
Senior AM, Legault V, Lavoie FB, Presse N, Gaudreau P, Turcot V, Raubenheimer D, Le Couteur DG, Simpson SJ, Cohen AA. Multidimensional associations between nutrient intake and healthy ageing in humans. BMC Biol 2022; 20:196. [PMID: 36050730 PMCID: PMC9438070 DOI: 10.1186/s12915-022-01395-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about how normal variation in dietary patterns in humans affects the ageing process. To date, most analyses of the problem have used a unidimensional paradigm, being concerned with the effects of a single nutrient on a single outcome. Perhaps then, our ability to understand the problem has been complicated by the fact that both nutrition and the physiology of ageing are highly complex and multidimensional, involving a high number of functional interactions. Here we apply the multidimensional geometric framework for nutrition to data on biological ageing from 1560 older adults followed over four years to assess on a large-scale how nutrient intake associates with the ageing process. RESULTS Ageing and age-related loss of homeostasis (physiological dysregulation) were quantified via the integration of blood biomarkers. The effects of diet were modelled using the geometric framework for nutrition, applied to macronutrients and 19 micronutrients/nutrient subclasses. We observed four broad patterns: (1) The optimal level of nutrient intake was dependent on the ageing metric used. Elevated protein intake improved/depressed some ageing parameters, whereas elevated carbohydrate levels improved/depressed others; (2) There were non-linearities where intermediate levels of nutrients performed well for many outcomes (i.e. arguing against a simple more/less is better perspective); (3) There is broad tolerance for nutrient intake patterns that don't deviate too much from norms ('homeostatic plateaus'). (4) Optimal levels of one nutrient often depend on levels of another (e.g. vitamin E and vitamin C). Simpler linear/univariate analytical approaches are insufficient to capture such associations. We present an interactive tool to explore the results in the high-dimensional nutritional space. CONCLUSION Using multidimensional modelling techniques to test the effects of nutrient intake on physiological dysregulation in an aged population, we identified key patterns of specific nutrients associated with minimal biological ageing. Our approach presents a roadmap for future studies to explore the full complexity of the nutrition-ageing landscape.
Collapse
Affiliation(s)
- Alistair M Senior
- University of Sydney, Charles Perkins Centre, Camperdown, New South Wales, 2006, Australia. .,University of Sydney, School of Life and Environmental Science, Camperdown, New South Wales, 2006, Australia. .,University of Sydney, School of Mathematics and Statistics, Camperdown, New South Wales, 2006, Australia.
| | - Véronique Legault
- Department of Family Medicine, Groupe de recherche PRIMUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Francis B Lavoie
- Department of Family Medicine, Groupe de recherche PRIMUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Nancy Presse
- Research Center on Aging, CIUSSS-de-l'Estrie-CHUS, Sherbrooke, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada.,Department of Community Health Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierrette Gaudreau
- Department of Medicine, Université de Montréal, Montréal, QC, Canada.,Centre de recherche du centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Valérie Turcot
- Research Center on Aging, CIUSSS-de-l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - David Raubenheimer
- University of Sydney, Charles Perkins Centre, Camperdown, New South Wales, 2006, Australia.,University of Sydney, School of Life and Environmental Science, Camperdown, New South Wales, 2006, Australia
| | - David G Le Couteur
- University of Sydney, Charles Perkins Centre, Camperdown, New South Wales, 2006, Australia.,University of Sydney, School of Medicine, Camperdown, New South Wales, 2006, Australia.,Ageing and Alzheimers Institute and ANZAC Research Institute, Concord Hospital, Concord, New South Wales, 2139, Australia
| | - Stephen J Simpson
- University of Sydney, Charles Perkins Centre, Camperdown, New South Wales, 2006, Australia.,University of Sydney, School of Life and Environmental Science, Camperdown, New South Wales, 2006, Australia
| | - Alan A Cohen
- Department of Family Medicine, Groupe de recherche PRIMUS, University of Sherbrooke, Sherbrooke, QC, Canada.,Research Center on Aging, CIUSSS-de-l'Estrie-CHUS, Sherbrooke, QC, Canada.,Centre de recherche du centre hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
35
|
Bouchebti S, Wright GA, Shafir S. Macronutrient balance has opposing effects on cognition and survival in honey bees. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sofia Bouchebti
- B. Triwaks Bee Research Center, Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food & Environment The Hebrew University of Jerusalem Rehovot Israel
- School of Zoology Tel Aviv University Tel Aviv Israel
| | | | - Sharoni Shafir
- B. Triwaks Bee Research Center, Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food & Environment The Hebrew University of Jerusalem Rehovot Israel
| |
Collapse
|
36
|
Rodriguez Paris V, Wong XYD, Solon-Biet SM, Edwards MC, Aflatounian A, Gilchrist RB, Simpson SJ, Handelsman DJ, Kaakoush NO, Walters KA. The interplay between PCOS pathology and diet on gut microbiota in a mouse model. Gut Microbes 2022; 14:2085961. [PMID: 35787106 PMCID: PMC9450977 DOI: 10.1080/19490976.2022.2085961] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome has been implicated in polycystic ovary syndrome (PCOS) pathophysiology. PCOS is a disorder with reproductive, endocrine and metabolic irregularities, and several studies report that PCOS is associated with a decrease in microbial diversity and composition. Diet is an important regulator of the gut microbiome, as alterations in macronutrient composition impact the balance of gut microbial communities. This study investigated the interplay between macronutrient balance and PCOS on the gut microbiome of control and dihydrotestosterone (DHT)-induced PCOS-like mice exposed to diets that varied in protein (P), carbohydrate (C) and fat (F) content. The amount of dietary P, C and F consumed significantly altered alpha (α) and beta (β) diversity of the gut microbiota of control and PCOS-like mice. However, α-diversity between control and PCOS-like mice on the same diet did not differ significantly. In contrast, β-diversity was significantly altered by PCOS pathology. Further analysis identified an operational taxonomic unit (OTU) within Bacteroides (OTU3) with 99.2% similarity to Bacteroides acidifaciens, which is inversely associated with obesity, to be significantly decreased in PCOS-like mice. Additionally, this study investigated the role of the gut microbiome in the development of PCOS traits, whereby PCOS-like mice were transplanted with healthy fecal microbiota from control mice. Although the PCOS gut microbiome shifted toward that of control mice, PCOS traits were not ameliorated. Overall, these findings demonstrate that while diet exerts a stronger influence over gut microbiota diversity than PCOS pathology, overall gut microbiota composition is affected by PCOS pathology.
Collapse
Affiliation(s)
- Valentina Rodriguez Paris
- Fertility & Research Centre, School of Clinical Medicine, University of New South Wales Sydney, Sydney, NSW, Australia,CONTACT Valentina Rodriguez Paris Fertility & Research Centre, School of Women’s and Children’s Health, University of New South Wales Sydney, NSW2052, Australia
| | - Xin Yi Denise Wong
- Fertility & Research Centre, School of Clinical Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | | | - Melissa C Edwards
- Fertility & Research Centre, School of Clinical Medicine, University of New South Wales Sydney, Sydney, NSW, Australia,ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Ali Aflatounian
- Fertility & Research Centre, School of Clinical Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Robert B Gilchrist
- Fertility & Research Centre, School of Clinical Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | | | - Nadeem O Kaakoush
- School of Medical Sciences, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Kirsty A Walters
- Fertility & Research Centre, School of Clinical Medicine, University of New South Wales Sydney, Sydney, NSW, Australia,ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
37
|
Duan H, Pan J, Guo M, Li J, Yu L, Fan L. Dietary strategies with anti-aging potential: dietary patterns and supplements. Food Res Int 2022; 158:111501. [DOI: 10.1016/j.foodres.2022.111501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
|
38
|
Trautman ME, Richardson NE, Lamming DW. Protein restriction and branched-chain amino acid restriction promote geroprotective shifts in metabolism. Aging Cell 2022; 21:e13626. [PMID: 35526271 PMCID: PMC9197406 DOI: 10.1111/acel.13626] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 01/20/2023] Open
Abstract
The proportion of humans suffering from age‐related diseases is increasing around the world, and creative solutions are needed to promote healthy longevity. Recent work has clearly shown that a calorie is not just a calorie—and that low protein diets are associated with reduced mortality in humans and promote metabolic health and extended lifespan in rodents. Many of the benefits of protein restriction on metabolism and aging are the result of decreased consumption of the three branched‐chain amino acids (BCAAs), leucine, isoleucine, and valine. Here, we discuss the emerging evidence that BCAAs are critical modulators of healthy metabolism and longevity in rodents and humans, as well as the physiological and molecular mechanisms that may drive the benefits of BCAA restriction. Our results illustrate that protein quality—the specific composition of dietary protein—may be a previously unappreciated driver of metabolic dysfunction and that reducing dietary BCAAs may be a promising new approach to delay and prevent diseases of aging.
Collapse
Affiliation(s)
- Michaela E. Trautman
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Interdepartmental Graduate Program in Nutritional Sciences University of Wisconsin‐Madison Madison Wisconsin USA
| | - Nicole E. Richardson
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Endocrinology and Reproductive Physiology Graduate Training Program University of Wisconsin‐Madison Madison Wisconsin USA
| | - Dudley W. Lamming
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Endocrinology and Reproductive Physiology Graduate Training Program University of Wisconsin‐Madison Madison Wisconsin USA
| |
Collapse
|
39
|
Raubenheimer D, Senior AM, Mirth C, Cui Z, Hou R, Le Couteur DG, Solon-Biet SM, Léopold P, Simpson SJ. An integrative approach to dietary balance across the life course. iScience 2022; 25:104315. [PMID: 35602946 PMCID: PMC9117877 DOI: 10.1016/j.isci.2022.104315] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animals require specific blends of nutrients that vary across the life course and with circumstances, e.g., health and activity levels. Underpinning and complicating these requirements is that individual traits may be optimized on different dietary compositions leading to nutrition-mediated trade-offs among outcomes. Additionally, the food environment may constrain which nutrient mixtures are achievable. Natural selection has equipped animals for solving such multi-dimensional, dynamic challenges of nutrition, but little is understood about the details and their theoretical and practical implications. We present an integrative framework, nutritional geometry, which models complex nutritional interactions in the context of multiple nutrients and across levels of biological organization (e.g., cellular, individual, and population) and levels of analysis (e.g., mechanistic, developmental, ecological, and evolutionary). The framework is generalizable across different situations and taxa. We illustrate this using examples spanning insects to primates and settings (laboratory, and the wild), and demonstrate its relevance for human health.
Collapse
Affiliation(s)
- David Raubenheimer
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
- Zhengzhou University, Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou, China
| | - Alistair M. Senior
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
- The University of Sydney, School of Mathematics and Statistics, Sydney, Australia
| | - Christen Mirth
- Monash University, School of Biological Science, Melbourne, Australia
| | - Zhenwei Cui
- Zhengzhou University, Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou, China
| | - Rong Hou
- Northwest University, Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Xi’an, China
| | - David G. Le Couteur
- The University of Sydney, Charles Perkins Centre and Faculty of Medicine and Health, Concord Clinical School, ANZAC Research Institute, Centre for Education and Research on Ageing, Sydney, Australia
| | - Samantha M. Solon-Biet
- The University of Sydney, Charles Perkins Centre and School of Medical Sciences, Sydney, Australia
| | - Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, Paris, France
| | - Stephen J. Simpson
- The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia
| |
Collapse
|
40
|
Ma C, Mirth CK, Hall MD, Piper MDW. Amino acid quality modifies the quantitative availability of protein for reproduction in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104050. [PMID: 32229142 DOI: 10.1016/j.jinsphys.2020.104050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 05/25/2023]
Abstract
Diet composition, especially the relative abundance of key macronutrients, is well known to affect animal wellbeing by changing reproductive output, metabolism and length of life. However, less attention has been paid to the ways the quality of these nutrients modify these macronutrient interactions. Nutritional Geometry can be used to model the effects of multiple dietary components on life-history traits and to compare these responses when diet quality is varied. Previous studies have shown that dietary protein quality can be increased for egg production in Drosophila melanogaster by matching the dietary amino acid proportions to the balance of amino acids used by the sum of proteins in the fly's in silico translated exome. Here, we show that dietary protein quality dramatically alters the effect of protein quantity on female reproduction across a broad range of diets varying in both protein and carbohydrate concentrations. These data show that when sources of ingredients vary, their relative value to the consumer can vastly differ and yield very different physiological outcomes. Such variations could be particularly important for meta analyses that look to draw generalisable conclusions from diverse studies.
Collapse
Affiliation(s)
- Carolyn Ma
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
41
|
Abstract
The behavior of diet selection or diet choice can have wide-reaching implications, scaling from individual animals to ecological and evolutionary processes. Previous work in this area has largely ignored the potential for intestinal microbiota to modulate host foraging decisions. The notion that the gut microbiome may influence host foraging behavior has been highly speculated for years but has not yet been explicitly tested. Here, we show that germ-free mice colonized by differential microbiomes from wild rodents with varying natural feeding strategies exhibited significant differences in their voluntary dietary selection. Specifically, colonized mice differed in voluntary carbohydrate selection, and divergent feeding preferences were associated with differences in circulating essential amino acids, bacterial tryptophan metabolism, and intestinal morphology. Together, these results demonstrate a role for the microbiome in host nutritional physiology and foraging behavior. Diet selection is a fundamental aspect of animal behavior with numerous ecological and evolutionary implications. While the underlying mechanisms are complex, the availability of essential dietary nutrients can strongly influence diet selection behavior. The gut microbiome has been shown to metabolize many of these same nutrients, leading to the untested hypothesis that intestinal microbiota may influence diet selection. Here, we show that germ-free mice colonized by gut microbiota from three rodent species with distinct foraging strategies differentially selected diets that varied in macronutrient composition. Specifically, we found that herbivore-conventionalized mice voluntarily selected a higher protein:carbohydrate (P:C) ratio diet, while omnivore- and carnivore-conventionalized mice selected a lower P:C ratio diet. In support of the long-standing hypothesis that tryptophan—the essential amino acid precursor of serotonin—serves as a peripheral signal regulating diet selection, bacterial genes involved in tryptophan metabolism and plasma tryptophan availability prior to the selection trial were significantly correlated with subsequent voluntary carbohydrate intake. Finally, herbivore-conventionalized mice exhibited larger intestinal compartments associated with microbial fermentation, broadly reflecting the intestinal morphology of their donor species. Together, these results demonstrate that gut microbiome can influence host diet selection behavior, perhaps by mediating the availability of essential amino acids, thereby revealing a mechanism by which the gut microbiota can influence host foraging behavior.
Collapse
|
42
|
FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male mice. Nat Commun 2022; 13:1897. [PMID: 35393401 PMCID: PMC8991228 DOI: 10.1038/s41467-022-29499-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Dietary protein restriction is increasingly recognized as a unique approach to improve metabolic health, and there is increasing interest in the mechanisms underlying this beneficial effect. Recent work indicates that the hormone FGF21 mediates the metabolic effects of protein restriction in young mice. Here we demonstrate that protein restriction increases lifespan, reduces frailty, lowers body weight and adiposity, improves physical performance, improves glucose tolerance, and alters various metabolic markers within the serum, liver, and adipose tissue of wildtype male mice. Conversely, mice lacking FGF21 fail to exhibit metabolic responses to protein restriction in early life, and in later life exhibit early onset of age-related weight loss, reduced physical performance, increased frailty, and reduced lifespan. These data demonstrate that protein restriction in aging male mice exerts marked beneficial effects on lifespan and metabolic health and that a single metabolic hormone, FGF21, is essential for the anti-aging effect of this dietary intervention.
Collapse
|
43
|
Carey MR, Archer CR, Rapkin J, Castledine M, Jensen K, House CM, Hosken DJ, Hunt J. Mapping sex differences in the effects of protein and carbohydrates on lifespan and reproduction in Drosophila melanogaster: is measuring nutrient intake essential? Biogerontology 2022; 23:129-144. [PMID: 35122572 PMCID: PMC8888493 DOI: 10.1007/s10522-022-09953-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 01/03/2023]
Abstract
Understanding how diet affects reproduction and survival is a central aim in evolutionary biology. Although this relationship is likely to differ between the sexes, we lack data relating diet to male reproductive traits. One exception to this general pattern is Drosophila melanogaster, where male dietary intake was quantified using the CApillary FEeder (CAFE) method. However, CAFE feeding reduces D. melanogaster survival and reproduction, so may distort diet-fitness outcomes. Here, we use the Geometric Framework of Nutrition to create nutrient landscapes that map sex-specific relationships between protein, carbohydrate, lifespan and reproduction in D. melanogaster. Rather than creating landscapes with consumption data, we map traits onto the nutrient composition of forty agar-based diets, generating broad coverage of nutrient space. We find that male and female lifespan was maximised on low protein, high carbohydrate blends (~ 1P:15.9C). This nutrient ratio also maximised male reproductive rates, but females required more protein to maximise daily fecundity (1P:1.22C). These results are consistent with CAFE assay outcomes. However, the approach employed here improved female fitness relative to CAFE assays, while effects of agar versus CAFE feeding on male fitness traits depended on the nutrient composition of experimental diets. We suggest that informative nutrient landscapes can be made without measuring individual nutrient intake and that in many cases, this may be preferable to using the CAFE approach. The most appropriate method will depend on the question and species being studied, but the approach adopted here has the advantage of creating nutritional landscapes when dietary intake is hard to quantify.
Collapse
Affiliation(s)
- Matthew R Carey
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Cornwall, UK
| | - C Ruth Archer
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Cornwall, UK.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89069, Ulm, Germany
| | - James Rapkin
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Cornwall, UK
| | - Meaghan Castledine
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Cornwall, UK
| | - Kim Jensen
- Department of Animal Science - ANIS Nutrition, Aarhus University, Tjele, Denmark
| | - Clarissa M House
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW, Australia
| | - David J Hosken
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Cornwall, UK
| | - John Hunt
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW, Australia.
| |
Collapse
|
44
|
Hawkes M, Lane SM, Rapkin J, Jensen K, House C, Sakaluk SK, Hunt J. Intralocus sexual conflict over optimal nutrient intake and the evolution of sex differences in life span and reproduction. Funct Ecol 2022. [DOI: 10.1111/1365-2435.13995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Hawkes
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
| | - Sarah M. Lane
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
- School of Biological and Marine Sciences Animal Behaviour Research Group University of Plymouth Plymouth UK
| | - James Rapkin
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
| | - Kim Jensen
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
- Department of Bioscience Aarhus University Silkeborg Denmark
| | - Clarissa M. House
- School of Science Western Sydney University Penrith NSW Australia
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Scott K. Sakaluk
- Behavior, Ecology, Evolution and Systematics Section School of Biological Sciences Illinois State University Normal IL USA
| | - John Hunt
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
- School of Science Western Sydney University Penrith NSW Australia
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| |
Collapse
|
45
|
Shu R, Uy L, Wong ACN. Nutritional phenotype underlines the performance trade-offs of Drosophila suzukii on different fruit diets. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100026. [PMID: 36003272 PMCID: PMC9387456 DOI: 10.1016/j.cris.2021.100026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022]
Abstract
Drosophila suzukii exhibits contrasting performance trade-offs when confined to fruit diets of different protein-to-sugar ratios. These trade-offs can only be established when we examined performance parameters in both larvae and adults. The diet-specific nutritional phenotype readily explains the performance trade-offs.
Animals confined to different dietary conditions often exhibit distinct, sometimes contrasting, nutritional phenotypes and performance outcomes. This is especially true for many oviparous insects whose developmental diets can vary depending on the mother's egg-laying site selection. Much research on the relationship between preference and performance in insects has focused on larval success, which overlooks the complexities of dietary effects on diverse performance parameters across life stages and potential trade-offs between those parameters. Furthermore, the connection between diet-induced nutritional phenotype and performance trade-offs is not well understood. Here, using Drosophila suzukii, we quantify multiple performance indices of larvae and adults reared on five host fruits of different protein-to-sugar ratios (P:S) which have previously been shown to differ in attractiveness to fly foraging and oviposition. Our results demonstrate robust diet-specific performance trade-offs, with fly fecundity, larval development time, pupal size, and adult weight superior in flies reared on the high P:S raspberry diet, in contrast to the low P:S grape diet; but the reverse was found in terms of adult starvation resistance. Notably, the contrasting performance trade-offs are readily explained by the fly nutritional phenotype, reflected in the protein and energy (glucose and lipid) contents of flies reared on the two fruits. Together, our results provide experimental evidence for metabolic plasticity of D. suzukii reared on different fruits and the possibility of using adult nutritional phenotype as a marker for diet and performance outcomes.
Collapse
Affiliation(s)
- Runhang Shu
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Laurice Uy
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Adam Chun-Nin Wong
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Corresponding author, Adam C.N. Wong, 1881 Natural Area Drive, Steinmetz Hall, Gainesville, Fl 32611-0620, Phone: 352-273-3977
| |
Collapse
|
46
|
Simmons LW, Ng SH, Lovegrove M. Condition‐dependent seminal fluid gene expression and intergenerational paternal effects on ejaculate quality. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| | - Soon Hwee Ng
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| |
Collapse
|
47
|
Davidson KH, Starzomski BM, El‐Sabaawi R, Hocking MD, Reynolds JD, Wickham SB, Darimont CT. Marine subsidy promotes spatial and dietary niche variation in an omnivore, the Keen's mouse ( Peromyscus keeni). Ecol Evol 2021; 11:17700-17722. [PMID: 35003633 PMCID: PMC8717356 DOI: 10.1002/ece3.8225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Marine-derived resource subsidies can generate intrapopulation variation in the behaviors and diets of terrestrial consumers. How omnivores respond, given their multiple trophic interactions, is not well understood. We sampled mice (Peromyscus keeni) and their food sources at five sites on three islands of the Central Coast of British Columbia, Canada, to test predictions regarding variation in the spatial behavior and consumption of marine-subsidized foods among individuals. About 50% of detections (n = 27 recaptures) occurred at traps closest to shoreline (25 m), with capture frequencies declining significantly inland (up to 200 m). Stable isotope signatures (δ 13C and δ 15N), particularly δ 15N, in plant foods, forest arthropod prey, and mouse feces were significantly enriched near shorelines compared with inland, while δ 13C patterns were more variable. Bayesian isotope mixing models applied to isotope values in mouse hair indicated that over one-third (35-37%) of diet was comprised of beach-dwelling arthropods, a marine-derived food source. Males were more abundant near the shoreline than females and consumed more marine-derived prey, regardless of reproductive status or availability of other food sources. Our results identify how multiple pathways of marine nutrient transfer can subsidize terrestrial omnivores and how subsets of recipient populations can show variation in spatial and dietary response.
Collapse
Affiliation(s)
- Katie H. Davidson
- Department of GeographyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Hakai InstituteHeriot BayBritish ColumbiaCanada
| | - Brian M. Starzomski
- Hakai InstituteHeriot BayBritish ColumbiaCanada
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Rana El‐Sabaawi
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Morgan D. Hocking
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Ecofish Research Ltd.VictoriaBritish ColumbiaCanada
| | - John D. Reynolds
- Hakai InstituteHeriot BayBritish ColumbiaCanada
- Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Sara B. Wickham
- Hakai InstituteHeriot BayBritish ColumbiaCanada
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Present address:
School of Environment, Resources and SustainabilityUniversity of WaterlooWaterlooOntarioCanada
| | - Chris T. Darimont
- Department of GeographyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Hakai InstituteHeriot BayBritish ColumbiaCanada
- Raincoast Conservation FoundationSidneyBritish ColumbiaCanada
| |
Collapse
|
48
|
Fotheringham AK, Solon-Biet SM, Bielefeldt-Ohmann H, McCarthy DA, McMahon AC, Ruohonen K, Li I, Sullivan MA, Whiddett RO, Borg DJ, Cogger VC, Ballard WO, Turner N, Melvin RG, Raubenheimer D, Le Couteur DG, Simpson SJ, Forbes JM. Kidney disease risk factors do not explain impacts of low dietary protein on kidney function and structure. iScience 2021; 24:103308. [PMID: 34820603 PMCID: PMC8602032 DOI: 10.1016/j.isci.2021.103308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/29/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
The kidneys balance many byproducts of the metabolism of dietary components. Previous studies examining dietary effects on kidney health are generally of short duration and manipulate a single macronutrient. Here, kidney function and structure were examined in C57BL/6J mice randomized to consume one of a spectrum of macronutrient combinations (protein [5%–60%], carbohydrate [20%–75%], and fat [20%–75%]) from weaning to late-middle age (15 months). Individual and interactive impacts of macronutrients on kidney health were modeled. Dietary protein had the greatest influence on kidney function, where chronic low protein intake decreased glomerular filtration rates and kidney mass, whereas it increased kidney immune infiltration and structural injury. Kidney outcomes did not align with cardiometabolic risk factors including glucose intolerance, overweight/obesity, dyslipidemia, and hypertension in mice with chronic low protein consumption. This study highlights that protein intake over a lifespan is an important determinant of kidney function independent of cardiometabolic changes. Chronic high macronutrient intake from any source increases kidney function (GFR) Low protein intake led to greater kidney tubular structural injury and inflammation Lower protein intake decreased kidney mass and glomerular filtration capacity Kidney outcomes did not align with longevity or cardiometabolic outcomes
Collapse
Affiliation(s)
- Amelia K Fotheringham
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Medical Sciences, University of Sydney, Sydney 2006, NSW, Australia
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, University of Queensland, Gatton Campus, Gatton 4343, QLD, Australia.,School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane 4067, QLD, Australia
| | - Domenica A McCarthy
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Aisling C McMahon
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - Kari Ruohonen
- Animal Nutrition and Health, Cargill, Sandnes, Norway
| | - Isaac Li
- Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Mitchell A Sullivan
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Rani O Whiddett
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Danielle J Borg
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, NSW 2052, Australia
| | - Richard G Melvin
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth 55812, MN, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Josephine M Forbes
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia.,Department of Medicine, University of Melbourne, Heidelberg, VIC 3084, Australia
| |
Collapse
|
49
|
Ma Y, Wang M, Wei F, Nie Y. Geographic distributions shape the functional traits in a large mammalian family. Ecol Evol 2021; 11:13175-13185. [PMID: 34646461 PMCID: PMC8495830 DOI: 10.1002/ece3.8039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/27/2023] Open
Abstract
Traits of organisms are shaped by their living environments and also determined in part by their phylogenetic relationships. For example, phylogenetic relationships often affect the geographic distributions of animals and cause variation in their living environments, which usually play key roles in the life history and determine the functional traits of species. As an ancient family of mammals, bears widely distribute and have evolved some specific strategies for survival and reproduction during their long-term evolutionary histories. Many studies on the ecology of bears have been conducted in recent decades, but few have focused on the relationships between their geographic distributions and ecological adaptations. Here, using bears as a model system, we collected and reanalyzed data from the available literatures to explore how geographic distributions and phylogenetic relationships shape the functional traits of animals. We found a positive relationship between phylogenetic relatedness and geographic distributions, with bears distributed in adjacent areas applying more similar strategies to survive and reproduce: (a) Bears living at high latitudes consumed a higher proportion of vertebrates, which may provide more fat for adaptation to low temperatures, and (b) their reproduction rhythms follow fluctuations in seasonal forage availability and quality, in which bears reach mating status from March to May and give birth in approximately November or later.
Collapse
Affiliation(s)
- Yingjie Ma
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Meng Wang
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fuwen Wei
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| | - Yonggang Nie
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| |
Collapse
|
50
|
Teulière J, Bernard C, Bapteste E. Interspecific interactions that affect ageing: Age-distorters manipulate host ageing to their own evolutionary benefits. Ageing Res Rev 2021; 70:101375. [PMID: 34082078 DOI: 10.1016/j.arr.2021.101375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
Genetic causes for ageing are traditionally investigated within a species. Yet, the lifecycles of many organisms intersect. Additional evolutionary and genetic causes of ageing, external to a focal species/organism, may thus be overlooked. Here, we introduce the phrase and concept of age-distorters and its evidence. Age-distorters carry ageing interfering genes, used to manipulate the biological age of other entities upon which the reproduction of age-distorters relies, e.g. age-distorters bias the reproduction/maintenance trade-offs of cells/organisms for their own evolutionary interests. Candidate age-distorters include viruses, parasites and symbionts, operating through specific, genetically encoded interferences resulting from co-evolution and arms race between manipulative non-kins and manipulable species. This interference results in organismal ageing when age-distorters prompt manipulated organisms to favor their reproduction at the expense of their maintenance, turning these hosts into expanded disposable soma. By relying on reproduction/maintenance trade-offs affecting disposable entities, which are left ageing to the reproductive benefit of other physically connected lineages with conflicting evolutionary interests, the concept of age-distorters expands the logic of the Disposable Soma theory beyond species with fixed germen/soma distinctions. Moreover, acknowledging age-distorters as external sources of mutation accumulation and antagonistic pleiotropic genes expands the scope of the mutation accumulation and of the antagonistic pleiotropy theories.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France.
| |
Collapse
|